
T
BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

FACULTY OF MECHANICAL ENGINEERING
FAKULTA STROJNÍHO INŽENÝRSTVÍ

INSTITUTE OF SOLID MECHANICS, MECHATRONICS AND
BIOMECHANICS
ÚSTAV MECHANIKY TĚLES, MECHATRONIKY A BIOMECHANIKY

SEMANTIC SEGMENTATION OF IMAGES USING
CONVOLUTIONAL NEURAL NETWORKS
SÉMANTICKÁ SEGMENTACE OBRAZU POMOCÍ KONVOLUČNÍCH NEURONOVÝCH SÍTÍ

MASTER'S THESIS
DIPLOMOVÁ PRÁCE

AUTHOR Be. FILIP ŠPILA
AUTOR PRÁCE

SUPERVISOR doc. Ing. JIŘÍ KREJSA, Ph.D.
VEDOUCÍ PRÁCE

BRNO 2020

Abstrakt
Tato práce se zabývá rešerší a implementací vybraných architektur konvolučních neu­

ronových sítí pro segmentaci obrazu. V první části jsou shrnuty základní pojmy z teorie
neuronových sítí. Tato část také představuje silné stránky konvolučních sítí v oblasti
rozpoznávání obrazových dat. Teoretická část je uzavřena rešerší zaměřenou na konkrétní
architekturu používanou na segmentaci scén. Implementace této architektury a jejích vari­
ant v Caffe je převzata a upravena pro konkrétní použití v praktické části práce. Nedíl­
nou součástí tohoto procesu jsou kroky potřebné ke správnému nastavení softwarového a
hardwarového prostředí. Příslušná kapitola proto poskytuje přesný návod, který ocení ze­
jména noví uživatelé Linuxu. Pro trénování všech variant vybrané sítě je vytvořen vlastní
dataset obsahující 2600 obrázků. Je také provedeno několik nastavení původní implemen­
tace, zvláště pro účely použití předtrénovaných parametrů. Trénování zahrnuje ladění
hyperparametrů, jakými jsou například typ optimalizačního algoritmu a rychlost učení.
Na závěr je provedeno vyhodnocení výkonu a výpočtové náročnosti všech natrénovaných
sítí na testovacím datasetu.

Abstract
This thesis deals with the research and implementation of selected architectures of

convolutional neural networks (CNNs) for image segmentation. The fundamental terms
from the theory of neural networks are summarized in the first part. It also presents the
power of CNNs in the field of image data classification. The theoretical part concludes
with the research focused on the particular network architecture and its variants used
for scene segmentation. In the practical part, the Caffe implementation of the network
is taken from its authors and tailored to the specific needs of this study. The steps
required to properly set up the software and hardware environments are an essential
part of the process. Therefore, the corresponding chapter gives a step-by-step guide that
is especially helpful to new Linux users. A custom dataset containing 2600 segmented
images is created and used for training all variants of the selected network. Several
adjustments of the original implementation are performed, especially for applying the
method of using pre-trained parameters of the networks. The training phase includes a
selection of hyperparameters, such as the type of optimization algorithm. Finally, the
performance and computational cost of the variants of the trained network are evaluated
on a testing dataset.

Klíčová slova

sémantická segmentace, konvoluční neuronové sítě, SegNet, Caffe, Ubuntu

Keywords
semantic segmentation, convolutional neural networks, SegNet, Caffe, Ubuntu

ŠPILA, F. Semantic segmentation of images using convolutional neural networks. Brno:
Vysoké učení technické v Brně, Faculty of Mechanical Engineering, 2020. 61 s. Vedoucí
doc. Ing. Jiří Krejsa, Ph.D.

Rozšířený abstrakt
Úvod
Segmentace obrazu je spolu s rozpoznáním obrazu a detekcí objektů jednou ze základních
součástí počítačového vidění a autonomních systémů. Cílem sémantické segmentace je
přiřadit kategorii každému významnému objektu v obraze (osoba, zvíře, automobil, atd.)
tak, že dojde k vykreslení jeho přesné hranice. Vybraný algoritmus musí pracovat s co
největší přesností a robustností.

Sémantická segmentace má několik různých využití, zejména v oblastech jako jsou
řízení autonomních vozidel, interakce člověka s počítačem, robotika a různé softwarové
nástroje. Nejnovější vývoj ukazuje rostoucí poptávku po spolehlivém rozpoznávání ob­
jektů pro samořiditelná vozidla, jelikož jejich řídící modely musí rozumět kontextu prostředí
ve kterém operují. Tato práce se zaměřuje na zkoumání a implementaci jedné konkrétní
segmentační metody, která využívá konvoluční neuronové sítě (KNS). KNS patří do
skupiny algoritmů strojového učení a získaly pozornost zejména díky svému úspěchu v
soutěžích v klasifikaci obrazu (ImageNet). Následně našly své využití v úlohách segmen­
tace, kde jsou obvykle použity jako první stupeň algoritmu.

Zadání této práce se skládá z několika bodů. Předně je potřeba najít a implementovat
perspektivní metodu segmentace využívající KNS. Očekává se, že tato neuronová síť bude
co nejjednodušší, a zároveň schopna zajistit uspokojivé výsledky pro konkrétní aplikaci
(segmentace cesty pro samonavigujícího robota ve venkovním prostředí). Obrazová data
pro trénování a testování sítě budou dodána vedoucím této práce.

Popis řešení
V praktické části práce je zprovozněna převzatá implementace neuronové sítě SegNet spolu
s jejími dalšími variantami (SegNet, Bayesian SegNet, SegNet Basic a Bayesian SegNet
Basic), přičemž celá síť je napsána pomocí knihovny Caffe a je vytvořena původními au­
tory článku [25]. Jedná se o sítě typu enkodér-dekodér využívající architekturu známé sítě
VGG16 jako enkodéru. Enkodér sítě má za úkol vyextrahovat ze vstupních obrazových
dat jejich významné znaky a vytvořit jejich zjednodušenou reprezentaci. Při tomto pro­
cesu dochází ke ztrátě rozlišení původního obrazu. Cílem segmentace je však na výstupu
sítě získat obrázek (segmentační masku) se stejným rozlišením jako měl původně vstup.
Úlohou dekodéru je tedy, za použití informací z předchozích operací v enkodéru, rekon­
struovat původní umístění prvků v obraze a přiřadit j im příslušnost ke správné kategorii.
Obě části sítě, enkodér a dekodér, mají trénovatelné parametry v podobě konvolučních
jader (filtrů).

Bayesian SegNet je rozšířená varianta SegNetu. Jejich architektury jsou shodné, avšak
díky použití techniky zvané Monte Carlo Dropout dovede na výstupu vizualizovat spolu
se segmentační maskou i nejistotu modelu. Verze Basic obou těchto síti jsou poté pouze
sítě s redukovaným počtem vrstev.

Pro správné nastavení softwaru a hardwaru je potřeba bezchybně provést několik
kroků. Z tohoto důvodu práce obsahuje návod pro operační systém Ubuntu, jehož silnou
stránkou je snadná instalace balíků přes příkazový řádek. Tento návod také zahrnuje kom­
pilaci knihovny Caffe (v její speciálně upravené podobě pro účely SegNetu). Dále bylo

3

potřeba vytvořit trénovací a testovací data. K tomuto účelu byl použit online nástroj
Labelbox. Bylo vytvořeno celkem 2600 trénovacích (+ 90 validačních) a 179 testovacích
obrázků.

Všechny sítě jsou upraveny pro segmentaci dvou tříd objektů - pozadí + cesta. Je­
likož použitá množina dat není příliš obsáhlá, parametry sítě v Caffe jsou dále lehce
přizpůsobeny pro použití předtrénovaných parametrů. Během trénování sítě bylo použito
několik různých hyperparametrů (parametry, které se nastavují před trénováním a dále
se nemění) pro zajištění co nejlepších výsledků.

Veškeré použité soubory (upravené zdrojové kódy knihovny Caffe, soubory všech ar­
chitektur a obslužné Python skripty) jsou snadno dostupné online na úložišti GitHub ([30]
a [34]) a tedy připravené pro další uživatele.

Shrnutí a zhodnocení výsledků
Všechny varianty sítě SegNet byly úspěšně natrénovány a vykazují více než 90% úspěšnost
segmentace na testovacím datasetu. V závěru byly porovnány úspěšnosti různých strategií
při použití předtrénovaných parametrů. Z pohledu výpočtové náročnosti si nejlépe vedou
Basic verze obou architektur SegNetu. Jejich použití však v praxi může být limitováno
počtem tříd a potřebnou mírou detailu segmentace.

Specification Master's Thesis
Department:
Student:
Study programme:
Study branch:
Supervisor:
Academic year:

Institute of Solid Mechanics, Mechatronics and Biomechanics
Be. Filip Spila
Applied Sciences in Engineering
Mechatronics
doc. Ing. J i r i Krejsa, Ph.D.
2019/20

Pursuant to Act no. 111/1998 concerning universities and the BUT study and examination rules, you
have been assigned the following topic by the institute director Master's Thesis:

Semantic segmentation of images using convolutional neural networks

Concise characteristic of the task:

The task of image segmentation can be solved using various techniques, with convolutional neural
networks becoming a promising approach lately. The focus of the thesis is to research, implement and
perform benchmarking of selected convolutional neural networks used for semantic segmentation of
images. The ideal outcome would be a network capable of being fitted to a user's custom set of
training data and successfully performing segmentation of both simple image scenes containing only
a single object class and more complex scenes containing multiple objects.

Goals Master's Thesis:

1) Get acquainted with convolution neural networks techniques used for image segmentation.
2) Research neural networks architectures used in the task and select the most promising one.
3) Create a custom training set for the network using appropriate software tool.
4) Create segmented (binary) images of both simple and complex scenes.
5) Evaluate the quality of segmentation.

Recommended bibl iography:

SEWAK M. et. al., Practical Convolutional Neural Networks: Implement advanced deep learning
models using Python, Packt Publishing Ltd, 2018

BALLAR W., Hands-On Deep Learning for Images with TensorFlow: Build intelligent computer vision
applications using TensorFlow and Keras, Packt Publishing Ltd, 2018

Faculty of Mechanical Engineering, Brno University of Technology / Technická 2896/2 / 616 69 / Brno

Deadline for submission Master's Thesis is given by the Schedule of the Academic year 2019/20

In Brno,

L. S.

prof. Ing. Jindřich Petruška, CSc. doc. Ing. Jaroslav Katolický, Ph.D.
Director of the Institute FME dean

Faculty of Mechanical Engineering, Brno University of Technology / Technická 2896/2 / 616 69 / Brno

I declare that I have written this Master's Thesis independently using exclusively the
technical references and other sources of information cited in the thesis and listed in the
comprehensive bibliography and that the procedure has been in accordance with Regula­
tion S 11 of the Copyright Act No. 121/2000 Coll. of the Czech Republic, as amended.

Prohlašuji, že jsem svou práci vypracoval samostatně a použil jsem pouze podklady
citované v práci a uvedené v přiloženém seznamu a postup při zpracování práce je v
souladu se zákonem č. 121/2000 Sb., o právu autorském, o právech souvisejících s právem
autorským a o změně některých zákonů (autorský zákon) v platném znění.

Bc. Filip Špila

I would like to thank the supervisor of my thesis doc. Ing. Jiří Krejsa, Ph.D. for
great cooperation and quick communication. I would also like to thank all my friends
and relatives who were supporting me with their patience and understanding during my
studies. If they were not around, I would not be able to successfully finish my Master's
exchange whose impact is not only noticeable in this thesis, but also in my personal life.
Finally, I would like to thank Jakub Švanda and David Szmidt for language corrections.

Tímto bych rád poděkoval vedoucímu své práce panu doc. Ing. Jiřímu Krejsovi, Ph.D.
za skvělou spolupráci a rychlost s jakou odpovídal na mé dotazy. Poděkování dále patří
všem blízkým lidem z mého okolí, kteří mě podporovali během studií svou trpělivostí a
pochopením. Bez některých z nich bych dokonce nebyl schopen úspěšně dokončit svůj
zahraniční pobyt v rámci programu Erasmus, jenž má přesah nejen do stránek této práce,
ale i do ostatních aspektů v mém životě. Na závěr děkuji pánům Jakubu Švandovi a
Davidu Szmidtovi za jazykové korektury.

Bc. Filip Špila

CONTENTS

Contents
1 Introduction 3

2 Problem Statements 4

3 Research and Theory 5
3.1 Architecture of artificial neural networks 5

3.1.1 Feed-forward networks 5
3.1.2 McCulloch-Pitts neurons 6
3.1.3 Activation functions 7
3.1.4 Multilayer perceptrons 11

3.2 Training of artificial neural networks 14
3.2.1 Loss function 14
3.2.2 Gradient optimization and backpropagation 15
3.2.3 Improving training performance 20

3.3 Convolutional neural networks 23
3.3.1 C N N layer types 23
3.3.2 Examples of C N N architectures 25

3.4 Semantic segmentation 26
3.4.1 Encoder-decoder architecture 26
3.4.2 SegNet 28
3.4.3 Bayesian SegNet 29
3.4.4 Evaluating segmentation performance 29

4 Implementation and Method 30
4.1 C P U vs. G P U for training A N N 30
4.2 Libraries for A N N 31

4.2.1 Caffe 31
4.3 Setting up environment for Caffe 32

4.3.1 Hardware configuration 32
4.3.2 Software configuration 33
4.3.3 Building Caffe for SegNet 35

4.4 Image annotation 37
4.5 Setting up SegNet 38

4.5.1 Solver settings 38
4.5.2 Training 39
4.5.3 Inference 43
4.5.4 Testing 44
4.5.5 Bayesian SegNet 45
4.5.6 SegNet Basic and Bayesian SegNet Basic 46

4.6 Optimization of hyperparameters 47

5 Results 48

6 Conclusion and Future Work 52

1

7 Bibliography

List of Abbreviations

List of Attachments

List of Figures

List of Tables

CONTENTS

53

57

58

60

61

2

1. Introduction
Image segmentation is one of the essential parts of computer vision and autonomous

systems alongside with object detection and object recognition. The goal of semantic
segmentation is to automatically assign a label to each object of interest (person, animal,
car, etc.) in a given image while drawing the exact boundary of it and to do this as
robustly and reliably as possible.

