
Department of Computer Science
Faculty of Science

Palacký University Olomouc

MASTER THESIS

The implementat ion of a Single S ign-On

2 0 2 2

Supervisor:
RNDr. Martin Trnečka, Ph.D.

Be. D o m i n i k a Gajdova

Study program: Applied Computer
Science, Specialization: Software
Development

Bibliografické údaje

Autor:

Název práce:

Typ práce:

Pracoviště:

Rok obhajoby:

Studijní program:

Vedoucí práce:

Počet stran:

Přílohy:

Jazyk práce:

Bc. Dominika Gajdová

Implementace služby jednotného přihlášení

diplomová práce

Katedra informatiky, Přírodovědecká fakulta, Univerzita
Palackého v Olomouci

2022

Aplikovaná informatika, Specializace: Vývoj software

RNDr. Martin Trnečka, Ph.D.

39

1 CD/DVD

anglický

Bibliographic info

Author:

Title:

Thesis type:

Department:

Year of defense:

Study program:

Supervisor:

Page count:

Supplements:

Thesis language:

Bc. Dominika Gajdová

The implementation of a Single Sign-On

master thesis

Department of Computer Science, Faculty of Science,
Palacký University Olomouc

2022

Applied Computer Science, Specialization: Software Devel
opment

RNDr. Martin Trnečka, Ph.D.

39

1 CD/DVD

English

Anotace

Tato práce se zabývá implementací systému jednotého přihlášení. Jejím obsahem
je především analýza a rozbor existujících protokolů, řešení, a dále návrh řešení
vlastního. Součástí vlastního řešení je server spravující identity uživatelů, webový
portál umožňující správu uživatelů a služeb a mobilní aplikace určená k verifikaci
uživatele přes QR kód.

Synopsis

This thesis focuses on the implementation of a single sign-on system. Its con
tents include an analysis of existing protocols and solutions, along with a proposal
of a custom solution. The custom solution contains a user identity management
server, a web portal allowing for user and service management, and a mobile
application that enables user verification via a QR code.

Klíčová slova: systém jednotého přihlášení; identita, autentizace, autorizace,
OpenID Connect, S A M L

Keywords: single sign-on, identity, authentication, authorization, OpenID Con
nect, S A M L

I would like to thank my supervisor RNDr. Martin Trnečka, Ph.D for providing
me with the opportunity to study an interesting topic and guiding me in the
process.

/ hereby declare that I have completed this thesis including its appendices on my
own and used solely the sources cited in the text and included in the bibliography
list.

date of thesis submission author's signature

Contents
1 Introduction 1

1.1 Identity
1.2 Loginless
1.3 Authentication 3
1.4 Authorization 3
1.5 Naming conventions 4
1.6 SSO 4

2 OAuth 2.0
2.1 Authorization grant types
2.2 Refresh token

3 OpenID Connect 9
3.1 Authorization Flows 10
3.2 Single logout 11
3.3 J W T 12

4 S A M L 2.0 13
4.1 Flow 14
4.2 Example 16

5 Existing identity solutions 17
5.1 Okta 17
5.2 AuthO 18
5.3 Key cloak 18
5.4 Summary 18

6 The implementation 19
6.1 Identity Server 19
6.2 Authentication methods 22
6.3 Authentication flow 23
6.4 Single Logout 27
6.5 SSO Portal 29

6.6 K M I Auth 30

Conclusions 32

Conclusions 33

A Contents of attached C D / D V D 34

Acronyms 36

References 37

iv

List of Figures
1 OAuth 2.0 abstract flow 6
2 J W T format 14
3 S A M L Request Example from samltool.com 16
4 S A M L Response Example from samltool.com 17
5 Database schema (excluding 1:M, M : M relationship tables) 20
6 Clean Architecture layer structure 21
7 SSO flow 24
8 SSE flow 28
9 SSE QR implementation flow 30

http://samltool.com
http://samltool.com

1 Introduction
There has never been a time in history in which identifying people was more
prominent than today. People in the middle ages did not live in million person
cities. They did not communicate with people across the world very often, if
ever. It was sufficient enough to know the people who are your neighbours or
live in the same town. If someone attempted to pretend to be somebody else,
they would have likely been quickly detected.

The same cannot be said about nowadays — the era of the Internet. Billions
of people are intertwined by a large system of connected computer networks with
unthinkable amounts of data transferring every second. It is important that there
exists a way to prove you are who you claim to be and it is important that it is
executed well. At least well enough — nothing is ever impenetrable and every
solution has its strong and weak parts.

There are stories about stolen or easily guessed passwords that noticeably
raised today's authentication standards. A need arises to memorize tens of dif
ferent passwords for different services or, ideally, have another program memorize
them for us. The practice of reusing the same password on every website with
the hope that none of these websites ever become vulnerable is not optimal.

Single sign-on systems (SSO) are a great improvement in user experience
and convenience. The user only needs to log in once and does not need to enter
any more credentials when visiting another application in the same SSO system,
noticeably saving the user's time. Having a set of services reuse the same user
credentials without each one of them having to maintain their own authentica
tion system is very helpful for the developers as well.

This thesis is divided into two thematically separated parts:

1. A theoretical introduction into the topic, its terminology and technologies.
In this part, the terms identity, authentication, authorization will be in
troduced and existing solutions and protocols such as OAuth, OIDC and
S A M L will be explained and compared.

2. A practical implementation of a SSO. In this part, a custom solution will
be described — the architecture, individual flows, challenges and suggested
solutions.

1

1.1 Identi ty

What exactly is it that uniquely identifies a person? In the context of a citi
zenship, it might be their personal identification card number or their driver's
license. In other contexts it might be entirely something else but there is a com
mon pattern — identifiers that uniquely identify a person. If we take one or more
unique identifiers and optionally some more information about a person, such as
their name, e-mail or cell number (i.e. attributes), then we have just created an
identity. Identity is a set of attributes that uniquely describe a person in a given
context. These attributes can also be referred to as claims. From now on the
thesis will be considering the context of the online world.

A person can have multiple identities. It entirely depends on the context
and identifiers used. For example, user can have a work identity where they are
uniquely identified by an employee number within the company they are working
for, but then also have private personal identity that serves a different purpose.
In the world of online services we often hear the word account and understand
it loosely as something that is created after registration and holds all our infor
mation. A n account is an application specific construct that holds or refers to
an identity. [1]

The same identity can be used with multiple providers, as is the case with
some of the popular sign-in options - Google, Facebook and Apple. If a user
signs in to an application with one of the providers, (considering already having
been previously registered) and then tries to sign-in with a different one, they
will be notified that they have previously signed in with the same identity but a
different provider.

1.2 Loginless

Some experimental approaches to identifying users without any personal identi
fiers have been tried. A n online schedule making tool called Coursicle has im-
plemeneted what they call a 'Loginless'. The idea behind it is using the method
of browser fingerprinting:

"Browser fingerprinting is a powerful method that websites use to
collect information about your browser type and version, as well as
your operating system, active plugins, time zone, language, screen
resolution and various other active settings." [2]

Coursicle generates a Universal Unique Identifier (UUID) for a person. It is used
as their UserlD which then associates them with a particular browser based on
a taken browser fingerprint. Therefore, a user visiting using their application
will have an account created automatically while visiting and all their created
schedules will be associated with that account without the user having to sign

2

up. Naturally, mechanisms for syncability and restorability had to be introduced
since many users own at least two devices. [3]

This kind of identity detection is not suited for most applications and there
is a major future problem — browser fingerprinting is not 100% accurate and
modern browsers are trying to essentially eliminate it. After all, it is a user
tracking tool and an invasion of privacy.

1.3 Au then t i ca t ion

The process of proving one's identity is called authentication. Most commonly it
is performed by entering the right combination of username and password which
has been previously registered. The password in this case is the proof. There are
many different ways and approaches to authenticating and they can be divided
into categories called factors. These factors are usually referred to as:

• Something you know — A password or a secret code.

• Something you have — A smartphone or physical security key.

• Something you are — Fingerprints or face recognition.

Using only one of the mentioned factors is called a Single Factor Authenti
cation. That has been the common practice until the last few years in which
security has been more discussed and companies have started to require users to
use at least one additional factor, essentially setting Two Factor Authentication
(2FA) as the new standard. Combining two or more factors is also known as
Multi Factor authentication (MFA) where 2FA is the base case of MFA.

