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	 Abstract / Abstrakt 

	 Doctoral thesis name: Design of Application for Assessing the Height 
of Trees in Forest Stands Based on Images from an Unmanned Aerial Vehicle.

	 Various remote sensing methods are being utilized to assess fundamental 
properties of forest stands, such as the height of trees, already for decades. 
Nevertheless, the use of Unmanned Aerial Vehicles in the combination with 
Structure from Motion software for these purposes, experiences its boom right now 
and thus not many pertinent studies exist yet. Such system producing image-based 
point clouds was utilized in this work to gain the canopy elevation data. To identify 
individual trees and to extract their height from these remote sensing data, a unique 
software tool called “UAV Forest Explorer” was developed. Twenty forest study 
plots was established to acquire the field measurements ground truth data about 
almost 1 500 trees to thoroughly test the tool and calculate demanded statistics. The 
research proved, that the tool is fully applicable on all types of forest stands. 

	 Key words: Unmanned Aerial Vehicle (UAV) / System (UAS), Height of Trees, 
Photogrammetry, Image-Based Point Cloud, UAV Forest Explorer. 

	 Název disertační práce: Návrh aplikace pro vyhodnocování výšky stromů 
v  lesním porostu na základě snímků z bezpilotního letadlového prostředku.

	 K hodnocení elementárních vlastností lesních porostů, jako je výška stromů, 
jsou v posledních desetiletích využívány nejrůznější metody dálkového průzkumu 
Země (DPZ). Nicméně použití bezpilotních prostředků v kombinaci se softwarem 
využívajícím principů „Structure from Motion“ k tomuto účelu zažívá svůj vzestup 
právě nyní a proto zatím neexistuje mnoho příslušných studií. Takovýto systém, 
vytvářející ze snímků mračno bodů, byl v této práci použit k získání informací 
o  výšce korunového zápoje. Pro identifikaci jednotlivých stromů a pro extrakci 
jejich výšek z těchto dat DPZ byl vytvořen unikátní softwarový nástroj nazvaný „UAV 
Forest Explorer“. Dále bylo založeno dvacet výzkumných lesních ploch pro získání 
referenčních dat pozemního měření pro důkladné otestování nástroje a výpočet 
potřebných statistik na vzorku téměř 1 500 stromů. Výzkum prokázal, že nástroj je 
plně použitelný pro všechny typy porostů. 

	 Klíčová slova: bezpilotní prostředek (UAV) / systém (UAS), výška stromů, 
fotogrammetrie, mračno bodů získané ze snímků, UAV Forest Explorer. 
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1. Introduction

	 Acquisition of various forest stand parameters, such as height of trees, 

diameter at breast height, stand density or stocking is a fundamental precondition 

for successful forest management or ecological research and applications (van 

Leeuwen & Nieuwenhuis, 2010). Especially the height of trees is an elemental 

measurement in most of the forest inventories and is a critical variable for 

quantitative assessment of further forest characteristics, such as volume of 

trunks, carbon stocks, growth of stand, forest site quality or its productive capacity 

(Andersen et al., 2006). For decades the ascertainment of the basic forest stand 

properties was performed principally by means of field surveys and manual tree 

measurements (West, 2004). 

	 The field measurements are relatively accurate, but are generally time-

consuming and costly (Kant & Alavalapati, 2014). Therefore various applications 

capable of estimating demanded forest characteristics based on remote sensing 

technologies are being developed, ever since such technologies are available. 

The aim of such endeavour is to acquire the required parameters efficiently for 

large forest areas with less manpower and effort compared to field surveys, which 

should lead to reduction of expenses (Andersen et al., 2006). 

	 Originally airborne and later also spaceborne images were the remote 

sensing data used for retrieval of information about forest stands’ health and 

structure. They were analyzed primarily in their inherent form as two-dimensional 

images (in an analogue and later also in digital form) enabling to study conditions and 

also physical proportions of forest stands and even shapes, sizes and distribution of 

single tree crowns. As the field of aerial photogrammetry and stereo image matching 

was being developed, also three-dimensional mapping and measurements were 

made feasible. This enabled to obtain much more detailed metrics of individual trees 

including their height (Baumann, 2014; Korpela, 2004).

	 Since these methods had some significant limitations in typical forest 

environments (mainly poor visibility of the ground below forest stands with dense 

canopy), also the measurements of height could be performed with demanded 

accuracy mainly in some, relatively sparse forest stands. An inception of a new 

technology of light detection and ranging (LiDAR) prefigured a way how to 

circumvent these deficiencies of photogrammetric methods (Næsset, 2007). 
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	 Since laser pulses can penetrate the forest canopy and measure both, 
elevation of the canopy as well as elevation of the ground below, LiDAR seemed 
to be an ideal mediator for acquisition of high-accuracy three-dimensional 
information about forest structure. Many research studies affirmed the usability 
of this technology for mensuration of various forest- and tree-level quantities 
(an overview give e.g. van Leeuwen & Nieuwenhuis, 2010). Aerial laser scanning 
campaigns even became an integral part of national forest inventories of several 
(mainly Scandinavian) countries (Carson et al., 2004). Nevertheless, the technical 
complexity of the LiDAR devices and relatively high costs of the data acquisition 
via this technique make it still unavailable for many target groups of potentially 
interested customers (Erdody & Moskal, 2010). 
	 The fast development of Unmanned Aerial Vehicles and Systems (also 
called Remotely Piloted Aircraft Systems) transcending beyond the purely 
military applications in recent years, outlined the possibilities of photogrammetry 
comeback, not only for forestry purposes (Haala, 2009). Even though these devices 
cannot be equipped with high-quality aerial surveying cameras, but rather with 
normal digital compact cameras, the contemporaneous development of software 
allows to reach very satisfactory outputs with these relatively very cheap and 
available systems. Particularly implementation of multiple image matching, 
computer vision and Structure from Motion principles into this software made it 
possible to process images from classical user-grade cameras and from them to 
acquire the elevation data of forest canopy surface in the form of high-density 3D 
point clouds (Dey et al., 2012). 
	 Although also these methods need the information on the elevation of 
the ground below the forest stand for the proper canopy height assessment. One 
option is to utilize the LiDAR-derived digital terrain models in the areas, where is 
available (e.g. from national campaigns providing otherwise not enough-quality 
digital surface models for good tree height assessment, as is the situation e.g. in 
the Czech Republic). Another option is to use the terrain model retrieved from the 
photogrammetric point cloud, preferably from images gained within the leaf-off 
season, as some authors also proved to be applicable (Dandois & Ellis, 2013).  
	 The cost-effectiveness, high flexibility and adaptable employment regarding 
the time requirements, weather conditions or various phenological stages and 
ecological phenomena make the UAS-based photogrammetry a versatile tool 
for support of decision-making in forestry management or diverse ecological 
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studies (Anderson et al., 2013). Even though the use of aerial photogrammetry in 
forestry is a relatively old branch, for its highly different principles the UAS-based 
photogrammetry and its application for tree parameters assessment is still a very 
young discipline. Therefore only few research studies dealing with tree height 
estimation using this technology have been published so far (Puliti et al., 2015).  
	 The fundamental quantity - height of trees, which was examined within this 
study, can be assessed basically from two points of view. One is referred as the 
area-based approach, and the more-detailed one is the individual tree approach 
(Vastaranta et al., 2009). To appropriately evaluate the estimation of tree height from 
the remote sensing data, it is important to compare the calculated results with the 
ground truth, obtained usually using accurate field measurements (Vauhkonen & 
Mehtätalo, 2015). When assessing the accuracy of applied procedure and statistical 
model, it is important to consider not only the comparison of field-measured and 
calculated tree heights, but also the numbers of trees being identified and thus 
compared. 
	 As can be seen in the very few available scientific papers, the achieved 
results of identification of trees and of estimation of their height using UAS image-
based technology are very varying. The reached accuracies are disputable, since in 
some cases the correlation with field-measured data can be very poor, e.g. R2 = 0.1 
even in two studies (Dandois & Ellis, 2013; Díaz-Varela et al., 2015). In some 
studies where the results seem to be more satisfactory, the authors had to use 
very sophisticated statistical methods to find a suitable regression equation giving 
them acceptable results (e.g. Lisein et al., 2013; Puliti et al., 2015). The practical 
applicability of such workflows is then questionable. 
	 The methods of identification of individual trees as such are then usually 
very weakly described, or the authors utilized area-based approach only (e.g. Díaz-
Varela et al., 2015). Some authors used visual interpretation of point cloud data 
and subsequent manual identification of trees (e.g. Sperlich et al., 2014; Wallace 
et al., 2016). Other authors compared their models only with few tallest trees on 
their study subplots (Dandois & Ellis, 2010, 2013). The authors who “showed their 
hand” and stated the success rate of trees identification then achieved diverse, and 
sometimes not very satisfactory results, e.g. between 13 % for broadleaf and 90 % 
for coniferous forest stands (Sperlich et al., 2014). 
	 The remaining studies then seem to ignore to compare the numbers of field-
measured trees with the numbers of identified trees (e.g. Lisein et al., 2013). The 
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results of height assessment can then come out very well, but when the numbers of 
identified trees do not correspond to those of measured trees, or when the authors 
selected only some portion of the trees to assess their heights, without showing 
the selection key, such results seem to be rather irrelevant. 
	 Since none of the discovered studies describes any tool which would enable 
to find the appropriate results of trees identification suitable for particular forest 
stands, either concerning the numbers of identified trees, or the accuracies of 
height estimation, this seems to be still relatively unexplored field of research. 
The tool should enable to select the proper settings to achieve the numbers of 
identified trees maximally corresponding to the numbers of field measured trees 
on the one hand, with the height differences kept at the minimum on the other 
hand. Since such tool suitable to process image-based point clouds from a UAS and 
derive the required height of trees from these remote sensing data was missing, 
development of such tool and its practical testing on own study plots was the main 
goal of this work. 
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2. Aim of the Work