We can see a real-world example in Figure 1.1. Each pixel of the image has been
assigned to a specific label and represented by a different colour: red for people, blue for
cars, green for trees, etc. This is unlike the image classification task where we classify the
image scene as a whole. It is important to say that semantic segmentation is different
from so-called instance segmentation where one not only cares about drawing boundaries
of objects of a certain class but also wants to distinguish between different instances of
the given class [12]. For instance, all people in Figure 1.1 (each instance of the 'person'
class) would have a different colour.

Semantic segmentation has many different applications in fields such as driving au­
tonomous vehicles, human-computer interaction, robotics and various software tools. The
most recent developments show increasing demand for reliable object recognition in self-
driving vehicles because the driving models must understand the context of the environ­
ment they are operating in. [1]

The presented work focuses on research and implementation of one particular seg­
mentation method that uses convolutional neural networks (CNNs). CNNs belong to the
family of machine learning algorithms and received attention mainly due to their success
in image classification challenges (ImageNet). They subsequently found their use in seg­
mentation tasks where researchers take the most well-performing C N N architectures and
use them as the first stage of the algorithm.

30 FPS
Figure 1.1: Segmentation of an urban road scene. [2]

3

2. Problem Statements
The goal of this thesis consists of several points. Firstly, a promising segmentation

method using CNNs needs to be found and implemented. It is expected that the neural
network will be as straightforward as possible while being capable of giving satisfactory
results for the chosen use case (segmentation of a path in an outdoor environment for
robot navigation). The images used to train and validate the performance of the network
will be provided by the supervisor of the thesis. Also, the author will pick an appropriate
software tool for creating ground truths 1 and use them to create the training and validating
datasets. Lastly, the network should be trained with various sets of training parameters
to get a better idea of the network's behaviour and to ensure the best possible results.

1 Manually created image-labels that serve as a reference for the network so that it validates its current
accuracy of prediction and computes the needed adjustments of its parameters to get closer to the desired
output

4

3. Research and Theory
The first part of this chapter gives an introduction to artificial neural networks (ANNs).

It begins with a definition of fundamental terms that explain the core principles of A N N .
Because the research in this area is still ongoing, the more advanced techniques described
here may soon be out of date or replaced by better-performing ones and therefore the
theoretical background is limited only to the extent that will be relevant for the network
architecture chosen at the end.

The second part presents some of the main approaches based on machine learning
which were recently used by researchers to tackle the semantic segmentation problem.
However, not all of them use C N N as the core algorithm. This part summarizes the
key points of the corresponding papers that contributed to this topic by presenting novel
architectures and principles. It concludes by a detailed description of a method that is
eventually found to be the most promising and is thus selected for the final implementa­
tion.

3.1. Architecture of artificial neural networks
The inspiration for neural networks comes from their resemblance to biological neurons
and the way they are connected. Neural networks can recognize features in a given training
set of data and apply this knowledge to previously unseen data after the training. This
strategy is called supervised learning. In supervised learning, one periodically feeds the
network with input/output pairs of training data. The network learns by comparing
the correct and computed output values for the given input. The network's trainable
parameters are changed as the training continues to minimize the differences between
network outputs and targets for all input patterns in the training set. [3]

3.1.1. Feed-forward networks
The goal of a feed-forward neural network is to find a non-linear, generally n-dimensional
function that maps the space of inputs x to the space of outputs y. In other words, to
learn the function [4]

where 0 are trainable parameters of the network. The goal is to learn the value of the
parameters that result in the best function approximation by solving the equation [4]

where L is the loss function chosen for the particular task. One can understand the term
'loss function' simply as a metric of how happy we are about the output that the network
gives us for a given input. Therefore, f*(x; 4>) is driven to match the ideal function f(x; <f>)
during network training.

The structure of a feed-forward network is usually composed of many nested functions.
For instance, there might be three functions and connected in a chain: [4]

(3.1)

0 «- arg mm L(y,f*(x;(f))) (3.2)

5

3.1. ARCHITECTURE OF ARTIFICIAL NEURAL NETWORKS

f(x)=f(3)(fi2\f(1)(x))) (3.3)

These models are referred to as feed-forward because information flows from the deep­
est nested function which then takes x as its direct input to other functions in the
chain and finally to the output y. One can name the functions starting by as the first
layer (input layer) of the network, as the second layer and so on. The final layer of
the network is called the output layer. [4]

Remember that in supervised learning one needs a set of training data, in this case a
set of matching x, y1 pairs. The training samples specify what the output layer must do
at each point x; it must produce a value that is as close as possible to y. The behaviour
of the other layers is not specified by the training data which is why we call these layers
'hidden layers'. [4]

A neural network can be seen as something capable of modelling almost any function
we can think of (general approximation theorem, see [5]). The power of this brings us
to the definition of a classification task. In this task, the function which the network
approximates has discrete states (true/false in the simplest case).

3.1.2. McCulloch-Pitts neurons
Layers of a feed-forward network further divide into distinct functions called neurons.
This is where the resemblance to biological neurons comes into play: the neurons are
mathematically modeled as linear threshold units (McCulloch-Pitts neurons). The output
of a neuron is dependent on the output of the neurons in the previous layer. In the simplest
form, the output of each neuron in the network has only two states: active or inactive.
[3]

If the output exceeds a given threshold then the state of the neuron is said to be
active, otherwise it is inactive. The model is illustrated in Figure 1.4. Neurons usually
perform repeated computations in discrete time steps t — 0,1, 2, 3,.... The state of neuron
number j at time step t is denoted by [3]

.0 inactive,
nj{t) = t (3.4)

1 active.

Given the signals rij(t + 1), neuron number % computes [3]

rijit + 1) = 9H (y^^WijUjit) - fii^j (3.5)

As written, this computation is performed for all % neurons in parallel and the outputs
rii are the inputs to all neurons at the next time step t + 1.

Outputs y are often called labels in classification tasks

6

3.1. ARCHITECTURE OF ARTIFICIAL NEURAL NETWORKS

Figure 3.1: Schematic diagram of a McCulloch-Pitts neuron. The strength of the con­
nection from neuron j to neuron % is denoted by Wij. [3]

Each incoming connection from other neurons has a different strength. This is de­
termined by the parameters Wij called weights. The first index % refers to the neuron
whose output is being computed and j labels all neurons that connect to neuron i. The
argument of OH of the neuron is often referred to as the local field [3]

k = ^ 2 _ A** (3- 6)
3

where bi is a weighted linear average of the inputs rij and /x« is an offset (threshold).
Finally, the function OH is referred to as the activation function. [3]

3.1.3. Activation functions
The general motivation for using activation functions is to bring non-linearity to the
model. In the simplest case that has been discussed so far, the neurons can only have
the states 0/1, which in terms of the activation function corresponds to the Heaviside
function [3]

M » = 1 t o r 6 - 0 , (" I
V ' [0 for b < 0. V 7

In practice, however, the simplest model must be generalised by allowing the neuron to
respond continuously to its inputs. This is necessary for the optimization algorithms used
in the training phase to operate smoothly [6]. Therefore, the term OH in Equation (3.5)
is replaced by a general continuous activation function g{b). [3]

7

3.1. ARCHITECTURE OF ARTIFICIAL NEURAL NETWORKS

One can choose from several activation functions which all come with their pros and
cons depending on the particular application of the network. In general, there are a few
requirements these functions should meet: [6]

• Nonlinearity. As discussed above, non-linearity is a general ability of a neural
network which allows it to model very complex functions.

• Monotocity and nondecreasibility. These allow certain optimization algorithms
to perform with greater stability.

• Differentiability (or at least piecewise differentiability). This is useful not
only in terms of stability of the optimization algorithms but also for the analytical
derivation of the update rule for the network parameters during optimization.

There are activation functions designed specifically for the output layer. The reason
for that comes from the definition of a classification task, where we would like to interpret
the outputs of the network as relative probabilities of the input belonging to a certain
class. For this, the commonly-used softmax activation function can be used. We say
'relative' because the network's decision is only based on the features of one particular
pattern in comparison with other data we used during training. Hence, the probabilities
computed by the softmax classifier are better thought of as confidences where the ordering
of the scores is interpretable, but the absolute numbers are technically not. [7]

Another possibility for the output activation function is the sigmoid function, which
is used for both input /hidden and output layers. Here are the most frequently used
activation functions: [6]

Sigmoid

-10 0 10 -10 0 10
b b

(a) 9(b) = (b) g'(b) = g(b)(l - g(b))

Figure 3.2: Sigmoid function and its derivative. Notice that the derivative goes to zero
very quickly.

This function has a clear interpretation of neuron states - active/inactive is represented
by values 1/0. The sigmoid function is currently not favoured for large networks. In short,
it does not have optimal properties for the learning algorithm because it saturates very
quickly. Also, the fact that its mean value is non-zero doesn't have a positive impact on
the learning process either. [7] [6]

8

3.1. ARCHITECTURE OF ARTIFICIAL NEURAL NETWORKS

Hyperbolic tangent

Figure 3.3: Hyperbolic tangent and its derivative.

Unlike the sigmoid function, the range of its output is in the interval <- l , l> and the
output is therefore zero-centered. In practice, the tanh non-linearity is always preferred
to the sigmoid non-linearity. [7]

Rectified linear unit (ReLU)

OS

(a) g(b) = max(0, b) (b) g'(b) = eH(b)

Figure 3.4: ReLU and its derivative. ReLU does not saturate!

The authors of this function found the inspiration in real biological neurons: there
is a threshold below which the response of the neuron is strictly zero, as shown in the
figure above. The derivative of the ReLU function is discontinuous at b = 0. A common
convention is to set the derivative to zero at b = 0. It is now the standard function to use
in large networks for image recognition. [3]

9

3.1. ARCHITECTURE OF ARTIFICIAL NEURAL NETWORKS

Leaky ReLU

Figure 3.5: Leaky ReLU and its derivative.

By modifying the previously introduced function one gets a version of ReLU intended
to address its biggest drawback, which is the fact that some neurons may become dead
(their output will be always zero) and thus they do not contribute to the network's output.
Unfortunately, there's generally no guarantee that using Leaky ReLU instead of ReLU
will always yield better results. [8]

10

3.1. ARCHITECTURE OF ARTIFICIAL NEURAL NETWORKS

3.1.4. Multilayer perceptrons
Perceptron is a feed-forward network. It is divided into layers consisting of McCulloch-
Pitts neurons. The left-most layer of the network shown in Figure 3.6 is called input
layer. The input layer takes the values of the input data and passes it to the next layer.
The right-most layer is the output layer where the output of the network is read out. The
other neuron layers are called hidden layers; their states are not read out directly. [3]

Figure 3.6: Perceptron with one hidden layer. [3]

"In perceptrons, all connections (called weights) Wij are one-way. Every neuron (or
input terminal) feeds only to neurons in the layer immediately to the right. There are
no connections within layers, or back connections, or connections that jump over a layer.
There are N input terminals." [3] We denote the inputs coming to the input layer by [3]

r , » i

x{n)

X
X.

00

L TV J

(3.8)

The index \x labels different input patterns in the training set. The perceptron in
Figure 3.1 calculates the output as follows: [3]

O

— g{tif') where = ^^WjkX^ — 9j
k

g(B^) where B^ = WyV^ - Qt

(3.9)

(3.10)

where VJ^ denotes the output of hidden layer j based on the local field b^ and activation
function g{b). The parameters Wjk and 9j denote weights and thresholds of the layer j.
Corresponding computations are made for the output layer whose output of neuron %
is denoted by and other parameters are capitalized. [3] A multilayer perceptron
generally has TV hidden layers. If it has more than two hidden layers, it usually begins to
be called a deep network.