If knowledge factor is omitted completely then it is known as passwordless
authentication. This method has been gaining a lot of popularity lately because
of the convenience of not having to remember credentials for every application
the user has an account in. There are other protocol standards being developed
that battle the password problem, most notably SQRL and FIDO.

1.4 A u t h o r i z a t i o n

The process of verifying whether a user has access (i.e. privilege) to a requested
resource is called authorization. For example, role-based authorization can be
used to control access to resources only available for a particular user role. Policy-
based authorization will enforce a defined set of requirements, such as being older
than 18 policy will only grant access to users satisfying this policy requirement.
Claims-based authorization will allow access if and only if the user's identity
claims contain the required claim.

3

1.5 N a m i n g conventions

It is common that every protocol uses different terminology to describe the same
concept. For example, authorization server (OAuth2), identity server (SAML)
and an identity provider (OIDC) are all referring to a server performing the
authentication. The same applies to the term for a client application: client,
relying party, service provider, client application, etc. In this thesis, when de
scribing a particular protocol, its designated terminology will be used. Else the
terms identity server and client service will be used throughout the text.

1.6 SSO

Single Sign-On is a feature which enables users to authenticate only once and
have immediate access to other services within the same SSO system. This abil
ity eliminates the need to authenticate to every service separately and remember
the password for each of them, making this feature incredibly convenient for
users.

Technically speaking, the idea is to use an identity provider. By delegating
authentication to the identity server, a single point of identity is established. The
services delegating authentication do not need to manage their own database of
users and do not need to implement their own authentication system. Instead of
logging to the service, the user actually logs in to the identity provider where a
single session for the entire SSO is created.

A n abstract flow description:

1. User visits a service that uses an identity provider and initiates a sign-in.

2. Identity provider checks if an SSO session already exists. If it does, the
session is updated accordingly and the user is returned back to the service
authenticated. If no session exists yet, the authentication process is started.

3. User is redirected to identity provider's login page and authenticates with
a method required by the service.

4. After successful login, an SSO session is created on the identity provider's
side and the user is redirected back to the service.

In the following chapters, the two most used identity protocols, which define
a way of passing authentication information between the client service and the
identity server, will be introduced: OIDC and S A M L . The OIDC protocol is built
on top of another important protocol called OAuth 2.0 which will be introduced
first.

4

2 OAuth 2.0
A client service may need to access some protected resource from a third party
service on behalf of a user. Before OAuth, the client would need to share their
credentials for the third party service with the client service and the client ser
vice would use them to authenticate and access those requested resources. That
comes with a plethora of problems such as credentials needed to be stored in
clear text on the client side or a nonexistent practice of restricting the access
to only predefined resources. For example, a user could use an application that
would go through their e-mail messages, scan through them and collect all rel
evant e-mails. The only way to perform this would be to give the credentials
to the application, essentially giving them access and all privileges to the e-mail
account and therefore introducing a great security risk. The OAuth protocol has
been designed to solve this exact problem.

The OAuth protocol defines four roles:

• Resource Server - Server that hosts the protected requested resource.

• Resource Owner - User or entity that owns the requested resource on the
resource server.

• Client - The application wanting to access the protected resources on user's
behalf.

• Authorization server - Server performing the resource owner authentication,
requesting consent from the user and issuing the authorization grant. [4]

The naming of the OAuth 2.0 authorization server can be misleading con
sidering it also performs authentication. The authentication server and the au
thorization server can be two separate servers or a single server performing both
operations.

Figure 1 visualizes the abstract protocol flow and its individual steps:

1. Client application requests authorization from the resource owner (the
user). This is usually executed by presenting a screen of requested privi
leges to the user. After user consents, an intermediary authorization grant
is passed back to the client application signalizing that it has been success
fully authorized.

2. Client application exchanges the acquired authorization grant for an access
token. This access token does not hold any user information. Its purpose is
solely to be used for authorization and the token format can be any string
as long as it is not easily guessed (UUID or randomly cryptographically
generated string).

3. Client application uses the access token to access protected resources on
the resource owner's behalf.

5

A p p l i c a t i o n

(Client)

1.Authorization request

2. Authorizat ion grant

3. Authorizat ion grant

4. Access token

5. Access token

6. Protected resource

R e s o u r c e

o w n e r

A u t h o r i z a t i o n

s e rve r

R e s o u r c e

s e rve r

Figure 1: OAuth 2.0 abstract flow

A u t h o r i z a t i o n endpoint

The are certain parameters that are being used with the OAuth 2.0 authorize
endpoint: GET / a u t h o r i z e

• Clientld — Assigned unique identifier for the client application.

• Scope — Defines the scope of requested privileges, e.g. 'get: user Info'.

• RedirectUri — Callback U R L address that the authorization server sends
the authorization grant or access token to.

• Response Type — Grant type, usually either 'code' (authorization code) or
'token' (access token) or a combination of both.

• CodeChallenge — P K C E generated challenge.

Token endpoint
The token endpoint exchanges the authorization code for an access token: POST
/ t o k e n

Clientld — Assigned unique identifier for the client application.

6

• RedirectUri — Callback U R L address that the authorization server sends
the authorization grant or access token to.

• Code — The authorization token received in the callback.

• CodeVerifier — P K C E generated verifier.

2.1 A u t h o r i z a t i o n grant types

OAuth defines multiple grant types — different flows of obtaining an access
token:

• Authorization code

• Implicit

• Client credentials

• Resource owner credentials

In the following subsections, the first two grant types will be explained as
they are the most commonly used and relevant. The other two grant types can
be studied further in the official R F C 6749 document. [4]

Impl ic i t grant

The implicit grant flow was designed for use with front end clients such as single
page applications or mobile applications. It was created at a time when CORS
was not yet implemented by most browsers and public clients were not able to
perform requests outside of their own domain, therefore making it impossible to
exchange authorization code for an access token. [1]

1. Client requests authorization from the authorization server by redirecting
to the authorize endpoint.

2. User is presented with a consent screen and is prompted to authenticate
with the authorization server.

3. When the user successfully authenticates and consents, the authorization
server redirects to the client's registered callback U R L with the access token
in a form of a U R L hash fragment.

4. Client can now access protected resources on the user's behalf.

Receiving access code in U R L is prone to interception attacks and therefore
the implicit flow has important security issues to consider. Because CORS is now
supported by almost all browsers, the implicit grant flow has been deprecated.

7

A u t h o r i z a t i o n code grant

This flow directly implements the abstract authorization flow.

1. Client requests authorization from the authorization server by redirecting
to the authorize endpoint.

2. User is presented with a consent screen and is prompted to authenticate
with the authorization server.

3. When user successfully authenticates and consents, the authorization server
redirects to the client's registered callback U R L with the authorization
code.

4. Client exchanges the authorization code for an access token and can now
access protected resources on user's behalf.

The authorization code grant was designed to be used with a back end channel
because the token exchange usually requires a client secret that needs to be stored
securely. Front end clients cannot store secrets securely and therefore developers
very often used an implicit flow.

A u t h o r i z a t i o n code grant w i t h P K C E

If the authorization grant flow is used in a public client context, it suffers from
the same security problem as the implicit flow — the authorization code can
be intercepted and exchanged for an access token by a malicious third party.
A verification mechanism has been introduced to ensure that the application
requesting the token exchange is the same as the application that originally
requested authorization. This mechanism substitutes a public client secret and
adds two parameters to the flow:

• CodeVerifier — Randomly cryptographically generated code. This param
eter is passed to the token endpoint.

• CodeChallenge - - T(CodeVerifier) where T is a hash function (usually
sha256). This parameter is passed to the authorization endpoint.

The authorization server applies the same hash function to the CodeVerifier
and compares the output with the saved CodeChallenge. This prevents an inter
ceptor from being able to exchange the authorization code without also knowing
the CodeVerifier (the proof). Both P K C E parameters can be generated on the
front end side and are only temporarily held in memory, making this method
sufficiently secure. [5]

8

2.2 Refresh token

Issuing an access token without an expiration date is a great security risk. In
case it is compromised, the attacker gains unlimited access to a protected re
source. Therefore, access tokens should be short lived. As a matter of fact, the
expiration time is recommended to be only 15 minutes. It is not very conve
nient for the user though, as they would be asked to re-authenticate every 15
minutes. The refresh token mechanism solves this issue by introducing a possi
bility of obtaining a new access token without the user having to authorize again.

