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Abstract

Regular expression matching has an irreplaceable role in software development. The speed
of the matching is crucial since it can have a significant impact on the overall usabil-
ity of the software. However, standard approaches for regular expression matching suffer
from high complexity computation for some kinds of regexes. This makes them vulnera-
ble to attacks based on high complexity evaluation of regexes (so-called ReDoS attacks).
Regexes with counting operators, which often occurs in practice, are one of such kind. Suc-
cinct representation and fast matching of such regexes can be archived by using a novel
counting-set automaton. We present a C++ implementation of a matching algorithm based
on the counting-set automaton. The implementation is done within the RE2 library, which
is a fast state-of-the-art regular expression matcher. We perform experiments on real-life
regexes. The experiments show that implementation within the RE2 is faster than the
original C# implementation.

Abstrakt

Vyhledavani regularnich vyrazi ma ve vyvoji softwaru nezastupitelné misto. Rychlost vyh-
ledavani muze ovlivnit pouzitelnost softwaru, a proto je na ni kladen velky dtraz. Pro
ur¢ité druhy regularnich vyrazti maji standardni piistupy pro vyhledavani vysokou slozi-
tost. Kvuli tomu jsou néachylné k utokiim zalozenym na vysoké narocnosti vyhledavani
reguldrnich vyrazu (takzvané ReDoS ttoky). Reguldrni vyrazy s omezenym opakovanim,
které se v praxi casto vyskytuji, jsou jednim z téchto druhti. Efektivni reprezentace a rychlé
vyhledavani téchto regularnich vyrazt je mozné s pouzitim automatu s ¢itaci. V této praci
predstavujeme implementaci vyhledavani regularnich vyrazi zalozeném na automatech s ¢i-
ta¢i v C++. Vyhledavani je implementovano v ramci RE2, rychlé moderni knihovny pro
vyhledavani regularnich vyrazi. V préci jsme provedli experimenty na v praxi pouzivanych
regularnich vyrazech. Vysledky experimentti ukéazaly, ze implementace v rdamci nastroje
RE2 je rychlesi nez ptivodni implementace v jazyce C#.
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Rozsireny abstrakt

Vyhledavani regularnich vyraza hraje dulezitou roli ve vyvoji softwaru. Pouziva se napiiklad
pro vyhledavani a nahrazovani textu, validaci dat, nebo zvyraznovani syntaxe. Na rychlost
vyhledavani regularnich vyrazt je kladen velky duraz, protoze muze ovlivnit pouzitelnost
softwaru. Nékteré pristupy k vyhledavani nemaji zarucenou slozitost a jejich pouziti muze
mit vyrazny vliv na pouzivani aplikaci. V nejhorsim piipadé muze dochazet az k nedostup-
nosti sluzeb, zptisobené nevhodnym regularnim vyrazem, jehoz zpracovani mé za nasledek
vysoké vyuzivani systémovych prostfedkt. Na vysoké naro¢nosti zpracovani nékterych reg-
uldrnich vyrazu je zalozeny i titok typu odepteni sluzby (denial of service), takzvany regular
expression denial of service (ReDoS).

Dnesni moderni nastroje pro vyhledavani regularnich vyrazu ¢asto pouzivaji algoritmy
zalozené na zpétném navraceni (tzv. backtarcking algoritmy). Algoritmy zalozené na zpét-
ném navraceni vytvareji z regularniho vyrazu nedeterministicky konecny automat a provadi
jeho simulaci. Velkou nevyhodou téchto algoritmu je jejich slozitost, kterd miuze byt v ne-
jhorsim piipadé az exponencialni.

Dalsim pristupem k vyhleddavani regularnich vyrazt jsou algoritmy zalozené na deter-
ministickijch konecnich automatech. Ty mohou byt bud predpocitané, nebo se muze deter-
minizace provadét v pribéhu vyhledavani. Predpocitané automaty maji vyhodu v rychlosti
vyhledavani, slozitost tohoto algoritmu je linearni vzhledem k délce vstupniho textu. Nevy-
hodou je ale pravé predpocitavani automatu, u kterého muze dochazet ke stavové explozi.

P1i provadéni determinizace v prubéhu vyhleddvani dochézi k simulaci nedetermini-
stického kone¢ného automatu. Timto zptisobem je mozné eliminovat riziko stavové exploze.
Dnesni moderni nastroje navic pouzivaji cache pamét, kam si postupné ukladaji jiz vy-
pocitané ¢asti automatu. Tim c¢astecné fesi problém se slozitost! vypoc¢tu v piipadé, ze
stavy deterministického automatu jsou tvoreny velkym poc¢tem stavi nedeterministikého
automatu. Vysledek takového vypoctu maji ulozeny a nemusi ho tedy provadét znovu.
Exploze stavového prostoru je nicméné problematickd pro vSechny varianty algoritmi za-
lozenych na koneénych automatech.

Castou pfi¢inou stavové exploze jsou regularni vyrazy s omezenym opakovanim. Tato
diplomova prace je zalozena na publikaci, ktera predstavuje automaty s ¢itaci, které dokazi
regularn{ vyrazy s omezenym opakovani efektivné reprezentovat. Cilem této prace je efek-
tivni implementace vyhleddvaciho algoritmu zalozeného na téchto automatech. Prace se
také zabyva porovnanim rychlosti vysledného algoritmu s modermini nastroji a implemen-
taci totozného algoritmu v jazyce C#.

Automaty s ¢itaci obsahuji ¢itace, které udrzuji aktualni pocet opakovani vyrazu s omeze-
nym opakovanim, napiiklad pro regularni vyraz a{1,3} bude automat obsahovat jeden
Citac, ktery bude udrzovat aktualni pocet precténych znakt a. Automat s ¢itaci se pro
dany regularni vyraz vypocitava pomoci kontrukce zalozené na tzv. conditional partial
derivatives.

Automat s ¢itacCi je nedeterministicky a pred jeho pouzitim pro vyhledavani je nutné
provést determinizaci. Tato prace vyuziva nové predstaveny pristup k determinizaci. Z nede-
terministického automatu je vytvaren tzv. automat s citacimi mnoZinami. Jednd se o de-
terministicky automat, jehoz stavy jsou vybaveny registry, které mohou udrzovat mnoziny
celych cisel. Tyto registry jsou pouzivany k simulaci béhu deterministického automatu, kdy
za béhu dochazi k vypoctu aktualniho stavu paméti jednotlivych citacu. Jednotlivé pre-
chody automatu s ¢itacimi mnozinami obsahuji tzv. guards, jejich splnénim je podminéno
provedeni prechodu, napf. je mozné opustit vyraz s omezenym opakovanim pouze v pri-
padeé, ze bylo dosazeno dolni hranice poc¢tu opakovani. DalSim komponentem prechodu jsou



potom operace, které aktualizuji pamét registrii pfi pouziti prechodu, napt. inkrementuji
hodnotu ¢itace pfi precténi dalsiho vyskytu symbolu.

Implementace vyhledavaciho algoritmu zalozeného na automatech s ¢itacimi mnozinami
je provedena v ramci nastroje RE2. Jedna se o moderni a rychly nastroj pro vyhledavani
regularnich vyrazi obsahujici mnozstvi optimalizaci. Implementace v ramci existujiciho
nastroje ma vyhodu v moznosti vyuziti jiz implementovanych a optimalizovanych c¢asti.
Implementace je rozdélena do tii krokd, prvnim krokem je vytvaireni nedeterministického
automatu s ¢itaci, druhym krokem je determinizace tohoto automatu a poslednim krokem
je samotné vyhledavani regularnich vyrazu.

V prvnim kroce algoritmu se nejprve, za pouziti existujicich funkci néastroje RE2,
provede zpracovani vstupniho regularniho vyrazu. To zahrnuje kontrolu spravnosti reg-
ularnho vyrazu, zjednoduseni nékterych jeho c¢asti do efektivnéjsi formy a prevod reg-
ularniho vyrazu do interni reprezentace. Soucasti tohoto zpracovani je i vypocet nékterych
dodate¢nych informaci, jako napriklad tzv. bytemap classes, které mapuji jednotlivé znaky
do skupin, mezi kterymi dany regularni vyraz nikdy nerozlisuje. Tyto skupiny se potom
pouzivaji na prechodech automatu. Dalsim krokem tohoto bodu algoritmu je normalizace
vnitini reprezentace regularniho vyrazu do formy, ktera odpovidd rovnicim definovanym
pro vypocet automatu s ¢itaci. Soucasti tohoto kroku je i prevod nékterych operatoru
regularniho vyrazu na jiné, pro které jsou definovany rovnice. Jedna se o operator * a 7.
Po této upravé interni reprezentace se regularni vyraz postupné prochézi zleva, na zdkladé
aktudlnich podvyrazu se urcéi spravna rovnice a dojde k jejimu vypocétu. Vystupem této
casti algoritmu je instance tfidy Regexp: :Derivatives, kterd udrzuje nedeterministicky
automat s ¢itac¢i. Dale udrzuje dalsi informace tykajici se tohoto automatu, které jsou
potTebné pro jeho determinizaci.

Druhym krokem algoritmu je determinizace automatu s ¢itaci. Jednd se o zobecnénou
subset konstrukei, kterd je proviadéna podle definovanych formalnich rovnic. Nejprve dojde
k vypoctu tzv. scope ¢itacu. Tim se zjisti, pro jaké stavy automatu jsou jednotlivé ¢itace
relevantni. S ostnimi ¢ita¢i potom neni nutné v ramci daného stavu pracovat, protoze bu-
dou mit vzdy implicitni hodnotu nula. V prubéhu vypoctu se také doplnuji ¢itace, které
patii k operaci ID (jednd se o operaci, kterd neméni stav paméti ¢itace). Implicitni ID op-
erace pro jednotlivé ¢itacCe je také vlozena na vsechny prechody, kde dany ¢ita¢ neni pouzity
v jiné operaci. Dale je nutné pro jednotlivé prechody ziskat podminky pro jednotlivé ¢itace
(guards). Nejprve se ziskaji podminky pouzitych prechodu nedeterministického automatu
pro vSechny relevantni ¢itace (relevantni ¢itace se urcéuji na zakladé vypocteného scope). Ze
ziskanych podminek se vypoctou tzv. minterms, jednd se o mnozinu vSech rtiznych kom-
binaci danych podminek. Pro prechody se ale nepouziji takové kombinace, které nemohou
byt nikdy splnény, protoze takovy prechod by nebylo mozné nikdy provést. Pro vytvareny
prechod se na zakladé relevantnich ¢itact a operaci puvodnich prechodt ziskd mnozina
operaci prechodu deterministického automatu. Tato mnozina operaci odpovida provedeni
operaci vSech ptvodnich prechodi. Determinizace za¢ind v pocatecnim stavu nedetermini-
stického automatu a postupné se prochazi vsechny nové vytvorené stavy deterministického
automatu. Pokud jiz neexistuje zadny novy stav, je determinizace dokoncena.

Poslednim krokem algoritmu je samotné vyhledavani regularniho vyrazu zalozeném na
automatu s ¢itacimi mnozinami. Algoritmus provadi determinizaci automatu on-the-fly pti
samotném vyhledavani. Deterministicky automat tedy neni pfedpocitavany. Vyhledavaci
algoritmus zaéind v pocateCnim stavu automatu a postupné prochéazi vstupni text znak po
znaku. Pro kazdy znak si ziskd jeho bytemap tiidu. Nasledné zjisti, jestli pro danou kombi-
naci stavu a t¥idy jiz byly vypocitané prechody. Pokud ne, provede jeden krok determinizace



pro aktualni stav a tiidu, kterd odpovida pravé zpracovavanému znaku. Tim ziska prave
pouzivanou ¢ast deterministického automatu. Pro danou kombinaci stavu a tiidy znaku ale
muze existovat vice prechodu, které se lisi v podminkach ¢ita¢t. V prubéhu determinizace
jsou tyto prechody ukladany do vektoru na rizné indexy. Indexy jsou vypocitavané na zak-
ladé toho, jaky stav paméti muze spliiovat danou podminku prechodu. Ve vyhledavacim
algoritmu je tedy ziskan index na zakladé aktualniho stavu paméti a pouzije se ten pre-
chod, ktery je na vypocteném indexu. Pti provedeni pfechodu se aktualizuje pamét ¢itaca
podle operaci prechodu a pokracuje se dalsim znakem vstupniho textu. Po prozkoumaéani
celého vstupniho textu se zjistuje, jestli je posledni navstivény stav koncovy. Pokud je, musi
se jesté ovérit, jestli aktualni stav paméti ¢itact splinuje koncové podminky tohoto stavu.
Muze nastat i situace, kdy koncovy stav nemé zadnou podminku na stav ¢itaci, v takovém
pripadé je stav koncovy bez jakychkoliv dalsich kontrol.

Experimenty provadéné na regularnich vyrazech pouzivanych v praxi ukazaly, ze imple-
mentace v ramci nastroje RE2 je rychlejsi nez ptvodni implementace v jazyce C#. Zrychleni
se podafilo dosdhnout predevsim v prvnich dvou ¢astech algoritmu, tedy u prevodu vstup-
niho regularniho vyrazu na automat s ¢itaci a u determinizace tohoto automatu. Pro
samotné vyhledavani byla potom implementace v ramci RE2 rychlejsi pro vétsinu reg-
uldrnich vyrazt. Pfi porovnani s nastrojem grep byla sice implmenetace v RE2 pomalejsi
pro vice regularnich vyrazi, primérny cas vyhledavani nastroje grep byl ale horsi. To je
zpusobeno tim, ze pro reguldrni vyrazy s omezenym opakovanim (obsahujici velky pocet
opakovani) je implementace v rdmci RE2 zalozend na automatech s ¢itacéi rychlejsi. Ob-
dobnych vysledki bylo dosazeno pri porovnani s puvodni implementaci nastroje RE2. Jeho
ptvodni verze byla oproti novému algoritmu rychlejsi jesté ve vice pripadech nez grep, ale
i zde byly regularni vyrazy s omezenym opakovanim, pro které byl nové implementovany
algoritmus rychlejsi.
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Chapter 1

Introduction

Regular expression (reger) matching has an irreplaceable role in software development.
It is used, for example, for searching, finding and replacing, data validation, or syntax
highlighting [48]. As stated in [19, 20, 15], about 30 — 40% of the Python, Java, and
JavaScript software uses regular expression matching.

Because not all regex matching engines have complexity guarantees, their efficiency has
a significant impact on the performance of the application in which the matching is used.
Then, a single poorly written regex can cause excessive CPU use. That could lead to
catastrophic consequences, such as the outage of Cloudflare services [27]. Other examples
can be the outage of Stack Overflow [3] or a vulnerability in the Express.js [7] framework.
The problems are caused by the so-called regular expression denial of service (ReDoS),
a denial of service attack based on a high-complexity evaluation of matching regex against
a malign text. As stated in works like [19, 20], the ReDoS attack is not just a niche concern
but rather a security vulnerability that needs further research.

The cause of the ReDoS attack is a regex that has super-linear worst-case complexity.
Such regex can lead to super-linear behavior (SL behavior) when the evaluation complexity
is polynomial or exponential to the input text length. SL behavior is also known as catas-
trophic backtracking. The catastrophic backtracking is a problem of regex engines that use
backtracking-based search algorithms, like the one described by Spencer [45]. A backtrack-
ing regex engine constructs a non-deterministic finite automaton (NFA) from the regex and
then simulates the NFA on the input text. Such engines are probably the most imple-
mented ones [20]. An alternative approach is to use deterministic finite automaton (DFA),
which is pre-computed. This approach, called static DFA simulation [42], has much lower
worst-case complexity (wrt the length of input text). More precisely, matching can be
linear to the length of input text, and each input symbol can be processed in constant
time. The major drawback of static DFA simulation is the state explosion of the DFA
construction, which can cause significant performance issues when using the method in
practice [48].

Another alternative is variants of Thompson’s algorithm [46] (also called NFA simula-
tion or NFA-to-DFA simulation). These algorithms work directly with NFA, which results
in avoiding the state explosion. The determinization is done on the fly by subset con-
struction. The algorithm always remembers only the current DFA state. When reading
a character, a next DFA state is computed, and this state is used to replace the current
state. The main disadvantage of this approach is that for highly non-deterministic NFA,
a set of the NFA states that forms a DFA state can get large. Computing the next DFA
state over a symbol then gets expensive, linear to the size of the NFA (in contrast to static



DFA simulation, which does it in constant time). This problem can be partially solved by
caching already visited parts of the DFA (a technique used by modern matchers). A step
within a cached part is then a constant time operation, the same as for the static DFA
simulation. However, regexes that cause exploding determinization are problematic for all
variants, explicit determinization, as well as cached or non-cached NFA simulation [48].

This thesis is based on a recent paper by Turonova et al. [48], which proposes a novel
succinct and fast deterministic machine called the counting-set automaton (CsA). It is
an automaton with so-called counting sets, a special type of registers that can hold bounded
integer values. It also supports a limited selection of simple set operations. Patterns with
the counting operator, also known as the operator of bounded repetition, are a frequent
cause of the DFA explosion. Repeated patterns, such as (ab){1,100}, can be succinctly
expressed by the CsA. Therefore, CsA can eliminate this cause of the DFA explosion [48].
The main goal of this thesis is to implement this novel CsA within state-of-the-art matcher
RE2 and evaluate results against the original CsA-based matcher of [48] implemented in
C# and other state-of-the-art matchers.

This thesis is divided into chapters as follows: Chapter 2 discusses related works and
similar algorithms. Chapter 3 contains some basic definitions that will be used throughout
the thesis. Chapter 4 firstly overview exact string matching as a simpler matching problem
to introduce some of the basic concepts of matching. Then it introduces regular expres-
sion matching. This Chapter also describes algorithms used both in exact string matching
and regular expression matching. Chapter 5 then overviews the state-of-the-art matchers,
algorithms they use, and also some of the optimization techniques. Chapter 6 contains
information about the novel counting-set automaton. Implementation of this automaton
within RE2 is described in Chapter 7. Chapter 8 then contains information about the exper-
imental evaluation of the implementation from Chapter 7. The last Chapter 9 summarizes
the results and discusses possible future improvements.



Chapter 2

Related Work

This Chapter focuses on existing studies focusing on regexes and their derivatives, regexes
and automata with counting, and pattern matching of regexes with counting. Apart
from introducing the novel counting-set automaton, the paper mentioned above by Tur-
onové et al. [48] also includes the implementation of a C# prototype called CA' and talks
about the experimental evaluation of this prototype. Except for the C# language, these are
the goals of this thesis. Therefore, the paper by Turonova et al. [48] is the main related
work of this thesis, and, as the related works are very similar, this entire Chapter will be
based on the Related work chapter of that paper.