11

3.1. ARCHITECTURE OF ARTIFICIAL NEURAL NETWORKS

Output classifier - softmax

The softmax function is designed to be used in output layers. This so-called 'classifier'
differs from other activation functions by its dependency on other neurons in the layer [3]

Oi = Try (3.11)

"Here b[L^ = Y^j wij''VjL~1'1 ~®\L^ a r e the local fields of the neurons in the output layer
L. The constant a is usually taken to be unity. Softmax has three important properties:
first that 0 > Oj > 1. Second, the values of the outputs sum to one YliLi Oi = l- This
means that the outputs of Softmax units can be interpreted as probabilities. Third, the
outputs are monotonous: when b[L^ increases, then Oi increases but the values Ok of the
other output neurons k ^ i decrease." [3]

Figure 3.7: Softmax classifier: the neurons in this layer are not independent. [3]

Linear separability

The reason we use hidden layers is to tackle classification problems that are not linearly
separable. Linear separability is shown in Figure 3.8, where the input to the network is
two-dimensional. The target classification output for pattern JX is denoted by and we
classify the input data into two classes (marked as black and white points in the graph).
[3]

Figure 3.8: Linearly separable (left) and not linearly separable problems (right). The
decision boundary needs to be piece-wise linear for the not linearly separable problem [3]

A classification problem is linearly separable if one is able to draw a single line (a
single plane in case of three inputs, etc.) to divide the input space into two distinct
areas. The curve that separates the space of inputs is called the decision boundary. The
position of the decision boundary is determined by the values of weights and thresholds

12

3.1. ARCHITECTURE OF ARTIFICIAL NEURAL NETWORKS

of the neurons. These parameters are found by training the network. In the case shown
in Figure 3.8 (left), the line dividing the 2D space of inputs corresponds to the simplest
possible case which is a single neuron in the network. In a not linearly separable task
(Figure 3.8, right) we need to divide the input space into more than two regions to solve
the classification. By doing this, we map the input space of size n = 2 to the hidden space
of size m = 3 and use it as an input to other layers. [3]

13

3.2. TRAINING OF ARTIFICIAL NEURAL NETWORKS

3.2. Training of artificial neural networks
Artificial neural networks are trained using iterative optimization algorithms. During
training, one needs to choose the right loss function whose value goes to zero when the
network produces the expected output (when the outputs O of the network match with
the target values t for all patterns). To achieve this, trainable paremeters are changed in
each step of optimization. The effect each parameter has on the value of the loss function
is determined by calculating the gradient of the loss function with respect to the particular
parameter in the network. The way this information is used is then subject to the chosen
algorithm. [39]

3.2.1. Loss function
Loss function is a metric of our satisfaction with the network's output for a given pattern
[i. It is always determined by the relation between the current output 0\^ of neuron %
and the target value t^f\ The choice depends on the nature of the task that the network
is used for and on the activation function used in the output layer. During training, the
loss function is the one whose value is being optimized. Here are the most commonly used
functions: [3]

Mean squared error (MSE)

L = \ Y . { ^] - ° ^) 2 (3-12)
fli

M S E is used for regression tasks, often in combination with the sigmoid function in
the output layer. [6]

Negative log likelihood

L = - Y , ^ HOf) (3.13)
fli

The negative log likelihood is used for classification tasks in combination with the
softmax classifier. [3]

Cross entropy loss

L = - ln(0<">) + (1 - tM) HI - (O f t) (3.14)
fli

Very similar to the negative log likelihood loss. The difference is that it works with
the sigmoid activation function. [3]

14

3.2. TRAINING OF ARTIFICIAL NEURAL NETWORKS

3.2.2. Gradient optimization and backpropagation
Backpropagation is a way in which information about the correctness of the output flows
through the network so that the parameters in all layers can be adjusted. Everytime
we feed the network with an input pattern \i we get the output values of the neurons
in all layers. This is called a forward pass (inference, left-to-right pass). Then we want
to evaluate the correctness of the output and pass that information back to the network.
The second phase is called backpropagation because the error propagates from the output
layer to the layers on the left. [3]

errors

neurons

Figure 3.9: Backpropagation algorithm: the states of the neurons are updated forward
(from left to right) while errors are updated backward (right to left). [3]

The optimization algorithm searches the most optimal value of the loss function whose
value is dependent on the trainable parameters. For this, the algorithms needs to move
in the direction of the steepest descent in the landscape of the loss function. In each step
of the optimization, one needs to calculate partial derivatives of the loss function with
respect to all trainable parameters. The derivative is found by applying the chain rule to
the formula for calculating the loss function. [3]

Gradient descent

The general formula for the gradient descent algorithm goes as follows: [39]

(3.15)

where <f> is the parameter we care about (weights, thresholds, etc.) and L is the loss
function. Parameter rj is called the learning rate. This parameter determines the size of
the step we take in the way of the steepest descent in the loss function's landscape (in
the case of two parameters). [39]

Figure 3.10 shows that the choice of the learning rate value has a strong effect on
the course of the optimization and the convergence of the algorithm. If the steps are
too small, the training will be slow and the algorithm is prone to getting stuck in local
minima. On the other hand, if the value of it is too big, the algorithm may even start to
'climb up the hill ' and cause the loss function to grow. [3]

15

3.2. TRAINING OF ARTIFICIAL NEURAL NETWORKS

Loss

V < 7]opt

Loss

f] > Vopt

W

Loss

Loss

V = T)oVt

W

w

7] > 27]opt

Figure 3.10: Effect of the learning rate on optimization: the value must be chosen
carefully for the algorithm to converge. [13]

Given a multilayer perceptron with hidden layers and their parameters wmn, 9m, output
layer with outputs Om, weights and thresholds Wmn, Qm, target values tm and the M S E
loss function, the gradient descent algorithm gives the weight updates in the form [3]

5W„ -7]
dL

dWm,
(3.16)

where p is the total number of training samples, Vn is the vector of outputs of neurons
in the previous layer n for the sample /x. For clarity, one usually defines the 'weighted
error' as [3]

A£> = (*£> - O^)g'(B^) (3.17)

The update rules for hidden layers are also obtained by using chain rule, which yields [3]

p N

8Wr
(3.18)

1̂=1 i=l

while putting [3]

N
(3.19)

16

3.2. TRAINING OF ARTIFICIAL NEURAL NETWORKS

Putting all the above together yields [3]

v v
5wmn = V^6£>xM and S W m n = V J 2 A ^ V ^ (3-20)

Similarly, we get the update rule for thresholds (see [3]). In summary, the steps of
backpropagation + gradient descent are the following: [3]

Algorithm 1 Gradient descent [3]
1: Pick input pattern \x from the training set and perform forward pass
2: Compute errors A™ for output layer
3: Compute errors 5^} for hidden layers
4: Perform updates wmn = wmn + 5wmn and 9mn = 9mn + 59mn, the same for the

output layer

Stochastic gradient descent

Gradient methods are generally prone to getting stuck in local minima of the optimized
function. The way to adress this is to add a little bit of noise to the process. In stochastic
gradient descent (SGD), this is achieved by summing over smaller portions of the training
data rather than over the entire dataset. These portions of the data are called mini-
batches. [3]

In Equations 3.20 we see that in each iteration one needs to sum overall training
patterns in the set to obtain the value of the gradient. In SGD, one only sums over
randomly chosen mb patterns from the training set and then immediately performs the
weight update. The process is repeated until all training data have been used (this is called
a training epoch). In mini-batches, samples appear only once per epoch and the entire
training set is usually shuffled after each epoch. [3] Applying the above, the Equations
3.20 slightly change to [3]

mb mb

5wmn = V J 2 S ™ x n } a n d S W m n = V J 2 A ^ V ^ } (3-21)
[1=1 [1=1

Vanishing and exploding gradient problems

When we compute the weight increments using MSE, the further from the output layer we
go, the more the term g'(b) accumulates (with each next layer). The point is that M S E is
often used with the sigmoid activation functions whose derivative drops to a small number
in its area of saturation resulting in very small weight increments. This phenomenon is
known as the vanishing gradient problem [3]. Similarly, one can run into trouble when the
values of the derivative of activation function are larger than one. Then the value of the
gradients may start growing exponentially: this is called the exploding gradient problem.
[14] One of the ways to address these problems is using activation functions that do not
saturate (ReLU, Leaky ReLU, etc.). [3] [8]

17

3.2. TRAINING OF ARTIFICIAL NEURAL NETWORKS

Momentum

There are several ways to make the stochastic gradient descent algorithm perform better.
The key is to prevent it from getting stuck in local minima. Gradient methods also tend
to slow down in the areas of minima that are very shallow. The obvious solution to this
is to take bigger steps by using a larger value of the learning rate. This can, however,
make the algorithm oscillate. [3] One way to tackle this is to implement the mechanism
fittingly called momentum.

When using momentum, we can imagine that the SGD algorithm behaves like a ball
that rolls downhill and develops speed over time [10]. The resulting move made by the
algorithm in the landscape of the loss function is, therefore, a combination of the gradient
vector and the velocity vector. The update rule for weights gets modified to [3]

Swf) = Tj Try + aSwfr^ (3.22)

where t — 0,1, 2,.., n is the iteration number and Sw^ = dL/dw^ is the weight increment
in the zeroth time step. The parameter a > 0 is the momentum constant. [3]

There are other ways of implementing momentum, such as the commonly used Nes-
terov's accelerated gradient method (see [3] [7] for details). This algorithm differs from
the simple momentum by altering the steps the algorithm takes to do the final update: it
first moves in the direction of the velocity, then evaluates the gradient at that point and
corrects the previous step. It turns out that this method performs better in practice. [10]

Figure 3.11: Momentum (left) and Nesterov's Momentum (right). [3]

18

3.2. TRAINING OF ARTIFICIAL NEURAL NETWORKS

Other optimization algorithms

The algorithms below extend the idea of stochastic gradient descent by introducing var­
ious strategies of learning rate adaptation during training. In most cases, using more
advanced algorithms tends to speed up the training and usually helps finding more opti­
mal parameters in terms of the loss value.

• AdaGrad

AdaGrad is another gradient based algorithm. In the previously discussed gradient
descent, the parameters were updated with the same learning rate in every step of
the algorithm. AdaGrad adapts the learning rate based on the accumulated square
of gradients (see [10]). The problem is that it might get stuck in the saddle points
beacause the size of the steps it takes gets very small as the training goes on. [10]

• AdaDelta and RMSprop

These algorithms are an extension of AdaGrad and tackle its tendency to drop
some of the learning rates to almost infinitely small values. They were published
simultaneously but independently of one another. [6]

• Adam

Adam can be seen as a combination of RMSprop and Stochastic Gradient Descent
with momentum. It uses squared gradients to scale the learning rate like RMSprop
and it takes advantage of momentum by using a moving average of the gradient
instead of the gradient itself like SGD with momentum. [15] [6]

Figure 3.12: Comparison of different optimization algorithms. [6]

19

3.2. TRAINING OF ARTIFICIAL NEURAL NETWORKS

3.2.3. Improving training performance
Initialization of weights and thresholds

The standard approach is to initialise the weights to independent Gaussian random num­
bers with mean zero and unit variance and to set the thresholds to zero. But in networks
that have large hidden layers with many neurons, this scheme may fail. This is because
the variance of weights is not taken care of, which leads to very large (or small) activation
values, resulting in exploding (or vanishing) gradient problem during backpropagation.
[3] Here are some of the more advanced initialization methods: [9]

• Xavier initialization

Xavier initialization sets the layer's weights to values from the Gaussian distribu­
tion. The mean and standard deviation are determined by the number of incoming
and outcoming network connections to the layer. These random numbers are then
divided by the square root of the number of incoming connections. This method
works well with the tangent and sigmoid activation functions but fails when using

• M S R A initialization

This method differs from Xavier only in its use of a different factor to scale the
Gaussian distributed numbers. It turns out that this small change works much
better when using ReLU activation function.

Overfitting and regularisation

"A network with more neurons may classify the training data better because it accurately
represents all specific features of the data. But those specific properties could look quite
different in new data. As a consequence, we must look for a compromise between the
accurate classification of the training set and the ability of the network to generalise. This
problem is called overfitting: the network fits too fine details that have no general meaning."
[3] The terms below are referred to as the L I and L2 regularisations. Adding these terms
to the loss function prevents the weight from growing (weight decay). Parameter 7 is
called weight decay factor. When the value of the weights gets very high, the local fileds
of the neurons become very large too. In that case, some activation functions, like the
sigmoid function or tanh, reach their maxima very quickly which causes the vanishing
gradient problem. The formulas for L I and L2 regularisations are: [3]

" These two regularisation schemes tend to help against overfitting. (...) Weight decay
adds a constraint to the problem of minimising the energy function. When the weights
are small, then small changes in some of the patterns do not give a substantially different
training result. When the network has large weights, by contrast, it may happen that small
changes in the input give significant differences in the training result that are difficult to
generalise." [3]

ReLUs.

or (3.23)

20

3.2. TRAINING OF ARTIFICIAL NEURAL NETWORKS

Batch normalisation

The idea of batch normalisation is to shift and normalise the input data for each hidden
layer so that the distribution of its inputs becomes Gaussian. The values of mean and
variance are computed during each forward pass (pass of a single mini-batch) and then
applied to each neuron in the layer. The mean and variance are multiplied by trainable
factors, usually called ^,7. [9] [3] When the training is done, the values of ,9,7 for each
layer are re-computed using the mean and variance of the entire training dataset and no
longer change. [16]

"Batch normalisation helps to combat the vanishing-gradient problem because it pre­
vents local fields of hidden neurons to grow. This makes it possible to use sigmoid functions
in deep networks, because the distribution of inputs remains normalised. (...) It is an
empirical fact that batch normalisation often speeds up the training." [3]

Dropout

Dropout is a very simple scheme that helps against overfitting. During training, a random
portion of neurons in the network is ignored for each input pattern/mini-batch with the
probability of p. This can be thought of as making the network adapt to the sparsity
of the remaining neurons and making their effect on the output spread equally over the
network. Another interpretation is that we are training different net architectures at
the same time. When the training is done, the output of each neuron is multiplied by
the probability p of a neuron being dropped out during training (this dropout scheme is
known as weight averaging [25]). [3] [10]

Figure 3.13: A N N without (left) and with dropout (right). [17]

Data augmentation

The general rule is that the bigger the training dataset, the better the network generalises.
However, expanding a dataset manually can be very expensive. This leads to the idea
of expanding it artificially. In image classification tasks, this can be done by randomly
cropping, scaling, shifting and mirroring the data. [3]

