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Abstrakt 
Tato práce se zabývá rešerší a implementací vybraných architektur konvolučních neu­

ronových sítí pro segmentaci obrazu. V první části jsou shrnuty základní pojmy z teorie 
neuronových sítí. Tato část také představuje silné stránky konvolučních sítí v oblasti 
rozpoznávání obrazových dat. Teoretická část je uzavřena rešerší zaměřenou na konkrétní 
architekturu používanou na segmentaci scén. Implementace této architektury a jejích vari­
ant v Caffe je převzata a upravena pro konkrétní použití v praktické části práce. Nedíl­
nou součástí tohoto procesu jsou kroky potřebné ke správnému nastavení softwarového a 
hardwarového prostředí. Příslušná kapitola proto poskytuje přesný návod, který ocení ze­
jména noví uživatelé Linuxu. Pro trénování všech variant vybrané sítě je vytvořen vlastní 
dataset obsahující 2600 obrázků. Je také provedeno několik nastavení původní implemen­
tace, zvláště pro účely použití předtrénovaných parametrů. Trénování zahrnuje ladění 
hyperparametrů, jakými jsou například typ optimalizačního algoritmu a rychlost učení. 
Na závěr je provedeno vyhodnocení výkonu a výpočtové náročnosti všech natrénovaných 
sítí na testovacím datasetu. 

Abstract 
This thesis deals with the research and implementation of selected architectures of 

convolutional neural networks (CNNs) for image segmentation. The fundamental terms 
from the theory of neural networks are summarized in the first part. It also presents the 
power of CNNs in the field of image data classification. The theoretical part concludes 
with the research focused on the particular network architecture and its variants used 
for scene segmentation. In the practical part, the Caffe implementation of the network 
is taken from its authors and tailored to the specific needs of this study. The steps 
required to properly set up the software and hardware environments are an essential 
part of the process. Therefore, the corresponding chapter gives a step-by-step guide that 
is especially helpful to new Linux users. A custom dataset containing 2600 segmented 
images is created and used for training all variants of the selected network. Several 
adjustments of the original implementation are performed, especially for applying the 
method of using pre-trained parameters of the networks. The training phase includes a 
selection of hyperparameters, such as the type of optimization algorithm. Finally, the 
performance and computational cost of the variants of the trained network are evaluated 
on a testing dataset. 
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Rozšířený abstrakt 
Úvod 
Segmentace obrazu je spolu s rozpoznáním obrazu a detekcí objektů jednou ze základních 
součástí počítačového vidění a autonomních systémů. Cílem sémantické segmentace je 
přiřadit kategorii každému významnému objektu v obraze (osoba, zvíře, automobil, atd.) 
tak, že dojde k vykreslení jeho přesné hranice. Vybraný algoritmus musí pracovat s co 
největší přesností a robustností. 

Sémantická segmentace má několik různých využití, zejména v oblastech jako jsou 
řízení autonomních vozidel, interakce člověka s počítačem, robotika a různé softwarové 
nástroje. Nejnovější vývoj ukazuje rostoucí poptávku po spolehlivém rozpoznávání ob­
jektů pro samořiditelná vozidla, jelikož jejich řídící modely musí rozumět kontextu prostředí 
ve kterém operují. Tato práce se zaměřuje na zkoumání a implementaci jedné konkrétní 
segmentační metody, která využívá konvoluční neuronové sítě (KNS). KNS patří do 
skupiny algoritmů strojového učení a získaly pozornost zejména díky svému úspěchu v 
soutěžích v klasifikaci obrazu (ImageNet). Následně našly své využití v úlohách segmen­
tace, kde jsou obvykle použity jako první stupeň algoritmu. 

Zadání této práce se skládá z několika bodů. Předně je potřeba najít a implementovat 
perspektivní metodu segmentace využívající KNS. Očekává se, že tato neuronová síť bude 
co nejjednodušší, a zároveň schopna zajistit uspokojivé výsledky pro konkrétní aplikaci 
(segmentace cesty pro samonavigujícího robota ve venkovním prostředí). Obrazová data 
pro trénování a testování sítě budou dodána vedoucím této práce. 

Popis řešení 
V praktické části práce je zprovozněna převzatá implementace neuronové sítě SegNet spolu 
s jejími dalšími variantami (SegNet, Bayesian SegNet, SegNet Basic a Bayesian SegNet 
Basic), přičemž celá síť je napsána pomocí knihovny Caffe a je vytvořena původními au­
tory článku [25]. Jedná se o sítě typu enkodér-dekodér využívající architekturu známé sítě 
VGG16 jako enkodéru. Enkodér sítě má za úkol vyextrahovat ze vstupních obrazových 
dat jejich významné znaky a vytvořit jejich zjednodušenou reprezentaci. Při tomto pro­
cesu dochází ke ztrátě rozlišení původního obrazu. Cílem segmentace je však na výstupu 
sítě získat obrázek (segmentační masku) se stejným rozlišením jako měl původně vstup. 
Úlohou dekodéru je tedy, za použití informací z předchozích operací v enkodéru, rekon­
struovat původní umístění prvků v obraze a přiřadit j im příslušnost ke správné kategorii. 
Obě části sítě, enkodér a dekodér, mají trénovatelné parametry v podobě konvolučních 
jader (filtrů). 

Bayesian SegNet je rozšířená varianta SegNetu. Jejich architektury jsou shodné, avšak 
díky použití techniky zvané Monte Carlo Dropout dovede na výstupu vizualizovat spolu 
se segmentační maskou i nejistotu modelu. Verze Basic obou těchto síti jsou poté pouze 
sítě s redukovaným počtem vrstev. 

Pro správné nastavení softwaru a hardwaru je potřeba bezchybně provést několik 
kroků. Z tohoto důvodu práce obsahuje návod pro operační systém Ubuntu, jehož silnou 
stránkou je snadná instalace balíků přes příkazový řádek. Tento návod také zahrnuje kom­
pilaci knihovny Caffe (v její speciálně upravené podobě pro účely SegNetu). Dále bylo 
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potřeba vytvořit trénovací a testovací data. K tomuto účelu byl použit online nástroj 
Labelbox. Bylo vytvořeno celkem 2600 trénovacích ( + 90 validačních) a 179 testovacích 
obrázků. 

Všechny sítě jsou upraveny pro segmentaci dvou tříd objektů - pozadí + cesta. Je­
likož použitá množina dat není příliš obsáhlá, parametry sítě v Caffe jsou dále lehce 
přizpůsobeny pro použití předtrénovaných parametrů. Během trénování sítě bylo použito 
několik různých hyperparametrů (parametry, které se nastavují před trénováním a dále 
se nemění) pro zajištění co nejlepších výsledků. 

Veškeré použité soubory (upravené zdrojové kódy knihovny Caffe, soubory všech ar­
chitektur a obslužné Python skripty) jsou snadno dostupné online na úložišti GitHub ([30] 
a [34]) a tedy připravené pro další uživatele. 

Shrnutí a zhodnocení výsledků 
Všechny varianty sítě SegNet byly úspěšně natrénovány a vykazují více než 90% úspěšnost 
segmentace na testovacím datasetu. V závěru byly porovnány úspěšnosti různých strategií 
při použití předtrénovaných parametrů. Z pohledu výpočtové náročnosti si nejlépe vedou 
Basic verze obou architektur SegNetu. Jejich použití však v praxi může být limitováno 
počtem tříd a potřebnou mírou detailu segmentace. 
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1. Introduction 
Image segmentation is one of the essential parts of computer vision and autonomous 

systems alongside with object detection and object recognition. The goal of semantic 
segmentation is to automatically assign a label to each object of interest (person, animal, 
car, etc.) in a given image while drawing the exact boundary of it and to do this as 
robustly and reliably as possible. 

We can see a real-world example in Figure 1.1. Each pixel of the image has been 
assigned to a specific label and represented by a different colour: red for people, blue for 
cars, green for trees, etc. This is unlike the image classification task where we classify the 
image scene as a whole. It is important to say that semantic segmentation is different 
from so-called instance segmentation where one not only cares about drawing boundaries 
of objects of a certain class but also wants to distinguish between different instances of 
the given class [12]. For instance, all people in Figure 1.1 (each instance of the 'person' 
class) would have a different colour. 

Semantic segmentation has many different applications in fields such as driving au­
tonomous vehicles, human-computer interaction, robotics and various software tools. The 
most recent developments show increasing demand for reliable object recognition in self-
driving vehicles because the driving models must understand the context of the environ­
ment they are operating in. [1] 

The presented work focuses on research and implementation of one particular seg­
mentation method that uses convolutional neural networks (CNNs). CNNs belong to the 
family of machine learning algorithms and received attention mainly due to their success 
in image classification challenges (ImageNet). They subsequently found their use in seg­
mentation tasks where researchers take the most well-performing C N N architectures and 
use them as the first stage of the algorithm. 

30 FPS 
Figure 1.1: Segmentation of an urban road scene. [2] 
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2. Problem Statements 
The goal of this thesis consists of several points. Firstly, a promising segmentation 

method using CNNs needs to be found and implemented. It is expected that the neural 
network will be as straightforward as possible while being capable of giving satisfactory 
results for the chosen use case (segmentation of a path in an outdoor environment for 
robot navigation). The images used to train and validate the performance of the network 
will be provided by the supervisor of the thesis. Also, the author will pick an appropriate 
software tool for creating ground truths 1 and use them to create the training and validating 
datasets. Lastly, the network should be trained with various sets of training parameters 
to get a better idea of the network's behaviour and to ensure the best possible results. 

1 Manually created image-labels that serve as a reference for the network so that it validates its current 
accuracy of prediction and computes the needed adjustments of its parameters to get closer to the desired 
output 
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3. Research and Theory 
The first part of this chapter gives an introduction to artificial neural networks (ANNs). 

It begins with a definition of fundamental terms that explain the core principles of A N N . 
Because the research in this area is still ongoing, the more advanced techniques described 
here may soon be out of date or replaced by better-performing ones and therefore the 
theoretical background is limited only to the extent that will be relevant for the network 
architecture chosen at the end. 

The second part presents some of the main approaches based on machine learning 
which were recently used by researchers to tackle the semantic segmentation problem. 
However, not all of them use C N N as the core algorithm. This part summarizes the 
key points of the corresponding papers that contributed to this topic by presenting novel 
architectures and principles. It concludes by a detailed description of a method that is 
eventually found to be the most promising and is thus selected for the final implementa­
tion. 

