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1. Introduction  

This paper works with samples acquired from Arctic permafrost and aims to evaluate the 

importance of quality control, evaluate several assembly algorithms and in the end identify the 

content of our samples. For the accurate predictions of the activities (e.g. CO2, N2O and CH4 

emissions) of different microbial assemblages we need to precisely evaluate the sequencing data. 

The process of sequence analysis can be divided into three following  subcategories: 

1.1. Quality control, filtering and trimming of FASTQ reads 

As the initial quality statistics and quality control was selected generally accepted FASTQC 

algorithm, which provided quick and broad analysis with many different evaluation criteria. The 

process continued with Fast Length Adjustment of Short reads (FLASH). This program was utilised 

to merge overlapping sequences and provided additional quality analysis. The data resulting from 

FLASH was then quality filtered and trimmed by PRINSEQ and TRIMMOMATIC. 

The previous point is closely connected to sequence trimming problematics, which is an important 

part of this paper. In general, trimming is a process of removing parts of sequenced data with the 

aim to acquire sequences of better quality. In our case, there can be many occurrences of unwanted 

figures such as poly-N tails, vectors, duplicates, artefacts, introns etc. that are unnecessary and often 

even harmful towards further analysis (Arbor, 2008). Many of these errors can be created by 

sequencing (in this case Illumina) or contamination of the sample.  In case sequences would be left 

untrimmed the work with them might be more time consuming (since the size of our data will be 

unnecessary large). It can also result in alignment errors, because the unwanted artefacts can create 

additional patterns. Quality control and trimming allow us to identify and exclude the unwanted 

sequences of our samples. The reduction or deletion of these sequences makes it possible to find the 

real variety in the dataset. 

Different programs (e.g. Prinseq) offer various options for trimming for example cutting off tails, 

sequence ends, specific data patterns, length or based on quality score (Andrews, 2010). The data 

analysis could be inaccurate without applying trimming methods to the sequences.  Therefore this 

step is a very important part of the sequence quality analysis process. 
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1.2.Assembly  

In this work three assemblers were applied on the samples, namely SPAdes, Megahit and Velvet. 

Selecting an adequate assembler can be a difficult task especially considering the number of 

programs to choose from. There are different groups of assemblers, categorised by their methods. 

1.2.1.De Bruijn Graph (DBG) based  Assemblers  

Assemblers working on the bases of de Bruijn graphs are very popular nowadays (Miller, Koren, 

and Sutton, 2010). The DBG method first selects a certain k-mer and then it gathers all possible k-

mers of the said length out of our sequences. Once those results are acquired it compares the 

occurrence of identical k-mers across the reads. This then leads to building an assembly.  

All three of our selected assemblers are based on DBG method, however the remaining 

specifications differ. SPAdes has a great advantage as it is able to create single-cell and multicellular 

assemblies (Bankevich et al., 2012). This method can be compared to e.g. SoapDeNovo2, which 

also works with DBG and was created to assemble short reads originating from Illumina GA (Luo et 

al., 2015). Megahit can relatively fast go through large sets of data and deliver complex assemblies 

with comparatively long contigs (Li et al., 2015). Velvet is a bundle of algorithms, which works 

with primarily short k-mers and reads(Zerbino, & Birney, 2008). There are many other examples of 

DBG based assemblers - another popular one is Trinity. This assembler focuses on transcriptomic 

data originating from RNA sequences and is also widely popular (Grabherr et al., 2011). 

1.2.2.Greedy-Approach Assemblers 

The principle of these assemblers is quite straightforward : A random sequence is chosen from 

samples and all the remaining sequences attempt to match it. If a match is found the sequences are 

added to a bundle together with the original sequence. Once there are no other possible matches the 

program labels this collection of sequences as a contig. The contents of such a contig are omitted 

from further queries as they already belong to one contig.  After that the program moves on to 

match the remaining samples. This approach is not often used as it is very naive and trivial. It has 

many issues - one of them being its inability of working with microbial genomes.  

As an example of such an assembler can serve TraRECo, which works with transcriptomic data and 

its arguably main advantage is the usage of a consensus matrix as means for read error correction 

(Yoon et al., 2018) 
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1.2.3.Overlap-Layout-Consensus (OLC) Assemblers 

These methods map our sequences and determine connections between them. This results in an 

overlap graph, which is basically a potential arrangement of the reads together (Miller et al., 2010). 

This approach can be efficient when dealing with long reads, however it can be problematic when it 

comes to its speed. Many of these assemblers work slowly, which may be caused for example by 

the multiple sequence alignments they need to perform. This is one of the reasons why OLC 

assemblers are not often used on sizeable datasets nowadays and were up to certain degree replaced 

by DBG method. 

Newbler can be selected as the first example of OLC algorithms. This program uses three modules 

(overlapped, unitigger and multi aligner) as well as flowgrams in order to achieve the desired result 

(Elloumi, & Zomaya, 2014). 

 Omega, is another example of OLC. It is mostly used to work with metagenomic samples 

originating from Illumina (Haider et al., 2014). Last but not least, Celera is worth mentioning. This 

algorithm performs a whole-genome shotgun assembly (Denisov et al. ,2008). This approach works 

with overlapping reads parallel, which improves its speed (Adams, 2008). However, it could get 

into problems with samples containing many repeating regions(Adams, 2008). Luckily, there exists 

a hybrid version of this method, which creates clones of overlapping reads and concludes by 

presenting an arranged layout scheme of our samples (Adams, 2008). This assembler also serves as 

a basis together with Newbler for CABOG assembler (Elloumi, & Zomaya, 2014).  