Regexes and Their Derivatives

Efficient matching [22, 37] and match generation [40] can be done using Brzozowski deriva-
tives [11], which provide a practical approach to create a DFA from a regex incrementally.
Berry and Sethi [9] were the first to investigate efficient determinization based on Brzozowski
derivatives. Construction of NFA from regex can be done using Antimirov derivatives [6] in
classical settings. The set {D | (ID, D) € 0,(R)}, computed using conditional derivatives
equations (Equation 6.8-6.12) without counting loop, is the same as Antimirov derivative
of R for a. Generalized Antimirov construction can also be used for extended regexes [13].

Automata With Counting

Holik et al. [29] propose a general determinization of counting automata (CAs). It has
the same worst-case complexity as the naive explicit determinization, which depends on
the set of counters C' and the maximum counter upper bound K with factor (K +1)I¢!, but
it can produce smaller automata than the naive explicit determinization. For the class of
monadic regexes (single-state-scoped counters and counting on self-loops only), the paper
proposes a more efficient algorithm, but it can still generate (K + 1)|C| states. It neither
talks about derivative construction for translating regexes into CAs nor the application of
CA in pattern matching.

Bjorklund et al. [10] also focus on the use of counters for regexes with bounded rep-
etition. It builds on the formalism of counter automata from [24], called CNFAs. A CA
from [48] used in this thesis is basically a symbolic generalization of a CNFA, with small
technical differences. One of the differences is caused by the usage of a generalized An-
timirov construction of CAs, as opposed to generalized Glushkov construction used for

! Available at https://pajda.fit.vutbr.cz/ituronova/countingautomata
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CNFAs. These constructions are algorithmically quite different. That difference results in
counters being 0-based in CAs and 1-based in CNFAs. Bjorklund et al. [10] focus mostly
on a different problem and deterministic regexes. More precisely, the problem is called
incremental matching in the context of database queries. It uses a variant of Thomp-
son’s algorithm for standard matching. The algorithm is applied directly on CA instead of
an NFA. Although in this way, the translation of the regex to an automaton is not depen-
dent on the counter bounds, processing of each character has the same cost as the original
Thompson’s algorithm (i.e., worst linear to the size of the NFA and the counter bounds).

Matching regexes with counting can also be done using dynamic programming. Kilpelai-
nen and Tuhkanen [32] introduce a matching algorithm based on dynamic programming.
The complexity of this algorithm is at worst quadratic to the length of the input text
(in contrast to the linear to the input text length complexity of the determinization and
NFA-simulation-based algorithms). The experimental comparison of the variant of Thomp-
son’s algorithm used in [10] suggests that the algorithm proposed in [32] is not competitive
in practice.

Classical automata can be extended with scratch memory of bits that can represent
counter. It is introduced in [43, 44] and called Extended FAs (XFAs). Compilation of
regexes into deterministic XFAs consists of two steps; in the first step, an extended version
of Thompson’s algorithm is used. The second step is done by using an extended version of
the classical powerset construction and minimization. A small XFA may exist, but there
could be an exponential blowup of the search space arising from determinization for inputs
like .*a.{k}.

Other automata related to the CAs are R-automata [4]. R-automata operates on a finite
number of unbounded counters, but the values of the counters can not be tested. There
are also extended finite state machines that are not suitable for the problem of pattern
matching considered in this thesis and in [48]. Such machines, which expressive power goes
beyond regular languages, can be found, for example, in [8, 17, 41, 44].

Regexes With Counting

Automata with counters, close to CAs used in this thesis, are introduced in [30] and are
called FACs. Unlike CAs from [48], they do not allow symbolic character predicates and
have fewer kinds of counter updates. Hovland [30] also proposes a conversion from regexes
to FACs; it uses a variant of Glushkov automata [25] along with the first-last-follow con-
struction [2, 12]. As said in [48], for purposes of the paper, the Antimirov-derivative-based
construction provides benefits, such as the generation of one counter per distinct counter
sub-expression rather than one per counter position in the regex abstract syntax tree, which
results in fewer counters overall. The Antimirov-derivative-based construction was also
easier to implement. The Antimirov automaton is in general smaller than the Glushkov
automaton. In fact, the Antimirov automaton is a quotient of the Glushkov automa-
ton [14, 31]. Another generalization of Antimirov derivatives, but unrelated to counters,
can be found in [33].

Pattern Matching of Regexes With Counting

Based on the analysis of 537k real-world regexes (obtained from a study by Davis et al. [21])
done in [48], the counting operator often appears in regexes in practice, as it was con-
tained in over 33k of the real-world regexes. The .NET ecosystem has regex matchers with
two different approaches. The first is based on a backtracking search and is provided in



System.Text.RegularExpressions. The second can deal more efficiently with the count-
ing operator. It provides a backtracking-free search without an explicit conversion into
a DFA, based on the so-called symbolic derivatives. It is the Symbolic Regex Matcher
(SRM) [40]. The approaches of the extremely optimized state-of-the-art matchers GNU
grep”’ and RE2? will be discussed in more detail in Chapter 5.

https://www.gnu.org/software/grep/
Shttps://github.com/google/re2
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Chapter 3

Preliminaries

Algorithms for exact string matching and pattern matching described in this thesis are based
on automata theory. Although various types of automata are used in pattern matching,
this Chapter will introduce basic types of automata. It is also necessary to define regexes,
which are used in pattern matching. The definitions in subchapters 3.1 and 3.2 are taken
from [52], and the rest (except byte classes) is taken from [48].

3.1 Languages

Before a language can be defined, it is first necessary to define an alphabet and a word.

Definition 3.1.1. An alphabet is a non-empty set of elements called symbols of the alphabet.

Definition 3.1.2. A word (also a string) over the alphabet is every finite sequence of
the alphabet symbols. An empty sequence of symbols is called an empty word and is denoted
by €.

Definition 3.1.3. Given an alphabet X2, the set of all words over the alphabet is denoted
by ¥*. Set of all non-empty words over the alphabet is denoted by ¥F (i.e. ¥* = Tt U{e}).
A set L is called a language over the alphabet 33, if a condition L C X* (or L C X7F, if
the empty word € do not belong to the language) holds. Therefore, a language can be any
subset of words over a given alphabet.

3.2 Automatons

Definition 3.2.1. A finite-state automaton (FA) is 5-tuple M = (Q, %, 0, qo, F') defined as
follows:

e () is a finite set of states,
e X is a finite input alphabet,

e & is a mapping Q x ¥ — 29 called transition function (29 is the set of subsets of
the set Q),

e qo € Q 1is the initial state,



o ' C Q is the set of final states.

An automaton M is called a non-deterministic finite-state automaton (NFA) if 3q €
Q Ja € X:|d(q,a)] > 1. On the other hand, if Vg € Q Va € X:|d(¢q,a)| < 1, the au-
tomaton is called a deterministic finite-state automaton (DFA). A deterministic finite-state
automaton is often defined as follows:

Definition 3.2.2. A deterministic finite-state automaton (FA) is 5-tuple M = (Q, %, 0, qo, F')
defined as follows:

e () is a finite set of states,

e X is a finite input alphabet,

e 0 is a mapping Q X X — Q; it is a partial transition function,

e qo € Q is the initial state,

o ' C Q is the set of final states.
Definition 3.2.3. A configuration of an automaton M = (Q,%,0,qo, F) is a pair C =
(q,w) € Q x X*. An initial configuration is a pair (qo,w) and a pair (q,€), where g € F is
a final configuration. A transition of an automaton M is represented by binary relation
on the set of configurations C. For all q,q' € Q and w,w' € X* it is defined that (q,w) by

(¢',w'") applies if and only if w = aw’ for some a € ¥ and ¢ € §(q,a). The transitive
closure of bps is written as I—}\t[, and the transitive and reflexive closure is written as ;.

Definition 3.2.4. An input word w is accepted by finite-state automaton M if (qo, w) F3,
(g,€),q € F. A language accepted by an automaton M, L(M) is a set of all words accepted
by M: L(M) = {w|(qo, w) Fy; (¢,€) Nq € F}.

3.3 Effective Boolean Algebras

Definition 3.3.1. An effective Boolean algebra A has components (D, ¥, [ ], L, T,V,A, )
where:

e ® is a universe of underlying domain elements,

e W is a set of unary predicates closed under the Boolean connectives V,\: ¥ x ¥ — ¥
and —: U — U,

e L, T €W are the false and true predicates,
e values of the algebra are sets of domain elements,

o the denotation function [ _]: ¥ — 2° satisfies that [L] = 0, [T] = D, and for all
e, €U Jo V] =[e] VY] e A vl = [e] N [¥], and [-¢] =D\ [¢]

When [¢] # 0, for ¢ € U, ¢ is called satisfiable, and it is denoted by Sat(yp). An element
x € [p] is denoted by = = .



3.4 Regexes

For purposes of this thesis, the alphabet for regexes will be 8-bit ASCII as it is the alphabet
that RE2 is using. In other words, the 8-bit ASCII will be the character universe ©. It is
the set {n | 0 < n < 28} of all 8-bit characters represented by their character codes. For
example, the set of all upper-case letters {n | 65 < n < 90} is denoted by [A-Z]. When
a character class is made up of an individual symbol, it denotes a singleton set, for example,
[@] = 64. Character classes are, in general, closed under Boolean operations. Character
classes can be formed using union, then the character class [[0-9]] can be written as
[0-4] U [6-9]. Character classes can also be complemented. For example, the character
class ["0-9] denotes the set of all non-digit characters.

The set of all character classes is an example of the set ¥ of all predicates of Boolean
algebra. Checking the satisfiability of a predicate ¢ € W means to decide whether ¢ denotes
a non-empty set. Examples can be [], which is unsatisfiable because [[1] = @, and . that
denotes the true predicate because [.] = D.

Predicates from an effective Boolean algebra CharClass of character classes are the basic
building blocks of regexes. An example of such a class can be a class of digits, denoted
by \d. The concatenation of words u and v is denoted as u-v (often written as uv), and it
is lifted to sets. For the word a-w, a € ® is called the head of the word and w € Dx its tail.

The syntax of regexes, where a € Veoparclass and m,n € N0 < n,0 < m,n < m, is
defined as follows:

€ a Ri-Ry Ri|Ry R{n,m} Rx

Furthermore, £" denotes the n-th power of language £ C ¥* with £° = {e} and L£"*! def
L™ L. The regex Ry - R2 denotes a concatenation node, and R1|Ra denotes an alternation
node.

The semantics of a regex R is defined as a subset of ©* as follows:

def

« L{a) =[],

def

« L(e) = {e},

e L(RiRy) ¥ L(R,) - L(Ry),

e L(Ri|R2) % L£(R)) UL(R,),

o L(R{n,m}) € U, (L(R)),
e L(Rx) ¥ £(R)".

When € € L(R), R is nullable. The number of character-class leaf nodes of a regex R is
denoted by #g¢(R) and is defined as follows:

o #uyl(e)

(

o #Hu(a)
(
(

-0,
—1,
o #y(Ry- Ro) = #u(R1|R2) = #uw(R1) + #u(R2),

o #u(B{n,m}) = #u(R+) = #u(R).
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3.5 Minterms and Byte Classes

Preds(R) will be the set of all predicates from a regex R. And Minterms(R) will denote
the set of minterms of Preds(R). Minterms from the set Minterms(R) are non-overlapping
predicates that can be taken as a concrete finite alphabet. Every minterm can be un-
derstood as a region in the Venn diagram of the predicates in R. It is satisfiable con-
junction /\wePTeds(R) ¢ where ¢’ € {¥,—1}. An example can be regular expression R =
[0-z]1{4} [0-8]{5}, for which the set Preds(R) = {[0-8], [0-z]} and the Minterms(R) =
{[0-8], [9-z], ["0-z]}. More formally, when o € Minterms(R), then Sat(a) and
Vi) € Preds(R): [a] N [¢] # 0 = [a] C [¢]. If the set X of predicates consists of in-
tervals used in regex (such as [a-zA-z]), the number of minterms is linear in |X|. Although
the number of minterms of a general set X may be exponential, intervals of numbers generate
only a linear number of minterms.

As stated in the source code of RE2!, a bytemap maps bytes to byte classes. A byte
class represents a range of bytes between which the regex never distinguishes. So, similar
to the minterms, byte classes are non-overlapping parts of regex. Even though the byte
classes could differ from minterms, the principle of it remains the same. To illustrate
that, the byte classes for regex R = [0-z]1{4}[0-8]1{5} will be {[0-8], [9-z], ["0-z]}.
So for this regex, the byte classes and the minterms are the same. But for the regex
R = .xa{1,3}a{1,3}a, the set of minterms is Minterms(R) = {a, ["al}. In RE2, the byte
classes (written as byte ranges) are: [0-96] U [98-127], [97], [128-191], [192-193] U
[245-255], [194-223], [224-239] and [240-244]. So there are seven byte classes in
comparison to two minterms. However, the byte classes [0-96] U [98-127], [128-191],
[192-193]1 U [245-255], [194-223], [224-239] and [240-244] will always act the same in
the context of the regex R = .*a{1,3}a{1,3}a. In fact, these six byte classes are the same
as minterm [~a]. The only difference between these is that the RE2 split it into more
byte classes. Besides this difference, the byte classes mean the same as the minterm: all
characters except a. Then the byte class [97] is the same as minterm a. In conclusion,
the only difference between minterms and byte classes for this regex is that the byte classes
are split into more parts. However, their meaning is the same, and therefore the minterms
and byte classes can be treated equally.

3.6 Symbolic Automata

Symbolic finite automata (FAs) are a generalization of classical finite automata, whose
alphabet is given by an effective Boolean algebra. Formally, FA is defined as follows:

Definition 3.6.1. FA is a tuple A = (I, Q, qo, F, A), where:
e I is an effective Boolean algebra called the input algebra,
e @ is a finite set of states, qo € Q is the initial state,
o ' C Q is the set of final states,

e ACQ XV xQ isa finite set of transitions.

!To be precise, it is in the dfa.cc file available at https://github.com/google/re2/blob/master/re2/
dfa.cc

11


https://github.com/google/re2/blob/master/re2/

Definition 3.6.2. A run of A from a state py over a word a . ..a, is a sequence of tran-
sitions (pi—1, i, pi)i—y with a; € Joy]l; the run is accepting if p, € F.

Definition 3.6.3. The language of a state q, denoted L4(q), is the set of words over which
A has an accepting run from q.

Definition 3.6.4. The language of A, denoted L(A), is La(qo)-

Definition 3.6.5. FA A is deterministic iff for all p € Q and all transitions (p,«,q) and
(p,c’,r), it holds that if a A & is satisfiable, then q = r.

A classical finite automaton can be understood as a special case of FA. In which the basic
predicates have singleton set semantics. That means that for each concrete letter a there
is a predicate g such that Jaq] = {a}.

12



Chapter 4

Pattern Matching

Some of the concepts or optimizations used in pattern matching approaches are based
on exact string matching algorithms. As the exact string matching is a simpler problem
than pattern matching, the algorithms themselves can not be directly used in pattern
matching. Therefore the understanding of these algorithms is not necessary for pattern
matching. However, it can provide a better understanding of some of the optimizations
or approaches used in pattern matching. Information about the exact string matching
algorithms is in Section 4.1. For more detailed information on the algorithms, the readers
can refer to [36, 16].

In the regular expression matching, as the name suggests, a pattern is represented by
a regular expression rather than an exact string. Regexes allow describing text. So, unlike
the exact string, which always matches only the same string, a single regex can match
multiple different strings. Therefore, regular expression matching is more powerful than
exact string matching. For example, when the regex is used to find some text in a text
editor, a user can find multiple different words, lines, sentences that have something in
common just by using a single regex. As regular expression matching is more powerful
than exact string matching, it also requires more complicated algorithms, which can have
worse time complexity and could suffer from problems mentioned in Chapter 1.

4.1 Exact String Matching

More formally, the exact string matching problem can be defined as follows:
Let ¥ be an alphabet. Input will be a text string T' = {#1tst3...%, and a pattern string
P = pipap3...pm, where Vi € {1,...,n} : t; € ¥ and Vj € {1,...,m} : p; € %.
The output will be all locations [ of the pattern P in the text T, i.e., T[l + k] == P[k + 1],
where 0 < k < m [16].

The description of all the following exact string matching algorithms has been adopted
from [16, 36].

Brute Force Algorithm

The basic and most naive algorithm is the brute force algorithm. An input is a pattern
of length m and a text of length n. The algorithm tries to match the first character of
the pattern and the text, then the second character, and so on, until it matches the whole
pattern or the character mismatch occurs. After that, it will move on to the next position
of the text and starts again. Figure 4.1 shows an example of a run of the algorithm.

13



The time complexity of this algorithm is O(m x n). For example, when searching for
a™ 'b in a”, then for each position in the input text, m comparisons are made.

First attempt: Third attempt:

Text|{ FEMFOLFORKKK | Test{ FLMIFOLFORKKK
Pattern Pattern

Shift by 1 Shift by 1

Second attempt: Fourth attempt:
Text FEIMFOLFORKKK | Text FLMFEOLF ORKKK
Pattern Pattern

Shift by 1 Match

Figure 4.1: Example of a run of the brute force algorithm for exact string matching. The al-
gorithm compares character by character from the first position of text and pattern. It con-
tinues to the next position of text and the first position of the pattern after a full match or
mismatch. Light gray denotes a successful match, and dark gray denotes mismatch (taken
from [16] and edited).

Search With an Automaton

Deterministic Finite Automaton (DFA) M (z) recognizing the language ¥*z is used for
searching a pattern x. The first step is to build it.

Example 4.1.1. The DFA recognizing the language ¥*x is a 5-tuple = (Q,%, 9, qo, F)
defined as follows:

o Q is the set of all prefizes of x: Q = {¢, x[0], 2[0..1], ..., z[0..m — 2], z},
.« D=3,

For q € Q (q is a prefiz of x) and a € X, (q, a, ga) € ¢ if and only if qa is also
a prefiz of x, otherwise (q, a, p) € 0 such that p is the longest suffix of qa which is
also a prefix of x,

* 4o =€,

o F={x}.