The typical Token endpoint response contains these four parameters:

• Access Token — The token used for authorization.

• Refresh Token

• Token Type — Type of issued token, e.g. Bearer.

• Expires In — Expiration of the access token in seconds.

Refresh token's purpose is to be exchanged for a new access token. It has
longer expiration date. Depending on the use case and how often the user needs
to authorize the client application, it could be anywhere between a day and a
year. The shorter, the more secure, the less convenient for the user. Refresh
token rotation ensures every refresh token is used only once and every additional
attempt is flagged as a potentially compromised token.

Refresh tokens should be stored securely which can be quite the challenge
with public clients. The universally most secure solution is to have the refresh
token stored in an http only cookie. This cookie is set by the server and not
accessible by client code, making it resistant to XSS attacks. This works well
for services hosted on the same domain as the identity server but it is becoming
very hard, if not impossible, for cross domain requests. Google has announced
its intentions of blocking all third party cookies (i.e. cookies from other domains
than the client's) by 2023 [6], joining Safari in the fight for users' enhanced
privacy.

3 OpenID Connect
OAuth 2.0 was designed solely for authorization purposes. The OpenID Connect
(OIDC) adds an identity layer on top of the OAuth 2.0 protocol which enables
client applications to have users authenticated by the authorization server (or
Identity Provider in OIDC terminology). Instead of a simple access token, a
secure ID Token is issued to the client application, containing user information
in the form of claims. The OIDC also introduces a Userlnfo endpoint which pro
vides another standardized way of obtaining user claims. The Identity Provider

9

can also issue an access token or a refresh token. The access token can be used
to obtain claims from the Userlnfo endpoint. [7]

OIDC enables SSO functionality out of the box. Therefore, an implemen
tation of an SSO solution can be reduced to an implementation of an OIDC
Identity Provider.

The OIDC defines three roles:

• End User — The user being authenticated.

• Relying Party — A n OAuth 2.0 client service that authenticates end user
with the OpenID Provider and acquires claims about the authenticated
user.

• OpenID Provider — The OAuth 2.0 authorization server which implements
the OIDC protocol. [1]

3.1 A u t h o r i z a t i o n F lows

Considering the OIDC is just a layer on top of OAuth 2.0, the implicit and
authorization code flows share significant resemblance and only introduce a few
key differences. The two most significant ones are:

1. The introduction of the ID token.

2. A login session being established by the OIDC Provider during the user
authentication. This is the most important addition because this part
directly enables an SSO.

Due to the infrequent use in practice, the hybrid flow will be introduced only
briefly.

Impl ic i t F l o w

The implicit flow introduces a new response type — the ID Token. The flow
remains the same as the implicit grant flow, only an ID Token is passed to the
callback U R L instead of the access token. The absence of passing an autho
rization grant in a U R L hash fragment eliminates the access token interception
problem, making this flow acceptable to use security-wise considering the ID
Token does not contain any sensitive information.

A u t h o r i z a t i o n Code F l o w

The authorization code flow can have three possible response types - an ID
Token, an access token and optionally a refresh token. P K C E should be used

10

with public clients as well. Among others, the nonce attribute has been added to
the authorization request as another security option. The nonce value should be
random and is used to associate a client session with the ID Token and eliminate
replay attacks.1 Client service should generate it, store it and pass in to the
authorize endpoint. OIDC Provider will add the nonce as a claim to the ID
Token and the client service should verify a match after receiving it. In public
clients, it is still preferred to use the P K C E mechanism or a combination of both.

H y b r i d F l o w

The hybrid flow combines elements from both the implicit flow as well as the
authorization code flow. After client successfully authenticates, the browser redi
rects to the client callback U R L with an ID Token and an authorization code.
The client should validate the ID Token and call its own back end to exchange
the authorization code to obtain additional tokens.

3.2 Single logout

In order to terminate an SSO session, the SSO cookie needs to be invalidated
and all authorized client services need to be notified about the event. OpenID
recognizes two different types of logout mechanisms: Back-Channel Logout and
Front-Channel Logout.

Back-Channel Logout

The back-channel logout mechanism provides a secure channel between the re
lying party (back end of a service) and the OpenID provider to be used for
communicating logout requests. It is more reliable compared to front-channel
because in order for the front-channel to work, the web page needs to be opened
in the browser to be notified about the logout. On the other hand, back-channel
does not have access to browser storage and clearing the session is more demand
ing that simply clearing out session cookie or local storage. The cleaning process
is left to the relying party to implement in its own way upon receiving a logout
prompt from the OpenID provider. [8]

Front-Channel Logout

Front-Channel logout mechanism uses the browser's user agent for communi
cation between the relying party and the OpenID provider. The relying party
registers a logout U R L that will be used for receiving a notification about the
logout prompt. OpenID provider keeps track of all currently authenticated ser
vices in the session. During the logout process, the OpenID provider renders
iframes with the session's authenticated services' logout URLs in a page. This

1 Replay attack is kind of a man in the middle attack in which a request can be intercepted,
delayed and resent again under the impression of a authentic message.

11

action notifies each relying party about the logout event and is requested to clear
all state associated with the session. However, since most browsers have started
to block 3rd party cookies, the logout U R L might not be able to access the rely
ing party's login state and therefore trigger the logout notification, because the
iframes have a different origins than the OpenID provider. [9]

3.3 J W T

The introduction of the ID Token poses a question of what format should the
ID Token use. This question led to a solution, developed by Microsoft, that has
become widely used. ID Tokens are encoded into J W T format. J W T is a secure,
compact, self-contained set of claims encoded into a JWS (JSON Web Signature)
or J W E structure. These claims are expressed as a set of key-value pairs. J W T
tokens are digitally signed either symmetrically using a secret (HMAC) or with
a public/private key pair (RSA). Therefore, it is easy to verify the integrity of
the claims contained in the token and it cannot be forged. J W T tokens can be
encrypted (JWE), making them publicly unreadable. [10]

J W T is composed of three parts: header, payload and signature.

Header

Source code 1 shows the base J W T header example.

1 {
2 " t y p " : "JWT", / / d e f i n e s t y p e o f o b j e c t
3 " a l g " : "HS256" / / s i g n a t u r e a l g o r i t h m
4 }

Source code 1: J W T Header

Payload

Payload contains the claims. There are three types of claims: registered, pub
lic, and private. Registered claims are predefined and are recommended to be
present, although not required by J W T standards — iss, sub, aud etc. Public
claims are custom claims that can be used publicly and need to be registered in
the IANA JSON Web Token Claims Registry. Private claims are custom claims
that have specific meaning between a set of agreeing clients. A n example payload
can be seen in Source code 2.

12

" i s s " : " h t t p s : / / i d e n t i t y - p r o v i d e r . c o m " , //URL of t h e t o k e n i s s u e r
"sub": "123456789", //unique u s e r i d e n t i f i e r
"aud": "86eadb58-1180-49dl-8e00-bd580a428b40", / / C l i e n t ID
"exp": "1656668336", //ID t o k e n e x p i r a t i o n d a t e i n epoch

timestamp format
" i a t " : "1656668300", //date when ID Token was i s s u e d i n epoch

timestamp format
" r o l e " : "admin" / / p r i v a t e c l a i m

}

Source code 2: J W T Payload

Signature

Signature is created by combining base64 encoded header, base64 encoded pay-
load and secret/private key as demonstrated in code snippet 3.

HMACSHA2 5 6(
b a s e 6 4 U r l E n c o d e (h e a d e r) + "." +
b a s e 6 4 U r l E n c o d e (p a y l o a d) ,
s e c r e t

)
Source code 3: J W T Signature

The final product

The final J W T token is composed of a base64 encoded header, base64 encoded
payload and base64 encoded signature, all parts divided by a dot. The format,
showcased in Figure 2, is visibly very compact (as opposed to SAML) and can
easily be worked with H T T P / H T M L environments.

J W T has become popular with APIs because it scales really well. There is no
need to check database in order to verify user because the authentication state
has been moved to the front end and only the signature needs to be checked.