1.2.4.Greedy Graph-based Assemblers   

These algorithms utilise approaches common in OLC and DBG Assemblers (Miller et al., 2010). 

The main idea is to identify two sequences with the highest overlap score and merge them. This is 

achieved by first evaluating a pairwise alignment of our reads, which then leads us to the overlap 

score.  The graphical methods is applied in a way where reads are forming nodes and overlaps 

create edges. First selected example is SSAKE (Short Sequence Assembly by K-mer search and 3' 

read Extension; Warren, Sutton, Jones, and Holt, 2006). This tool is PERL based and it utilises a 

hash table filled with short reads (Warren et al., 2006). SHARCGS (Dohm, Lottaz, Borodina, and 

Himmelbauer, 2007) and VCAKE (Verified Consensus Assembly by K-mer Extension, Jack et al., 

2007) are also assembler belonging to this group. Their work is similar as the previously mentioned 

algorithm and they primarily assemble short reads. 
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1.2.5.Quast  

As was mentioned before, one of our goals in this paper was to evaluate performance of different 

assemblers. For this purpose Quast was selected. This assessment tool provides many statistical data 

to choose from, when applied on the assembly. There are e.g. amounts of contigs in different bp 

ranges, the larges contig located, total length ( again also with different bp ranges) , N50, GC%, 

mismatches and more (Gurevich, Saveliev, Vyahhi, and Tesler, 2013). Based on results from Quast 

additional statistics were performed together with a  comparison of the used assemblers.  

1.3. Annotation 

As a last part of the pipeline Diamond was used to align our sequences. This tool was selected, 

because it can achieve results much faster than regular BLAST (Official Diamond Documentation 

written by Buchfink, Xie and Huson in 2015 presents a comparison for pairwise alignment of 

proteins and translated DNA resulting in 500x-20,000x speed of BLAST.). This step resulted in 

tabulated files in .m8 format which contained among other things, code of our sample, accession 

number, e-values and other statistical data. Since the goal was to also identify the source genes the 

samples were blasted in order to acquire this information. This step resulted in files containing 

again sample codes, accession numbers and e-values, however it also included gene definitions and 

source organisms. When dealing with the problematics of classification of organisms and genes 

NCBI Entrez is worth mentioning. This method was  tested and it certainly proved very efficient for 

shorter files. However, since our testing contained tens of thousands of samples there was a need for 

selection of another system as NCBI Entrez would be slow and this amount of data would overload 

the server. 

Our work continued by writing a python script. This program simply went through the file and 

gathered names of the source organisms as well as counted the occurrence of said organisms 

together with the corresponding percentages and printed these results into a table. The outcome 

gave us a good overview of contents of our samples as well as the potential distribution of the 

organism representation.  

The organisms from which our sequences originate are presumably sensitive to changes of their 

environment, therefore the current trend of rising temperatures could significantly affect 

microorganisms inhabiting arctic cryosols and their activity reflected in distinct gene expression 

patterns (i.e. microbial metatranscriptome). 
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1.4. Selecting of samples   

Last but not least, sample selection was important part of this paper, as it directly influences the 

results. The aim was to display as much variety as possible and therefore the samples scoring the 

best and the worst were picked to demonstrate the  outcomes of our testing.  

First, the file  16NQ040_JB25_ACTGAT_L004_R2_001 (“B”)  acquired the highest score in 

overall FASTQC evaluation and represents the best of our samples. 

Secondly, the file 116NQ040_JB26_ATGAGC_L004_R2_001 (“W”) is presented. This sample was 

a direct opposite of the previously mentioned one and it was evaluated as the worst out of our 

dataset.  

As was mentioned earlier, this contrast provides a good option for comparing our data as well as the 

tested methods and that is why samples B and W were used. In the enclosed supplement statistics 

number-based system for naming samples was used and therefore the data connected to sample B 

can be found under number 25 and sample W under 26 (this is a direct relation to the original codes 

of the used files).  

2. Materials and Methods  

2.1. FastQC (Version 0.11.8; Andrews, 2010) 

This program provides quick analysis of data and delivers results for eleven different categories of 

evaluation. Among these categories we can find for example per base sequence quality or per 

sequence GC content . As input files in this project FASTQ files were used. The analysis is later 

delivered in zip and html format.  

2.2. FLASH(Version 1.2.11; Magoc & Salzberg, 2011) 

Fast Length Adjustment of Short reads (FLASH) is a program allowing us to acquire merged 

overlapping pairs of sequences from our samples.As an input file FASTQ format is used.The 

resulting merged sequence is prolonged to the length of the original sequence.The algorithm should 

examine all possible options of overlapping the sequences and present the best possible result.  
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2.3. Prinseq (Version 0.20.4; Schmieder, & Edwards, 2011) 

This program is used for filtering sequences based on various parameters - such as length or quality 

score. It is also able to trim or alter sequences. It provides results in form of a summary of the main 

filtering criteria.The input file can be in FASTA or FASTQ format, the latter was used in this 

project. The output in this case was also a FASTQ format.  

2.4. TRIMMOMATIC (Version 0.39; Bolger, Lohse, and Usadel, 2014) 

Trimmomatic is a useful tool, which offers many different options for trimming of sequences.  

One of them is ILLUMINACLIP, which removes all Illumina related parts from the sample. 

