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Abstract 
Regular expression matching has an irreplaceable role in software development. The speed 
of the matching is crucial since it can have a significant impact on the overall usabil
ity of the software. However, standard approaches for regular expression matching suffer 
from high complexity computation for some kinds of regexes. This makes them vulnera
ble to attacks based on high complexity evaluation of regexes (so-called ReDoS attacks). 
Regexes with counting operators, which often occurs in practice, are one of such kind. Suc
cinct representation and fast matching of such regexes can be archived by using a novel 
counting-set automaton. We present a C++ implementation of a matching algorithm based 
on the counting-set automaton. The implementation is done within the RE2 library, which 
is a fast state-of-the-art regular expression matcher. We perform experiments on real-life 
regexes. The experiments show that implementation within the RE2 is faster than the 
original C# implementation. 

Abstrakt 
Vyhledávání regulárních výrazů má ve vývoji softwaru nezastupitelné místo. Rychlost vyh
ledávání může ovlivnit použitelnost softwaru, a proto je na ni kladen velký důraz. Pro 
určité druhy regulárních výrazů mají standardní přístupy pro vyhledávání vysokou složi
tost. Kvůli tomu jsou náchylné k útokům založeným na vysoké náročnosti vyhledávání 
regulárních výrazů (takzvané ReDoS útoky). Regulární výrazy s omezeným opakováním, 
které se v praxi často vyskytují, jsou jedním z těchto druhů. Efektivní reprezentace a rychlé 
vyhledávání těchto regulárních výrazů je možné s použitím automatu s čítači. V této práci 
představujeme implementaci vyhledávání regulárních výrazů založeném na automatech s čí
tači v C++. Vyhledávání je implementováno v rámci RE2, rychlé moderní knihovny pro 
vyhledávání regulárních výrazů. V práci jsme provedli experimenty na v praxi používaných 
regulárních výrazech. Výsledky experimentů ukázaly, že implementace v rámci nástroje 
RE2 je rychleší než původní implementace v jazyce C#. 
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Rozšířený abstrakt 
Vyhledávání regulárních výrazů hraje důležitou roli ve vývoji softwaru. Používá se například 
pro vyhledávání a nahrazování textu, validaci dat, nebo zvýrazňování syntaxe. Na rychlost 
vyhledávání regulárních výrazů je kladen velký důraz, protože může ovlivnit použitelnost 
softwaru. Některé přístupy k vyhledávání nemají zaručenou složitost a jejich použití může 
mít výrazný vliv na používání aplikací. V nejhorším případě může docházet až k nedostup
nosti služeb, způsobené nevhodným regulárním výrazem, jehož zpracování má za následek 
vysoké využívání systémových prostředků. Na vysoké náročnosti zpracování některých reg
ulárních výrazů je založený i útok typu odepření služby (denial of service), takzvaný regular 
expression denial of service (ReDoS). 

Dnešní moderní nástroje pro vyhledávání regulárních výrazů často používají algoritmy 
založené na zpětném navracení (tzv. backtarcking algoritmy). Algoritmy založené na zpět
ném navracení vytvářejí z regulárního výrazu nedeterministický konečný automat a provádí 
jeho simulaci. Velkou nevýhodou těchto algoritmů je jejich složitost, která může být v ne
jhorším případě až exponenciální. 

Dalším přístupem k vyhledávání regulárních výrazů jsou algoritmy založené na deter
ministických konečných automatech. Ty mohou být bud předpočítané, nebo se může deter-
minizace provádět v průběhu vyhledávání. Předpočítané automaty mají výhodu v rychlosti 
vyhledávání, složitost tohoto algoritmu je lineární vzhledem k délce vstupního textu. Nevý
hodou je ale právě předpočítávání automatu, u kterého může docházet ke stavové explozi. 

Při provádění determinizace v průběhu vyhledávání dochází k simulaci nedetermini
stického konečného automatu. Tímto způsobem je možné eliminovat riziko stavové exploze. 
Dnešní moderní nástroje navíc používají cache paměť, kam si postupně ukládají již vy
počítané části automatu. Tím částečně řeší problém se složitostí výpočtu v případě, že 
stavy deterministického automatu jsou tvořeny velkým počtem stavů nedeterministikého 
automatu. Výsledek takového výpočtu mají uložený a nemusí ho tedy provádět znovu. 
Exploze stavového prostoru je nicméně problematická pro všechny varianty algoritmů za
ložených na konečných automatech. 

Častou příčinou stavové exploze jsou regulární výrazy s omezeným opakováním. Tato 
diplomová práce je založena na publikaci, která představuje automaty s čítači, které dokáží 
regulární výrazy s omezeným opakování efektivně reprezentovat. Cílem této práce je efek
tivní implementace vyhledávacího algoritmu založeného na těchto automatech. Práce se 
také zabývá porovnáním rychlosti výsledného algoritmu s modermíni nástroji a implemen
tací totožného algoritmu v jazyce C#. 

Automaty s čítači obsahují čítače, které udržují aktuální počet opakování výrazu s omeze
ným opakováním, například pro regulární výraz a{l ,3} bude automat obsahovat jeden 
čítač, který bude udržovat aktuální počet přečtených znaků a. Automat s čítači se pro 
daný regulární výraz vypočítává pomocí kontrukce založené na tzv. conditional partial 
derivatives. 

Automat s čítači je nedeterministický a před jeho použitím pro vyhledávání je nutné 
provést determinizaci. Tato práce využívá nově představený přístup k determinizaci. Z nede
terministického automatu je vytvářen tzv. automat s čítacími množinami. Jedná se o de
terministický automat, jehož stavy jsou vybaveny registry, které mohou udržovat množiny 
celých čísel. Tyto registry jsou používány k simulaci běhu deterministického automatu, kdy 
za běhu dochází k výpočtu aktuálního stavu paměti jednotlivých čítačů. Jednotlivé pře
chody automatu s čítacími množinami obsahují tzv. guards, jejich splněním je podmíněno 
provedení přechodu, např. je možné opustit výraz s omezeným opakováním pouze v pří
padě, že bylo dosaženo dolní hranice počtu opakování. Dalším komponentem přechodu jsou 



potom operace, které aktualizují paměť registrů při použití přechodu, např. inkrementují 
hodnotu čítače při přečtení dalšího výskytu symbolu. 

Implementace vyhledávacího algoritmu založeného na automatech s čítacími množinami 
je provedena v rámci nástroje RE2. Jedná se o moderní a rychlý nástroj pro vyhledávání 
regulárních výrazů obsahující množství optimalizací. Implementace v rámci existujícího 
nástroje má výhodu v možnosti využití již implementovaných a optimalizovaných částí. 
Implementace je rozdělena do tří kroků, prvním krokem je vytváření nedeterministického 
automatu s čítači, druhým krokem je determinizace tohoto automatu a posledním krokem 
je samotné vyhledávání regulárních výrazů. 

V prvním kroce algoritmu se nejprve, za použití existujících funkcí nástroje RE2, 
provede zpracování vstupního regulárního výrazu. To zahrnuje kontrolu správnosti reg-
ulárnho výrazu, zjednodušení některých jeho částí do efektivnější formy a převod reg
ulárního výrazu do interní reprezentace. Součástí tohoto zpracování je i výpočet některých 
dodatečných informací, jako například tzv. bytemap classes, které mapují jednotlivé znaky 
do skupin, mezi kterými daný regulární výraz nikdy nerozlišuje. Tyto skupiny se potom 
používají na přechodech automatu. Dalším krokem tohoto bodu algoritmu je normalizace 
vnitřní reprezentace regulárního výrazu do formy, která odpovídá rovnicím definovaným 
pro výpočet automatu s čítači. Součástí tohoto kroku je i převod některých operátorů 
regulárního výrazu na jiné, pro které jsou definovány rovnice. Jedná se o operátor * a ?. 
Po té to úpravě interní reprezentace se regulární výraz postupně prochází zleva, na základě 
aktuálních podvýrazů se určí správná rovnice a dojde k jejímu výpočtu. Výstupem této 
části algoritmu je instance třídy Regexp: :Der iva t ives , která udržuje nedeterministický 
automat s čítači. Dále udržuje další informace týkající se tohoto automatu, které jsou 
potřebné pro jeho determinizaci. 

Druhým krokem algoritmu je determinizace automatu s čítači. Jedná se o zobecněnou 
subset konstrukci, která je prováděna podle definovaných formálních rovnic. Nejprve dojde 
k výpočtu tzv. scope čítačů. Tím se zjistí, pro jaké stavy automatu jsou jednotlivé čítače 
relevantní. S ostními čítači potom není nutné v rámci daného stavu pracovat, protože bu
dou mít vždy implicitní hodnotu nula. V průběhu výpočtu se také doplňují čítače, které 
patří k operaci ID (jedná se o operaci, která nemění stav paměti čítače). Implicitní ID op
erace pro jednotlivé čítače je také vložena na všechny přechody, kde daný čítač není použitý 
v jiné operaci. Dále je nutné pro jednotlivé přechody získat podmínky pro jednotlivé čítače 
(guards). Nejprve se získají podmínky použitých přechodů nedeterministického automatu 
pro všechny relevantní čítače (relevantní čítače se určují na základě vypočteného scope). Ze 
získaných podmínek se vypočtou tzv. minterms, jedná se o množinu všech různých kom
binací daných podmínek. Pro přechody se ale nepoužijí takové kombinace, které nemohou 
být nikdy splněny, protože takový přechod by nebylo možné nikdy provést. Pro vytvářený 
přechod se na základě relevantních čítačů a operací původních přechodů získá množina 
operací přechodu deterministického automatu. Tato množina operací odpovídá provedení 
operací všech původních přechodů. Determinizace začíná v počátečním stavu nedetermini
stického automatu a postupně se prochází všechny nově vytvořené stavy deterministického 
automatu. Pokud již neexistuje žádný nový stav, je determinizace dokončena. 

Posledním krokem algoritmu je samotné vyhledávání regulárního výrazu založeném na 
automatu s čítacími množinami. Algoritmus provádí determinizaci automatu on-the-fly při 
samotném vyhledávání. Deterministický automat tedy není předpočítávaný. Vyhledávací 
algoritmus začíná v počátečním stavu automatu a postupně prochází vstupní text znak po 
znaku. Pro každý znak si získá jeho bytemap třídu. Následně zjistí, jestli pro danou kombi
naci stavu a třídy již byly vypočítané přechody. Pokud ne, provede jeden krok determinizace 



pro aktuální stav a třídu, která odpovídá právě zpracovávanému znaku. Tím získá právě 
používanou část deterministického automatu. Pro danou kombinaci stavu a třídy znaku ale 
může existovat více přechodů, které se liší v podmínkách čítačů. V průběhu determinizace 
jsou tyto přechody ukládány do vektoru na různé indexy. Indexy jsou vypočítávané na zák
ladě toho, jaký stav paměti může splňovat danou podmínku přechodu. Ve vyhledávacím 
algoritmu je tedy získán index na základě aktuálního stavu paměti a použije se ten pře
chod, který je na vypočteném indexu. Při provedení přechodu se aktualizuje paměť čítačů 
podle operací přechodu a pokračuje se dalším znakem vstupního textu. Po prozkoumání 
celého vstupního textu se zjišťuje, jestli je poslední navštívený stav koncový. Pokud je, musí 
se ještě ověřit, jestli aktuální stav paměti čítačů splňuje koncové podmínky tohoto stavu. 
Může nastat i situace, kdy koncový stav nemá žádnou podmínku na stav čítačů, v takovém 
případě je stav koncový bez jakýchkoliv dalších kontrol. 

Experimenty prováděné na regulárních výrazech používaných v praxi ukázaly, že imple
mentace v rámci nástroje RE2 je rychlejší než původní implementace v jazyce C#. Zrychlení 
se podařilo dosáhnout především v prvních dvou částech algoritmu, tedy u převodu vstup
ního regulárního výrazu na automat s čítači a u determinizace tohoto automatu. Pro 
samotné vyhledávání byla potom implementace v rámci RE2 rychlejší pro většinu reg
ulárních výrazů. Při porovnání s nástrojem grep byla sice implmenetace v RE2 pomalejší 
pro více regulárních výrazů, průměrný čas vyhledávání nástroje grep byl ale horší. To je 
způsobeno tím, že pro regulární výrazy s omezeným opakováním (obsahující velký počet 
opakování) je implementace v rámci RE2 založená na automatech s čítači rychlejší. Ob
dobných výsledků bylo dosaženo při porovnání s původní implementací nástroje RE2. Jeho 
původní verze byla oproti novému algoritmu rychlejší ještě ve více případech než grep, ale 
i zde byly regulární výrazy s omezeným opakováním, pro které byl nově implementovaný 
algoritmus rychlejší. 
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Chapter 1 

Introduction 

Regular expression (regex) matching has an irreplaceable role in software development. 
It is used, for example, for searching, finding and replacing, data validation, or syntax 
highlighting [48]. As stated in [19, 20, 15], about 30 — 40% of the Python, Java, and 
JavaScript software uses regular expression matching. 

Because not all regex matching engines have complexity guarantees, their efficiency has 
a significant impact on the performance of the application in which the matching is used. 
Then, a single poorly written regex can cause excessive C P U use. That could lead to 
catastrophic consequences, such as the outage of Cloudflare services [27]. Other examples 
can be the outage of Stack Overflow [3] or a vulnerability in the Express.js [7] framework. 
The problems are caused by the so-called regular expression denial of service (ReDoS), 
a denial of service attack based on a high-complexity evaluation of matching regex against 
a malign text. As stated in works like [19, 20], the ReDoS attack is not just a niche concern 
but rather a security vulnerability that needs further research. 

The cause of the ReDoS attack is a regex that has super-linear worst-case complexity. 
Such regex can lead to super-linear behavior (SL behavior) when the evaluation complexity 
is polynomial or exponential to the input text length. SL behavior is also known as catas
trophic backtracking. The catastrophic backtracking is a problem of regex engines that use 
backtracking-based search algorithms, like the one described by Spencer [45]. A backtrack
ing regex engine constructs a non-deterministic finite automaton (NFA) from the regex and 
then simulates the N F A on the input text. Such engines are probably the most imple
mented ones [20]. A n alternative approach is to use deterministic finite automaton (DFA), 
which is pre-computed. This approach, called static DFA simulation [42], has much lower 
worst-case complexity (wrt the length of input text). More precisely, matching can be 
linear to the length of input text, and each input symbol can be processed in constant 
time. The major drawback of static D F A simulation is the state explosion of the D F A 
construction, which can cause significant performance issues when using the method in 
practice [48]. 

Another alternative is variants of Thompson's algorithm [46] (also called N F A simula
tion or NFA-to-DFA simulation). These algorithms work directly with NFA, which results 
in avoiding the state explosion. The determinization is done on the fly by subset con
struction. The algorithm always remembers only the current D F A state. When reading 
a character, a next D F A state is computed, and this state is used to replace the current 
state. The main disadvantage of this approach is that for highly non-deterministic N F A , 
a set of the N F A states that forms a D F A state can get large. Computing the next D F A 
state over a symbol then gets expensive, linear to the size of the N F A (in contrast to static 
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D F A simulation, which does it in constant time). This problem can be partially solved by 
caching already visited parts of the D F A (a technique used by modern matchers). A step 
within a cached part is then a constant time operation, the same as for the static D F A 
simulation. However, regexes that cause exploding determinization are problematic for all 
variants, explicit determinization, as well as cached or non-cached N F A simulation [48]. 

This thesis is based on a recent paper by Turohova et al. [48], which proposes a novel 
succinct and fast deterministic machine called the counting-set automaton (CsA). It is 
an automaton with so-called counting sets, a special type of registers that can hold bounded 
integer values. It also supports a limited selection of simple set operations. Patterns with 
the counting operator, also known as the operator of bounded repetition, are a frequent 
cause of the D F A explosion. Repeated patterns, such as (ab) {1,100}, can be succinctly 
expressed by the CsA. Therefore, CsA can eliminate this cause of the D F A explosion [48]. 
The main goal of this thesis is to implement this novel CsA within state-of-the-art matcher 
RE2 and evaluate results against the original CsA-based matcher of [48] implemented in 
C# and other state-of-the-art matchers. 

This thesis is divided into chapters as follows: Chapter 2 discusses related works and 
similar algorithms. Chapter 3 contains some basic definitions that will be used throughout 
the thesis. Chapter 4 firstly overview exact string matching as a simpler matching problem 
to introduce some of the basic concepts of matching. Then it introduces regular expres
sion matching. This Chapter also describes algorithms used both in exact string matching 
and regular expression matching. Chapter 5 then overviews the state-of-the-art matchers, 
algorithms they use, and also some of the optimization techniques. Chapter 6 contains 
information about the novel counting-set automaton. Implementation of this automaton 
within RE2 is described in Chapter 7. Chapter 8 then contains information about the exper
imental evaluation of the implementation from Chapter 7. The last Chapter 9 summarizes 
the results and discusses possible future improvements. 
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Chapter 2 

Related Work 

This Chapter focuses on existing studies focusing on regexes and their derivatives, regexes 
and automata with counting, and pattern matching of regexes with counting. Apart 
from introducing the novel counting-set automaton, the paper mentioned above by Tur-
ohova et al. [48] also includes the implementation of a C# prototype called CA

1

 and talks 
about the experimental evaluation of this prototype. Except for the C# language, these are 
the goals of this thesis. Therefore, the paper by Turohova et al. [48] is the main related 
work of this thesis, and, as the related works are very similar, this entire Chapter will be 
based on the Related work chapter of that paper. 

Regexes and Their Derivatives 

Efficient matching [22, 37] and match generation [40] can be done using Brzozowski deriva
tives [11], which provide a practical approach to create a D F A from a regex incrementally. 
Berry and Sethi [9] were the first to investigate efficient determinization based on Brzozowski 
derivatives. Construction of N F A from regex can be done using Antimirov derivatives [6] in 
classical settings. The set {D \ (ID,D) € da(R)}, computed using conditional derivatives 
equations (Equation 6.8-6.12) without counting loop, is the same as Antimirov derivative 
of R for a. Generalized Antimirov construction can also be used for extended regexes [13]. 

Automata W i t h Counting 

Holik et al. [29] propose a general determinization of counting automata (CAs). It has 
the same worst-case complexity as the naive explicit determinization, which depends on 
the set of counters C and the maximum counter upper bound K with factor ( i f + 1)1^1, but 
it can produce smaller automata than the naive explicit determinization. For the class of 
monadic regexes (single-state-scoped counters and counting on self-loops only), the paper 
proposes a more efficient algorithm, but it can still generate (K + I)''-7' states. It neither 
talks about derivative construction for translating regexes into CAs nor the application of 
C A in pattern matching. 