4 SAML 2.0
The S A M L 2.0 was introduced in 2005 as the first cross domain SSO solution.
It is a protocol for authenticating web applications. Prior to that, SSO was only
possible with websites hosted by the same domain, using a shared session cookie.
S A M L has been widely adopted, most notably in enterprise systems, because it
provided an efficient way for companies to centralize identity management across

13

http://identity-provider.com

header.payload.signature

eyJhbGciOiJIUzl1NilslnR5cCI6lkpXVCJ9.eyJz
dWMOilxMjM0NTY3ODkwliwibmFtZSI6lkpv
aG4gRG9lliwiaWF0ljoxNTE2MjM5MDIyfQ.Sf
IKxwRJSMeKKF2QT4fwpMeJf36POk6yJV_ad
Qssw5c

Figure 2: J W T format

multiple enterprise applications. [1]

Apart from cross-domain SSO, SAML's second feature is identity federation.
Users can have different local identities for different services and the identity fed
eration is an agreement between different parties on a particular identifier (e.g a
user e-mail) that will be used to identify a user between all of them.

The S A M L 2.0 identity protocol works in a very similar way to the O I D C A
user visits an applications, initiates a log in, S A M L request is created and the
user is redirected to the identity provider's login page. After authenticating, the
identity provider generates a S A M L Assertion and the user is redirected back
to the original application, now authenticated. If the user was already authenti
cated, the login page is skipped.

S A M L is X M L based which makes it less attractive for developers and much
more difficult to implement in contrast to REST A P I friendly OIDC. Nonethe
less, S A M L is still a valid protocol and is being used today even though OIDC
has been the preferred solution for new systems.

SAML's denned main roles:

• Subject — The authenticated user whose identity information will be ex
changed.

• S A M L Assertion — A claims-based X M L message containing user identity
information passes via H T T P redirects.

• Identity Provider — The authentication server which issues S A M L Asser
tions about an authenticated user.

• Service Provider — The client service requesting user authentication. [11]

4.1 F l o w
Two S A M L flows are defined depending on the service that originates the authen
tication process. If the process is started by a user visiting a service provider,

14

it is called a Service Provider Initiated (SP-Initiated) SSO. If the user visits
the identity provider's portal dashboard, for example, and accesses other service
providers from there, it is called a Identity Provider Initiated (IdP-Initiated)
SSO. [1]

SP-In i t i a ted

The user starts at the service provider.

1. User visits a service provider — an application they want to access.

2. Service provider generates a S A M L request and redirects to the identity
provider with the request attached.

3. Identity provider checks if the user is already authenticated. If they are,
further authentication is skipped. Otherwise, user is redirected to the
identity provider's login page where they are provided a means of logging
in.

4. After the user successfully authenticates, the identity provider generates a
S A M L response which contains a S A M L Assertion — the user's identity in
formation. The response is passed to an Assertion Consumer Service U R L ,
which is a registered U R L designed to accept S A M L responses (SAML
analogy to OAuth authorize callback URL) .

5. Service provider validates and parses the S A M L X M L message and consid
ers the user authenticated.

IdP- In i t i a ted

The user starts at the identity provider. The identity provider initiated flow
is typical for enterprise systems, where user logs into a portal which contains
links to other service providers. Therefore, the service provider receives a S A M L
response without creating the S A M L request in the first place.

1. User visits an identity provider's login page or portal dashboard.

2. In case of a portal, it creates a S A M L request and redirects the user to the
identity provider with the request attached.

3. Identity provider checks if the user is already authenticated. If they are,
further authentication is skipped. Otherwise, user is redirected to the
identity provider's login page where they are provided a means of logging
in.

4. Identity provider redirects the user back to the portal, passing in the S A M L
response. User is now authenticated in the portal and can access a list of
available applications they can access.

15

5. User tries to access an application from the portal list. The browser redi
rects to the identity provider with a piece of information about the service
trying to authenticate. The identity provider checks for a valid session.

6. Considering the session is valid, the identity provider redirects to the ser
vice provider's Assertion Consumer Service U R L , passing in the S A M L
response. The user is now authenticated with the service provider.

4.2 E x a m p l e

The request signature can either be passed separately via HTTP-Redirect bind
ing or the signature can be embedded into the request as seen in Figure 3.

<sanlp:AuthnRequest xmlns:samlp="urn:oasis:names: tc:SAML:2.0:protocol"
xmlns:saml="urn:oasis:names:tc:SAML:2.0:assertion" ID="pfx41d8ef22-e612-8c60-9960-lbl6f15741b3"
Version="2.0" ProviderName="SP test" IssueInstant="2014-07-16T23:52:45Z" Destination="http://idp.example.com/SSOService.php'
ProtocolBinding="urn:oasis:names:tc:SAML:2.0:bindings:HTTP-POST"
AssertionConsumerServiceURL="http://sp.example.com/demol/index.php?acs"> // The ACS URL, where SAML response w i l l be sent

<saml:Issuer>http://sp.example.com/demol/metadata.php</saml:Issuer>
<ds:Signature xmlns:ds="http://www.w3.org/2000/09/xmldsig#">

<ds:SignedInfo>
... SIGNED ALGORITHM INFO ...

</ds:SignedInfo>
<ds:SignatureValue>g5eM9yPnKsmmE...</ds:SignatureValue>
<ds:KeyInfo>
<ds:X509Data>

<ds:X509Certificate>MIICajCCAdOgAwIBAgIBADANBgk...</ds:X509Certificate>
</ds:X509Data>

</ds:KeyInfo>
</ds:Signature>
<samlp:NameIDPolicy Format="urn:oasis:names:tc:SAML:1.1:nameid-format:emailAddress" AllowCreate="true"/>
<samlp:RequestedAuthnContext Comparison="exact">

<saml:AuthnContextClassRef>um:oasis:names:tc:SAML:2.0:ac:classes:PasswordProtectedTransport</saml:AuthnContextClassRef>
</samlp:RequestedAuthnContext>

</samlp:AuthnRequest>

Figure 3: S A M L Request Example from samltool.com

The S A M L Response format is the same. In this case, the issuer is the
identity provider and an assertion message is attached, containing the audience,
user claims and session metadata. Figure 4 displays a simplified S A M L response.

OIDC vs SAML 2.0
S A M L and OIDC are two very similar protocols. The most noticeable differ
ences are the format and terminology used. OIDC uses a compact JSON format,
S A M L is XML-based. OIDC has authorization built in whilst S A M L only fo
cuses on authentication and lets the system implement their own authorization
process. As already mentioned, OIDC is much more popular nowadays because
it is relatively easy to implement and its restful design is very developer friendly.
Configuring S A M L can be demanding and time-consuming but it does deliver
results.

16

http://idp.example.com/SSOService.php'
http://sp.example.com/demol/index.php?acs
http://sp.example.com/demol/metadata.php%3c/saml:Issuer
http://www.w3
http://samltool.com

<?xml version="1.0"?>
<samlp:Response xmlns:samlp="urn:oasis:names:tc:SAML:2.0:protocol"

xmlns:saml="urn:oasis:names:tc:SAML: 2.0:assertion" ID="pfXlc2c58d7-32d4-f218-cffe-eablc959c05c"
Version="2.0" IssueInstant="2014-07-17T01:01:48Z" Destination="http://sp.example.com/demol/index.php?acs"

InResponseTo="ONELOGIN_4fee3b046395c4e751011e97f8900b5273d56685">
... SIGNATURE A1G0RITHM INFO, ISSUER, SIGNATURE, CERTIFICATE ...
<saml:Assertion ID="pfx8aaf052a-fad0-4393-llc6-954fd60a0200" Version="2.0" IssueInstant="2014-07-17T01:01:48Z">

<saml:Subject> ... SUBJECT METADATA ... </saml:Subject>
<saml:AttributeStatement> // User claims

<saml:Attribute Name="uid" NameFormat="urn:oasis:names:tc:SAML:2.0:attrname-format:basic">
<saml:AttributeValue xsi:type="xs:string">test</saml:AttributeValue>

</saml:Attribute>
<saml:Attribute Name="mail" NameFormat="urn:oasis:names:tc:SAML:2.0:attrname-format:basic">

<saml:AttributeValue xsi:type="xs:string">test@example.com</saml:AttributeValue>
</saml:Attribute>
<saml:Attribute Name="eduPersonAffiliation" NameFormat="urn:oasis:names:tc:SAML:2.0:attrname-format:basic">

<saml:AttributeValue xsi:type="xs:string">users</saml:AttributeValue>
<saml:AttributeValue xsi:type="xs:string">examplerolel</saml:AttributeValue>

</saml:Attribute>
</saml: Attribut eSt a tement>

</saml:Assertion>
</samlp:Response>

Figure 4: S A M L Response Example from samltool.com

5 Existing identity solutions
Existing solutions make the task of implementing an identity provider easier for
developers. If specific custom behavior is not needed and the budget allows it.
they are the perfect option for businesses and individuals. Most of these solutions
are targeting enterprises and offer a very wide variety of features. Often, no
additional code is needed since all configuration can be set up in the solution
portal and prepared libraries and SDKs are available. Three out of many popular
identity providers will be described and compared: Okta, AuthO and Keycloak.