Another example is SLIDINGWINDOW, which removes parts below set quality average. Other 

useful options are e.g. LEADING and TRAILING, both remove bases in case the fall under a set 

quality level ( the first from the start of sequence the latter from the end), or MINLEN, where reads 

are omitted once they do not reach a set length). The input file can be FASTQ or FASTA file ( also 

can be in compressed formats). The output is usually compressed FASTQ file (fq.gz).  

2.5. SPAdes (Version 3.12.0; Bankevich et al., 2012) 

SPAdes is a genome assembler based on the De Bruijn graph method with many options for usage. 

There are many pipelines to choose from, e.g. in case of transcriptomic RNA data  we can select 

rnaSPAdes and for metagenomci data metaSPAdes. It also contains a tool for rectifying read errors 

originating from Illumina called BayesHammer. It supports input files from e.g. Illumina, 

Nanopore, Sanger or IonTorrent in a form of FASTA, FASTQ or  BAM. The output can also have 

many formats, e.g compressed FASTQ (fastq.gz), FASTG or GFA. 

2.6. MEGAHIT (Version 1.2.9; Li et al., 2015) 

This assembler also utilised De Bruijn graphs and it is used for sizeable metagenomic samples. It is 

able to work with different arguments connected to e.g.  k-mer size, pruning etc.  

Input can be in the format of FASTA/FASTQ,plain text or certain compressed formats. The output 

can be also e.g. in  FASTA/FASTQ format. 
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2.7. VELVET(Version 1.2.10; Zerbino& Birney, 2008)  

This assembler is used for further sequence analysis. Its most important advantages are its speed 

and wide usage. On the other hand this tool is able to produce only consensus sequences and 

problems might occur when we use error models such as e.g. IonTorrent (based on information 

provided by Geneious Prime)7. In our case the input files were results of FLASH(Version 1.2.11; 

Magoc & Salzberg, 2011) , Prinseq (Version 0.20.4; Schmieder, & Edwards, 2011) and 

Trimmomatic (Version 0.39; Bolger et al., 2014) analysis delivered in FASTQ format.  

2.8. QUAST(Version 5.0.2.; Gurevich et al., 2013)  

This tool is able to evaluate the quality of assemblers based on different criteria. Quality 

Assessment Tool (QUAST) is able to gather a relatively vast statistics for individual assemblers 

containing information about contigs, sequence length, N50, N75, GC%, L50, L75   and other 

categories. The input can be based, similarly like in case of SPAdes, on e.g. Illimina or Nanopore, 

where the files are in FASTA,FASTQ, BAM or other formats as well as their compressed forms. 

The output can be generated in many different forms e.g. a text file(.txt), tab-separated file (.tsv), a 

file compatible with LaTex (.tex) or PDF.  

2.9. DIAMOND (Version v0.9.25.126; Buchfink et al., 2015) 

DIAMOND is an alignment tool, which uses double indexing in order to increase its blasting 

abilities . Thanks to this principle the algorithm is performing very well in speed as well as 

sensitivity when it comes to comparison e.g. with BLASTX. The input file can be again in FASTA 

and the output is in a tabulated .m8 format. The program needs to work together with a database, 

which in our case was a diamond nr in dmnd format. 
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3. Results and Discussion  

3.1. Quality control, filtering and trimming  

3.1.1.FastQC 

FASTQC allowed us to acquire 11 categories for evaluation of our samples, which we decided to 

discuss in detail in the following pages. A table summarising problematic signs was created as well 

and its contents are going to be addresses in the pertinent categories (Supplement :Tab. A-1 .).  

3.1.1.1. Basic Statistics  

Provides elementary information about our samples  as shown in Fig.1 and Fig.2. Based on the file 

characteristics the program is able to presume type of encoding and analysis the data based on this 

information. In this case the presumed encoding corresponds to Sanger/Illumina sequencing. In our 

dataset the kind of encoding should be the same for all sequences. Other parameters vary among 

sequences  (for example GC%  is unique for each sequence) however sequence length should be 

always the same.  
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Figure 2.  Basic Statistics for W

Figure 1. Basic Statistics for B



3.1.1.2. Per base sequence quality 

Provides a graphical representation of per base sequence quality of a sample. The graphs in this 

category are always divided into three levels of sequence quality - green, orange and red. The 

yellow objects stand for inter-quartile range and each of them contain a red line which represents 

median value.Whiskers stand for 10%(upper) and 90%(lower) points. There is a blue line plowed 

throughout the graph which describes mean quality of the sample.  

Based on this information we can evaluate the two graphs below (Fig.3 , Fig.4). The per base 

sequence quality of B is generally good since all inter-quartile ranges are located in the green 

level ,some whiskers also sink into orange level but none of the bases is present in the lowest level 

of quality. Also the median value in most cases is on the very top of the graph and mean quality 

stays more-less constant throughout majority of the graph. 

The per base sequence quality of W is very different and is worse than sequence of  B. The inter-

quartile ranges are partially located in the orange level of quality and many of their whiskers are 

sinking into the lowest (red) quality level. Mean quality is not constant and it is mostly  decreasing 

in the second half of the graph. However, the sequence quality is in general not too poor and can 

still provide valuable information. Moreover, the quality value mainly refers to the sequencing and 

therefore high quality sequence doesn’t necessarily have to be correct - other tests must be 

conducted before it is clear that the dataset is of a good quality. 
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Figure 3. Per base sequence quality of B



 