Bjorklund et al. [10] also focus on the use of counters for regexes with bounded rep
etition. It builds on the formalism of counter automata from [24], called CNFAs. A C A 
from [48] used in this thesis is basically a symbolic generalization of a C N F A , with small 
technical differences. One of the differences is caused by the usage of a generalized An
timirov construction of CAs, as opposed to generalized Glushkov construction used for 

1Available at https: //pajda.f it.vutbr.cz/ituronova/countingautomata 
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CNFAs. These constructions are algorithmically quite different. That difference results in 
counters being 0-based in CAs and 1-based in CNFAs. Bjorklund et al. [10] focus mostly 
on a different problem and deterministic regexes. More precisely the problem is called 
incremental matching in the context of database queries. It uses a variant of Thomp
son's algorithm for standard matching. The algorithm is applied directly on C A instead of 
an N F A . Although in this way, the translation of the regex to an automaton is not depen
dent on the counter bounds, processing of each character has the same cost as the original 
Thompson's algorithm (i.e., worst linear to the size of the N F A and the counter bounds). 

Matching regexes with counting can also be done using dynamic programming. Kilpelai-
nen and Tuhkanen [32] introduce a matching algorithm based on dynamic programming. 
The complexity of this algorithm is at worst quadratic to the length of the input text 
(in contrast to the linear to the input text length complexity of the determinization and 
NFA-simulation-based algorithms). The experimental comparison of the variant of Thomp
son's algorithm used in [10] suggests that the algorithm proposed in [32] is not competitive 
in practice. 

Classical automata can be extended with scratch memory of bits that can represent 
counter. It is introduced in [43, 44] and called Extended FAs (XFAs). Compilation of 
regexes into deterministic X F A s consists of two steps; in the first step, an extended version 
of Thompson's algorithm is used. The second step is done by using an extended version of 
the classical powerset construction and minimization. A small X F A may exist, but there 
could be an exponential blowup of the search space arising from determinization for inputs 
like .*a.{k>. 

Other automata related to the CAs are i?-automata [4]. R-automata operates on a finite 
number of unbounded counters, but the values of the counters can not be tested. There 
are also extended finite state machines that are not suitable for the problem of pattern 
matching considered in this thesis and in [48]. Such machines, which expressive power goes 
beyond regular languages, can be found, for example, in [8, 17, 41, 44]. 

Regexes W i t h Counting 

Automata with counters, close to CAs used in this thesis, are introduced in [30] and are 
called FACs. Unlike CAs from [48], they do not allow symbolic character predicates and 
have fewer kinds of counter updates. Hovland [30] also proposes a conversion from regexes 
to FACs; it uses a variant of Glushkov automata [25] along with the first-last-follow con
struction [2, 12]. As said in [48], for purposes of the paper, the Antimirov-derivative-based 
construction provides benefits, such as the generation of one counter per distinct counter 
sub-expression rather than one per counter position in the regex abstract syntax tree, which 
results in fewer counters overall. The Antimirov-derivative-based construction was also 
easier to implement. The Antimirov automaton is in general smaller than the Glushkov 
automaton. In fact, the Antimirov automaton is a quotient of the Glushkov automa
ton [14, 31]. Another generalization of Antimirov derivatives, but unrelated to counters, 
can be found in [33]. 

Pattern Matching of Regexes W i t h Counting 

Based on the analysis of 537k real-world regexes (obtained from a study by Davis et al. [21]) 
done in [48], the counting operator often appears in regexes in practice, as it was con
tained in over 33k of the real-world regexes. The .NET ecosystem has regex matchers with 
two different approaches. The first is based on a backtracking search and is provided in 

l.i 



System.Text.RegularExpressions. The second can deal more efficiently with the count
ing operator. It provides a backtracking-free search without an explicit conversion into 
a DFA, based on the so-called symbolic derivatives. It is the Symbolic Regex Matcher 
(SRM) [40]. The approaches of the extremely optimized state-of-the-art matchers GNU 
grep2 and RE2A will be discussed in more detail in Chapter 5. 
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Chapter 3 

Preliminaries 

Algorithms for exact string matching and pattern matching described in this thesis are based 
on automata theory. Although various types of automata are used in pattern matching, 
this Chapter will introduce basic types of automata. It is also necessary to define regexes, 
which are used in pattern matching. The definitions in subchapters 3.1 and 3.2 are taken 
from [52], and the rest (except byte classes) is taken from [48]. 

3.1 L a n g u a g e s 

Before a language can be defined, it is first necessary to define an alphabet and a word. 

Definition 3.1.1. An alphabet is a non-empty set of elements called symbols of the alphabet. 

Definition 3.1.2. A word (also a string) over the alphabet is every finite sequence of 
the alphabet symbols. An empty sequence of symbols is called an empty word and is denoted 
by e. 

Definition 3.1.3. Given an alphabet E ; the set of all words over the alphabet is denoted 
by E*. Set of all non-empty words over the alphabet is denoted by E + (i.e. E* = T,+ U{e}). 
A set L is called a language over the alphabet E ; if a condition L C E* (or L C E +

; if 
the empty word e do not belong to the language) holds. Therefore, a language can be any 
subset of words over a given alphabet. 

3.2 A u t o m a t o n s 

Definition 3.2.1. A finite-state automaton (FA) is 5-tuple M = (Q, E , 5, qo, F) defined as 
follows: 

• Q is a finite set of states, 

• E is a finite input alphabet, 

• 5 is a mapping Q x E —>• 2® called transition function (2® is the set of subsets of 
the set Q), 

• qo € Q is the initial state, 
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• F C Q is the set of final states. 

A n automaton M is called a non-deterministic finite-state automaton (NFA) if 3q G 
Q 3a G E : |<5(g, a)| > 1. On the other hand, if Vg G Q Va G E : |<5(g, a)| < 1, the au
tomaton is called a deterministic finite-state automaton (DFA). A deterministic finite-state 
automaton is often defined as follows: 

Definition 3.2.2. A deterministic finite-state automaton (FA) is 5-tuple M = (Q, E , 5, qo, F) 
defined as follows: 

• Q is a finite set of states, 

• E is a finite input alphabet, 

• 5 is a mapping Q x E —>• Q; it is a partial transition function, 

• qo G Q is the initial state, 

• F C Q is the set of final states. 

Definition 3.2.3. A configuration of an automaton M = (Q, E , 5, qo, F) is a pair C = 
(q,w) G Q x E*. An initial configuration is a pair (qo,w) and a pair (q,e), where q G F is 
a final configuration. A transition of an automaton M is represented by binary relation \~M 
on the set of configurations C. For all q,q' G Q and w, w' G E* it is defined that (q, w) \~M 
(q',w') applies if and only if w = aw' for some a G E and q' G 5(q,a). The transitive 
closure of\~M is written as and the transitive and reflexive closure is written as \-*M. 

Definition 3.2.4. An input word w is accepted by finite-state automaton M if (qo,w) h*M 

(q,e),q G F. A language accepted by an automaton M,L(M) is a set of all words accepted 
byM: L(M) = {w\(qo,w)h*M(q,e)AqeF}. 

3.3 E f f e c t i v e B o o l e a n A l g e b r a s 

Definition 3.3.1. An effective Boolean algebra A has components (T>, [_], _L, T, V, A, -•) 
where: 

• 2) is a universe of underlying domain elements, 

• ^ is a set of unary predicates closed under the Boolean connectives V, A : ^ x ^ —>• * 
and ->: ^ ->• ^, 

• l , T £ f are the false and true predicates, 

• values of the algebra are sets of domain elements, 

• the denotation function [ _ ] : ^ —>• 2® satisfies that [_L]] = 0, \T\ = 2), and for all 
v G y v V I = MuM, 1<pAV] = MnM, and [-n^] = Q\M 

When l^p} ^ 0, for ip G (p is called satisfiable, and it is denoted by Sat(tp). An element 
x G IfpJ is denoted by x \= <p. 
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3.4 R e g e x e s 

For purposes of this thesis, the alphabet for regexes will be 8-bit ASCII as it is the alphabet 
that RE2 is using. In other words, the 8-bit ASCII will be the character universe T>. It is 
the set {n | 0 < n < 2 8} of all 8-bit characters represented by their character codes. For 
example, the set of all upper-case letters {n | 65 < n < 90} is denoted by [A-Z]. When 
a character class is made up of an individual symbol, it denotes a singleton set, for example, 
[@] = 64. Character classes are, in general, closed under Boolean operations. Character 
classes can be formed using union, then the character class [[[0-9]]] can be written as 
[0-4] U [5-9]. Character classes can also be complemented. For example, the character 
class ["0-9] denotes the set of all non-digit characters. 

The set of all character classes is an example of the set of all predicates of Boolean 
algebra. Checking the satisfiability of a predicate tp G ̂  means to decide whether <p denotes 
a non-empty set. Examples can be [], which is unsatisfiable because [[]] = 0, and . that 
denotes the true predicate because [.] = T>. 

Predicates from an effective Boolean algebra CharClass of character classes are the basic 
building blocks of regexes. A n example of such a class can be a class of digits, denoted 
by \ d . The concatenation of words u and v is denoted as u-v (often written as uv), and it 
is lifted to sets. For the word a-w, a G T> is called the head of the word and w G T>* its tail. 

The syntax of regexes, where a G ^CharClass and m, n G N , 0 < n, 0 < m, n < m, is 
defined as follows: 

e a R\ • i?2 -R1I-R2 R{n,m} R* 

Furthermore, Cn denotes the n-th power of language C C £* with C° = { e } and Cn+1 = 
Cn • C. The regex R\ • R2 denotes a concatenation node, and -R1I-R2 denotes an alternation 
node. 

The semantics of a regex R is defined as a subset of T>* as follows: 

. £ ( a ) = H , 

. £ ( e ) ^ { e } , 

. £ ( i ? i | i ? 2 ) d = / : ( i ? i ) U / : ( i ? 2 ) , 

. £(R{n,m})d^{JZn(C(R))\ 

. C(R*)=C(R)*. 

When e G £(R), R is unliable. The number of character-class leaf nodes of a regex R is 
denoted by #^(R) and is defined as follows: 

• # * ( e ) = 0, 

. #vp(a) = 1, 

. • R2) = # * G R i | i ? 2 ) = + # * G R 2 ) , 

. ^{R{n,m}) = ^{R*) = ^{R). 
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3.5 M i n t e r m s a n d B y t e C lasses 

Preds(R) will be the set of all predicates from a regex R. And Minterms(R) will denote 
the set of minterms of Preds(R). Minterms from the set Minterms(R) are non-overlapping 
predicates that can be taken as a concrete finite alphabet. Every minterm can be un
derstood as a region in the Venn diagram of the predicates in R. It is satisfiable con
junction A^^PredsfR)^ where tp G {tp,^tp}. A n example can be regular expression R = 
[0-z] {4} [0-8] {5>, for which the set Preds(R) = { [0-8] , [0-z]} and the Minterms(R) = 
{[0-8], [9-z] , [~0-z]}. More formally, when a G Minterms(R), then Sat(a) and 
VV> G Preds(R): [a] n [ f l / I =^ [a] C {tpj. If the set X of predicates consists of in
tervals used in regex (such as [a-zA-z]), the number of minterms is linear in |X|. Although 
the number of minterms of a general set X may be exponential, intervals of numbers generate 
only a linear number of minterms. 

As stated in the source code of RE2
1

, a bytemap maps bytes to byte classes. A byte 
class represents a range of bytes between which the regex never distinguishes. So, similar 
to the minterms, byte classes are non-overlapping parts of regex. Even though the byte 
classes could differ from minterms, the principle of it remains the same. To illustrate 
that, the byte classes for regex R = [0-z] {4} [0-8] {5} will be { [0-8] , [9-z] , ["0-z] }. 
So for this regex, the byte classes and the minterms are the same. But for the regex 
R = . *a{l ,3}a{l ,3}a, the set of minterms is Minterms(R) = {a, [~a]}. In RE2, the byte 
classes (written as byte ranges) are: [0-96] U [98-127], [97], [128-191], [192-193] U 
[245-255], [194-223], [224-239] and [240-244]. So there are seven byte classes in 
comparison to two minterms. However, the byte classes [0-96] U [98-127], [128-191], 

[192-193] U [245-255], [194-223], [224-239] and [240-244] will always act the same in 
the context of the regex R = . *a{l , 3]-a{l , 3]-a. In fact, these six byte classes are the same 
as minterm ["a]. The only difference between these is that the RE2 split it into more 
byte classes. Besides this difference, the byte classes mean the same as the minterm: all 
characters except a. Then the byte class [97] is the same as minterm a. In conclusion, 
the only difference between minterms and byte classes for this regex is that the byte classes 
are split into more parts. However, their meaning is the same, and therefore the minterms 
and byte classes can be treated equally. 

3.6 S y m b o l i c A u t o m a t a 

Symbolic finite automata (FAs) are a generalization of classical finite automata, whose 
alphabet is given by an effective Boolean algebra. Formally, FA is defined as follows: 

Definition 3.6.1. FA is a tuple A= (I, Q, qo, F, A), where: 

• I is an effective Boolean algebra called the input algebra, 

• Q is a finite set of states, qo G Q is the initial state, 

• F C Q is the set of final states, 

• ACQx^ffxQisa finite set of transitions. 

To be precise, it is in the dfa.cc file available at https://github.com/google/re2/blob/master/re2/ 
dfa.cc 
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Definition 3.6.2. A run of A from a state po over a word a\.. .an is a sequence of tran
sitions (pi-i,ai,pi)™=1 with ai £ the run is accepting if pn € F. 

Definition 3.6.3. The language of a state q, denoted CA{<1), is the set of words over which 
A has an accepting run from q. 

Definition 3.6.4. The language of A, denoted C(A), is CA(QO)-

Definition 3.6.5. FA A is deterministic iff for all p G Q and all transitions (p, a, q) and 
(p, a',r), it holds that if a A a' is satisfiable, then q = r. 

A classical finite automaton can be understood as a special case of FA. In which the basic 
predicates have singleton set semantics. That means that for each concrete letter a there 
is a predicate aa such that [ a j = {a}. 
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Chapter 4 

Pattern Matching 

Some of the concepts or optimizations used in pattern matching approaches are based 
on exact string matching algorithms. As the exact string matching is a simpler problem 
than pattern matching, the algorithms themselves can not be directly used in pattern 
matching. Therefore the understanding of these algorithms is not necessary for pattern 
matching. However, it can provide a better understanding of some of the optimizations 
or approaches used in pattern matching. Information about the exact string matching 
algorithms is in Section 4.1. For more detailed information on the algorithms, the readers 
can refer to [36, 16]. 

In the regular expression matching, as the name suggests, a pattern is represented by 
a regular expression rather than an exact string. Regexes allow describing text. So, unlike 
the exact string, which always matches only the same string, a single regex can match 
multiple different strings. Therefore, regular expression matching is more powerful than 
exact string matching. For example, when the regex is used to find some text in a text 
editor, a user can find multiple different words, lines, sentences that have something in 
common just by using a single regex. As regular expression matching is more powerful 
than exact string matching, it also requires more complicated algorithms, which can have 
worse time complexity and could suffer from problems mentioned in Chapter 1. 

4.1 E x a c t S t r i n g M a t c h i n g 

More formally, the exact string matching problem can be defined as follows: 
Let E be an alphabet. Input wil l be a text string T = £ 1 ^ 3 • • - tn and a pattern string 
P = P1P2P3 • • - Pm, where Vi G { l , . . . , n } : U G E and Vj G { l , . . . , m } : pj G E. 

The output will be all locations I of the pattern P in the text T, i.e., T[l + k] == P[k + 1], 
where 0 < k < m [16]. 

The description of all the following exact string matching algorithms has been adopted 
from [16, 36]. 

Brute Force Algori thm 

The basic and most naive algorithm is the brute force algorithm. A n input is a pattern 
of length 771 and a text of length n. The algorithm tries to match the first character of 
the pattern and the text, then the second character, and so on, until it matches the whole 
pattern or the character mismatch occurs. After that, it will move on to the next position 
of the text and starts again. Figure 4.1 shows an example of a run of the algorithm. 
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The time complexity of this algorithm is 0{m x n). For example, when searching for 
am~1b in a™, then for each position in the input text, m comparisons are made. 

First attempt: 
Text F L M F O L F O R K K K Text F L M F O L F O R K K K 

Pattern F O L Pattern F O L 

Shift by 1 

Second attempt: 
Text F L M F O L F O R K K K 
Pattern F 0 L 

Shift by 1 

Third attempt: 

Shift by 1 

Fourth attempt: 

F L M F O L F O R K K K 
Pattern F O L 

Match 

Figure 4.1: Example of a run of the brute force algorithm for exact string matching. The al
gorithm compares character by character from the first position of text and pattern. It con
tinues to the next position of text and the first position of the pattern after a full match or 
mismatch. Light gray denotes a successful match, and dark gray denotes mismatch (taken 
from [16] and edited). 

Search W i t h an Automaton 

Deterministic Finite Automaton (DFA) M{x) recognizing the language E*x is used for 
searching a pattern x. The first step is to build it. 

Example 4.1.1. The DFA recognizing the language E*x is a 5-tuple = (Q, E , 5, go, F) 
defined as follows: 

• Q is the set of all prefixes of x: Q = {e, x[0], x[0..1], . . . , x[0..m — 2], x}, 

. E = E , 

• For q G Q (q is a prefix of x) and a € E ; (g, a, qa) G 5 if and only if qa is also 
a prefix of x, otherwise (g, a, p) G 5 such that p is the longest suffix of qa which is 
also a prefix of x, 

• Qo = e, 

. F = {x}. 

The construction of D F A M requires 0{m + a) time, and 0{m x a) space, where a is 
the size of an input alphabet E and m is the size of an input pattern. The searching itself 
can be performed in 0(n) time if D F A is stored in a direct access table. Otherwise, it 
requires 0(n x loga) time. Here, the size of an input text is denoted by n. 

To search a pattern x in an input text, first, the D F A must be built. Then, starting 
from the initial state go, the input text is parsed by M{x). Every time the terminal state is 
reached, the occurrence of the pattern x is reported. A n example of constructed D F A and 
the run of the algorithm is shown in Figure 4.2. 
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S = {A, C, G} 

Q = {£, A, AC, ACG} 

qo = e 
F = {ACG} 

The initial state is 0 

Text A C C A C A C G 

Current state 1 

Text 

Current state 

Text 

Current state 

Text 

Current state 

A C A C A C G 

A C A C A C G 

A C C C A C G 

1 

C, G 

Text 

Current state 

Text 

Current state 

Text 

Current state 

Text 

Current state 

A C C A A C G 

A C C A C C G 

A C C A C A G 

A C C A C A C G 

Figure 4.2: Example of the D F A constructed for the pattern " A C G . " Labels of the states 
represent the length of the prefix. The construction is done according to Example 4.1.1. 
Then, starting from q$ (in this example, state 0), the input text is parsed by constructed 
DFA. Each time the final state is reached, the occurrence of the pattern is reported (taken 
from [16] and edited). 

Boyer-Moore Algorithm 

The Boyer-Moore algorithm or its modification is often implemented in text editors for 
the search and substitute command. For usual applications, it is considered the most 
efficient algorithm. 