3.1. Architecture of artificial neural networks 
The inspiration for neural networks comes from their resemblance to biological neurons 
and the way they are connected. Neural networks can recognize features in a given training 
set of data and apply this knowledge to previously unseen data after the training. This 
strategy is called supervised learning. In supervised learning, one periodically feeds the 
network with input/output pairs of training data. The network learns by comparing 
the correct and computed output values for the given input. The network's trainable 
parameters are changed as the training continues to minimize the differences between 
network outputs and targets for all input patterns in the training set. [3] 

3.1.1. Feed-forward networks 
The goal of a feed-forward neural network is to find a non-linear, generally n-dimensional 
function that maps the space of inputs x to the space of outputs y. In other words, to 
learn the function [4] 

where 0 are trainable parameters of the network. The goal is to learn the value of the 
parameters that result in the best function approximation by solving the equation [4] 

where L is the loss function chosen for the particular task. One can understand the term 
'loss function' simply as a metric of how happy we are about the output that the network 
gives us for a given input. Therefore, f*(x; 4>) is driven to match the ideal function f(x; <f>) 
during network training. 

The structure of a feed-forward network is usually composed of many nested functions. 
For instance, there might be three functions and connected in a chain: [4] 

(3.1) 

0 «- arg mm L(y,f*(x;(f))) (3.2) 
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3.1. ARCHITECTURE OF ARTIFICIAL NEURAL NETWORKS 

f(x)=f(3)(fi2\f(1)(x))) (3.3) 

These models are referred to as feed-forward because information flows from the deep­
est nested function which then takes x as its direct input to other functions in the 
chain and finally to the output y. One can name the functions starting by as the first 
layer (input layer) of the network, as the second layer and so on. The final layer of 
the network is called the output layer. [4] 

Remember that in supervised learning one needs a set of training data, in this case a 
set of matching x, y1 pairs. The training samples specify what the output layer must do 
at each point x; it must produce a value that is as close as possible to y. The behaviour 
of the other layers is not specified by the training data which is why we call these layers 
'hidden layers'. [4] 

A neural network can be seen as something capable of modelling almost any function 
we can think of (general approximation theorem, see [5]). The power of this brings us 
to the definition of a classification task. In this task, the function which the network 
approximates has discrete states (true/false in the simplest case). 

3.1.2. McCulloch-Pitts neurons 
Layers of a feed-forward network further divide into distinct functions called neurons. 
This is where the resemblance to biological neurons comes into play: the neurons are 
mathematically modeled as linear threshold units (McCulloch-Pitts neurons). The output 
of a neuron is dependent on the output of the neurons in the previous layer. In the simplest 
form, the output of each neuron in the network has only two states: active or inactive. 
[3] 

If the output exceeds a given threshold then the state of the neuron is said to be 
active, otherwise it is inactive. The model is illustrated in Figure 1.4. Neurons usually 
perform repeated computations in discrete time steps t — 0,1, 2, 3,.... The state of neuron 
number j at time step t is denoted by [3] 

.0 inactive, 
nj{t) = t (3.4) 

1 active. 

Given the signals rij(t + 1), neuron number % computes [3] 

rijit + 1) = 9H (y^^WijUjit) - fii^j (3.5) 

As written, this computation is performed for all % neurons in parallel and the outputs 
rii are the inputs to all neurons at the next time step t + 1. 

Outputs y are often called labels in classification tasks 
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3.1. ARCHITECTURE OF ARTIFICIAL NEURAL NETWORKS 

Figure 3.1: Schematic diagram of a McCulloch-Pitts neuron. The strength of the con­
nection from neuron j to neuron % is denoted by Wij. [3] 

Each incoming connection from other neurons has a different strength. This is de­
termined by the parameters Wij called weights. The first index % refers to the neuron 
whose output is being computed and j labels all neurons that connect to neuron i. The 
argument of OH of the neuron is often referred to as the local field [3] 

k = ^ 2 _ A** ( 3- 6) 
3 

where bi is a weighted linear average of the inputs rij and /x« is an offset (threshold). 
Finally, the function OH is referred to as the activation function. [3] 

3.1.3. Activation functions 
The general motivation for using activation functions is to bring non-linearity to the 
model. In the simplest case that has been discussed so far, the neurons can only have 
the states 0/1, which in terms of the activation function corresponds to the Heaviside 
function [3] 

M » = 1 t o r 6 - 0 , ( " I 
V ' [0 for b < 0. V 7 

In practice, however, the simplest model must be generalised by allowing the neuron to 
respond continuously to its inputs. This is necessary for the optimization algorithms used 
in the training phase to operate smoothly [6]. Therefore, the term OH in Equation (3.5) 
is replaced by a general continuous activation function g{b). [3] 
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3.1. ARCHITECTURE OF ARTIFICIAL NEURAL NETWORKS 

One can choose from several activation functions which all come with their pros and 
cons depending on the particular application of the network. In general, there are a few 
requirements these functions should meet: [6] 

• Nonlinearity. As discussed above, non-linearity is a general ability of a neural 
network which allows it to model very complex functions. 

• Monotocity and nondecreasibility. These allow certain optimization algorithms 
to perform with greater stability. 

• Differentiability (or at least piecewise differentiability). This is useful not 
only in terms of stability of the optimization algorithms but also for the analytical 
derivation of the update rule for the network parameters during optimization. 

There are activation functions designed specifically for the output layer. The reason 
for that comes from the definition of a classification task, where we would like to interpret 
the outputs of the network as relative probabilities of the input belonging to a certain 
class. For this, the commonly-used softmax activation function can be used. We say 
'relative' because the network's decision is only based on the features of one particular 
pattern in comparison with other data we used during training. Hence, the probabilities 
computed by the softmax classifier are better thought of as confidences where the ordering 
of the scores is interpretable, but the absolute numbers are technically not. [7] 

Another possibility for the output activation function is the sigmoid function, which 
is used for both input /hidden and output layers. Here are the most frequently used 
activation functions: [6] 

Sigmoid 

-10 0 10 -10 0 10 
b b 

(a) 9(b) = (b) g'(b) = g(b)(l - g(b)) 

Figure 3.2: Sigmoid function and its derivative. Notice that the derivative goes to zero 
very quickly. 

This function has a clear interpretation of neuron states - active/inactive is represented 
by values 1/0. The sigmoid function is currently not favoured for large networks. In short, 
it does not have optimal properties for the learning algorithm because it saturates very 
quickly. Also, the fact that its mean value is non-zero doesn't have a positive impact on 
the learning process either. [7] [6] 
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3.1. ARCHITECTURE OF ARTIFICIAL NEURAL NETWORKS 

Hyperbolic tangent 

Figure 3.3: Hyperbolic tangent and its derivative. 

Unlike the sigmoid function, the range of its output is in the interval <- l , l> and the 
output is therefore zero-centered. In practice, the tanh non-linearity is always preferred 
to the sigmoid non-linearity. [7] 

Rectified linear unit (ReLU) 

OS 

(a) g(b) = max(0, b) (b) g'(b) = eH(b) 

Figure 3.4: ReLU and its derivative. ReLU does not saturate! 

The authors of this function found the inspiration in real biological neurons: there 
is a threshold below which the response of the neuron is strictly zero, as shown in the 
figure above. The derivative of the ReLU function is discontinuous at b = 0. A common 
convention is to set the derivative to zero at b = 0. It is now the standard function to use 
in large networks for image recognition. [3] 
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3.1. ARCHITECTURE OF ARTIFICIAL NEURAL NETWORKS 

Leaky ReLU 

Figure 3.5: Leaky ReLU and its derivative. 

By modifying the previously introduced function one gets a version of ReLU intended 
to address its biggest drawback, which is the fact that some neurons may become dead 
(their output will be always zero) and thus they do not contribute to the network's output. 
Unfortunately, there's generally no guarantee that using Leaky ReLU instead of ReLU 
will always yield better results. [8] 
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3.1.4. Multilayer perceptrons 
Perceptron is a feed-forward network. It is divided into layers consisting of McCulloch-
Pitts neurons. The left-most layer of the network shown in Figure 3.6 is called input 
layer. The input layer takes the values of the input data and passes it to the next layer. 
The right-most layer is the output layer where the output of the network is read out. The 
other neuron layers are called hidden layers; their states are not read out directly. [3] 

Figure 3.6: Perceptron with one hidden layer. [3] 

"In perceptrons, all connections (called weights) Wij are one-way. Every neuron (or 
input terminal) feeds only to neurons in the layer immediately to the right. There are 
no connections within layers, or back connections, or connections that jump over a layer. 
There are N input terminals." [3] We denote the inputs coming to the input layer by [3] 

r , » i 

x{n) 

X 
X. 

00 

L TV J 

(3.8) 

The index \x labels different input patterns in the training set. The perceptron in 
Figure 3.1 calculates the output as follows: [3] 

O 

— g{tif') where = ^^WjkX^ — 9j 
k 

g(B^) where B^ = WyV^ - Qt 

(3.9) 

(3.10) 

where VJ^ denotes the output of hidden layer j based on the local field b^ and activation 
function g{b). The parameters Wjk and 9j denote weights and thresholds of the layer j. 
Corresponding computations are made for the output layer whose output of neuron % 
is denoted by and other parameters are capitalized. [3] A multilayer perceptron 
generally has TV hidden layers. If it has more than two hidden layers, it usually begins to 
be called a deep network. 
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Output classifier - softmax 

The softmax function is designed to be used in output layers. This so-called 'classifier' 
differs from other activation functions by its dependency on other neurons in the layer [3] 

Oi = Try (3.11) 

"Here b[L^ = Y^j wij''VjL~1'1 ~®\L^ a r e the local fields of the neurons in the output layer 
L. The constant a is usually taken to be unity. Softmax has three important properties: 
first that 0 > Oj > 1. Second, the values of the outputs sum to one YliLi Oi = l- This 
means that the outputs of Softmax units can be interpreted as probabilities. Third, the 
outputs are monotonous: when b[L^ increases, then Oi increases but the values Ok of the 
other output neurons k ^ i decrease." [3] 

Figure 3.7: Softmax classifier: the neurons in this layer are not independent. [3] 

Linear separability 

The reason we use hidden layers is to tackle classification problems that are not linearly 
separable. Linear separability is shown in Figure 3.8, where the input to the network is 
two-dimensional. The target classification output for pattern JX is denoted by and we 
classify the input data into two classes (marked as black and white points in the graph). 
[3] 

Figure 3.8: Linearly separable (left) and not linearly separable problems (right). The 
decision boundary needs to be piece-wise linear for the not linearly separable problem [3] 