The construction of DFA M requires O(m + o) time, and O(m X o) space, where o is
the size of an input alphabet 3 and m is the size of an input pattern. The searching itself
can be performed in O(n) time if DFA is stored in a direct access table. Otherwise, it
requires O(n X logo) time. Here, the size of an input text is denoted by n.

To search a pattern x in an input text, first, the DFA must be built. Then, starting
from the initial state qo, the input text is parsed by M (x). Every time the terminal state is
reached, the occurrence of the pattern x is reported. An example of constructed DFA and
the run of the algorithm is shown in Figure 4.2.
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T={A, C, G} ()

5

F = {ACG}
C.G
The initial state is 0
Text[ACCACACG | Text[ACCAJC[ACG |
Current state 1 Current state 2
Text[AJCACACG | Text[ACC A C[A[CG |
Current state 2 Current state 1
Text[AC[CJACACG | Text[ACC A C AJO[G |
Current state 0 Current state 2
Text[AC C[A[CACG | Text[ACCACAC[G]]
Current state 1 Current state 3

Figure 4.2: Example of the DFA constructed for the pattern “ACG.” Labels of the states
represent the length of the prefix. The construction is done according to Example 4.1.1.
Then, starting from ¢o (in this example, state 0), the input text is parsed by constructed
DFA. Each time the final state is reached, the occurrence of the pattern is reported (taken
from [16] and edited).

Boyer-Moore Algorithm

The Boyer-Moore algorithm or its modification is often implemented in text editors for
the search and substitute command. For usual applications, it is considered the most
efficient algorithm.

The algorithm preprocesses the input pattern. The result of preprocessing are two
pre-computed functions called good-suffiz shift (also known as the matching shift) and
bad-character shift (also known as the occurrence shift). These two functions can be used
in case of a mismatch or a complete match of the whole pattern. In both scenarios, the win-
dow can be shifted to the right. It is shifted to the right because the algorithm scans
the characters of the pattern from right to left, starting from the rightmost one.

Assume that a mismatch occurs between characters at position ¢ in the pattern z and
position i + j in the text y (for example, pattern|i] = a and text[i + j| = b). Then already
scanned part of the pattern and text are the same, so z[i+1..m—1] = yli+j+1..j+m—1] = u
and x[i] # y[i + j]. The good-suffix shift can be performed in two different ways. The first
way is to align the segment y[i + j + 1.7 + m — 1] = z[i + 1..m — 1] with its rightmost
occurrence in z that is preceded by a character different from xz[i] (as shown in Figure 4.3).
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The second way of shift is used when there is no such segment. In that case, the longest
suffix v of y[i+j+1..j+m—1] is aligned with a matching prefix of z (as shown in Figure 4.4).

The table that stores the good-suffix shift function is called bmGs. First, these two
conditions must be defined to define the good-suffix shift function:

Cs(i,s): for each k such that i <k <m,s >k or z[k — s| = x[k] (4.1)
Co(i,s): if s < then z[i — s] # z[i] (4.2)

Then, for 0 <i < m:
bmGsli + 1] = min{s > 0: C's(i, s) and Co(i, s) hold} (4.3)

The length of the period of x defines brnGs[0]. For the computation of the bmGs table,
suf f table will be used. The suf f table is defined as follows:

for 1 <i < m,suff[i] = max{k: z[i — k + 1..7] = z[m — k,m — 1]} (4.4)
Y bl u | |
fm—
x[ e[ u | |

Figure 4.3: The example of the first way of the good-suffix shift. In the pattern x, u re-
occurs preceded by a character ¢ that is different from character a (taken from [16]).

Y| B u | |
x| U i

Figure 4.4: The example of the second way of the good-suffix shift. When the first way can
not be used, i.e., only the suffix of u re-occurs in z (taken from [16]).

The bad-character shift can also end up in two different ways of shifts. The first is
when the character y[i + j] (the mismatched character) occurs in z[0..m — 2]. Then these
two characters are aligned. The second way is used when there is no occurrence of y[i + j]
in z[0..m — 2]. In that case, the character y[i + j + 1] (the character immediately after
mismatched character) is aligned with the left end of the window (i.e., the left end of
the pattern). The bad-character shift can also be negative. The first and the second way
of the shifts are in Figure 4.5 and Figure 4.6, respectively.

The table for the bad-character shift function is called bmBc and has the size o (which
is the size of the input alphabet ). For ¢ € X:

bmBeld] = {min{i: 1<i<m-—1land z[m—1—1i]=¢} ifcoccursin z (4.5)

m otherwise
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Yy | bl u |

X1 Bl u

X [ ]b] contains no b ]

Figure 4.5: The example of the first way of the bad-character shift. The text character
yli + j] occurs in the pattern x. That character is aligned with its rightmost occurrence in
x. (taken from [16]).

Yy bl  u ] |
x| @l U ~gmr
X[ containsnob |

Figure 4.6: The example of the second way of the bad-character shift. The text character
yli + j] does not occur in the pattern z. The left end of the pattern x is aligned with
the character y[i + j + 1] (taken from [16]).

Both bmGs and bmBc tables can be pre-computed in O(m + o). The pre-computation
requires O(m+ o) extra space and can be done before the searching phase. The complexity
of the searching phase itself is quadratic. But when searching for a non-periodic pattern,
a maximum of 3n text character comparisons are made. The algorithm is extremely fast on
relatively (to the length of the pattern) large alphabets. The algorithm makes only O(n/m)
comparisons when searching for the pattern a™ b in the text a”. For string-matching
algorithms where only the pattern is preprocessed, this is an absolute minimum number of
text comparisons.

An example of a run of the Boyer-Moore algorithm is in Figure 4.7.

17



i 012345867 c ACGT
i |[GCAGAGAG bmBc[c][1 6 2 8
suffil] (1 0 0 2 0 4 0 8
bmGsfi]|7 7 7 2 7 47 1
Searching phase
First attempt: Third attempt:
y[GCAT C G CAGAGAGTATACAGTACG y[GCATC|[GCAGAGAG|TATACAGTACG]
1 87654321
X[GCAGAGAG XGCAGAGAG
Shift by 1(bmGs[7]=bmBc[A]- 7 + 7) Shift by 7(bmGs[0])
Second attempt: Fourth attempt:
yG[CATC G CAG|AGAGTATACAGTACG Yy|GCATCGCAGAGA|GTATACAGITACG]
321 321
X[GCAGAGAG X[GCAGAGAG
Shift by 4(bmGs[5]=bmBc|[c]- 7 + 5) Shift by 4(bmGs[5]=bmBc[C] - 7 + 5)

Fifth attempt:
Y|GCATCGCAGAGAGTATIACAGTALCG]|

21
X[GCAGAGAQG

Shift by 7(bmGs[6])

Figure 4.7: Example of the run of the Boyer-Moore algorithm. The good-suffix shift and
bad-character shift functions (the bmGs and bmBe tables) are used to determine the shift
of the pattern. In this example, the Boyer-Moore algorithm performs 17 text comparisons.
(taken from [16] and edited).

4.2 Regular Expression Matching

Regexes provide extended possibilities to describe a pattern to be searched in a text. In
regexes, two types of characters can be used. The special characters (an example of the spe-
cial character can be “.” character, which matches a single character), called metacharacters.
All other characters are normal text characters, called literals [23].

The task is the same as in exact string matching, e.g., to find one, or alternatively all,
the occurrences of a pattern in the given text. The difference is that the pattern is a regex.
As it provides extended capabilities of describing text, the regex can then match more
different strings that have something in common. For example, regex [A-Z]+ will match
all upper case sequences in text, [A-Z] [a-z]{1,5} will match all strings starting with one
upper case letter followed by one to five lower case letters.
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Backtracking

Backtracking is used in algorithms that use NFAs. A regular expression is first converted to
an NFA, which is then used for matching by the regex engine. An NFA can be in some state
from which it can make a transition to more than one state based on a current character
in the input text. It will make the transition to one of them and remembers the rest.
The other transitions then can take place later if needed. The situation when it has more
than one option to make a transition will always happen when there is a quantifier (so
it has to decide whether to try another match or continue with the rest of the regex) or
alternation (so it has to decide which of the alternatives to try first) in the regex [23].

Independently on the selected transition, if the rest of the match is successful, the whole
match is also successful. If the rest of the regex can not be matched after that transition,
the whole match still could be successful. Because the regex engine remembers the rest of
the possible transitions, it could backtrack to the state before that transition and try one
of the other options. This way, the engine will try at least as many different transitions
as needed to a successful match. This behavior could eventually lead to trying all possible
permutations of the regex [23].

Matching regex to(nitelknight |night) on the string hot tonic tonight using back-
tracking will go as follows. First, the regex engine tries to match the first letter of the string,
which is h, and the first letter of the regex, which is t. This attempt will fail, same
as the next letter of the string at the second position. Then, on the third position of
the string, the letter t will match. However, it will fail right on the next position, which
is a space in the string and o in the regex. The engine also tries to match the letter t of
the regex against the space in the string, but this will also fail. When the engine reaches
word tonic in the string, it will successfully match t and o. Then, the regex provides
three different options, which are nite, knight, and night. The engine picks one and
remembers the others in case the selected option fails. Assume that the engine picks, for
example, nite as the first option to try. It will match letters n and i; then it fails while
matching the letter c of the string and the letter t of the regex. In this case, unlike the first
fails, the engine will not shift to the next position in the string. Instead, it will backtrack
to the state where it has chosen nite from the regex and try the next option. The en-
gine also goes back to the last matched position in the string. So the to in word tonic
is matched, and the engine now tries to match knight from the regex. This attempt will
fail instantly as the letter n from the string does not match the letter k from the regex.
So the engine will backtrack again and try the last option from the regex, which is night.
This time, the engine successfully matches the letters n and i before it will fail. As night
was the last option, this failure means that the whole attempt starting at word tonic fails
too. The engine will continue unsuccessful attempts until it reaches the word tonight of
the string. Then, it will first match the letters t and o. Then it will fail with the first two
options (nite and knight). Finally, with the last option night, the match is found [23].

Backtracking engines could suffer from the problem mentioned in Chapter 1, called
catastrophic backtracking. A simple example of a regex that will suffer from catastrophic
backtracking can be (x+x+)+y, where x could represent something more complex. The catas-
trophic backtracking will not happen on all strings. When the regex is matched against
a good string, like xxxxxxxxxxy, the matching will be processed without any problem.
First, all the ten x letters will be matched by the first x+. Then, the second x+ fails while
trying to match the letter y. As the x+ must match at least one letter x, the engine will
backtrack one step back when the first x was matching only the first nine letters. In that
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state, there is one letter x remaining, which will be matched by the second x+. When
all x letters are matched by both x+, the group is matched once. The engine will try to
match the whole group again, but it will fail right in the first step as there is the letter y
in the string. However, since one repetition of the group is sufficient, the group matches.
The engine will backtrack one step back to the state where all letters x are matched. As
the last step, the regex engine will match the letter y, and the whole match is successful [26].

Problems start to appear when there is no y in the input string. Such malign string could
be, for example, xxxxxxxxxx. The engine will start matching the same as with the first
string. At the end of the string, it will fail to match the letter y, and it will backtrack.
The group has one iteration to backtrack. Since the second x+ matched only one letter,
it can not backtrack. So the first x+ must give up one letter. Then, the second x+ will
match xx. The group has one iteration matched, failing to match the next iteration again.
The y will also fail. So the regex engine has to backtrack again. However, now, it can
backtrack in the second x+ since it matched xx. The match is reduced to one x. In the next
step, the regex engine tries to match the second iteration of the group. The first x+ will
match, but the second fails at the end of the string. The regex engine has to backtrack
again in this step by reducing the match of the first x+ to seven letters. The second x+
match xxx, then the regex engine fails to match y, reducing to xx and x for the second x+
in the next steps. The group now can match the second iteration, matching one x for each
x+. However, this attempt will fail too. The engine will continue trying all other possible
combinations, all of them failing, since there is no y in the string [26].

According to RegexBuddy’s debugger', matching the regex (x+x+)+y against the string
xxXxxxxxxXx (the letter x ten times) will take 2558 steps to fail. When the string is extended
to eleven letters x, twelve letters x, and eighteen letters x, it will take 5118, 10238, and
655358 steps, respectively, for the regex engine to fail the match. Any string longer than
eighteen letters composed of the letter x will take over a million steps to fail. Therefore,
matching the regex on such malign strings will lead to exponential complexity of O(2") [26].

Thompson’s Algorithm

Thompson’s algorithm was first introduced in the paper by Thompson [46]. This algorithm
does not use backtracking. It instead examines the input string character by character
against a list of all possible current characters. While the algorithm traverses the list of
all possible characters, it simultaneously builds a list of all possible next characters. When
the current list is traversed, the newly built list of the next possible characters becomes
the current list. Then the next character from the input text is obtained, and the exami-
nation continues. Concerning Brzozowski derivatives [11], the algorithm continually takes
the left derivative of the regex with respect to the input string. The algorithm is also
naturally parallel, which makes it extremely fast [46].

Thompson [46] also introduced a specific implementation of the algorithm, a compiler,
which translated a regular expression into IBM 7094 code. The compiler consists of three
parts. The first part checks the syntactical correction of the regular expression. It also
inserts the dot operator for the juxtaposition of the regular expression. The regex is then
converted to reverse Polish form by the second stage of the compiler. The last, third stage is
the object code producer. The third stage uses a pushdown stack, where compiled codes of
operands are stored. During the compilation, a unary operator, such as the star operator,
works with the top entry of the stack. The result operand replaces the original top of

! Available at www.regexbuddy.com
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the stack and is available for another operation. Binary operators are compiled similarly.
The only difference is that it works with the top two entries of the stack. It also replaces
both stack entries rather than only one.

Two functional routines, NNODE and CNODE, are invoked by the compiled code. NNODE
matches a single character, and CNODE split the current search path. They are used as
operands on the stack [46]. Even though the paper by Thompson [46] does not explicitly
mention NFA | as stated in [38], the latent NFA construction can be seen in Thompson'’s algo-
rithm. Furthermore, Cox [38] provides an implementation of Thompson’s algorithm, which
is not compiling the regex to machine code and is written in C. Also, there is a standard
automaton approach to convert the regex into the NFA. The construction is straightforward
in the automata theory. The construction algorithm is described in [34]. However, this sec-
tion talks about Thompson’s algorithm, so Figure 4.8, Figure 4.9, Figure 4.10, Figure 4.11,
and Figure 4.12 show the functions of the third part of the compiler from the paper by
Thompson [46]. Regex a(blc)*d, firstly translated into abc|*.d. by the second part of
the compiler, is used for the example.

a b c

Figure 4.8: Fach of the three characters, a, b, and ¢, creates a stack entry and an NNODE,
which match a single character (taken from [46]).

-
s(0) s{1) °
(e
a

blc

Figure 4.9: The next operator is an alternation operator |. This operator works with two
topmost operands on the stack, in this example, with b and c. The result is a CNODE b|c.
CNODE is represented by the plus sign in a circle. (taken from [46]).

s (=)
()

a (b]c)¥

Figure 4.10: The next operator is the star operator. The star operator works only with
a single topmost stack entry. In this example, it works with CNODE bl|c. Same as for
the alternation operator, a CNODE is used to realize the start operator. It is realized as
follows: (blc)* = €l (blc) (blc)* (taken from [46]).
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Figure 4.11: The next operator is the concatenation operator. It takes the two topmost stack
entries and combines them to execute sequentially. In this example, it is the concatenation
of the two segments created before. After this step, there will be only one operand on
the stack, and that will be a-(blc)* (taken from [46]).

05 (D

a-(bje) ¥

so—=(_a_=(—®
(¢ )

a-(b]c)¥-d

Figure 4.12: The final step consists of creating an NNODE from character d and then
concatenating this operand with the only operand on the stack (regular expression a-(b|c)*
from the previous step). This step will produce the final and only stack entry, which will
be the regular expression a(b|c)*d itself (taken from [46]).

Thompson’s Algorithm With Cache

Execution of a DFA is more efficient than the execution of an NFA. It is because the DFA
will never have a multiple choice of the next states (i.e., it is only in one state at a time).
A DFA can be created from any NFA. In such DFA, every state corresponds to a list of
states of the NFA in which it can be in a given step [38]. An example of an NFA for
the regular expression abab|abbb and a corresponding DFA is in Figure 4.13.

Even though the original paper by Thompson [46] talked about a list of next characters,
it will be further called a list of next states to be consistent with the terminology of NFAs.
In a sense, Thompson’s algorithm computes a DFA state in each step. In a given step, it
computes a list of the next states for a given character. The list of next states is the new
DFA state. In that way, Thompson’s NFA simulation is executing the equivalent DFA.
After the state is used (i.e., the current list of states is processed, and the list of next states
becomes the new current list), it is forgotten. Such a state has to be reconstructed when it
is needed again. Rather than throw away the computed state after each step, it could be
cached in spare memory. The caching will avoid the cost of repeated computing in the fu-
ture. This approach essentially computes the equivalent DFA as is needed. NFAs derived
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Figure 4.13: The first automaton is the NFA for the regex abab | abbb, the second automaton
is the corresponding DFA. Each DFA state corresponds to a set of states, in which the NFA
can be in a time. It can be in states s1, s9, s3 as there are epsilon transitions from the state s;
to states s and s3. From these states, the NFA can go to states s4 and s5 with the character
a. Therefore, the next DFA state will be s4,s5 and there will be a new transition from
the state s1, 9, s3 to s4, s5 labeled with the character a. The next state sg, s7 is created
analogically. Then, because there is a transition from the state sg to the state sg labeled with
the character a, and a transition from the state s7 to the state sg labeled with the character
b in the NFA, there will be the same two transitions in the DFA. These two transitions can
not be joined as they are labeled with different characters. The last two transitions from
states sg and sg to the state sig are copied from the NFA as these are the only choices for
the states sg and sg (taken from [38] and edited).

from regular expressions tend to visit the same states and the same transitions when run
on most texts. This makes the caching worth it; the first time a state is explored, it must
be computed as in the NFA simulation. However, all the future explorations are just single
memory access [38].

The aforementioned simple implementation of Thompson’s algorithm by Cox [38] can
be extended to use the caching by under a hundred lines of code. More details about
the changes that need to be made in order to use caching and also about the implementation
as a whole can be found in the same article by Cox [38].
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Chapter 5

State-of-the-Art Matchers

This Chapter introduces the state-of-the-art tools used for regular expression matching. It
provides an overview of each of the matchers, their algorithms, and optimization techniques.