	 The height of trees is a fundamental quantity, the knowledge of which 
enables to asses and derive a series of parameters of the forest stands. For instance 
in the combination with other properties such as the age of the stand or species 
composition it enables to evaluate the growing conditions present at particular 
forest areas and indicates their potential. Together with the information about the 
diameter at breast height (DBH) or other parameters it can serve as an input for 
computation of the growing stock at particular forest stands, and many more. 
	 Assessing the height of standing trees is therefore a crucial operation when 
evaluating the properties of forest stands being under any type of management. 
Nevertheless, the most common way of acquiring this quantity, i.e. manual 
measurement by any type of hypsometer in the field, is highly demanding and time-
consuming, and therefore expensive. The common method of measuring only some 
portion of trees in the forest of interest and subsequent generalization then often 
cannot be sufficiently accurate, since it cannot guarantee that different conditions 
and all the various parts of the forest stand are comprehended enough. 
	 For this reason a series of methods utilizing the remote sensing data for the 
assessment of the height of trees are being developed and applied in recent years, 
enabling to evaluate large areas of forests at one time. The most common method 
is still usage of the aerial LiDAR data. This data can be highly accurate, but they still 
suffer one disadvantage - generally high price and with that connected relatively 
low accessibility for many potential users. 
	 The elementary aim of this work was therefore to utilize an alternative 
source of the remote sensing data which would enable to assess the height of trees 
in the forest stands. The image data gained using the digital cameras mounted 
on an Unmanned Aerial Vehicle (UAV) were chosen for this purpose. UAVs are 
relatively cheap (compared to LiDAR technology, or aerial photogrammetry) and 
can be therefore afforded by even smaller forest management subjects, companies 
or institutions. The image data from such device, when photogrammetrically 
processed, then provide similar data as the LiDAR technology. Particularly a point 
cloud in the form of *.las file, which enables to build a Digital Surface Model of the 
forest canopy (or particularly a Canopy Height Model) can be acquired.
	 Even having such data available, it can be still quite demanding to process 
them efficiently and to extract the height of examined trees from them with 
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satisfactory results. The main aim of this work is therefore to design and to create 
an original application, i.e. a software product, which would enable to process the 
UAV-based data effectively and to extract the heights of trees from them. 
	 The basic logic of such tool then is to facilitate testing of various kinds 
of settings of inverse watershed segmentation inputs to enable to find the most 
suitable ones fitting to particular forest stands. To have the adequate UAV-based 
image data of various forest stands for the tool development and for the subsequent 
testing, a series of flight campaigns is to be performed. Since the outputs of such 
application have to be verified, best on the ground truth data, the next aim of this 
work is the acquisition of the field measurements data which can make it possible. 
Therefore all the photographed forest stands are to be visited and all the demanded 
properties of trees should be manually acquired. 
	 Since for the purposes of this work both approaches are to be tested, i.e. the 
one working generally with all the trees present at examined study plots (area-
based approach), as well as the one working also with particular trees (individual 
tree approach), also the exact positions of the trees are to be measured using the 
high-accuracy geodetic equipment (surveying GNSS devices and total stations). 
	 Such field-measurements data including the height of trees, their 
exact positions and other properties, such as determined species, health and 
morphological conditions, DBH etc., then can serve as a sufficient ground truth. 
The various outputs of the own tool then can be compared with this field data 
based on specific statistical computations. This enables to find the settings of 
the application leading to the results the most fitting to the ground truth in each 
particular forest stand. Such results should differ minimally regarding the number 
of identified trees and their height, from the ground truth data. The developed 
application therefore should enable to test the settings on a field-measured portion 
of the explored forest stands and then potentially to apply these settings on the 
whole extent of the forest stands with minimal additional effort. 
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3. Literature Overview 

3.1. Terrestrial Tree Height Measurements 

	 Tree height (or also total or actual height when referred in the forestry context) 
is defined as the vertical distance between the tip of the tree and mid-slope point of 
the base at ground level (Husch et al., 1972). As emphasizes Andersen et al. (2006), 
tree height is one of the most fundamental measurements in forest inventory and is 
a critical variable in the quantitative assessment of forest biomass, carbon stocks, 
stand growth, and site productivity. Individual tree height and stem diameter are the 
primary variables used in the estimation of tree and stand volume, and tree height at 
a given age is often used as an index of forest site quality (Schreuder et al., 1993). 
	 As states Bragg (2007), foresters have measured height in many ways since the 
earliest years of the profession (e.g., Schlich, 1911). As broadly describes Larjavaara 
& Muller-Landau (2013), tree heights have long been measured as part of efforts to 
quantify timber resources (Avery & Burkhart, 2011), and more recently also forest 
carbon stocks (Chave et al., 2005; Feldpausch et al., 2012). In addition, tree heights 
are often measured in ecological studies characterizing life histories of individual 
tree species and populations (King & Clark, 2011; Banin et al., 2012). 
	 A number of different methods are used to measure tree heights from the 
ground (Clark & Clark, 2001; Chave, 2005; CTFS, 2007). Perhaps the simplest method 
involves lifting the top of a pole of known length to the same level as the top of the tree 
using, for example, a telescoping height measuring pole. This method is easy to learn 
but requires two field technicians because the relative height of the tops is difficult 
to judge from directly below. More importantly, this method is limited to relatively 
small trees (approximately below 10 m in height). It is possible to apply a similar 
methodology to larger trees, but only by having a technician climb the tree (or an 
adjacent structure). This approach is used to measure potentially record-breaking 
trees (Goodwind, 2004), but is obviously very slow and potentially dangerous, and 
thus not suitable for measuring large numbers of trees in inventories (Larjavaara & 
Muller-Landau, 2013). 	
	 For larger trees, height measurements typically involve light, handheld 
instruments used to examine trees from a distance. Between the most common 
methods belong tangent and sine methods utilizing clinometer or rangefinder 
devices. Both methods can be explained on Figure 1. Tree height is defined as distance 
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BC in (a) and BE in (b). For a vertical tree in which the top is directly above the trunk 
(a), the tangent method requires measuring angle α from horizontal to the top (B) 
and distance AD and computing BD = tan α ∙ AD, where BD is the distance from B to 
D and AD the distance from A to D. 
	 If the ground is not flat and thus the vertical distance to the base, CD, cannot 
be easily estimated from the height of the technician, then CD can be estimated in the 
same way: CD = tan β ∙ AD. The tree height is BC = BD + CD. The sine method is based 
on measuring the angle α and distance AB to the top of the tree and computing: BD 
= sin α ∙ AB. As with the tangent method, CD can be estimated from the height of the 
technician alone on flat ground, or using the sine method. When the tree is leaning 
(b), or more generally when the topmost branch is not located above a vertical trunk, 
the tangent method risks severely biased estimates. For example, tan α ∙ AD severely 
overestimates the height to the top of the tree in (b). Instead, this height is correctly 
estimated as tan α ∙ AF, where AF is the distance to an imaginary plumb line hanging 
down from the top of the tree. 
	 Similarly, if the bottom part of the tree (below A) is also estimated with the 
tangent method, the angle needs to be measured to E which is at the same level 
with C but directly below B. In contrast, lean of the tree does not influence field 
procedures for the sine method as BF = sin α ∙ AB and EF = sin DAC ∙ AC, where DAC 
is the angle between DA and AC (Larjavaara & Muller-Landau, 2013).
	 Before laser rangefinders were easily available, the tangent method 
predominated. This method involves measuring angles (α and β) from horizontal with 
a clinometer and combining these with measurements of either horizontal distance 
or of angles to a pole of known length (Korning & Thomsen, 1994). Historically 
horizontal distances were often measured with measuring tapes or simple distance 
prisms; more recently, ultrasound technology and laser rangefinders have been used 
for the same purpose. 

Fig. 1. Tree height measurements using tangent and sine methods shown on a vertical 
tree (a) and a leaning tree (b). Source: Larjavaara & Muller-Landau (2013).
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	 The actual height measurement processes look superficially similar with the 
tangent and sine methods. Most of the measurement time is spent searching for a 
spot from which the top of the tree can be seen clearly. The main differences are that 
the sine method lacks the horizontal distance (AD in Fig. 1a) measurement and can 
be carried out from closer to the trunk (the precision of the tangent method declines 
quickly at higher angles and thus shorter distances).
	 Many newer laser rangefinders, especially those designed for forestry, can 
also be set to return the distance based on the reflection from a more distant object 
– this is very useful for measuring height of canopy trees from directly under the 
canopy. Regardless, there must be some direct, unblocked path to the top of the tree 
in order for measurements to be taken using the sine method, and it can be difficult to 
find such a path in the dense and multi-layered canopies of some forests. In contrast, 
the use of the tangent method and a clinometer is capable of yielding good results 
even without visibility to the top. For example, if the crowns of the target species are 
normally symmetrical with the top in the middle and other parts of the crown can 
be seen, the technician can estimate the location of the top and measure the angle to 
it even if the top is not directly visible (Larjavaara & Muller-Landau, 2013).

increases very rapidly for larger 
angles, and thus, the precision 
of the height measurement 
declines disproportionately. In 
addition, the closer the observer 
is to the tree, the greater the 
bias if the tree is leaning or if the 
technician shoots not to the top 
directly above the base, but to 
parts of the crown closer to the 
technician. Various errors which 
can appear within application of 
both sine and tangent methods, 
can be seen in Figure 2. 

Fig. 2. The proximity effects on misread crown heights 
for the sine and tangent height measurements meth-
ods. Source: Bragg (2007).

	 For the tangent method, the technician has to stand at a large enough distance 
that the angle from horizontal to the top remains fairly small. An oft-repeated 
recommendation is that this angle should be smaller than 45° (Goodwind, 2004), 
which means that the observer stands at a distance equivalent to at least one tree 
height. The main reason for this recommendation is that the tangent of an angle 



10

	 Especially in dense and tall forests such as many tropical forests, intervening 
vegetation often makes it difficult if not impossible to find a spot that has a 
sufficiently good view of the tree crown at a sufficiently large distance that the 
angle is <45 degrees. This contrasts with the sine method, in which the technician 
is free to make measurements at shorter distances to the tree, and even under the 
canopy. The specific visibility conditions of the forest will determine whether in 
practice it is easier to see where the top is from a distance greater than the tree 
height (tangent method) or to find an unblocked view of the top from anywhere 
(sine method) (Larjavaara & Muller-Landau, 2013). 
	 Field ecologists and foresters have often discussed the best method and 
instrument to measure tree height and the scale of the uncertainty involved. Of 
the studies on uncertainty in tree height measurements that have been carried 
out, many focused on comparing instruments in ideal conditions of perfect 
visibility (Skovsgaard et al., 1998; Wing et al., 2004). Based on these studies, most 
instruments and both methods seem to have low systematic and random errors 
when measuring the height of a perfectly vertical tree with both top and bottom 
perfectly visible. However, these tests provide limited insight into the performance 
of these methods under typical measurement conditions in forests, with limited 
visibility and leaning trees. 
	 Other studies have described the risks involved in the tangent method 
(Goodwind, 2004; Blozan, 2006; Bragg, 2007), or compared measurements from 
handheld instruments based on the tangent method with actual heights obtained 
by climbing. For instance Rennie (1978) compared measured heights among six 
methods and with actual heights; he found height measurements obtained using a 
simple clinometer and a measuring tape to be fast and relatively unbiased on easy 
to measure pines in a plantation. 
	 Similarly, Williams et al. (1994) compared measured heights among methods 
and with actual heights in another pine dominated research site with similar 
results. Da Silva et al. conducted two separate studies; one in a eucalypt plantation 
(da Silva et al., 2012a) and another in natural forest nearby Rio de Janeiro (da Silva 
et al., 2012b). In the plantation, mechanical clinometers performed better than 
electronic ones, and bias was significant only when distance to the tree was much 
smaller than tree height. In the natural forest, the random errors were larger, while 
bias remained unimportant (Larjavaara & Muller-Landau, 2013).
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3.2. Tree Height Assessment Via Remote Sensing

	 As described in the previous chapter, it can be often very difficult to 
implement any of the common manual methods of measuring the height of standing 
trees in some rather closed stands, where the treetops are not easily visible. Also for 
this reason, measurement of tree height is usually time-consuming, and therefore 
expensive component of forest inventories (Andersen et al., 2014). Collection of 
information from forests is the main task of the forest inventory and making correct 
decision in forest management is based on the quality of the collected information 
(Benko & Balenović, 2011). Forest economic planning is a basis for decisions of the 
forest industry, the official forest policy and the forest owners in order to be able to 
optimally exploit forest resources and products. Typically, forests are operationally 
assessed with two scales: economic planning of forests at stand level, when the forest 
stand is a homogeneous forest area with respect to forest resources and treatments 
needed (small-area inventory), and monitoring of forest resources at the national 
level (large-area inventory) (Hyyppa et al., 2000).
	 Due to the rapid development of technology, in the second half of the 20th 
century, there have been major changes in the way of data collection, particularly 
in developed countries. In addition to conventional terrestrial methods of data 
collection, data on forests are increasingly being collected with remote sensing 
methods. Using remote sensing methods leads to reducing the scope of the fieldwork, 
and opens the possibility of saving time and money (Benko & Balenović, 2011). 
	 Various kinds of remote sensing data have been utilized for gathering the 
information about different properties of forest stands, including the height of trees, 
in recent decades. Between the most common belong aerial or also satellite images 
(formerly analogue, recently mainly digital ones with various spatial and spectral 
resolution) which are often also being photogrammetrically processed. Lately were 
utilized also technologies such as synthetic aperture radar (SAR) or widely deployed 
Light Detection and Ranging (LiDAR), from which especially the last mentioned 
became very popular, but its relatively high cost demands are still an often limiting 
factor for its availability. 