5.1 O k t a

Okta is a giant cloud-based identity solution and proudly proclaims to be the
number one identity platform in the world. Okta offers over 7000 different in
tegrations making it very flexible to integrate with almost any other service.
It offers products ranging from SSO, MFA, authentication, authorization, user
management to some more advanced features such as A P I access management
or a passwordless login solution. It also supports 3rd party integrations making
the possibilities practically endless.

Regarding SSO, Okta offers integrations with all standard protocols such as
OAuth 2.0, S A M L 2.0, WS-Fed and more. Okta implemented its own SSO solu
tion called Secure Web Authentication (SWA) which is targeted at services that
do not support previously mentioned federated protocols. Desktop SSO is also
available with products called IWA and Agentless.[12]

Another important Okta product is called Okta Fastpass. It provides pass-
wordless authentication across the system by registering user devices (laptops,
mobile phones etc.) and creating a binding between the device and Okta. Multi-

17

http://sp.example.com/demol/index.php?acs
http://samltool.com

pie 2FA methods are available including e-mail magic links, WebAuthn or Okta's
own Verify mobile application which enables users to choose their preferred 2FA
option: push notification, a temporary code or biometrics. [12]

With many great features and practically endless possibilities of integrations,
Okta is a great fit for enterprises and businesses on the market and it is reflected
in the pricing plan as well.

5.2 AuthO

AuthO is another cloud-based identity solution on the market. It focuses more
on developers and thus it is not as modular and integration rich as Okta. A l l
the core functionality is available including user management, authentication,
authorization, M F A , social logins, passwordless and SSO. AuthO offers a subset
of features that Okta does.

AuthO offers more advanced M F A tools such as adaptive M F A 2 or M F A that
can be prompted when accessing a resource that requires stronger authorization.

It is a great and budget friendly product mainly targeted at development
teams and smaller businesses, depending on the use case. It also offers a free
version which is limited by the size of the user base which makes AuthO a popular
choice. AuthO is not suitable for enterprise solutions considering the user base is
not as scalable compared to Okta.

5.3 K e y c l o a k

Keycloak is worth mentioning because it is a great open-source solution with no
extra cost. Keycloak is an identity an access management solutions offering all
the core features out of the box including SSO, social logins, OIDC, S A M L 2.0
and OAuth 2.0 integrations and more. It is a great alternative if the use case
allows the hosting of the Keycloak identity server instead of using a cloud-based
solution.

5.4 Summary

A l l mentioned solutions offer core identity solution features and a user/admin
panel UI which lets customers manage services and set up feature configurations.
For development teams that are willing to host the identity server themselves,
Keycloak is a great choice. For cloud-based solutions, Okta or AuthO will work
well, depending on the size of the user base.

2Adaptive MFA refers to MFA being triggered only when a certain risk factor arises. For
example, user could be asked to use another login factor when logging in from another country.

18

6 The implementation
The implementation part of this thesis revolves around a custom OIDC-inspired
SSO system called K M I SSO which was created for a smaller user base. It is
focused mainly on authentication and does not provide flexible authorization
options — it is left to the developers to create their own authorization system
(similar to SAML) . The SSO system supports both IdP-initiated and SP-initiated
authentication flows as described in the S A M L section. The SSO system is
composed of three products:

1. Identity server that provides central user management and authentication.

2. A portal which provides user interface for the authentication process and
user panel for managing user account, services and users.

3. A verification mobile application (KMI Auth) that enables users to authen
ticate using a QR code.

The identity server is created with the ASP.NET Core framework 6.0 with an
open source object-relational database called PostgreSQL. The portal application
is a single page application (SPA) created with NextJS framework. The mobile
application is built with React Native — a multi-platform tool which enables
the creation of native mobile applications (iOS, Android) using Javascript and
React library. Additionally, a React Native development tool called Expo was
used to simplify the process of development and testing. Expo provides its own
mobile application which communicates with an Expo server hosted locally dur
ing development and enables hot reload functionality and platform independent
testing without any complicated configuration.

6.1 Identi ty Server

Identity server establishes a single point of identity for registered users. It han
dles the authentication, user management, M F A and provides a public A P I for
developers who wish to use the K M I SSO system.

Figure 5 models the core database relations used by the identity server. It is
included for reference purposes considering the following identity server analysis
contains references to these database entities.

Project-wise, the identity server uses Clean Architecture. Clean Architecture
focuses on separation of concern principle and divides the application into sepa
rate layers that can be visualized by a series of nested circles as demonstrated in
Figure 6. The figure also shows the inwards dependency flow — the inner most
layer has no dependencies, the layer above is dependent on the layer below and
so on.

19

http://ASP.NET

Id

Token

Jwtld

Expiry Date

Crea tedDate

Is Revoked

User ld

Serv ice ld

B rowserSess ion ld

guid

text

text

da te t ime

da te t ime

bool

s t r ing

guid

guid

Id

F i r s tName

Las tName

Lass Password Change

Act ivated

MFAEnab l ed

Id

Sess ion ld

User ld

IsValid

Crea tedAt

Inval idatedAt

string

text

text

da te t ime

boo l

boo l

guid

str ing

str ing

boo l

da te t ime

da te t ime

Id

User ld

Login

M e t h o d

Serviceld

IPAddress

UserAgent

Locat ion

P lat form

Id

Serviceld

ExpiryDate

RequestKey

Ca l lbackUr l

User ld

guid

gu id

text

text

text

text

guid

gu id

da te t ime

text

text

s t r ing

Notificatio Identity

Id int

Sub ld gu id

A p p l d gu id

T imes t amp date t ime

Sess ionld gu id

ServiceGroup

Id Id

Serv iceGroupId int

O w n e r l d s t r ing

Organ iza t ion text

Au th M e t h o d int

IsSystem G roup boo l

Email LoginAttem pt

Id guid

Log inAt tem pt ld guid

Ver i f i ca t ionCode text

ExpiryDate da te t ime

Logout Attempt

Id guid

Serviceld gu id

ExpiryDate da te t ime

LogoutReques tKey text

B rowserSess ion ld gu id

Ca l lbackUr l text

Id

Serv iceGroupId

N a m e

Descr ip t ion

URL

ServiceType

A p p l d

Au tho r i zeU r l

Logou tHookUr l

C rea tedAt

IsSystem

ServiceState

FENot i f i ca t ionsEnab led

Cook ieAu thor i za t i on Enabled

Id

Token

ExpiryDate

Serv ice ld

User ld

guid

text

da te t ime

gu id

s t r ing

guid

int

text

text

text

int

gu id

text

text

da te t ime

boo l

int

boo l

boo l

Figure 5: Database schema (excluding 1:M, M : M relationship tables)

Domain layer contains the enterprise logic — entities, enums, interfaces and
enterprise-specific logic — and has no dependencies. Application layer contains
business logic and is only dependent on the Domain layer. The application layer
defines interfaces that are implemented by services in the Infrastructure layer.
The Infrastructure layer contains services based on interfaces from Application
layer which provide access to external resources such as database or SMTP.
Presentation layer contains the user interface of the application or a web A P I
depending on the intended functionality.

Clean architecture is very flexible as it allows developers to postpone tech
nology decisions for a later time. Because the domain and application layers
are only dependent on interfaces, the interface implementations can be changed
at any time and the enterprise and business logic will not be affected. The ar
chitecture is also independent of the presentation layer which can be replaced
seamlessly.

The system primarily uses role-based authorization and defines three user
roles:

20

PRESENTATION

NFRASTRUCTURE

APPLICATION
/ /

/ \
I DOMAIN] D B

V

EXTERNAL
SYSTEMS

Figure 6: Clean Architecture layer structure

• User — A regular user that has access to services within service groups
they part of. The user role is the most limited.

• Service Owner — User can manage service groups, services and their cor
responding users.

• Admin — User can manage service owners and services (including system
services, such as mobile app or front end client). Admin is responsible for
approving or denying a service and service manager registration requests.