A classification problem is linearly separable if one is able to draw a single line (a 
single plane in case of three inputs, etc.) to divide the input space into two distinct 
areas. The curve that separates the space of inputs is called the decision boundary. The 
position of the decision boundary is determined by the values of weights and thresholds 
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of the neurons. These parameters are found by training the network. In the case shown 
in Figure 3.8 (left), the line dividing the 2D space of inputs corresponds to the simplest 
possible case which is a single neuron in the network. In a not linearly separable task 
(Figure 3.8, right) we need to divide the input space into more than two regions to solve 
the classification. By doing this, we map the input space of size n = 2 to the hidden space 
of size m = 3 and use it as an input to other layers. [3] 
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3.2. Training of artificial neural networks 
Artificial neural networks are trained using iterative optimization algorithms. During 
training, one needs to choose the right loss function whose value goes to zero when the 
network produces the expected output (when the outputs O of the network match with 
the target values t for all patterns). To achieve this, trainable paremeters are changed in 
each step of optimization. The effect each parameter has on the value of the loss function 
is determined by calculating the gradient of the loss function with respect to the particular 
parameter in the network. The way this information is used is then subject to the chosen 
algorithm. [39] 

3.2.1. Loss function 
Loss function is a metric of our satisfaction with the network's output for a given pattern 
[i. It is always determined by the relation between the current output 0\^ of neuron % 
and the target value t^f\ The choice depends on the nature of the task that the network 
is used for and on the activation function used in the output layer. During training, the 
loss function is the one whose value is being optimized. Here are the most commonly used 
functions: [3] 

Mean squared error (MSE) 

L = \ Y . { ^ ] - ° ^ ) 2 (3-12) 
fli 

M S E is used for regression tasks, often in combination with the sigmoid function in 
the output layer. [6] 

Negative log likelihood 

L = - Y , ^ HOf) (3.13) 
fli 

The negative log likelihood is used for classification tasks in combination with the 
softmax classifier. [3] 

Cross entropy loss 

L = - ln(0<">) + (1 - tM) HI - ( O f t ) (3.14) 
fli 

Very similar to the negative log likelihood loss. The difference is that it works with 
the sigmoid activation function. [3] 
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3.2.2. Gradient optimization and backpropagation 
Backpropagation is a way in which information about the correctness of the output flows 
through the network so that the parameters in all layers can be adjusted. Everytime 
we feed the network with an input pattern \i we get the output values of the neurons 
in all layers. This is called a forward pass (inference, left-to-right pass). Then we want 
to evaluate the correctness of the output and pass that information back to the network. 
The second phase is called backpropagation because the error propagates from the output 
layer to the layers on the left. [3] 

errors 

neurons 

Figure 3.9: Backpropagation algorithm: the states of the neurons are updated forward 
(from left to right) while errors are updated backward (right to left). [3] 

The optimization algorithm searches the most optimal value of the loss function whose 
value is dependent on the trainable parameters. For this, the algorithms needs to move 
in the direction of the steepest descent in the landscape of the loss function. In each step 
of the optimization, one needs to calculate partial derivatives of the loss function with 
respect to all trainable parameters. The derivative is found by applying the chain rule to 
the formula for calculating the loss function. [3] 

Gradient descent 

The general formula for the gradient descent algorithm goes as follows: [39] 

(3.15) 

where <f> is the parameter we care about (weights, thresholds, etc.) and L is the loss 
function. Parameter rj is called the learning rate. This parameter determines the size of 
the step we take in the way of the steepest descent in the loss function's landscape (in 
the case of two parameters). [39] 

Figure 3.10 shows that the choice of the learning rate value has a strong effect on 
the course of the optimization and the convergence of the algorithm. If the steps are 
too small, the training will be slow and the algorithm is prone to getting stuck in local 
minima. On the other hand, if the value of it is too big, the algorithm may even start to 
'climb up the hill ' and cause the loss function to grow. [3] 
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Loss 
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Figure 3.10: Effect of the learning rate on optimization: the value must be chosen 
carefully for the algorithm to converge. [13] 

Given a multilayer perceptron with hidden layers and their parameters wmn, 9m, output 
layer with outputs Om, weights and thresholds Wmn, Qm, target values tm and the M S E 
loss function, the gradient descent algorithm gives the weight updates in the form [3] 

5W„ -7] 
dL 

dWm, 
(3.16) 

where p is the total number of training samples, Vn is the vector of outputs of neurons 
in the previous layer n for the sample /x. For clarity, one usually defines the 'weighted 
error' as [3] 

A£> = (*£> - O^)g'(B^) (3.17) 

The update rules for hidden layers are also obtained by using chain rule, which yields [3] 

p N 

8Wr 
(3.18) 

1̂=1 i=l 

while putting [3] 

N 
(3.19) 
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Putting all the above together yields [3] 

v v 
5wmn = V^6£>xM and S W m n = V J 2 A ^ V ^ (3-20) 

Similarly, we get the update rule for thresholds (see [3]). In summary, the steps of 
backpropagation + gradient descent are the following: [3] 

Algorithm 1 Gradient descent [3] 
1: Pick input pattern \x from the training set and perform forward pass 
2: Compute errors A™ for output layer 
3: Compute errors 5^} for hidden layers 
4: Perform updates wmn = wmn + 5wmn and 9mn = 9mn + 59mn, the same for the 

output layer 

Stochastic gradient descent 

Gradient methods are generally prone to getting stuck in local minima of the optimized 
function. The way to adress this is to add a little bit of noise to the process. In stochastic 
gradient descent (SGD), this is achieved by summing over smaller portions of the training 
data rather than over the entire dataset. These portions of the data are called mini-
batches. [3] 

In Equations 3.20 we see that in each iteration one needs to sum overall training 
patterns in the set to obtain the value of the gradient. In SGD, one only sums over 
randomly chosen mb patterns from the training set and then immediately performs the 
weight update. The process is repeated until all training data have been used (this is called 
a training epoch). In mini-batches, samples appear only once per epoch and the entire 
training set is usually shuffled after each epoch. [3] Applying the above, the Equations 
3.20 slightly change to [3] 

mb mb 

5wmn = V J 2 S ™ x n } a n d S W m n = V J 2 A ^ V ^ } (3-21) 
[1=1 [1=1 

Vanishing and exploding gradient problems 

When we compute the weight increments using MSE, the further from the output layer we 
go, the more the term g'(b) accumulates (with each next layer). The point is that M S E is 
often used with the sigmoid activation functions whose derivative drops to a small number 
in its area of saturation resulting in very small weight increments. This phenomenon is 
known as the vanishing gradient problem [3]. Similarly, one can run into trouble when the 
values of the derivative of activation function are larger than one. Then the value of the 
gradients may start growing exponentially: this is called the exploding gradient problem. 
[14] One of the ways to address these problems is using activation functions that do not 
saturate (ReLU, Leaky ReLU, etc.). [3] [8] 
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Momentum 

There are several ways to make the stochastic gradient descent algorithm perform better. 
The key is to prevent it from getting stuck in local minima. Gradient methods also tend 
to slow down in the areas of minima that are very shallow. The obvious solution to this 
is to take bigger steps by using a larger value of the learning rate. This can, however, 
make the algorithm oscillate. [3] One way to tackle this is to implement the mechanism 
fittingly called momentum. 

When using momentum, we can imagine that the SGD algorithm behaves like a ball 
that rolls downhill and develops speed over time [10]. The resulting move made by the 
algorithm in the landscape of the loss function is, therefore, a combination of the gradient 
vector and the velocity vector. The update rule for weights gets modified to [3] 

Swf) = Tj Try + aSwfr^ (3.22) 

where t — 0,1, 2,.., n is the iteration number and Sw^ = dL/dw^ is the weight increment 
in the zeroth time step. The parameter a > 0 is the momentum constant. [3] 

There are other ways of implementing momentum, such as the commonly used Nes-
terov's accelerated gradient method (see [3] [7] for details). This algorithm differs from 
the simple momentum by altering the steps the algorithm takes to do the final update: it 
first moves in the direction of the velocity, then evaluates the gradient at that point and 
corrects the previous step. It turns out that this method performs better in practice. [10] 

Figure 3.11: Momentum (left) and Nesterov's Momentum (right). [3] 
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Other optimization algorithms 

The algorithms below extend the idea of stochastic gradient descent by introducing var­
ious strategies of learning rate adaptation during training. In most cases, using more 
advanced algorithms tends to speed up the training and usually helps finding more opti­
mal parameters in terms of the loss value. 

• AdaGrad 

AdaGrad is another gradient based algorithm. In the previously discussed gradient 
descent, the parameters were updated with the same learning rate in every step of 
the algorithm. AdaGrad adapts the learning rate based on the accumulated square 
of gradients (see [10]). The problem is that it might get stuck in the saddle points 
beacause the size of the steps it takes gets very small as the training goes on. [10] 

• AdaDelta and RMSprop 

These algorithms are an extension of AdaGrad and tackle its tendency to drop 
some of the learning rates to almost infinitely small values. They were published 
simultaneously but independently of one another. [6] 

• Adam 

Adam can be seen as a combination of RMSprop and Stochastic Gradient Descent 
with momentum. It uses squared gradients to scale the learning rate like RMSprop 
and it takes advantage of momentum by using a moving average of the gradient 
instead of the gradient itself like SGD with momentum. [15] [6] 

Figure 3.12: Comparison of different optimization algorithms. [6] 
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3.2.3. Improving training performance 
Initialization of weights and thresholds 

The standard approach is to initialise the weights to independent Gaussian random num­
bers with mean zero and unit variance and to set the thresholds to zero. But in networks 
that have large hidden layers with many neurons, this scheme may fail. This is because 
the variance of weights is not taken care of, which leads to very large (or small) activation 
values, resulting in exploding (or vanishing) gradient problem during backpropagation. 
[3] Here are some of the more advanced initialization methods: [9] 

• Xavier initialization 

Xavier initialization sets the layer's weights to values from the Gaussian distribu­
tion. The mean and standard deviation are determined by the number of incoming 
and outcoming network connections to the layer. These random numbers are then 
divided by the square root of the number of incoming connections. This method 
works well with the tangent and sigmoid activation functions but fails when using 

• M S R A initialization 

This method differs from Xavier only in its use of a different factor to scale the 
Gaussian distributed numbers. It turns out that this small change works much 
better when using ReLU activation function. 