3.1.1.3. Per tile sequence quality 

Provides a graphical representation of per tile sequence quality of a sample. In this category both 

sequences have quite good value and shouldn’t be considered poor. Per tile sequence quality of B is 

a bit lower as can be seen by the brighter colouring on the right side of Fig.5 in contrast to non-

problematic results for W (Fig.6). B acquired a warning in this case. Based on the information 

acquired from the official FASTQC documentation written by Andrews in 2010 this is due to the 

fact that scores of any of the tiles are showing a mean Phred score exceeding 2 less comparing to 

the mean for that base across all tiles. The displayed problems could also be caused by bubbles, 

flowcell contamination or other temporary issues. 
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Figure 4. Per base sequence quality of W
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Figure 5.  Per tile sequence quality of B

Figure 6. Per tile sequence quality of W



3.1.1.4. Per sequence quality scores  

Provides a graphical representation of per sequence quality scores of a sample. In this category the 

two samples have again different results. Sample B has a quite good score, despite a small 

abnormality in the middle of the graph (around mean sequence quality value 25 in Fig.7) the graph 

follows prescribed curve and therefore resembles a good quality dataset. However sample W has 

more significant abnormality (again around mean sequence quality value 25 in Fig.8.). This doesn’t 

have to present an issue with our data. This problematic region could be caused by a systematic 

problem e.g. there could have been an air bubble present on a certain part of a flow-cell or an other 

temporary problem . 
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Figure 7. Per sequence quality scores of B



 

3.1.1.5. Per base sequence content 

Provides a graphical representation of per base sequence content of a sample. The ideal results for 

this test should be lines representing individual bases running in parallel. In a real dataset that can 

be difficult to achieve. However, the results for sample B are promising since the only more 

problematic area seems to be between 1-9 bp and the rest of the plot runs more-less in parallel 

(Fig.9). The results acquired from W display more defects which lasted until 105-109bp, in other 

words for majority of the plot (Fig.10). It still doesn’t indicate that the W dataset would be too poor, 

since the results are still not critical, but it is more problematic when compared to B results. Both of 

our samples displayed issues in this category ( 3x failure and 1x warning). The warning seems to be 

due to a difference between A-T, G-C bases, which exceeded a threshold of 10% (Andrews, 2010). 

A failure means that a threshold of 20% was  overreached (Andrews, 2010). 

 

13

Figure 8. Per sequence quality scores of W
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Figure 9. Per base sequence content of B

Figure 10. Per base sequence content of W



3.1.1.6. Per sequence GC content 

Provides a graphical representation of per sequence GC content of a sample. Ideally the graph of 

GC content and its peak should match the GC content of the genome. In the graphs  the theoretical 

distribution and GC count per read should correlate as much has possible.  

In this category both of the samples are not ideal. Sample B aligns with the theoretical distribution 

quite well but its peak is too high and that suggest a problematic region (Fig.11). Since the peak 

shows too high GC values the sequences might have undergone a procedure that increased its GC 

content. In conclusion the dataset doesn’t seem to be of a good quality based on this category. The 

sample W shows even more problematic values since the two curves are very different and mostly 

not align(Fig.12). Based on the official FASTQC documentation written by Andrews in 2010 in 

case a sum of deviations from the normal distribution comprises more than 15% of the reads the 

program presents a warning. If the distribution crosses a threshold of  30% FASTQC rates this 

category as a failure (Andrews, 2010). 
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Figure 11. Per sequence GC content of B

Figure 12. Per sequence GC content of W



3.1.1.7. Per base N content 

Provides a graphical representation of per base N content of a sample. In this case both samples B 

and W have the same results and N content is constantly of the value zero (or very close to zero so 

the analysis doesn’t distinguish it in the graph). This means that the used sequencer didn’t have 

problems with identifying bases in both of our sequences. The graphs are contained in the 

supplement ( Fig. A-1, Fig. A-2).  

3.1.1.8. Sequence Length Distribution 

Provides a graphical representation of the sequence length distribution of a sample. 

Both samples have the same length (as was already mentioned in the first category - Basic 

Statistics) and their length distribution is also similar. Both samples have sequence length ranging 

from 149 bp to 152 bp with the majority being 150 bp. The only difference is the number of 

sequences as B goes up to 1.0E7 and W ends at 1600000. Since these sequences were identified as 

Illumina encoded the raw reads should all have the same length and therefore this result is to be 

expected. The graphs are contained in the supplement (Fig. A-3, Fig. A-4) 

3.1.1.9. Sequence Duplication Levels 

Provides a graphical representation of sequence duplication levels  of a sample. 

In ideal case the plot for deduplicated sequences and total sequences should be more-less aligned 

with a slight deviation acceptable, since e.g. high level coverage of sequence can also cause 

duplication. However, in many cases duplication is caused by unwanted results of certain 

procedures (e.g. too high level of amplification in sequencing). Both B (Fig.13) and W (Fig.14) 

showed a failure in this case which means that non-unique sequences make up more than 50% of 

these samples(Andrews, 2010). 
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Figure 13. Sequence Duplication Levels of B

Figure 14. Sequence Duplication Levels of W



3.1.1.10. Overrepresented sequences 

Provides a list of overrepresented sequences of a sample. The program lists the sequences together 

with their count and percentage. It also tries to identify the possible source of these sequences. In 

our two examples the only identified source was Illumina single end PCR primer, all the other 

sequences were not identified. B acquired a warning, which is triggered in case any of the present 

sequences makes up for more than 0.1% of the sample (Andrews, 2010). Failure is cased by  

more than 1% representation, which was the case of W (Andrews, 2010). 