3.2.1. LiDAR Technology

	 In the forestry, as well as in many other fields of human activity, the LiDAR 
technology finds a place as a very powerful tool for data acquisition. Since it is 
nowadays a widely utilized and at the same time still thoroughly studied technology 
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enabling to gain similar type of data and to process them in a resembling way as 
were the data treated in this work, the possibilities of the LiDAR application in height 
assessment in forestry will be also described.
	 LiDAR is a technology that uses laser pulses to generate large amounts of data 
about the physical layout of terrain and landscape features. All varieties of LiDAR 
operate using the same basic principle. The LiDAR instrument fires rapid pulses 
of light (laser pulses) to the landscape and a sensor mounted on the instrument 
measures the amount of time taken for each light pulse to bounce back. Because 
light moves at a constant and known speed, the LiDAR instrument can then calculate 
the distance between itself and the target with high accuracy. By rapidly repeating 
the process, the LiDAR instrument builds up a complex ‘picture’ of the surface it is 
measuring, in the form of a point cloud LAS file (Schuckman & Renslow, 2012). 
	 The LAS file format is, according to ASPRS (2012), a public file format for 
the interchange of 3-dimensional point cloud data between data users. Although 
developed primarily for exchange of LiDAR point cloud data, this format supports 
the exchange of any 3-dimensional X, Y, Z triplet. The intention of the data format 
is to provide an open format that allows different hardware and software tools to 
output data in a common format.  
	 Airborne LiDAR (or ALS - Aerial Laser Scanner) has advantages over other 
airborne remote sensing techniques, such as multispectral or hyperspectral imaging, 
in that it generates three-dimensional structural data because the laser pulses 
can penetrate the forest canopy to reach the ground (Figure 3.). ALS systems then 
have the capacity to directly measure the vertical distribution of vegetation and 
the underlying topography, resulting in the accurate estimation of both vegetation 
height and ground elevation (White et al., 2013a). 

Fig. 3. Example of ground echo and canopy top detection from a LiDAR signal for a section of 
flight over a forest. The difference between these two point layers yields the canopy height. 
The used y-axis is the distance from the emitter (aircraft). Source: Shang et al. (2016).
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	 The actual points collected are dependent on the hardware, but the most 
common are first hit (usually the canopy layers), last hit (usually the ground), and 
a secondary hit or hits that land somewhere in between. Many scanners can also 
collect the information about surface laser is reflected by. While there are many 
different types of LiDAR systems, discrete-return ALS systems are the most common 
type used in forestry applications (Wulder et al., 2008).
	 As widely describes Edson & Wing (2011), LiDAR has recently emerged as 
significant technology for forest measurement applications. Forest measurements 
derived from LiDAR include ground and vegetation surfaces, which are used to 
assess tree height, volume, and biomass measurements (Popescu et al., 2004). 
Many forest attributes can be measured by LiDAR over large areas including canopy 
height, sub-canopy topography, vertical canopy distribution (Lim et al., 2003), and 
individual tree heights (Andersen et al., 2014). Tree height may also be used to 
estimate diameter at breast height (DBH), based on allometric equations (Lucas et 
al., 2008).
	 Edson & Wing (2011) continue, that when measuring tree heights using 
LiDAR, accuracy is impacted by several factors including size and reflectivity of the 
tree, shape of the tree crown, and LiDAR pulse density and footprint (pulse diameter). 
A primary source of error in LiDAR tree height measurement associated with conifer 
species occurs when laser pulses miss the sharp apex of the tree resulting in an 
underestimation of tree height (Anderson et al., 2006; Popescu et al., 2002). Lewis 
& Hancock (2007) confirm, that due to the low probability of hitting the absolute 
highest point in the canopy for a given pulse (and a given species of tree), canopy 
height surfaces derived from LiDAR are consistently lower than field measurements, 
but this effect can be accounted for with empirical corrections.
	 Discrete returns from LiDAR pulses that strike the canopy may be used to 
estimate tree heights, or canopy elevations may be derived from a canopy height 
model (CHM) (Lovell et al., 2005). In order to reduce the computational burden 
in processing mass points, the trees are usually detected from a 2.5-dimensional 
CHM interpolated from the height data (Vauhkonen, 2010). A CHM is raster surface 
model interpolated from points acquired on the upper surface of the canopy. It can 
be generated by subtracting the digital terrain model (DTM) from the digital surface 
model (DSM), resulting in normalized aboveground object heights. 
	 LiDAR tree height estimates are therefore calculated by subtracting the terrain 
surface from the top of the vegetation, so that highest points - local maxima, can be 
associated with individual trees (Lim et al., 2003; Kraus & Pfeifer, 1998). Tree height 
can be estimated as the values of these maxima, but other measurements require 
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the tree crowns to be delineated from their surroundings. Mainly image analysis 
techniques are used also for that purpose, but the segmentation can equally be done 
by point-based techniques (Vauhkonen, 2010). Based on the tree structure, errors in 
LiDAR tree height measurement are also dependent on the algorithm used to create 
the CHM (Hyyppa et al., 2004). (Edson & Wing, 2011). 	  
	 Van Leeuwen & Nieuwenhuis (2010) confirm, that most attention in retrieving 
structural parameters from LiDAR data has been paid to the retrieval of tree height, 
and plot height averages such as Lorey’s mean height, predominant tree height, and 
average tree height, but the technique also allows for individual tree measurements 
after segmentation of the LiDAR point cloud. Various segmentation approaches have 
been proposed in a number of studies with varying degrees of success (e.g. Heurich, 
2008; Chen et al., 2006). 
	 Validation of field and remotely sensed tree height is sometimes difficult due 
to differences in scale of the field observations and LiDAR acquisitions (Zhao et al., 
2009), and challenges to collocate the two (Popescu et al., 2002). These aspects of 
scale need to be taken into consideration when the suitability of LiDAR remote sensing 
for forest inventory is assessed and comparisons with other sources of information 
are made. Furthermore, differences in definition of height measures complicate the 
task of comparing LiDAR-derived height metrics among different studies (Lovell 
et al., 2005). For example, mean tree height may be taken as the average height of 
dominant and codominant trees (Lefsky et al., 2007), whereas others may attempt 
to include the contribution of suppressed trees (Lee & Lucas, 2007; Maltamo et al., 
2004). (Van Leeuwen & Nieuwenhuis, 2010). 