A l l roles have access to their account management, where they can change
their password and profile information.

Additionally, a policy-based mechanism is used to determine whether a ser
vice has access to private A P I endpoints. The policy requirement checks whether
the requesting service is truly a system service (an internal SSO system service).

Each service owner account comes with a space called service group. The ser
vice group contains all services and users between which an SSO is established.
The initial trust between the SSO system and the client service is based upon an
SSO admin approval. When a service manager registration is completed, the ac
count is not yet active and has to be approved by an admin user first. The same
applies for service registration. Registered services which are awaiting approval
are referred to as pending services. Service managers will receive an informative
e-mail regarding a rejection/approval of a pending service.

21

The SSO service recognizes three types of client services that a service man
ager can register:

• Website — A web service (either a back end server or a front end applica
tion).

• Mobile — A native mobile application.

• Desktop — A native desktop application. In the current implementation,
desktop services are treated the same way as mobile services.

Once a service is approved, service manager gains access to the integration
properties including Appld, which is then used during the SSO authentication
flow.

• Appld — Assigned id used to uniquely identify a registered service.

• PublicKey — The J W T signature public key that can be used to self-verify
an access token without delegating the verification to the identity provider.

• FENotificationsEnabled — editable bool property that indicates whether
a server uses front end notifications.

• CookieAuthorizationEnabled — editable bool property that indicates whether
a service will have refresh token set as an http only cookie (required for
services within the same domain) or receive the refresh token together with
an access token in a http response.

The identity provider implements the general mechanism mentioned in sec
tion 1.6. The SSO session entity is stored in the identity server database and
the session cookie is stored on the identity server's /account page which servers
as the browser session store. The authentication process is composed of a se
ries of redirects during which the session gets created/updated/deleted. The
session entity contains all the currently authenticated services and each time a
user requests authentication to another service within the same service group,
the session is updated accordingly. When the user requests log out, the session
is deleted from the browser and invalidated in the database.

The minimum authentication method feature also utilizes the session entity
because the identity server is able to check the current session authentication
level based on the already authenticated services.

6.2 Authen t i ca t ion methods

Each service can be configured to use one of the supported authentication meth
ods, ordered by security in ascending order:

22

• Password — The standard credentials (e-mail, password) method.

• E-mail - - User authenticates after validating a code sent to the user's
provided e-mail address.

• Mobile application — User authenticates with the K M I Auth mobile ap
plication by scanning a QR code presented on the login page.

Each service can be configured to have a minimum authentication method.
Methods weaker than the configured minimum method will not be available to
the user during authentication (stronger authentication enforcement). For exam
ple: if the minimum configured method is password, all methods will be available
and presented to the user. If the minimum configured method is e-mail, user will
have to authenticate with either e-mail or mobile application.

During the SSO flow, if the user tries to access a service that enforces stronger
authentication than all services currently authenticated in the session, they will
be required to authenticate again and redirected to the login page with all al
lowed login methods presented. This mechanism gives service managers control
over the service group authentication and enforces the use of a stronger factor
while still leaving the choice of the preferred authentication method to the user
— unless the service requires mobile authentication only.

Multi-Factor Authentication can be enabled by users to completely eliminate
the possibility of a credentials login even if the service group does not enforce it.
If enabled, users will always have to authenticate either by e-mail or with K M I
Auth.

6.3 Authen t i ca t ion flow

Figure 7 shows a simplified authentication flow. Three actors are present: client
service, SSO portal and the identity server. Each step is further described in
detail. A l l identity server's A P I endpoints are documented in Postman 3 . Step
by step integration tutorial as well as a client A P I documentation is available to
admins and user managers in the SSO portal. Mentioned endpoint URLs will be
relative to the identity server's domain.

3 A n API tool for building and testing APIs.

23

client service sso portal identity server

1. Initiate a u t h e n t i c a t i o n w i th P O S T /ap i/au thor ize
•

2. Rece ive r ed i r e c tU r l
<

3. P e r f o r m red i r ec t to r ed i r e c tU r l { /account? requestKey=key)
•

4. Red i r ec t t o log in page .
<

5. A u t h e n t i c a t e use r
•

6. Rece ive r e d i r e c t U r
<

7. P e r f o r m red i r ec t to r ed i r e c tU r l (/account?
au thToken=token&ca l l ba ckU r l=u r l) •

8. Red i r ec t t o c a l l b a ckU r l w i th a u t h o r i z a t i o n t o k e n

«
9. Exchange a u t h o r i z a t i o n t o k e n for a c c e s s t o k e n

*•
1 0. Rece ive a c cess t oken/ re f r e sh t o k e n pair

Figure 7: SSO flow

1. Authorize

When client service starts initiating authentication, it sends an H T T P POST
request to / a p i / a u t h o r i z e endpoint with JSON body:

1 {
2 " a p p l d " : "95afe6b8-94b2-498a-924e-edaa36a430f9",
3 " a u t h o r i z e U r l " : " h t t p : / / c l i e n t w e b s i t e . c z / a u t h o r i z e " ,
4 " c o d e C h a l l e n g e " : nasd78asd_a809das80d_dasdasd8da2" //OAuth PKCE
5 }

Source code 4: Authorize endpoint

Appld is the assigned service id and can be found in the portal's service detail
page. AuthorizeUrl is the callback U R L where an authorization token will be
sent after a successful authentication. The authorizeUrl is also registered with
the service and therefore the passed authorizeUrl must match the registered one,

24

http://clientwebsite.cz/authorize

otherwise it is considered to be malicious behavior. AuthorizeUrl must be an
absolute U R L .

The authorize endpoint first verifies the Appld and AuthorizeUrl parameters.
Then, a new login attempt is created with a randomly generated request key
property. The request key is used to identify the login attempt created by a
client service. The code challenge is saved so it can be used later to match with
the code verifier. Request key's default expiration time is 15 minutes. Therefore,
if authentication does not happen in that time window, a new login attempt has
to be created. Furthermore, request key is one-use only.

2. Redirect to identity server

After login attempt has been successfully created, the authorize request fin
ishes by returning a response containing a redirect U R L pointing to the iden
tity server's session storage page. The redirect U R L is in the form of /ac
count ?requestKey=key.

3. Client service redirect

After receiving the redirect U R L from the authorize response, the client service
performs a redirection to it, delegating the authentication to the identity server.
The identity server validates the login attempt. If valid, it looks for an existing
browser session by checking the session cookie presence, and matches it with the
database session entity. If there is no session cookie present, the user is redirected
to the login page where they are requested to authenticate.

If session exists and is valid, an authorization token is created and the iden
tity server redirects to the authorizeURL passed during the initial authorize
request with the authorization token attached. For example, the service's autho
rizeURL is http://client-service.com/authorize. Then, the authorization token
will be appended as a query parameter and the resulting U R L will be as follows:
http://client-service.com/authorize?authToken=token. The session is updated
with the newly authorized service added to the session's authenticated services
group (considering the service belongs to the same service group).

With every successful authentication, a login stamp is created. The login
stamp contains information about the authentication method used, browser user
agent, platform and IP address of the user trying to authenticate. The login
history can be viewed in the SSO portal.

4. Redirect to login page

The flow demonstrated in Figure 7 considers a nonexistent session. Therefore,
the user trying to authenticate will be redirected to the SSO portal's login page

25

http://client-service.com/authorize
http://client-service.com/authorize?authToken=token

where they will be provided with available authentication methods.

5. Authentication & 6. Authentication result

Each authentication method has an individual endpoint for verifying the user in a
way specific to the method but the rest of the flow is shared between them, mak
ing it easy to add new authentication methods in the future. A l l authentication
requests return a redirectURL pointing to the identity server's session storage
page with authenticationToken and callbackURL passed as query parameters:
/account?authToken=token&callbackUrl=url.

7. Session creation & 8. Redirect to authorizeURL

Once redirected to the account page, a new session entity is created and the
requesting client service is added to a group of services authenticated within the
session. A n http-only session cookie is set to the identity server's account page.
After a session is established, the identity server redirects to the authorizeURL
in the same exact way as described in step 3.

9. Authorization token exchange &; 10. Token result

Once the client service receives the authorization token passed to the registered
authorizeURL, it can be exchanged for a pair of access/refresh tokens using the
token endpoint. Both J W T and refresh token contain reference to the session
they are associated with.