3.1.1.11.Adapter Content 

Provides information about adapter content. In graph for sample B (Fig.15) there is a minimal 

adapter activity percentage, it appears the SOLID small RNA adapter is present but only in very low 

amount. In sample W the SOLID small RNA adapter is also present only mildly, however Illumina 

universal adapter shows higher results (Fig. 16). Despite this higher percentage the overall 

distribution is still relatively low. Only sample W acquired a warning from FASTQC.  Andrews 

states in the official documentation for FASTQC from 2010 that  in case a sequence makes up more 

that 5% of all reads the program will display a warning. 
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Figure 15. Adapter Content of B



 

3.1.2. FLASH  

In the upper part of the figures (Fig. A-5, Fig. A-6) below the program displays the input sequences 

that it is working with and also the output files (in this case named by default). This is followed by a 

list of parameters, which can be altered to acquire more specific results (e.g. by changing minimal 

and maximal overlap of the sequences). In this project the minimal overlap for analysis of all 

sequences was set to 10bp and the maximal overlap to 65 bp. In the bottom of the report the 

program displays read combination statistics, which is where our two samples differ. As visible on a 

comparison table below (Tab. 1), the sample B has almost 9 million more pairs, over 2 million more 

combined pairs and almost 7 million more uncombined pairs. The one category where W has higher 

results is in the percentage of combined pairs, where it scored 27,48% more than B. This is a very 

interesting outcome, which can have several causes. On of them might be the fact, that samples B 

and W were chosen based on only FASTQC evaluation. However, it is possible that this assessment 

was incorrect or too harsh and sample W is actually better than originally predicted. Another 

possible reason might be that the size difference, which is fairly large, played a role in this case. 

However, these are merely our speculations. 
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Figure 16.  Adapter Content of W



3.1.3. Prinseq 

Prinseq allows us to change many parameters for filtering sequences  e.g. minimum length or 

number of bases that will be trimmed at the end of a sequence. 

The minimum length was set to 200 bp. The minimum mean quality score was set to 25. The 

maximum number of ambiguous bases was set to 5 bp. The number of bases that will be trimmed at 

the end of the sequence was set to 15. 

Based on this criteria the Prinseq analysis concluded that our sample B contains 88,24 % of good 

sequences (Fig.A-7). However, the result for W was drastically different, reaching only 22,80 % 

(Fig.A-8). As was mentioned before this sample was rated as our worst one, so this low percentage 

only further proves our previous evaluation. The full prinseq results are contained in the figures 

below (Fig.A-7, Fig.A-8) together with a comparison table (Tab.2). The above mentioned “good 

sequences” were saved by Prinseq in a fastq format to the location specified by the user. The 

program also allows to save the “bad sequences”  into a separate file so there is no danger of 

loosing or mixing samples. 

Table 1. Comparison of FLASH results

B W Difference (ABS)

 Total pairs 10625763 1635208 8990555

Combined pairs 3049899 918724 2131175

 Uncombined pairs 7575864 716484 6859380

Percent combined 28,70 % 56,18 % 27,48 %

21



3.1.4.TRIMMOMATIC 

This trimming program gave us quite straight forward results, dividing the outcome into two 

categories - surviving and dropped. In this case both of our samples scored very high i 

n surviving sequences and only 0,02% of B(Fig.A-9) and 0,04% of W (Fig.A-10) were dropped. In 

total comparison (Tab.3) B achieved only 0,02% more of surviving sequences compared to W. 

Table 2.  Comparison of Prinseq results

B W Difference (ABS)

Input sequences 3049899 918724 2131175

Input bases 750512348 170368034 580144314

Input mean length 246,08 185,44 60,64

Good sequences 2691317 209444 2481873

Good sequences (%) 88,24 % 22,80 % 65,44 %

Good bases 686024150 51707212 634316938

Good mean length 254,90 246,88 8,02

Bad sequences 358582 709280 350698

Bad sequences(%) 11,76 % 77,20 % 65,44 %

Bad bases 64458539 118344667 53886128

Bad mean length 179,76 166,85 12,91

Table 3. Comparison of TRIMMOMATIC results

B W Difference (ABS)

Input reads 3049899 918724 2131175

Surviving 3049296 918373 2130923

Surviving(%) 99,98 % 99,96 % 0,02 %

Dropped 603 351 252

Dropped (%) 0,02 % 0,04 % 0,02 %
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3.2.Assembly and its evaluation 

All the assemblers were applied on our samples three times. First application took place directly 

after FLASH, second after Prinseq and last after Trimmomatic. This allowed us to evaluate the 

work of all these tools at once. To demonstrate this part of the process we again present a 

comparison  of samples B and W. In the complementary tables, we omitted several categories 

displayed by QUAST, where all our assemblers scored zero ( such as # contigs (> = 10 000 bp)). 

3.2.1.Statistics after FLASH 

Flash results are depicted in the graph below (Fig. 17) and in two enclosed tables 
(Tab. A-2, Tab. A-3) found in the supplement.  
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Figure  17. Comparison of numbers of contigs for B and W after FLASH



3.2.2.Statistics after Prinseq 

We display the results of Prinseq in the graph contained in Fig. 18 and in two tables 
(Tab. A-4, Tab. A-5) , which can be located in the supplement. 