5.1 Grep

Grep is a pattern matching engine. It searches the given patterns in the given files. It uses
the above-mentioned Boyer-Moore algorithm for matching a single fixed pattern (i.e., per-
forming the exact string matching). It also uses the Aho—Corasick algorithm, introduced
in [5], for matching multiple fixed patterns [1].

Grep uses two algorithms for regular expression matching. The first algorithm is
automata-based. More specifically, it is an optimized version of Thompson’s on-the-fly
determinization algorithm. The automata-based algorithm is used for as many regexes as
possible since it is the faster option for regular expression matching. However, grep also
supports backreferences in regexes. In general, the backreferences can not be implemented
via the finite-state automaton. Therefore, it uses the backtracking algorithm mentioned
above. The performance of the grep can be significantly worse when it uses the backtrack-
ing algorithm [1].

It also uses optimizations for both fixed pattern matching and regular expression match-
ing. It uses raw system calls to get unbuffered input. It also looks for newlines only when
the match is found to get the line with the match. In the Boyer-Moore algorithm, it unrolls
the inner loop and sets up the delta table entries, so it does not need to do the loop exit
test at every unrolled step. For the regular expression matching, it tries to extract a fixed
string. If there is such a string, it must occur in every match. Grep tries to find the string
in the input text using the Boyer-Moore algorithm. Then it checks the neighborhoods of
the fixed string match with Thompson’s algorithm to find the complete regex match [28, 35].

5.2 RE2

RE2 is a C++ library, which provides an alternative to backtracking-based matching engines.
Its primary goal is to provide a matching linear to the length of the input text. However,
the linear-time constant may vary depending on the overhead of safe handling of the regular
expression. It can be outperformed by backtracking-based matchers in various situations. It
is because the RE2 acts pessimistically, whereas backtracking engines act optimistically. It
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also does not implements all features of regexes, specifically those that require backtracking
solution, such as backreferences [51].

RE2 uses optimization already when parsing the input regex. Users can use regexes
that are not written efficiently. RE2 rewrites such a regex to its most efficient form. For
example, singleton classes are used in order to avoid escaping the character (i.e., [.] instead
of \.). Such singleton classes are rewritten to a single character. Another example is
the alternation; for example, alblcld can be efficiently expressed as a character class
[a-d]). The rest of the algorithm then works with the simplified regex created during
the parsing [39].

As the next step, RE2 compiles the regex to the NFA. The compiler compiles UTF-8
character classes down to an automaton that reads the input one byte at a time, so
the UTF-8 decoding is built into the automaton. The output of the compiler is an instruc-
tion graph. The matching itself then uses an optimized version of Thompson’s on-the-fly
determinization algorithm. RE2 treats the DFA states as a cache. When the cache fills,
it frees all the states and starts over again. Thanks to that, it is able to work in a fixed
amount of memory [39].

The simple implementation described in [38] used a simple sequence field to do list
insertion with duplicate elimination in constant time. RE2 does not store the state in
the compiled program. However, the list insertion with duplicate elimination still should
be implemented in constant time. RE2 uses a data structure named sparse set to accomplish
that [39].

RE2 also uses various optimizations. It checks if the regex is matched in the input string
but does not check where the match is, so it can look for the first literal byte. This optimiza-
tion is done when every possible match starts with the same first byte (like in the regular
expression re2 | random). In such a case, the start of the match is found using memchr, which
is faster than the general DFA loop. The DFA matching then starts from that position. In
this type of match, where the position of the match is not important, the matching can also
bail out early. For example, when searching for the regex a+ in the text ccaaaaaaaaaaaabd,
it can stop when it matches the first a in the text. This optimization is done by checking
the match after every byte [39].

When it is also important to find where the match is in the input text, the DFA states
are treated as a partially ordered set of NFA states instead of unordered sets. Then it
prefers states for which the match starts earlier. Each time a match is found, it continues
using only the states with equal or higher priority. Using this technique, it finds the end
of the leftmost longest match. However, it also has to find the start of the match. It runs
the DFA backward from the previously found end of the match. In this case, it treats all
states equally and finds the longest possible match. The end of the longest backward match
is the beginning of the original match [39].

If the goal is also to find sub-matches of the match, it uses a combination of the DFA
matching to find the match and its boundaries. It then uses a direct NFA simulation to find
the sub-matches in the already found match. The optimizations for this type of matching
are more deeply discussed in [39].

5.3 Hyperscan

=

All the following information about the Hyperscan is adopted from [50], where the algo-
rithms and optimizations are also discussed in more detail.
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Hyperscan is a high-performance regular expression matcher with an own API written
in C. It focuses mainly on network security applications on commodity server machines.
It uses two core techniques for efficient pattern matching. It translates regular expression
matching into series of string and finite automata matching using graph decomposition. In
the Hyperscans novel approach, the string matching becomes part of the regular expression
matching. This approach avoids wasting CPU cycles on duplicate matching. The matching
DFA also tends to be smaller thanks to the decomposed regular expression, which increases
the chance of fast matching. The second technique is an acceleration of both string and
automata matching with SIMD operations.

The main idea behind the decomposition of the regular expression is that a disjoint set
of string and sub-regex (or FA) components is created from the regex. Each of the com-
ponents is then used for the match until the full match is found. The string components
are a stream of literals. The regex components are then all the input regex parts that
remain after the string components extraction. The regex components include one or more
metacharacters that have to be translated into an FA for matching. The string matching is
the first step, which finds all string components in the input text. Each of the found matches
of the string can start a neighbor FA matching. Such an approach minimizes the waste of
CPU cycles caused by unnecessary FA matching since the FA matching is executed only
when needed.

The second part of the Hyperscan is the multi-string and FA matching that takes
advantage of SIMD operations of the modern CPUs. The multi-string matcher is called
FDR. The purpose of the FDR is to find candidate input strings that are likely to match
some string pattern and verifies them to confirm the exact match. It performs extended
shift-or matching to accomplish that. The successful string match often triggers the FA
component matching. The FA component matching uses the state-of-the-art DFA matching
or the NFA matching if the number of DFA states exceeds a threshold. For both of them,
it takes advantage of the SIMD operations.

5.4 Symbolic Regex Matcher

Symbolic regex matcher (SRM) is a .NET matching tool. Its core matching algorithms are
based on symbolic derivatives. Thanks to that, it supports extended regular expression
operations such as intersection and complement. It supports the bounded loop quantifiers
as well as a large set of common features. It also supports full UTF16 encoded strings.
Besides the matching, it also supports match generation [40].

SRM uses the same parser as the .NET regex engine. However, it uses a new backend
engine, which is derivative-based. SRM works with derivatives of symbolic extended reg-
ular expressions. Extended refers to the allowed intersection, complement, and bounded
qualifiers. Instead of using singleton classes as the basic building blocks of single character
regexes, SRM uses predicates [40].

SRM provides backtracking free matching. Its complexity is linear in the length of
the input text. It uses two key optimizations. First, it maintains the DFA in the form of
an integer array where the indexes are regex nodes internalized into integers. Second, if it is
applicable, it uses string.Index0f to search the relevant initial prefix [40]. The evaluation
in [40] shows that SRM outperforms .NET matcher on most of the regexes, and it offers
performance comparable to the RE2.
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Chapter 6

Counting-Set Automata for
Regular Expression Matching

This Chapter focuses on counting-set automaton (CsA) and its usage in regular expression
matching. The first step of using this automaton for pattern matching is to create it from
the regular expression. Creating the CsA from the regex consists of translating the regex
with counting into counting automata (CA), which is a non-deterministic automaton with
bounded counters. Then the CA is determinized, and the output is CsA. When the CsA is
created in such a way, its size does not depend on the repetition bounds used in the regex. In
contrary to the DFA which size is exponential to the repetition bounds [48]. This Chapter
is adopted from [48], where the CsA is introduced.

6.1 Counting Automata

Classical counter automata have counters that correspond to a counted sub-expression of
a regex. Guards on transitions of the classical counter automata enforce a specified number
of repetitions before the automata can move on, i.e., the counters are only supposed to
count the number of passes of such parts. Counting automata (CAs) are a limited sub-class
of classical counter automata for regexes with counting.

Definition 6.1.1. A counting algebra is an effective Boolean algebra C associated with
finite set C of counters.

The counters have a lower bound min. > 0 and an upper bound max. > 0 such that
min, < max.. These bounds correspond with the counted repetition bounds in the regex.
The counters are used as a bounded loop variable.

Definition 6.1.2. Counter memories are the set of interpretations m: C — N such that
Vee C: 0 <m(c) < max,.

Counter memories form the universe D¢ of the effective Boolean algebra C. The set
of predicates W¢ of the algebra contains combinations of basic predicates CANEXIT,. and
CANINCR, for ¢ € C'. The semantic of these predicates is defined as follows:

m = CANEXIT, <= m(c) > min,,
m = CANINCR, <= m(c) < max,

Definition 6.1.3. Counting automaton is a tuple A = (I,C,Q,qo, F, A), where:
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I is an effective Boolean algebra called the input algebra,

C is a finite set of counters with an associated counter algebra C,

Q is a finite set of states,

qo € Q s the initial state,

F: Q — Y, is the final state condition,

ACQXVYrx(C— 0)xQ is the (finite) transition relation, where
O = {EXIT, INCR, EXIT1, NOOP} is the set of counter operations.

The component f of a transition (p,a, f,q) € A is its (counter) operator. It is often viewed
as the set of indexed operations OP., where OP denotes the operation assigned to the counter

¢, f(c) = op.

To define the semantics of counter operators f each indexed operation OP, is associated
with a counter guard grd(op.) and a counter update upd(OP), defined as follows:

= T¢ upd(NOOP) 1 Anm,

grd(INCR,) e CANINCR(C upd(INCR) C Ann + 1,

( (
( (

grd(EXIT,) df CANEXIT¢  upd(EXIT) L \n. 0,
(ExITL, ) = CANEXIT(C upd(EXITl) f An.1

The operation NOOP does not modify the value of the counter, and its guard is always true,

e., it is always enabled. The guard of the operation INCR is enabled if the counter has not
yet reached its upper bound. The operation INCR increments the counter. Guard of both
EXIT and EXIT1 enables the corresponding operation when the counter reaches its lower
bound. The operation EXIT resets the counter value to zero on exit from the counting loop.
The operation EXIT1 is operation EXIT followed by INCR, i.e., the counter value is one after
this operation.

A predicate ¢y € U¢ over counter memories is the guard of a counter operator f: C' — O.

Update of the counter operator £f: DcU{L} - DcU{L} is a counter-memory transformer.
The guard and the update are defined as follows:

P gralor) £(m) d:ef{xc-upd<f<c>><m<c>> itm =

opeef 1 otherwise

If m satisfies the guard, £ updates all counters in a counter-memory m by their corresponding
operation. When the guard is not satisfied, the result is L.
The configuration automaton FA(A) of CA A defines the language semantics of the CA

A. Configurations of the CA A are pairs (¢, m) € @ x D¢ consisting of a state ¢ and
a counter-memory m. The FA(A) is defined as follows:

Definition 6.1.4. A configuration automaton FA(A) of CA A is a symbolic finite au-
tomaton whose:

o states are the configurations of A (there are finitely many configurations of A),

o initial state is the initial configuration (qo,{c— 0|c € C}) of A,
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o state (p,m) of FA(A) is final iff m = F(p),

e a transition relation is defined as Apaa) = {((p,m), a, (g, f(m))) | (p,a, f,q) € A,

mE @r}.

If CA A is deterministic, then FA(A) is also deterministic. A is deterministic iff Vp € @
and V(p, a1, fi,q1), (p, a2, f2,q2) € A: if both oy A ag and ¢y, A @y, are satisfiable, then
1 = g2 and f1 = fo.

If for any two transitions (q,a, f,r) and (¢, a/, f',r’), either a = o' or [a] N [/] = 0,
then A is simple. That means that different character guards do not overlap and can be
mostly treated as plain symbols. The algorithm presented in Section 6.2 produces simple
CAs. Example of an intuitive notation of CA, with the initial state ¢ and final conditions
F(q) = 1, F(s) = EXIT., where min, = max. = 100 is in Figure 6.1. Figure 6.5 shows
a CA in a more formal notation.

«Ac<100/c:=c+1

{c¢ > 100}

Figure 6.1: Example of the CA for the regex .*a.{100} in an intuitive notation. The transi-
tions are labeled by their guard, which gives the character class. On the left side of the ,,/¢
delimiter can also be a guard of OP., which is shown in conjunction with the character
guard «. On the right side of the delimiter, there is the update of OP. written as an as-
signment to c. Specifically, the right side of the assignment for INCR, is ¢ + 1, for EXIT,,
it is 0, for EXIT1,, it is 1, and NOOP,, is omitted. The transition does not change the value
of the counter if it does not have any update specified. The initial state is labeled with
the initial value of the counters. Final states are labeled with an acceptance condition. In
this figure, it is the condition {¢ > 100}. Taken from [48].

6.2 Translating a Regex Into a CA via Conditional Partial
Derivatives

A generalization of Antimirov’s partial derivative construction [6] to symbolic counting
is introduced in [48]. This generalization allows replacing a verbose NFA with succinct
CA. The difference between the older variant of Antimirov’s partial derivative construc-
tion [6] with explicit counting [40] and a version introduced in [48] will be illustrated in
the example of the regex .{100}. From a hundred partial derivatives 0.(.{i}) = .{i —
1},1 <4 <100, and an NFA with a hundred states and transitions (.{i},.,.{i — 1}) cre-
ated by the older variant, to the single derivative 0,(.{100}) = {.{100}} associated with
a conditional counter update resulting in an NFA with a single state and the transition
(.{100}, a, inere, .{100}) created by the newer version from [48].

Before the construction takes place, regexes must be normalized by the following rules,
where z ~» y denotes that x is rewritten to y:

o The flattened right-associative list form must be maintained throughout the construc-
tion, i.e., all nested concat nodes must be rewritten using these rules: (X -Y)-Z ~
XY -2)e-Z~Z and Z e~ Z.
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o The rule S{l,k} ~» S{0,k} must be used for all S that are nullable. S can also be
considered not nullable in the nullable context S{0, k}.

The size of the regex may decrease, or it remains the same after the normalization.

Let R be a fixed normalized regex. A counting loop is a sub-expression X of the regex
R that is of the form X = S{l,k}. A counter is represented by a counting loop, and it is
named after the loop itself. The upper bound of such counter is maxx = k, and the lower
bound is minx = [. An example can be the regex (.{9})#, which has the counter X = .{9}
whose bounds are miny = maxx = 9. Further in the text, the set of all counters that
occurs in R will be denoted by C (it can also be denoted by Counters(R)). For normalized
regexes X and Y, the juxtaposition XY is again a normalized regex that is equivalent to
the concat node X Y. For regexes X =a -b, Y = (a-b)* these conventions means, that
the juxtaposition XY =a -(b-(a-b)x. Le., concatenated elements are treated as sequences;
the element itself is then a singleton sequence.

The construction works over the alphabet ¥ = Minterms(R), whose elements are
minterms of R. Symbols from the alphabet 3 are used on the transition of the CA. The re-
sulting CA created by this construction will also be simple.

Parametric Languages

In order to define the language of a normalized regex starting with a counting loop relative to
a counter value, the definition of languages is lifted to be parametric in counter memories
m. However, other regexes, i.e., regexes without counting loop, are treated the same as
without the memory m, which is passed through unchanged.

For a counter operator f and a counter-memory m, f(m) denotes appropriately updated
memory. When f is not enabled, then f(m) = L. Further in the text, if there is only
a single counter ¢ € C such that f(c¢) # NOOP, the counter operator f is sometimes
identified with op.. Also, OP.(m) can be used to represent the updated memory f(m).
Specifically, if enabled, INCRxy and EXITx increments the value of the counter X by one
and resets the value of the counter X to zero, respectively. The parametric languages of
regexes are then defined as follows:

Definition 6.2.1. Let m be a counter-memory. Then the following equations define the para-
metric languages of regexes:

L"(e) < {¢} (6.1)

L™(wz) < vl - L"(2) (6.2)
L™WIY)2) Y mwzyu L™y 2) (6.3)
L™S2) X pmigye . pmz) (6.4)
L™S{L kY Z) % Lm(8) - LNRsam™ (S, k) Z) U LEXTsim™(Z) (6.5)
L) o (vx) (6.6)

The intuition behind Equation 6.4 is that all possibly present counters in .S are inactive
on the level of Sx. Since, for X = S{l,k} and m’ = INCRx(m),k — m'(X) < k — m(X) if
m(X) <k, and m’ = L if m(X) = k, the Equation 6.5 is well-defined.

Theorem 6.2.1 proven in [47] relates L™(R) with the non-parametric definition of regular

languages. The initial memory maps all counters to zero and is denoted by 0 € 2e.0.
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Theorem 6.2.1. Let R be a normalized regex. Then L°(R) = L(R).

Conditional Derivation

For the counter operator f and the normalized regex X, a partial conditional derivative is

a pair (f, X). With a counter-memory m, the partial conditional derivative (f, X) defines

the language L™((f, X)) L FALY (X). lLe., the counter-memory m is first updated by

applying the counter operator f, and the regex X is then evaluated within that updated

memory. The language will be empty if the counter operator f is not enabled in m.
Conditional partial derivatives form a finite set called a conditional derivative. Given

a counter-memory m, the language defined by a conditional derivative D is defined through

languages of partial conditional derivatives in D. It is the union of such languages, e.g.,
def
L™(D) = Ugep L™ (d).
Before conditional derivatives of a given regex can be defined, the concept of a sequential
composition of the conditional derivatives must be defined. The sequential composition of

conditional derivatives D and E is defined as follows:

def
D@E= {(fig.X-Y)|(f.X)€D,{9.Y) €E, fig# L} (6.7)
The f;g # L component of the definition is the composed counter operator, and it is
obtained as f;g(m) = g(f(m)). The case when f;g = L and some other special cases of
sequential compositions are discussed later on.
Conditional derivatives of a normalized regex are defined by the following equations:

Dale) L0 (6.8)
u(102) def {{(ID, )} ifa /\w' is satisfiable (6.9)

0 otherwise
Ou((W | Y)2) ¥ 0, (WZ) UBa(Y Z) (6.10)
0a(S * 2) € 0,(S) @ {(ID, S * Z)} Ud.(Z) (6.11)
0a(XZ) ¥ 0,(5) ® {(INCRy, X Z)} U {{EXITx, €)} ® 8a(Z) (6.12)

It is assumed, that concatenations X - Y are normalized to the flattened right-associative
list form mentioned above, a € ¥, ID denotes the identity function Az.x, and a counting
loop S{l, k} is denoted by X.