H T T P POST request to / a p i / t o k e n with JSON body:

{
" a p p l d " : "ac04fIf0-337d-4d60-9c80-6e2c5d72a65a",
"authToken" : "SR023cZyL0O40T7qVf6JYQM3EJnKDd5..." ,
" c o d e V e r i f i e r " : nasd78asd_a809das80d_dasdasd8da2" //OAuth PKCE

}

Source code 5: Authorize endpoint

Identity server verifies the authToken's and codeVerifier's validity to make
sure the service requesting the token exchange is the same service that originally
requested authorization. The final token response:

The refresh token's presence in the response is determined by the CookieAu-
thorizationEnabled service property. If the property is enabled, the refresh token
will be set by the server as an http only cookie, otherwise it will be passed to
gether with an access token as showed in the example response.

26

" t o k e n " : " e y J h b G c i 0 i J I U z I l N i I s I n R 5 . . . " / / j w t a c c e s s t o k e n ,
" e x p i r e s l n " : "600", //seconds
" r e f r e s h T o k e n " : "zdWIiOilxMjM0NTY3ODkwIiwibmFtZSI..."

}

Source code 6: Authorize endpoint

6.4 Single Logout

If client service needs a user to logout, the POST logout endpoint /api/logout
can be used. It accepts a JSON body containing an optional callbackUrl param
eter which indicates a U R L where the identity server should redirect once the
logout is finished. If the callbackUrl is omitted, the service's registered U R L will
be used.

When a user initiates logout, all services currently authenticated in the ses
sion should be notified about the event and clear all login related state. As
mentioned in the OIDC logout section 3.2, the notification system can be imple
mented clS cl pet ere with rendered iframes for each service. Since the solution is
outdated and the use of iframes is being discouraged due to browsers blocking
3rd party cookies, a different notification approach has been taken.

Server-sent events are a part of the Web A P I and allow one-directional data
flow from server to client (in contrast with two-directional Websocket A P I data
flow). H T T P G E T request is used with a text/event-stream response header.
The event stream is a stream of UTF-8 encoded text data. Messages are sepa
rated by newline characters and are composed of fields formatted as field:value.
The Javascript EventSource object is available for SSE subscription functionality.
[13]

Example event:

. id: 1000 — the event ID

• event:logout — the event name

• data:somedata — the event data (can be stringified JSON)

• retry: 10000 — time in ms after which browser will try to reconnect after
lost connection to server

The server implementation utilises an asynchronous message queue. Each
time a new event needs to be delivered, a message is enqueued and picked up
by a listener that dispatches the events to subscribed clients. The process is
demonstrated in Figure 8.

27

n t

message

Post Message
enqueue(message)

• ^ Message queue
trigger trigger

f
message

Figure 8: SSE flow

SSE events are targeted only at front end applications. The functionality
can be enabled by checking the F E notifications checkbox in service detail in
the SSO portal. In the current implementation, only the logout event is avail
able for client services. Clients are required to generate a UUID (subld) value
and save it to local storage (or other persistent browser storage). This subscrip
tion id combined with the client's appld uniquely identifies the client service in
the session and therefore can receive targeted events. To subscribe to notifi
cations, clients can use the notifications endpoint with H T T P G E T request to
/ a p i / n o t i f i c a t i o n s / s u b l d _ a p p l d .

Once the user is logged out of the session, another problem arises — J W T
tokens cannot be revoked. Unless they are expired, J W T tokens remain valid
and there is no straightforward mechanism to revoke them. Making the expiry
time very short (seconds) is a possibility if the use case permits a few seconds in
which the token will still be valid after log out. This will, however, result in a
heavier server load because the J W T token will need to be refreshed too often.

To solve this problem, K M I SSO adds a custom claim to the J W T which helps
with identifying the session it is associated with. Furthermore, a middleware logic
was added to verify the validity of session with every authorization request. The
downside to this solution is the lost of efficiency caused by the newly introduced
database check.

subsrcribe — M
client service messages SSE endpo

await
dequeue

28

6.5 S S O P o r t a l

The SSO portal is an interface between the identity server and the user. It en
ables users to manage their accounts and configure the SSO system as needed.
The user interface is rendered depending on the authenticated user's role and is
mobile friendly. The portal offers Czech and English language support.

Regarding the question of safely storing access tokens in the browser, a dif
ferent approach was implemented. Instead of saving the access token to local
storage, the access token is not saved at all and is only persisted in memory until
the user performs a page refresh. The approach is only possible because of the
refresh token mechanism. With the refresh token stored in an http only cookie,
each time a page is loaded a new access token is obtained.

As mentioned in the Identity Server section 6.1, the SSO system defines three
user roles: user, service manager and admin. User account settings are the same
across all roles in the current implementation. Users can change their password,
update their profile information (name, surname) and enable M F A . Each role
has specific functionality and features available:

User

Apart from account settings, users are only able to browse services they have
access to within the SSO system.

Service Manager

Service manager account enables services and user management. Services can be
registered, deleted and service information can be updated. The service detail
contains integration properties needed for implementing the authentication flow.
Every service contains a blacklist of users whose access to the service will be
blocked. Services are listed and separated by their registration state to either
pending (waiting for admin approval) or registered. Service's login history can
be viewed in the service detail. Users can be browsed, added and deleted. Page
with documentation is available with a detailed step-by-step tutorial and an A P I
endpoints overview.

Admin

Admins can browse, edit and delete all registered services and system services
(SSO portal itself and K M I Auth). Service managers can be deleted and blocked.
Service manager deletion has a cascading behavior, ultimately deleting all service
group's services and users. A blocked service manager and all users registered
in their service group lose access to the SSO. Admin's main responsibility is to
approve or reject service manager and service registration requests, which are

29

included in the requests page accessible from the menu. Admin can also view
the service manager's documentation.

6.6 K M I A u t h

The mobile application serves as an identity verification tool for the SSO system.
It is considered to be the strongest authentication method out of the three meth
ods available. The application reuses SSO portal's login page for authentication
by opening the login page in a dedicated webview. In order to be able to re
ceive the authentication token callback, a native authorize U R L is registered (e.g
expo://authorize/token). This is a standard process used by other well known
identity providers such as Facebook or Google.

After a successful authentication, the user is presented with a QR scanner
and can visit a brief profile screen using a bottom tab menu. After scanning a
QR code, the user is presented with a success of failure result screen. Because
mobile applications do not use cookies, access token and refresh token should
be stored in a secure storage (Keychain in iOS or Keystore in Android). Log
out action simply removes locally saved credentials and presents the login screen.

In order for the authentication to be automatic and seamless, the SSO portal
needs to be notified about user's successful authentication. SSE can be utilized
to push a notification to the SSO portal after the QR code is scanned. Figure 9
visualizes the QR code authentication flow and each step is described.

Mobile state:
User is authenticated

Browser state:
User is on the login page with generated QR

KMI Auth identity server sso portal

f
User scans the QR code

J

/apl/qr-l ogin with
passed scanned data

SSO login page with
QR code in base64(subld_requestKey)

User is authorized and
sse event is sent to a

client subscribing to the
subld_appld

SSO login page receives
sse event and considers

user authenticated

Figure 9: SSE QR implementation flow

1. User is trying to authenticate and chooses the mobile application method.
QR code is already generated on the login page. The QR code contains

30

base64 encoded, underscore-separated data composed of a subld and re-
questKey.

2. User scans the QR code in the mobile application.

3. Mobile application calls its designated login endpoint POST /api/qr-login
and passes the scanned data in the request body.

4. Identity server authorizes the user. If successful, it pushes an SSE login
notification to the client subscribing to the /api/notifications/subld appld
endpoint with a redirect U R L pointing to the SSO's session storage page
attached in the data field.

5. After SSO portal receives the login notification, it performs a redirect and
the flow continues in the standard way — session is created/updated and
authentication token is sent to the client's authorize U R L . User is now
authenticated.

31

Conclusions
Cílem této práce byla implementace systému jednotného přihlášení s důrazem

na co největší univerzálnost. V první části práce byl čtenář uveden do prob
lematiky identity, autentizace a autorizace. Dále byla provedena analýza existu
jících protokolů OpenID Connect a S A M L , které umožňují jednotné přihlášení.
Jednotlivé protokoly byly popsány a následně srovnány. Větší důraz byl kladen
na protokol OpenID Connect, jelikož slouží jako teoretický základ a inspirace
k následnému vlastnímu řešení. Porovnány byly také populární existující sys
témy Okta, AuthO a Keycloak, umožňující jednotné přihlášení.