3.2.2. Photogrammetric Processing of Image Data

3.2.2.1. Development of the Technology

	 The capacity to acquire information characterizing the three-dimensional 
structure of forest canopies has revolutionized forest inventories around the 
globe (van Leeuwen & Nieuwenhuis, 2010). Airborne laser scanning has been the 
primary data source for three-dimensional information on forest vertical structure 
(Reutebuch et al., 2005; Evans et al., 2006; Wulder et al., 2008; Hyyppä et al., 
2008), however, there is an increasing interest in the use of high spatial resolution 
digital aerial imagery to generate information analogous to ALS data (Leberl et al., 
2010; Bohlin et al., 2012a; Järnstedt et al., 2012) to support forest inventory and 
monitoring. This interest in alternative technologies for acquiring accurate height 
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information can be attributed to needs to control costs, but also to provide data that 
is complementary to traditional inventory practices, available technical capacity, 
and current regulatory requirements (White et al., 2013a).
	 As broadly describes Balenović et al. (2015), widely used remote sensing 
methods for estimating tree heights include besides LiDAR also photogrammetric 
measurements of aerial images. Manual methods of stereophotogrammetry have 
been used in forestry since the 1940s (Korpela, 2004). Estimating the height of 
an individual tree and mean stand height, by photogrammetric measurements of 
stereo pairs using classical analogue aerial photographs from analogue or analytical 
stereo instruments (analogue and analytical photogrammetry) has been studied 
by a number of authors (e.g., Worley & Landis, 1954; Næsset, 1996; Kovats, 1997; 
Anttila, 1998; Eid et al., 2004; Magnusson & Fransson, 2005). Aerial photographs and 
digital aerial images have become an integral part of forest inventories in a number 
of countries (e.g., Finland, Norway, Sweden, Canada) (Spencer & Hall, 1988; Næsset, 
2002a; Magnusson et al., 2007; Tuominen et al., 2014). 
	 During a classical photogrammetric stereo-measurement of analogue aerial 
photographs, tree height is determined by placing stereo markers of the instrument 
on the top of the tree and ground next to the tree and the elevation difference 
between the two markers is then calculated as the height. The main disadvantage 
of this process is the limited potential of identifying the bottom of a tree in densely 
canopied stands, if the terrain surface in the vicinity of the tree is not visible (Korpela, 
2004; Paine & Kiser, 2012). Another reason for the limited practical application 
is related to the amount of manual processing required when using the classical 
photogrammetric methods (Balenović et al., 2011). Due to above-mentioned 
reasons it has been generally accepted that the extraction of forest and tree data 
from classical analogue aerial photographs had certain limitations, especially in the 
densely canopied forests. Therefore, except for the above-mentioned countries the 
usefulness of classical photogrammetric method for forest inventories remained a 
controversial issue (van Laar & Akça, 2007). 
	 However, advancements in computer technology in the 1980s and 1990s 
have enhanced the development of remote sensing methods and techniques. Over 
the past thirty years, photogrammetry has also crossed a developmental path from 
analogue and analytical to digital photogrammetry, which has replaced analogue 
aerial photographs and analogue and analytical stereo instruments with digital 
aerial images and digital photogrammetric workstations (DPWs) (Magnusson et al., 
2007; Linder, 2009). 	By the development of digital photogrammetry, primarily 
as a result of improvement in digital aerophotogrammetric cameras (DACs) that 
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can capture digital images of high spatial, radiometric and spectral resolution, as 
well as by digital photogrammetric workstations, possibilities of application of the 
photogrammetry in practical forestry were highly increased and extended (Balenović 
et al., 2010).
	 Current digital aerial photogrammetric cameras make it possible to capture 
digital aerial images of extremely high spatial resolution with Ground Sampling 
Distance (GSD) values of only several centimetres (Sandau, 2010). With the 
application of DPWs, a number of photogrammetric processes, such as the creation of 
digital terrain models or digital orthophotos, have generally become automated and 
the manipulation of aerial images has improved (Honkavaara et al,. 2009; Lemmens, 
2011). (Balenović et al., 2015). 
	 Balenovic et al. (2011) then further broadly explains, that digital (softcopy) 
photogrammetry can be defined as the newest development phase of photogrammetry 
which includes the use of digital images captured by DACs or scanned analogue 
images as well as the use of DPWs in order to perform photogrammetric processing 
and to obtain photogrammetric products. Although the term digital photogrammetry 
has been in use for a long time, namely when scanners were used to obtain digital 
image from analogue photographs, only with the appearance of digital cameras we 
can talk of fully digital photogrammetry. The first commercial solutions of DACs 
were presented at the ISPRS (International Society for Photogrammetry and Remote 
Sensing) congress in 2000 in Amsterdam (Cramer, 2005; Sandau, 2010). 
	 The appearance of DACs which, by its characteristics, could replace the existing 
analogue technology meant a big change for photogrammetry. During a single aerial 
survey, the majority of digital cameras simultaneously record panchromatic, red, 
blue, green and infrared part of electromagnetic spectrum. With the help of GPS 
(Global Positioning System) and IMU (Inertial Measurement Unit), it is possible to 
get oriented images right after airplane landing. Then the images are directly loaded 
into DPWs for further processing. The additional benefits of using DACs are that 
there are no longer needs for films, photolab developing and scanning. In this way, 
a whole phase of photogrammetric work process disappeared, resulting in time and 
costs savings (Ciceli, 2004; Petrie & Walker, 2007).
	 Furthermore, digital images have improved radiometric properties of the 
image which enables much more information to be extracted, especially from 
shadowed areas of the image. Digital images also outperformed the analogue ones 
in terms of spatial resolution. This led to the improved stereoscopic view and 
better possibility for interpretation from stereomodel derived from digital images. 
Electronic forward motion compensation device enables recording of high spatial 
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resolution images at great flying speed, so the time interval between two recordings 
can be shorter than one second. Due to the properties of DACs, aerial recordings 
can be made under relatively low light conditions. This increased the length of the 
season suitable for recording, as well as extended daily time appropriate for aerial 
photo flight sessions (Cramer, 2005; Jacobsen, 2009).
	 Balenovic et al. (2011) further describes, that a digital camera, in its main 
parts, is almost identical to the analogue one. The basic difference is in the media 
for light registration and the process of creating images. In analogue cameras the 
media is a film and the image is created photographically, i.e. by chemical reaction of 
light and film. In digital cameras, the film is replaced by an electronic photosensitive 
sensor which could be CCD (Charge-Coupled Device) or CMOS (Complementary 
Metal Oxide Semiconductor) (Ciceli, 2004; Petrie & Walker, 2007). Concerning the 
digital photogrammetric workstations, the first DPW was presented at the XVI ISPRS 
congress held in Kyoto in 1988. The DPW was defined as ‘’a hardware and software 
connection to derive photogrammetric products from digital imagery’’. The advances 
in computer technology in the 1990s had great influence on the DPWs evolution and 
their expansion at the market. At the end of the same decade many photogrammetric 
companies and research institutions were using DPWs which gradually took 
domination over the analytical plotters (Petrie, 1997; Ahmad, 2008).
	 As any other ordinary computer, the DPW also consists of hardware and 
software. The main characteristic of DPW is a powerful hardware which implies 
powerful and fast processor (CPU), large memory (RAM) and large storage units. 
A part of the hardware which makes DPW significantly different from normal 
computer is the stereo viewing system consisted of graphic card, high resolution 
stereo monitor as well as a monitor suitable stereo glasses. Today the most widely 
used stereo viewing system is the one comprised of monitor with active polarization 
display and stereo glasses with polarization filters (Schenk, 2005; Ahmad, 2008; 
Ruzgiené, 2007). The most important part of DPW is its software. Generally, 
photogrammetric tasks which can be performed using DPW are the following: basic 
photogrammetric functions such as image orientation, aerial triangulation or image 
block adjustment; mono or stereo vectorization, more or less automated creation of 
digital terrain model and digital elevation model, digital orthophoto, digital map, etc. 
(Heipke, 2001; Lemmens, 2009). (Balenovic et al., 2011).
	 Haala (2009 and 2013) widely discusses, that both improvements in camera 
technology and the rise of new matching approaches triggered the development of 
suitable software tools for image based 3D reconstruction by research groups and 
vendors of photogrammetric software. Based on dense pixel-wise matching, the 
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photogrammetric generation of dense 3D point clouds and Digital Surface Models 
from highly overlapping aerial images has become feasible. Recent innovations in 
matching algorithms considerably improved the quality of elevation data, generated 
automatically from aerial images. The use of digital image matching for automatic 
point transfer within photogrammetric applications is today a well known 
standard procedure. The restriction to matches of selected points usually provides 
correspondences at high certainty. 
	 Similar to automatic aer-
ial triangulation, software tools 
for image based surface recon-
struction are being developed 
for more than two decades. 
Since then such software, which 
integrates feature or intensity 
based algorithms in stereo-
matching is also commercially 
available. This trend is currently 
supported by the development
of improved software tools which for example extend traditional stereo- to multi-
image matching. The utilized algorithms first extract feature points and then search 
the corresponding features in the overlapping images. Meanwhile, the automatic 
identification of corresponding points is also implemented within close range 
applications, where the situation is even more complex compared to airborne 
applications. In such scenarios affine invariant feature detectors are combined with 
robust orientation estimation techniques to cope with matching problems caused by 
perspective distortions within images of arbitrary rotation and scale. 
	 In contrast to the great relevance of image matching for orientation purposes, 
the importance of this technique for 3D surface reconstruction is subordinated. 
However, automatic stereo image matching was frequently substituted by 
LiDAR measurements. Compared to image based surface reconstruction, LiDAR 
measurements were more competitive especially while aiming at very accurate 
and dense elevation data. Meanwhile, this gap could be considerably narrowed 
since now imagery from digital airborne camera systems is available as standard 
data source. Compared to scanned film, these images feature an increased dynamic 
and improved signal-to-noise-ratio. As a result, the quality and accuracy of image 
based point transfer as basic observation for 3D surface reconstruction could be 
improved considerably. In addition to the better radiometric quality, digital airborne 

Fig. 4. Overlapping aerial images and resulting 3D 
model of the land surface. Source: SharpGIS (2016).
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camera systems can also capture largely overlapping images at a relatively little 
additional effort. The availability of such high redundant multi-image information is 
especially beneficial in situations, where standard stereo matching is hindered due 
to occlusions. The increasing potential of such data for surface reconstruction based 
on automatic image matching additionally triggered a renaissance in the research 
and development of suitable software tools (Haala, 2009, 2013).

3.2.2.2. Image-Based Point Clouds

	 As broadly describes White et al. (2013a), when an object is imaged from two 
different perspectives, stereophotogrammetry enables the measurement of its three-
dimensional position relative to a reference datum (e.g., sea level). The process is 
analogous to our own visual perception of depth with normal binocular vision. Like 
human vision, stereophotogrammetry is based upon the principle of parallax, which 
refers to the apparent change in the relative position of stationary objects resulting 
from a change in viewing position (Lillesand & Kiefer, 1987). 
	 In simple terms, stereophoto-grammetry involves identifying a common 
point on each image. A line of sight (also referred to as a ray) is constructed from the 
camera viewpoint to the common point on each image. The intersection of the two 
rays is found using triangulation, and the three-dimensional position of the point is 
determined (i.e., X, Y, Z). Repetition of this process for the many points that make up 
the object or surface being viewed results in the image-based point cloud.

adjustment (Whitehead et al., 2013). During aerial triangulation, a large number of 
automated tie points are generated for conjugate points identified across multiple 
images. A bundle-block adjustment then uses these automated tie points, along with 
manually observed ground control points (GCPs) and tie points, to optimise the 
photo positions and orientations, with the goal being to recreate the positions and 

Fig. 5. Scheme of aerotriangulation 
principles.  Source: GISBOX (2016).

	 The photogrammetric processing 
of data generally utilizes the principles 
of aerial triangulation (Figure 5.). As 
describes Whitehead et al. (2014) aerial 
triangulation refers to the process by 
which the true positions and orientations 
of the images from an aerial survey are 
re-established. This process includes 
project setup, measurement of GCPs 
and manual tie points, and bundle-block 
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orientations associated with each image at the time of its capture (Hugenholtz et al., 
2013). The bundle-block adjustment process generates a high number of redundant 
observations, which are used to derive an optimal solution through a rigorous least-
squares adjustment. After aerial triangulation, the oriented images may be used 
to generate a dense point cloud by matching features across multiple image pairs. 
From the dense point cloud a digital surface model can be produced, which provides 
a detailed representation of the terrain surface, including the elevations of raised 
objects, such as trees or buildings (Whitehead et al., 2013, 2014).
	 White et al. (2013a) extensively continues, that two noteworthy innovations 
in digital photogrammetry have resulted in the capacity to generate image-based 
point clouds that are similar in several respects to ALS point clouds. First, digital 
aerial cameras facilitate the easy acquisition of multiple overlapping images, without 
the previous level of effort and expense required to capture, develop, and scan analog 
photos. From overlapping images, an object can be visible on multiple image pairs, 
allowing for multi-view matching (not just stereo-matching), which reduces the 
opportunity for occlusions and improves geometric accuracy (Leberl et al., 2010; 
Zitová & Flusser, 2003). Second, rapid advances in the development of computer 
technology have made complex algorithms for image matching practical. The result 
of these innovations has been the generation of image-based point clouds and DSMs 
that are much more detailed and more accurate than was previously possible with 
traditional manual stereophotogrammetric processing.
	 The creation of an image-based point cloud (Figure 6.) and DSM requires 
high-spatial resolution aerial images with multi-image overlap (Leberl et al., 2010; 
Baltsavias et al., 2008). Spatial resolution is defined by the Ground Sampling Distance, 
which depends on flying height and sensor characteristics. For forestry applications, 
the need for highly redundant (i.e., many overlapping images with at least 60 % – 
90 % along-track and 30 % – 60 % across-track overlap), multi-image information is 
especially acute to overcome occlusions that are common in the canopy (Baltsavias 
et al., 2008; Haala et al., 2010). 
	 The aim of image matching is to find corresponding points (objects) in 
images based on their radiometric and geometric similarity. The main automated 
photogrammetric image matching methods can be divided into area- or feature-
based methods (Zitová & Flusser, 2003). Area-based methods typically use a window 
of image pixels to search for the best match between images. Feature-based methods 
rely on matching between basic mapping entities, such as points, lines, and polygons. 
Current image processing software often uses a combination of these two methods 
for image matching (Bohlin et al., 2012a; Järnstedt et al., 2012).
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	 A variant of the area-based method to image matching is termed “Global Image 
Matching”. Global Image Matching methods seek to match each pixel in the image (as 
opposed to a window of pixels), and although these methods may be considered state-
of-the-art in terms of the quality and resolution of the point clouds and DSMs that 
they can produce, they are computationally intensive and slow to process (Gehrke et 
al., 2010). Hence, a method referred to as Semi-Global Matching (SGM) has emerged, 
which is a hybrid between global image and area-based matching approaches. SGM 
constrains the possibilities for pixel-wise matching using a cost function, thereby 
making the matching process markedly more efficient (Hirshmüller, 2008).
	 Regardless of the image-matching method used, stereo-matching parameters, 
image resolution, and differences in sun-angle and viewing geometry have a significant 
impact on the quality of image-based point clouds and DSMs. While technological 
innovations can improve image matching capacity, issues of sun angle and viewing 
geometry will be a factor in any optical image product that is acquired and used for 
point cloud and DSM generation (St-Onge et al., 2008). Photogrammetric matching 
of digital aerial images using approaches such as SGM results in the production of a 
three-dimensional point cloud with similarities to an ALS point cloud. However, as 
indicated above, the aforementioned photogrammetric matching process produces 
three-dimensional points for the upper canopy surface only, in contrast to the ALS 
data points, which are distributed between the ground surface and the upper canopy 
(White et al., 2013a). 