Early stopping

" One way of avoiding overfitting is to use cross validation and early stopping. One splits
the training data into two sets: a training set and a validation set. (...) The network
is trained on the training set. During training, one monitors not only the energy function
for the training set, but also the energy function evaluated on the validation data. As
long as the network learns general features of the input distribution, both training and

21

3.2. TRAINING OF ARTIFICIAL NEURAL NETWORKS

validation energies decrease. But when the network starts to learn specific features of the
training set, then the validation energy saturates, or may start to increase. At this point
the training should be stopped." [3]

When the training is done, the performance is measured using a set of 'unseen' data:
the test set. [3]

early stopping

I validation set

training set
iterations

Figure 3.14: Progress of training and validation losses. The plot is schematic, and the
data is smoothed. The training is stopped when the validation energy begins to increase.
[3]

Transfer learning

To create a well-generalising neural network, one need to have access to a dataset of a
sufficient size. Therefore in practice, it is unusual to train an entire C N N from scratch
(with random initialization). Instead, it is common to pretrain a C N N on a very large
dataset (e.g. ImageNet) and then use the C N N either as an initialization or a fixed feature
extractor for the task of interest. [10]

One strategy here is to fine-tune the weights of the pretrained network by continuing
backpropagation. It is possible to keep some of the earlier layers fixed and only fine-tune
some higher-level portion of the network. This is motivated by the observation that the
earlier features of a C N N contain more generic features (e.g. edge detectors) and the later
layers become progressively focused on the details. It is common to use a smaller learning
rate for C N N weights that are being fine-tuned, in comparison to the randomly-initialized
weights. This is because we expect that the C N N weights already perform well and hence
distorting them is not desirable. [10] [7]

Data pre-processing

For most cases, it is advisable to shift the data so it has a zero mean before the training
begins. When classifying images, for example, there are two ways of doing this: first, by
subtracting the mean image (image of size MxNx3 for RGB) from the entire dataset or, to
subtract the so-called per-channel mean (three numbers in total). The motivation behind
this is the following: if we think of adjusting the weights in the network as moving the
decision boundary (Figure 3.8 (left)), it is intuitive that the data which is not distributed
around the origin will cause the classification success to get very sensitive to weight
changes.2 [8] Sometimes it is also appropriate to scale the data so it has the same variance
in all directions. See [3] for more details and other techniques.

2Weights in Figure 3.8 are the parameters that determine the slope of the decision boundary

22

3.3. CONVOLUTIONAL NEURAL NETWORKS

3.3. Convolutional neural networks
Convolutional Neural Networks (CNNs) are specifically designed to classify images. The
biggest advantage they have in comparison to perceptrons is that they have fewer param­
eters. The number of inputs to the network for R G B images requires very large number
of weights between the inputs and other layers. Reducing the number of neurons also
regularises the network and reduces the risk of overfitting [3]. CNNs are trained with
backpropagation as well as perceptrons.

The fundamental blocks for learning regular A N N still apply here. CNNs are composed of
McCulloch-Pitts neurons with activation functions. C N N architectures make the explicit
assumption that the inputs are images (usually of the size MxNx3 for RGB) . Typical
C N N architecture consists of layers that, in addition to the already presented principles,
allow it to exploit the spatial and colour information encoded in the image. [7] In CNNs,
it's common to divide up the operations the neuron performs into separate layers (for
instance, applying activation function is implemented as an 'activation layer').

Convolution layers

The weights in CNNs can be interpreted as learnable filters. Each of these filters is learnt
to extract different features from the input image. Inputs of the convolutional layers in
C N N are three-dimensional tensors. The result of the convolution operation (which is
extended to the full depth of the input tensor) for a specific filter is an activation map:
a two-dimensional representation of the locations of the specific feature in the image. In
the very first layers of the network, the filters extract simple features such as corners,
curves, edges of certain orientation, etc. When the input image is R G B , the filters in the
first layer have the dimensions of MxMx3, where M is a small number (typically 3, 5, 7,
etc.). As we go deeper into the network's layers, the filters are looking for more complex
features. The number of filters per layer, the stride of the convolution operation, and
the size of the filters are subject to different network architectures. When all filters are
applied to the input tensor of the convolutional layer, their activation maps are stacked
onto each other and become the input tensor for other layers. [7]

Figure 3.15: The full-depth convolution operation in a convolutional layer. The input
size corresponds to a small R G B image. The result of the series of convolutions is a tensor
of stacked activation maps for the filters used in the layer. [13]

3.3.1. C N N layer types

3 96

23

3.3. CONVOLUTIONAL NEURAL NETWORKS

Pooling layers

The function of pooling layers is to reduce the size of the layers in the network. Pooling
operation performs downsampling of the data encoded in the layers while retaining the
spatial information about the locations of the detected features. Pooling can be inter­
preted as summarizing a small area of pixels to a single pixel based on a certain criterion.
The most commonly used criterion is replacing a small pixel group by one with a maxi­
mum value. This is referred to as max-pooling. Similarly to conv layers, the size of the
pooled sub-regions and the stride of the pooling operation are subject to the network
architecture. [3]

Max-pooling layers have no trainable parameters. Sometimes it is necessary to keep
track of the original locations of the maximum elements. [25]

0 5 -6 3

-1 3 1 2

4 1 0 -4

1 7 -1 1

Max-pooling

Figure 3.16: Max-pooling of size 2x2 and stride 2. [13]

Fully connected layers (FCN)

CNNs were originally designed for image classification, where one classifies the entire im­
age. The structure of these networks consists of a series of conv layers followed by pool
layers. When the input is downsampled (pooled) to a certain level, the output tensor is
flattened and becomes an input to a multilayer perceptron (FCN - fully connected net­
work). The role of the convolutional part here is to create a downsampled representation
of the features in the image. The perceptron then learns to classify this feature vector
into the desired number of classes. [7] [39]

Figure 3.17: Schematic of the standard C N N topology for image classification. [3]

24

3.3. CONVOLUTIONAL NEURAL NETWORKS

3.3.2. Examples of C N N architectures
Various C N N architectures have been introduced, each having a different number of con­
volution layers, size of the filters, strides taken by the filters during convolution, etc.
In practice, one rarely designs a C N N from scratch; instead, it is advisable to choose
the currently best-performing network; usually one that performs best on the ImageNet
challenge. [7] Here is a summary of milestone architectures presented in recent years:

• AlexNet

The first work that popularized CNNs in computer vision was AlexNet [18]. The
network had very similar architecture to LeNet [19], but was deeper, bigger, and
featured convolutional layers stacked on top of each other (previously it was common
to only have a single conv layer which was always immediately followed by a pool
layer). [7]

• GoogLeNet

The ILSVRC 2014 winner was a convolutional network from Google [20]. Its main
contribution was dramatically reducing the number of parameters in the network
compared to AlexNet. [7]

. VGGNet

The runner-up in ILSVRC 2014 was the network from Karen Simonyan and Andrew
Zisserman that became known as the VGGNet [21]. Its main contribution was in
showing that the depth of the network is a critical component for good performance.
Their final best network contains 16 conv/FC layers and, appealingly, features an
extremely homogeneous architecture that only performs 3x3 convolutions and 2x2
pooling from the beginning to the end. [7]

• ResNet

Residual network developed by Kaiming He et al. [22] was the winner of ILSVRC
2015. It features special skip connections and a heavy use of batch normalisation.
[7]

25

3.4. SEMANTIC SEGMENTATION

3.4. Semantic segmentation
This section presents the most successful methods involving neural networks and super­
vised learning. In semantic segmentation, one assigns a class to each pixel of an input
image, unlike in the classification task, where one classifies the entire image.

Segmentation has always been one of the most fundamental areas of computer vision.
The classic approaches are mostly based on the standard signal processing theory and some
of them can still be implemented and give satisfactory results. However, this applies only
to a limited number of use cases, where the conditions are very close to ideal and where
the robustness of the algorithm is not crucial. To give an example of classic methods,
one can refer to Thresholding, Region Growing and Mean-Shift segmentation [23]. More
advanced methods which use machine learning classification have also been introduced,
such as TextonBoost, TextonForest and Random Forest [25] [24]. These algorithms have
fallen out of favour due to the massive success of A N N .

3.4.1. Encoder-decoder architecture
In the previous chapter, C N N architectures designed for image classification were pre­
sented. The size of the output layer of these networks is determined by the number of
categories of classification because the C N N transfers to an F C N in the end. In semantic
segmentation, however, one needs to get an image of the same resolution as the input
image containing the information about a class of every pixel. To do this, the common
scheme is introduced: the first part of the network is left unchanged but now, instead
of the transition to F C N , various methods are implemented to upsample the encoded
image features from the deepest layer of the C N N . This scheme is referred to as the
encoder-decoder architecture. [12]

Convolutional Encoder-Decoder

Figure 3.18: SegNet - an example of encoder-decoder C N N architecture. [25]

The purpose of the encoder is to downsample the input images while still representing
their significant features. The decoder part of the algorithm then upsamples the output
of the encoder to the original input image size. This is usually done by performing reverse
operations to max-pooling and convolution. The last part of the decoder typically gives
the final segmented image.

26

3.4. SEMANTIC SEGMENTATION

Shortly after the success of C N N in image classification challenges, there have been
several segmentation architectures introduced which use C N N as the encoder. Some of
the state-of-the-art architectures were, for instance, F C N , DeconvNet and U-Net (see
[25]). These networks share the idea of having C N N incorporated as the encoder but
differ in the form of the decoder part. However, the problem of training such networks
due to a large number of trainable parameters, the design of the decoder and hence the
need of introducing the cumbersome multi-stage training made them very difficult to use
in practice. SegNet [25], introduced in 2015, differs from these architectures as it has a
significantly lower number of parameters and the design of the encoder-decoder network
allows it to be trained via standard method using backpropagation and SGD. [25]

Input upsampling

The upsampling in the decoding part of the network is done via two mechanisms: learnable
transposed convolution and unpooling.

Transposed convolution, just like the standard convolution used in CNNs, uses learn­
able filters. The difference is that it takes a single input point instead of a region, uses
it to multiply each element of the filter and creates its imprint in the output layer. This
scheme is illustrated in Figure 3.19 (left). [12]

Figure 3.19: Transposed convolution. [37]

There are several ways to impelement unpooling. In an encoder-decoder architecture,
the corresponding layers in the encoder and decoder can, for example, share the original
locations of the elements that were pooled in the encoding part. The decoder then uses
these indices for upsampling, as shown in Figure 3.19 (right). This reconstructs the
original positions of the features in the original image. Unpooling operation does not
have any learnable parameters. [25] [12]

27

3.4. SEMANTIC SEGMENTATION

Max-unpooling
•

0 0 0 0

0 1 0 2

0 0 -1 0

5 0 0 0

Figure 3.20: Max-unpooling. The locations of the maximum elements were saved during
max-pooling. The remaining elements are set to zero.

3.4.2. SegNet
SegNet is a deep encoder-decoder architecture for multi-class semantic segmentation re­
searched and developed by members of the Computer Vision and Robotics Group at the
University of Cambridge. [26]

The architecture consists of a sequence of encoders and a corresponding set of decoders
followed by a pixel-wise softmax classifier. Typically, each encoder consists of one or
more convolutional layers with batch normalisation and a ReLU non-linearity, followed
by max-pooling. SegNet uses max-pooling indices in the decoders to perform upsampling
of low-resolution activation maps (Figure 3.18). The entire architecture can be trained
using SGD. [26]

SegNet - encoder

The architecture of the encoder network is topologically identical to the 13 convolutional
layers in the VGG16 network. Each encoder in the encoder network performs convolution
with a filter bank to produce a set of activation maps. These are then batch normalised.
Then an element-wise ReLU is applied. Following that, max-pooling (with a 2x2 window
and stride 2) is performed. Storing the max-pooling indices, i.e, the locations of the
maximum feature value in each pooling window is memorised for each encoder feature
map. [25]

SegNet - decoder

The decoders in the network upsample their input feature maps using the memorised
max-pooling indices from the corresponding encoder feature maps. These feature maps
are then convolved (using transposed convolution) with a trainable decoder filter bank to
produce dense feature maps. A batch normalization step is then applied to each of these
maps. The high dimensional feature representation at the output of the final decoder is
fed to a trainable softmax classifier. The predicted segmentation corresponds to the class
with maximum probability at each pixel. [25] The schematic of the SegNet architecture
can be found in Attachment 1.

28

3.4. SEMANTIC SEGMENTATION

3.4.3. Bayesian SegNet
Bayesian SegNet is a probabilistic variant of SegNet. It can predict pixel-wise class labels
together with a measure of model uncertainty. This is achieved by Monte Carlo sampling
with dropout at test time. The authors of the paper show that modeling uncertainty
improves segmentation performance by 2-3 % compared to SegNet. The schematic of the
Bayesian SegNet architecture can be found in Attachment 1. [24]

Monte Carlo Dropout

Monte Carlo Dropout (MCDO) sampling helps us understand the model uncertainty
of the result. As explained in Chapter 3.2.3, the standard weight averaging dropout
proposes to remove dropout at test time and scale the weights proportionally to the
dropout percentage. M C D O , on the other hand, samples the network with randomly
dropped out units at test time. [24]

It is important to highlight that the probability distribution from M C D O sampling
is significantly different from the 'probabilities' obtained from a softmax classifier. The
softmax function approximates relative probabilities between the class labels, but not an
overall measure of the model's uncertainty. [24]

3.4.4. Evaluating segmentation performance
The performance of semantic segmentation is often described by so called IoU (intercestion
over union) metrics. IoU is the area of overlap between the predicted segmentation and
the ground truth divided by the area of union between the predicted segmentation and
the ground truth, as shown in the figure below. This metric ranges from 0-1 (0-100%)
with 0 signifying no overlap and 1 signifying perfectly overlapping segmentation. [29]

Figure 3.21: Intersection over union. [29]

29

4. Implementation and Method
In this chapter, the original Caffe implementation of SegNet and Bayesian SegNet

with their simplified versions SegNet Basic and Bayesian SegNet Basic will be tested on
a custom dataset. Part of this will be evaluating the effect of various hyperparameters
on training. This chapter will also give instructions on how to set up the software and
hardware environments for running Caffe library for A N N . The entire network architecture
and other code used in this section are available at [30] and [34].