Overfitting and regularisation 

"A network with more neurons may classify the training data better because it accurately 
represents all specific features of the data. But those specific properties could look quite 
different in new data. As a consequence, we must look for a compromise between the 
accurate classification of the training set and the ability of the network to generalise. This 
problem is called overfitting: the network fits too fine details that have no general meaning." 
[3] The terms below are referred to as the L I and L2 regularisations. Adding these terms 
to the loss function prevents the weight from growing (weight decay). Parameter 7 is 
called weight decay factor. When the value of the weights gets very high, the local fileds 
of the neurons become very large too. In that case, some activation functions, like the 
sigmoid function or tanh, reach their maxima very quickly which causes the vanishing 
gradient problem. The formulas for L I and L2 regularisations are: [3] 

" These two regularisation schemes tend to help against overfitting. (...) Weight decay 
adds a constraint to the problem of minimising the energy function. When the weights 
are small, then small changes in some of the patterns do not give a substantially different 
training result. When the network has large weights, by contrast, it may happen that small 
changes in the input give significant differences in the training result that are difficult to 
generalise." [3] 

ReLUs. 

or (3.23) 
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Batch normalisation 

The idea of batch normalisation is to shift and normalise the input data for each hidden 
layer so that the distribution of its inputs becomes Gaussian. The values of mean and 
variance are computed during each forward pass (pass of a single mini-batch) and then 
applied to each neuron in the layer. The mean and variance are multiplied by trainable 
factors, usually called ^,7. [9] [3] When the training is done, the values of ,9,7 for each 
layer are re-computed using the mean and variance of the entire training dataset and no 
longer change. [16] 

"Batch normalisation helps to combat the vanishing-gradient problem because it pre­
vents local fields of hidden neurons to grow. This makes it possible to use sigmoid functions 
in deep networks, because the distribution of inputs remains normalised. (...) It is an 
empirical fact that batch normalisation often speeds up the training." [3] 

Dropout 

Dropout is a very simple scheme that helps against overfitting. During training, a random 
portion of neurons in the network is ignored for each input pattern/mini-batch with the 
probability of p. This can be thought of as making the network adapt to the sparsity 
of the remaining neurons and making their effect on the output spread equally over the 
network. Another interpretation is that we are training different net architectures at 
the same time. When the training is done, the output of each neuron is multiplied by 
the probability p of a neuron being dropped out during training (this dropout scheme is 
known as weight averaging [25]). [3] [10] 

Figure 3.13: A N N without (left) and with dropout (right). [17] 

Data augmentation 

The general rule is that the bigger the training dataset, the better the network generalises. 
However, expanding a dataset manually can be very expensive. This leads to the idea 
of expanding it artificially. In image classification tasks, this can be done by randomly 
cropping, scaling, shifting and mirroring the data. [3] 

Early stopping 

" One way of avoiding overfitting is to use cross validation and early stopping. One splits 
the training data into two sets: a training set and a validation set. (...) The network 
is trained on the training set. During training, one monitors not only the energy function 
for the training set, but also the energy function evaluated on the validation data. As 
long as the network learns general features of the input distribution, both training and 
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validation energies decrease. But when the network starts to learn specific features of the 
training set, then the validation energy saturates, or may start to increase. At this point 
the training should be stopped." [3] 

When the training is done, the performance is measured using a set of 'unseen' data: 
the test set. [3] 

early stopping 

I validation set 

training set 
iterations 

Figure 3.14: Progress of training and validation losses. The plot is schematic, and the 
data is smoothed. The training is stopped when the validation energy begins to increase. 
[3] 

Transfer learning 

To create a well-generalising neural network, one need to have access to a dataset of a 
sufficient size. Therefore in practice, it is unusual to train an entire C N N from scratch 
(with random initialization). Instead, it is common to pretrain a C N N on a very large 
dataset (e.g. ImageNet) and then use the C N N either as an initialization or a fixed feature 
extractor for the task of interest. [10] 

One strategy here is to fine-tune the weights of the pretrained network by continuing 
backpropagation. It is possible to keep some of the earlier layers fixed and only fine-tune 
some higher-level portion of the network. This is motivated by the observation that the 
earlier features of a C N N contain more generic features (e.g. edge detectors) and the later 
layers become progressively focused on the details. It is common to use a smaller learning 
rate for C N N weights that are being fine-tuned, in comparison to the randomly-initialized 
weights. This is because we expect that the C N N weights already perform well and hence 
distorting them is not desirable. [10] [7] 

Data pre-processing 

For most cases, it is advisable to shift the data so it has a zero mean before the training 
begins. When classifying images, for example, there are two ways of doing this: first, by 
subtracting the mean image (image of size MxNx3 for RGB) from the entire dataset or, to 
subtract the so-called per-channel mean (three numbers in total). The motivation behind 
this is the following: if we think of adjusting the weights in the network as moving the 
decision boundary (Figure 3.8 (left)), it is intuitive that the data which is not distributed 
around the origin will cause the classification success to get very sensitive to weight 
changes.2 [8] Sometimes it is also appropriate to scale the data so it has the same variance 
in all directions. See [3] for more details and other techniques. 

2Weights in Figure 3.8 are the parameters that determine the slope of the decision boundary 
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3.3. Convolutional neural networks 
Convolutional Neural Networks (CNNs) are specifically designed to classify images. The 
biggest advantage they have in comparison to perceptrons is that they have fewer param­
eters. The number of inputs to the network for R G B images requires very large number 
of weights between the inputs and other layers. Reducing the number of neurons also 
regularises the network and reduces the risk of overfitting [3]. CNNs are trained with 
backpropagation as well as perceptrons. 

The fundamental blocks for learning regular A N N still apply here. CNNs are composed of 
McCulloch-Pitts neurons with activation functions. C N N architectures make the explicit 
assumption that the inputs are images (usually of the size MxNx3 for RGB) . Typical 
C N N architecture consists of layers that, in addition to the already presented principles, 
allow it to exploit the spatial and colour information encoded in the image. [7] In CNNs, 
it's common to divide up the operations the neuron performs into separate layers (for 
instance, applying activation function is implemented as an 'activation layer'). 

Convolution layers 

The weights in CNNs can be interpreted as learnable filters. Each of these filters is learnt 
to extract different features from the input image. Inputs of the convolutional layers in 
C N N are three-dimensional tensors. The result of the convolution operation (which is 
extended to the full depth of the input tensor) for a specific filter is an activation map: 
a two-dimensional representation of the locations of the specific feature in the image. In 
the very first layers of the network, the filters extract simple features such as corners, 
curves, edges of certain orientation, etc. When the input image is R G B , the filters in the 
first layer have the dimensions of MxMx3, where M is a small number (typically 3, 5, 7, 
etc.). As we go deeper into the network's layers, the filters are looking for more complex 
features. The number of filters per layer, the stride of the convolution operation, and 
the size of the filters are subject to different network architectures. When all filters are 
applied to the input tensor of the convolutional layer, their activation maps are stacked 
onto each other and become the input tensor for other layers. [7] 

Figure 3.15: The full-depth convolution operation in a convolutional layer. The input 
size corresponds to a small R G B image. The result of the series of convolutions is a tensor 
of stacked activation maps for the filters used in the layer. [13] 

3.3.1. C N N layer types 

3 96 
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Pooling layers 

The function of pooling layers is to reduce the size of the layers in the network. Pooling 
operation performs downsampling of the data encoded in the layers while retaining the 
spatial information about the locations of the detected features. Pooling can be inter­
preted as summarizing a small area of pixels to a single pixel based on a certain criterion. 
The most commonly used criterion is replacing a small pixel group by one with a maxi­
mum value. This is referred to as max-pooling. Similarly to conv layers, the size of the 
pooled sub-regions and the stride of the pooling operation are subject to the network 
architecture. [3] 

Max-pooling layers have no trainable parameters. Sometimes it is necessary to keep 
track of the original locations of the maximum elements. [25] 

0 5 -6 3 

-1 3 1 2 

4 1 0 -4 

1 7 -1 1 

Max-pooling 

Figure 3.16: Max-pooling of size 2x2 and stride 2. [13] 

Fully connected layers (FCN) 

CNNs were originally designed for image classification, where one classifies the entire im­
age. The structure of these networks consists of a series of conv layers followed by pool 
layers. When the input is downsampled (pooled) to a certain level, the output tensor is 
flattened and becomes an input to a multilayer perceptron (FCN - fully connected net­
work). The role of the convolutional part here is to create a downsampled representation 
of the features in the image. The perceptron then learns to classify this feature vector 
into the desired number of classes. [7] [39] 

Figure 3.17: Schematic of the standard C N N topology for image classification. [3] 
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3.3.2. Examples of C N N architectures 
Various C N N architectures have been introduced, each having a different number of con­
volution layers, size of the filters, strides taken by the filters during convolution, etc. 
In practice, one rarely designs a C N N from scratch; instead, it is advisable to choose 
the currently best-performing network; usually one that performs best on the ImageNet 
challenge. [7] Here is a summary of milestone architectures presented in recent years: 

• AlexNet 

The first work that popularized CNNs in computer vision was AlexNet [18]. The 
network had very similar architecture to LeNet [19], but was deeper, bigger, and 
featured convolutional layers stacked on top of each other (previously it was common 
to only have a single conv layer which was always immediately followed by a pool 
layer). [7] 

• GoogLeNet 

The ILSVRC 2014 winner was a convolutional network from Google [20]. Its main 
contribution was dramatically reducing the number of parameters in the network 
compared to AlexNet. [7] 

. VGGNet 

The runner-up in ILSVRC 2014 was the network from Karen Simonyan and Andrew 
Zisserman that became known as the VGGNet [21]. Its main contribution was in 
showing that the depth of the network is a critical component for good performance. 
Their final best network contains 16 conv/FC layers and, appealingly, features an 
extremely homogeneous architecture that only performs 3x3 convolutions and 2x2 
pooling from the beginning to the end. [7] 

• ResNet 

Residual network developed by Kaiming He et al. [22] was the winner of ILSVRC 
2015. It features special skip connections and a heavy use of batch normalisation. 
[7] 
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3.4. Semantic segmentation 
This section presents the most successful methods involving neural networks and super­
vised learning. In semantic segmentation, one assigns a class to each pixel of an input 
image, unlike in the classification task, where one classifies the entire image. 

Segmentation has always been one of the most fundamental areas of computer vision. 
The classic approaches are mostly based on the standard signal processing theory and some 
of them can still be implemented and give satisfactory results. However, this applies only 
to a limited number of use cases, where the conditions are very close to ideal and where 
the robustness of the algorithm is not crucial. To give an example of classic methods, 
one can refer to Thresholding, Region Growing and Mean-Shift segmentation [23]. More 
advanced methods which use machine learning classification have also been introduced, 
such as TextonBoost, TextonForest and Random Forest [25] [24]. These algorithms have 
fallen out of favour due to the massive success of A N N . 