 

3.2.3.Statistics after Trimmomatic 

Statistics for Trimmomatic are visualised in Fig. 19 and more detailed statistics are 
in the supplement ( Tab. A-6, Tab. A-7) 
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As it is visible from graphs (Fig.17 , Fig.18 , Fig.19)  and enclosed tables the overall distribution of 

contigs in assemblers is similar for both samples (in other words Megahit works with the most 

contigs in B and W, Velvet with the least coatings and Spades fits in between the two). This 

characteristics doesn’t change throughout the pipeline. Such results are corresponding to the 

assembler propositions, as for example Megahit is known to deliver large assemblies with many 

long contigs (Li et al., 2015).  
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3.2.4.Overall comparison 

3.2.4.1. Number of contigs  

As was already mentioned earlier, the distribution of number of contigs among assemblers stays 

consistent as predicted for both samples and throughout the whole pipeline (Fig. 20, 

 Fig. 21).  
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3.2.4.2. Longest contig 

In case of longest contig evaluation the results are less unanimous. For sample B the outcome of 

Megahit and Spades is quite similar and the first mentioned doesn’t have as clear predominance 

over the other as in the previous category (Fig.22). The situation is even more interesting in case of 

W, where Spades possesses the longest contigs after FLASH and Prinseq, however it is again 

replaced by Megahit after Trimmomatic (Fig. 23). This could be another distinction showing the 

quality of our samples as B seems to have fairly consistent results throughout the process, but W 

experiences quite dramatic changes.  This development also shows the effect that quality control, 

filtering and trimming have on the final outcome.  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3.2.4.3. Total length  

This category also shows an interesting trend, as all the assemblers display a decrease in total length 

between FLASH and Prinseq, however there is always an increase after Trimmomatic (Fig. 25). 

There is one peculiarity in case of the Velvet results for B (Fig.24), where the total length after 

Trimmomatic actually surpasses the one acquired after Flash.  
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3.3.Alignment and classification  

After blasting our samples with DIAMOND, we acquired tabulated, structured files. 

Each of these files contained sample codes, accession numbers and most importantly gene 

identifications and organisms of origin. The last mentioned was crucial for us in the 

following step. In this part of our work, we applied a python program of our own making, 

which listed all present organisms and counted their occurrence in the file. The table (Tab.4) 

below demonstrates the result, which we acquire for set threshold 0.5%.   

This table (Tab.4) is obtained together with a plain text file containing extracted organism 

names. This can be useful as the user can directly paste the text file into e.g. NCBI 

Taxonomy Browser and acquire taxonomy and a phylogenetic tree. 

However, we were also interested in finding out whether the different programs change the 

overall organism content of the samples. In supplement we enclosed two files ORG_C(0.5)

[25]_SUMMARY and ORG_C(0.5)[26]_SUMMARY, which contain all organisms fitting 

our set threshold 0.5% after all steps of the pipeline as well as a summary.  In the last 

mentioned part, we can clearly see that the total number of organisms decreased from the 

starting point, however the change is not drastic in this nor the other selected categories. To 

compare even further we decided to select the top five organisms for each assembler and see 
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how the different programs agree with each other. For both our files the five highest scoring 

organisms didn’t change throughout the process, nevertheless there were differences across 

the assemblers.  

As it is visible from the tables, in case of B the top five organisms from Megahit can be 

found in the results from Spades and vice versa. Velvet lists majority of these organisms, but 

not all of them. However, all top five samples from Velvet can be located in results of the 

two previously mentioned assemblers. As these selected organisms scored very high in case 

of all assemblers we believe it is a good verification of the actual file contents.  

When we look at W the results are less clear. Top five results from Megahit mostly 

correspond to Velvet (5 - 4 matches), however, Spades starts with 3 matches and after 

Trimmomatic agrees only with one organism. Surprisingly, all top five results from Spades 

can be found in Megahit data. Velvet in that case agrees with 3-2 matches. Finally, the top 

hits for Velvet correspond with Megahit, but Spades found only one match after FLASH 

analysis and later there are no common matches. Based on this outcome we can see how big 

impact the sample quality, selected pipeline and assembler can have.  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Table 4.  Organisms present in VelTrimSW25Full with 
percentage values 0.5% and higher.

ORGANISM COUNT PERCENTAGE

Pseudomonas 32375 5.6119

Pseudomonas fluorescens 24615 4.2668

unclassified Pseudomonas 15029 2.6051

Pseudomonas chlororaphis 8159 1.4143

Collimonas arenae 5473 0.9487

unclassified Duganella 5000 0.8667

Betaproteobacteria bacterium 4925 0.8537

Pseudomonas viridiflava 4857 0.8419

Pseudomonas frederiksbergensis 4833 0.8378

Oxalobacteraceae bacterium 4441 0.7698

Collimonas fungivorans 4340 0.7523

Pseudomonas brassicacearum 4178 0.7242

Acidobacteria bacterium 3320 0.5755

unclassified Massilia 3120 0.5408



4. Conclusion 

Let us begin by stating that the quality control should be considered an important step of any 

pipeline working with sequences. As our results display, there has been many aspects, which were 

affected by implementation of filtering programs, however it seems that the biggest role plays the 

quality of the samples in the very beginning. This might appear as a trivial assessment, nevertheless 

it is important to stress out that there is only a limited amount of impact, which the quality control 

programs can have on our samples. 

 When we look at the results for B there is a certain improvement throughout the pipeline, however 

the changes are not drastic, when it comes to quality control and they do not seem to significantly 

change in the context of assembly and alignment either.  

Our worst sample W, seems to benefit from quality control more than B, however even these results 

are not fully conclusive. We dare to say that it’s worsened quality at the start had a great impact 

later on and even our pipeline didn’t seem to significantly change this state. When it comes to our 

assessment of this sample based on alignment and classification the assemblers do not seem to 

agree the same way as in B, which is another thing that we predicate to the quality of the sample. 