The algorithm preprocesses the input pattern. The result of preprocessing are two 
pre-computed functions called good-suffix shift (also known as the matching shift) and 
bad-character shift (also known as the occurrence shift). These two functions can be used 
in case of a mismatch or a complete match of the whole pattern. In both scenarios, the win
dow can be shifted to the right. It is shifted to the right because the algorithm scans 
the characters of the pattern from right to left, starting from the rightmost one. 

Assume that a mismatch occurs between characters at position i in the pattern x and 
position i + j in the text y (for example, pattern[i] = a and text[i + j] = b). Then already 
scanned part of the pattern and text are the same, so x[i+l..m—1] = y[i+j+l..j+m—l] = u 
and x[i] ^ y[i + j]. The good-suffix shift can be performed in two different ways. The first 
way is to align the segment y[i + j + + m — 1] = x[i + l..m — 1] with its rightmost 
occurrence in x that is preceded by a character different from x[i] (as shown in Figure 4.3). 
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The second way of shift is used when there is no such segment. In that case, the longest 
suffix v of y[i+j+l..j+m— 1] is aligned with a matching prefix of x (as shown in Figure 4.4). 

The table that stores the good-suffix shift function is called bmGs. First, these two 
conditions must be defined to define the good-suffix shift function: 

Cs(i, s): for each k such that i < k < m, s > k 01 x[k — s] = x[k] (4-1) 

Co(i , s): if s < i then x[i — s] ^ x[i] (4-2) 

Then, for 0 < i < m: 

bmGs[i + 1] = min{s > 0: Cs(i, s) and Co(i, s) hold} (4-3) 

The length of the period of x defines bmGs[0]. For the computation of the bmGs table, 
suff table will be used. The suff table is defined as follows: 

for 1 < i < m, suff[i] = max{k: x[i — k + = x[m — k, m — 1]} (4-4) 

b u 

X a u shift' shift' 

X c u 1 

Figure 4.3: The example of the first way of the good-suffix shift. In the pattern x, u re
occurs preceded by a character c that is different from character a (taken from [16]). 

shift 
V 

Figure 4.4: The example of the second way of the good-suffix shift. When the first way can 
not be used, i.e., only the suffix of u re-occurs in x (taken from [16]). 

The bad-character shift can also end up in two different ways of shifts. The first is 
when the character y[i + j] (the mismatched character) occurs in x[0..m — 2]. Then these 
two characters are aligned. The second way is used when there is no occurrence of y[i + j] 
in x[0..m — 2]. In that case, the character y[i + j + 1] (the character immediately after 
mismatched character) is aligned with the left end of the window (i.e., the left end of 
the pattern). The bad-character shift can also be negative. The first and the second way 
of the shifts are in Figure 4.5 and Figure 4.6, respectively. 

The table for the bad-character shift function is called bmBc and has the size a (which 
is the size of the input alphabet E) . For c £ E : 

bmBc[c] = 
min{i: 1 < i < m — 1 and x[m — 1 — i] = c} 

in 

if c occurs in x 
otherwise 

(4.5) 
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b u 

x a u 
snili 

x b contains no b 

Figure 4.5: The example of the first way of the bad-character shift. The text character 
y[i + j] occurs in the pattern x. That character is aligned with its rightmost occurrence in 
x. (taken from [16]). 

b u 

shift 
contains no b 

Figure 4.6: The example of the second way of the bad-character shift. The text character 
y[i + j] does not occur in the pattern x. The left end of the pattern x is aligned with 
the character y[i + j + 1] (taken from [16]). 

Both bmGs and bmBc tables can be pre-computed in 0(m + a). The pre-computation 
requires 0(m + cr) extra space and can be done before the searching phase. The complexity 
of the searching phase itself is quadratic. But when searching for a non-periodic pattern, 
a maximum of 3n text character comparisons are made. The algorithm is extremely fast on 
relatively (to the length of the pattern) large alphabets. The algorithm makes only 0(n/m) 
comparisons when searching for the pattern am~1b in the text a™. For string-matching 
algorithms where only the pattern is preprocessed, this is an absolute minimum number of 
text comparisons. 

A n example of a run of the Boyer-Moore algorithm is in Figure 4.7. 
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i 0 1 2 3 4 5 6 7 
x[i] 

suffp] 
bmQs[i] 

G C A G A G A G 
1 0 0 2 0 4 0 8 
7 7 7 2 7 4 7 1 

c A C G T 
bmBc[c] 1 6 2 8 

First attempt: 
y| 

Searching phase 
Third attempt: 

G C A T C G C A GAGAGTATACAGTACGI 
1 

x lGCAGAGAGl 

Shift by 1 (bmGs[7]= bmBc[A] -7 + 7) 

Second attempt: 

VlG C A T C G C A G AGAGTATACAGTACG 
32 1 

x l G C A G A G A G l 
Shift by 4(bmGs[5]= bmBc[c] -7 + 5) 

VIGCATC G C A G A G A G TATACAGTACG 
8 76 54 32 1 

x lGCAGAGAGl 

Shift by 7(bmGs[0]) 

Fourth attempt: 
ylGCATCGCAGAGA G TAT AC AG TACG 

32 1 

x l G C A G A G A G l 
Shift by 4(bmGs[5]= bm3c[c] -7 + 5) 

Fifth attempt: 

ylGCATCGCAGAGA GTAT A C A G T A C G 
2 1 

x l G C A G A G A G l 
Shift by 7(bmGs[6]) 

Figure 4.7: Example of the run of the Boyer-Moore algorithm. The good-suffix shift and 
bad-character shift functions (the bmGs and bmBc tables) are used to determine the shift 
of the pattern. In this example, the Boyer-Moore algorithm performs 17 text comparisons, 
(taken from [16] and edited). 

4.2 R e g u l a r E x p r e s s i o n M a t c h i n g 

Regexes provide extended possibilities to describe a pattern to be searched in a text. In 
regexes, two types of characters can be used. The special characters (an example of the spe
cial character can be "." character, which matches a single character), called metacharacters. 
A l l other characters are normal text characters, called literals [23]. 

The task is the same as in exact string matching, e.g., to find one, or alternatively all, 
the occurrences of a pattern in the given text. The difference is that the pattern is a regex. 
As it provides extended capabilities of describing text, the regex can then match more 
different strings that have something in common. For example, regex [A-Z] + will match 
all upper case sequences in text, [A-Z] [a-z] {1,5} will match all strings starting with one 
upper case letter followed by one to five lower case letters. 
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Backtracking 

Backtracking is used in algorithms that use NFAs. A regular expression is first converted to 
an N F A , which is then used for matching by the regex engine. A n N F A can be in some state 
from which it can make a transition to more than one state based on a current character 
in the input text. It will make the transition to one of them and remembers the rest. 
The other transitions then can take place later if needed. The situation when it has more 
than one option to make a transition will always happen when there is a quantifier (so 
it has to decide whether to try another match or continue with the rest of the regex) or 
alternation (so it has to decide which of the alternatives to try first) in the regex [23]. 

Independently on the selected transition, if the rest of the match is successful, the whole 
match is also successful. If the rest of the regex can not be matched after that transition, 
the whole match still could be successful. Because the regex engine remembers the rest of 
the possible transitions, it could backtrack to the state before that transition and try one 
of the other options. This way, the engine will try at least as many different transitions 
as needed to a successful match. This behavior could eventually lead to trying all possible 
permutations of the regex [23]. 

Matching regex to (nite | knight | night) on the string hot tonic tonight using back
tracking will go as follows. First, the regex engine tries to match the first letter of the string, 
which is h, and the first letter of the regex, which is t. This attempt will fail, same 
as the next letter of the string at the second position. Then, on the third position of 
the string, the letter t will match. However, it will fail right on the next position, which 
is a space in the string and o in the regex. The engine also tries to match the letter t of 
the regex against the space in the string, but this will also fail. When the engine reaches 
word tonic in the string, it will successfully match t and o. Then, the regex provides 
three different options, which are nite, knight, and night. The engine picks one and 
remembers the others in case the selected option fails. Assume that the engine picks, for 
example, nite as the first option to try. It will match letters n and i ; then it fails while 
matching the letter c of the string and the letter t of the regex. In this case, unlike the first 
fails, the engine will not shift to the next position in the string. Instead, it will backtrack 
to the state where it has chosen nite from the regex and try the next option. The en
gine also goes back to the last matched position in the string. So the to in word tonic 
is matched, and the engine now tries to match knight from the regex. This attempt will 
fail instantly as the letter n from the string does not match the letter k from the regex. 
So the engine will backtrack again and try the last option from the regex, which is night. 
This time, the engine successfully matches the letters n and i before it will fail. As night 
was the last option, this failure means that the whole attempt starting at word tonic fails 
too. The engine will continue unsuccessful attempts until it reaches the word tonight of 
the string. Then, it will first match the letters t and o. Then it will fail with the first two 
options (nite and knight). Finally, with the last option night, the match is found [23]. 

Backtracking engines could suffer from the problem mentioned in Chapter 1, called 
catastrophic backtracking. A simple example of a regex that will suffer from catastrophic 
backtracking can be (x+x+) +y, where x could represent something more complex. The catas
trophic backtracking will not happen on all strings. When the regex is matched against 
a good string, like xxxxxxxxxxy, the matching will be processed without any problem. 
First, all the ten x letters will be matched by the first x+. Then, the second x+ fails while 
trying to match the letter y. As the x+ must match at least one letter x, the engine will 
backtrack one step back when the first x was matching only the first nine letters. In that 
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state, there is one letter x remaining, which will be matched by the second x+. When 
all x letters are matched by both x+, the group is matched once. The engine will try to 
match the whole group again, but it will fail right in the first step as there is the letter y 
in the string. However, since one repetition of the group is sufficient, the group matches. 
The engine will backtrack one step back to the state where all letters x are matched. As 
the last step, the regex engine will match the letter y, and the whole match is successful [26]. 

Problems start to appear when there is no y in the input string. Such malign string could 
be, for example, xxxxxxxxxx. The engine will start matching the same as with the first 
string. At the end of the string, it will fail to match the letter y, and it will backtrack. 
The group has one iteration to backtrack. Since the second x+ matched only one letter, 
it can not backtrack. So the first x+ must give up one letter. Then, the second x+ will 
match xx. The group has one iteration matched, failing to match the next iteration again. 
The y will also fail. So the regex engine has to backtrack again. However, now, it can 
backtrack in the second x+ since it matched xx. The match is reduced to one x. In the next 
step, the regex engine tries to match the second iteration of the group. The first x+ will 
match, but the second fails at the end of the string. The regex engine has to backtrack 
again in this step by reducing the match of the first x+ to seven letters. The second x+ 
match xxx, then the regex engine fails to match y, reducing to xx and x for the second x+ 
in the next steps. The group now can match the second iteration, matching one x for each 
x+. However, this attempt will fail too. The engine will continue trying all other possible 
combinations, all of them failing, since there is no y in the string [26]. 

According to RegexBuddy's debugger1, matching the regex (x+x+)+y against the string 
xxxxxxxxxx (the letter x ten times) will take 2558 steps to fail. When the string is extended 
to eleven letters x, twelve letters x, and eighteen letters x, it will take 5118, 10238, and 
655358 steps, respectively, for the regex engine to fail the match. Any string longer than 
eighteen letters composed of the letter x wil l take over a million steps to fail. Therefore, 
matching the regex on such malign strings will lead to exponential complexity of 0 (2 n ) [26]. 

Thompson's Algori thm 

Thompson's algorithm was first introduced in the paper by Thompson [46]. This algorithm 
does not use backtracking. It instead examines the input string character by character 
against a list of all possible current characters. While the algorithm traverses the list of 
all possible characters, it simultaneously builds a list of all possible next characters. When 
the current list is traversed, the newly built list of the next possible characters becomes 
the current list. Then the next character from the input text is obtained, and the exami
nation continues. Concerning Brzozowski derivatives [11], the algorithm continually takes 
the left derivative of the regex with respect to the input string. The algorithm is also 
naturally parallel, which makes it extremely fast [46]. 

Thompson [46] also introduced a specific implementation of the algorithm, a compiler, 
which translated a regular expression into IBM 7094 code. The compiler consists of three 
parts. The first part checks the syntactical correction of the regular expression. It also 
inserts the dot operator for the juxtaposition of the regular expression. The regex is then 
converted to reverse Polish form by the second stage of the compiler. The last, third stage is 
the object code producer. The third stage uses a pushdown stack, where compiled codes of 
operands are stored. During the compilation, a unary operator, such as the star operator, 
works with the top entry of the stack. The result operand replaces the original top of 

1Available at www.regexbuddy.com 
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the stack and is available for another operation. Binary operators are compiled similarly. 
The only difference is that it works with the top two entries of the stack. It also replaces 
both stack entries rather than only one. 

Two functional routines, NNODE and CNODE, are invoked by the compiled code. NNODE 
matches a single character, and CNODE split the current search path. They are used as 
operands on the stack [46]. Even though the paper by Thompson [46] does not explicitly 
mention N F A , as stated in [38], the latent N F A construction can be seen in Thompson's algo
rithm. Furthermore, Cox [38] provides an implementation of Thompson's algorithm, which 
is not compiling the regex to machine code and is written in C. Also, there is a standard 
automaton approach to convert the regex into the N F A . The construction is straightforward 
in the automata theory. The construction algorithm is described in [34]. However, this sec
tion talks about Thompson's algorithm, so Figure 4.8, Figure 4.9, Figure 4.10, Figure 4.11, 
and Figure 4.12 show the functions of the third part of the compiler from the paper by 
Thompson [46]. Regex a(b|c)*d, firstly translated into abc|*.d. by the second part of 
the compiler, is used for the example. 

S(O) •/ a ) SO) b ) S ( 2 ) — * ( ~ c ) 

a b c 

Figure 4.8: Each of the three characters, a, b, and c, creates a stack entry and an NNODE, 
which match a single character (taken from [46]). 

s(ol- s(D-

< 
blc 

Figure 4.9: The next operator is an alternation operator I. This operator works with two 
topmost operands on the stack, in this example, with b and c. The result is a CNODE b I c. 
CNODE is represented by the plus sign in a circle, (taken from [46]). 

S(O) 

(b|c) 

Figure 4.10: The next operator is the star operator. The star operator works only with 
a single topmost stack entry. In this example, it works with CNODE b|c. Same as for 
the alternation operator, a CNODE is used to realize the start operator. It is realized as 
follows: (b|c)* = el (b|c) (b|c)* (taken from [46]). 
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S ( 0 ) — ^ 

a-lb|c)* 

Figure 4.11: The next operator is the concatenation operator. It takes the two topmost stack 
entries and combines them to execute sequentially. In this example, it is the concatenation 
of the two segments created before. After this step, there will be only one operand on 
the stack, and that will be a-(b|c)* (taken from [46]). 

SCO) 

o-(b|c)*-d 

Figure 4.12: The final step consists of creating an N N O D E from character d and then 
concatenating this operand with the only operand on the stack (regular expression a- (b I c) * 
from the previous step). This step will produce the final and only stack entry, which will 
be the regular expression a(b|c)*d itself (taken from [46]). 

Thompson's Algori thm W i t h Cache 

Execution of a D F A is more efficient than the execution of an N F A . It is because the D F A 
will never have a multiple choice of the next states (i.e., it is only in one state at a time). 
A D F A can be created from any NFA. In such D F A , every state corresponds to a list of 
states of the N F A in which it can be in a given step [38]. A n example of an N F A for 
the regular expression abablabbb and a corresponding D F A is in Figure 4.13. 

Even though the original paper by Thompson [46] talked about a list of next characters, 
it will be further called a list of next states to be consistent with the terminology of NFAs. 
In a sense, Thompson's algorithm computes a D F A state in each step. In a given step, it 
computes a list of the next states for a given character. The list of next states is the new 
D F A state. In that way, Thompson's N F A simulation is executing the equivalent D F A . 
After the state is used (i.e., the current list of states is processed, and the list of next states 
becomes the new current list), it is forgotten. Such a state has to be reconstructed when it 
is needed again. Rather than throw away the computed state after each step, it could be 
cached in spare memory. The caching will avoid the cost of repeated computing in the fu
ture. This approach essentially computes the equivalent D F A as is needed. NFAs derived 
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Figure 4.13: The first automaton is the N F A for the regex abab I abbb, the second automaton 
is the corresponding D F A . Each D F A state corresponds to a set of states, in which the N F A 
can be in a time. It can be in states s\, S2, S3 as there are epsilon transitions from the state s\ 
to states S2 and S3. From these states, the N F A can go to states «4 and «5 with the character 
a. Therefore, the next D F A state will be «4,55 and there will be a new transition from 
the state s i ,S2,S3 to «4,55 labeled with the character a. The next state SQ,sr is created 
analogically. Then, because there is a transition from the state SQ to the state s$ labeled with 
the character a, and a transition from the state S7 to the state sg labeled with the character 
b in the NFA, there will be the same two transitions in the D F A . These two transitions can 
not be joined as they are labeled with different characters. The last two transitions from 
states ss and sg to the state sio are copied from the N F A as these are the only choices for 
the states ss and sg (taken from [38] and edited). 

from regular expressions tend to visit the same states and the same transitions when run 
on most texts. This makes the caching worth it; the first time a state is explored, it must 
be computed as in the N F A simulation. However, all the future explorations are just single 
memory access [38]. 

The aforementioned simple implementation of Thompson's algorithm by Cox [38] can 
be extended to use the caching by under a hundred lines of code. More details about 
the changes that need to be made in order to use caching and also about the implementation 
as a whole can be found in the same article by Cox [38]. 
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Chapter 5 

State-of-the-Art Matchers 

This Chapter introduces the state-of-the-art tools used for regular expression matching. It 
provides an overview of each of the matchers, their algorithms, and optimization techniques. 

5.1 G r e p 

Grep is a pattern matching engine. It searches the given patterns in the given files. It uses 
the above-mentioned Boyer-Moore algorithm for matching a single fixed pattern (i.e., per
forming the exact string matching). It also uses the Aho-Corasick algorithm, introduced 
in [5], for matching multiple fixed patterns [1]. 

Grep uses two algorithms for regular expression matching. The first algorithm is 
automata-based. More specifically, it is an optimized version of Thompson's on-the-fly 
determinization algorithm. The automata-based algorithm is used for as many regexes as 
possible since it is the faster option for regular expression matching. However, grep also 
supports backreferences in regexes. In general, the backreferences can not be implemented 
via the finite-state automaton. Therefore, it uses the backtracking algorithm mentioned 
above. The performance of the grep can be significantly worse when it uses the backtrack
ing algorithm [1]. 

It also uses optimizations for both fixed pattern matching and regular expression match
ing. It uses raw system calls to get unbuffered input. It also looks for newlines only when 
the match is found to get the line with the match. In the Boyer-Moore algorithm, it unrolls 
the inner loop and sets up the delta table entries, so it does not need to do the loop exit 
test at every unrolled step. For the regular expression matching, it tries to extract a fixed 
string. If there is such a string, it must occur in every match. Grep tries to find the string 
in the input text using the Boyer-Moore algorithm. Then it checks the neighborhoods of 
the fixed string match with Thompson's algorithm to find the complete regex match [28, 35]. 