Fig. 6. Visualisation of very high-density coloured image-based point cloud representing 
boreal forest stand and several buildings, generated from UAV-borne RGB images. 
Source: Nyström (2015).
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3.2.3. Comparison of ALS and Image-Based Point Clouds

	 White et al. (2013a) states that the ALS instruments typically used for 
forestry applications are able to record several, often up to five returns for each 
pulse emitted. Therefore, a DSM built from an image-based point cloud is similar to 
a DSM that is built from first ALS returns only. Similar to an ALS-derived DSM, a DTM 
can be subtracted from an image-based DSM to give an estimate of aboveground 
object heights; however, the DTM must have a sufficiently high spatial resolution 
and vertical accuracy to enable this normalization. Finally, metrics may be calculated 
from the image-based point cloud that resemble – but are not necessarily the same 
– as those generated from the ALS point cloud. In terms of processing, ALS data 
currently have an advantage over image-based approaches. The time required to 
acquire and process ALS data into a useable point cloud is generally less than for 
imagery, however as digital image workflows become increasingly efficient, this 
advantage will likely become less relevant over time.
	 Leberl et al. (2010) then concludes that novel photogrammetric approaches 
deliver point clouds at comparable accuracy but higher density and superior 
throughput than LiDAR. Given the advantages of a single workflow and the existence 
of images for a variety of applications, Leberl finds that image-based methods 
are superior to LiDAR-surveys in the creation of 3D point clouds. With regards 
to resolution of airborne data from both sources, the image-based point cloud is 
capable of a greater point density than ALS data, for a given cost, as a function of the 
GSD and the number of independent three-dimensional pixel matches.
	 Typical aerial LiDAR point density may be in the range of 1 to 5 points/m2. 
Aerial photogrammetry point density may at first be seen as defined by the two-
dimensional ground sampling distance, thus pixel size. At a 10 cm pixel, one would 
produce 100 points/m2, but these are not 3D elevation values. The 3D sampling 
interval depends on the image overlap to achieve independent 3D matches. If 50 
percent of the pixels were to get matched for independent 3D elevation values, one 
would achieve 50 points/m2 from 10 cm pixels (Leberl et al., 2010).  
	 White et al. (2013a) continues, that concerning comparison of the accuracy 
of both approaches when estimating forest inventory attributes including the height, 
only few studies were conducted so far. The available studies of Bohlin et al. (2012a) 
and Järnstedt et al. (2012) indicate, that the performance of ALS- and image-based 
predictive models of forest inventory attributes are more or less similar. Since both 
ALS and image-based DSMs are capable of characterizing canopy height with similar 
levels of accuracy in more homogenous forest environments (i.e., even-aged, single 
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layer stands) where it has been tested thus far, and since height is an important 
predictor of dominant height, basal area, and volume (Næsset, 2002b; Maltamo et 
al., 2006) it is not surprising that the predictions based on the image-based metrics 
in these studies are similar to those generated from the ALS metrics. 

Fig. 7. Example of height assessment of individual trees based on two sources of remote 
sensing data. a) Side-view of a transect through the study plot generated from the point 
cloud of the ALS system and (b) image-based point cloud produced using RGB photography. 
Source: Wallace et al. (2016).

	 Regarding the economical efficiency, interest in exploring alternatives to ALS 
data stems from a need to control and reduce costs. The cost-effective reduction of the 
inventory cycle is consistently demanded by forest managers and other jurisdictions, 
and represents a significant research need (Pitt & Pineau, 2009). Without delving 
into specific pricing, which is in constant flux and highly situation-dependent, aerial 
imagery is currently about one-half to one-third of the cost of ALS data. Thus, if 
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ALS-equivalent area-based predictions can be made from imagery (something that 
has yet to be demonstrated for a range of forest types and stand structures), forest 
managers could potentially realize more frequent inventory cycles. 
	 Since it is envisioned that image acquisition will always play a role in forest 
inventory development and update, the ability to also estimate forest inventory 
attributes with robust area-based predictions from image-based point clouds – 
rather than the current practice of projecting attributes forward based on averaged 
growth or yield curves – would be an attractive option for forest managers. However, 
to reiterate, the use of image-based point clouds is predicated on the availability 
of high spatial resolution DTMs and therefore, an initial investment in ALS data is 
generally required before the potential cost savings afforded by image-based point 
clouds could be realized (White et al., 2013a).  
	 Regardless the method used, an important aspect is that in most cases not 
all trees can be detected. Korpela (2004) analyzed the discernibility of trees in 
varying species and development classes by visually interpreting colour-infrared 
images with multiple views on the targets. The trees with heights of less than 40–
60 % relative to the dominant height were most probably missed, this proportion 
being dependent on forest structure and density. Most of the dominant trees, and 
thus 88–100 % of the total volume could still be detected from the images. ALS-
based studies have led to similar conclusions, as Persson et al. (2002), for example, 
detected 71 % of the stems, but 91 % of their volume as measured in the field. 
Pitkänen et al. (2004), on the other hand, performed tree detection in a more 
heterogeneous forest, reporting a 40 % detection rate for all trees, but that of 70 % 
for the dominant trees (Vauhkonen, 2010).  
	 Considering automatic interpretation, the algorithm has a major effect on 
the tree detection result (Kaartinen & Hyyppä, 2008), which is often affected by the 
parameterization of the method (e.g. Solberg et al., 2006). In addition to omission 
errors caused by the undetected trees, also commission errors, i.e. segmentation of 
objects that are not trees, can occur. Solberg et al. (2006), for example, reported a 
26 % commission error rate in an inventory that found 66 % of the field-measured 
trees. In this sense the conifers are less problematic than the deciduous trees, which 
often have multiple crowns of irregular shapes (Brandtberg et al., 2003; Koch et al., 
2006). (Vauhkonen, 2010).  
	 When comparing the two data sources, White et al. (2013a) also notes that  
imagery is a key data source for forest inventory, enabling the implementation of 
standard inventory practices, including stand delineation and visual interpretation of 
attributes like species, which cannot (at this time) be estimated from ALS exclusively. 
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As a result, any new forest inventory for a given area for which ALS will be acquired 
will also require some consideration of how attributes that are not readily generated 
from ALS will be acquired. Typically, imagery of some kind will be necessary. 
	 A main advantage of ALS data is the ability to generate a detailed DSM, but also 
a DTM under the forest canopy, which, in addition to its utility for inventory, affords a 
broad range of operational and engineering applications. In contrast, it is usually not 
possible to generate a DTM from an image-based point cloud if the ground is obscured 
by vegetation. Given that a detailed DTM is a necessary prerequisite for normalizing 
an image-based point cloud to aboveground heights, it is therefore likely that the use 
of image-based point clouds for forest inventory will be limited to those areas which 
already have a pre-existing high spatial resolution DTM (likely derived from ALS 
data) (White et al., 2013a). A recent study of (Dandois & Ellis, 2013) nevertheless 
indicates a possibility to create sufficient-quality DTMs also from image-based point 
clouds at least in leaf-off deciduous forests. 

3.2.4. Forest Stands Assessment Approaches

	 As states Vauhkonen et al. (2011), currently, there are two main approaches 
for using point clouds to characterize forest resources: 1. an area-based approach 
typically providing data at stand level and 2. a single-tree approach where individual 
trees are the basic unit of the assessment. 

3.2.4.1. Area-Based Approach

	 According to Wang & Weng (2013), the area-based prediction of forest 
variables is based on a statistical dependency between the variables measured in 
the field from ground plots and predictor features derived from remote sensing (RS) 
data. In the case of point cloud data, the method in which this kind of two-stage 
procedure is used to produce stand-level information from wall-to-wall grid-level 
predictions is called an Area-Based Approach (ABA) (Næsset, 2002b). In a more 
general context, two-stage predictions using field and RS data have a long history in 
forestry inventory (Poso et al., 1984), and this process could also be called ABA.
	 As states Tompalski et al. (2015), the ABA is now routinely applied in 
operational forestry applications, and results in generalized plot- or stand-level 
attribute predictions. Area-based approaches, rather than explicitly extracting or 
identifying each individual tree crown, are based on aggregations of ALS or image-
based point clouds to develop a series of canopy density and height metrics (Næsset, 
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2002b). These metrics become independent variables that are used to predict the 
desired forest inventory attributes. The successful application of the area-based 
approach is predicated on accurate measurements of forest height and height 
variation from point cloud data (White et al., 2013b). When ABA is applied, accurate 
training data must be on hand (Poso et al., 1984; Næsset, 2002b). Training plots 
should represent the whole population and cover the full range of variability in the 
attributes of interest. The efficient selection of the training plot locations requires 
preknowledge of the inventory area (Maltamo et al., 2011). 
	 Area-based approaches use circular plots, grids or forest stands as reference 
units (Maltamo et al., 2014). When a grid cell is used as a sample unit in ABA, its size 
refers to the size of the field-measured training plot. Then, the point cloud-derived 
features are extracted from the grid cell areas and used as possible predictors. The 
statistical relation between the predictors and response variables is modelled using 
training data when both of them are on hand. The response variables are predicted 
for grid cells without training data using regression or other statistical methods. 
If stand-level variables are needed, they are calculated by weighting the grid-level 
predictions inside the stand (Wang & Weng, 2013).
	 White et al. (2013b) summarizes, that area-based approach is accomplished 
in two stages. In the first stage, remote sensing data is acquired for the entire 
area of interest, tree-level measures are acquired from sampled ground plots, and 
predictive models are developed (e.g., regression or non-parametric methods). For 
the purposes of model development, the point cloud is clipped to correspond to the 
area of each ground plot. Metrics (descriptive statistics) are calculated from the 
clipped normalized point cloud and include measures such as mean height, standard 
deviation of height, height percentiles, and canopy cover. Attributes of interest 
are measured by ground crews (i.e., height, diameter) or modelled (i.e., volume, 
biomass) for each ground plot. Predictive models are then constructed using the 
ground plot attributes as the response variable and the point cloud-derived metrics 
as predictors.
	 In the second stage of the area-based approach, the models are applied to 
the entire area of interest to generate the desired wall-to-wall estimates and maps 
of specific forest inventory attributes. The same metrics that are calculated for the 
clipped point cloud (as described above) are generated for the wall-to-wall point 
cloud data. The predictive equations developed from the modelling in the first step 
are then applied to the entire area of interest using the wall-to-wall metrics. Once 
the predictive equations are applied, each part of the examined forest stand will have 
an estimate for the attribute of interest. The foremost advantages of the area-based 
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approach compared with traditional stand-level forest inventories include having 
complete spatial knowledge of X and predicted Y, more precise predictions of certain 
forest variables, and the capability to calculate confidence intervals for estimates 
(e.g., Woods et al., 2011). Forest attributes, such as mean height, dominant height, 
stem number, mean diameter, basal area, stem volume or biomass, are predicted 
with better or comparable quality to traditional field inventories (e.g., Næsset et al., 
2004). (White et al., 2013b).