3.4.1. Encoder-decoder architecture 
In the previous chapter, C N N architectures designed for image classification were pre­
sented. The size of the output layer of these networks is determined by the number of 
categories of classification because the C N N transfers to an F C N in the end. In semantic 
segmentation, however, one needs to get an image of the same resolution as the input 
image containing the information about a class of every pixel. To do this, the common 
scheme is introduced: the first part of the network is left unchanged but now, instead 
of the transition to F C N , various methods are implemented to upsample the encoded 
image features from the deepest layer of the C N N . This scheme is referred to as the 
encoder-decoder architecture. [12] 

Convolutional Encoder-Decoder 

Figure 3.18: SegNet - an example of encoder-decoder C N N architecture. [25] 

The purpose of the encoder is to downsample the input images while still representing 
their significant features. The decoder part of the algorithm then upsamples the output 
of the encoder to the original input image size. This is usually done by performing reverse 
operations to max-pooling and convolution. The last part of the decoder typically gives 
the final segmented image. 
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Shortly after the success of C N N in image classification challenges, there have been 
several segmentation architectures introduced which use C N N as the encoder. Some of 
the state-of-the-art architectures were, for instance, F C N , DeconvNet and U-Net (see 
[25]). These networks share the idea of having C N N incorporated as the encoder but 
differ in the form of the decoder part. However, the problem of training such networks 
due to a large number of trainable parameters, the design of the decoder and hence the 
need of introducing the cumbersome multi-stage training made them very difficult to use 
in practice. SegNet [25], introduced in 2015, differs from these architectures as it has a 
significantly lower number of parameters and the design of the encoder-decoder network 
allows it to be trained via standard method using backpropagation and SGD. [25] 

Input upsampling 

The upsampling in the decoding part of the network is done via two mechanisms: learnable 
transposed convolution and unpooling. 

Transposed convolution, just like the standard convolution used in CNNs, uses learn­
able filters. The difference is that it takes a single input point instead of a region, uses 
it to multiply each element of the filter and creates its imprint in the output layer. This 
scheme is illustrated in Figure 3.19 (left). [12] 

Figure 3.19: Transposed convolution. [37] 

There are several ways to impelement unpooling. In an encoder-decoder architecture, 
the corresponding layers in the encoder and decoder can, for example, share the original 
locations of the elements that were pooled in the encoding part. The decoder then uses 
these indices for upsampling, as shown in Figure 3.19 (right). This reconstructs the 
original positions of the features in the original image. Unpooling operation does not 
have any learnable parameters. [25] [12] 
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Max-unpooling 
• 

0 0 0 0 

0 1 0 2 

0 0 -1 0 

5 0 0 0 

Figure 3.20: Max-unpooling. The locations of the maximum elements were saved during 
max-pooling. The remaining elements are set to zero. 

3.4.2. SegNet 
SegNet is a deep encoder-decoder architecture for multi-class semantic segmentation re­
searched and developed by members of the Computer Vision and Robotics Group at the 
University of Cambridge. [26] 

The architecture consists of a sequence of encoders and a corresponding set of decoders 
followed by a pixel-wise softmax classifier. Typically, each encoder consists of one or 
more convolutional layers with batch normalisation and a ReLU non-linearity, followed 
by max-pooling. SegNet uses max-pooling indices in the decoders to perform upsampling 
of low-resolution activation maps (Figure 3.18). The entire architecture can be trained 
using SGD. [26] 

SegNet - encoder 

The architecture of the encoder network is topologically identical to the 13 convolutional 
layers in the VGG16 network. Each encoder in the encoder network performs convolution 
with a filter bank to produce a set of activation maps. These are then batch normalised. 
Then an element-wise ReLU is applied. Following that, max-pooling (with a 2x2 window 
and stride 2) is performed. Storing the max-pooling indices, i.e, the locations of the 
maximum feature value in each pooling window is memorised for each encoder feature 
map. [25] 

SegNet - decoder 

The decoders in the network upsample their input feature maps using the memorised 
max-pooling indices from the corresponding encoder feature maps. These feature maps 
are then convolved (using transposed convolution) with a trainable decoder filter bank to 
produce dense feature maps. A batch normalization step is then applied to each of these 
maps. The high dimensional feature representation at the output of the final decoder is 
fed to a trainable softmax classifier. The predicted segmentation corresponds to the class 
with maximum probability at each pixel. [25] The schematic of the SegNet architecture 
can be found in Attachment 1. 
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3.4.3. Bayesian SegNet 
Bayesian SegNet is a probabilistic variant of SegNet. It can predict pixel-wise class labels 
together with a measure of model uncertainty. This is achieved by Monte Carlo sampling 
with dropout at test time. The authors of the paper show that modeling uncertainty 
improves segmentation performance by 2-3 % compared to SegNet. The schematic of the 
Bayesian SegNet architecture can be found in Attachment 1. [24] 

Monte Carlo Dropout 

Monte Carlo Dropout (MCDO) sampling helps us understand the model uncertainty 
of the result. As explained in Chapter 3.2.3, the standard weight averaging dropout 
proposes to remove dropout at test time and scale the weights proportionally to the 
dropout percentage. M C D O , on the other hand, samples the network with randomly 
dropped out units at test time. [24] 

It is important to highlight that the probability distribution from M C D O sampling 
is significantly different from the 'probabilities' obtained from a softmax classifier. The 
softmax function approximates relative probabilities between the class labels, but not an 
overall measure of the model's uncertainty. [24] 

3.4.4. Evaluating segmentation performance 
The performance of semantic segmentation is often described by so called IoU (intercestion 
over union) metrics. IoU is the area of overlap between the predicted segmentation and 
the ground truth divided by the area of union between the predicted segmentation and 
the ground truth, as shown in the figure below. This metric ranges from 0-1 (0-100%) 
with 0 signifying no overlap and 1 signifying perfectly overlapping segmentation. [29] 

Figure 3.21: Intersection over union. [29] 

29 



4. Implementation and Method 
In this chapter, the original Caffe implementation of SegNet and Bayesian SegNet 

with their simplified versions SegNet Basic and Bayesian SegNet Basic will be tested on 
a custom dataset. Part of this will be evaluating the effect of various hyperparameters 
on training. This chapter will also give instructions on how to set up the software and 
hardware environments for running Caffe library for A N N . The entire network architecture 
and other code used in this section are available at [30] and [34]. 

4.1. C P U vs. G P U for training A N N 
Central processing unit (CPU) is the main computational unit of a computer and is 
designed to perform a wide variety of complex instructions. Current CPUs usually have 4 
to 8 separate cores, which allow them to run several tasks in parallel. Graphics processing 
unit (GPU), on the other hand, was originally designed for rendering computer graphics 
only. C P U has a much lower number of cores, but these run at a high frequency and are 
very capable in terms of the instructions they perform. Therefore, CPUs are great for 
sequential tasks. G P U comprises of a large number of 'simple' cores which makes it more 
suitable for computing parallel tasks. [11] 

The main part of the computations in A N N is matrix multiplication where G P U has 
the power of performing these operations by parts in parallel and speeds up the training 
significantly. [11] 

There are libraries such as C U D A and OpenCL that allow programmers to write their 
code in a usual manner and run it directly on a G P U . For the purposes of A N N , NVIDIA 
has also developed a library of the most commonly used C U D A primitives named cuDNN. 
[11] 

A C P U does not have its own memory resources (apart from very small memory 
sections called caches) and only has access to the system's R A M . External GPUs always 
come with their own block of R A M on the chip. The size of the R A M for the top-end 
GPUs ranges from 8 to 12 GB. When using GPUs to train A N N , the size of the R A M is 
crucial because the model with all its parameters resides in this memory. 

Tensor cores 

Tensor Core is a special G P U feature offered by NVIDIA cards. It enables mixed-precision 
computing by dynamically adapting calculations to accelerate throughput while preserv­
ing accuracy. The latest generation expands these speedups to a full range of work­
loads. From lOx speedups in AI training with float32 data type, to 2.5x boosts for 
high-performance computing with float64. [31] 
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4.2. Libraries for A N N 
As the architecture and training of A N N are getting more complex, it is very helpful to 
use programming tools with higher abstraction for their design. There are libraries such 
as Caffe, TensorFlow, and PyTorch for this. The common idea of these libraries is to make 
an abstraction of the network's architecture called computational graph. Therefore, the 
user can think of designing and training the network separately by applying an optimizer 
to the computational graph that represents the network's layers. [11] 

4.2.1. Caffe 
Caffe is a deep learning library made with expression, speed, and modularity in mind. 
It has been developed by Berkeley AI Research (BAIR) and by community contributors. 
[33] The main difference between this and other libraries is that the user often does not 
need to write any code at all. The architecture of the network (the computational graph) 
is described in a .prototxt file where one creates the layers of the network in the desired 
order. Also, rather than having an optimizer object (in Tensorflow for example), one 
creates another .prototxt file that contains parameters such as the optimizer type (SGD, 
Adam, etc.), learning rate, momentum constant and others. After both of these files are 
created, the user runs Caffe computation from the command line. The library is written 
in C++ and the pre-built binaries are executed when the computation starts. [11] 

Caffe comes with bindings for Python (CPW - Caffe Python wrapper, or pycaffe) and 
Matlab, which is very useful for the inference phase. The biggest downside of Caffe and 
C P W is that they are very poorly documented. 

Q> ^W* / ^ C o g n i t i v e Caffe ^ C h X r 3>Ea« 
Caffe2 ^ n a i n e r ^ MATLAB 

<2>xnet I 44 PaddlePaddle P Y T O R C H 
TensorFlow 

Figure 4.1: Examples of the best deep learning frameworks. [32] 
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4 . 3 . Setting up environment for Caffe 

4.3.1. Hardware configuration 
The G P U used for the computations has been selected according to the most up-to-date 
benchmarks and recommendations found online. When choosing a G P U in general, one 
needs to decide between A M D and NVIDIA chips. For A N N however, NVIDIA is the 
default choice because it's way more 'ANN-friendly' as it offers more features specifically 
designed for A N N computations. 

It's advisable to use an SSD in the training PC, because the data flow begins with 
reading the training data (images) from a storage, in this case from the computer's hard 
drive. Another possibility that some libraries offer is moving the training data into R A M 
before the training is initiated. Figure 4.2 shows the G P U used for training SegNet. 

v 

Figure 4.2: G I G A B Y T E GeForce R T X 2060 S U P E R AORUS 8G. [38] 

32 



4.3. SETTING UP ENVIRONMENT FOR CAFFE 

4.3.2. Software configuration 
Operating system 

The standard platform for running Caffe is Ubuntu, which is a Linux distribution from 
Cannonical based on Debian. The environment used was Ubuntu 18.04 LTS 64 bit. 
It is important to let the Ubuntu installer download the latest updates, or, after the 
installation, invoke the update command to ensure that the most up-to-date packages 
will be installed. For this, one can call: 

$ sudo apt update 
$ sudo apt upgrade 

Enabling NVIDIA driver 

Ubuntu 18.04 enables the default Nouveau graphics driver after the installation. Before 
taking other steps, it is vital to disable the Nouveau driver and use the NVIDIA driver 
instead. This is done by navigating to Application menu -> Software & Updates -> Addi­
tional drivers -> Using NVIDIA driver metapackage from nvidia-driver-XYZ (proprietary, 
tested) -> Apply changes. The driver version used was nvidia-driver-440. 