5.2 R E 2 

RE2 is a C++ library, which provides an alternative to backtracking-based matching engines. 
Its primary goal is to provide a matching linear to the length of the input text. However, 
the linear-time constant may vary depending on the overhead of safe handling of the regular 
expression. It can be outperformed by backtracking-based matchers in various situations. It 
is because the RE2 acts pessimistically, whereas backtracking engines act optimistically. It 
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also does not implements all features of regexes, specifically those that require backtracking 
solution, such as backreferences [51]. 

RE2 uses optimization already when parsing the input regex. Users can use regexes 
that are not written efficiently RE2 rewrites such a regex to its most efficient form. For 
example, singleton classes are used in order to avoid escaping the character (i.e., [. ] instead 
of \ . ) . Such singleton classes are rewritten to a single character. Another example is 
the alternation; for example, a|b|c|d can be efficiently expressed as a character class 
[a-d]). The rest of the algorithm then works with the simplified regex created during 
the parsing [39]. 

As the next step, RE2 compiles the regex to the N F A . The compiler compiles UTF-8 
character classes down to an automaton that reads the input one byte at a time, so 
the UTF-8 decoding is built into the automaton. The output of the compiler is an instruc
tion graph. The matching itself then uses an optimized version of Thompson's on-the-fly 
determinization algorithm. RE2 treats the D F A states as a cache. When the cache fills, 
it frees all the states and starts over again. Thanks to that, it is able to work in a fixed 
amount of memory [39]. 

The simple implementation described in [38] used a simple sequence field to do list 
insertion with duplicate elimination in constant time. RE2 does not store the state in 
the compiled program. However, the list insertion with duplicate elimination still should 
be implemented in constant time. RE2 uses a data structure named sparse set to accomplish 
that [39]. 

RE2 also uses various optimizations. It checks if the regex is matched in the input string 
but does not check where the match is, so it can look for the first literal byte. This optimiza
tion is done when every possible match starts with the same first byte (like in the regular 
expression re2 | random). In such a case, the start of the match is found using memchr, which 
is faster than the general D F A loop. The D F A matching then starts from that position. In 
this type of match, where the position of the match is not important, the matching can also 
bail out early. For example, when searching for the regex a+ in the text ccaaaaaaaaaaaabd, 
it can stop when it matches the first a in the text. This optimization is done by checking 
the match after every byte [39]. 

When it is also important to find where the match is in the input text, the D F A states 
are treated as a partially ordered set of N F A states instead of unordered sets. Then it 
prefers states for which the match starts earlier. Each time a match is found, it continues 
using only the states with equal or higher priority. Using this technique, it finds the end 
of the leftmost longest match. However, it also has to find the start of the match. It runs 
the D F A backward from the previously found end of the match. In this case, it treats all 
states equally and finds the longest possible match. The end of the longest backward match 
is the beginning of the original match [39]. 

If the goal is also to find sub-matches of the match, it uses a combination of the D F A 
matching to find the match and its boundaries. It then uses a direct N F A simulation to find 
the sub-matches in the already found match. The optimizations for this type of matching 
are more deeply discussed in [39]. 

5.3 H y p e r s c a n 

A l l the following information about the Hyperscan is adopted from [50], where the algo
rithms and optimizations are also discussed in more detail. 
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Hyperscan is a high-performance regular expression matcher with an own A P I written 
in C. It focuses mainly on network security applications on commodity server machines. 
It uses two core techniques for efficient pattern matching. It translates regular expression 
matching into series of string and finite automata matching using graph decomposition. In 
the Hyperscans novel approach, the string matching becomes part of the regular expression 
matching. This approach avoids wasting C P U cycles on duplicate matching. The matching 
D F A also tends to be smaller thanks to the decomposed regular expression, which increases 
the chance of fast matching. The second technique is an acceleration of both string and 
automata matching with SIMD operations. 

The main idea behind the decomposition of the regular expression is that a disjoint set 
of string and sub-regex (or FA) components is created from the regex. Each of the com
ponents is then used for the match until the full match is found. The string components 
are a stream of literals. The regex components are then all the input regex parts that 
remain after the string components extraction. The regex components include one or more 
metacharacters that have to be translated into an FA for matching. The string matching is 
the first step, which finds all string components in the input text. Each of the found matches 
of the string can start a neighbor F A matching. Such an approach minimizes the waste of 
C P U cycles caused by unnecessary F A matching since the F A matching is executed only 
when needed. 

The second part of the Hyperscan is the multi-string and F A matching that takes 
advantage of SIMD operations of the modern CPUs . The multi-string matcher is called 
FDR. The purpose of the F D R is to find candidate input strings that are likely to match 
some string pattern and verifies them to confirm the exact match. It performs extended 
shift-or matching to accomplish that. The successful string match often triggers the FA 
component matching. The F A component matching uses the state-of-the-art D F A matching 
or the N F A matching if the number of D F A states exceeds a threshold. For both of them, 
it takes advantage of the SIMD operations. 

5.4 S y m b o l i c R e g e x M a t c h e r 

Symbolic regex matcher (SRM) is a .NET matching tool. Its core matching algorithms are 
based on symbolic derivatives. Thanks to that, it supports extended regular expression 
operations such as intersection and complement. It supports the bounded loop quantifiers 
as well as a large set of common features. It also supports full UTF16 encoded strings. 
Besides the matching, it also supports match generation [40]. 

S R M uses the same parser as the .NET regex engine. However, it uses a new backend 
engine, which is derivative-based. S R M works with derivatives of symbolic extended reg
ular expressions. Extended refers to the allowed intersection, complement, and bounded 
qualifiers. Instead of using singleton classes as the basic building blocks of single character 
regexes, S R M uses predicates [40]. 

S R M provides backtracking free matching. Its complexity is linear in the length of 
the input text. It uses two key optimizations. First, it maintains the D F A in the form of 
an integer array where the indexes are regex nodes internalized into integers. Second, if it is 
applicable, it uses string. IndexOf to search the relevant initial prefix [40]. The evaluation 
in [40] shows that S R M outperforms .NET matcher on most of the regexes, and it offers 
performance comparable to the RE2. 
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Chapter 6 

Counting-Set Automata for 
Regular Expression Matching 

This Chapter focuses on counting-set automaton (CsA) and its usage in regular expression 
matching. The first step of using this automaton for pattern matching is to create it from 
the regular expression. Creating the CsA from the regex consists of translating the regex 
with counting into counting automata (CA), which is a non-deterministic automaton with 
bounded counters. Then the C A is determinized, and the output is CsA. When the CsA is 
created in such a way, its size does not depend on the repetition bounds used in the regex. In 
contrary to the D F A which size is exponential to the repetition bounds [48]. This Chapter 
is adopted from [48], where the CsA is introduced. 

6.1 C o u n t i n g A u t o m a t a 

Classical counter automata have counters that correspond to a counted sub-expression of 
a regex. Guards on transitions of the classical counter automata enforce a specified number 
of repetitions before the automata can move on, i.e., the counters are only supposed to 
count the number of passes of such parts. Counting automata (CAs) are a limited sub-class 
of classical counter automata for regexes with counting. 

Definition 6.1.1. A counting algebra is an effective Boolean algebra C associated with 
finite set C of counters. 

The counters have a lower bound minc > 0 and an upper bound maxc > 0 such that 
minc < maxc. These bounds correspond with the counted repetition bounds in the regex. 
The counters are used bounded loop variable. 

Definition 6.1.2. Counter memories are the set of interpretations m: C —> N such that 
Vc G C: 0 < m(c) < maxc. 

Counter memories form the universe T>c of the effective Boolean algebra C. The set 
of predicates of the algebra contains combinations of basic predicates C A N E X I T c and 
C A N I N C R c for c £ C. The semantic of these predicates is defined as follows: 

Definition 6.1.3. Counting automaton is a tuple A = (I,C,Q,qo,F,A), where: 
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I is an effective Boolean algebra called the input algebra, 

• C is a finite set of counters with an associated counter algebra C, 

• Q is a finite set of states, 

• qo G Q is the initial state, 

• F: Q —>• \I/C is the final state condition, 

• A C Q x *n x (C —> O) x Q is i/ie (finite) transition relation, where 
O = {EXIT, INCR, EXITI, NOOP} is the set of counter operations. 

The component f of a transition (p, a, f, q) G A is its (counter) operator. It is often viewed 
as the set of indexed operations O P C , where OP denotes the operation assigned to the counter 
c, /(c) = OP. 

To define the semantics of counter operators / each indexed operation OP c is associated 
with a counter guard grd(op c) and a counter update upd(op), defined as follows: 

The operation N O O P does not modify the value of the counter, and its guard is always true, 
i.e., it is always enabled. The guard of the operation I N C R is enabled if the counter has not 
yet reached its upper bound. The operation I N C R increments the counter. Guard of both 
E X I T and E X I T I enables the corresponding operation when the counter reaches its lower 
bound. The operation E X I T resets the counter value to zero on exit from the counting loop. 
The operation E X I T I is operation E X I T followed by I N C R , i.e., the counter value is one after 
this operation. 

A predicate (ff G over counter memories is the guard of a counter operator / : C —> O. 
Update of the counter operator f : 5?cU{_L} —> 5?cU{_L} is a counter-memory transformer. 
The guard and the update are defined as follows: 

If m satisfies the guard, f updates all counters in a counter-memory m by their corresponding 
operation. When the guard is not satisfied, the result is _L. 

The configuration automaton FA(^4) of C A A defines the language semantics of the C A 
A. Configurations of the C A A are pairs (q, m) G Q x T>c consisting of a state q and 
a counter-memory m. The FA(^4) is defined as follows: 

Definition 6.1.4. A configuration automaton FA (A) of CA A is a symbolic finite au
tomaton whose: 

• states are the configurations of A (there are finitely many configurations of A), 

• initial state is the initial configuration (qo, {c i-> 0 | c G C}) of A, 

, / \ aei —[— 
grd(NOOP c) = T c 

upd(NOOP) = Xn.n, 

upd(iNCR) = f Xn.n + 1 grd(lNCR c) = CANlNCRc 

g r d ( E X I T C ) = C A N E X I T C 

grd(EXITl c ) =F C A N E X I T C 

upd(EXiT) = An.O, 

upd(EXiTl) = A n . l 
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• state (p, m) of FA (A) is final iffm \= F(p), 

• a transition relation is defined as AFA(A) = {((Pi m)i ai (li f(m))) I (Pi ai fi l) £ A, 
m\= iff}. 

If C A A is deterministic, then FA(A) is also deterministic. A is deterministic iff Vp £ Q 
and V(p, ai, / i , gi), (p, «2 , /2,172) £ A : if both a i A «2 and ^ A (ff2 are satisfiable, then 

= q2 and /1 = / 2 . 

If for any two transitions (q,a,f,r) and (q',a', f ,r'), either a = a ' or [a] n [a'J = 0, 
then 4̂ is simple. That means that different character guards do not overlap and can be 
mostly treated as plain symbols. The algorithm presented in Section 6.2 produces simple 
CAs. Example of an intuitive notation of C A , with the initial state q and final conditions 
F(q) = -L,F(s) = E X I T c , where m i n c = maxc = 100 is in Figure 6.1. Figure 6.5 shows 

a C A in a more formal notation. 

. Ac < 100/c := c + 1 

c •= 0 ( ^ ^ a it ~ ^ ' g : . *a . {100} ] > { s : .{100} 

{c > 100} 

Figure 6.1: Example of the C A for the regex . *a.{100} in an intuitive notation. The transi
tions are labeled by their guard, which gives the character class. On the left side of the „/" 
delimiter can also be a guard of O P C , which is shown in conjunction with the character 
guard a. On the right side of the delimiter, there is the update of O P C written ctS ctll ctS-

signment to c. Specifically, the right side of the assignment for I N C R c is c + 1, for E X I T C , 

it is 0, for E X I T 1 c , it is 1, and N O O P c is omitted. The transition does not change the value 
of the counter if it does not have any update specified. The initial state is labeled with 
the initial value of the counters. Final states are labeled with an acceptance condition. In 
this figure, it is the condition {c > 100}. Taken from [48]. 

6.2 T r a n s l a t i n g a R e g e x I n t o a C A v i a C o n d i t i o n a l P a r t i a l 
D e r i v a t i v e s 

A generalization of Antimirov's partial derivative construction [6] to symbolic counting 
is introduced in [48]. This generalization allows replacing a verbose N F A with succinct 
C A . The difference between the older variant of Antimirov's partial derivative construc
tion [6] with explicit counting [40] and a version introduced in [48] will be illustrated in 
the example of the regex .{100}. From a hundred partial derivatives <9.(.{i}) = .{i — 
1}, 1 < i < 100, and an N F A with a hundred states and transitions (.{i},., .{i — 1}) cre
ated by the older variant, to the single derivative d.(.{100}) = {.{100}} associated with 
a conditional counter update resulting in an N F A with a single state and the transition 
(.{100}, a, incrc, .{100}) created by the newer version from [48]. 

Before the construction takes place, regexes must be normalized by the following rules, 
where x y denotes that x is rewritten to y: 

• The flattened right-associative list form must be maintained throughout the construc
tion, i.e., all nested concat nodes must be rewritten using these rules: (X • Y) • Z 
X • (Y • Z), e • Z Z, and Z • e Z. 
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• The rule S{1, k] S{0, k} must be used for all S that are mailable. S can also be 
considered not mailable in the mutable context S{0, k}. 

The size of the regex may decrease, or it remains the same after the normalization. 
Let R be a fixed normalized regex. A counting loop is a sub-expression X of the regex 

R that is of the form X = S{1, k}. A counter is represented by a counting loop, and it is 
named after the loop itself. The upper bound of such counter is maxx = k, and the lower 
bound is minx = I- A n example can be the regex (.{9})*, which has the counter X = .{9} 
whose bounds are minx = maxx = 9. Further in the text, the set of all counters that 
occurs in R will be denoted by C (it can also be denoted by Counters(i?)). For normalized 
regexes X and Y, the juxtaposition XY is again a normalized regex that is equivalent to 
the concat node X • Y. For regexes X = a • b, Y = (a • b)* these conventions means, that 
the juxtaposition XY = a • (6 • (a • b)*. I.e., concatenated elements are treated as sequences: 
the element itself is then a singleton sequence. 

The construction works over the alphabet E = Minterms(R), whose elements are 
minterms of R. Symbols from the alphabet E are used on the transition of the C A . The re
sulting C A created by this construction will also be simple. 

Parametric Languages 

In order to define the language of a normalized regex starting with a counting loop relative to 
a counter value, the definition of languages is lifted to be parametric in counter memories 
m. However, other regexes, i.e., regexes without counting loop, are treated the same as 
without the memory m, which is passed through unchanged. 

For a counter operator / and a counter-memory m, f (m) denotes appropriately updated 
memory. When / is not enabled, then f (m) = _L. Further in the text, if there is only 
a single counter c £ C such that /(c) / N O O P , the counter operator / is sometimes 
identified with O P C . Also, OP c (m) can be used to represent the updated memory f(m). 
Specifically, if enabled, iNCRx and E X I T X increments the value of the counter X by one 
and resets the value of the counter X to zero, respectively. The parametric languages of 
regexes are then defined as follows: 

Def in i t ion 6.2.1. Let m be a counter-memory. Then the following equations define the para
metric languages of regexes: 

Lm(e) d=f{e} (6.1) 

Lm(t/,Z)^fM-Lm(Z) (6.2) 

Lm((W\Y)Z) =fLm(WZ) U Lm(YZ) (6.3) 

Lm(S*Z) dJfLra(Sy . (g 4) 

Lm(S{l, k}Z) =fLm(S) • LINCRs{'Mm(S{l, k}Z) U LEXITs{'Mm(Z) (6.5) 

LL{X) = 70 (VA) (6.6) 

The intuition behind Equation 6.4 is that all possibly present counters in S are inactive 
on the level of S*. Since, for X = S{1, k} and m' = iNCRx(m), k - m'(X) < k - m(X) if 
m(A) < k, and m' = _L if m(X) = k, the Equation 6.5 is well-defined. 

Theorem 6.2.1 proven in [47] relates L m ( i ? ) with the non-parametric definition of regular 
def 

languages. The initial memory maps all counters to zero and is denoted by 0 = Ac.O. 
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Theorem 6.2.1. Let R be a normalized regex. Then L°(R) = C(R). 

Conditional Derivation 

For the counter operator / and the normalized regex X, a partial conditional derivative is 
a pair (f,X). Wi th a counter-memory m, the partial conditional derivative {f,X) defines 
the language Lm((f,X)) =f L^m\X). I.e., the counter-memory m is first updated by 
applying the counter operator / , and the regex X is then evaluated within that updated 
memory. The language will be empty if the counter operator / is not enabled in m. 

Conditional partial derivatives form a finite set called a conditional derivative. Given 
a counter-memory m, the language defined by a conditional derivative D is defined through 
languages of partial conditional derivatives in D. It is the union of such languages, e.g., 
L™(D)^{J^DL™(d). 

Before conditional derivatives of a given regex can be defined, the concept of a sequential 
composition of the conditional derivatives must be defined. The sequential composition of 
conditional derivatives D and E is defined as follows: 

D®Ed^{(f;g,X-Y) \ (f,X)eD,(g,Y)eE,f;g^±} (6.7) 

The / ; j / 1 component of the definition is the composed counter operator, and it is 
obtained as f;g(m) = g(f(m)). The case when f;g = A_ and some other special cases of 
sequential compositions are discussed later on. 

Conditional derivatives of a normalized regex are defined by the following equations: 

da(e) = 0 (6.8) 

Q , , ~N def \ {{ID, Z)} if a A V> is satisfiable 
da(ipZ) = < . (6.9) 

I (/) otherwise 

da((W | Y)Z) = da(WZ) U da(YZ) (6.10) 

da(S * Z) d= da(S) ® {{ID, S*Z)}U da(Z) (6.11) 

da(XZ) = da{S) ® { ( I N C R X , XZ)} U { ( E X I T x , e)} ® da(Z) (6.12) 

It is assumed, that concatenations X • Y are normalized to the flattened right-associative 
list form mentioned above, a £ E, ID denotes the identity function Ax.x, and a counting 
loop S{1, k] is denoted by X. 

The operation iNCRx gets composed with the NOOPx operation in da{S)®{{mCKx, XZ)} 
in Equation 6.12. This composition will yield iNCRx again. It is because S{l,k} can not 
occur in S. The composition E X I T X ; I N C R X can occur in { ( E X I T X , C ) } <8> da(Z) in Equa
tion 6.12 when Z starts with X. The result of this composition will be the operation 
E X I T I X as iNCRx is trivially enabled when the counter value of X is zero. The last possible 
composition of individual operations in Equation 6.12 is E X I T X ; E X I T X - This composition 
will be well-defined when m i n x = 0. It is because E X I T x is always enabled for m i n x = 0. 
The result of such composition is then E X I T X - However, when m i n x > 0, then the com
position E X I T X ; E X I T X is undefined and does not contribute anything to the composition. 
This is correct behavior because the counter value of X is reset to zero by the first E X I T X , 

which results in the second E X I T X not being enabled since X is not mailable. Intuitively, 
the second occurrence of X must be iterated at least once before it can exit. 
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Below are two examples. The first, Example 6.2.1, shows the computation of conditional 
derivatives using Equation 6.8-6.12. The second, Example 6.2.2, with Figure 6.2, explains 
the use of some of the counter operations in the C A by describing them in the context of 
the partial-derivative-based construction. 