The operation INCRx gets composed with the NOOP x operation in 0, (S)®{(INCRx, X Z)}
in Equation 6.12. This composition will yield INCRy again. It is because S{l,k} can not
occur in S. The composition EXITx;INCRx can occur in {(EXITx,€)} ® 0,(Z) in Equa-
tion 6.12 when Z starts with X. The result of this composition will be the operation
EXIT1x as INCRy is trivially enabled when the counter value of X is zero. The last possible
composition of individual operations in Equation 6.12 is EXITx; EXITx. This composition
will be well-defined when minyx = 0. It is because EXIT, is always enabled for minyx = 0.
The result of such composition is then EXITx. However, when minyx > 0, then the com-
position EXITx; EXITx is undefined and does not contribute anything to the composition.
This is correct behavior because the counter value of X is reset to zero by the first EXIT x,
which results in the second EXITx not being enabled since X is not nullable. Intuitively,
the second occurrence of X must be iterated at least once before it can exit.

31



Below are two examples. The first, Example 6.2.1, shows the computation of conditional
derivatives using Equation 6.8-6.12. The second, Example 6.2.2, with Figure 6.2, explains
the use of some of the counter operations in the CA by describing them in the context of
the partial-derivative-based construction.

Example 6.2.1. Computation of conditional derivatives for regex R = . x a{l,3}a{1,3}a.
The counting loop a{l,3} will be denoted by X. R has two minterms a and [~a]. Because
of the normal form assumption, the computation starts with O (S * Z):

0a(R) = 0o(.) @ {(ID,R)} U 0,(X Xa)
={(ID,R),(INCRx, X Xa), (EXITlx, Xa)}
04(XXa) =0,(a) @ {(INCRx, X Xa)} U{(EXITx, €)} @ 0,(Xa)
= {(INCRx, X Xa)} U{(EXITx,€)} @ {(INCRx, Xa), (EXITx,€)}
= {(INCRx, X Xa), (EXIT1x, Xa)}
04(Xa) = 04(a) @ {{INCRx, Xa)} U{(EXITx,€)} @ 04(a)
= {(INCRx, Xa), (EXITx,€)}
Dala) = Da(.) = {(ID,€)}

The composition EXITx; EXITx in Ou(XXa) is undefined and therefore removed.

Ir-a1(R) = 0101 (-) ® {{ID, R)} U 9~03(X Xa)

={(ID,R)}
Or-a1(XXa) = 0r-o1(a) @ {(INCRx, X Xa) } U {(EXITx, €)} ® ~3(Xa)
=0 ®{(INCRx, X Xa)} U {(EXITx,e)} @0 =0
Or-a1(Xa) = 0r-gj(a) @ {{INCRx, Xa)} U {(EXITx,€)} @ Or~4j(a)

=0 ® {(INCRx, Xa)} U{(EXITx,e)} @0 =0

Or-a1(.) = {{ID,€)}

8[*(1]((1) = @

The language defined by 0,(Xa) in a valid counter-memory m is the union of the languages
LNRx (M) (X q) and L™x™)(¢). The first language corresponds to the case of iterating
the loop X (if the counter value of X is below three). The second language corresponds to
the case of exiting the loop (if the counter value of X is at least one) and accepting {e}.

Example 6.2.2. Consider the regex (.{9})*. The CA for this regex is in Figure 0.2.
The initial state is the regex itself, and its only partial derivative is .{9}(.{9})*. In this par-
tial derivative, the body of the counting loop is incremented once. The condition CANINCR.
must hold to do the incrementation. Since the automaton is in its initial state and no tran-
sition was yet taken, the value of counter c is zero, and therefore the CANINCR. condition
holds trivially.

There are two partial derivatives for the state .{9}(.{9})*, both leading back to the same
state. The first case is when CANINCR, holds (i.e., ¢ < 9), the second case is when the count-
ing loop is conditionally nullable and is exited under the condition CANEXIT, (i.e., ¢ >9).
In the first case, the counter ¢ is incremented (this is denoted by ¢ < 9/c++ in the figure).
In the second case, the value of the counter c is reset to zero, and then it is incremented
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as a result of taking the partial derivative of (.{9})x. As stated before, this composition
yields the operation EXIT1. That means that the condition CANEXIT. must hold, the con-
dition CANINCR. holds trivially since the counter is reset to zero a step before. The regex
representing the initial state is nullable; therefore, the initial state is unconditionally final.
The state {9}(.{9})* is final iff CANEXIT, holds (this is marked by “F:” in the figure).

({9n*
F: T

*AC<9/c++

e AC<9/c++,
*AC29/c:=1

{93(9N*
F:c>9

Figure 6.2: Counting automaton for the regex (.{9})* (taken from [48] and edited).

Theorem 6.2.2 states the correctness of the construction of conditional derivatives (the
readers can refer to [47] for detailed proof). For this theorem, it is also necessary to define
CANEXITR as the predicate shown above for a normalized regex R. Suppose that X stands
for a counting loop, then CANEXITp is defined as follows:

T(C if R= €,
CANEXIT, else if R=YZ and Y is nullable,

CANEXITR = ]
CANEXITx A CANEXIT; elseif R =XZ,

(6.13)
g otherwise.

Y may also be a counting loop in the second case in Equation 6.13. However, since
it is stated that Y is nullable, its lower bound miny must be zero (due to the fact that
R is normalized). Then CANEXITy will always be true. Note that Z can also be € in both
the second and the third case. If R = a{0, 3} then the second case will be used with Z = ¢,
which results in CANEXITR = Te. If R = a{l,3} then the third case will be used with
Z = €, which results in CANEXITr = CANEXIT,¢; 31 A T, i.e., CANEXITp, is true if the loop
a{l,3} can be exited.

The following notions also have to be defined as they will be needed further in the de-
terminization of CAs. A counter X is visible in R in these two cases:

1. R=YZand X =Y,
2. X does not occur in Y and X is visible in Z.
A counter-memory m is valid for R if m(X) = 0 for all visible counters X that occur in R.

Theorem 6.2.2. Let R be a normalized regex and let ¥ = Minterms(©) where © is some
finite superset of Preds(R). If m is valid for R, then L™(R) = Uyexle] - L™(0a(R)) U
{e | m |= CANEXITR}.
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Constructing CAs From Conditional Derivatives

Let CA(R) be the counting automaton created from the regex R. The initial state of
this automaton is R. The smallest set containing the initial state R and all regexes obtained
from conditional derivatives constructed from R by repeated derivation wrt X is the set of
states of the CA(R). Let S be the regex that represents a state of CA(R). There is
a transition (S,a, f,T) in CA(R) for each a € ¥ and each partial conditional derivative
(f,T) € 04(S). The final condition F(S) of the state S is CANEX1Tg. When S is not
nullable and has no visible counters, then F(S) = L, this corresponds to the classical
case.

The paper by Turomniovéa et al. [47] shows that the following result can be proven by
Theorem 6.2.2.

Theorem 6.2.3. Let R be a normalized regex and A = FA(CA(R)). Then, for all (m,S) €
Qa, La((m,5)) = L™(S).

The construction of CA(R) terminates, and the number of states of C A(R) is linear in
#u(R).

Theorem 6.2.4. Let R be a normalized regex. Then |Qcoar)| < #w(R) + 1.

Proof of Theorem 6.2.4 can be found in Turonova et al. [47]. The following final cor-
rectness result is a corollary of Theorem 6.2.1, Theorem 6.2.3, and Theorem 6.2.4.

Corollary 6.2.1. Let R be a normalized regex. Then L(R) = L(CA(R)).

Proof. First, Qcar) is finite and thus well-defined by using Theorem 0.2./. Use Theo-
rem 6.2.3 with (m,S) as the initial state (0, R) of A. It follows that L(A) = L°(R). Then
use Theorem 6.2.1 for L(R) = L(R) and L(CA(R)) = L(A) holds by definition. O

The number of input minterms of C'A(R) may be exponential in the number of predicates
of R. However, when the predicates are represented as a finite union of intervals (which is
typical for character classes), the size of a single predicate representation can be estimated
to be proportional to the number of interval borders in the union. Since the total number
of interval borders will remain the same in minterms as in the original set of predicates
also the size of all minterms remains linear in the total size of all the predicates. That
means that the mintermization based on character classes does not blow up the number of
transitions in CA(R). This was also experimentally validated in Turonova et al. [48].

6.3 Determinization of Counting Automata

Counting automata created from the conditional derivative (as shown in Section 6.2) are
non-deterministic. One approach for the determinization of C As to DF As is naive deter-
minization. The naive determinization first converts the given C'A to underlying NF A.
This is done by making the counter memories an explicit part of control states. Then,
the textbook subset construction is used to turn the N F A into the DF A.

The main disadvantage of this approach is the high risk of state explosion in one, or
even worse, in both steps. The explosion is caused by two factors. In the first step, it is
the sacrification of the succinctness of symbolic counters by making them part of the states.
That makes the states linear in the counter bounds. In the second step, the explosion
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is caused by the subset construction, which is exponential to the size of the NFA and,
therefore, also to the counter bounds.

A new approach, introduced by Turotiova et al. [48], can handle the explosion problem.
The new approach does a direct determinization of the C' A into counting-set automata
(CsAs). CsAs are a novel type of automata which control states produced by the direct
determinization are essentially the states of the corresponding DF A without the counter
memories. The states of CsA are equipped with special registers that can hold sets of
integers in order to simulate the run of the DF A. These registers are used at runtime to
compute the right values of the counters. This completely avoids the explosion caused by
the wiring of counter memories into control states. The manipulation with a counting set
can be implemented in constant time, making the simulation run fast.

Counting-Set Automata

This subsection introduces the formalized idea of counting-set automata. To allow manip-
ulation with pairs of predicates from the input algebra I and the counting-set algebra S,
the notion of a combined Boolean algebra I x S is used. It is also assumed that predicates
in Wy s have a form oA 8 where o € Wy and 8 € Ws. The conjunction (a A ) Arxs (o A S')
has the usual meaning of (o A; ') A (B As B') and a A 3 is satisfiable if both o and 3 are
satisfiable in their respective algebras.

The interpretation of counters is set-based, which means that the value of a counter c is
a finite set rather than a single value. A counter is then called a counting set. Let P, (X)
denote the powerset of X, which is restricted to finite non-empty sets. Then a function
s: C' = Prin(N), such that Ve € C: Maxz(s(c)) < max, is called a counting set memory for
C. Also, note that the set of all set memories for C' is finite. An effective Boolean algebra
Sc called the counting-set algebra over C is an algebra formed by counting-set predicates
over C'. When it is clear from the context, the counting-set algebra S is also denoted
just by S. The domain of the counting-set algebra ®s is the set of all set memories for
C. The Boolean closure of the basic predicates CANINCR, and CANEXIT. forms the set
of predicates Vg, which is syntactically the same as in counter algebra C. However, since
S is set-based, its semantic will differ from C to reflect this fact. The semantics of these
predicates under counter algebra S is defined as follows:

s = CANEXIT, & Maz(s(c)) > min,,
s = CANINCR, < Min(s(c)) < max,

where Min() and Maz() denote functions that obtain the minimum and maximum of
the set, respectively. The intuition behind these conditions is that it tests if at least one
element of the set satisfies the counter condition.

Definition 6.3.1. A counting-set automaton (CsA) is tuple A = (I,C,Q, F, A) defined as
follows:

e I is an effective Boolean algebra called the input algebra,
e C is a finite set of counters associated with the counting-set algebra S,
e () is the finite set of states,

e qo € Q 1is the initial state,
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e F:Q — V¢ is the final state condition,

e AC QX Vs X (C—P(O)) xQ is a finite set of transitions.

The transition has four components, where the first and the last component is a state.
The second component is the guard of the transition. The third component of the tran-
sition is the counting-set operator, where O denotes the set {INCR, Noopr, RsT, RST1} of
counting-set operations. The counting-set operations are basically counter operations, just
lifted to sets. They are also written capitalized in order to distinguish them from the counter
operations. Also, the lifted counter operations EXIT and EXIT1 are written as RST and
RsT1, respectively, to stress the different usage of these operations. The counting-set op-
erator assigns sets of counting-set operations to counters; these sets are called combined
(counting-set) operations.

Definition 6.3.2. The CsA A is deterministic iff the following holds for every two tran-
sitions (p, 1, f1,q1) and (p, 2, f2,q2) in A: if Y1 A2 is satisfiable, then f1 = fa and
q1 = q2.

The semantics of an indexed counting-set operation op. € O is the set transformer
upd(OP.), which is defined as follows:
upd(INCR.) ®'AS{n+1|n € SAn<maz.} upd(rsT.) & AS.{0},

upd(NoOP,) ' AS.S upd(rsT1) & AS.{1},

The counting-set operator f: C — P(0O) is assigned the counting-set-memory trans-
former f: ®g — Dg, which is defined as follows:

fdl {UOPGM upd(0Pe)(s(c)) if f(c) £
" 1{o0} if f(c)=10

Intuitively, if f(c) # 0, there are some operations in f(c) that have to be applied.
The operations are applied on the value s(c) of each counting set ¢, yielding counting sets
for each s(c). The new value of each s(c) is then a union of its resulting counting sets. In
the second case, when f(c¢) = (), there are no operations to apply. In this case, an implicit
reset of ¢ to {0} (an implicit RST operation) is done. Such transitions are created by
the determinization introduced in the Generalized Subset Construction when c¢ is a dead
variable (its value is irrelevant).

In terms of the guards, it is necessary to distinguish cases such as —CANEXIT. A
CANINCR,., CANEXIT, A “CANINCR, or CANEXIT, A CANINCR.. Therefore, the CsA tran-
sition obtained throughout the determinization need guards that are partially independent
of the operations of f. That is the reason why, as opposed to counter operators of a C'A,
a counting set operator f of C'sA does not induce any guard, and the guard is instead
an explicit part of the transition.

Also, there is a difference in updates in CAs and CsAs. That is because the semantic
of the INCR operation is defined in such a way that it can not produce values greater than
max.. The updates then have to be defined for indexed operations.

An underlying configuration FA of the CsA A, FA(A), defines the language of A as
L(A) := L(FA(A)). The individual components of the F'A(A) are then defined as follows:

(6.14)
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o Configurations of A, i.e., tuples (¢,5) € Q xDg consisting of a state ¢ and a counting-set
memory s forms a finite set of states of F'A(A),

o the initial configuration (qo,{c— {0}}ccc) of A is the initial state of FA(A),

o a transition 7 = (p,a A S, f,q) € A is enabled in configuration (p,s) iff « is satisfiable
and s € [(]s, i.e., s satisfies the counter guard f; if 7 is enabled in (p,s), then FFA(A)
contains the transition ((p,s), a, (q, f(s)),

o astate (¢,s) of FA(A) is final iff s = F(q).

An example of CsA with an intuitive notation (also introduced in Section 6.1) is in Fig-
ure 6.3.

[*a] a/ci={0) afc:={0}Uc+1
c:={0}

—{¢}

{Max(c) > 100}

[*al A Min(c) > 100

[“al A Min(c) < 100/
c:=c+1

Figure 6.3: Example of the CsA for the regex .xa.{100} in an intuitive notation, created by
determinization of CA from Figure 6.1. The assignments to c are used to denote counting-set
operators. Specifically, RST is written as assignation of {0} to ¢, RsT1 is analogical only
with {1} instead of {0}, INCR is represented by c+1, and NOOP is omitted. Also, transitions
between the same states that differ only in guards are merged into one with a simplified
guard. Taken from [48].

The main reason why the resulting machine for determinization of CAs is CsA is
the fact that pattern matching with C'sAs is fast. Using appropriate data structure, all
basic counting-set tests and updates, i.e., CANINCR., CANEXIT., NoOP, INCR, RST, and
RsT1, can be implemented to run in constant time (assuming constant-time complexity of
integer arithmetics operations). The size of the counting set and the value max. do not
affect the complexity.

Combined counting-set operations can also be implemented to run in constant time.
Although the union of two general sets could take linear time to the size of the sets (which
is at most max,), the union of sets, where at most one is different from {0} and {1},
can be computed in constant time. Only the operations NOOP and INCR may return sets
other than {0} and {1}. A slow transition is then a transition whose counting-set operator
f assigns to some counter ¢ the result of combined operation f(c) that contains both Noop
and INCR. The C'sA with the absence of slow transitions is then called fast; otherwise, it
is called slow. According to Turotiova et al. [48], slow C'sAs are rare in practice.

In the used data structure, the runtime value of ¢ is a tuple (o,1) where o € N is called
an offset and [ is a queue of strictly increasing natural numbers such that S. = {o—n|n €
[}. If the first and the last element of the queue can be accessed in constant time (such as
a doubly-linked list), the data structure then supports the constant-time implementation
of the following operations:

o the minimum and the maximum of S, are obtained as o — last(l) and o — first(l),
respectively,
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o insert 0: if o — last(l) > 0, then append o at the end of [ (similarly for inserting 1),

o incrementing all elements, up to max.: o := o+ 1; if o — first(l) > max,, then
remove first(l),

o reset to {0}: [ :=0;0:= 0 (similarly for reset to {1}).

An example of usage of this data structure is in Figure 6.4.

prefix state  (o,?) Se¢

€ {4 (o, [0]) {0}

a {g.s} (0,[0]) {0}

aa {g.s} (1,[0,1]) {1,0}
aa0(10) {g,s} (11,[0,1]) {11, 10}
220103z {g,s} (13,[0,1,12,13]) {13,12,1,0}

2a0(10)3ap(®7) {g.s} (100,[0,1,12,13]) {100, 99, 88,87}
2a0(19a2ab®"d  {g,s} (101,[1,12,13]) {100,809, 88}
2a0192ab®Ndf  {g,s} (102,[12,13]) {90, 89}
aa0(10aab®dfa  {g,s} (103,[12,13,103]) {91,90,0}

Figure 6.4: Example of the data structure during a run of CsA in Figure 6.3 over an input
word aa01®aab®")dfa. It shows the current state, the runtime counting-set configuration
(0,1), and the value S, that the (o,1) represents after processing of the prefix. The final con-
dition of {q, s} is fulfilled after processing the sixth and seventh prefix since the maximum
of S. is at least a hundred. Taken from [48].

Using the above-described data structure together with fast C'sA for pattern matching,
the tests and updates of one counting set take O(1) time. This results in the overall
complexity of O(|C]) for all counting sets and their unions.