C U D A installation 

C U D A version is determined by the version of cuDNN compatible with the used Caffe 
version, which is cuDNN 5.1 in our case. The corresponding C U D A version is C U D A 8.0. 
On Ubuntu 18.04, the procedure is as follows: [32] 

• Download C U D A 8.0 runfile. Go to C U D A Legacy Releases and look for CUDA 
Toolkit 8.0 GA2 (Feb 2017). The standard .deb installer supports only Ubuntu 16.04 
LTS. Therefore, the installation must be performed via the runfile method. Navigate 
to Linux -> x86_64 -> Ubuntu -> 16.04 -> runfile (local) -> Base installer. Also, 
download the Patch file. 

• Perform the runfile installation of C U D A . Open the Ubuntu Terminal and 
run: [32] 

$ cd /path/to/cuda_8.0.61_375.26_linux.run # Navigates to a fol d e r 
with CUDA 

$ sudo chmod a+x cuda* # Makes cuda*.run executable 
$ ./cuda*.run — t a r mxvf # Unpacks the . r u n f i l e content 
$ sudo cp I n s t a l l U t i l s . p m /usr/lib/x86_64-linux-gnu/perl-base # Copy 

one of the extracted f i l e s to perl-base 
$ sudo sh cuda_8.0.61_375.26_linux.run — o v e r r i d e # Start the 

i n s t a l l a t i o n 
# The lic e n c e agreement 
$ accept 
# You are attempting to i n s t a l l on an unsupported configuration. Do 

you wish to continue? 
$ yes 
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# I n s t a l l NVIDIA Accelerated Graphics Driver f o r Linux-x86_64 
375.26? 

$ no 
# I n s t a l l the CUDA 8.0 Tool k i t ? 
$ yes 
$ <press enter> (leave deafult location) 
# Do you want to i n s t a l l a symbolic l i n k at /usr/local/cuda? 
$ yes 
# I n s t a l l the CUDA 8.0 Samples? 
$ no 

After the installation is done, ignore the ***WARNING: Incomplete installation! 
statement, because the NVIDIA driver is already installed. 
Now run the C U D A 8.0 Patch 2 installation in a similar fashion: 

$ sudo sh cuda_8.0.61.2_linux.run 

• Perform the post-installation actions. The system needs to know the location 
of C U D A executables. The usual way is to set the " P A T H " variables in the current 
session of the Ubuntu Terminal. However, it is useful to add these permanently to 
system's -/.bashrc file: [32] 

$ sudo gedit -/.bashrc # Opens the .bashrc f i l e i n text editor 

In the text editor, append the following two statements to the end of the file: 

export PATH=/usr/local/cuda-8.0/bin${PATH:+:${PATH» 
export LD_LIBRARY_PATH=/usr/local/cuda-8.0/lib64\ 

${LD_LIBRARY_PATH:+:${LD_LIBRARY_PATH» 

From this point on, all newly opened Terminal sessions should have the paths set 
correctly. 

Installation of cuDNN 

The NVIDIA C U D A Deep Neural Network library (cuDNN) is a GPU-accelerated library 
of primitives for deep neural networks. It provides highly tuned implementations for 
standard routines such as forward and backward convolution, pooling, normalization, 
and activation layers. [32] 

• Download cuDNN 5.1 for C U D A 8.0. To get the corresponding cuDNN ver­
sion for Caffe and C U D A 8.0, go to cuDNN Archive (requires login) and look for 
Download cuDNN v5.1 (Jan 20, 2017), for CUDA 8.0 -> cuDNN v5.1 Library for 
Linux. Extract the archive, navigate to the extracted folder and copy the files to 
the C U D A 8.0 installation folder: [32] 
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$ t a r -xf cudim-8.0-linux-x64-v5.1.tgz 
$ cd cuda 
$ sudo cp -a include/cudnn.h /usr/local/cuda/include/ 
$ sudo cp -a lib64/libcudnn* /usr/local/cuda/lib64/ 

Setting up Python editor 

The scripts for evaluating SegNet performace are written in Python. It is advisable to use 
Pycharm Community Edition as an editor, because it offers a very convenient combination 
of GUI and the standard command line environment. 

It is good practice to use Python Virtual Environment to easily maintain the required 
packages and to make the project transferable to another Linux P C . In Pycharm, one 
can do this in an active Pycharm project by navigating to File -> Settings -> Project 
-> Project Interpreter -> <wheel icon on the right> -> Add. The standard choice is the 
Virtualenv Environment. The Base interpreter location on a fresh Ubuntu installation is 
/usr/bin/python3.6. When we click OK, Pycharm creates a venv folder at the specified 
location that includes all package files we install. 

When the virtualenv is configured properly, it will automatically activate when we 
enter the Ubuntu Terminal session by clicking on the Terminal button located at the 
bottom bar of Pycharm window. From this Terminal, we will be launching all SegNet 
scripts and use it to install the required packages by calling: 

(venv) user@user:/current/path$ pip3 i n s t a l l <package-name> 

4.3.3. Building Caffe for SegNet 
Caffe is an open-source library. The authors of the SegNet created a slightly modified 
version of Caffe called caffe-segnet that supports special SegNet layer types [upsample, 
bn, dense_image_data and softmax_with_loss (with class weighting)). 

In addition, since the original caffe-segnet supports just cuDNN v2, which is not 
supported by newer GPUs, there is another version of caffe-segnet available at [34] that 
supports cuDNN 5.1. The original author claims that it decreases the inference time by 
25 % to 35 %. Therefore, this version was selected for running SegNet. From this point 
on, the term 'Caffe' will be equivalent to ' caffe-segnef in the text. 
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Install Caffe dependencies. Caffe is available as a source code and needs to be 
compiled on the target platform. For this, several steps need to be taken to ensure 
that all libraries are available during the build: [33] 

$ sudo apt i n s t a l l python3-opencv # OpenCV, version 3 
$ sudo apt-get i n s t a l l libatlas-base-dev # Atl a s BLAS l i b r a r y 
$ sudo apt-get i n s t a l l libprotobuf-dev libleveldb-dev libsnappy-dev 

libopencv-dev l i b h d f 5 - s e r i a l - d e v protobuf-compiler 
$ sudo apt-get i n s t a l l l i b b o o s t - a l l - d e v # Boost 
$ sudo apt-get i n s t a l l l i b g f l a g s - d e v libgoogle-glog-dev liblmdb-dev 
$ sudo apt-get i n s t a l l python3-pip 
$ sudo pip3 i n s t a l l protobuf 
$ sudo apt-get i n s t a l l the python3-dev 

Download Caffe (caffe-segnet-cudnn5) source code. Go to [34] and clone/-
download it. 

Set the bu i ld configuration file. The build is done via the make command, which 
needs the Makefile.config file to be present in the parent directory (caffe-segnet-
cudnn5-master). This file contains the build options and needs to be configured 
properly. Fortunately, the correct form of Makefile.config is part of this thesis and 
can be found in [34]. 

Install gcc/gH—|- compilers. The C U D A / c u D N N libraries used during the build 
are compatible only with gcc/g++ compilers of version 5. To install these, run: 

$ sudo apt i n s t a l l gcc-5 g++-5 
# Create symbolic l i n k s so CUDA can see the proper compiler b i n a r i e s 
$ sudo In -s /usr/bin/gcc-5 /usr/local/cuda/bin/gcc 
$ sudo In -s /usr/bin/g++-5 /usr/local/cuda/bin/g++ 

Initiate the bu i ld . Once the Make file, config is located in the caffe-segnet-cudnn5-master 
directory, everything should be ready for the final step. Execute these commands 
to initiate and test the Caffe build (don't forget to build pycaffe (Caffe Python 
wrapper)): 

make a l l -j4 # s t a r t b u i l d 
make t e s t -j4 # te s t b u i l d 
make runtest # run Caffe and tes t i t 
make pycaffe # b u i l d pycaffe 



4.4. IMAGE ANNOTATION 

4.4. Image annotation 
In supervised learning, one needs to manually create the training data consisting of inputs 
and corresponding targets (called ground truths in segmentation). There's a variety of 
annotation tools available on the internet, both under commercial and free licenses. 

Labelbox 

Labelbox [36] is a paid online annotation tool. The best feature of Labelbox is that it 
allows sharing the datasets with other users and therefore speeding up the labeling signif­
icantly. Labelbox offers free access to students to the full version. When the labeling is 
finished, one exports the image/label pairs to a .JSON file. This file contains links to the 
annotated images that are stored online and it is necessary to download them separately 
(Labelbox is still in development, this is valid at the time of publishing). To automate 
this process, one can call the download() function from utilities.py which is available in 
[30]. 

The final train, validation and test datasets used contain 2600 + 90 + 179 images 
from an outdoor environment. The location where the images were taken is the same in 
all cases. However, the scenes differ in their weather conditions, daytime, type of path, 
etc. The corresponding .JSON files are available at [30]. 
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4.5. Setting up SegNet 
Caffe implementation of A N N typically consists of four .prototxt files: train.prototxt, 
solver.prototxt, test.prototxt and inference.prototxt. The train, test and inference files are 
almost identical except for a few differences in the very first/last layers of the network. 
The train file is used together with the solver file to train the network. The network 
architecture is determined by the train file and the parameters for optimization reside 
in the solver file. The test file is used by Caffe when one needs to test the network 
periodically during training on a validation dataset. [33] The inference file is used for 
running the trained network. The files used in this section are available at [30] 

TRAINING 

solver.prototxt 

bn_statistics.py .caffemodel (final) inference.py (pycaffe) 

Figure 4.3: Using Caffe implementation of SegNet - schematic diagram. 

4.5.1. Solver settings 
The solver file contains the optimization parameters. The description of the parameters 
can be found in the original Caffe documentation [33]. A n example of the parameters 
used can be found in the snippet below. 