Example 6.2.1. Computation of conditional derivatives for regex R = . * a{l, 3}a{l, 3}a. 
The counting loop a{ l , 3} will be denoted by X. R has two minterms a and [~a]. Because 
of the normal form assumption, the computation starts with da(S * Z): 

da(R) = da(.) ® {(ID, R)} U da(XXa) 

= {(ID,R), (iNCRx,XXa), (EXiTlx,Xa)} 

da{XXa) = da(a) <g> {(lNCRx,XXa)} U {(EXITX, e)} <g> da{Xa) 

= { (INCRx , XXa)} U { (EXITX , e)} <g> { (INCRx ,Xa), (EXITX , e)} 

= {(lNCRx,XXa), (EXiTlx,Xa)} 

da(Xa) = da(a) 0 {(iNCRX,Xa)} U {(EXiTX,e)} ® da(a) 

= {(lNCRX,Xa), (EXITX,e)} 

da(a)=da(.) = {(ID,e)} 

The composition EXITX; EXITx in da(XXa) is undefined and therefore removed. 

draj(R) = dra]{.) ® {(ID, R)} U draj(XXa) 
= {(ID,R)} 

d[-a](XXa) = d[-a](a) 0 {(lNCRx,XXa)} U {(EXiTX,e)} <g> dra](Xa) 

= 0 <8) {(lNCRx,XXa)} U {(EXITX, e)} <8> 0 = 0 

d[-a](Xa) = d[-a](a) ® {(INCRx, Xa)} U {(EXiTX,e)} ® d[-a](a) 

= 0 <8> {(INCRx, Xa)} U {(EXITX, e)} <g> 0 = 0 

9 r a J ( . ) = {(/£>, e)} 

^raj(a) = 0 

T/ie language defined by da(Xa) in a valid counter-memory m is the union of the languages 
LINCHx(m\Xa) and LEXITx(-m^ (e). The first language corresponds to the case of iterating 
the loop X (if the counter value of X is below three). The second language corresponds to 
the case of exiting the loop (if the counter value of X is at least one) and accepting {e}. 

Example 6.2.2. Consider the regex (.{9})*. The CA for this regex is in Figure 6.2. 
The initial state is the regex itself, and its only partial derivative is .{9}(.{9})*. In this par
tial derivative, the body of the counting loop is incremented once. The condition CANINCRC 

must hold to do the incrementation. Since the automaton is in its initial state and no tran
sition was yet taken, the value of counter c is zero, and therefore the CANINCRc condition 
holds trivially. 

There are two partial derivatives for the state .{9}(.{9})* ; both leading back to the same 
state. The first case is when CANINCRc holds (i.e., c < 9), the second case is when the count
ing loop is conditionally nullable and is exited under the condition CANEXITc (i.e., c>9). 
In the first case, the counter c is incremented (this is denoted by c < 9/C + + in the figure). 
In the second case, the value of the counter c is reset to zero, and then it is incremented 
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as a result of taking the partial derivative of (.{9})*. As stated before, this composition 
yields the operation EXITI. That means that the condition CANEXITc must hold, the con
dition CANINCRc holds trivially since the counter is reset to zero a step before. The regex 
representing the initial state is nullable; therefore, the initial state is unconditionally final. 
The state -{9}(.{9})* is final iff CANEXITc holds (this is marked by "F:" in the figure). 

c:=0 
r 

p." 
>})* 
r 

• A C < 9 / C + + , 

•AC>9/C :=1 

Figure 6.2: Counting automaton for the regex (.{9})* (taken from [48] and edited). 

Theorem 6.2.2 states the correctness of the construction of conditional derivatives (the 
readers can refer to [47] for detailed proof). For this theorem, it is also necessary to define 
C A N E X I T ^ as the predicate shown above for a normalized regex R. Suppose that X stands 
for a counting loop, then C A N E X I T ^ is defined as follows: 

C A N E X I T ^ = < 

T c if R = e, 

C A N E X I T ^ else if R = YZ and Y is nullable, 
C A N E X I T X A C A N E X I T ^ else if R = XZ, 
_l_c otherwise. 

(6.13) 

Y may also be a counting loop in the second case in Equation 6.13. However, since 
it is stated that Y is nullable, its lower bound miny must be zero (due to the fact that 
R is normalized). Then CANExiTy will always be true. Note that Z can also be e in both 
the second and the third case. If R = a{0, 3} then the second case will be used with Z = e, 
which results in C A N E X I T ^ = Tc - If R = a{l ,3} then the third case will be used with 
Z = e, which results in C A N E X I T ^ = C A N E x i T a r 1 3 i A T c , i.e., C A N E X I T ^ is true if the loop 
a { l , 3} can be exited. 

The following notions also have to be defined as they will be needed further in the de-
terminization of CAs . A counter X is visible in R in these two cases: 

1. R = YZ and X = Y, 

2. X does not occur in Y and X is visible in Z. 

A counter-memory m is valid for R if tn(X) = 0 for all visible counters X that occur in R. 

Theorem 6.2.2. Let R be a normalized regex and let E = Minterms(@) where O is some 
finite superset of Preds(R). If m is valid for R, then Lm(R) = UQGEM ' Fm(da(R)) U 
{ e | m |= CANEXITR}. 
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Constructing C A s From Conditional Derivatives 

Let CA{R) be the counting automaton created from the regex R. The initial state of 
this automaton is R. The smallest set containing the initial state R and all regexes obtained 
from conditional derivatives constructed from R by repeated derivation wrt E is the set of 
states of the CA(R). Let S be the regex that represents a state of CA(R). There is 
a transition (S, a, f, T) in CA{R) for each a G E and each partial conditional derivative 
(f,T) G da(S). The final condition F(S) of the state S is C A N E X I T 5 . When S is not 
nullable and has no visible counters, then F(S) = _l_c, this corresponds to the classical 
case. 

The paper by Turohova et al. [47] shows that the following result can be proven by 
Theorem 6.2.2. 

Theorem 6.2.3. Let R be a normalized regex and A = FA(CA(R)). Then, for all (m, S) G 
QA, CA((m,S)) = Lm(S). 

The construction ofCA(R) terminates, and the number of states ofCA(R) is linear in 

Theorem 6.2.4. Let R be a normalized regex. Then \QCA(R)\ < + 1-

Proof of Theorem 6.2.4 can be found in Turohova et al. [47]. The following final cor
rectness result is a corollary of Theorem 6.2.1, Theorem 6.2.3, and Theorem 6.2.4. 

Corollary 6.2.1. Let R be a normalized regex. Then C(R) = C{CA(R)). 

Proof. First, QcA(R) is finite and thus well-defined by using Theorem 6.2.4- Use Theo
rem 6.2.3 with (m, S) as the initial state (0,R) of A. Lt follows that C{A) = L°(R). Then 
use Theorem 6.2.1 for L°(R) = C{R) and C{CA(R)) = C{A) holds by definition. • 

The number of input minterms of CA{R) may be exponential in the number of predicates 
of R. However, when the predicates are represented as a finite union of intervals (which is 
typical for character classes), the size of a single predicate representation can be estimated 
to be proportional to the number of interval borders in the union. Since the total number 
of interval borders will remain the same in minterms as in the original set of predicates 
also the size of all minterms remains linear in the total size of all the predicates. That 
means that the mintermization based on character classes does not blow up the number of 
transitions in CA{R). This was also experimentally validated in Turohova et al. [48]. 

6.3 D e t e r m i n i z a t i o n o f C o u n t i n g A u t o m a t a 

Counting automata created from the conditional derivative (as shown in Section 6.2) are 
non-deterministic. One approach for the determinization of CAs to DFAs is naive deter
minization. The naive determinization first converts the given CA to underlying NFA. 
This is done by making the counter memories an explicit part of control states. Then, 
the textbook subset construction is used to turn the NFA into the DFA. 

The main disadvantage of this approach is the high risk of state explosion in one, or 
even worse, in both steps. The explosion is caused by two factors. In the first step, it is 
the sacrification of the succinctness of symbolic counters by making them part of the states. 
That makes the states linear in the counter bounds. In the second step, the explosion 
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is caused by the subset construction, which is exponential to the size of the NFA and, 
therefore, also to the counter bounds. 

A new approach, introduced by Turohova et al. [48], can handle the explosion problem. 
The new approach does a direct determinization of the CA into counting-set automata 
(CsAs). CsAs are a novel type of automata which control states produced by the direct 
determinization are essentially the states of the corresponding DFA without the counter 
memories. The states of CsA are equipped with special registers that can hold sets of 
integers in order to simulate the run of the DFA. These registers are used at runtime to 
compute the right values of the counters. This completely avoids the explosion caused by 
the wiring of counter memories into control states. The manipulation with a counting set 
can be implemented in constant time, making the simulation run fast. 

Counting-Set Automata 

This subsection introduces the formalized idea of counting-set automata. To allow manip
ulation with pairs of predicates from the input algebra I and the counting-set algebra §, 
the notion of a combined Boolean algebra I x § is used. It is also assumed that predicates 
in ^ i x s have a form a A j3 where a G and j3 G Vl/§. The conjunction (a A j3) A i x § (a/ A j3') 
has the usual meaning of (a A j a') A (/? A§ j3') and a A j3 is satisfiable if both a and f3 are 
satisfiable in their respective algebras. 

The interpretation of counters is set-based, which means that the value of a counter c is 
a finite set rather than a single value. A counter is then called a counting set. Let Vfin{X) 
denote the powerset of X, which is restricted to finite non-empty sets. Then a function 
s: C —>• Vfin(N), such that Vc G C: Max(s(c)) < maxc is called a counting set memory for 
C. Also, note that the set of all set memories for C is finite. A n effective Boolean algebra 
§C called the counting-set algebra over C is an algebra formed by counting-set predicates 
over C. When it is clear from the context, the counting-set algebra Sc is also denoted 
just by S. The domain of the counting-set algebra £)§ is the set of all set memories for 
C. The Boolean closure of the basic predicates C A N I N C R c and C A N E X I T c forms the set 
of predicates Vl/§, which is syntactically the same as in counter algebra C. However, since 
§ is set-based, its semantic will differ from C to reflect this fact. The semantics of these 
predicates under counter algebra § is defined as follows: 

s |= C A N E X I T C 4=> Max(s(c)) > minc, 
s \= C A N I N C R C Min(s(c)) < maxc 

where MinQ and Max() denote functions that obtain the minimum and maximum of 
the set, respectively. The intuition behind these conditions is that it tests if at least one 
element of the set satisfies the counter condition. 

Definition 6.3.1. A counting-set automaton (CsA) is tuple A = ( I , C , Q, F, A) defined as 
follows: 

• I is an effective Boolean algebra called the input algebra, 

• C is a finite set of counters associated with the counting-set algebra S, 

• Q is the finite set of states, 

• qo G Q is the initial state, 
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• F: Q —>• is the final state condition, 

• A C Q x Vl/ixS x ( C —> 'P(O)) x Q is a finite set of transitions. 

The transition has four components, where the first and the last component is a state. 
The second component is the guard of the transition. The third component of the tran
sition is the counting-set operator, where O denotes the set { I N C R , N O - O P , R S T , R S T I } of 
counting-set operations. The counting-set operations are basically counter operations, just 
lifted to sets. They are also written capitalized in order to distinguish them from the counter 
operations. Also, the lifted counter operations E X I T and E X I T I are written as R S T and 
R S T I , respectively, to stress the different usage of these operations. The counting-set op
erator assigns sets of counting-set operations to counters; these sets are called combined 
(counting-set) operations. 

Definition 6.3.2. The CsA A is deterministic iff the following holds for every two tran
sitions (p,tpi, fi, qi) and (p, i/>2, /2, #2) in A : if ipi A i/>2 is satisfiable, then f\ = f2 and 
Qi = Q2-

The semantics of an indexed counting-set operation OP c £ O is the set transformer 
upd(oP c), which is defined as follows: 

upd(iNCR c) = f XS.{n + l\ neSAn< maxc} upd(RSTc) = f AS.{0}, 

upd(NOOPc) = f XS.S upd(RSTl) = f AS.{1}, 

The counting-set operator / : C —>• V(0) is assigned the counting-set-memory trans
former f : D§ —>• 2)§, which is defined as follows: 

f d e f A c ( U o P e / ( C )Upd ( O P c ) ( S ( c ) ) i f / ( C ) ^ 0 

• \ {0} i f / ( c ) = 0 

Intuitively, if /(c) / 0, there are some operations in /(c) that have to be applied. 
The operations are applied on the value s(c) of each counting set c, yielding counting sets 
for each 5(c). The new value of each s(c) is then a union of its resulting counting sets. In 
the second case, when /(c) = 0, there are no operations to apply. In this case, an implicit 
reset of c to {0} (an implicit R S T operation) is done. Such transitions are created by 
the determinization introduced in the Generalized Subset Construction when c is a dead 
variable (its value is irrelevant). 

In terms of the guards, it is necessary to distinguish cases such as - I C A N E X I T C A 
CANlNCRc, C A N E X I T C A - I C A N I N C R C , or C A N E X I T C A C A N I N C R c . Therefore, the CsA tran
sition obtained throughout the determinization need guards that are partially independent 
of the operations of / . That is the reason why, as opposed to counter operators of a CA, 
a counting set operator / of CsA does not induce any guard, and the guard is instead 
an explicit part of the transition. 

Also, there is a difference in updates in CAs and CsAs. That is because the semantic 
of the I N C R operation is defined in such a way that it can not produce values greater than 
maxc. The updates then have to be defined for indexed operations. 

A n underlying configuration FA of the CsA A, FA(A), defines the language of A as 
C{A) := C{FA{A)). The individual components of the ^^4(^4) are then defined as follows: 
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• Configurations of A, i.e., tuples (q,s) G Q x 2)§ consisting of a state q and a counting-set 
memory s forms a finite set of states of FA(A), 

• the initial configuration (qo, {c i-> {0}} c e c) of A is the initial state of F A ( A ) , 

• a transition r = (p, a A /?, / , q) G A is enabled in configuration (p,s) iff a is satisfiable 
and s G [[/3]]s, i-e., 5 satisfies the counter guard /3; if r is enabled in (p, s), then FA(A) 
contains the transition ((p,s), a, (q, /(s)), 

• a state (q,s) of F A ( A ) is final iff s |= -F(g'). 

A n example of CsA with an intuitive notation (also introduced in Section 6.1) is in Fig
ure 6.3. 

a / c := {0} 
a / c : = {0} U c + 1 

({^sH {Max(c) > 100} 

[ A a ] A M m ( c ) > 100 t r 
[ A a ] A Min(c) < 100/ 

c : = c + 1 

Figure 6.3: Example of the CsA for the regex . *a.{100} in an intuitive notation, created by 
determinization of C A from Figure 6.1. The assignments to c are used to denote counting-set 
operators. Specifically, R S T is written as assignation of {0} to c, R S T I is analogical only 
with {1} instead of {0}, I N C R is represented by c+1, and N O O P is omitted. Also, transitions 
between the same states that differ only in guards are merged into one with a simplified 
guard. Taken from [48]. 

The main reason why the resulting machine for determinization of CAs is CsA is 
the fact that pattern matching with CsAs is fast. Using appropriate data structure, all 
basic counting-set tests and updates, i.e., C A N I N C R C , C A N E X I T C , N O O P , I N C R , R S T , and 
R S T I , can be implemented to run in constant time (assuming constant-time complexity of 
integer arithmetics operations). The size of the counting set and the value maxc do not 
affect the complexity. 

Combined counting-set operations can also be implemented to run in constant time. 
Although the union of two general sets could take linear time to the size of the sets (which 
is at most maxc), the union of sets, where at most one is different from {0} and {1}, 
can be computed in constant time. Only the operations N O - O P and I N C R may return sets 
other than {0} and {1}. A slow transition is then a transition whose counting-set operator 
/ assigns to some counter c the result of combined operation /(c) that contains both N O O P 

and I N C R . The CsA with the absence of slow transitions is then called fast; otherwise, it 
is called slow. According to Turohova et al. [48], slow CsAs are rare in practice. 

In the used data structure, the runtime value of c is a tuple (o, I) where o G N is called 
an offset and I is a queue of strictly increasing natural numbers such that Sc = {o — n | n G 
I}. If the first and the last element of the queue can be accessed in constant time (such as 
a doubly-linked list), the data structure then supports the constant-time implementation 
of the following operations: 

• the minimum and the maximum of Sc are obtained as o — last(l) and o — first(l), 
respectively, 
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• insert 0: if o — last(l) > 0, then append o at the end of I (similarly for inserting 1), 

• incrementing all elements, up to maxc: o := o + 1; if o — first (I) > maxc, then 
remove first(l), 

• reset to {0}: I := 0; o := 0 (similarly for reset to {1}). 

A n example of usage of this data structure is in Figure 6.4. 

prefix state (oj) Sc 
e {<?} (0, [0]) {0} 
a k,s} (0,[0]) {0} 
aa {q,s} (1,[0,1]) {1,0} 
aa0(10) {q,s} (11, [0,1]) {11,10} 
aa0(lo)aa {<?,«} (13, [0,1,12,13]) {13,12,1,0} 
aa0(lo)aab(87) {<?,*} (100, [0,1,12,13]) {100,99,88,87} 
aa0(lo)aab(87)d {<?>*} (101, [1,12,13]) {100,89,88} 
aa0(lo>aab(87)df {q,s} (102, [12,13]) {90,89} 
aa0(lo>aab(87)dfa {q,s} (103, [12,13,103]) {91,90,0} 

Figure 6.4: Example of the data structure during a run of CsA in Figure 6.3 over an input 
word aaO^aab^dfa. It shows the current state, the runtime counting-set configuration 
(o, I), and the value Sc that the (o, I) represents after processing of the prefix. The final con
dition of {q, s} is fulfilled after processing the sixth and seventh prefix since the maximum 
of Sc is at least a hundred. Taken from [48]. 

Using the above-described data structure together with fast CsA for pattern matching, 
the tests and updates of one counting set take 0(1) time. This results in the overall 
complexity of C ( | C | ) for all counting sets and their unions. 