4.1. C P U vs. G P U for training A N N
Central processing unit (CPU) is the main computational unit of a computer and is
designed to perform a wide variety of complex instructions. Current CPUs usually have 4
to 8 separate cores, which allow them to run several tasks in parallel. Graphics processing
unit (GPU), on the other hand, was originally designed for rendering computer graphics
only. C P U has a much lower number of cores, but these run at a high frequency and are
very capable in terms of the instructions they perform. Therefore, CPUs are great for
sequential tasks. G P U comprises of a large number of 'simple' cores which makes it more
suitable for computing parallel tasks. [11]

The main part of the computations in A N N is matrix multiplication where G P U has
the power of performing these operations by parts in parallel and speeds up the training
significantly. [11]

There are libraries such as C U D A and OpenCL that allow programmers to write their
code in a usual manner and run it directly on a G P U . For the purposes of A N N , NVIDIA
has also developed a library of the most commonly used C U D A primitives named cuDNN.
[11]

A C P U does not have its own memory resources (apart from very small memory
sections called caches) and only has access to the system's R A M . External GPUs always
come with their own block of R A M on the chip. The size of the R A M for the top-end
GPUs ranges from 8 to 12 GB. When using GPUs to train A N N , the size of the R A M is
crucial because the model with all its parameters resides in this memory.

Tensor cores

Tensor Core is a special G P U feature offered by NVIDIA cards. It enables mixed-precision
computing by dynamically adapting calculations to accelerate throughput while preserv­
ing accuracy. The latest generation expands these speedups to a full range of work­
loads. From lOx speedups in AI training with float32 data type, to 2.5x boosts for
high-performance computing with float64. [31]

30

4.2. LIBRARIES FOR ANN

4.2. Libraries for A N N
As the architecture and training of A N N are getting more complex, it is very helpful to
use programming tools with higher abstraction for their design. There are libraries such
as Caffe, TensorFlow, and PyTorch for this. The common idea of these libraries is to make
an abstraction of the network's architecture called computational graph. Therefore, the
user can think of designing and training the network separately by applying an optimizer
to the computational graph that represents the network's layers. [11]

4.2.1. Caffe
Caffe is a deep learning library made with expression, speed, and modularity in mind.
It has been developed by Berkeley AI Research (BAIR) and by community contributors.
[33] The main difference between this and other libraries is that the user often does not
need to write any code at all. The architecture of the network (the computational graph)
is described in a .prototxt file where one creates the layers of the network in the desired
order. Also, rather than having an optimizer object (in Tensorflow for example), one
creates another .prototxt file that contains parameters such as the optimizer type (SGD,
Adam, etc.), learning rate, momentum constant and others. After both of these files are
created, the user runs Caffe computation from the command line. The library is written
in C++ and the pre-built binaries are executed when the computation starts. [11]

Caffe comes with bindings for Python (CPW - Caffe Python wrapper, or pycaffe) and
Matlab, which is very useful for the inference phase. The biggest downside of Caffe and
C P W is that they are very poorly documented.

Q> ^W* / ^ C o g n i t i v e Caffe ^ C h X r 3>Ea«
Caffe2 ^ n a i n e r ^ MATLAB

<2>xnet I 44 PaddlePaddle P Y T O R C H
TensorFlow

Figure 4.1: Examples of the best deep learning frameworks. [32]

31

4.3. SETTING UP ENVIRONMENT FOR CAFFE

4 . 3 . Setting up environment for Caffe

4.3.1. Hardware configuration
The G P U used for the computations has been selected according to the most up-to-date
benchmarks and recommendations found online. When choosing a G P U in general, one
needs to decide between A M D and NVIDIA chips. For A N N however, NVIDIA is the
default choice because it's way more 'ANN-friendly' as it offers more features specifically
designed for A N N computations.

It's advisable to use an SSD in the training PC, because the data flow begins with
reading the training data (images) from a storage, in this case from the computer's hard
drive. Another possibility that some libraries offer is moving the training data into R A M
before the training is initiated. Figure 4.2 shows the G P U used for training SegNet.

v

Figure 4.2: G I G A B Y T E GeForce R T X 2060 S U P E R AORUS 8G. [38]

32

4.3. SETTING UP ENVIRONMENT FOR CAFFE

4.3.2. Software configuration
Operating system

The standard platform for running Caffe is Ubuntu, which is a Linux distribution from
Cannonical based on Debian. The environment used was Ubuntu 18.04 LTS 64 bit.
It is important to let the Ubuntu installer download the latest updates, or, after the
installation, invoke the update command to ensure that the most up-to-date packages
will be installed. For this, one can call:

$ sudo apt update
$ sudo apt upgrade

Enabling NVIDIA driver

Ubuntu 18.04 enables the default Nouveau graphics driver after the installation. Before
taking other steps, it is vital to disable the Nouveau driver and use the NVIDIA driver
instead. This is done by navigating to Application menu -> Software & Updates -> Addi­
tional drivers -> Using NVIDIA driver metapackage from nvidia-driver-XYZ (proprietary,
tested) -> Apply changes. The driver version used was nvidia-driver-440.

C U D A installation

C U D A version is determined by the version of cuDNN compatible with the used Caffe
version, which is cuDNN 5.1 in our case. The corresponding C U D A version is C U D A 8.0.
On Ubuntu 18.04, the procedure is as follows: [32]

• Download C U D A 8.0 runfile. Go to C U D A Legacy Releases and look for CUDA
Toolkit 8.0 GA2 (Feb 2017). The standard .deb installer supports only Ubuntu 16.04
LTS. Therefore, the installation must be performed via the runfile method. Navigate
to Linux -> x86_64 -> Ubuntu -> 16.04 -> runfile (local) -> Base installer. Also,
download the Patch file.

• Perform the runfile installation of C U D A . Open the Ubuntu Terminal and
run: [32]

$ cd /path/to/cuda_8.0.61_375.26_linux.run # Navigates to a fol d e r
with CUDA

$ sudo chmod a+x cuda* # Makes cuda*.run executable
$./cuda*.run — t a r mxvf # Unpacks the . r u n f i l e content
$ sudo cp I n s t a l l U t i l s . p m /usr/lib/x86_64-linux-gnu/perl-base # Copy

one of the extracted f i l e s to perl-base
$ sudo sh cuda_8.0.61_375.26_linux.run — o v e r r i d e # Start the

i n s t a l l a t i o n
The lic e n c e agreement
$ accept
You are attempting to i n s t a l l on an unsupported configuration. Do

you wish to continue?
$ yes

33

4.3. SETTING UP ENVIRONMENT FOR CAFFE

I n s t a l l NVIDIA Accelerated Graphics Driver f o r Linux-x86_64
375.26?

$ no
I n s t a l l the CUDA 8.0 Tool k i t ?
$ yes
$ <press enter> (leave deafult location)
Do you want to i n s t a l l a symbolic l i n k at /usr/local/cuda?
$ yes
I n s t a l l the CUDA 8.0 Samples?
$ no

After the installation is done, ignore the ***WARNING: Incomplete installation!
statement, because the NVIDIA driver is already installed.
Now run the C U D A 8.0 Patch 2 installation in a similar fashion:

$ sudo sh cuda_8.0.61.2_linux.run

• Perform the post-installation actions. The system needs to know the location
of C U D A executables. The usual way is to set the " P A T H " variables in the current
session of the Ubuntu Terminal. However, it is useful to add these permanently to
system's -/.bashrc file: [32]

$ sudo gedit -/.bashrc # Opens the .bashrc f i l e i n text editor

In the text editor, append the following two statements to the end of the file:

export PATH=/usr/local/cuda-8.0/bin${PATH:+:${PATH»
export LD_LIBRARY_PATH=/usr/local/cuda-8.0/lib64\

${LD_LIBRARY_PATH:+:${LD_LIBRARY_PATH»

From this point on, all newly opened Terminal sessions should have the paths set
correctly.

Installation of cuDNN

The NVIDIA C U D A Deep Neural Network library (cuDNN) is a GPU-accelerated library
of primitives for deep neural networks. It provides highly tuned implementations for
standard routines such as forward and backward convolution, pooling, normalization,
and activation layers. [32]

• Download cuDNN 5.1 for C U D A 8.0. To get the corresponding cuDNN ver­
sion for Caffe and C U D A 8.0, go to cuDNN Archive (requires login) and look for
Download cuDNN v5.1 (Jan 20, 2017), for CUDA 8.0 -> cuDNN v5.1 Library for
Linux. Extract the archive, navigate to the extracted folder and copy the files to
the C U D A 8.0 installation folder: [32]

34

4.3. SETTING UP ENVIRONMENT FOR CAFFE

$ t a r -xf cudim-8.0-linux-x64-v5.1.tgz
$ cd cuda
$ sudo cp -a include/cudnn.h /usr/local/cuda/include/
$ sudo cp -a lib64/libcudnn* /usr/local/cuda/lib64/

Setting up Python editor

The scripts for evaluating SegNet performace are written in Python. It is advisable to use
Pycharm Community Edition as an editor, because it offers a very convenient combination
of GUI and the standard command line environment.

It is good practice to use Python Virtual Environment to easily maintain the required
packages and to make the project transferable to another Linux P C . In Pycharm, one
can do this in an active Pycharm project by navigating to File -> Settings -> Project
-> Project Interpreter -> <wheel icon on the right> -> Add. The standard choice is the
Virtualenv Environment. The Base interpreter location on a fresh Ubuntu installation is
/usr/bin/python3.6. When we click OK, Pycharm creates a venv folder at the specified
location that includes all package files we install.

When the virtualenv is configured properly, it will automatically activate when we
enter the Ubuntu Terminal session by clicking on the Terminal button located at the
bottom bar of Pycharm window. From this Terminal, we will be launching all SegNet
scripts and use it to install the required packages by calling:

(venv) user@user:/current/path$ pip3 i n s t a l l <package-name>

4.3.3. Building Caffe for SegNet
Caffe is an open-source library. The authors of the SegNet created a slightly modified
version of Caffe called caffe-segnet that supports special SegNet layer types [upsample,
bn, dense_image_data and softmax_with_loss (with class weighting)).

In addition, since the original caffe-segnet supports just cuDNN v2, which is not
supported by newer GPUs, there is another version of caffe-segnet available at [34] that
supports cuDNN 5.1. The original author claims that it decreases the inference time by
25 % to 35 %. Therefore, this version was selected for running SegNet. From this point
on, the term 'Caffe' will be equivalent to ' caffe-segnef in the text.

35

4.3. SETTING UP ENVIRONMENT FOR CAFFE

Install Caffe dependencies. Caffe is available as a source code and needs to be
compiled on the target platform. For this, several steps need to be taken to ensure
that all libraries are available during the build: [33]

$ sudo apt i n s t a l l python3-opencv # OpenCV, version 3
$ sudo apt-get i n s t a l l libatlas-base-dev # Atl a s BLAS l i b r a r y
$ sudo apt-get i n s t a l l libprotobuf-dev libleveldb-dev libsnappy-dev

libopencv-dev l i b h d f 5 - s e r i a l - d e v protobuf-compiler
$ sudo apt-get i n s t a l l l i b b o o s t - a l l - d e v # Boost
$ sudo apt-get i n s t a l l l i b g f l a g s - d e v libgoogle-glog-dev liblmdb-dev
$ sudo apt-get i n s t a l l python3-pip
$ sudo pip3 i n s t a l l protobuf
$ sudo apt-get i n s t a l l the python3-dev

Download Caffe (caffe-segnet-cudnn5) source code. Go to [34] and clone/-
download it.

Set the bu i ld configuration file. The build is done via the make command, which
needs the Makefile.config file to be present in the parent directory (caffe-segnet-
cudnn5-master). This file contains the build options and needs to be configured
properly. Fortunately, the correct form of Makefile.config is part of this thesis and
can be found in [34].

Install gcc/gH—|- compilers. The C U D A / c u D N N libraries used during the build
are compatible only with gcc/g++ compilers of version 5. To install these, run:

$ sudo apt i n s t a l l gcc-5 g++-5
Create symbolic l i n k s so CUDA can see the proper compiler b i n a r i e s
$ sudo In -s /usr/bin/gcc-5 /usr/local/cuda/bin/gcc
$ sudo In -s /usr/bin/g++-5 /usr/local/cuda/bin/g++

Initiate the bu i ld . Once the Make file, config is located in the caffe-segnet-cudnn5-master
directory, everything should be ready for the final step. Execute these commands
to initiate and test the Caffe build (don't forget to build pycaffe (Caffe Python
wrapper)):

make a l l -j4 # s t a r t b u i l d
make t e s t -j4 # te s t b u i l d
make runtest # run Caffe and tes t i t
make pycaffe # b u i l d pycaffe

4.4. IMAGE ANNOTATION

4.4. Image annotation
In supervised learning, one needs to manually create the training data consisting of inputs
and corresponding targets (called ground truths in segmentation). There's a variety of
annotation tools available on the internet, both under commercial and free licenses.