3.2.4.2. Individual Tree Approach

	 An alternative to Area-Based Approach is Individual Tree Approach (ITA) also 
known as Individual Tree Crown (ITC) technique, Individual Tree Crown Detection / 
Delineation (ITCD), Single Tree Approach or its variants. Generally it is a procedure 
of recognizing individual trees, including tree top/trunk detection and crown 
boundary delineation (Maltamo et al., 2004). Individual tree-based forest inventory 
is based on measurements of all trees in a given area. This is attainable only if all 
trees are observable and measurable for the needed variables (Korpela, 2004). 
	 As in detail describe Breidenbach & Astrup (2014) due to the visibility of single 
trees in high-resolution ALS data, several researchers (mainly Hyyppä & Hyyppä, 
1999; Hyyppä & Inkinen, 1999; Borgefors et al., 1999) started using automatically 
detected tree crowns to estimate forest properties. The aim of the individual tree 
approach is to derive tree attributes of interest from trees or tree crowns detected 
in point cloud data. The ITA approach is conceptually similar to earlier approaches 
used in high-resolution photography and basically consists of five steps:
	 I. Detection of tree crowns in canopy height models or point clouds covering 
the areas of interest for which estimates of forest parameters are required.
	 2. Linking detected crowns with trees observed on field plots with known 
tree locations. The primary assumption in the traditional ITA is that one field-
measured tree can be linked to one crown detected in the point cloud data.
	 3. Fitting statistical models that regress field-measured tree characteristics, 
such as maximum height within the detected crown, against metrics derived from 
the detected tree crowns. 
	 4. Application of the fitted model to the detected tree crowns within areas 
of interest such as stands in order to estimate tree characteristics of interest.
	 5. Typically, the estimates for crown segments within each stand are 
averaged or summed in order to estimate mean or total forest characteristics 
within the stand.
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	 Popular methods for crown detection in canopy height models are watershed 
algorithms. Since the canopy height model is segmented, the detected tree crowns 
are often denoted “segments”. Usually, only dominant trees are correctly identified in 
step 1 in the sense that exactly one field-measured tree is within one detected crown 
segment (Persson et al., 2002). Frequently, only “correctly identified” segments 
with one linked field tree are used to fit regression models in step 3. However, the 
number of field-measured trees within a segment influences the response variable 
such as timber volume or DBH of the segment. In general, it can be said that omitting 
observations from a regression model based on the response variable, for example 
empty segments or segments with several held trees, will result in biased regression 
models (Breidenbach & Astrup, 2014).
	 Tompalski et al. (2015) sates, that using ITA approaches, individual treetops 
are located from either the raw point clouds directly (Reitberger et al., 2009), or from 
a canopy height model (Popescu & Wynne, 2004; Solberg, et al., 2006). The main tree 
detection methods belong to the latter and are usually based on finding local maxima 
on a smoothed CHM. After the local maxima are found, the boundaries of the crown 
are extracted, e.g. using a watershed-based region detector. The accuracy of the CHM 
and the corresponding accuracy of the ITA depend on the point cloud density (Wang 
& Weng, 2013). 
	  Tree variables such as height and location can be measured directly from 
the laser point cloud. The XY location of the tree is generally the location of the 
treetop, that is, the XY location of the highest point or CHM value. The estimate for 
tree height can be the highest point or the CHM value within the tree crown. Besides 
tree height and crown dimensions, the use of other geometric features and point 
height distributions has become more common in ITA predictions (Holmgren & 
Persson, 2004; Yu et al., 2011). With respect to the plot level training data used in 
ABA, ITA training data should cover the whole population variation at the tree level. 
However, ITA can be carried out without any field measurements if desired. In this 
case, missing variables are measured straight from the point cloud and/or modelled 
with existing models (Wang & Weng, 2013). 
	 Zhen et al. (2016) ascertained, that in the last two decades, various semi- and 
fully-automatic algorithms have been developed for individual tree detection and 
crown delineation. However, even if one method is best for a specific application, it 
may not be optimal for other situations. For example, many approaches that worked 
well on softwood stands have demonstrated lower accuracy for hardwood or mixed 
forests, particularly those with high variation in terms of tree spacing, age or size, 
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or when the crowns have a high degree of overlap (Larsen et al., 2011; Zhen et al., 
2015). It is challenging to assess the accuracy of ITA results because there is no 
standardized accuracy assessment procedure (Ke & Quackenbush, 2011), which 
makes it more difficult to compare ITA algorithms unless multiple approaches are 
tested on a single study area using the same accuracy metrics (Kaartinen et al., 
2012). However, researchers have generally had greater successes in implementing 
ITA algorithms on even-spaced, even-aged, and even-sized softwood forests (Ke & 
Quackenbush, 2011).
	 According to Tompalski et al. (2015), ITA-based estimates provide detailed 
information for individual trees, but are typically biased due to challenges associated 
with individual tree detection. ITA approaches are still in research mode (Breidenbach 
et al., 2010; Vastaranta et al., 2011). Tree properties can subsequently be estimated 
using the segment properties, such as segment area or point cloud-derived height 
metrics as explanatory variables.
	 As discussed by Breidenbach et al. (2010), ITA approaches are more intuitive 
than ABA since the response variable refers to the single tree, which is in fact the 
smallest unit on which forest management is carried out. Trees can be often clearly 
seen in the point clouds, especially when the density of points is much greater than 
individual crown sizes. In addition, ITA provides the tree coordinates which may be 
of use in single tree harvesting operations and in growth predictions with distance-
dependent growth models.
	 However, ITA approaches are prone to bias, as a result of over or under 
segmentation of tree crowns, whereby some trees are undetected, whilst others are 
split into multiple trees. These issues result in omission and commission errors, 
which can have a significant impact on overall estimate for forest inventory (Maltamo 
et al., 2004). As further describes Breidenbach et al. (2010) the segmentation errors 
of any segmentation algorithm can be attributed to i) missing trees, ii) segmentation 
of objects that are not actually trees, iii) oversegmentation of tree crowns (i.e., one 
crown is split into several segments), and iv) clustering of several crowns in one 
segment. In terms of classification accuracy assessment, errors of type i) and ii) will 
result in errors of omission and commission, respectively (e.g., Campbell, 2008). 
	 Oversegmentation, i.e., type iii) errors, can also be seen as a special case 
of type ii) errors which result in one correct segmentation and one or several 
errors of commission. Likewise, clustering of several crowns would result in one 
correct classification and one or more errors of omission. The absolute and relative 
frequencies of errors of the different types will depend on factors such as algorithm 
design, parameter settings, and complexity of the forest. Since these errors usually 
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do not level out, the estimate of the response variable of interest is likely to be biased 
if aggregated to a larger geographical unit such as a forest stand (Maltamo et al., 
2004) 
	 Vauhkonen (2010) agrees, that as the forest stand-level estimates are 
aggregated from single trees, their precision is a function of the errors in the tree 
detection phase. Two types of solutions for taking the tree detection errors into 
account have been presented. First, statistical approaches can be used for estimating 
the proportion of the undetected trees, and the tree detection result is then added 
to an estimate for those (Mehtätalo, 2006; Flewelling, 2008). Second, the estimation 
procedures can be modified to provide segments with a summation of field 
reference attributes rather than treating them as single trees (Lindberg et al., 2010; 
Breidenbach et al., 2010). Both of these approaches reduce the bias at the area-level, 
the latter being potentially able to also take the commission errors into account.

3.2.4.3. Data Segmentation Methods

3.2.4.3.1. Overview of the Methods

	 As described in the previous chapter, in the scope of ITA the examined point 
cloud or raster data are usually segmented to smaller parts representing individual 
tree crowns. There are various segmentation methods of the RS data. Between the 
most promising in the recent years belongs e.g. semiautomatic OBIA, i.e. Object-
Based Image Analysis segmenting the datasets on homogenous objects using fuzzy 
logic (Machala, 2012; Machala & Zejdová, 2014; Machala et al., 2014, 2015; Novotný 
et al., 2014). Even though some authors try to apply OBIA for the purposes of tree 
detection (overview gives e.g. Cheng & Han, 2016) this modern approach as such is 
in classical forest conditions usually not sufficiently applicable for distinguishing of 
individual trees with the demanded accuracy. Several more suitable methods were 
developed for this purpose. 
	 As broadly describe Strîmbu & Strîmbu (2015), regardless of the remote 
sensing data type, a variety of tree detection and delineation algorithms have been 
proposed in the last two decades. Those that according to the authors most often 
recur in the literature are following: 
	 Gougeon’s valley following technique (Gougeon, 1989; Gougeon et al., 1992) 
is among the earliest attempts to tackle this problem. The algorithm starts at local 
minima and searches for adjacent pixels that lie in between pixels of higher value, 
with the resulting paths assumed to correspond to tree crown boundaries. 
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	 Local maxima filtering (LMF) (Figure 8.) has been extensively employed 
in tree top detection (Wulder et al., 2000; Pitkänen, 2001). Edson & Wing (2011) 
speaks about TreeVaW which operates on a CHM using a variable window filter that 
varies its search window size, (convolution kernel), by passing a local maxima filter 
over the CHM and determines a tree location based on elevation data contained 
in individual pixels. The highest elevation value is taken to indicate the tree apex. 
When the filter determines a local maxima value, a tree X and Y coordinate location 
is identified (Popescu & Wynne, 2004). LMF is often used to provide seed points for 
algorithms that delineate entire tree crowns based on the allometric relationship to 
height (Holmgren & Persson, 2004; Yu et al., 2011). 
	 Region growing algorithms (Culvenor, 2002; Hirschmugl et al., 2007) start 
with seed pixels and progressively grow regions by iteratively including adjacent 
pixels until a threshold of expansion or stopping criteria are met. The borders of 
regions found by region growing are perfectly thin and the algorithm is also very 
stable with respect to noise. The fundamental drawback of histogram-based region 
growing detection is that histograms provide no spatial information, only the 
distribution of grey levels (Kamdi & Krishna, 2011).
	 Watershed segmentation (Kwak et al., 2007; Tang et al., 2007) (Figure 8.) is a 
particular instance of region growing that operates on topologically inverted data by 