Encoding D F A Powerstates as C s A Configurations 

This section describes two approaches that can be used for the configurations of a CsA 
to encode states of a DFA corresponding to NFA FA{A) underlying a given CA A = 
(I,C,Q,qo,F,A). Assume that the states of FA(A) are pairs (p, m), where p is a state 
of A and m is a counter-memory. The FA{A) have such states due to the fact that A is 
converted to FA{A) by making the counter memories explicit parts of states. Also, assume 
that the FA{A) is determinized by the textbook subset construction. Considering a simple 
FA A = (I, Q, q0, F, A ) , the set of states of the DFA created by the textbook subset 
construction will be V(Q), its transitions will be (5, a, {r G Q \ s(a)r G A , s G 5}), its initial 
state will be {qo}, and its final states will be all those intersecting F. Explicit generation of 
all minterms in order to determinize CA that is not simple can be avoided by using a more 
sophisticated version of the subset construction for symbolic automata. This version of 
the subset construction is introduced in Veanes et al. [49]. Further in the text, the result of 
the textbook subset construction will be written as DFA(A). Sets of states (i.e., sets of pairs 
(p, m)) of FA(A) then form the states of DFA(A), called the powerstates. The CA-to-Cs^4 
determinization introduced in the Generalized Subset Construction builds CsA A' which 
control states are the subset of the set Q of the states of the CA A. Pairs (i?,s) where 
R C Q is a CsA control state, i.e., a set of states of A, and s: C —>• Vfin(N) is a counting-set 
memory, are the configurations of A'. 
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The first approach to encode a powerstate to a CsA configuration is to interpret the con
figuration (R, s) as a DFA state containing all pairs (r, m) such that r G R and m(c) can 
be any value from s(c) for all c G C. The set of the counter memories m is then iso
morphic to the Cartesian product n c e c s ( c ) of the sets s(c) assigned to the counters, and 
the entire powerstate is the Cartesian product R x m of the set of states and the set of 
counter memories. This approach is called naive encoding, and since it can not express any 
dependence of a counter-memory on the CA state (every state can be paired with each 
considered memory), it is too impractical. It also can not express the mutual dependence 
of values of different counters within a counter-memory (every possible value of a counter 
c can be paired with every possible value of any other counter d). This encoding can not 
represent most of the DFAs that arises from real-life regexes. A n example can be the CA 
from Figure 6.1 and its DFA configuration {(q, c = 0), (s, c = 0), (s, c = 1)}, which can not 
be represented by the naive interpretation of a CsA configuration, since q and s appear 
with different sets of counter values. 

The second approach is encoding with counter scopes. The major difference in compari
son to naive encoding is considering the fact that the value of a counter is usually implicitly 
zero at most states. In other words, not every counter is used at every state of the CA. 
In such states (which must be known in order to use this approach), the implicit zeros can 
be omitted from the counting sets, making the encoding much more flexible. To formalize 
this concept, the paper by Turohova et al. [48] introduces the notion of the scope of a counter 
that over-approximates the set of states where a counter c can have a non-zero value. In 
a general case, computing a precise set of such states would require a reachability analysis. 
That is because some of the transitions may never be used. For example, when simulta
neously counting with two counters c and d for which C A N I N C R C < C A N E X I T ^ , the exit 
transition for d can not be used since the C A N E X I T ^ guard will never be satisfied. How
ever, since the derivative construction produces CAs without such transitions, the scope 
corresponds to this set precisely, and therefore the set of states where a counter c can have 
a non-zero value is easy to compute. The scope is defined inductively as follows: 

Definition 6.3.3. The scope is the smallest set of states a(c) such that q G cr(c) if: 

• there is a transition to q with either INCRc or EXIT1c, 

• there is a transition to q from a state in a(c) with NOOPc operation. 

I.e., the state is in scope if the counter c gets incremented on the incoming transition 
and the scope then spreads along with the transition relation until a transition with E X I T C 

takes place. 
The formal definition is then the following: The DFA powerstate encoded by a CsA 

configuration (R,s) is the set (R,s)DFA of configurations (r, m) of the CA A such that 
r G R and, for all c G C, m(c) G s(c) if c G a(r), else m(c) = 0. The powerstate of DFA(A) 
is called Cartesian if it can be encoded by CsA configuration. The DFA(A) is then called 
Cartesian if all its powerstates are Cartesian. 

For example, considering CsA A from Figure 6.1, since qo is not in the scope of c, 
the powerstates of the DFA{A) are Cartesian. 

Unfortunately, not all kinds of DFA powerstates can be expressed by the Cartesian 
encoding. Specifically, more subtle dependencies of counter values on the state and depen
dencies of counter values on each other can not be expressed by the Cartesian encoding. 
These dependencies mostly arise from regexes with nested counting sub-expressions, which 
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are compiled in CAs with nested counting loops. A n example of a regex that is compiled 
to non-Cartesian CA is (a|aa){5}. More information about the non-Cartesian powerstates 
can be found in the paper by Turohova et al. [48], which also provides strong empirical 
evidence that a significant majority of real-life regexes lead to Cartesian CA. 

Generalized Subset Construction 

This section describes the core of the CA-to-CsA determinization, which is built on top of 
the textbook subset construction for NFAs. Since the derivative construction introduced 
in Section 6.2 generates simple CAs (their transitions are labeled with minterms of the orig
inal regex, and therefore different character classes on its transitions do not overlap), it is 
assumed that input CAs of the determinization are simple. However, it could be gener
alized to work with non-simple CAs in the style of symbolic automata determinization of 
Veanes et al. [49]. 

Let A = (I, C, Q, qo, F, A) be a simple CA with the scope function a: Q —>• V(C). 
The deterministic CsA A' = (I, C, Q', So, F', A') is then the result of the determinization 
algorithm. The components of A' are constructed as follows: 

• I and C stays the same, 

» Q' C V(Q) (the control states of A' are called powerstates), 

• initial powerstate is So = {qo}, 

• F'(S) = f V<jeS-^(Q) ' ™ ° t n e r words, the powerstate S G Q' is final iff the final 
condition holds for any of its element, 

• The sets A' and Q' are constructed by a fixpoint computation that explores the state 
space reachable from So. When a new transition from an already reached powerstate 
is created during the construction, it is added to A'. Also, the target powerstate of 
the newly created transition is added to Q'. When no new powerstate can be reached, 
the sets A' and Q' are complete. 

Transitions of the CsA A' must be constructed in such a way that their updates of 
the runtime values of counting sets simulate transitions of the DFA corresponding to 
the CA A. Let (R,s) be a CsA configuration and ((R, s)DFA, a, P) be a DFA transition 
from the DFA powerstate encoded by (i?,s) over an input minterm a. A configuration 
(R,s) must be transformed into (R',s') with (R',s')DFA = P by simulating the CsA transi
tion. The CA a—transitions enabled in configurations ( r , m) G (R,s)DFA are instantiations 
of a—transitions of the NFA FA{A) from which the simulated DFA transition was con
structed. These CA transitions will be used to construct the simulating CsA transition. 
Before the construction takes place, it is necessary to delete some C A transitions, which 
can never be taken. Such transitions, however, can create CsA transitions without corre
sponding guard because the source state is not in scope. These CsA transitions then cause 
that the CsA can accept a different language than the C A . It is a transition from the state, 
which is not in scope, with E X I T or E X I T I operation for counter with lower bound greater 
than zero. Since the counter is not in the scope of the source state, its value will be zero, 
and such transition can never be taken since the C A N E X I T guard can never be satisfied. 
Let S be the set of minterms over all input predicates in the CA A. The CA transitions 
can then be identified by the following: 
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1. source state, which must be in R, 

2. an alphabet minterm a £ E , 

3. compatibility with a particular set of enabled or disabled counter guards. 

The set of guards mentioned in case 3 above belongs to the set of minterms T^a of the set 
of counter guards on the a—transitions originating in R, which is defined as follows: 

TR)a =f Minterms({grd(opc) | (r, a, f, s) G A , r G R A c G a(r), O P C G /} ) (6.15) 

For each a G E and /? G r# j Q, there will be a transition leaving i? in the CsA. The set of 
CA a—transitions originating in R and consistent with /3 that is used to build that CsA 
transition is defined as follows: 

clef { ( r , a,f,s)eA\r<ER, Sat(ipf A j3)} (6.16) 

A l l target states of the transitions in A .R j Q j ( g forms the set T which is the target powerstate 
of the newly created transition of CsA. The guard of this transition is a A j3 (the predicates 
in a n d a r e syntactically the same). 

As stated before, the transition must simulate the updates of transitions from which it is 
created. So, the last component of the transition, the counting-set operator / ' must summa
rize the updates of the counter values on transitions of Ajj j Q j ( g as updates of the respective 
counting sets. It must also take the scope of the counter into consideration. Tracking of 
the value of the counter starts when A' simulates a transition of A entering the scope of 
the counter. The tracking then ends when no state from the scope is present in the target 
CsA state. In all other situations, when the counter is out of scope, its value is implicitly 
zero, and the counter will not be tracked in counting sets. 

Let Aij j Q j (g(c) be the set of transitions from the set A .R j Q j ( g whose target state is in 
the scope of c. Also, let op(r, c) denotes the counting-set operation that for a given CA 
transition r = (p, a, f, q) transforms the set of possible values of the counter c at the state p 
to the set of possible values obtained at the state q after taking the transition. It is defined 
as follows: 

op((p,a,f,q),c del' 

r N o O P i f / (c ) = N O O P Ape a(c 

I N C R i f / ( c ) = I N C R A p G cr(c) 

R S T i f / ( c ) = N O O P Ap £ a(c 

R S T l i f / (c ) = I N C R A p G" cr(c) 

R S T i f / ( c ) = EXIT 

R S T I i f / ( c ) = EXITl 

(6.17) 

The set operation induced by the C A transition corresponds to the counter operation on 
the transition. When the CA transition comes from out of the scope, the counter can 
only have the value zero, which is the same as produced by E X I T (or eventually E X I T I if 
the counter is immediately incremented). This corresponds to the third and fourth cases 
in Equation 6.17. 

The counting set operator / ' is then defined as / '(c) = {op(r, c) | T G A R ^ ^ } . It can 
also end up empty. That happens in a situation when the target powerstate is fully out of 
the scope of c, which is semantically corresponding to the implicit reset to {0}. The re
sulting CsA transition is therefore (5, a A /3,f',T). Since for any two distinct transitions 
(S, ai,fi,Si) and (5, « 2 , / 2 , S2), the condition a\ A « 2 is unsatisfiable by virtue of minterms, 
the CsA A1 is deterministic. 
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Theorem 6.3.1. For the CA A and the CsA A' above, we have C(A') D C(A) and 
\Q'\ < 2^1 

A n idea of proof of Theorem 6.3.1 can be found in Turohova et al. [48]. 

Example 6.3.1. The counting automaton for the regex a{l, 3}6{5, 9}ab is shown in Fig
ure 6.5. The counting-set automaton created by determinization of the counting automaton 
is shown in Figure 6.6. The determinization process will be demonstrated on the creation 
of transition from the state So to the state Si for the letter b. There is only one transition 
in the counting automaton that will be considered, and it is the transition from the state go 
to the state qi. There are two guards on the transition; however, only the counter X is in 
the scope of the state qo, and therefore the guard for the counter Y is irrelevant. The set 
Ts0:b will then contain the following two elements: CANEXITX and ^CANEXITX- Since 
there is CANEXITX on the original transition, the element ^CANEXITX of the Ts0,b set can 
not be used as CANEXITX A ^CANEXITX is not satisfiable. The last missing component of 
the transition is the operation. The EXITX operation of the CA transition is irrelevant since 
X is not in the scope of the state q\. The INCRv operation will be transformed to the RST1 
operation by using the fourth case of Equation 6.17. The final created transition is then 
the transition (So, b A CANEXITx, {RSTly}, Si). 

a / INCR(X) b / INCR(Y) 

Figure 6.5: Counting automaton for the regex a{l, 3}6{5, 9}ab. X denotes the counter 
a{l, 3}, and Y denotes the counter 6{5, 9}. Assignation of a value to the counter is denoted 
by := sign (e.g., X := 0). The character class (in this example, only a single letter) is written 
as first on the transition. If there are any operations, they are written after / symbol. 

a A Canlncr(X) / INCR(X) b A Canlncr(Y) / INCR(Y) 

Figure 6.6: Counting-set automaton for the counting automaton from Figure 6.5. X denotes 
the counter a{l, 3}, and Y denotes the counter 6{5, 9}. The character class (in this example, 
only a single letter) is written as first on the transition; then there are counter guards, and 
after / symbol, there are the operations. For both guards and operations, the counters on 
which they are applied are written as an argument. 
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Chapter 7 

Implementation 

This Chapter describes the implementation of the CsA-based pattern matching done within 
the RE2 matcher. It is further divided into individual sections following the steps to create 
CsA described in Chapter 6. The main steps are translating a regular expression into 
the C A , determinization of the C A , and the matching itself. Besides the implementation 
of the matching itself, there is a set of tests covering each of the mentioned steps and 
benchmarks for the first two parts of the algorithm (i.e., creating the counting automaton 
from the input regex and its determinization). 

7.1 T r a n s l a t i n g a R e g u l a r E x p r e s s i o n I n t o C o u n t i n g A u t o m a 
t o n 

The first step of the algorithm is to create the C A from the input regex. This part of 
the algorithm works with already preprocessed regex along with some other information 
obtained through the processing. The output of this part of the algorithm is an instance 
of a Regexp: : Derivatives class. The instance holds the resulting counting automaton 
together with some additional information needed further in the algorithm (for example, 
a set of all counters that occurs in the regex). 

Preprocessing the Input Regex 

The preprocessing of the input regex can be divided into two parts. The first part is done by 
already implemented functions of the RE2. This part loads the input regex in the form of 
a string. Then it will check the syntactical correctness of the regex and creates an instance 
of a Regexp class holding the regex itself. The Regexp class instance is an instance variable 
of an RE2 class, which is the class that holds all information needed for the algorithm. 
The information that will be further used is the use_CsAs_ and unanchored_ options, 
the bytemap_ array, and the bytemap_range_. Their usage will be described in more detail 
further in the text, but their meaning is briefly the following: 

• use_CsAs_ option is used to determine if the CsAs-based matching algorithms or 
the original algorithms should be used, 

• unanchored_ is used to determine if . * should be prepended and appended to the regex, 
such modified regex is then used for partial matching, 
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• bytemap_ is an array of size 256 where the index is an ordinal value of a corresponding 
character, and the value is the number of the bytemap class for the character, 

• bytemap_range_ is a number that determines the number of character classes. 

The second part of the preprocessing, which is already part of the newly implemented al
gorithm, works with the output of the first part, specifically with the instance of the Regexp 
class. It normalizes the regex to the right-associative list form described in Section 6.2. It 
must also do some further modifications as part of the normalization. Specifically, it must 
transform regex operators for whose there is no equation defined in Equation 6.8-6.12 for 
partial derivative construction. The transformation is done so that there is no need to 
introduce new equations for the partial derivatives. 

The operators are the plus operator (+) and the quest operator (?). The plus operator 
means one or more repetitions of the pattern. The only difference between the plus operator 
and the star operator is that there must be at least one repetition of the pattern for the plus 
operator. The plus operator is therefore transformed to the star operator with the repeated 
pattern as a prefix. For example, the regex a+ will be transformed to the regex aa*. 
For the transformed regex, there must be at least one a, same as for the original regex 
with the plus operator, and then there can be an unlimited number of repetitions of a. 
Such transformation, therefore, creates an equivalent regex, which fits the equations for 
the partial derivatives construction. 

The quest operator means zero or one occurrence of the pattern, e.g., the regex aa? will 
match two strings, a and aa. The operator will be transformed to alternation (i.e., I op
erator). One alternative of the transformed regex will be e, which corresponds to the zero 
occurrences part of the quest operator. The second alternative will be the original pattern 
without the quest operator, which corresponds to the one occurrence part of the quest 
operator. For example, the regex a? will be transformed to the regex e I a. The trans
formed regex match zero or one occurrence of the pattern, and therefore, it is equivalent to 
the original regex. Again, the transformed regex fit the equations for the partial derivatives 
construction. 

Creating a Counting Automaton 

After the regex is normalized using the steps above, it can be used to create the C A . It is 
created using Equation 6.8-6.12. They are implemented as several methods. The methods 
are the following: 

getEquationTypeAndOperands 

This method gets the type of equation that has to be used. It also gets the operands 
for the equation. The regex (i.e., the Regexp class instance) is passed as an argument to 
the method. The regex has an operator1 associated with it and a list of subexpressions if 
there are any. 

When the regex is just a single expression (i.e., it has no subexpressions), the concate
nation equation will be used (Equation 6.9) for most of the cases. The first operand of 
the equation will be the expression itself, and the second will be e. However, there are some 
special cases: 

l rThe operators with comments can be found in the regexp.h file available at https: //github.com/google/ 
re2/blob/master/re2/regexp.h 
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• when the regex is of a type kRegexpLiteralString (for example, the regex abcde), 
the equation type will be the same, but the first operand will be a, and the second 
will be bcde, 

• when the regex is of a type kRegexpStar (for example, the regex a*), the repetition 
equation will be used (Equation 6.11), and the operands stay the same, 

• when the regex is of a type kRegexpRepeat (for example, the regex a{100,300}), 
the counted repetition equation will be used (Equation 6.12), and the operands stay 
the same. 

When the regex is of a type kRegexpAlternate, it will be processed the same as the sin
gle expression regexes, even though it has some subexpressions. It is because the subexpres
sion will be processed later in the computation. For such regexes, the alternation equation 
will be used (Equation 6.10). The first operand of the equation will be the expression itself, 
and the second will be e. 

When the regex is of a type kRegexpConcat, there are two ways of processing it. 
The first is when the type of its first subexpression is not kRegexpConcat. In such 
a case, it is processed similarly to the single expressions described above. The differ
ence is that the type of the equation is determined based on the first subexpression. For 
example, for regexes a{l,3}b{2,4}a and a*a, the type of equation will be determined by 
a{l ,3} and a*, respectively. The first operand will be the first subexpression of the regex. 
The second operand will be the regex without the first subexpression. For example, for 
the regex a{l,3}b{2,4}a, the first operand will be a{l,3> and the second operand will be 
b{2,4}a. There is also one special case. It is when the first subexpression is of the type 
kRegexpLiteralString. The second operand in such a case is not just the regex without 
the first subexpression. It is the concatenation of the first subexpression without the first 
literal and the rest of the regex. For example, for the regex abca*, the first operand will 
be a, and the second operand will be bca*. 

The second way of processing the regex of the type kRegexpConcat is when its first 
subexpression has the kRegexpConcat type. Such a case can be caused by normalization. 
For example, the regex (aa{l ,3]-b)a{l ,4} is rewritten to aa{ 1,3}ba{ 1,4} by the normal
ization. Then it is the concatenation of two expressions aa{l,3}b and a{l,4}. The first 
expression then has the kRegexpConcat type. The first subexpression must be processed as 
a standalone regex. The first operand is then set correctly. However, the second operand 
must be modified. It will be the concatenation of the second operand created by processing 
the first subexpression and the rest of the whole original regex. 

composition 

The method does the composition needed in Equation 6.11 and Equation 6.12. It creates 
new transitions that arise from the composition. The source state is the operand of the equa
tion. The target state of the newly created transitions will be a new regex. The new regex 
is created as the concatenation of regexes from the partial derivatives that are arguments 
of the composition. The transitions will also have a new counter operator that arises from 
the composition. The new operator is computed by the getOperatorComposition, which 
must also consider the special cases described in the Conditional Derivation. 
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computeNewState 

This is the main method of C A creation. It starts with the whole regex as it is the initial 
state, and then it explores every newly created regex (state). Even those states that will 
not be in the resulting C A because they will be unreachable. Their results are needed 
in other equations. The method first gets the equation type and its operands using 
the getEquationTypeAndOperands method. Then it implements Equation 6.8-6.12. A l l 
the equations must be computed for all bytemap classes. 