Druhá část práce se zaměřuje na popis návrhu implementace jednotného sys
tému přihlášení. Byly popsány jednotlivé aplikace, ze kterých se systém skládá

- server spravující identity uživatelů, webový portál umožňující správu uži
vatelů a služeb a mobilní aplikace určená k verifikaci uživatele přes QR kód.
Práce se ve větší míře soustřeďuje na klíčové koncepty spíše než technické detaily.
U jednotlivých částí je proveden rozbor hlavní funkcionality a dostupných funkcí.

Výsledkem práce je ekosystém služeb jednotného systému přihlášení spolu
s dokumentací implementace a serverového API , určeného především pro inte
graci delegace autentizace klientskými službami. Výsledné programy, mimo jiné,
mohou sloužit jako ukázková implementace a důležité části zprostředkovávající
komunikaci mezi klientskou službou a identity serverem mohou být přepoužity
jako knihovny.

32

Conclusions
The aim of this thesis was the implementation of a single sign-on system with
an emphasis on its versatility. In the first part of the thesis, the reader was
introduced to the issue of identity, authentization and authorization. Moreover,
the thesis analysed two existing protocols, OpenID Connect and S A M L , which
enable single sign -on. The OpenID Connect protocol was the centerpiece of the
thesis since it serves as the theoretical basis and inspiration for the subsequent
custom solution. Finally, three popular exiting systems facilitating single sign-on
(Okta, AuthO and Keycloak) were compared.

The second part of the thesis describes the design and implementation of a
single sign-on system. The individual applications constituting the system were
described — an identity server that provides user identity management, a web
portal providing user and service management, and a mobile application that
enables verification via a QR code. The thesis is more focused on key concepts
rather than technical details. For each part of the system, there is an analysis of
the main functionality and available features.

The result of the thesis is a single sign-on ecosystem with documentation and
implementation of a server A P I used mainly for integrating a client service au
thentization delegation. Moreover, the final programs can be used as an example
implementation, and the important sections mediating communication between
the client service and the identity server can be reused as libraries.

33

A Contents of attached C D / D V D
A l l setup instructions are located in the R E A D M E file. The project is fully
dockerized and it is recommended to use docker-compose.

backend/
Complete folder structure and source codes of the identity server ASP.NET
Core solution. The identity solution itself is composed of four projects:
Api , Application, Infrastructure and Domain. Furthermore, two example
projects are present: Clientl and Client2.

frontend/
Complete folder structure and source codes of the SSO portal NextJS ap
plication.

mobile/
Complete folder structure and source codes of the K M I Auth React Native
application.

README.md
The readme file contains detailed installation instructions, available test
ing user accounts with passwords and links to external A P I and database
do cument at ions.

docker-compose.yaml
The docker compose file that creates and starts all project containers.

i n i t . s h
Initialization script used to replace project U R L addresses with user's lo
cal IP address. This is necessary for testing of the mobile application on
localhost.

doc/
The doc folder contains all created diagrams used in this thesis and the
user interface design of the SSO portal (Sketch). The thesis text is also
located in this folder.

api-templates/
This folder contains an A P I template used by the OpenAPI tool to generate
an A P I client in Typescript.

RSA/
Complete folder structure and source codes of a simple .NET Core RSA
generator utility.

A l l materials attached on C D / D V D that have been borrowed are either not
subject to copyright or their further distribution is allowed by the author. A l l

34

http://ASP.NET

(cited) materials, for which this statement is not true, therefore they are not
included on the C D / D V D , have their source attached in the bibliography, the
text itself or in the file R E A D M E . m d

35

Glossary
2FA Two factor authentication

CORS Cross-origin resource sharing

J W E JSON Web Encryption

JWS JSON Web Signature

J W T JSON Web Token

M F A Two factor authentication

OIDC OpenID Connect

P K C E Proof Key for Code Exchange

S A M L Security Assertion Markup Language

SPA Single page application

SSE Server-sent events

SSO Single sign-on

UUID Universal Unique Identifier

XSS Cross-site scripting

30

References
[1] Yvonne Wilson, Abhishek Hingnikar. Solving Identity Management In Modern

Applications - Demystifying OAuth 2.0, OpenID Connect, And SAML 2.0. First.
San Francisco: Apress, 2019. xvii, 323 pp. ISBN 978-1-4842-5094-5.

[2] Hauk, Chris. Browser Fingerprinting: What Is It And What Should You Do
About It?: Browser fingerprinting identifies you and collects data about your
online travels. In this article, we'll discuss how browser fingerprinting works and
how you can prevent it. [online]. 2022, [visited on 2022-6-22]. Available from
W W W : (h t t p s : / / p i x e l p r i v a c y . com/resources /browser- f i n g e r p
r i n t i n g /) .

[3] Coursicle.com. Loginless - A New Standard for User Identification, [online]. 2022,
[visited on 2022-6-22]. Available from W W W : (h t t p s : / /www. c o u r s i c l e .
c o m / b l o g / l o g i n l e s s - a - n e w - s t a n d a r d - f o r - u s e r - i d e n t i f i c a t i o
n.php).

[4] Hardt, D. The OAuth 2.0 Authorization Framework, [online]. 2012, [visited on
2022-6-28]. Available from W W W : (h t t p s : / / d a t a t r a c k e r . i e t f . o r g /
d o c / h t m l / r f c6749).

[5] N . Sakimura, Microsoft. Proof Key for Code Exchange by OAuth Public Clients,
[online]. 2015, [visited on 2022-6-28]. Available from W W W : (h t t p s : / / d a t a t
r a c k e r . i e t f . o r g / doc/html / rfc7636).

[6] Justin Schuh, Google. Building a more private web: A path towards making
third party cookies obsolete, [online]. 2020, [visited on 2022-6-30]. Available from
W W W : (h t t p s : / / b l o g . chromium . org/2020 / 01 / b u i l d i n g - m o r e -
p r i v a t e - w e b - p a t h - t o w a r d s .html).

[7] N . Sakimura J. Bradley, Microsoft. OpenID Connect Core 1.0. [online]. 2014,
[visited on 2022-7-1]. Available from W W W : (h t t p s : // o p e n i d . n e t / s p e c s /
open i d - c o n n e c t - cor e -1_0 . html).

[8] M . Jones J. Bradley, Microsoft. OpenID Connect Back-Channel Logout 1.0 -
draft 08. [online]. 2022, [visited on 2022-7-10]. Available from W W W : (h t t p s :
/ / o p e n i d . n e t / s p e c s / o p e n i d - c o n n e c t - b a c k c h a n n e l - 1 _ 0 . h t m l) .

[9] M . Jones, Microsoft. OpenID Connect Front-Channel Logout 1.0 - draft 06. [on
line]. 2022, [visited on 2022-7-10]. Available from W W W : (h t t p s : //op e n i d .
n e t / s p e c s / o p e n i d - c o n n e c t - f r o n t c h a n n e l - 1 _ 0 . h t m l) .

[10] M . Jones, Microsoft. JSON Web Token (JWT). [online]. 2015, [visited on 2022-
7-1]. Available from W W W : (h t t p s : / / d a t a t r a c k e r . i e t f . o r g / doc/
h t m l / r f c 7 5 1 9) .

[11] Nick Ragouzis John Hughes, Rob Philpott et al. Security Assertion Markup Lan
guage (SAML) V2.0. [online]. 2008, [visited on 2022-7-5]. Available from W W W :
(h t t p s : / / d o c s . o a s i s - o p e n . o r g / s e c u r i t y / s a m l / P o s t 2 . 0 / s s t c -
s a m l - t e c h - o v e r v i e w - 2 . 0 .html).

37

http://Coursicle.com
https://docs.oasis-open.org/security/saml/Post2.0/sstc-

[12] Okta. SWA app integrations, [online]. 2022, [visited on 2022-7-6]. Available from
W W W : (h t t p s : / / h e l p . o k t a . com/en-us /Content / T o p i c s / Apps /
app s- about - swa . htm).

[13] contributors, M D N . Using server-sent events, [online]. 2022, [visited on 2022-7-
10]. Available from W W W : (h t t p s : / / d e v e l o p e r . m o z i l l a . o r g / e n -
US / docs / Web / API / S e r v e r - s e n t _ e v e n t s / U s i n g _ s e r v e r - s e n t _
events).

38

39