Labelbox

Labelbox [36] is a paid online annotation tool. The best feature of Labelbox is that it
allows sharing the datasets with other users and therefore speeding up the labeling signif­
icantly. Labelbox offers free access to students to the full version. When the labeling is
finished, one exports the image/label pairs to a .JSON file. This file contains links to the
annotated images that are stored online and it is necessary to download them separately
(Labelbox is still in development, this is valid at the time of publishing). To automate
this process, one can call the download() function from utilities.py which is available in
[30].

The final train, validation and test datasets used contain 2600 + 90 + 179 images
from an outdoor environment. The location where the images were taken is the same in
all cases. However, the scenes differ in their weather conditions, daytime, type of path,
etc. The corresponding .JSON files are available at [30].

37

4.5. SETTING UP SEGNET

4.5. Setting up SegNet
Caffe implementation of A N N typically consists of four .prototxt files: train.prototxt,
solver.prototxt, test.prototxt and inference.prototxt. The train, test and inference files are
almost identical except for a few differences in the very first/last layers of the network.
The train file is used together with the solver file to train the network. The network
architecture is determined by the train file and the parameters for optimization reside
in the solver file. The test file is used by Caffe when one needs to test the network
periodically during training on a validation dataset. [33] The inference file is used for
running the trained network. The files used in this section are available at [30]

TRAINING

solver.prototxt

bn_statistics.py .caffemodel (final) inference.py (pycaffe)

Figure 4.3: Using Caffe implementation of SegNet - schematic diagram.

4.5.1. Solver settings
The solver file contains the optimization parameters. The description of the parameters
can be found in the original Caffe documentation [33]. A n example of the parameters
used can be found in the snippet below.

// Training f i l e
net: "/path/to/train.prototxt"
// Caffe GPU version
solver_mode: GPU
// Solver type
type: "AdaDelta"
// I n i t i a l learning r a t e , changes according to l r _ p o l i c y
base_lr: 0.061
// Determines how the learning rate changes during t r a i n i n g
l r _ p o l i c y : " f i x e d "
// Show loss and accuracy every 'display' i t e r a t i o n s
display: 130

38

4.5. SETTING UP SEGNET

1/ Max number of i t e r a t i o n . One i t e r a t i o n = a pass of one mini batch
max_iter: 3000
// Weight decay facto r
weight_decay: 0.0005
// Saves the weights a f t e r 'snapshot' i t e r a t i o n s
snapshot: 1000000
snapshot_prefix: "/path/to/snap"

Listing 4.1: Contents of solver.prototxt [30]

4.5.2. Training
Input layer and input pre-processing

The train file begins with the DenselmageData layer. This layer specifies the size of the
mini-batch. The value is limited by the amount of memory that the G P U offers. When
a larger size of the mini batch is needed, Caffe can specify the iter_size parameter in the
solver file. The total mini-batch size in Caffe is always a result of iter_size • batch_size.
By default, the value of iter_size is set to 1. [33]

The shuffle parameter in the DenselmageData layer determines whether the training
dataset is shuffled after each epoch. This is usually desirable as it helps the optimization
algorithm by adding more stochasticity to the computation. The mirror parameter applies
random mirrors to the input data and hence augments the dataset. If one needs to apply
more complex data augmentation techniques, it is necessary to perform them separately
and feed the DenselmageData layer with already processed images. [33]

name: "segnet_train"
layer {
name: "data"
type: "DenselmageData"
top: "data"
top: " l a b e l "
dense_image_data_param {

source: "/path/to/train_image_paths.txt"
batch_size: 4
shu f f l e : true
mirror: true
}

// Per-channel mean
transform_param {

mean_value: 129 // B component
mean_value: 126 // G
mean_value: 126 // R
>

}

Listing 4.2: Input layer in train.prototxt [30]

39

4.5. SETTING UP SEGNET

Images and labels are loaded as .jpg and .png files directly from the hard drive (there
are more methods that Caffe offers, see [33]). The path to the image_paths.txt file that
contains the image/label paths in the following format

/path/to/image.jpg /path/to/label.png

is entered as the source parameter of the DenselmageData layer. This file is generated
using the make_txt() function from utilities.py. The script will also make separate direc­
tories for training, testing and validation datasets by calling make_dirs().

The method used for the mean subtraction was the per-channel mean. The per_chan-
nel_mean function in utilities.py calculates the mean values for R, G and B components
of the images in the training set. These three numbers are then placed into the Denselm­
ageData layer in B G R order.

Output dimensions

In the original version, SegNet has 11 segmentation classes. This corresponds to the pixel
values in the .png label files starting from zero. For instance, the segmentation mask for
the class number 1 has a pixel value of 0 in the label file, etc. However, the goal of this
thesis is to set the network to segment only two classes - path, background. To change the
size of the output classifier, it is necessary to change the output dimensions of the last
conv layer:

// The l a s t conv layer i n the network
layer {

bottom: "convl_2_D"
top: "convl_l_D"
name: "convl_l_D"
type: "Convolution"

convolution_param {

num_output: 2 // Set t h i s to the number of classes
pad: 1
ker n e l _ s i z e : 3

}

}

Listing 4.3: Setting number of outputs in train.prototxt [30]

40

4.5. SETTING UP SEGNET

Softmax classifier

" When there is large variation in the number of pixels in each class in the training set (e.g
road, sky and building pixels dominate the CamVid dataset) then there is a need to weight
the loss differently based on the true class. This is termed class balancing. We use median
frequency balancing [13] where the weight assigned to a class in the loss function is the
ratio of the median of class frequencies computed on the entire training set divided by the
class frequency. This implies that larger classes in the training set have a weight smaller
than 1 and the weights of the smallest classes are the highest. We also experimented
with training the different variants without class balancing or equivalently using natural
frequency balancing." [25]

// The softmax c l a s s i f i e r with cross-entropy loss
layer {

name: "loss "
type: "SoftmaxWithLoss"
bottom: "convl_l_D"
bottom: " l a b e l "
top: "lo s s "
softmax_param {engine: CAFFE}
loss_param: {

weight_by_label_freqs: f a l s e
}

}

layer {
name: "accuracy"
type: "Accuracy"
bottom: "convl_l_D"
bottom: " l a b e l "
top: "accuracy"
top: "per_class_accuracy"

}

Listing 4.4: Output layers of train.prototxt [30]

SegNet uses the cross-entropy loss as the loss function for training the network. In
Caffe, median frequency balancing is available via the weight_by_label_Jreqs parameter of
the SoftmaxWithLoss layer. Since the dataset used has only two classes whose occurrences
can be considered balanced, this option is set to false.

Training initialization

Training the network from scratch is initiated by entering these commands:

Navigate to the caffe-segnet f o l d e r
$ cd /path/to/caffe-segnet/build/tools/
I n i t i a t e t r a i n i n g from scratch
$./caffe t r a i n -solver /path/to/segnet_solver.prototxt
or resume t r a i n i n g from a solver checkpoint (snapshot)
$./caffe t r a i n -solver /path/to/segnet_solver.prototxt -snapshot

/path/to/snapshot_iter_XY.solverstate

41

4.5. SETTING UP SEGNET

The encoder and decoder weights are initialized using the M S R A method by default.
Another scenario is when we want to use transfer learning (see Caffe Model Zoo in [33]
where people share their weights and networks). In this case, Caffe needs a path to the
.caffemodel file of the pre-trained network. The corresponding command would be:

$./caffe t r a i n -solver /path/to/solver.prototxt -weights
/path/to/pre_trained_weights.caffemodel

There are multiple ways of tuning the pre-trained model when using transfer learning.
For instance, one can experiment with the learning rate of the pre-trained weights: they
can either stay unchanged (zero learning rate) or the learning rate applied to them is
lower than the global value used in other layers. [7] In encoder-decoder architecture, one
usually applies transfer learning only to the encoder network as it has no other purpose
than extracting general features from the image. The corresponding setting in the train
file is the set of lr_mult parameters by which the learning rate for the layer is multiplied.
A n example of setting a Caffe layer where that layer stays unchanged can be found in the
snippet below.

layer {
bottom: "data"
top: " c o n v l _ l "
name: " c o n v l _ l "
type: "Convolution"
// Learning rate f a c t o r - weights
param {

lr_ m u l t : 0 // Zero value corresponds to fre e z i n g t h i s parameter
decay_mult: 0 // Zero value corresponds to fre e z i n g t h i s parameter

}

// Learning rate f a c t o r - thresholds
param {

lr_ m u l t : 0 // Zero value corresponds to fre e z i n g t h i s parameter
decay_mult: 0 // Zero o r i g i n a l l y , remains unchanged

}

>

Listing 4.5: Setting up train.prototxt for transfer learning [30]

42

4.5. SETTING UP SEGNET

4.5.3. Inference
The network is ready to be deployed in this phase. At this point, it is very convenient
to use pycaffe for running the model by feeding it with input data and calculating the
segmentation accuracy. To run the segmentation, several preparation steps must be taken
first.

Calculating statistics for batch normalisation

The batch normalisation layers in SegNet shift the input feature maps according to their
mean and variance statistics for each mini- batch during training [3]. At inference time,
we must use the statistics for the entire dataset and obtain the final .caffemodel for the
inference phase. [28] We do this by calling compute_bn_statistics.py which is meant to
be run from the command line and needs to get command-line parameters. In PyCharm,
we need to switch to Virtual Environment (venv) by opening Terminal and call:

(venv) userOuser:/path/to/Scripts$ python3 original_compute_bn_statistics.py
/path/to/train.prototxt /path/to/snap_iter_XY.caffemodel
/path/to/inference_folder

The network architecture for the inference is now in the inference file and the same
is in the train file apart from the input and output layers and the settings of the batch
normalisation layers. The snippet below shows the changes of the output: the loss function
is no longer computed and the only output we care about is the set of softmax probabilities.
The DenselmageData layer is also skipped, because the data will be provided via pycaffe.
Part of this is switching all batch normalisation layers to the I N F E R E N C E mode. [16]

The script takes the desired .caffemodel file specified in snap_iter_XY. caff emodel.
calculates new 7, f3 parameters for the batch normalisation layers and saves everything
to final_weights. caff emodel. The new .caffemodel file is now stored in the specified infer-
ence_folder. [16]

// Inference, input layer
name: "segnet_inference"
input: "data"
input_dim: 1 // Always 1 f o r SegNet
input_dim: 3
input_dim: 360
input_dim: 480

Listing 4.6: Replacing input layer type in inf erence.prototxt [30]

Running the segmentation

The script segnet_inference.py is used for running the segmentation. One must provide
the network with images either by specifying a path to a video file or by specifying a
sequence of image names to look for in the image folder (this is a standard OpenCV
convention). In each step of the algorithm, we must subtract the per-channel mean from
the input image that is being processed. This is part of the script and one only needs to
provide the B G R values used at train time.

43

4.5. SETTING UP SEGNET

Once an appropriate test set of images is ready, the segmentation is started by calling:

(venv) user@user:/path/to/Scripts$ python3 segnet_inference.py
/path/to/inference.prototxt /path/to/final_weights.caffemodel
/ p a t h / t o / v i d e o f i l e . a v i

4.5.4. Testing
The test file is used only for calculating the loss of the validation dataset. It is very similar
to the train file: it has a DenselmageData layer with a path to the validation dataset,
mirror and shuffle parameters set to false, batch_size to 1 and the SoftmaxWithLoss
followed by Accuracy layers as the output. The subtraction of the per-channel mean is
still present and the values computed from the training dataset are the same as in the
training phase.

For testing, it is necessary to use the .caffemodel file generated by compute_bn_statis-
tics.py to ensure the proper function of the batch normalisation layers, which must be in
the I N F E R E N C E mode and must differ from the settings of the train file.

name: "segnet_test"
layer {

name: "data"
type: "DenselmageData"
top: "data"
top: " l a b e l "
dense_image_data_param {

source: "/media/phil/SegNet/data/custom/val_linux.txt"
batch_size: 1 // Always 1 f o r SegNet

}

// Per-channel mean, BGR
transform_param {

mean_value: 129
mean_value: 126
mean_value: 126

>

Listing 4.7: Setting up the input layer of test.prototxt [30]

Testing is executed similarly as training using the command line:

Navigate to the caffe-segnet f o l d e r
$ cd /path/to/caffe-segnet/build/tools/
I n i t i a t e t e s t i n g
$./caffe t r a i n -model /path/to/segnet_test.prototxt -weights

/path/to/final_weights.caffemodel

44

4.5. SETTING UP SEGNET

4.5.5. Bayesian SegNet
Since Bayesian SegNet differs from SegNet only in terms of added dropout layers and a
different method of performing the inference the above-mentioned procedures for setting
the solver and training are also applicable. Therefore, one can start the training by using
commands from the previous section. One must also not forget to replace the paths of
the train and solver files.

The input layer in the inference file has one major difference: unlike in SegNet, the first
input_dim parameter at the top of the inference file represents the number of M C D O sam­
ples and can be adjusted. At inference time, the script passes the same image input_dim
times and simply averages the output of the network. For this reason, the dropout layers
that are inactive by default when Caffe is performing inference (TEST, in Caffe termi­
nology) must be set to active in this case. The corresponding parameter in the dropout
layer is sample_weights_test: true.