For Equation 6.9, the method checks the satisfiability of the first operand. If it is satisfi-
able, it creates a new transition from the first operand to the second operand. The transition 
will also have the bytemap class associated with it. If the regex is of a type kRegexpAnyChar, 
the bytemap class is set to 256, which is beyond the upper bound of the bytemap. It is then 
used in the determinization to determine that the transition can be taken for any bytemap 
class. It also adds the second operand as a new state to be explored. 

For Equation 6.10, the method first creates new regexes as the concatenation of indi
vidual subexpressions of the first operand with the second operand. For each of the new 
regexes, it computes the partial derivatives by calling itself (i.e., the computeNewState 
method). Then it copies all the transitions created by the newly created regexes and 
changes the source state to the equation operand in all of them. 

For Equation 6.11, the method first computes partial derivatives for the pattern of 
the first operand (for example, for pattern a if the first operand is a*) and for the second 
operand. Then it computes the composition and also copies all of the transitions created 
by the second operand and changes the source state to the equation operand in all of them. 

For Equation 6.12, the method first computes partial derivatives for the pattern of 
the first operand (for example, for pattern a if the first operand is a{l ,3}) and computes 
the first composition defined in the equation. Then it computes partial derivatives for 
the second operand and computes the second composition defined in the equation. The re
sult of this equation is the union of the two computed compositions. The last step is then 
to merge the transition that arises from the compositions together. The method also saves 
the counting loops while computing this equation. The counting loops are saved by their 
names (for example, the counting loop a{l,3j- will be saved as a{ l , 3} ) . If there is more 
than one such counting loop, the others are saved with the number of already found count
ing loops with the same name appended to the end. For example, the regex a{l ,3}a{l ,3} 
will have two counting loops, a{l,3> and a{l ,3}l. 

In each of the equations, it is also determined if the regex (i.e., the operand of the equa
tion) is a final state. The check is done using the isNullable method, which implements 
the C A N E X I T ^ predicated defined in Equation 6.13. The final state condition is True if 
the checked regex does not start with a counting loop or if it starts with a mailable counting 
loop. Otherwise, the final state condition will be C A N E X I T of the corresponding counting 
loop. 

Structure of the Resulting Counting Automaton 

The counting automaton is saved in an unordered_map where the key is a string representing 
the source state, and the value is a vector of transitions. The transition is then a 5-tuple 
where the individual components are the following: 

• a string representing the source state, 

• an integer representing the bytemap class, 
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• a set of counter guards (the guards in the C A are not an explicit part of the transition: 
however, they are saved together with operations, so the operations do not have to 
be traversed later in the determinization to get the guards) 

• a list of counter operations, 

• a string representing the target state. 

The class instance also contains some additional information about the counting au
tomaton that will be used further in the determinization. It contains an unordered_map of 
all C A states. The key in this map is a string representation of the state, and the value is 
a pair representing the state. The pair contains an instance of the Regexp class representing 
the regex and a set of counters in scope (which will be computed during the determiniza
tion). 

There is also an unordered_map of all final states. The key in this map is a string 
representation of the state. The value is a finalStateCondition, which is a structure 
holding a guard, and if the guard is C A N E X I T , it also holds information about the counting 
loop and its bounds. 

7.2 D e t e r m i n i z a t i o n o f t h e C o u n t i n g A u t o m a t o n 

The second step of the algorithm is the determinization of the counting automaton created 
from the input regex. The input of this part is an instance of the Regexp: :Derivatives 
class, which holds all the information about the C A . The output of this part of the algorithm 
is an instance of a CSA class. The instance holds the resulting counting-set automaton. If 
the determinization is done on the fly, the instance does not hold the whole CsA from 
the start. However, it does carry all the information needed for the determinization, and 
the CsA is building as needed during the matching. The on-the-fly determinization can 
also gradually create whole CsA for some regexes and input text. 

Computing the State Scope 

The first step of the determinization part of the algorithm is to compute the scope of 
the states. The state scope is needed to compute the set of minterms of the set of counter 
guards defined in Equation 6.15. The state scope is also needed to compute the counting-set 
operator / of the newly created transitions defined in Equation 6.17. 

The scope will be computed only for the reachable states. Therefore, the computation 
starts with the initial state. Then all the states reachable using the transitions from the cur
rently explored state are added to a statesToExplore vector. A l l states from the vector 
are gradually explored. The computation ends when there is no state to explore. 

The formal definition of the scope is in Definition 6.3.3. The scope of the states is com
puted using the computeStateScopes method. The method will explore all the outgoing 
transitions of the currently explored state. For each of the transitions, it also traverses all 
its operations. If there is the I N C R or the E X I T I operation, it will add the corresponding 
counting loop of the operation to the scope of the target state of the transition. If there is 
an E X I T operation, the counting loop must be erased from the scope of the target state of 
the transition if it is there. 

According to the definition of the scope, the ID operation should spread the current 
scope of its counting loop. However, during the translation of the regex into the C A , there 
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is no information about the counting loop that corresponds to the inserted ID operation 
in Equation 6.9 and Equation 6.11. Also, there has to be an implicit ID operation for 
all counting loops that are not used on the transition in some other operation. Therefore, 
the computeStateScopes method keeps track of all counter used on individual transitions. 
Then it gets all unused counting loops of the transition as a set difference of all count
ing loops of the regex (these are obtained in the translation of the regex to C A step of 
the algorithm) and all counting loops used on the transition. The method will create 
an ID operation for all the unused counting loops and add it to the transition. A l l the un
used counting loops that are in the scope of the current state must spread the scope to 
the target state too. Such counting loops are computed as a set intersection of all counting 
loops that are in the scope of the current state and all unused counting loops (i.e., those 
with the implicit ID operation). The resulting scope of the target state is then a union of 
the already computed scope of the target state and all counting loops that are in the result 
of the intersection. 

Computing the C s A States and Transitions 

The computation of the CsA states and transitions is done by one primary method, named 
getNextStateAndTransitions. It implements all the steps described in the Generalized 
Subset Construction. It also uses some other methods representing the steps of the for
mal algorithm, namely getCounterGuards, computeMinterms, checkSatisfiability, and 
getCsaTransitionOperator. 

getCounterGuards 

This method will get the set of counter guards on the transition. The set is needed to 
compute the set of minterms Tptta defined in Equation 6.15. According to the definition, it 
gets the counter guards for the given CsA state and the given bytemap class. It traverses 
all the outgoing transitions of the given state. For each transition, it will check if the given 
bytemap class is the same as the bytemap class of the transition. The transition can also 
have the bytemap class 256. Such transition can also be processed since the bytemap class 
256 means any character. Other transitions are skipped. 

Then, each of the transitions that fulfill the bytemap class condition is processed. That 
means to traverse all its counter guards. A l l the guards of the transition that are in the scope 
of the source state are added to the final set of the counter guards. The method also gets 
a set of all the counting loops of the used guard. The set of counting loops will be used 
later for optimizations. 

computeMinterms 

This method does the second step of the set of minterms T^a computation. It computes 
the minterms of the given set of counter guards. The algorithm is inspired by the algorithm 
for minterms computation introduced in [18]. The individual minterms are sets of counter 
guards. 

The algorithm creates two sets. The first set contains the first counter guard, and 
the second contains the same counter guard but negated. These two sets that will be 
potentially extended represent the minterms. The sets are also added to the set of all 
current minterms. The method then traverses all the remaining counter guards. For 
each of the counter guards, it will try to extend all of the current minterms by the non-
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negated and negated guard separately. I.e., there could be two minterms after this step, 
the original minterm extended by the non-negated guard and the original minterm ex
tended by the negated guard. The non-negated guard is always added. The conjunction 
of all the guards in the minterm must remain satisfiable after the negated guard is added. 
There are only two situations when the conjunction could be unsatisfiable. The first situa
tion is when the guard is True, its negated version is - iTrue , which is always unsatisfiable. 
The second is the conjunction - I C A N I N C R C A - I C A N E X I T c , which can never be satisfied for 
non-empty sets of positive integers. In all other cases, the negated guard is also added to 
the minterm. The computation ends when all the guards are traversed. 

checkSatisfiability 

The method checks if all the operations of the given transition are consistent with the given 
minterm. I.e., there is no combination such as I N C R c operation and - I C A N I N C R c guard. 
This check has to be done in order to get the Ajj j Q j (g set of C A transitions (defined in 
Equation 6.16) that are used to build the CsA transition. 

The method gets two sets of guards as arguments. The first is the counter guards 
of the currently checked transition (i.e., (ff in the definition). That is why the counter 
guards are explicitly saved to C A transitions as described in the Structure of the Resulting 
Counting Automaton. Thanks to that, the operations of the transition do not have to be 
traversed in this method to get the guards. 

The second set of guards is the minterm, i.e., (3 in the definition. However, it is not 
the original minterm but a modified one. A l l of the guards in the minterm are negated. 
For example, - H C A N I N C R c will become C A N I N C R c , and C A N I N C R c will become - H C A N I N C R C . 

With the modification of the minterm, the satisfiability of the conjunction of these 
two sets of guards can then be checked using the set intersection. The conjunction could 
become unsatisfiable if there is the same guard in both sets, but one of them is negated 
(i.e., C A N I N C R c in one set and - I C A N I N C R c in the other set). Because all the guards of 
the minterm are negated before this method is called, it can be checked if there are two 
same guards. In such a case, the conjunction is unsatisfiable. Therefore, if the result of 
the set intersection is non-empty, the conjunction is unsatisfiable; otherwise, it is satisfiable. 
A n example of how the method works is in Example 7.2.1. 

Example 7.2.1. Let /3 = {^CANINCRC, CANEXITv} be the minterm. According to the de
scription above, its modified version will then be j3' = {CANINCRC, ^CANEXITv}. Assume 
that the second argument of the checkSatisf iability method is the set of guards of 
the transition iff = {CANINCRC, CANEXITv}. The method compute intersection j3' n iff = 
{CANINCRC}. The result of the intersection is non-empty, and, therefore, the conjunction 
should be unsatisfiable. This is right since the conjunction of ^CANINCRc from the original 
minterm and CANINCRc from the set of guards of the transition is unsatisfiable. 

getCsaTransitionOperator 

This method implements Equation 6.17. It traverses all the operations of the given transi
tion and creates the set of operations for CsA transition. 

getNextStateAndTransitions 

This is the main method of determinization algorithm. It gets all outgoing transitions for 
the given CsA state. It first computes the set of minterms TR^ for the given CsA state R and 

49 



given the bytemap class a using the getCounterGuards and computeMinterms methods. 
The method then traverses the set of minterms. For each of the minterms, it creates its 
modified version according to the description above. 

For each of the modified minterms, it traverses all outgoing transitions of the given CsA 
state. The CsA state is the set of C A states, so it traverses all outgoing transitions of all 
C A states from the CsA state. For each of the transitions, it checks if it can be taken. 
That means to check the bytemap class of the transition, which must be equal to the given 
bytemap class a or it must be 256 (i.e., it matches any character). Also, the conjunction 
of the set of guards of the transition and the current minterm must be satisfiable. That 
is checked using the checkSatisf ia b i l i t y method called with the modified version of 
the minterm and the set of guards of the transition. If the transition can be taken, its 
target state will become part of the target CsA state. If the target C A state is final, 
the method also adds the corresponding final state condition to the set of the CsA state 
final conditions. Also, it computes the CsA operation for each of the transitions that can 
be taken. 

The last step is to save the information about the newly computed transitions and 
states. The following information will be saved for the transitions: 

• the source state of the transition which is the given state R, 

• bytemap class which is the given bytemap class a, 

• the set of used counting loops computed by the getCounterGuards method, 

• the set of operations computed by the getCsaTransitionOperator method, 

• the target state, which is obtained as the set of target C A states of the used transitions. 

If any of the C A states that form the target CsA state is the final state, the target CsA 
state will also be saved as final. 

The Structure of the Counting-Set Automaton 

The counting-set automaton is the vector, which will be called the automaton vector for 
clarity. Its index corresponds to the numerical representation of the source state. The value 
of the automaton vector stores information about the possible transitions. The information 
is stored as a vector, which will be called the state vector. The index of the state vector 
corresponds to the bytemap for which the transitions can be taken. The values of the state 
vector are pairs of used counting loops and the vector of transitions itself. The index to 
the vector of transitions is based on the used counter guards (the computation of the index 
will be described further in the text). The value on the index is then a pair of the set of 
counter operations and the target state. 

The structure of the automaton is optimized so that the matching loop can work effi
ciently with it. The first optimization is to use the numerical representation of the states. 
Then the whole automaton can be saved in the vector (the automaton vector), which is 
accessed by the index (i.e., the numerical representation of the state). The vector pro
vides a constant time access by the index. Constant time access is crucial. Containers 
like the unordered_map provide average constant complexity. However, the worst-case 
complexity is linear, and the run-time difference between these two is significant. 

The state vector holds pairs of the used counting loops and the transition vectors. 
The counting loops are used to compute the index to the transitions vector, so it is 
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not necessary to work with all counting loops of the regex. The index is computed by 
the computeGuardlndexes method described below. The computation of the index is used 
because the matching loop then does not have to traverse all the possible transitions (and 
check its guards) to find the only one that will be used. The transition itself holds informa
tion about the counter operations that will be used when it is taken and the target state 
of the transition. 

Also, the state vector and the transition hold their values as std: :pair rather than 
std: : tuple because the pair proves to be faster. Note that the pair can not be used 
to hold more than two values, whereas the tuple can hold multiple values. However, in 
the described structure, it is enough to have only pairs of values, and, therefore, it can take 
advantage of the std: :pair speed. 

computeGuardlndexes 

This method is used to compute the index of the transition in the transitions vector 
based on its guards. This optimization is based on the C# implementation of [48]. Each 
counter-memory can be described by one of the following states: 

• LOW denotes the counter-memory where all its values are below the lower bound of 
the counting loop, 

• HIGH denotes the counter-memory with a single value which is equal to the upper 
bound of the counting loop, 

. MIDDLE denotes the rest. 

Based on that, each counter guard can be satisfied by the counter-memory in some states. 
More specifically, the C A N I N C R guard is satisfied by counter-memory in state L O W and 
M I D D L E since there is at least one value lower than the upper bound of the count
ing loop in both of the states that can be incremented. The C A N E X I T guard is sat
isfied by the counter-memory in the state M I D D L E and H I G H since there is at least 
one value greater than the lower bound of the counting loop. For the conjunction of 
the guards, the states that satisfy individual guards can be viewed as sets. The states 
satisfying the conjunction are obtained as the intersection of these sets. For example, 
the conjunction C A N I N C R A C A N E X I T can be satisfied by the counter-memory in state 
{LOW, M I D D L E } n { M I D D L E , HIGH} = { M I D D L E } . 

Each of the L O W , M I D D L E , and H I G H states is internally represented as a number, 
specifically one, two, and three, respectively. The index of the transition in the transition 
vector is then computed using bit operations. The method prepares an empty vector for 
indexes at the start and traverses the vector of used counting loops. The counting loop is 
represented by the number of the current iteration. It then gets the numerical representation 
of the counter state based on the guards of the transition and updates the vector of indexes. 
If two states satisfy the guard (for example, L O W and M I D D L E ) , they must be used 
separately for the index computation, which results in two indexes being computed. 

The update of the index is performed in two ways based on the emptiness of the vec
tor of indexes. If the vector is empty, it adds a new index based on the current counter 
number. The index is computed as state_number <C counting_loop_number * 2, where 
<C represents left bit shift operation. Since each of the numerical representations of L O W , 
M I D D L E , and H I G H can be represented by two bits, the counting_loop_number * 2 part 
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of the index computation ensures that each counting loop has its own two bits in the bi
nary representation of the index. If the vector of indexes already contains some computed 
indexes, the method traverses them all and updates them by the newly computed index 
using logical OR operation. The logical OR operation ensures that all the values representing 
the already processed counters remain unchanged. A n example of the index computation 
is in Example 7.2.2. 

Example 7.2.2. Assume that there are two counting loops represented by numbers zero and 
one. Also, assume that the guards of the counting loops are CANINCRO A CANEXITQ and 
CANINCRI A - i CANEXITI . The computation starts with the counting loop zero. The state 
that satisfies its guard is the MIDDLE state (which is represented by number two). There
fore, the index is computed as 2 <C 0 * 2 = 2, which is 10 in binary. The index is added 
to the vector, and the computation continues with the counting loop one. The state that 
satisfies its guard is the LOW state (which is represented by number one). The index for 
this counting loop is then computed as 1 <C 1 * 2 = A, which is 0100 in binary. However, 
since there is already one index computed, these two must be combined using the logical 
OR operation. The resulting index is then 10|0100 = 0110. The counting loop zero is rep
resented on the lower two bits of the result, and the counting loop one is represented on 
the higher two bits of the result. 

7.3 M a t c h i n g W i t h t h e C o u n t i n g - S e t A u t o m a t o n 

The matching is done using the CsA created using previous steps of the algorithm. There 
are two kinds of matching implemented. The first is the so-called full match, which matches 
only the whole input string, and the second is the so-called partial match, which matches 
the string anywhere on the line. However, the matching algorithm itself is the same for 
both of these kinds. 

The difference between the two kinds of matching is in the way the input regex is 
processed. For the full match, the regex is processed as it is entered on the input. Then 
the C A is created and determinized. For the partial match, the regex must be updated. 
The new regex must find the original regex anywhere on the line. This is accomplished 
by adding the . * as a prefix and a suffix to the original regex. The newly created regex 
can read any characters before and after the original regex, and the original regex can 
be found anywhere on the line. The algorithm treats the updated regex the same as in 
the full match. It is just the regex itself making the difference between the full match and 
the partial match. 

The main matching algorithm iterates over the input text character by character. For 
each of the characters, it gets the bytemap class using the pre-computed bytemap class 
array. The character is used as the index to the bytemap class array; the value is then 
the bytemap class for the currently processed character. 

The matching algorithm then works with the CsA. However, as the CsA is built on 
the fly, the matching algorithm needs to know if the desired part of the CsA was already 
computed or not. For that, it uses a vector, where the index is the numerical representation 
of the source state. The value is another vector, where the index is the bytemap class 
number. The values of the inner vector are booleans that determine if the state and bytemap 
class combination was already processed. Therefore, the matching algorithm checks if 
the value on the index [state_number] [bytemap_class] is true or false. If it is false, 
the matching algorithm calls the getNextStateAndTransitions method with the current 
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state and current bytemap class. If the value is true, the outgoing transition for the current 
state and bytemap class combination was already computed and will be used without any 
additional computation. After that step, the matching loop also checks if there are any 
outgoing transitions computed. There could be zero outgoing transitions meaning that 
the match fails. 