Encoding DFA Powerstates as CsA Configurations

This section describes two approaches that can be used for the configurations of a CsA
to encode states of a DF A corresponding to NFA FA(A) underlying a given CA A =
(I, C,Q, qo, F,A). Assume that the states of FFA(A) are pairs (p,m), where p is a state
of A and m is a counter-memory. The FA(A) have such states due to the fact that A is
converted to FFA(A) by making the counter memories explicit parts of states. Also, assume
that the FA(A) is determinized by the textbook subset construction. Considering a simple
FA A = (I,Q, g0, F, A), the set of states of the DF A created by the textbook subset
construction will be P(Q), its transitions will be (S, a,{r € Q | s(a)r € A,s € S}), its initial
state will be {qo}, and its final states will be all those intersecting F'. Explicit generation of
all minterms in order to determinize C'A that is not simple can be avoided by using a more
sophisticated version of the subset construction for symbolic automata. This version of
the subset construction is introduced in Veanes et al. [49]. Further in the text, the result of
the textbook subset construction will be written as DF A(A). Sets of states (i.e., sets of pairs
(p,m)) of FA(A) then form the states of DF A(A), called the powerstates. The C A-to-C'sA
determinization introduced in the Generalized Subset Construction builds C'sA A’ which
control states are the subset of the set () of the states of the CA A. Pairs (R,s) where
R C Qis a CsA control state, i.e., a set of states of A, and s: C' — Py, (N) is a counting-set
memory, are the configurations of A’.
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The first approach to encode a powerstate to a CsA configuration is to interpret the con-
figuration (R,s) as a DF A state containing all pairs (r,m) such that » € R and m(c) can
be any value from s(c) for all ¢ € C. The set of the counter memories m is then iso-
morphic to the Cartesian product I.ccs(c) of the sets s(c) assigned to the counters, and
the entire powerstate is the Cartesian product R x m of the set of states and the set of
counter memories. This approach is called naive encoding, and since it can not express any
dependence of a counter-memory on the C'A state (every state can be paired with each
considered memory), it is too impractical. It also can not express the mutual dependence
of values of different counters within a counter-memory (every possible value of a counter
¢ can be paired with every possible value of any other counter d). This encoding can not
represent most of the DF As that arises from real-life regexes. An example can be the C'A
from Figure 6.1 and its DF' A configuration {(q,c = 0), (s,¢ = 0), (s,c = 1)}, which can not
be represented by the naive interpretation of a C'sA configuration, since ¢ and s appear
with different sets of counter values.

The second approach is encoding with counter scopes. The major difference in compari-
son to naive encoding is considering the fact that the value of a counter is usually implicitly
zero at most states. In other words, not every counter is used at every state of the C' A.
In such states (which must be known in order to use this approach), the implicit zeros can
be omitted from the counting sets, making the encoding much more flexible. To formalize
this concept, the paper by Turonova et al. [48] introduces the notion of the scope of a counter
that over-approximates the set of states where a counter ¢ can have a non-zero value. In
a general case, computing a precise set of such states would require a reachability analysis.
That is because some of the transitions may never be used. For example, when simulta-
neously counting with two counters ¢ and d for which CANINCR, < CANEXIT,, the exit
transition for d can not be used since the CANEXIT; guard will never be satisfied. How-
ever, since the derivative construction produces C'As without such transitions, the scope
corresponds to this set precisely, and therefore the set of states where a counter ¢ can have
a non-zero value is easy to compute. The scope is defined inductively as follows:

Definition 6.3.3. The scope is the smallest set of states o(c) such that q € o(c) if:
e there is a transition to q with either INCR. or EXITI,,

e there is a transition to q from a state in o(c) with NOOP. operation.

Le., the state is in scope if the counter ¢ gets incremented on the incoming transition
and the scope then spreads along with the transition relation until a transition with EXIT,
takes place.

The formal definition is then the following: The DF A powerstate encoded by a CsA
configuration (R,s) is the set (R,s)PFA of configurations (r,m) of the CA A such that
r € R and, for allc € C,m(c) € s(c) if c € o(r), else m(c) = 0. The powerstate of DFA(A)
is called Cartesian if it can be encoded by C'sA configuration. The DF A(A) is then called
Cartesian if all its powerstates are Cartesian.

For example, considering C'sA A from Figure 6.1, since gy is not in the scope of c,
the powerstates of the DF A(A) are Cartesian.

Unfortunately, not all kinds of DF A powerstates can be expressed by the Cartesian
encoding. Specifically, more subtle dependencies of counter values on the state and depen-
dencies of counter values on each other can not be expressed by the Cartesian encoding.
These dependencies mostly arise from regexes with nested counting sub-expressions, which
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are compiled in C' As with nested counting loops. An example of a regex that is compiled
to non-Cartesian C'A is (alaa){5}. More information about the non-Cartesian powerstates
can be found in the paper by Turoriova et al. [48], which also provides strong empirical
evidence that a significant majority of real-life regexes lead to Cartesian C' A.

Generalized Subset Construction

This section describes the core of the C'A-to-C's A determinization, which is built on top of
the textbook subset construction for NF'As. Since the derivative construction introduced
in Section 6.2 generates simple C'As (their transitions are labeled with minterms of the orig-
inal regex, and therefore different character classes on its transitions do not overlap), it is
assumed that input C'As of the determinization are simple. However, it could be gener-
alized to work with non-simple C'As in the style of symbolic automata determinization of
Veanes et al. [49].

Let A = (I,C,Q,qo, F,A) be a simple CA with the scope function o: Q@ — P(C).
The deterministic CsA A’ = (I,C,Q’, Sy, F', A’) is then the result of the determinization
algorithm. The components of A’ are constructed as follows:

e I'and C stays the same,
o Q' CP(Q) (the control states of A’ are called powerstates),

« initial powerstate is Sy = {qo},

o F'(S) def \/qu F(Q), in other words, the powerstate S € @’ is final iff the final

condition holds for any of its element,

o The sets A’ and Q' are constructed by a fixpoint computation that explores the state
space reachable from Sy;. When a new transition from an already reached powerstate
is created during the construction, it is added to A’. Also, the target powerstate of
the newly created transition is added to Q. When no new powerstate can be reached,
the sets A’ and Q' are complete.

Transitions of the CsA A’ must be constructed in such a way that their updates of
the runtime values of counting sets simulate transitions of the DFA corresponding to
the CA A. Let (R,s) be a CsA configuration and ((R,s)”"4, a, P) be a DF A transition
from the DF A powerstate encoded by (R,s) over an input minterm a. A configuration
(R, s) must be transformed into (R',s') with (R’,s')PF'4 = P by simulating the C'sA transi-
tion. The C'A a—transitions enabled in configurations (r, m) € (R, s)”F4 are instantiations
of a—transitions of the NFF'A FA(A) from which the simulated DF A transition was con-
structed. These C'A transitions will be used to construct the simulating C'sA transition.
Before the construction takes place, it is necessary to delete some CA transitions, which
can never be taken. Such transitions, however, can create CsA transitions without corre-
sponding guard because the source state is not in scope. These CsA transitions then cause
that the CsA can accept a different language than the CA. It is a transition from the state,
which is not in scope, with EXIT or EXIT1 operation for counter with lower bound greater
than zero. Since the counter is not in the scope of the source state, its value will be zero,
and such transition can never be taken since the CANEXIT guard can never be satisfied.
Let 3 be the set of minterms over all input predicates in the CA A. The C'A transitions
can then be identified by the following:
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1. source state, which must be in R,
2. an alphabet minterm o € X,

3. compatibility with a particular set of enabled or disabled counter guards.

The set of guards mentioned in case 3 above belongs to the set of minterms I'p ,, of the set
of counter guards on the a—transitions originating in R, which is defined as follows:

I'ra def Minterms({grd(op.) | (r,a, f,s) € A,r € RAc € o(r),op. € f}) (6.15)

For each o € ¥ and 8 € I'g o there will be a transition leaving R in the CsA. The set of
CA a—transitions originating in R and consistent with 3 that is used to build that C'sA
transition is defined as follows:
def
Araps = {(ra,f,5) € Alr € R, Sat(ps AB)} (6.16)
All target states of the transitions in Ag , g forms the set 7" which is the target powerstate
of the newly created transition of CsA. The guard of this transition is aA S (the predicates
in ¢ and Ug are syntactically the same).

As stated before, the transition must simulate the updates of transitions from which it is
created. So, the last component of the transition, the counting-set operator f’ must summa-
rize the updates of the counter values on transitions of Ag , 3 as updates of the respective
counting sets. It must also take the scope of the counter into consideration. Tracking of
the value of the counter starts when A’ simulates a transition of A entering the scope of
the counter. The tracking then ends when no state from the scope is present in the target
CsA state. In all other situations, when the counter is out of scope, its value is implicitly
zero, and the counter will not be tracked in counting sets.

Let AR p(c) be the set of transitions from the set Ag, g whose target state is in
the scope of c¢. Also, let op(T,c) denotes the counting-set operation that for a given C'A
transition 7 = (p, , f, q) transforms the set of possible values of the counter ¢ at the state p
to the set of possible values obtained at the state q after taking the transition. It is defined
as follows: )

Noop if f(¢) = NOOP Ap € o(c)
INCR  if f(¢) = INCRADp € o(c)

def | RsT  if f(c) = NOOP A p ¢ o(c)
(c)

(c)

(P f,0).0) = ) poy if F(c) = INCR A p & (0 (6.17)

RsT if f(¢) = EXIT
Rstl if f(c) = EXIT]

The set operation induced by the CA transition corresponds to the counter operation on
the transition. When the C'A transition comes from out of the scope, the counter can
only have the value zero, which is the same as produced by EXIT (or eventually EXIT1 if
the counter is immediately incremented). This corresponds to the third and fourth cases
in Equation 6.17.

The counting set operator f’ is then defined as f’(c) def {op(1,¢) | 7 € AR p}. It can
also end up empty. That happens in a situation when the target powerstate is fully out of
the scope of ¢, which is semantically corresponding to the implicit reset to {0}. The re-
sulting C'sA transition is therefore (S,a A 8, f/,T). Since for any two distinct transitions
(S, a1, f1,51) and (S, az, f2, S2), the condition ay Aag is unsatisfiable by virtue of minterms,
the CsA A’ is deterministic.
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Theorem 6.3.1. For the CA A and the CsA A’ above, we have L(A') 2O L(A) and
Q) < 29

An idea of proof of Theorem 6.3.1 can be found in Turonova et al. [48].

Example 6.3.1. The counting automaton for the regex a{l,3}b{5,9}ab is shown in Fig-
ure 0.5. The counting-set automaton created by determinization of the counting automaton
is shown in Figure 6.6. The determinization process will be demonstrated on the creation
of transition from the state Sy to the state S1 for the letter b. There is only one transition
in the counting automaton that will be considered, and it is the transition from the state qq
to the state q1. There are two guards on the transition; however, only the counter X is in
the scope of the state qg, and therefore the guard for the counter Y is irrelevant. The set
s, p will then contain the following two elements: CANEXITx and ~CANEXITx. Since
there is CANEXITx on the original transition, the element ~CANEXITx of the I's, ; set can
not be used as CANEXITx N 7"CANEXITx is not satisfiable. The last missing component of
the transition is the operation. The EXITx operation of the CA transition is irrelevant since
X is not in the scope of the state q1. The INCRy operation will be transformed to the RST1
operation by using the fourth case of Equation 6.17. The final created transition is then
the transition (Sp,b A CANEXITx,{RST1y},S1).

a/INCR(X) b/ INCR(Y)

b/EXIT(X); INCR(YY)  _ a/EXIT(Y)

Figure 6.5: Counting automaton for the regex a{l,3}b{5,9}ab. X denotes the counter
a{l,3}, and Y denotes the counter b{5,9}. Assignation of a value to the counter is denoted
by :=sign (e.g., X :=0). The character class (in this example, only a single letter) is written
as first on the transition. If there are any operations, they are written after / symbol.

a A Canlncr(X) / INCR(X) b A Canlncr(Y) / INCR(Y)

b A CanExit)) /RSTI [ g an CanExit(Y) /RST(YV) [ o b @
’U ] 2

Figure 6.6: Counting-set automaton for the counting automaton from Figure 6.5. X denotes
the counter a{1,3}, and Y denotes the counter b{5,9}. The character class (in this example,
only a single letter) is written as first on the transition; then there are counter guards, and
after / symbol, there are the operations. For both guards and operations, the counters on
which they are applied are written as an argument.
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Chapter 7

Implementation

This Chapter describes the implementation of the CsA-based pattern matching done within
the RE2 matcher. It is further divided into individual sections following the steps to create
CsA described in Chapter 6. The main steps are translating a regular expression into
the CA, determinization of the CA, and the matching itself. Besides the implementation
of the matching itself, there is a set of tests covering each of the mentioned steps and
benchmarks for the first two parts of the algorithm (i.e., creating the counting automaton
from the input regex and its determinization).

7.1 Translating a Regular Expression Into Counting Automa-
ton

The first step of the algorithm is to create the CA from the input regex. This part of
the algorithm works with already preprocessed regex along with some other information
obtained through the processing. The output of this part of the algorithm is an instance
of a Regexp::Derivatives class. The instance holds the resulting counting automaton
together with some additional information needed further in the algorithm (for example,
a set of all counters that occurs in the regex).

Preprocessing the Input Regex

The preprocessing of the input regex can be divided into two parts. The first part is done by
already implemented functions of the RE2. This part loads the input regex in the form of
a string. Then it will check the syntactical correctness of the regex and creates an instance
of a Regexp class holding the regex itself. The Regexp class instance is an instance variable
of an RE2 class, which is the class that holds all information needed for the algorithm.
The information that will be further used is the use_CsAs_ and unanchored_ options,
the bytemap_ array, and the bytemap_range_. Their usage will be described in more detail
further in the text, but their meaning is briefly the following:

e use_CsAs_ option is used to determine if the CsAs-based matching algorithms or
the original algorithms should be used,

e unanchored_ is used to determine if . * should be prepended and appended to the regex,
such modified regex is then used for partial matching,
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e bytemap_ is an array of size 256 where the index is an ordinal value of a corresponding
character, and the value is the number of the bytemap class for the character,

e bytemap_range_ is a number that determines the number of character classes.

The second part of the preprocessing, which is already part of the newly implemented al-
gorithm, works with the output of the first part, specifically with the instance of the Regexp
class. It normalizes the regex to the right-associative list form described in Section 6.2. It
must also do some further modifications as part of the normalization. Specifically, it must
transform regex operators for whose there is no equation defined in Equation 6.8-6.12 for
partial derivative construction. The transformation is done so that there is no need to
introduce new equations for the partial derivatives.

The operators are the plus operator (+) and the quest operator (7). The plus operator
means one or more repetitions of the pattern. The only difference between the plus operator
and the star operator is that there must be at least one repetition of the pattern for the plus
operator. The plus operator is therefore transformed to the star operator with the repeated
pattern as a prefix. For example, the regex a+ will be transformed to the regex aax.
For the transformed regex, there must be at least one a, same as for the original regex
with the plus operator, and then there can be an unlimited number of repetitions of a.
Such transformation, therefore, creates an equivalent regex, which fits the equations for
the partial derivatives construction.

The quest operator means zero or one occurrence of the pattern, e.g., the regex aa? will
match two strings, a and aa. The operator will be transformed to alternation (i.e., | op-
erator). One alternative of the transformed regex will be e, which corresponds to the zero
occurrences part of the quest operator. The second alternative will be the original pattern
without the quest operator, which corresponds to the one occurrence part of the quest
operator. For example, the regex a? will be transformed to the regex ela. The trans-
formed regex match zero or one occurrence of the pattern, and therefore, it is equivalent to
the original regex. Again, the transformed regex fit the equations for the partial derivatives
construction.

Creating a Counting Automaton

After the regex is normalized using the steps above, it can be used to create the CA. It is
created using Equation 6.8-6.12. They are implemented as several methods. The methods
are the following:

getEquationTypeAndOperands

This method gets the type of equation that has to be used. It also gets the operands
for the equation. The regex (i.e., the Regexp class instance) is passed as an argument to
the method. The regex has an operator' associated with it and a list of subexpressions if
there are any.

When the regex is just a single expression (i.e., it has no subexpressions), the concate-
nation equation will be used (Equation 6.9) for most of the cases. The first operand of
the equation will be the expression itself, and the second will be e. However, there are some
special cases:

!The operators with comments can be found in the regexp.h file available at https://github.com/google/
re2/blob/master/re2/regexp.h
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o when the regex is of a type kRegexpLiteralString (for example, the regex abcde),
the equation type will be the same, but the first operand will be a, and the second
will be bcde,

o when the regex is of a type kRegexpStar (for example, the regex ax*), the repetition
equation will be used (Equation 6.11), and the operands stay the same,

o when the regex is of a type kRegexpRepeat (for example, the regex a{100,300}),
the counted repetition equation will be used (Equation 6.12), and the operands stay
the same.

When the regex is of a type kRegexpAlternate, it will be processed the same as the sin-
gle expression regexes, even though it has some subexpressions. It is because the subexpres-
sion will be processed later in the computation. For such regexes, the alternation equation
will be used (Equation 6.10). The first operand of the equation will be the expression itself,
and the second will be €.

When the regex is of a type kRegexpConcat, there are two ways of processing it.
The first is when the type of its first subexpression is not kRegexpConcat. In such
a case, it is processed similarly to the single expressions described above. The differ-
ence is that the type of the equation is determined based on the first subexpression. For
example, for regexes a{1,3}b{2,4}a and ax*a, the type of equation will be determined by
a{1,3} and ax*, respectively. The first operand will be the first subexpression of the regex.
The second operand will be the regex without the first subexpression. For example, for
the regex a{1,3}b{2,4}a, the first operand will be a{1,3} and the second operand will be
b{2,4}a. There is also one special case. It is when the first subexpression is of the type
kRegexpLiteralString. The second operand in such a case is not just the regex without
the first subexpression. It is the concatenation of the first subexpression without the first
literal and the rest of the regex. For example, for the regex abcax*, the first operand will
be a, and the second operand will be bcax*.