// Training f i l e 
net: "/path/to/train.prototxt" 
// Caffe GPU version 
solver_mode: GPU 
// Solver type 
type: "AdaDelta" 
// I n i t i a l learning r a t e , changes according to l r _ p o l i c y 
base_lr: 0.061 
// Determines how the learning rate changes during t r a i n i n g 
l r _ p o l i c y : " f i x e d " 
// Show loss and accuracy every 'display' i t e r a t i o n s 
display: 130 
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1/ Max number of i t e r a t i o n . One i t e r a t i o n = a pass of one mini batch 
max_iter: 3000 
// Weight decay facto r 
weight_decay: 0.0005 
// Saves the weights a f t e r 'snapshot' i t e r a t i o n s 
snapshot: 1000000 
snapshot_prefix: "/path/to/snap" 

Listing 4.1: Contents of solver.prototxt [30] 

4.5.2. Training 
Input layer and input pre-processing 

The train file begins with the DenselmageData layer. This layer specifies the size of the 
mini-batch. The value is limited by the amount of memory that the G P U offers. When 
a larger size of the mini batch is needed, Caffe can specify the iter_size parameter in the 
solver file. The total mini-batch size in Caffe is always a result of iter_size • batch_size. 
By default, the value of iter_size is set to 1. [33] 

The shuffle parameter in the DenselmageData layer determines whether the training 
dataset is shuffled after each epoch. This is usually desirable as it helps the optimization 
algorithm by adding more stochasticity to the computation. The mirror parameter applies 
random mirrors to the input data and hence augments the dataset. If one needs to apply 
more complex data augmentation techniques, it is necessary to perform them separately 
and feed the DenselmageData layer with already processed images. [33] 

name: "segnet_train" 
layer { 
name: "data" 
type: "DenselmageData" 
top: "data" 
top: " l a b e l " 
dense_image_data_param { 

source: "/path/to/train_image_paths.txt" 
batch_size: 4 
shu f f l e : true 
mirror: true 
} 

// Per-channel mean 
transform_param { 

mean_value: 129 // B component 
mean_value: 126 // G 
mean_value: 126 // R 
> 

} 

Listing 4.2: Input layer in train.prototxt [30] 
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Images and labels are loaded as .jpg and .png files directly from the hard drive (there 
are more methods that Caffe offers, see [33]). The path to the image_paths.txt file that 
contains the image/label paths in the following format 

/path/to/image.jpg /path/to/label.png 

is entered as the source parameter of the DenselmageData layer. This file is generated 
using the make_txt() function from utilities.py. The script will also make separate direc­
tories for training, testing and validation datasets by calling make_dirs(). 

The method used for the mean subtraction was the per-channel mean. The per_chan-
nel_mean function in utilities.py calculates the mean values for R, G and B components 
of the images in the training set. These three numbers are then placed into the Denselm­
ageData layer in B G R order. 

Output dimensions 

In the original version, SegNet has 11 segmentation classes. This corresponds to the pixel 
values in the .png label files starting from zero. For instance, the segmentation mask for 
the class number 1 has a pixel value of 0 in the label file, etc. However, the goal of this 
thesis is to set the network to segment only two classes - path, background. To change the 
size of the output classifier, it is necessary to change the output dimensions of the last 
conv layer: 

// The l a s t conv layer i n the network 
layer { 

bottom: "convl_2_D" 
top: "convl_l_D" 
name: "convl_l_D" 
type: "Convolution" 

convolution_param { 

num_output: 2 // Set t h i s to the number of classes 
pad: 1 
ker n e l _ s i z e : 3 

} 

} 

Listing 4.3: Setting number of outputs in train.prototxt [30] 
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Softmax classifier 

" When there is large variation in the number of pixels in each class in the training set (e.g 
road, sky and building pixels dominate the CamVid dataset) then there is a need to weight 
the loss differently based on the true class. This is termed class balancing. We use median 
frequency balancing [13] where the weight assigned to a class in the loss function is the 
ratio of the median of class frequencies computed on the entire training set divided by the 
class frequency. This implies that larger classes in the training set have a weight smaller 
than 1 and the weights of the smallest classes are the highest. We also experimented 
with training the different variants without class balancing or equivalently using natural 
frequency balancing." [25] 

// The softmax c l a s s i f i e r with cross-entropy loss 
layer { 

name: "loss " 
type: "SoftmaxWithLoss" 
bottom: "convl_l_D" 
bottom: " l a b e l " 
top: "lo s s " 
softmax_param {engine: CAFFE} 
loss_param: { 

weight_by_label_freqs: f a l s e 
} 

} 

layer { 
name: "accuracy" 
type: "Accuracy" 
bottom: "convl_l_D" 
bottom: " l a b e l " 
top: "accuracy" 
top: "per_class_accuracy" 

} 

Listing 4.4: Output layers of train.prototxt [30] 

SegNet uses the cross-entropy loss as the loss function for training the network. In 
Caffe, median frequency balancing is available via the weight_by_label_Jreqs parameter of 
the SoftmaxWithLoss layer. Since the dataset used has only two classes whose occurrences 
can be considered balanced, this option is set to false. 

Training initialization 

Training the network from scratch is initiated by entering these commands: 

# Navigate to the caffe-segnet f o l d e r 
$ cd /path/to/caffe-segnet/build/tools/ 
# I n i t i a t e t r a i n i n g from scratch 
$ ./caffe t r a i n -solver /path/to/segnet_solver.prototxt 
# or resume t r a i n i n g from a solver checkpoint (snapshot) 
$ ./caffe t r a i n -solver /path/to/segnet_solver.prototxt -snapshot 

/path/to/snapshot_iter_XY.solverstate 
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The encoder and decoder weights are initialized using the M S R A method by default. 
Another scenario is when we want to use transfer learning (see Caffe Model Zoo in [33] 
where people share their weights and networks). In this case, Caffe needs a path to the 
.caffemodel file of the pre-trained network. The corresponding command would be: 

$ ./caffe t r a i n -solver /path/to/solver.prototxt -weights 
/path/to/pre_trained_weights.caffemodel 

There are multiple ways of tuning the pre-trained model when using transfer learning. 
For instance, one can experiment with the learning rate of the pre-trained weights: they 
can either stay unchanged (zero learning rate) or the learning rate applied to them is 
lower than the global value used in other layers. [7] In encoder-decoder architecture, one 
usually applies transfer learning only to the encoder network as it has no other purpose 
than extracting general features from the image. The corresponding setting in the train 
file is the set of lr_mult parameters by which the learning rate for the layer is multiplied. 
A n example of setting a Caffe layer where that layer stays unchanged can be found in the 
snippet below. 

layer { 
bottom: "data" 
top: " c o n v l _ l " 
name: " c o n v l _ l " 
type: "Convolution" 
// Learning rate f a c t o r - weights 
param { 

lr_ m u l t : 0 // Zero value corresponds to fre e z i n g t h i s parameter 
decay_mult: 0 // Zero value corresponds to fre e z i n g t h i s parameter 

} 

// Learning rate f a c t o r - thresholds 
param { 

lr_ m u l t : 0 // Zero value corresponds to fre e z i n g t h i s parameter 
decay_mult: 0 // Zero o r i g i n a l l y , remains unchanged 

} 

> 

Listing 4.5: Setting up train.prototxt for transfer learning [30] 
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4.5. SETTING UP SEGNET 

4.5.3. Inference 
The network is ready to be deployed in this phase. At this point, it is very convenient 
to use pycaffe for running the model by feeding it with input data and calculating the 
segmentation accuracy. To run the segmentation, several preparation steps must be taken 
first. 

Calculating statistics for batch normalisation 

The batch normalisation layers in SegNet shift the input feature maps according to their 
mean and variance statistics for each mini- batch during training [3]. At inference time, 
we must use the statistics for the entire dataset and obtain the final .caffemodel for the 
inference phase. [28] We do this by calling compute_bn_statistics.py which is meant to 
be run from the command line and needs to get command-line parameters. In PyCharm, 
we need to switch to Virtual Environment (venv) by opening Terminal and call: 

(venv) userOuser:/path/to/Scripts$ python3 original_compute_bn_statistics.py 
/path/to/train.prototxt /path/to/snap_iter_XY.caffemodel 
/path/to/inference_folder 

The network architecture for the inference is now in the inference file and the same 
is in the train file apart from the input and output layers and the settings of the batch 
normalisation layers. The snippet below shows the changes of the output: the loss function 
is no longer computed and the only output we care about is the set of softmax probabilities. 
The DenselmageData layer is also skipped, because the data will be provided via pycaffe. 
Part of this is switching all batch normalisation layers to the I N F E R E N C E mode. [16] 

The script takes the desired .caffemodel file specified in snap_iter_XY. caff emodel. 
calculates new 7, f3 parameters for the batch normalisation layers and saves everything 
to final_weights. caff emodel. The new .caffemodel file is now stored in the specified infer-
ence_folder. [16] 

// Inference, input layer 
name: "segnet_inference" 
input: "data" 
input_dim: 1 // Always 1 f o r SegNet 
input_dim: 3 
input_dim: 360 
input_dim: 480 

Listing 4.6: Replacing input layer type in inf erence.prototxt [30] 

Running the segmentation 

The script segnet_inference.py is used for running the segmentation. One must provide 
the network with images either by specifying a path to a video file or by specifying a 
sequence of image names to look for in the image folder (this is a standard OpenCV 
convention). In each step of the algorithm, we must subtract the per-channel mean from 
the input image that is being processed. This is part of the script and one only needs to 
provide the B G R values used at train time. 
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4.5. SETTING UP SEGNET 

Once an appropriate test set of images is ready, the segmentation is started by calling: 

(venv) user@user:/path/to/Scripts$ python3 segnet_inference.py 
/path/to/inference.prototxt /path/to/final_weights.caffemodel 
/ p a t h / t o / v i d e o f i l e . a v i 

4.5.4. Testing 
The test file is used only for calculating the loss of the validation dataset. It is very similar 
to the train file: it has a DenselmageData layer with a path to the validation dataset, 
mirror and shuffle parameters set to false, batch_size to 1 and the SoftmaxWithLoss 
followed by Accuracy layers as the output. The subtraction of the per-channel mean is 
still present and the values computed from the training dataset are the same as in the 
training phase. 

For testing, it is necessary to use the .caffemodel file generated by compute_bn_statis-
tics.py to ensure the proper function of the batch normalisation layers, which must be in 
the I N F E R E N C E mode and must differ from the settings of the train file. 

name: "segnet_test" 
layer { 

name: "data" 
type: "DenselmageData" 
top: "data" 
top: " l a b e l " 
dense_image_data_param { 

source: "/media/phil/SegNet/data/custom/val_linux.txt" 
batch_size: 1 // Always 1 f o r SegNet 

} 

// Per-channel mean, BGR 
transform_param { 

mean_value: 129 
mean_value: 126 
mean_value: 126 

> 

Listing 4.7: Setting up the input layer of test.prototxt [30] 

Testing is executed similarly as training using the command line: 

# Navigate to the caffe-segnet f o l d e r 
$ cd /path/to/caffe-segnet/build/tools/ 
# I n i t i a t e t e s t i n g 
$ ./caffe t r a i n -model /path/to/segnet_test.prototxt -weights 

/path/to/final_weights.caffemodel 
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4.5. SETTING UP SEGNET 

4.5.5. Bayesian SegNet 
Since Bayesian SegNet differs from SegNet only in terms of added dropout layers and a 
different method of performing the inference the above-mentioned procedures for setting 
the solver and training are also applicable. Therefore, one can start the training by using 
commands from the previous section. One must also not forget to replace the paths of 
the train and solver files. 

The input layer in the inference file has one major difference: unlike in SegNet, the first 
input_dim parameter at the top of the inference file represents the number of M C D O sam­
ples and can be adjusted. At inference time, the script passes the same image input_dim 
times and simply averages the output of the network. For this reason, the dropout layers 
that are inactive by default when Caffe is performing inference (TEST, in Caffe termi­
nology) must be set to active in this case. The corresponding parameter in the dropout 
layer is sample_weights_test: true. 