The on-the-fly determinization has an advantage on the input texts, for which only 
a part of the CsA is used. In such a case, the unused parts are not computed, as opposed 
to the CsA pre-computing, where the whole CsA is computed before the matching starts. 
However, in the worst case, even the on-the-fly determinization can end up computing 
the whole CsA. 

The matching loop then gets the above-described state vector for the state and bytemap 
class combination as the result of processing the combination or accessing the cache. As 
the next step, it is necessary to compute the index to the vector of transitions based 
on the used counting loops and current counter-memory values. The index is obtained 
similarly to the index computation during the determinization described above. It also 
uses the bit shifts and logical OR operation. The difference is how the L O W , M I D D L E or 
H I G H state of the counter is determined. In the determinization step, it is obtained from 
the guards of the transition, which means that it gets the states of the counter-memory that 
satisfy the guard. In the matching loop, the counter-memory states are obtained based on 
the current values of the counter-memory, which means that it gets the information about 
what guards the current counter-memory satisfies. Therefore, the matching loop checks 
the current state of the counter-memory for each of the used counting loops and gets 
the index to the transitions vector. 

After the index to the transitions vector is obtained, the matching loop checks if there is 
any transition on that index. That means checking if the index is not out of the bounds of 
the vector. If it is not, it also checks if the transition is not just a default one. The default 
transitions are on those indexes of the transitions vector, for which there is no transition 
to be taken, which means that the match fails. This corresponds to the situation when 
the automaton can not move the next state with the current values of the counter-memory 
(i.e., there was not enough repetition of the pattern). 

When the valid transition is found, the last step of the matching loop is to update 
the counter-memory by the corresponding operations of the transition. The individual op
erations of the transition are applied to the counter-memory separately, and the resulting 
updated counter-memory is the union of such individual updates. However, all the com
binations of operations, except the N O - O P and I N C R combination, can be implemented in 
constant time since the R S T and R S T I create a single element set. The N O O P and I N C R 

combination can be implemented in time linear to the size of the resulting sets of these 
operations. 

The individual operations with the counter-memory are implemented according to the de
scription in the Counting-Set Automata. The used structure is the vector, which holds pairs 
of the offset, and std: : deque, which is used as the queue. The index in the vector is the nu
merical representation of the counting loop. 

When the counter-memory is updated, the matching loop continues with the next char
acter from the input text. It repeats all those described steps until the whole input text 
is traversed. After that, it is checked if the lastly visited state is final or not. If it is not 
final, the match failed. If it is final, it is also necessary to check if at least one of its final 
conditions holds. The final state conditions are held in the std: :set container sorted by 
the guard, so the T guard, which means that the state is unconditionally final, is the first. 
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The algorithm traverses all the final state conditions, checking them one by one. When 
one of the conditions is satisfied, the match is successful. Note that since the set of guards 
is sorted, if there is some T guard, it will be checked first, and no other guards will be 
checked. If there are only the C A N E X I T guards, the algorithm also checks the current state 
of the counter-memory to determine if the guard is satisfied or not. If none of the final 
state conditions is satisfied, the match is unsuccessful. 

7.4 Tes ts 

The set of tests is implemented in Python. The tests are written to cover the basic function
ality of the individual steps of the translation regex into the C A , determinization of the C A , 
and also the matching itself. The test runs the corresponding part of the algorithm on a set 
of regexes and checks if the output matches the expected one. The implemented matching 
algorithm does not print the output of the individual steps by default. The #if defined 
directive and compilation with the corresponding flag is used to enable or disable the part 
of code that prints the output of the desired part of the algorithm. The parts covered by 
tests are the following: 

1. equations test that covers the output of the getEquationTypeAndOperands method, 

2. normalization test that covers the normalization of the input regex, 

3. derivatives test that covers the whole first step of the algorithm, i.e., translation of 
the input regex into the C A , 

4. CA final states test that covers the identification of the final states and their conditions 
in the C A , 

5. scope test that covers the computation of the scope of the counters, 

6. gamma set test that covers the computation of the TRJ01 set, 

7. determinization test that covers the determinization of the C A (i.e., it checks if the cre
ated CsA is correct), 

8. CsA final states test that covers the identification of the final states and their condi
tions in the CsA, 

9. matching test that covers the full match type of matching, 

10. unanchored matching test that covers the partial match type of matching. 

Each of the tests, except the matching tests, contains the set of patterns and their 
corresponding correct outputs. The main script of the test firstly compiles the RE2 with 
the corresponding flag to get the output of the tested part printed. Then it prepares 
the source code with the patterns, runs it, and compares the output with the predefined 
correct output. If they match, it reports the test of the current pattern as successful. If 
they do not match, it reports it as an unsuccessful test and prints out the expected and 
actual output so it can be further checked. 

The matching tests have only the patterns defined, not the outputs. The testing script 
then prepares the source code with the patterns so that the patterns are matched by 
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the newly implemented CsA-based algorithm and the original RE2 algorithm. The outputs 
are then compared, and the test is successful if the CsA-based algorithm has the same result 
of matching as the original algorithm. 

The main test script cleans out the created source codes after the tests are finished. It 
also runs make clean for the RE2 so that the next compilation will be done correctly with 
the current flag. How to use the test is described in Appendix B. 

7.5 B e n c h m a r k s 

Similar to the tests script, there is also a Python script that runs the benchmarks for 
the compilation of the input regex into the C A and the determinization of the C A . These 
benchmarks are run on 37 regexes that were challenging for the C# implementation. The re
sult of these benchmarks is discussed in the Translating of the Regex Into the C A and 
Determinization of the C A . 

The benchmarks can be run for regexes used both for the full match and partial match 
type of matching. The main script runs the compilation of the input regex into the C A or 
the determinization on each of the defined regexes. The output of the algorithm compiled 
with the corresponding flag for benchmarks is the time it takes to create the C A or the CsA. 
The Python script collects the times, prints them for each of the patterns. It also prints 
the sum of the times at the end of the run. Also, it has a defined timeout, after which it 
kills the computation and reports it as the timeout. How to use the benchmarks script is 
in Appendix C. 

The benchmarks of the matching itself are run within the benchmark tool of [48]. 
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Chapter 8 

Experimental Evaluation 

This Chapter discusses the experimental evaluation of the algorithm. It is divided into two 
parts. The first discusses only the translation of the regex into the C A and the determiniza-
tion of the C A parts of the algorithm. These two parts of the algorithm are compared only 
with the C# implementation named CA from [48]. The reason is that it is the only implemen
tation using the CsA-based matching and, therefore, the only implementation that creates 
and determinizes the counting automaton. The second part discusses the experimental 
evaluation of the matching itself. 

8.1 T r a n s l a t i n g of t h e R e g e x I n t o t h e C A a n d D e t e r m i n i z a -
t i o n o f t h e C A 

These parts of the implementation were tested only on more complex regexes from the bench
mark of [48] that were hard to determinize for the C# implementation. 

CA RE2 (CsA) 
N C A CsA N C A CsA CsA without timeouts 

mean 10 966 73 433 8 62 709 11 136 
median 254 11 338 4 1 990 1 050 

timeouts 0 14 0 5 N / A 

Table 8.1: Experimental evaluation of RE2 (with CsAs) implementation and CA (times 
are given in milliseconds). N C A denotes the time from the loading of input regex to 
the counting automaton being created. CsA denotes the time of the determinization of 
the counting automaton. CsA without timeouts denotes the time of the determinization, 
which was run only on regexes on which any of the two implementations do not suffer from 
timeout. The timeout was set to 1 800 seconds. 

The result in Table 8.1 shows that the RE2 implementation is faster for both transla
tions of the regex into counting automata and determinization of the counting automata. 
The determinization part of the RE2 implementation takes a long time on some regexes 
on which the C A implementation suffers from timeout. There is also the result of the RE2 
implementation on regexes on which the C A does not suffer from timeout to stretch out 
the difference. 
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8.2 R e g u l a r E x p r e s s i o n P a t t e r n M a t c h i n g 

The matching benchmarks were run on a set of 2320 regexes from the benchmark of [48]. 
The actual comparison of matching times was made based on 2148 benchmarks, where 
the CsA-based RE2 algorithm found the correct number of matches. The results of the orig
inal RE2 implementation were considered as a reference for the number of matches. Also, 
each of the individual comparisons was made based only on those regexes, for which both 
of the compared tools get the correct number of matches. Note that the comparison with 
grep and also the overall statistics are done on a smaller set of regexes. It is because grep 
uses different semantics of regexes, causing it to quit after reading only several characters 
and reporting zero matches on such regexes. Therefore, regexes for which the time and the 
number of matches of grep were zero, and the other tools find a match or their matching 
time was larger than zero (i.e., the grep quit after reading just several characters while the 
other tools try to find a match in the whole input text), were not considered. 

The tools were run in the settings, where their output is the number of lines on which 
the match was found. If there are no explicit anchors, the matched string could be anywhere 
on the line. If there is a start line (~) or end line ($) anchor, the match has to start at 
the beginning or at the end of the line, respectively. If both anchors are used in a single 
regex, the whole line has to be matched. 

The main focus of the matching benchmarks was to compare CsA-based matching im
plemented in C# and in C++. Such comparison determines if the C++ implementation speeds 
up the original CsA-based matching implementation or not. The state-of-the-art matchers 
grep and the original RE2 is also included in the comparison. 

The result of the comparison between the CsA-based RE2 implementation and the other 
tools in the form of scatter plots is in Figure 8.1. The plot in Figure 8.1(c) shows the result 
of a comparison between the C# and C++ implementation of CsA-based matching. The C++ 
implementation did indeed speed up the CsA-based algorithm, as it is faster in 1908 out of 
2145 benchmarks. For some of the benchmarks, the matching time of both of the tools was 
significantly higher. However, it stays under one second for most of the benchmarks. 

The comparison between the CsA-based RE2 implementation and the other tools, grep, 
and original RE2 is in Figure 8.1(a) and Figure 8.1(b), respectively. Even though the grep 
and original RE2 win more often, there are clearly regexes, for which the CsA-based RE2 
implementation is faster than these two. Those are the regexes with the counting loops, of
ten with higher bounds. Considering the plot in Figure 8.1(c), it is clear that the CsA-based 
matching has more stable matching times than the original RE2 and grep. 

RE2 grep C A R E 2 ( C s A ) 
mean 0.153 0.537 0.480 0.399 

median 0 0.06 0.43 0.28 
std. deviation 1.614 3.175 0.207 1.739 

timeouts 1 10 2 2 

Table 8.2: The benchmarks statistic of the individual tools. Times are given in seconds, 
and the timeout was set to 60 seconds. The supplied times are based on 1625 benchmarks 
on which none of the tools suffers from error or timeout, and the regex suits the grep 
semantics. For the timeout statistics, the regexes for which the tools suffer from timeout 
were also added, resulting in a set of 1640 regexes being used for the timeout statistics. 
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Table 8.2 contains the statistic of matching times of individual tools. Comparing 
the two CsA-based algorithms, the one implemented within RE2 is faster. Comparing 
the CsA-based RE2 with grep, the mean is better for the CsA-based RE2. Even though 
the grep wins most of the time (as shown in Figure 8.1(a)), there are regexes on which 
the CsA-based RE2 is significantly faster, making the overall mean better for the CsA-based 
RE2. Grep also suffers from timeout the most of all compared tools. 

The original RE2 is the fastest among all the tools. It also suffers from timeout the least. 
Considering the plot in Figure 8.1(b), the speed of original RE2 still drops on regexes with 
counting loops with higher bounds on which the CsA-based RE2 is faster than the orig
inal one. The usage of the CsA-based algorithm in RE2 is determined by a constructor 
parameter. This allows the developer to choose the CsA-based algorithms or the original 
algorithms. If the developer has control over the regexes (i.e., the regexes are not sup
plied by the user), the developer can use the CsA-based algorithm for the counting-heavy 
regexes and the original algorithms for the rest of the regexes, where the numerous RE2 
optimizations will do faster. 
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(a) The comparison of matching times between 
CsA-based matching implemented within RE2 
and grep. RE2 with CsA-based matching is 
faster in 269 benchmarks from the total num
ber of 1629 benchmarks (the set of benchmarks 
is smaller for the grep because of its different se
mantic of regexes). The speed is the same in 
30 benchmarks. 
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(b) The comparison of matching times between 
CsA-based matching implemented within RE2 
and the original RE2. RE2 with CsA-based 
matching is faster in 139 benchmarks from the 
total number of 2148 benchmarks. The speed is 
the same in 109 benchmarks. 
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(c) The comparison of matching times between 
CsA-based matching implemented within RE2 
and CA, which also implements CsA-based 
matching. RE2 with CsA-based matching is 
faster in 1908 benchmarks from the total number 
of 2145 benchmarks. The speed is the same in 
11 benchmarks. 

Figure 8.1: Graphs with the results of the comparison between CsA-based matching im
plemented in RE2 with grep, original RE2, and C A , which also implements the CsA-based 
matching. 
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Chapter 9 

Conclusion 

The goal of this thesis was to implement efficient counting-set-automata-based regular ex
pression (regex) matching. The counting-set automata approach for regex matching is 
introduced in [48], where it is also shown that such approach is efficient for regexes with 
bounded repetition operator and can outperform state-of-the-art matchers on such regexes. 

The implementation was done within the state-of-the-art matcher RE2, which allowed 
the usage of its already implemented parts. The determinization and matching part of 
the algorithm contains two optimizations. The first allows to effectively choose the right 
transition based on the current state of the counter-memory. The second is the usage of 
the on-the-fly determinization. 

The implementation was experimentally evaluated and compared with the C# imple
mentation of [48], grep, and the original RE2. The speed of translation of the input regex 
into the counting automaton and determinization of the automaton was compared for the 
CsA-based RE2 and C# implmenentation. The RE2 implementation shows a speed-up in 
both translations of the input regex and determinization of the counting automata. 

In terms of the speed of the matching, the new CsA-based RE2 implementation out
performs the original C# implementation on most of the regexes. Compared with grep, 
the CsA-based RE2 was slower on more regexes. However, the mean of the matching time 
was better for the CsA-based RE2. Also, grep suffers from timeout more than the CsA-based 
RE2. The original RE2 was faster for most of the regexes, and it also has the lowest mean 
time upon all the tools. 

The implementation contains the above-described optimization, which helped to outper
form the original implementation on most of the regexes, and the grep and the original RE2 
on regexes with bounded repetition with higher bounds. However, the numerous advanced 
optimizations of the grep and the original RE2 make them faster on the rest of the regexes. 
The first option is to re-implement such optimizations and used them in the CsA-based 
RE2 algorithm. Since the new algorithm is implemented within the original RE2, there is 
a second option. The usage of the CsA-based algorithm in RE2 is currently determined by 
the constructor parameter. Currently, the developer can choose if it is suitable for a specific 
regex to use the CsA-based algorithm or the original algorithm. That way, the advantage of 
the counting-set automata can be used for the regexes with bounded repetition, and the nu
merous optimizations of the original algorithm can make it faster on the other regexes. It 
would be even better to automatize this concept and choose the appropriate algorithm 
based on the input regex. 
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Appendix A 

C D Content 

The attached C D contains the following items: 

• re2-master folder, which contains source files of RE2, including the new files for 
CsA-based matching (the derivatives .h, derivatives. cc, csa.h, and csa. cc files), 

• pythonScripts folder, which contains all Python scripts for tests, and benchmarks 
of the automaton creation part of the algorithm, 

• install.sh script that compiles the RE2 so it can be used in C++ code, 

• R E A D M E . m d file, which contains information about how to compile RE2 and how 
to use the CsA-based matching in C++ code, 

• find lines csa Linux executable file, it takes two arguments (regex and file) and 
prints out the number of lines containing matching string, 

• find lines csa.exe Windows executable file, it takes two arguments (regex and 

file) and prints out the number of lines containing matching string, 

• D T xhorky23.pdf the text of this thesis, 

• text folder, which contains r^T^K source files. 
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Appendix B 

How to Run Tests 

The test scripts are written in Python. The tests are supposed to be run on Linux as they 
compile the RE2 library with corresponding flags. They will not run on Windows directly 
but can be run using the WSL. The required version of Python is 3.6. The main test script 
(runTests.py) is located in the pythonScripts folder (see Appendix A) . The script has 
to be run from the pythonScripts folder as it accesses different paths and expects to be 
run from there. If the script is run without any argument, it will run all tests. It can also 
be used with an option -t or —tests followed by the test names. In such a case, it runs 
the specified tests. The test names are the following: 

• equation to run the equations tests, 

• normalization to run the normalization tests, 

• derivatives to run the derivatives tests, 

• ca_f inal_states to run the CA final states tests, 

• scope to run the scope tests, 

• gamma_set to run the gamma set tests, 

• determinization to run the determinization tests, 

• csa_f inal_states to run the CsA final states tests, 

• matching to run the matching tests, 

• matching_unanchored to run the unanchored matching tests. 

See Section 7.4 for more information about the individual tests. 
Each of the individual tests compiles the RE2 library with the corresponding flag to 

print the desired output. It then runs it on a set of regexes and compares the program 
output with the expected one. It prints out info about the pattern that is tested with 
the result of the test. If the test fails, it also prints the program output and the expected 
output. 
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Appendix C 

How to Run Automaton Creation 
Benchmarks 

The benchmark scripts are written in Python. The benchmarks are supposed to be run 
on Linux as they compile the RE2 library with corresponding flags. They will not run on 
Windows directly but can be run using the WSL. The required version of Python is 3.6. 
The main test script (runBenchmarks. py) is located in the pythonScripts folder (see 
Appendix A) . The script has to be run from the pythonScripts folder as it accesses different 
paths and expects to be run from there. If the script is run without any option, it will run 
all benchmarks. The main script accepts three options: 

• —nca to run only the benchmarks for translation of the input regex into C A , 

• —dca to run only the benchmarks for determinization of the C A , 

• —unanchored to run benchmarks using regexes with . * as a prefix and suffix and 
with s flag. 

Each of the individual benchmarks compiles the RE2 library with the corresponding flag 
to use only the desired part of the algorithm. It then runs it on a set of regexes. For each 
of the regexes, it prints out the regex, and the time it took to process it in milliseconds. 
After the last regex, it also prints the number of timeouts and the sum of the times. 

The timeout of the individual benchmarks is set to 1 800 seconds. It can be changed 
using the TIME0UT_MS constant. For the —nca option of the script, the constant has to be 
changed in the constantsNondeterministicBenchmarks.py file. For the —dca option of 
the script, the constant has to be changed in the constantsDeterministicBenchmarks .py 

file. Both files are located in the /pythonScripts/helpers folder. 
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