The second way of processing the regex of the type kRegexpConcat is when its first
subexpression has the kRegexpConcat type. Such a case can be caused by normalization.
For example, the regex (aa{1l,3}b)a{1,4} is rewritten to aa{1,3}ba{1l,4} by the normal-
ization. Then it is the concatenation of two expressions aa{1,3}b and a{1,4}. The first
expression then has the kRegexpConcat type. The first subexpression must be processed as
a standalone regex. The first operand is then set correctly. However, the second operand
must be modified. It will be the concatenation of the second operand created by processing
the first subexpression and the rest of the whole original regex.

composition

The method does the composition needed in Equation 6.11 and Equation 6.12. It creates
new transitions that arise from the composition. The source state is the operand of the equa-
tion. The target state of the newly created transitions will be a new regex. The new regex
is created as the concatenation of regexes from the partial derivatives that are arguments
of the composition. The transitions will also have a new counter operator that arises from
the composition. The new operator is computed by the getOperatorComposition, which
must also consider the special cases described in the Conditional Derivation.
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computeNewState

This is the main method of CA creation. It starts with the whole regex as it is the initial
state, and then it explores every newly created regex (state). Even those states that will
not be in the resulting CA because they will be unreachable. Their results are needed
in other equations. The method first gets the equation type and its operands using
the getEquationTypeAndOperands method. Then it implements Equation 6.8-6.12. All
the equations must be computed for all bytemap classes.

For Equation 6.9, the method checks the satisfiability of the first operand. If it is satisfi-
able, it creates a new transition from the first operand to the second operand. The transition
will also have the bytemap class associated with it. If the regex is of a type kRegexpAnyChar,
the bytemap class is set to 256, which is beyond the upper bound of the bytemap. It is then
used in the determinization to determine that the transition can be taken for any bytemap
class. It also adds the second operand as a new state to be explored.

For Equation 6.10, the method first creates new regexes as the concatenation of indi-
vidual subexpressions of the first operand with the second operand. For each of the new
regexes, it computes the partial derivatives by calling itself (i.e., the computeNewState
method). Then it copies all the transitions created by the newly created regexes and
changes the source state to the equation operand in all of them.

For Equation 6.11, the method first computes partial derivatives for the pattern of
the first operand (for example, for pattern a if the first operand is a*) and for the second
operand. Then it computes the composition and also copies all of the transitions created
by the second operand and changes the source state to the equation operand in all of them.

For Equation 6.12, the method first computes partial derivatives for the pattern of
the first operand (for example, for pattern a if the first operand is a{1,3}) and computes
the first composition defined in the equation. Then it computes partial derivatives for
the second operand and computes the second composition defined in the equation. The re-
sult of this equation is the union of the two computed compositions. The last step is then
to merge the transition that arises from the compositions together. The method also saves
the counting loops while computing this equation. The counting loops are saved by their
names (for example, the counting loop a{1,3} will be saved as a{1,3}). If there is more
than one such counting loop, the others are saved with the number of already found count-
ing loops with the same name appended to the end. For example, the regex a{1,3}a{1,3}
will have two counting loops, a{1,3} and a{1,3}1.

In each of the equations, it is also determined if the regex (i.e., the operand of the equa-
tion) is a final state. The check is done using the isNullable method, which implements
the CANEXITR predicated defined in Equation 6.13. The final state condition is True if
the checked regex does not start with a counting loop or if it starts with a nullable counting
loop. Otherwise, the final state condition will be CANEXIT of the corresponding counting
loop.

Structure of the Resulting Counting Automaton

The counting automaton is saved in an unordered_map where the key is a string representing
the source state, and the value is a vector of transitions. The transition is then a 5-tuple
where the individual components are the following;:

e a string representing the source state,

e an integer representing the bytemap class,
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« aset of counter guards (the guards in the CA are not an explicit part of the transition;
however, they are saved together with operations, so the operations do not have to
be traversed later in the determinization to get the guards)

e a list of counter operations,

e a string representing the target state.

The class instance also contains some additional information about the counting au-
tomaton that will be used further in the determinization. It contains an unordered_map of
all CA states. The key in this map is a string representation of the state, and the value is
a pair representing the state. The pair contains an instance of the Regexp class representing
the regex and a set of counters in scope (which will be computed during the determiniza-
tion).

There is also an unordered_map of all final states. The key in this map is a string
representation of the state. The value is a finalStateCondition, which is a structure
holding a guard, and if the guard is CANEXIT, it also holds information about the counting
loop and its bounds.

7.2 Determinization of the Counting Automaton

The second step of the algorithm is the determinization of the counting automaton created
from the input regex. The input of this part is an instance of the Regexp: :Derivatives
class, which holds all the information about the CA. The output of this part of the algorithm
is an instance of a CSA class. The instance holds the resulting counting-set automaton. If
the determinization is done on the fly, the instance does not hold the whole CsA from
the start. However, it does carry all the information needed for the determinization, and
the CsA is building as needed during the matching. The on-the-fly determinization can
also gradually create whole CsA for some regexes and input text.

Computing the State Scope

The first step of the determinization part of the algorithm is to compute the scope of
the states. The state scope is needed to compute the set of minterms of the set of counter
guards defined in Equation 6.15. The state scope is also needed to compute the counting-set
operator f of the newly created transitions defined in Equation 6.17.

The scope will be computed only for the reachable states. Therefore, the computation
starts with the initial state. Then all the states reachable using the transitions from the cur-
rently explored state are added to a statesToExplore vector. All states from the vector
are gradually explored. The computation ends when there is no state to explore.

The formal definition of the scope is in Definition 6.3.3. The scope of the states is com-
puted using the computeStateScopes method. The method will explore all the outgoing
transitions of the currently explored state. For each of the transitions, it also traverses all
its operations. If there is the INCR or the EXIT1 operation, it will add the corresponding
counting loop of the operation to the scope of the target state of the transition. If there is
an EXIT operation, the counting loop must be erased from the scope of the target state of
the transition if it is there.

According to the definition of the scope, the ID operation should spread the current
scope of its counting loop. However, during the translation of the regex into the CA, there
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is no information about the counting loop that corresponds to the inserted ID operation
in Equation 6.9 and Equation 6.11. Also, there has to be an implicit ID operation for
all counting loops that are not used on the transition in some other operation. Therefore,
the computeStateScopes method keeps track of all counter used on individual transitions.
Then it gets all unused counting loops of the transition as a set difference of all count-
ing loops of the regex (these are obtained in the translation of the regex to CA step of
the algorithm) and all counting loops used on the transition. The method will create
an ID operation for all the unused counting loops and add it to the transition. All the un-
used counting loops that are in the scope of the current state must spread the scope to
the target state too. Such counting loops are computed as a set intersection of all counting
loops that are in the scope of the current state and all unused counting loops (i.e., those
with the implicit ID operation). The resulting scope of the target state is then a union of
the already computed scope of the target state and all counting loops that are in the result
of the intersection.

Computing the CsA States and Transitions

The computation of the CsA states and transitions is done by one primary method, named
getNextStateAndTransitions. It implements all the steps described in the Generalized
Subset Construction. It also uses some other methods representing the steps of the for-
mal algorithm, namely getCounterGuards, computeMinterms, checkSatisfiability, and
getCsaTransitionOperator.

getCounterGuards

This method will get the set of counter guards on the transition. The set is needed to
compute the set of minterms I'g ,, defined in Equation 6.15. According to the definition, it
gets the counter guards for the given CsA state and the given bytemap class. It traverses
all the outgoing transitions of the given state. For each transition, it will check if the given
bytemap class is the same as the bytemap class of the transition. The transition can also
have the bytemap class 256. Such transition can also be processed since the bytemap class
256 means any character. Other transitions are skipped.

Then, each of the transitions that fulfill the bytemap class condition is processed. That
means to traverse all its counter guards. All the guards of the transition that are in the scope
of the source state are added to the final set of the counter guards. The method also gets
a set of all the counting loops of the used guard. The set of counting loops will be used
later for optimizations.

computeMinterms

This method does the second step of the set of minterms I'g , computation. It computes
the minterms of the given set of counter guards. The algorithm is inspired by the algorithm
for minterms computation introduced in [18]. The individual minterms are sets of counter
guards.

The algorithm creates two sets. The first set contains the first counter guard, and
the second contains the same counter guard but negated. These two sets that will be
potentially extended represent the minterms. The sets are also added to the set of all
current minterms. The method then traverses all the remaining counter guards. For
each of the counter guards, it will try to extend all of the current minterms by the non-
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negated and negated guard separately. l.e., there could be two minterms after this step,
the original minterm extended by the non-negated guard and the original minterm ex-
tended by the negated guard. The non-negated guard is always added. The conjunction
of all the guards in the minterm must remain satisfiable after the negated guard is added.
There are only two situations when the conjunction could be unsatisfiable. The first situa-
tion is when the guard is True, its negated version is —True, which is always unsatisfiable.
The second is the conjunction ~CANINCR. A “CANEXIT,, which can never be satisfied for
non-empty sets of positive integers. In all other cases, the negated guard is also added to
the minterm. The computation ends when all the guards are traversed.

checkSatisfiability

The method checks if all the operations of the given transition are consistent with the given
minterm. IL.e., there is no combination such as INCR. operation and —CANINCR, guard.
This check has to be done in order to get the Ag, g set of CA transitions (defined in
Equation 6.16) that are used to build the CsA transition.

The method gets two sets of guards as arguments. The first is the counter guards
of the currently checked transition (i.e., ¢y in the definition). That is why the counter
guards are explicitly saved to CA transitions as described in the Structure of the Resulting
Counting Automaton. Thanks to that, the operations of the transition do not have to be
traversed in this method to get the guards.

The second set of guards is the minterm, i.e., 8 in the definition. However, it is not
the original minterm but a modified one. All of the guards in the minterm are negated.
For example, =CANINCR, will become CANINCR,, and CANINCR, will become —~CANINCR..

With the modification of the minterm, the satisfiability of the conjunction of these
two sets of guards can then be checked using the set intersection. The conjunction could
become unsatisfiable if there is the same guard in both sets, but one of them is negated
(i.e., CANINCR, in one set and —CANINCR. in the other set). Because all the guards of
the minterm are negated before this method is called, it can be checked if there are two
same guards. In such a case, the conjunction is unsatisfiable. Therefore, if the result of
the set intersection is non-empty, the conjunction is unsatisfiable; otherwise, it is satisfiable.
An example of how the method works is in Example 7.2.1.

Example 7.2.1. Let f = {~CANINCR., CANEXIT,} be the minterm. According to the de-
scription above, its modified version will then be ' = { CANINCR., "CANEXIT,}. Assume
that the second argument of the checkSatisfiability method is the set of guards of
the transition ¢ = { CANINCR., CANEXIT,}. The method compute intersection ' Ny =
{CANINCR.}. The result of the intersection is non-empty, and, therefore, the conjunction
should be unsatisfiable. This is right since the conjunction of “CANINCR. from the original
minterm and CANINCR. from the set of guards of the transition is unsatisfiable.

getCsaTransitionOperator

This method implements Equation 6.17. It traverses all the operations of the given transi-
tion and creates the set of operations for CsA transition.

getNextStateAndTransitions

This is the main method of determinization algorithm. It gets all outgoing transitions for

the given CsA state. It first computes the set of minterms I'g , for the given CsA state R and
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given the bytemap class a using the getCounterGuards and computeMinterms methods.
The method then traverses the set of minterms. For each of the minterms, it creates its
modified version according to the description above.

For each of the modified minterms, it traverses all outgoing transitions of the given CsA
state. The CsA state is the set of CA states, so it traverses all outgoing transitions of all
CA states from the CsA state. For each of the transitions, it checks if it can be taken.
That means to check the bytemap class of the transition, which must be equal to the given
bytemap class « or it must be 256 (i.e., it matches any character). Also, the conjunction
of the set of guards of the transition and the current minterm must be satisfiable. That
is checked using the checkSatisfiability method called with the modified version of
the minterm and the set of guards of the transition. If the transition can be taken, its
target state will become part of the target CsA state. If the target CA state is final,
the method also adds the corresponding final state condition to the set of the CsA state
final conditions. Also, it computes the CsA operation for each of the transitions that can
be taken.

The last step is to save the information about the newly computed transitions and
states. The following information will be saved for the transitions:

o the source state of the transition which is the given state R,

e bytemap class which is the given bytemap class «,

e the set of used counting loops computed by the getCounterGuards method,

e the set of operations computed by the getCsaTransitionOperator method,

o the target state, which is obtained as the set of target CA states of the used transitions.

If any of the CA states that form the target CsA state is the final state, the target CsA
state will also be saved as final.

The Structure of the Counting-Set Automaton

The counting-set automaton is the vector, which will be called the automaton wvector for
clarity. Its index corresponds to the numerical representation of the source state. The value
of the automaton vector stores information about the possible transitions. The information
is stored as a vector, which will be called the state vector. The index of the state vector
corresponds to the bytemap for which the transitions can be taken. The values of the state
vector are pairs of used counting loops and the vector of transitions itself. The index to
the vector of transitions is based on the used counter guards (the computation of the index
will be described further in the text). The value on the index is then a pair of the set of
counter operations and the target state.

The structure of the automaton is optimized so that the matching loop can work effi-
ciently with it. The first optimization is to use the numerical representation of the states.
Then the whole automaton can be saved in the vector (the automaton vector), which is
accessed by the index (i.e., the numerical representation of the state). The vector pro-
vides a constant time access by the index. Constant time access is crucial. Containers
like the unordered_map provide average constant complexity. However, the worst-case
complexity is linear, and the run-time difference between these two is significant.

The state vector holds pairs of the used counting loops and the transition vectors.
The counting loops are used to compute the index to the transitions vector, so it is
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not necessary to work with all counting loops of the regex. The index is computed by
the computeGuardIndexes method described below. The computation of the index is used
because the matching loop then does not have to traverse all the possible transitions (and
check its guards) to find the only one that will be used. The transition itself holds informa-
tion about the counter operations that will be used when it is taken and the target state
of the transition.

Also, the state vector and the transition hold their values as std::pair rather than
std::tuple because the pair proves to be faster. Note that the pair can not be used
to hold more than two values, whereas the tuple can hold multiple values. However, in
the described structure, it is enough to have only pairs of values, and, therefore, it can take
advantage of the std: :pair speed.

computeGuardIndexes

This method is used to compute the index of the transition in the transitions vector
based on its guards. This optimization is based on the C# implementation of [48]. Each
counter-memory can be described by one of the following states:

e LOW denotes the counter-memory where all its values are below the lower bound of
the counting loop,

e HIGH denotes the counter-memory with a single value which is equal to the upper
bound of the counting loop,

e MIDDLE denotes the rest.

Based on that, each counter guard can be satisfied by the counter-memory in some states.
More specifically, the CANINCR guard is satisfied by counter-memory in state LOW and
MIDDLE since there is at least one value lower than the upper bound of the count-
ing loop in both of the states that can be incremented. The CANEXIT guard is sat-
isfied by the counter-memory in the state MIDDLE and HIGH since there is at least
one value greater than the lower bound of the counting loop. For the conjunction of
the guards, the states that satisfy individual guards can be viewed as sets. The states
satisfying the conjunction are obtained as the intersection of these sets. For example,
the conjunction CANINCR A CANEXIT can be satisfied by the counter-memory in state
{LOW, MIDDLE} n {MIDDLE, HIGH} = {MIDDLE}.

Each of the LOW, MIDDLE, and HIGH states is internally represented as a number,
specifically one, two, and three, respectively. The index of the transition in the transition
vector is then computed using bit operations. The method prepares an empty vector for
indexes at the start and traverses the vector of used counting loops. The counting loop is
represented by the number of the current iteration. It then gets the numerical representation
of the counter state based on the guards of the transition and updates the vector of indexes.
If two states satisfy the guard (for example, LOW and MIDDLE), they must be used
separately for the index computation, which results in two indexes being computed.

The update of the index is performed in two ways based on the emptiness of the vec-
tor of indexes. If the vector is empty, it adds a new index based on the current counter
number. The index is computed as state_number < counting_ loop_number * 2, where
< represents left bit shift operation. Since each of the numerical representations of LOW,
MIDDLE, and HIGH can be represented by two bits, the counting_loop_number * 2 part
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of the index computation ensures that each counting loop has its own two bits in the bi-
nary representation of the index. If the vector of indexes already contains some computed
indexes, the method traverses them all and updates them by the newly computed index
using logical OR operation. The logical OR operation ensures that all the values representing
the already processed counters remain unchanged. An example of the index computation
is in Example 7.2.2.

Example 7.2.2. Assume that there are two counting loops represented by numbers zero and
one. Also, assume that the guards of the counting loops are CANINCRg N CANEXITy and
CANINCRy A ~"CANEXIT;. The computation starts with the counting loop zero. The state
that satisfies its guard is the MIDDLE state (which is represented by number two). There-
fore, the index is computed as 2 < 0% 2 = 2, which is 10 in binary. The index is added
to the vector, and the computation continues with the counting loop one. The state that
satisfies its guard is the LOW state (which is represented by number one). The index for
this counting loop is then computed as 1 < 1% 2 = 4, which is 0100 in binary. Howewver,
since there is already one indexr computed, these two must be combined using the logical
OR operation. The resulting index is then 10/0100 = 0110. The counting loop zero is rep-
resented on the lower two bits of the result, and the counting loop one is represented on
the higher two bits of the result.

7.3 Matching With the Counting-Set Automaton

The matching is done using the CsA created using previous steps of the algorithm. There
are two kinds of matching implemented. The first is the so-called full match, which matches
only the whole input string, and the second is the so-called partial match, which matches
the string anywhere on the line. However, the matching algorithm itself is the same for
both of these kinds.

The difference between the two kinds of matching is in the way the input regex is
processed. For the full match, the regex is processed as it is entered on the input. Then
the CA is created and determinized. For the partial match, the regex must be updated.
The new regex must find the original regex anywhere on the line. This is accomplished
by adding the .* as a prefix and a suffix to the original regex. The newly created regex
can read any characters before and after the original regex, and the original regex can
be found anywhere on the line. The algorithm treats the updated regex the same as in
the full match. It is just the regex itself making the difference between the full match and
the partial match.

The main matching algorithm iterates over the input text character by character. For
each of the characters, it gets the bytemap class using the pre-computed bytemap class
array. The character is used as the index to the bytemap class array; the value is then
the bytemap class for the currently processed character.