The batch normalisation layers are set to I N F E R E N C E mode. The final .caffemodel
is obtained the same way as in SegNet by calling compute_bn_statistics.py. Here, un­
like during inference time, the network's output is computed using the weight averaging
technique instead of M C D O .

layer {
bottom: " c o n v l _ l "
top: " c o n v l _ l "
name: "convl_l_bn"
type: "BN"
bn_param {

bn_mode: INFERENCE // Inference mode of t h i s batch norm, layer

}

}

layer {
name: "encdrop5"
type: "Dropout"
bottom: "pool5"
top: "pool5"
dropout_param {

dropout_ratio: 0.5
sample_weights_test: true // For Monte Carlo Dropout

}

Listing 4.8: Setting M C D O in inference.prototxt [30]

45

4.5. SETTING UP SEGNET

The setting of the test file remains the same as in SegNet: input is provided by the
DenselmageData layer, batch_size is set to 1 and the batch normalisation layers are in
I N F E R E N C E mode. The dropout layers can also be set to active here. This test file still
only serves for checking the validation loss.

The inference is initiated by calling:

(venv) userOuser:/path/to/Scripts$ python3 bayesian_segnet_inference.py
/path/to/inference.prototxt /path/to/final_weights.caffemodel
/ p a t h / t o / v i d e o f i l e . a v i

Here the scripts also visualizes the statistics of M C D O sampling: the variance of the
output segmentation computed from all M C D O samples.

4.5.6. SegNet Basic and Bayesian SegNet Basic
SegNet Basic and Bayesian SegNet Basic are networks provided by the SegNet authors
and are similar to their full versions but have fewer layers (see Attachment 1). These
shallow versions are used in the same way as their parent architectures. Therefore, the
same training and inference procedures apply to SegNet+SegNet Basic and Bayesian
SegNet+Bayesian SegNet Basic.

46

4.6. OPTIMIZATION OF HYPERPARAMETERS

4.6. Optimization of hyperparameters
Hyperparameters are parameters that are set before the training begins and do not change
during the training. The choice of hyperparameters is a task in its own right and requires a
sufficient amount of trial and error. There are some general approaches (mostly empirical)
one can follow to find the right parameters. The goal is to ensure that the network reaches
an optimal value of the loss function. [7]

Optimizer

Every training of a neural network starts with the choice of an optimizer. As the most
recent research suggests, Adam is the default choice for training CNNs. If the C N N is
built from scratch, it is advisable to start from the simplest SGD optimizer and observe
the values of the loss function to detect potential problems in the architecture or the code.
[10]

Learning rate

The parameter that has the biggest effect on training is the learning rate: it is the first
parameter one should set. It is recommended to start a coarse search first while observing
the loss for both training and validation datasets for a few initial epochs. Then, after the
training is done, choose a thinner interval of optimal learning rates and perform a finer
search. [9]

As the learning rate has a multiplicative effect on the gradient accumulation during
mini-batch training, it is logical to pick the values from the logarithmic space. [9]

Cross-validation strategy

This strategy is also referred to as early stopping. The idea is that one observes both
training and validation loss during training. When these losses go apart, the network tends
to overfit to the training data. This is a crucial step when finding optimal hyperparameters
and it must always be checked. [7]

Regularisation

When building a network from scratch, one starts with a simple SGD algorithm with no
regularisation involved to ensure that the loss values are reasonable. After we check for
errors in the code and after the network trains with SGD, regularisation is turned on. It
is usually set to a very small value, typically of the order 10~4 [9].

47

5. Results
The segmentation networks introduced in the previous chapter, SegNet, Bayesian Seg-

Net and their simplified versions (Basic), were trained using the described techniques and
various hyperparameters. The default optimizer for training CNNs is usually Adam, but
its implementation in Caffe takes much more memory than other algorithms. That is why
this thesis chose AdaDelta as its training algorithm, which is the pick of many users of
the SegNet architecture [35].

As AdaDelta adapts the learning rate over the course of the training process, there is
no longer a need to manually tune the learning rate decay scheme (which would become
another hyperparameter). Therefore, the first tuned hyperparameter was the base learning
rate for the AdaDelta algorithm. The search was initiated within a coarse interval of
values: < 10" 3 ,10° >. Since the Caffe implementation of SegNet comes with custom
scripts for calculating batch normalisation statistics for the inference phase, checking the
validation loss periodically becomes extremely demanding on memory and time inefficient.
Therefore, the validation loss was checked only once, at the end of the last training epoch,
to ensure that the values of losses had not diverged.

A l l variants of SegNet were trained using transfer learning where the encoder weights
are pre-trained and either stay unchanged or their learning rate is decreased. In the case
of Bayesian SegNet and SegNet, the encoder was initiated using VGG16 weights. For
SegNet Basic and Bayesian SegNet Basic, the encoder was initiated from a model trained
on the CamVid dataset which is available at SegNet Model Zoo.

After a reasonable learning rate value was found, the random search was limited to
the close interval around it. Then the training was executed until no further change in the
loss function was observed. In the original paper [25], the authors use L2 regularization.
The value of the corresponding weight_decay hyperparameter remained as the SegNet
authors suggest.

The difference observed across the network variants was the time it took to achieve
low loss values. This is influenced by the size of the network (Basic versions train faster)
and the dropout settings (dropout slows down the training).

Figures 5.1 and 5.2 are examples of the learning rate tuning (Bayesian SegNet). The
network was trained using transfer learning. The figures below show two training schemes
applied to the pre-trained encoder: in Figure 5.1, the encoder weights stay unchanged
during the training. This, apparently, makes it harder for the decoder to adapt. Also,
training with learning rates that seem to work well initially makes the loss diverge from
the optimal value in the last few epochs. In Figure 5.2, on the other hand, the encoder
weights are allowed to change but only with a decreased (by a factor of 10) learning rate.
This scheme tends to give more stable training results and faster training. Therefore, this
second scheme was applied to all variants of SegNet.

It turns out that larger values of the learning rate tend to work better with AdaDelta
and lead to better values of the loss function.

48

Figure 5.1: Coarse search of the learning_rate parameter, Bayesian SegNet. The train­
ing loss is observed for 30 epochs and the data is smoothed. The encoder was initialized
using pre-trained VGG16 model and the corresponding layers stayed unchanged during
the training.

Figure 5.2: Coarse search of the learning_rate parameter, Bayesian SegNet. The train­
ing loss is observed for 30 epochs and the data is smoothed. The encoder was initialized
using pre-trained VGG16 model and the learning rate of the corresponding layers is de­
creased by the factor of 10 during the training.

49

Table 5.1 summarizes the best training results obtained for all SegNet architectures.
The metrics used for evaluation is the IoU for each class: class 0 (background), class
1 (path). It also contains other useful information such as the inference and training
times. It is evident that the best-performing architecture in terms of computational cost
is SegNet Basic. Bayesian versions of SegNet repeat the inference based on the number
of M C D O samples and hence take longer to evaluate. The inference runs on G P U as well
as the training.

Architecture base lr weight
decay

batch
size

M C D O
samples

SegNet 0.95 0.0005 4 -

SegNet
Basic 0.75 0.0005 4 -

Bayesian
SegNet 0.5 0.0005 4 8

Bayesian
SegNet Basic 0.85 0.0005 4 8

IoU
class 0

IoU
class 1

Inference
time [ms]

Training
epoch time [s]

SegNet 0.965 0.971 42 368

SegNet
Basic 0.966 0.972 23 312

Bayesian
SegNet

0.974 0.979 305 432

Bayesian
SegNet Basic 0.967 0.972 177 313

Table 5.1: Statistics for all SegNet variants on the test dataset. The inference was ran on
G P U . The learning rate of encoder layers was decreased by a factor of 10 during training.

Figure 5.3 shows the final segmentation results for several image scenes from the test
dataset. For Bayesian versions of SegNet, the segmentation comes with an uncertainty
plot where light regions mean larger variance of M C D O samples during inference. The
uncertainty is averaged over all segmentation classes. We see that the network is more
uncertain in regions that are close to object boundaries. Also, the full versions of the
architectures (SegNet and Bayesian SegNet) tend to give more precise results on the
boundaries. They are primarily designed for more complex scenes with multiple classes
and the encoder is more capable of extracting finer features as the model capacity is
higher. In addition, the pre-trained encoder for the full versions was trained on more
images compared to the one used for the initialization of the Basic versions. On the other
hand, the Basic versions might offer much better performance in practical applications
where the number of classes is small.

50

SegNet Basic prediction

SegNet prediction

Bayesian SegNet Basic prediction

Bayesian SegNet Basic - average model uncertainty

*K - r f v /
Bayesian SegNet prediction

Bayesian SegNet - average model uncertainty

Figure 5.3: Comparison of the segmentation performance of all SegNet variants. The
Bayesian versions of the architecture give the estimate of the model uncertainty, where the
lighter regions mean higher variance across the M C D O samples taken during inference.

51

6. Conclusion and Future Work
This thesis presented some of the most recent A N N architectures used for image seg­

mentation together with their Caffe implementations. A n extensive step-by-step proce­
dure for setting up the software and hardware environments was described and tested
on a fresh installation of Ubuntu. Part of the reason for this was to show the benefits
of using Debian based distributions of Linux for working with A N N libraries: the proce­
dure described by shell commands is very clear and can be easily repeated on a different
machine.

The Caffe implementation and auxiliary Python scripts for the presented networks
were tuned for the purpose of the thesis. The goal was to perform a segmentation on a
custom dataset with two object classes. The dataset consisting of more than 2600 images
was created using the best currently available online annotation tool (Labelbox). In the
training phase, the networks were adapted for various transfer learning strategies and
showed the power of using pre-trained encoders when the dataset is small. The training
hyperparameters were tuned according to common strategies. As a result, all SegNet
variants were successfully trained using AdaDelta optimization and achieved very good
values of segmentation accuracy: over 90 % IoU on the test dataset. There is always room
for further tuning of hyperparameters and expanding the dataset.

The performance of the various architectures was observed and compared during the
inference phase. This gives an idea of the computational power needed for further imple­
mentations. The probabilistic variants of SegNet can estimate the overall model uncer­
tainty which helps decision making when the network is used in practical applications,
such as self-driving robots.

52

7. Bibliography
[1] MWITI , Derrick. A 2019 Guide to Semantic Segmentation. In: Heartbeat [on­

line]. Fritz AI , 2019 [cit. 2020-06-07]. Available at: https://heartbeat.fritz.ai/
a-2019-guide-to-semantic-segmentation-ca8242f5a7fc

[2] K A R A G I A N N A K O S , Sergios. Semantic Segmentation in the era of Neural Net­
works. In: AI SUMMER [online]. 2019 [cit. 2020-06-07]. Available at: https:
//theaisummer.com/Semantic_Segmentation/

[3] M E H L I G , Bernhard. Artificial Neural Networks. ArXiv.org [online]. 2019, 206 p. [cit.
2020-06-07]. DOL arXiv: 1901.05639. Available at: https://arxiv.org/abs /1901.
05639

[4] P U E N T E , Santiago. Single and Multi-Label Environmental Sound Classification Us­
ing Convolutional Neural Networks [online]. Gothenburg, 2018 [cit. 2020-06-07].
Available at: https : //odr. Chalmers . se/handle/20.500.12380/255604. Master1

sthesis.ChalmersUniversityofTechnology.

[5] G O O D F E L L O W , Ian, Yoshua BENGIO a Aaron C O U R V I L L E . Deep Learning. Deep
Learning: An MIT Press book [online]. Boston: MIT Press, 2016 [cit. 2020-06-25].
Available at: https://www.deeplearningbook.org/

[6] G R O M A N , Martin. Tvorba umelé neurónové site pro výpočet termodynamických
veličín [online]. Brno, 2019 [cit. 2020-06-07]. Available at: http://hdl.handle.net/
11012/175381. Master's thesis. Brno University of Technology. Faculty of Mechanical
Engineering. Department of Mathematics. Supervisor Tomáš Mauder.

[7] CS231n: Convolutional Neural Networks for Visual Recognition: Lecture Notes.
CS231n: Convolutional Neural Networks for Visual Recognition [online]. Stanford:
Stanford University [cit. 2020-06-07]. Available at: https://cs231n.github.io/

[8] Lecture 4 | Introduction to Neural Networks YouTube [online]. 11. August 2018
[cit. 2020-06-07]. Available at: https://www.youtube.com/watch?v=dl4TUNcbnlk&
list=PL3FW7Lu3i5JvHM81jYj-zLfQRF3E08sYv&index=4

[9] Lecture 6 | Training Neural Networks I YouTube [online]. 11. August 2018
[cit. 2020-06-07]. Available at: https : //www.youtube. com/watch?v=wEoyxE0GP2M&
list=PL3FW7Lu3i5JvHM81jYj-zLfQRF3E08sYv&index=6

[10] Lecture 7 | Training Neural Networks II YouTube [online]. 11. August 2018
[cit. 2020-06-07]. Available at: https://www.youtube.com/watch?v=_JB0A07QxSA&
list=PL3FW7Lu3i5JvHM81jYj-zLfQRF3E08sYv&index=7

[11] Lecture 8 | Deep Learning Software YouTube [online]. 11. August 2018 [cit.
2020-06-07]. Available at: https : //www. youtube. com/watch?v=6SlgtELqOWc&
list=PL3FW7Lu3i5JvHM81jYj-zLfQRF3E08sYv&index=8

[12] Lecture 11 | Detection and Segmentation YouTube [online]. 11. August 2018
[cit. 2020-06-07]. Available at: https : //www.youtube. com/watch?v=nDPWywWRIRo&
list=PL3FW7Lu3i5JvHM81jYj-zLfQRF3E08sYv&index=ll

53

https://heartbeat.fritz.ai/
http://ArXiv.org
https://arxiv.org/abs/1901
https://www.deeplearningbook.org/
http://hdl.handle.net/
https://cs231n.github.io/
https://www.youtube.com/watch?v=dl4TUNcbnlk&
http://www.youtube
https://www.youtube.com/watch?v=_JB0A07QxSA&
http://www.youtube

[13] COORS, Benjamin. Navigation of Mobile Robots in Human Environments
with Deep Reinforcement Learning [online]. Stockholm, 2016 [cit. 2020-06-
08]. Available at: http://www.diva-portal.org/smash/record.jsf?pid=diva2°/0

3A967644&dswid=9005.Degreeproj ect.KTHRoyallnstituteofTechnology.