The batch normalisation layers are set to I N F E R E N C E mode. The final .caffemodel 
is obtained the same way as in SegNet by calling compute_bn_statistics.py. Here, un­
like during inference time, the network's output is computed using the weight averaging 
technique instead of M C D O . 

layer { 
bottom: " c o n v l _ l " 
top: " c o n v l _ l " 
name: "convl_l_bn" 
type: "BN" 
bn_param { 

bn_mode: INFERENCE // Inference mode of t h i s batch norm, layer 

} 

} 

layer { 
name: "encdrop5" 
type: "Dropout" 
bottom: "pool5" 
top: "pool5" 
dropout_param { 

dropout_ratio: 0.5 
sample_weights_test: true // For Monte Carlo Dropout 

} 

Listing 4.8: Setting M C D O in inference.prototxt [30] 
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The setting of the test file remains the same as in SegNet: input is provided by the 
DenselmageData layer, batch_size is set to 1 and the batch normalisation layers are in 
I N F E R E N C E mode. The dropout layers can also be set to active here. This test file still 
only serves for checking the validation loss. 

The inference is initiated by calling: 

(venv) userOuser:/path/to/Scripts$ python3 bayesian_segnet_inference.py 
/path/to/inference.prototxt /path/to/final_weights.caffemodel 
/ p a t h / t o / v i d e o f i l e . a v i 

Here the scripts also visualizes the statistics of M C D O sampling: the variance of the 
output segmentation computed from all M C D O samples. 

4.5.6. SegNet Basic and Bayesian SegNet Basic 
SegNet Basic and Bayesian SegNet Basic are networks provided by the SegNet authors 
and are similar to their full versions but have fewer layers (see Attachment 1). These 
shallow versions are used in the same way as their parent architectures. Therefore, the 
same training and inference procedures apply to SegNet+SegNet Basic and Bayesian 
SegNet+Bayesian SegNet Basic. 
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4.6. Optimization of hyperparameters 
Hyperparameters are parameters that are set before the training begins and do not change 
during the training. The choice of hyperparameters is a task in its own right and requires a 
sufficient amount of trial and error. There are some general approaches (mostly empirical) 
one can follow to find the right parameters. The goal is to ensure that the network reaches 
an optimal value of the loss function. [7] 

Optimizer 

Every training of a neural network starts with the choice of an optimizer. As the most 
recent research suggests, Adam is the default choice for training CNNs. If the C N N is 
built from scratch, it is advisable to start from the simplest SGD optimizer and observe 
the values of the loss function to detect potential problems in the architecture or the code. 
[10] 

Learning rate 

The parameter that has the biggest effect on training is the learning rate: it is the first 
parameter one should set. It is recommended to start a coarse search first while observing 
the loss for both training and validation datasets for a few initial epochs. Then, after the 
training is done, choose a thinner interval of optimal learning rates and perform a finer 
search. [9] 

As the learning rate has a multiplicative effect on the gradient accumulation during 
mini-batch training, it is logical to pick the values from the logarithmic space. [9] 

Cross-validation strategy 

This strategy is also referred to as early stopping. The idea is that one observes both 
training and validation loss during training. When these losses go apart, the network tends 
to overfit to the training data. This is a crucial step when finding optimal hyperparameters 
and it must always be checked. [7] 

Regularisation 

When building a network from scratch, one starts with a simple SGD algorithm with no 
regularisation involved to ensure that the loss values are reasonable. After we check for 
errors in the code and after the network trains with SGD, regularisation is turned on. It 
is usually set to a very small value, typically of the order 10~4 [9]. 
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5. Results 
The segmentation networks introduced in the previous chapter, SegNet, Bayesian Seg-

Net and their simplified versions (Basic), were trained using the described techniques and 
various hyperparameters. The default optimizer for training CNNs is usually Adam, but 
its implementation in Caffe takes much more memory than other algorithms. That is why 
this thesis chose AdaDelta as its training algorithm, which is the pick of many users of 
the SegNet architecture [35]. 

As AdaDelta adapts the learning rate over the course of the training process, there is 
no longer a need to manually tune the learning rate decay scheme (which would become 
another hyperparameter). Therefore, the first tuned hyperparameter was the base learning 
rate for the AdaDelta algorithm. The search was initiated within a coarse interval of 
values: < 10" 3 ,10° >. Since the Caffe implementation of SegNet comes with custom 
scripts for calculating batch normalisation statistics for the inference phase, checking the 
validation loss periodically becomes extremely demanding on memory and time inefficient. 
Therefore, the validation loss was checked only once, at the end of the last training epoch, 
to ensure that the values of losses had not diverged. 

A l l variants of SegNet were trained using transfer learning where the encoder weights 
are pre-trained and either stay unchanged or their learning rate is decreased. In the case 
of Bayesian SegNet and SegNet, the encoder was initiated using VGG16 weights. For 
SegNet Basic and Bayesian SegNet Basic, the encoder was initiated from a model trained 
on the CamVid dataset which is available at SegNet Model Zoo. 

After a reasonable learning rate value was found, the random search was limited to 
the close interval around it. Then the training was executed until no further change in the 
loss function was observed. In the original paper [25], the authors use L2 regularization. 
The value of the corresponding weight_decay hyperparameter remained as the SegNet 
authors suggest. 

The difference observed across the network variants was the time it took to achieve 
low loss values. This is influenced by the size of the network (Basic versions train faster) 
and the dropout settings (dropout slows down the training). 

Figures 5.1 and 5.2 are examples of the learning rate tuning (Bayesian SegNet). The 
network was trained using transfer learning. The figures below show two training schemes 
applied to the pre-trained encoder: in Figure 5.1, the encoder weights stay unchanged 
during the training. This, apparently, makes it harder for the decoder to adapt. Also, 
training with learning rates that seem to work well initially makes the loss diverge from 
the optimal value in the last few epochs. In Figure 5.2, on the other hand, the encoder 
weights are allowed to change but only with a decreased (by a factor of 10) learning rate. 
This scheme tends to give more stable training results and faster training. Therefore, this 
second scheme was applied to all variants of SegNet. 

It turns out that larger values of the learning rate tend to work better with AdaDelta 
and lead to better values of the loss function. 
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Figure 5.1: Coarse search of the learning_rate parameter, Bayesian SegNet. The train­
ing loss is observed for 30 epochs and the data is smoothed. The encoder was initialized 
using pre-trained VGG16 model and the corresponding layers stayed unchanged during 
the training. 

Figure 5.2: Coarse search of the learning_rate parameter, Bayesian SegNet. The train­
ing loss is observed for 30 epochs and the data is smoothed. The encoder was initialized 
using pre-trained VGG16 model and the learning rate of the corresponding layers is de­
creased by the factor of 10 during the training. 
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Table 5.1 summarizes the best training results obtained for all SegNet architectures. 
The metrics used for evaluation is the IoU for each class: class 0 (background), class 
1 (path). It also contains other useful information such as the inference and training 
times. It is evident that the best-performing architecture in terms of computational cost 
is SegNet Basic. Bayesian versions of SegNet repeat the inference based on the number 
of M C D O samples and hence take longer to evaluate. The inference runs on G P U as well 
as the training. 

Architecture base lr weight 
decay 

batch 
size 

M C D O 
samples 

SegNet 0.95 0.0005 4 -

SegNet 
Basic 0.75 0.0005 4 -

Bayesian 
SegNet 0.5 0.0005 4 8 

Bayesian 
SegNet Basic 0.85 0.0005 4 8 

IoU 
class 0 

IoU 
class 1 

Inference 
time [ms] 

Training 
epoch time [s] 

SegNet 0.965 0.971 42 368 

SegNet 
Basic 0.966 0.972 23 312 

Bayesian 
SegNet 

0.974 0.979 305 432 

Bayesian 
SegNet Basic 0.967 0.972 177 313 

Table 5.1: Statistics for all SegNet variants on the test dataset. The inference was ran on 
G P U . The learning rate of encoder layers was decreased by a factor of 10 during training. 

Figure 5.3 shows the final segmentation results for several image scenes from the test 
dataset. For Bayesian versions of SegNet, the segmentation comes with an uncertainty 
plot where light regions mean larger variance of M C D O samples during inference. The 
uncertainty is averaged over all segmentation classes. We see that the network is more 
uncertain in regions that are close to object boundaries. Also, the full versions of the 
architectures (SegNet and Bayesian SegNet) tend to give more precise results on the 
boundaries. They are primarily designed for more complex scenes with multiple classes 
and the encoder is more capable of extracting finer features as the model capacity is 
higher. In addition, the pre-trained encoder for the full versions was trained on more 
images compared to the one used for the initialization of the Basic versions. On the other 
hand, the Basic versions might offer much better performance in practical applications 
where the number of classes is small. 
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SegNet Basic prediction 

SegNet prediction 

Bayesian SegNet Basic prediction 

Bayesian SegNet Basic - average model uncertainty 

*K - r f v / 
Bayesian SegNet prediction 

Bayesian SegNet - average model uncertainty 

Figure 5.3: Comparison of the segmentation performance of all SegNet variants. The 
Bayesian versions of the architecture give the estimate of the model uncertainty, where the 
lighter regions mean higher variance across the M C D O samples taken during inference. 
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6. Conclusion and Future Work 
This thesis presented some of the most recent A N N architectures used for image seg­

mentation together with their Caffe implementations. A n extensive step-by-step proce­
dure for setting up the software and hardware environments was described and tested 
on a fresh installation of Ubuntu. Part of the reason for this was to show the benefits 
of using Debian based distributions of Linux for working with A N N libraries: the proce­
dure described by shell commands is very clear and can be easily repeated on a different 
machine. 

The Caffe implementation and auxiliary Python scripts for the presented networks 
were tuned for the purpose of the thesis. The goal was to perform a segmentation on a 
custom dataset with two object classes. The dataset consisting of more than 2600 images 
was created using the best currently available online annotation tool (Labelbox). In the 
training phase, the networks were adapted for various transfer learning strategies and 
showed the power of using pre-trained encoders when the dataset is small. The training 
hyperparameters were tuned according to common strategies. As a result, all SegNet 
variants were successfully trained using AdaDelta optimization and achieved very good 
values of segmentation accuracy: over 90 % IoU on the test dataset. There is always room 
for further tuning of hyperparameters and expanding the dataset. 

The performance of the various architectures was observed and compared during the 
inference phase. This gives an idea of the computational power needed for further imple­
mentations. The probabilistic variants of SegNet can estimate the overall model uncer­
tainty which helps decision making when the network is used in practical applications, 
such as self-driving robots. 
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