In conclusion, for our dataset the quality control pipeline didn’t demonstrate a consequential 

improvement as we originally expected. This makes us believe that the quality control is an 

important aspect of work with samples like ours, but not necessarily obligatory and could even be 

omitted in case our dataset has a sufficient quality. However, since the amount of samples we 

worked with wasn’t very large and their quality was still relatively good, we would like to in the 

future test the acquired assessment on an other potentially more sizeable and diverse set of samples.  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31.  Supplement Content  

A.  Additional figures and tables for samples B,W  

B. Script for additional work with blasted files 

C. Supplement file containing FASTQC reports, summary of FLASH and PRINSEQ results, 
ORG_DB_STATS.py as well as example files resulting from this program for threshold of 0.5% 
together with overall summary of these outcomes in PDF format for files B and W.  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A. Additional figures and tables 

Table A-1. FASTQC Report for problematic categories in case of B and W

Categories Warning Failure 

Per tile sequence quality • B_R2

Per base sequence content • B_R2 • B_R1 

• W_R1 

• W_R2

Per sequence GC content • B_R1 

• B_R2

• W_R1 

• W_R2

Sequence Duplication 

Levels

• B_R1 

• B_R2 

• W_R1 

• W_R2

Overrepresented sequences • B_R1 

• B_R2

• W_R1 

• W_R2

Adapter Content • W_R1 

• W_R2
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Figure A-1. Per base N content of B

Figure A-2. Per base N content of W
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Figure A-3. Sequence Length Distribution of W

Figure A-4. Sequence Length Distribution of B
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[FLASH] Input files: 
[FLASH]     16NQ040_W_ATGAGC_L004_R1_001.fastq 
[FLASH]     16NQ040_W_ATGAGC_L004_R2_001.fastq 
[FLASH]   
[FLASH] Output files: 
[FLASH]     ./out.extendedFrags.fastq 
[FLASH]     ./out.notCombined_1.fastq 
[FLASH]     ./out.notCombined_2.fastq 
[FLASH]     ./out.hist 
[FLASH]     ./out.histogram 
[FLASH]   
[FLASH] Parameters: 
[FLASH]     Min overlap:           10 
[FLASH]     Max overlap:           65 
[FLASH]     Max mismatch density:  0.250000 
[FLASH]     Allow "outie" pairs:   false 
[FLASH]     Cap mismatch quals:    false 
[FLASH]     Combiner threads:      16 
[FLASH]     Input format:          FASTQ, phred_offset=33 
[FLASH]     Output format:         FASTQ, phred_offset=33 

[FLASH] Read combination statistics: 
[FLASH]     Total pairs:      1635208 
[FLASH]     Combined pairs:   918724 
[FLASH]     Uncombined pairs: 716484 

Figure A-6. FLASH results for W

[FLASH] Input files: 
[FLASH]     16NQ040_B_ACTGAT_L004_R1_001.fastq 
[FLASH]     16NQ040_B_ACTGAT_L004_R2_001.fastq 
[FLASH]   
[FLASH] Output files: 
[FLASH]     ./out.extendedFrags.fastq 
[FLASH]     ./out.notCombined_1.fastq 
[FLASH]     ./out.notCombined_2.fastq 
[FLASH]     ./out.hist 
[FLASH]     ./out.histogram 
[FLASH]   
[FLASH] Parameters: 
[FLASH]     Min overlap:           10 
[FLASH]     Max overlap:           65 
[FLASH]     Max mismatch density:  0.250000 
[FLASH]     Allow "outie" pairs:   false 
[FLASH]     Cap mismatch quals:    false 
[FLASH]     Combiner threads:      16 
[FLASH]     Input format:          FASTQ, phred_offset=33 
[FLASH]     Output format:         FASTQ, phred_offset=33 

[FLASH] Read combination statistics: 
[FLASH]     Total pairs:      10625763 
[FLASH]     Combined pairs:   3049899 
[FLASH]     Uncombined pairs: 7575864 
[FLASH]     Percent combined: 28.70%

Figure A-5. FLASH results for B
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16NQ040_W_ATGAGC_L004_R1-R2 

Input and filter stats: 
 Input sequences: 918,724 
 Input bases: 170,368,034 
 Input mean length: 185.44 
 Good sequences: 209,444 (22.80%) 
 Good bases: 51,707,212 
 Good mean length: 246.88 
 Bad sequences: 709,280 (77.20%) 
 Bad bases: 118,344,667 
 Bad mean length: 166.85 
 Sequences filtered by specified parameters: 
 trim_tail_left: 133709 
 trim_tail_right: 3 
 min_len: 573883 
 min_qual_mean: 1643

Figure  A-8. Prinseq analysis for W

 

16NQ040_B_ACTGAT_L004_R1-R2 

Input and filter stats: 
 Input sequences: 3,049,899 
 Input bases: 750,512,348 
 Input mean length: 246.08 
 Good sequences: 2,691,317 (88.24%) 
 Good bases: 686,024,150 
 Good mean length: 254.90 
 Bad sequences: 358,582 (11.76%) 
 Bad bases: 64,458,539 
 Bad mean length: 179.76 
 Sequences filtered by specified parameters: 
 trim_tail_left: 405 
 min_len: 355053 
 min_qual_mean: 2668 
 min_qual_mean: 1643

Figure  A-7. Prinseq analysis for B 
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TrimmomaticSE:  
Started with arguments: 
 FLASh/16NQ040_W_ATGAGC_L004_R1-R2/out.extendedFrags.fastq trimresults/
TrimSW26 SLIDINGWINDOW:50:25 
Automatically using 1 threads 
Quality encoding detected as phred33 
Input Reads: 918724  
Surviving: 918373 (99.96%)  
Dropped: 351 (0.04%) 