[14] A L E S E , Eniola. The curious case of the vanishing & exploding gradient. In: Medium
[online]. 2018 [cit. 2020-06-09]. Available at: https://medium.com/learn-love-ai/
the-curious-case-of-the-vanishing-exploding-gradient-bf58ec6822eb

[15] B U S H A E V , Vitaly. Adam latest trends in deep learning optimiza­
tion. In: Towards Data Science [online]. Towards Data Science, 2018
[cit. 2020-06-09]. Available at: https://towardsdatascience.com/
adam-latest-trends-in-deep-learning-optimization-6be9a291375c

[16] Batch Normalization Issue in SegNet. In: GitHub [online]. GitHub, 2017 [cit. 2020-06-
09]. Available at: https://github.com/alexgkendall/caffe-segnet/issues/109

[17] J O N N A R T H , Arvi . Camera-Based Friction Estimation with Deep Convolutional
Neural Networks [online]. Uppsala, 2018 [cit. 2020-06-09]. Available at: https:
//pdfs.Semanticscholar.org/4c35/becacb2aab803468eb38fl9d8418d79c7c08.
pdf. Master's thesis. Uppsala Universitet.

[18] K R I Z H E V S K Y , Alex, Ilya S U T S K E V E R a Geoffrey E. HINTON. ImageNet
Classification with Deep Convolutional Neural Networks. Communications of the
ACM [online]. 2017, 60(6), 84-90 [cit. 2020-06-24]. DOI: 10.1145/3065386. ISSN
00010782. Available at: http://search.ebscohost.com.ezproxy.lib.vutbr.cz/
login.aspx?direct=true&db=bth&AN=123446102&lang=cs&site=ehost-live

[19] L E C U N , Y . , L. B O T T O U , Y . BENGIO a P. H A F F N E R . Gradient-based learn­
ing applied to document recognition. Proceedings of the IEEE [online]. 86(11),
2278-2324 [cit. 2020-06-24]. DOI: 10.1109/5.726791. ISSN 00189219. Available at:
http://ieeexplore.ieee.org/document/726791/

[20] SZEGEDY, Christian, WEI LIU, Y A N G Q I N G JIA, et al. Going deeper with convolu­
tions. 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
[online]. IEEE, 2015, 2015, , 1-9 [cit. 2020-06-24]. DOI: 10.1109/CVPR.2015.7298594.
ISBN 978-1-4673-6964-0. Available at: http://ieeexplore.ieee.org/document/
7298594/

[21] S IMONYAN, Karen a Andrew ZISSERMAN. Very Deep Convolutional Networks for
Large-Scale Visual Recognition. Visual Geometry Group [online]. Oxford: Univer­
sity of Oxford, 2014 [cit. 2020-06-11]. Available at: http://www.robots.ox.ac.uk/
~vgg/research/very_deep/

[22] HE, Kaiming, Xiangyu Z H A N G , Shaoqing R E N a Jian SUN. Deep Residual Learn­
ing for Image Recognition. 2016 IEEE Conference on Computer Vision and Pat­
tern Recognition (CVPR) [online]. IEEE, 2016, 2016, , 770-778 [cit. 2020-06-
24]. DOI: 10.1109/CVPR.2016.90. ISBN 978-1-4673-8851-1. Available at: http:
//ieeexplore.ieee.org/document/7780459/

54

http://www.diva-portal.org/smash/record
https://medium.com/learn-love-ai/
https://towardsdatascience.com/
https://github.com/alexgkendall/caffe-segnet/issues/109
http://Semanticscholar.org/4c35/becacb2aab803468eb38fl9d8418d79c7c08
http://search.ebscohost.com.ezproxy.lib.vutbr.cz/
http://ieeexplore.ieee.org/document/726791/
http://ieeexplore.ieee.org/document/
http://www.robots.ox.ac.uk/

[23] C O U F A L , J. Detekce cesty pro mobilní robot analýzou obrazu. Brno: Brno Univer­
sity of Technology, Faculty of Mechanical Engineering, 2010. 49 p. Master's thesis.
Supervisor: Ing. Jiří Krejsa, Ph.D

[24] K E N D A L L , Alex, Vijay B A D R I N A R A Y A N A N a Roberto C I P O L L A . Bayesian Seg-
Net: Model Uncertainty in Deep Convolutional Encoder-Decoder Architectures
for Scene Understanding. ArXiv.org [online]. 2015, 11 p. [cit. 2020-06-24]. DOI:
arXiv: 1511.02680. Available at: h t tps : / /arxiv .org/abs/1511.02680

[25] K E N D A L L , Alex, Vijay B A D R I N A R A Y A N A N a Roberto C I P O L L A . SegNet:
A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation.
ArXiv.org [online]. 2015, 14 p. [cit. 2020-06-24]. DOI: arXiv: 1511.00561. Available
at: h t tps : / /arxiv .org/abs/1511.00561

[26] K E N D A L L , Alex, Vijay B A D R I N A R A Y A N A N a Roberto C I P O L L A . SegNet. Ma­
chine Intelligence Laboratory [online]. Cambridge: University of Cambridge, 2015
[cit. 2020-06-24]. Available at: ht tps: / /mi .eng.cam.ac.uk/projects /segnet /

[27] Z E L T N E R , Felix. Autonomous Terrain Classification Through Unsupervised Learn­
ing [online]. Luleá, 2016 [cit. 2020-06-11]. Available at: h t t p : / / l t u . d i v a - p o r t a l ,
org/smash/record. j s f ?pid=diva2°/ 03A1051763&dswid=-6301. Degree project.
Luleá University of Technology.

[28] K E N D A L L , Alex. Getting Started with SegNet. Machine Intelligence Laboratory
[online]. Cambridge: University of Cambridge, 2015 [cit. 2020-06-11]. Available at:
ht tp: / /mi .eng.cam.ac.uk/proj ec t s / segne t / tu to r i a l .h tml

[29] R O S E B R O C K , Adrian. Intersection over Union (IoU) for object de­
tection. In: Pyimagesearch [online], pyimagesearch, 2016 [cit. 2020-06-
12]. Available at: https://www.pyimagesearch.com/2016/ll/07/
in te r sec t ion-over -un ion- iou- fo r -ob jec t -de tec t ion /

[30] SegNet-Tutorial. 2020 [cit. 2020-06-12]. GitHub [online]. GitHub. Available at:
h t tps : / /g i thub .com/f i l ipovyfusky/SegNet -Tutor ia l

[31] NVIDIA [online]. 2020 [cit. 2020-06-12]. USA: NVIDIA. Available at: https://www.
nvidia .com/

[32] NVIDIA Developer [online]. 2020 [cit. 2020-06-12]. USA: NVIDIA. Available at:
h t tps : / /deve loper .nv id ia .com/

[33] Caffe [online]. Berkeley: Berkeley AI Reseach [cit. 2020-06-12]. Available at: ht tps:
/ / c a f f e . b e r k e l e y v i s i o n . o r g /

[34] caffe-segnet-cudnn5. 2020 [cit. 2020-06-12]. GitHub [online]. GitHub. Available at:
h t tps : / /g i thub.com/f i l ipovyfusky/caffe-segnet-cudnn5

[35] SegNet implementation in Tensorflow. 2020 [cit. 2020-06-12]. GitHub [online].
GitHub. Available at: https://github.com/aizawan/segnet

[36] Labelbox [online]. 2020 [cit. 2020-06-12]. Available at: h t tps : / / labe lbox.com

55

http://ArXiv.org
https://arxiv.org/abs/1511.02680
http://ArXiv.org
https://arxiv.org/abs/1511.00561
https://mi.eng.cam.ac.uk/projects/segnet/
http://ltu.diva-portal
http://mi.eng.cam.ac.uk/proj
https://www.pyimagesearch.com/2016/ll/07/
https://github.com/f
https://www
https://developer.nvidia.com/
https://github.com/filipovyfusky/caffe-segnet-cudnn5
https://github.com/aizawan/segnet
https://labelbox.com

[37] Convolution arithmetic tutorial. 2018 [cit. 2020-06-12]. Deep Learning [online]. LISA
lab. Available at: http://deeplearning.net/software/theano_versions/dev/
tutorial/conv_arithmetic.html

[38] GIGABYTE [online]. 2020 [cit. 2020-06-12]. GIGABYTE. Available at: https://
www.gigabyte.com/

[39] MEHLIG, Bernhard. 2019 [cit. 2020-06-12]. FFR135 - Artificiella neurala natverk:
Lecture Notes. Gothenburg.

56

http://deeplearning.net/software/theano_versions/dev/
http://www.gigabyte.com/

List of Abbreviations

C N N Convolutional Neural Network

OS Operating System

A N N Artificial Neural Network

ReLU Rectified Linear Unit

M S E Mean Squared Error

SGD Stochastic Gradient Descent

R G B Red-Green-Blue

F C N Fully Connected Network

M C D O Monte Carlo Dropout

IoU Intersection over Union

C P U Central Processing Unit

G P U Graphics Processing Unit

AI Artificial Intelligence

B A I R Berkeley AI Research

C P W Caffe Python Wrapper

SSD Solid-State Drive

R A M Random-Access Memory

LTS Long-Term Support

57

List of Attachments

1. Architecture of SegNet (all variants): scheme.pdf

58

LIST OF FIGURES

List of Figures
1.1 Segmentation of an urban road scene. [2] 3
3.1 Schematic diagram of a McCulloch-Pitts neuron. The strength of the con­

nection from neuron j to neuron % is denoted by Wij. [3] 7
3.2 Sigmoid function and its derivative. Notice that the derivative goes to zero

very quickly 8
3.3 Hyperbolic tangent and its derivative 9
3.4 ReLU and its derivative. ReLU does not saturate! 9
3.5 Leaky ReLU and its derivative 10
3.6 Perceptron with one hidden layer. [3] 11
3.7 Softmax classifier: the neurons in this layer are not independent. [3] 12
3.8 Linearly separable (left) and not linearly separable problems (right). The

decision boundary needs to be piece-wise linear for the not linearly sepa­
rable problem [3] 12

3.9 Backpropagation algorithm: the states of the neurons are updated forward
(from left to right) while errors are updated backward (right to left). [3] . 15

3.10 Effect of the learning rate on optimization: the value must be chosen care­
fully for the algorithm to converge. [13] 16

3.11 Momentum (left) and Nesterov's Momentum (right). [3] 18
3.12 Comparison of different optimization algorithms. [6] 19
3.13 A N N without (left) and with dropout (right). [17] 21
3.14 Progress of training and validation losses. The plot is schematic, and the

data is smoothed. The training is stopped when the validation energy
begins to increase. [3] 22

3.15 The full-depth convolution operation in a convolutional layer. The input
size corresponds to a small R G B image. The result of the series of con­
volutions is a tensor of stacked activation maps for the filters used in the
layer. [13] 23

3.16 Max-pooling of size 2x2 and stride 2. [13] 24
3.17 Schematic of the standard C N N topology for image classification. [3] . . . 24
3.18 SegNet - an example of encoder-decoder C N N architecture. [25] 26
3.19 Transposed convolution. [37] 27
3.20 Max-unpooling. The locations of the maximum elements were saved during

max-pooling. The remaining elements are set to zero 28
3.21 Intersection over union. [29] 29
4.1 Examples of the best deep learning frameworks. [32] 31
4.2 G I G A B Y T E GeForce R T X 2060 S U P E R AORUS 8G. [38] 32
4.3 Using Caffe implementation of SegNet - schematic diagram 38
5.1 Coarse search of the learning_rate parameter, Bayesian SegNet. The train­

ing loss is observed for 30 epochs and the data is smoothed. The encoder
was initialized using pre-trained VGG16 model and the corresponding lay­
ers stayed unchanged during the training 49

5.2 Coarse search of the learning_rate parameter, Bayesian SegNet. The train­
ing loss is observed for 30 epochs and the data is smoothed. The encoder
was initialized using pre-trained VGG16 model and the learning rate of the
corresponding layers is decreased by the factor of 10 during the training. 49

59

LIST OF FIGURES

Comparison of the segmentation performance of all SegNet variants. The
Bayesian versions of the architecture give the estimate of the model uncer­
tainty, where the lighter regions mean higher variance across the M C D O
samples taken during inference 51

List of Tables
LIST OF TABLES

5.1 Statistics for all SegNet variants on the test dataset. The inference was
ran on G P U . The learning rate of encoder layers was decreased by a factor
of 10 during training 50

61