The matching algorithm then works with the CsA. However, as the CsA is built on
the fly, the matching algorithm needs to know if the desired part of the CsA was already
computed or not. For that, it uses a vector, where the index is the numerical representation
of the source state. The value is another vector, where the index is the bytemap class
number. The values of the inner vector are booleans that determine if the state and bytemap
class combination was already processed. Therefore, the matching algorithm checks if
the value on the index [state_number] [bytemap_class] is true or false. If it is false,
the matching algorithm calls the getNextStateAndTransitions method with the current
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state and current bytemap class. If the value is true, the outgoing transition for the current
state and bytemap class combination was already computed and will be used without any
additional computation. After that step, the matching loop also checks if there are any
outgoing transitions computed. There could be zero outgoing transitions meaning that
the match fails.

The on-the-fly determinization has an advantage on the input texts, for which only
a part of the CsA is used. In such a case, the unused parts are not computed, as opposed
to the CsA pre-computing, where the whole CsA is computed before the matching starts.
However, in the worst case, even the on-the-fly determinization can end up computing
the whole CsA.

The matching loop then gets the above-described state vector for the state and bytemap
class combination as the result of processing the combination or accessing the cache. As
the next step, it is necessary to compute the index to the vector of transitions based
on the used counting loops and current counter-memory values. The index is obtained
similarly to the index computation during the determinization described above. It also
uses the bit shifts and logical OR operation. The difference is how the LOW, MIDDLE or
HIGH state of the counter is determined. In the determinization step, it is obtained from
the guards of the transition, which means that it gets the states of the counter-memory that
satisfy the guard. In the matching loop, the counter-memory states are obtained based on
the current values of the counter-memory, which means that it gets the information about
what guards the current counter-memory satisfies. Therefore, the matching loop checks
the current state of the counter-memory for each of the used counting loops and gets
the index to the transitions vector.

After the index to the transitions vector is obtained, the matching loop checks if there is
any transition on that index. That means checking if the index is not out of the bounds of
the vector. If it is not, it also checks if the transition is not just a default one. The default
transitions are on those indexes of the transitions vector, for which there is no transition
to be taken, which means that the match fails. This corresponds to the situation when
the automaton can not move the next state with the current values of the counter-memory
(i.e., there was not enough repetition of the pattern).

When the valid transition is found, the last step of the matching loop is to update
the counter-memory by the corresponding operations of the transition. The individual op-
erations of the transition are applied to the counter-memory separately, and the resulting
updated counter-memory is the union of such individual updates. However, all the com-
binations of operations, except the NOOP and INCR combination, can be implemented in
constant time since the RST and RST1 create a single element set. The NoopP and INCR
combination can be implemented in time linear to the size of the resulting sets of these
operations.

The individual operations with the counter-memory are implemented according to the de-
scription in the Counting-Set Automata. The used structure is the vector, which holds pairs
of the offset, and std: :deque, which is used as the queue. The index in the vector is the nu-
merical representation of the counting loop.

When the counter-memory is updated, the matching loop continues with the next char-
acter from the input text. It repeats all those described steps until the whole input text
is traversed. After that, it is checked if the lastly visited state is final or not. If it is not
final, the match failed. If it is final, it is also necessary to check if at least one of its final
conditions holds. The final state conditions are held in the std::set container sorted by
the guard, so the T guard, which means that the state is unconditionally final, is the first.
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The algorithm traverses all the final state conditions, checking them one by one. When
one of the conditions is satisfied, the match is successful. Note that since the set of guards
is sorted, if there is some T guard, it will be checked first, and no other guards will be
checked. If there are only the CANEXIT guards, the algorithm also checks the current state
of the counter-memory to determine if the guard is satisfied or not. If none of the final
state conditions is satisfied, the match is unsuccessful.

7.4 Tests

The set of tests is implemented in Python. The tests are written to cover the basic function-
ality of the individual steps of the translation regex into the CA, determinization of the CA,
and also the matching itself. The test runs the corresponding part of the algorithm on a set
of regexes and checks if the output matches the expected one. The implemented matching
algorithm does not print the output of the individual steps by default. The #if defined
directive and compilation with the corresponding flag is used to enable or disable the part
of code that prints the output of the desired part of the algorithm. The parts covered by
tests are the following:

1. equations test that covers the output of the getEquationTypeAndOperands method,
2. normalization test that covers the normalization of the input regex,

3. derivatives test that covers the whole first step of the algorithm, i.e., translation of
the input regex into the CA,

4. CA final states test that covers the identification of the final states and their conditions
in the CA,

5. scope test that covers the computation of the scope of the counters,
6. gamma set test that covers the computation of the I'r , set,

7. determinization test that covers the determinization of the CA (i.e., it checks if the cre-
ated CsA is correct),

8. CsA final states test that covers the identification of the final states and their condi-
tions in the CsA,

9. matching test that covers the full match type of matching,

10. unanchored matching test that covers the partial match type of matching.

Each of the tests, except the matching tests, contains the set of patterns and their
corresponding correct outputs. The main script of the test firstly compiles the RE2 with
the corresponding flag to get the output of the tested part printed. Then it prepares
the source code with the patterns, runs it, and compares the output with the predefined
correct output. If they match, it reports the test of the current pattern as successful. If
they do not match, it reports it as an unsuccessful test and prints out the expected and
actual output so it can be further checked.

The matching tests have only the patterns defined, not the outputs. The testing script
then prepares the source code with the patterns so that the patterns are matched by
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the newly implemented CsA-based algorithm and the original RE2 algorithm. The outputs
are then compared, and the test is successful if the CsA-based algorithm has the same result
of matching as the original algorithm.

The main test script cleans out the created source codes after the tests are finished. It
also runs make clean for the RE2 so that the next compilation will be done correctly with
the current flag. How to use the test is described in Appendix B.

7.5 Benchmarks

Similar to the tests script, there is also a Python script that runs the benchmarks for
the compilation of the input regex into the CA and the determinization of the CA. These
benchmarks are run on 37 regexes that were challenging for the C# implementation. The re-
sult of these benchmarks is discussed in the Translating of the Regex Into the CA and
Determinization of the CA.

The benchmarks can be run for regexes used both for the full match and partial match
type of matching. The main script runs the compilation of the input regex into the CA or
the determinization on each of the defined regexes. The output of the algorithm compiled
with the corresponding flag for benchmarks is the time it takes to create the CA or the CsA.
The Python script collects the times, prints them for each of the patterns. It also prints
the sum of the times at the end of the run. Also, it has a defined timeout, after which it
kills the computation and reports it as the timeout. How to use the benchmarks script is
in Appendix C.

The benchmarks of the matching itself are run within the benchmark tool of [48].
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Chapter 8

Experimental Evaluation

This Chapter discusses the experimental evaluation of the algorithm. It is divided into two
parts. The first discusses only the translation of the regex into the CA and the determiniza-
tion of the CA parts of the algorithm. These two parts of the algorithm are compared only
with the C# implementation named CA from [48]. The reason is that it is the only implemen-
tation using the CsA-based matching and, therefore, the only implementation that creates
and determinizes the counting automaton. The second part discusses the experimental
evaluation of the matching itself.

8.1 Translating of the Regex Into the CA and Determiniza-
tion of the CA

These parts of the implementation were tested only on more complex regexes from the bench-
mark of [48] that were hard to determinize for the C# implementation.

CA RE2 (CsA)
NCA CsA | NCA | CsA | CsA without timeouts
mean 10 966 | 73 433 8 62 709 11 136
median 254 11 338 4 1990 1 050
timeouts 0 14 0 5 N/A

Table 8.1: Experimental evaluation of RE2 (with CsAs) implementation and CA (times
are given in milliseconds). NCA denotes the time from the loading of input regex to
the counting automaton being created. CsA denotes the time of the determinization of
the counting automaton. CsA without timeouts denotes the time of the determinization,
which was run only on regexes on which any of the two implementations do not suffer from
timeout. The timeout was set to 1 800 seconds.

The result in Table 8.1 shows that the RE2 implementation is faster for both transla-
tions of the regex into counting automata and determinization of the counting automata.
The determinization part of the RE2 implementation takes a long time on some regexes
on which the CA implementation suffers from timeout. There is also the result of the RE2
implementation on regexes on which the CA does not suffer from timeout to stretch out
the difference.
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8.2 Regular Expression Pattern Matching

The matching benchmarks were run on a set of 2320 regexes from the benchmark of [48].
The actual comparison of matching times was made based on 2148 benchmarks, where
the CsA-based RE2 algorithm found the correct number of matches. The results of the orig-
inal RE2 implementation were considered as a reference for the number of matches. Also,
each of the individual comparisons was made based only on those regexes, for which both
of the compared tools get the correct number of matches. Note that the comparison with
grep and also the overall statistics are done on a smaller set of regexes. It is because grep
uses different semantics of regexes, causing it to quit after reading only several characters
and reporting zero matches on such regexes. Therefore, regexes for which the time and the
number of matches of grep were zero, and the other tools find a match or their matching
time was larger than zero (i.e., the grep quit after reading just several characters while the
other tools try to find a match in the whole input text), were not considered.

The tools were run in the settings, where their output is the number of lines on which
the match was found. If there are no explicit anchors, the matched string could be anywhere
on the line. If there is a start line (") or end line ($) anchor, the match has to start at
the beginning or at the end of the line, respectively. If both anchors are used in a single
regex, the whole line has to be matched.

The main focus of the matching benchmarks was to compare CsA-based matching im-
plemented in C# and in C++. Such comparison determines if the C++ implementation speeds
up the original CsA-based matching implementation or not. The state-of-the-art matchers
grep and the original RE2 is also included in the comparison.

The result of the comparison between the CsA-based RE2 implementation and the other
tools in the form of scatter plots is in Figure 8.1. The plot in Figure 8.1(c¢) shows the result
of a comparison between the C# and C++ implementation of CsA-based matching. The C++
implementation did indeed speed up the CsA-based algorithm, as it is faster in 1908 out of
2145 benchmarks. For some of the benchmarks, the matching time of both of the tools was
significantly higher. However, it stays under one second for most of the benchmarks.

The comparison between the CsA-based RE2 implementation and the other tools, grep,
and original RE2 is in Figure 8.1(a) and Figure 8.1(b), respectively. Even though the grep
and original RE2 win more often, there are clearly regexes, for which the CsA-based RE2
implementation is faster than these two. Those are the regexes with the counting loops, of-
ten with higher bounds. Considering the plot in Figure 8.1(c), it is clear that the CsA-based
matching has more stable matching times than the original RE2 and grep.

RE2 | grep | CA | RE2 (CsA)
mean 0.153 | 0.537 | 0.480 0.399
median 0 0.06 | 0.43 0.28
std. deviation | 1.614 | 3.175 | 0.207 1.739
timeouts 1 10 2 2

Table 8.2: The benchmarks statistic of the individual tools. Times are given in seconds,
and the timeout was set to 60 seconds. The supplied times are based on 1625 benchmarks
on which none of the tools suffers from error or timeout, and the regex suits the grep
semantics. For the timeout statistics, the regexes for which the tools suffer from timeout
were also added, resulting in a set of 1640 regexes being used for the timeout statistics.
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Table 8.2 contains the statistic of matching times of individual tools. Comparing
the two CsA-based algorithms, the one implemented within RE2 is faster. Comparing
the CsA-based RE2 with grep, the mean is better for the CsA-based RE2. Even though
the grep wins most of the time (as shown in Figure 8.1(a)), there are regexes on which
the CsA-based RE2 is significantly faster, making the overall mean better for the CsA-based
RE2. Grep also suffers from timeout the most of all compared tools.

The original RE2 is the fastest among all the tools. It also suffers from timeout the least.
Counsidering the plot in Figure 8.1(b), the speed of original RE2 still drops on regexes with
counting loops with higher bounds on which the CsA-based RE2 is faster than the orig-
inal one. The usage of the CsA-based algorithm in RE2 is determined by a constructor
parameter. This allows the developer to choose the CsA-based algorithms or the original
algorithms. If the developer has control over the regexes (i.e., the regexes are not sup-
plied by the user), the developer can use the CsA-based algorithm for the counting-heavy
regexes and the original algorithms for the rest of the regexes, where the numerous RE2
optimizations will do faster.

58



100

®
®
®
]
10 ¢ © .
! “.O "
—_ ® ® g ®
£ : Sda,
3 IR
5 L4 8 .3"
; £,
O_]_! :o’o““oi ®
® ° - ®
L
0.01
0.01 0.1 1 10 100
RE2 (CsA) [s]

(a) The comparison of matching times between
CsA-based matching implemented within RE2
and grep. RE2 with CsA-based matching is
faster in 269 benchmarks from the total num-
ber of 1629 benchmarks (the set of benchmarks
is smaller for the grep because of its different se-
mantic of regexes). The speed is the same in
30 benchmarks.

100

10

0.01
0.01 0.1

100

10

0.01 0 ©-© 0 LN & ® se0 0 @
0.01 0.1 1 10 100
RE2 (CsA) [s]

(b) The comparison of matching times between
CsA-based matching implemented within RE2
and the original RE2. RE2 with CsA-based
matching is faster in 139 benchmarks from the
total number of 2148 benchmarks. The speed is
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Figure 8.1: Graphs with the results of the comparison between CsA-based matching im-
plemented in RE2 with grep, original RE2, and CA, which also implements the CsA-based

matching.
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Chapter 9

Conclusion

The goal of this thesis was to implement efficient counting-set-automata-based regular ex-
pression (regex) matching. The counting-set automata approach for regex matching is
introduced in [48], where it is also shown that such approach is efficient for regexes with
bounded repetition operator and can outperform state-of-the-art matchers on such regexes.

The implementation was done within the state-of-the-art matcher RE2, which allowed
the usage of its already implemented parts. The determinization and matching part of
the algorithm contains two optimizations. The first allows to effectively choose the right
transition based on the current state of the counter-memory. The second is the usage of
the on-the-fly determinization.

The implementation was experimentally evaluated and compared with the C# imple-
mentation of [48], grep, and the original RE2. The speed of translation of the input regex
into the counting automaton and determinization of the automaton was compared for the
CsA-based RE2 and C# implmenentation. The RE2 implementation shows a speed-up in
both translations of the input regex and determinization of the counting automata.

In terms of the speed of the matching, the new CsA-based RE2 implementation out-
performs the original C# implementation on most of the regexes. Compared with grep,
the CsA-based RE2 was slower on more regexes. However, the mean of the matching time
was better for the CsA-based RE2. Also, grep suffers from timeout more than the CsA-based
RE2. The original RE2 was faster for most of the regexes, and it also has the lowest mean
time upon all the tools.

The implementation contains the above-described optimization, which helped to outper-
form the original implementation on most of the regexes, and the grep and the original RE2
on regexes with bounded repetition with higher bounds. However, the numerous advanced
optimizations of the grep and the original RE2 make them faster on the rest of the regexes.
The first option is to re-implement such optimizations and used them in the CsA-based
RE2 algorithm. Since the new algorithm is implemented within the original RE2, there is
a second option. The usage of the CsA-based algorithm in RE2 is currently determined by
the constructor parameter. Currently, the developer can choose if it is suitable for a specific
regex to use the CsA-based algorithm or the original algorithm. That way, the advantage of
the counting-set automata can be used for the regexes with bounded repetition, and the nu-
merous optimizations of the original algorithm can make it faster on the other regexes. It
would be even better to automatize this concept and choose the appropriate algorithm
based on the input regex.
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Appendix A

CD Content

The attached CD contains the following items:

re2-master folder, which contains source files of RE2, including the new files for
CsA-based matching (the derivatives.h, derivatives.cc, csa.h, and csa.cc files),

pythonScripts folder, which contains all Python scripts for tests, and benchmarks
of the automaton creation part of the algorithm,

install.sh script that compiles the RE2 so it can be used in C++ code,

README.md file, which contains information about how to compile RE2 and how
to use the CsA-based matching in C++ code,

find_ lines__csa Linux executable file, it takes two arguments (regex and file) and
prints out the number of lines containing matching string,

find_ lines__csa.exe Windows executable file, it takes two arguments (regex and
file) and prints out the number of lines containing matching string,

DT_xhorky23.pdf the text of this thesis,

text folder, which contains IATEX source files.
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Appendix B

How to Run Tests

The test scripts are written in Python. The tests are supposed to be run on Linuz as they
compile the RE2 library with corresponding flags. They will not run on Windows directly
but can be run using the WSL. The required version of Python is 3.6. The main test script
(runTests.py) is located in the pythonScripts folder (see Appendix A). The script has
to be run from the pythonScripts folder as it accesses different paths and expects to be
run from there. If the script is run without any argument, it will run all tests. It can also
be used with an option -t or —-tests followed by the test names. In such a case, it runs
the specified tests. The test names are the following:

e equation to run the equations tests,

e normalization to run the normalization tests,

e derivatives to run the derivatives tests,

e ca_final_states to run the CA final states tests,

e scope to run the scope tests,

o gamma_set to run the gamma set tests,

e determinization to run the determinization tests,
e csa_final_states to run the CsA final states tests,
e matching to run the matching tests,

e matching unanchored to run the unanchored matching tests.

See Section 7.4 for more information about the individual tests.

Each of the individual tests compiles the RE2 library with the corresponding flag to
print the desired output. It then runs it on a set of regexes and compares the program
output with the expected one. It prints out info about the pattern that is tested with
the result of the test. If the test fails, it also prints the program output and the expected
output.
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Appendix C

How to Run Automaton Creation
Benchmarks

The benchmark scripts are written in Python. The benchmarks are supposed to be run
on Linux as they compile the RE2 library with corresponding flags. They will not run on
Windows directly but can be run using the WSL. The required version of Python is 3.6.
The main test script (runBenchmarks.py) is located in the pythonScripts folder (see
Appendix A). The script has to be run from the pythonScripts folder as it accesses different
paths and expects to be run from there. If the script is run without any option, it will run
all benchmarks. The main script accepts three options:

e --nca to run only the benchmarks for translation of the input regex into CA,
e --dca to run only the benchmarks for determinization of the CA,

e —-unanchored to run benchmarks using regexes with .* as a prefix and suffix and
with s flag.

Each of the individual benchmarks compiles the RE2 library with the corresponding flag
to use only the desired part of the algorithm. It then runs it on a set of regexes. For each
of the regexes, it prints out the regex, and the time it took to process it in milliseconds.
After the last regex, it also prints the number of timeouts and the sum of the times.

The timeout of the individual benchmarks is set to 1 800 seconds. It can be changed
using the TIMEOUT_MS constant. For the —-nca option of the script, the constant has to be
changed in the constantsNondeterministicBenchmarks.py file. For the --dca option of
the script, the constant has to be changed in the constantsDeterministicBenchmarks.py
file. Both files are located in the /pythonScripts/helpers folder.
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