Figure  A-10. TRIMMOMATIC analysis for W

 

TrimmomaticSE: 
Started with arguments: 
FLASh/16NQ040_B_ACTGAT_L004_R1-R2/out.extendedFrags.fastq trimresults/
TrimSW25 SLIDINGWINDOW:50:25 
Automatically using 1 threads 
Quality encoding detected as phred33 
Input Reads: 3049899  
Surviving: 3049296 (99.98%)  
Dropped: 603 (0.02%) 

Figure  A-9. TRIMMOMATIC analysis for B

 



Table A-2. Quast results for B after FLASH

B after FLASH

SPAdes Megahit Velvet

# contigs 1632 3033 760

# contigs (> =  0 bp) 2318 7688 104 798

# contigs (> = 1000 bp) 333 531 52

# contigs (> = 5000 bp) 2 4 0

Largest contig 6393 7027 1994

Total length 1 336 215 2 444 554 512 455

Total length (> = 0 bp) 1 648 987 4 226 610 12 240 023

Total length (> = 1000 
bp) 

497 656 823 034 63 602

Total length (> = 5000 
bp) 

12 081 25 627 0

N50 787 765 650

N75 605 598 561

L50 528 996 305

L75 1019 1911 519

GC% 54,82 56,71 57,75
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Table A-3. Quast results for W  after FLASH

W after FLASH

SPAdes Megahit Velvet

# contigs 421 763 25

# contigs (> =  0 bp) 623 2703 72 661

# contigs (> = 1000 bp) 98 58 1

# contigs (> = 5000 bp) 0 0 0

Largest contig 3209 2753 1128

Total length 346 288 525 007 15 543

Total length (> = 0 bp) 437 685 1 269 348 8 802 303

Total length (> = 1000 
bp) 

133 733 74 247 1128

Total length (> = 5000 
bp) 

0 0 0

N50 852 657 578

N75 612 564 536

L50 142 299 11

L75 264 516 18

GC% 51,91 49,36 55,5
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Table A-4. Quast results for B after PRINSEQ

B after PRINSEQ

SPAdes Megahit Velvet

# contigs 1596 2867 701

# contigs (> =  0 bp) 2253 7224 97 751

# contigs (> = 1000 bp) 316 469 48

# contigs (> = 5000 bp) 2 3 0

Largest contig 6393 6670 2426

Total length 1 309 324 2 300 617 470 030

Total length (> = 0 bp) 1 609 581 3 975 216 11 383 574

Total length (> = 1000 
bp) 

475 998 739 789 57 796

Total length (> = 5000 
bp) 

12 032 18 985 0

N50 801 755 647

N75 607 599 560

L50 518 950 282

L75 996 1813 479

GC% 54,8 56,62 57,62
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Table A-5. Quast results for W after PRINSEQ

W after PRINSEQ

SPAdes Megahit Velvet

# contigs 401 758 23

# contigs (> =  0 bp) 602 2611 56 892

# contigs (> = 1000 bp) 75 64 0

# contigs (> = 5000 bp) 0 0 0

Largest contig 3589 2276 734

Total length 325 527 523 457 13 581

Total length (> = 0 bp) 417 106 1 240 960 7 117 707

Total length (> = 1000 
bp) 

110 150 84 935 0

Total length (> = 5000 
bp) 

0 0 0

N50 817 661 587

N75 608 564 540

L50 134 295 11

L75 253 511 17

GC% 51,96 49,49 53,46
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Table A-6. Quast results for B after TRIMMOMATIC

B after TRIMMOMATIC

SPAdes Megahit Velvet

# contigs 1601 2940 767

# contigs (> =  0 bp) 2264 7516 80 676

# contigs (> = 1000 bp) 332 518 47

# contigs (> = 5000 bp) 2 4 0

Largest contig 6393 6687 3339

Total length 1 320 938 2 379 459 523 732

Total length (> = 0 bp) 1 623 419 4 140 136 10 203 337

Total length (> = 1000 
bp) 

499 043 804 044 61 273

Total length (> = 5000 
bp) 

12 080 24 633 0

N50 795 770 654

N75 607 600 568

L50 515 964 306

L75 996 1849 521

GC% 54,8 56,83 57,66
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Table A-7. Quast results for W after TRIMMOMATIC

W after TRIMMOMATIC

SPAdes Megahit Velvet

# contigs 415 770 24

# contigs (> =  0 bp) 622 2765 57 145

# contigs (> = 1000 bp) 92 56 1

# contigs (> = 5000 bp) 0 0 0

Largest contig 3182 3364 1128

Total length 341 690 525 885 14 906

Total length (> = 0 bp) 435 553 1 293 165 7 277 513

Total length (> = 1000 
bp) 

129 131 75 290 1128

Total length (> = 5000 
bp) 

0 0 0

N50 835 650 576

N75 608 561 540

L50 138 303 11

L75 260 522 17

GC% 52,18 49,6 55,37
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B. Script for  additional work with blasted files 

File name: ORG_DB_STATS.py 
Language: Python  
Description: The script evaluates the input file and presents the user with either .csv file with 
organism names, their occurrences and the corresponding overall percentage or a .csv file similar to 
the previously mentioned one, but limited by a threshold selected by the user as well as  a plain text 
file containing organism names. 
Input file:  Tabulated output of Diamond blast 
Output file: The results are presented in a .csv file and plain text file. 

The full script is enclosed in the supplement file.  
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