Fig. 8. The extracted crowns from a CHM model 
by the means of the local maxima filtering using 
variable window filter (upper images) and inverse 
watershed segmentation (bottom images). Source: 
Wannasiri et al. (2013).

the analogy of pouring water in the 
local minima, and considering the 
basins limits as the water level rises. 
According to Edson & Wing (2011) 
inverse watershed segmentation, 
is the most common method 
applied to determining locations of 
individual tree crowns using a CHM 
by segmenting the inverted raster 
canopy surface into the equivalent 
of individual hydrologic drainage 
basins (Goerndt, 2010; Andersen, 
2009). Following inversion, a 
watershed segmentation algorithm 
separates the CHM into distinct 
tree polygons with raster crown 
diameter and height values (Goerndt 
& Monleon, 2010). 
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	 Pouring algorithm, which is similar in spirit to watershed segmentation, was 
described e.g. by Koch et al. (2006). The smoothed CHM tree tops are detected with 
a local maximum filter. A pixel counts as a local maximum, if all of its neighbours 
have got a lower height value. Then regions are extended, as long as neighbouring 
pixels with a lower or the same height value exist. Overlapping regions in “height-
valleys” are finally distributed evenly to all involved trees. This algorithm resembles 
water being poured onto mountains, thus being similar to an inverted, classical 
watershed-algorithm (Soille, 1999). The pouring algorithm produces already a first 
approximation to the actual shape of the tree crown.
	 Template matching segmentation methods rely on a generalized tree model. 
The choice of tree model varies from illumination patterns (Hung et al., 2012) to 
ellipses (Larsen & Rudemo, 1998), ellipsoids (Wolf & Heipke, 2007), Gaussian blobs 
(Brandtberg et al., 2003), conic and parabolic surfaces (Persson et al., 2002). 
	 Clustering algorithms have been employed at pixel level (Gupta et al., 2010), 
voxel level (Reitberger et al., 2009) and subsegment level (Lee et al., 2010). Finally, 
global optimization algorithms segment trees simultaneously in an iterative process 
with the aim to reach a state of fitness for the segmented forest as a whole. 
	 Strîmbu & Strîmbu (2015) summarize, that while most of the above mentioned 
methods have reported relatively satisfactory performance, an international 
benchmarking project (Kaartinen et al., 2012) revealed however, that when applied 
to the same dataset, most of the tested methods showed a high variability in their 
performance. In fact, they did not perform much better and often worse than simple 
local maxima and watershed based methods used by the authors of the report. 
	 In another comparative study, Larsen et al. (2011) compared the accuracy of 
six segmentation methods when applied to six different forest types. The algorithms 
were fundamentally different and were based on: local maxima filtering, valley 
following, region growing, template matching, scale-space theory, and stochastic 
processes. The results revealed that while all methods were relatively accurate when 
applied to a young plantation, they performed significantly different on other forest 
types. For instance, the region growing algorithm outperformed all the methods in 
a mixed forest area as well as an area with high stem density but was poor on areas 
with isolated trees. Isolated trees on the other hand, were best extracted by the 
template matching method. 
	 While the first study reveals that the method of segmentation is the main 
source of variability in segmentation accuracy, the second study shows that the 
methods behave differently when applied to certain forest types. In other words, they 
are inherently more or less appropriate to segment forests of certain structure. The 
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inherent inability to adapt to various forest conditions sometimes stems in reliance 
on overly simplified assumptions regarding the structure of tree crowns and their 
layout in the forest. Tree crowns have an extremely complex structure that varies 
greatly from species to species as well as with the context in which they developed 
(Strîmbu & Strîmbu, 2015).

3.2.4.3.2. Inverse Watershed Segmentation

	 The principles of Inverse Watershed Segmentation (IWS) also known as 
Watershed Transform(ation) or Watershed Algorithm were utilized in this work 
and therefore this method is described in more detail. According to Mohan et al. 
(2003) watershed transformation as a non-parametric method was first developed 
for contour extraction in greyscale images, which relied in defining the contours 
as watersheds. This method has been considerably improved with the tools of 
mathematical morphology. As inform Belaid & Mourou (2009), the watershed 
transformation is one of the oldest segmentation techniques which was initially 
proposed by Beucher (Beucher & Lantu´ejoul, 1979; Beucher, 1990; Beucher, 1992). 
According to Chen et al. (2006) watershed segmentation is a well-known and 
powerful image segmentation method that incorporates the advantages of other 
segmentation methods such as region growing and edge-detection.
	 As Mohan et al. (2003) continues, watershed analysis is well recognized as 
being useful for image segmentation and has been made computationally practical 
thanks to a fast technique presented by Vincent & Soille (1991). Watershed analysis 
uses an image’s gradient magnitude as input to subdivide the image into low-gradient 
catchment basins surrounded by high-gradient watershed lines. The catchment 
basins consist of locally homogeneous connected sets of pixels. The watershed lines 
are made up of connected pixels exhibiting local maxima in gradient magnitude; 
to achieve a final segmentation, these pixels are typically absorbed into adjacent 
catchment basins.
	 As describes van Henten et al. (2009) the watershed transform is a 
region-based segmentation approach in which a grey-level image is considered 
as a topographic surface. The intuitive idea underlying this method comes from 
geography: it is that of a landscape or topographic relief that is flooded by water, 
with watersheds being the dividing lines between the domains of attraction of rain 
falling over the region (Serra, 1982). During a successive pseudo flooding of the grey 
value relief, watersheds with adjacent catchment basins are constructed. 
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	 Beginning with a rasterized greyscale height image, this method locates local 
maxima throughout the data by first inverting the data (Miller, 2014). Schardt et al. 
(2002) explains, that the tree height model has to be inverted in order to adapt the 
given information to the needs and properties of classical watershed algorithms. 
In short, watershed algorithms find local minima in a greyscale image and try to 
assign each pixel of the image to a local minimum. The problem to solve in crown 
delineation is exactly vice versa. Each tree is represented by a single local maximum, 
and the pixels around the maxima should be assigned to the most probable maximum 
(treetop). When the CHM is inverted, watershed algorithm can be applied to the 
inverted data in order to delineate single trees. 

Fig. 9. Canopy height model overlaid with tree crown segments derived from watershed 
segmentation. Larger context (a) and detailed view (b). Source: Li et al. (2014).

	 Amoda & Kulkarni (2013) then describe the concept of watershed transform  
based on visualizing an image in three dimensions: two spatial coordinates versus 
gray levels. They consider three types of points: A. Points belonging to a regional 
minimum. B. Points at which a drop of water would fall with certainty to a 
single minimum. C. Points at which water would be equally likely to fall to more 
than one minimum. For a particular regional minimum, the set of points satisfying 
condition B is called the catchment basin or watershed of that minimum. The points 
satisfying condition C form crest lines on the topographic surface and are termed 
divide lines or watershed lines. The principal objective of segmentation algorithms 
based on these concepts is to find the watershed lines (Figure 9.). 
	 Following advantages of the watershed segmentation technique can be 
emphasized. Grau et al. (2004) describes, that it is a fast, simple, intuitive method, 
can be computationally parallelized, and produces a complete division of the image 
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in separated regions even if the contrast is poor, thus avoiding the need for any kind 
of contour joining. Amoda & Kulkarni (2013) continue, that the resulting boundaries 
form closed and connected regions, which always correspond to contours which 
appear in the image as obvious boundaries of objects. Important is also, that the 
union of all the regions forms the entire image region. Belaid & Mourou (2009) 
see both, pros and cons. The main advantage is that the watershed transformation 
requires low computation times in comparison with other segmentation methods. 
However, using a watershed transformation often results in over-segmentation. 
	 According to Zhao & Popescu (2007) among the segmentation approaches, 
watershed transform is the most popular technique in segmenting a CHM because it 
is intuitively straightforward to treat each concave tree crown in the inverted CHM as 
a catchment basin. However, cautions should be exercised as to how to appropriately 
select local maxima as candidates of treetops. For example, within a single crown, 
there may be multiple local maxima that result primarily from the real irregularity 
of crowns or partly from random errors in the procedures of creating the CHM; 
therefore over-segmentation is usually observed in such situations. As remedies, 
common strategies are to pre-process the CHM using a smoothing filter, or to merge 
over-segmented regions ad hoc; but too strong filter could possibly smear out small 
trees; as a result, smoothing filters with adaptive parameters are often desired to 
alleviate such situations.

3.3. Unmanned Aerial Vehicles and Systems

	 An Unmanned Aerial System composed of one Unmanned Aerial Vehicle 
and the ground segment was utilized in this work to obtain the appropriate remote 
sensing data suitable for creation of image-based point clouds. This chapter is 
therefore devoted to this technology.

3.3.1. Terminology

	 According to Ministry of Defence of the UK (Joint Doctrine Note, 2010) the 
origins of unmanned aircrafts can be traced back to World War I; but it is mainly the 
last decade that has seen extraordinary development and progress in unmanned 
aircraft technology and capability. Much of the original terminology has, as a result, 
become outdated and manufacturers and operators have created a new descriptive 
language for the aircraft, their capabilities and consequent issues.  As systems have 
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matured, there is an increasing requirement for standardised terminology. It should 
be noted that much existing manned aircraft terminology remains equally relevant 
to unmanned aircraft operations. 
	 An Unmanned Aerial Vehicle (UAV) is a type of aircraft that operates without a 
human pilot onboard. UAVs can be remote controlled aircraft (e.g. flown by a pilot at 
a ground control station) or can fly autonomously based on pre-programmed flight 
plans or more complex dynamic automation systems. The acronym UAV has been 
expanded in some cases to UAVS (Unmanned Aircraft Vehicle System). The Federal 
Aviation Administration (FAA) has adopted the acronym UAS (Unmanned Aircraft 
System) to reflect the fact that these complex systems include ground stations and 
other elements besides the actual air vehicles. The term UAS, however, is not widely 
used as the term UAV has become part of the modern lexicon (TheUAV, 2016).
	 Recent technologies have allowed for the development of many different 
kinds of advanced unmanned aerial vehicles used for various purposes. Many of these 
applications were developed in the military, and the general public has seen UAVs 
evolve as spy or reconnaissance vehicles used during wartime. However, recently 
consumers have also seen rapid development of these types of aircraft for public 
markets. Remote control airplanes and helicopters can also be classified as UAVs 
when they have particular kinds of performance and remote control capabilities 
(Technopedia, 2016).
	 According to UK Ministry of Defence unmanned aircraft grow in numbers 
comparable to, or in future exceeding, manned aircraft. When building a descriptive 
taxonomy to describe such mixed systems, it is logical to use the same root word, 
aircraft, for both. Appropriate prefixes or suffixes might then be added, for example 
to indicate how they are controlled, or to indicate a specific role, capability or 
environment. The generic terms can be defined as follows (Joint Doctrine Note, 2010):
	 An Unmanned Aircraft (sometimes abbreviated to UA) is defined as an aircraft 
that does not carry a human operator, is operated remotely using varying levels of 
automated functions, is normally recoverable, and can carry a lethal or non-lethal 
payload. According to FAA this device excludes missiles, weapons, or exploding 
warheads, but includes all classes of airplanes, helicopters, airships, and powered-
lift aircraft without an onboard pilot. UA do not include traditional balloons, rockets, 
tethered aircraft and un-powered gliders.
	 An Unmanned Aircraft System (UAS) is defined as a system, whose components 
include the unmanned aircraft and all equipment, network and personnel necessary 
to control the unmanned aircraft. Its parts may include control stations, data links, 
telemetry, communications and navigation equipment, control links, support equip-
ment, payloads, flight termination systems, or launch/recovery equipment (Fig. 10.).



37

Fig. 10. A scheme showing integration of Unmanned Aircraft Systems in NASA’s National 
Airspace System Project. Source: NASA Image (2014).

	 Remotely Piloted Aircraft and Remotely Piloted Air(craft) System. Although 
unmanned aircraft is the preferred term in many environments, there are occasions 
when such a generic term is unhelpful.  The term ‘unmanned’ can cause confusion 
or uncertainty over the actual level of human control and has led to safety and legal 
concerns being raised. These concerns can be addressed in part by using terminology 
that describes the level of human control of such aircraft as being equivalent to 
that of piloted aircraft; the pilot is simply physically remote from the aircraft itself. 
Consequently, it may be appropriate to use the term Remotely Piloted Aircraft (RPA) 
to describe the actual aircraft, and Remotely Piloted Air(craft) System (RPAS) to 
describe the entirety of that which it takes to deliver the overall capability. Future RPA 
might carry passengers but not pilots to, for example, provide medical evacuation or 
tactical troop transport.  Such systems would be manned, but remotely piloted. RPA 
and RPAS are defined as follows:
	 A Remotely Piloted Aircraft is defined as an aircraft that, while it does not 
carry a human operator, is flown remotely by a pilot, is normally recoverable, and 
can carry a lethal or non-lethal payload.   
	 A Remotely Piloted Air(craft) System is the sum of the components required to 
deliver the overall capability and includes the Pilot, Sensor Operators (if applicable), 



38

RPA, Ground Control Station, associated manpower and support systems, Satellite 
Communication links and Data Links. 
	 Pilot and Piloted.  The use of the terms pilot and piloted can cause confusion 
when trying to equate unmanned with manned aircraft operations. Some unmanned 
aircraft are required to be controlled by personnel who are already qualified to 
pilot manned aircraft, while most are not. By the standard Concise Oxford English 
Dictionary definition the use of the terms pilot and ‘piloted’ is only technically correct 
where the remote operator is operating the flying controls, which is not the case for 
all unmanned aircraft. An alternative description of ‘operator’ may be used instead, 
if appropriate. As with manned aircraft, where pilots will be qualified to different 
standards, unmanned aircraft pilots may be qualified to fly only certain classes of 
unmanned aircraft.
	 Automation and Autonomy. There are many different industry and academic 
descriptions of what comprises an automatic or autonomous unmanned aircraft. 
The following definitions have been chosen to be as simple as possible, while making 
clear the essential differences in meaning between the two:
	 In the unmanned aircraft context, an automated or automatic system is one 
that, in response to inputs from one or more sensors, is programmed to logically 
follow a pre-defined set of rules in order to provide an outcome. Knowing the set of 
rules under which it is operating means that its output is predictable. 
	 An autonomous system is capable of understanding higher level intent and 
direction. From this understanding and its perception of its environment, such a 
system is able to take appropriate action to bring about a desired state. It is capable 
of deciding a course of action, from a number of alternatives, without depending 
on human oversight and control, although these may still be present. Although the 
overall activity of an autonomous unmanned aircraft will be predictable, individual 
actions may not be. 
	 Any or none of the functions involved in the operation of an unmanned 
aircraft may be automated. Examples include: take-off and landing; navigation and 
route following; pre-programmed response to events such as loss of a command and 
communication link; and automated target detection and recognition. Unmanned 
aircraft which execute some elements of their operation without relying on human 
intervention or control may be described as partially automated. Those which carry 
out their entire mission from take-off to landing without human intervention may be 
said to be fully automated. At the moment, all but the very simplest and most limited 
of unmanned aircraft missions will be partially automated with a human controlling 
most aspects. 
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	 Autonomous systems will, in effect, be self-aware and their response to inputs 
indistinguishable from, or even superior to, that of a manned aircraft.  As such, they 
must be capable of achieving the same level of situational understanding as a human. 
This level of technology is not yet achievable and so none of the currently fielded or 
in-development unmanned aircraft can be correctly described as autonomous. As 
computing and sensor capability increases, it is likely that many systems, using very 
complex sets of control rules, will appear and be described as autonomous systems, 
but as long as it can be shown that the system logically follows a pre-written set of 
rules or instructions and is not capable of human levels of situational understanding, 
then they should only be considered to be automated. (Joint Doctrine Note, 2010).

3.3.2. Unmanned Aerial Systems and their Advantages

	 As describes Puliti et al. (2015) UAS typically consists of 1) an unmanned 
aerial vehicle, 2) a sensor payload (e.g., digital camera), 3) a navigational computer, 
4) a UAV operator with remote controller, and 5) when necessary one or more 
spotters. Such systems have been in use for military purposes for several years, but 
have only recently become available for civilian purposes (Nex & Remondino, 2014). 
In recent years, the civilian market for UASs has increased rapidly and has become a 
highly dynamic and diverse market to meet the objectives of diverse applications. 
	 A variety of flying vehicles is able to transport cameras and / or other sensors 
(Hollaus et al., 2014). Most common forms are small, electrically powered fixed-wing 
planes with wingspans from 1 to 3 meters and rotary-wing multi-rotor platforms 
(e.g. quadcopters, hexacopters or octocopters) or miniature helicopters (Figure 11.). 
Fixed wing UAVs typically have greater speed and longer range, rotary-wing UAVs 
have shorter flight durations, but offer greater manoeuvrability. They are piloted by 
an operator via remote control (RC), assisted by an onboard autopilot. Fixed-wing 
UAVs are typically launched by hand or by catapult, and land with or without some 
form of arresting mechanism, such as a parachute or by flying into a net. Rotary-wing 
UAVs often need some manual operation for take-off, and may or may not require 
manual operation for landing (Whitehead et al., 2014). 
	 According to Wallace et al. (2016) small-size unmanned aerial vehicles (UAVs 
of less than 5 kg) represent a low-cost remote sensing alternative to airborne and 
satellite platforms that, when equipped with suitable sensors, can produce cost-
effective data at local scales (e.g., for areas the size of traditional forest stands up 
to areas of several km2) with an unrivalled combination of spatial and temporal 
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resolution (Matese et al., 2015). Equipping UAVs with sensors capable of detecting 3D 
structure has led to the systems being increasingly used to provide an understanding 
of the structure and variability of forests (Dandois & Ellis, 2013; Jaakkola et al., 2011; 
Lisein et al., 2013; Wallace et al., 2014). UAS environmental applications benefit from 
a greater operational flexibility due to the possibility of acquiring RS data at precise 
moments in time under a variety of atmospheric and accessibility conditions. Due 
to these advantages, rapid growth of the UAS sector is predicted for the next decade 
(Puliti et al., 2015).
	 Hollaus et al. (2014) agrees, that Unmanned Aerial Vehicles are a rapidly 
upcoming method for remote-sensing data acquisition, mostly aerial images and 
derived products. By now, the systems are light-weight and effective, the development 
of the sensors and their reliability enable a relative safe operation with good chance 
of success. UAVs are quickly ready for operation almost anywhere and anytime. 
One of the greatest advantages of this new technique is its high flexibility and the 
relatively low operational costs. The miniaturisation of the sensors and the increasing 
reliability of the navigation systems make UAVs to an instrument for operational 
applications. In contrast to standard aerial imagery, the often even better spatial 
resolution of the data offers possibilities for new developments in image analysis.

Fig. 11. A selection of 100 unmanned aerial vehicles showing the variability of UAVs 
present in the contemporary commercial airspace worldwide. Source: Stephens (2015).
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3.3.3. Surveying Using Unmanned Aerial Systems 

	 Whitehead et al. (2014) describes general principles concerning UAS survey 
and flight planning. The remote sensing workflow for small UASs is essentially an 
adaptation of the same steps and processes used for piloted aircraft surveys, and in 
both cases, aviation regulations place certain restrictions on how the surveys are 
configured. Though each UAS survey is unique in nature, the same generic workflow 
is normally followed. Typically, a UAS survey starts with flight planning (Hugenholtz 
et al., 2013). This stage relies on specialised flight-planning software and uses a 
background map or satellite image to define the survey area (Fig. 12.). Additional 
information is then added, such as the desired flying height, the focal length, shutter 
speed and orientation of the 
camera, the desired amount of 
overlap between images, and 
the desired flight direction. 
The flight-planning software 
will then calculate the optimal 
solution to obtain overlapping 
stereo imagery covering the area 
of interest. During this process, 
the various parameters can be 
adjusted until the operator is 
satisfied with the flight plan. 

	 Once a flight plan has been generated, it is uploaded to the UAS autopilot. The 
instructions contained in the flight plan are used by the autopilot to calculate the 
necessary climb rates and positional adjustments that enable the aircraft to follow 
the planned course as closely as possible. Readings from the GNSS (Global Navigation 
Satellite System) and IMU (Inertial Measurement Unit) are typically logged by the 
autopilot several times per second throughout the flight. The mission itself can run 
fully automatically, wireless communication allows tracking the actual position 
of the platform and adapting the flight plan if possible. A semiautomatic mode or 
manual mode, e.g. for landing, in case of signal loss or other unexpected problems is 
always available. The flight has to be supervised by a qualified pilot, who is able to 
take over the direct control of the UAV anytime. Flight telemetry data are logged and 
either transmitted to the ground station in real time or downloaded after the flight 
(Hollaus et al., 2014).

Fig. 12. A flight plan for a UAV survey showing flight 
route, series of waypoints and expected image overlap 
on the ground. Source: One Drone Cloud (2016).
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	 Whitehead et al. (2014) continues, that on completion of the flight, a log 
file is usually downloaded from the aircraft autopilot. This file contains details 
about the recorded aircraft position and attitude throughout the flight, as well as 
details about when the camera was triggered. The log file from the UAS autopilot 
can be used to provide initial estimates for the position and orientation of each 
image. In addition, it is usual to include a number of accurately surveyed ground 
control points in the photogrammetric adjustment. These usually consist of 
specially placed targets whose position is precisely measured with a GNSS device 
(preferably geodetic) at the time of the UAS survey (e.g., Hugenholtz et al., 2013). 
	 Hollaus et al. (2014) specifies, that automated UAVs are navigated by a 
small onboard GNSS/INS (Inertial Navigation System) unit. The main components 
of the navigation unit are gyroscopes for measuring roll, pitch and yaw rotations 
and thus inclination angles of the platform, air pressure sensor, magnetometer and 
accelerometer. Concerning the accurate positioning of the data being acquired by 
the UAV, he describes, that georeferencing can be done in several ways:
	 - Direct georeferencing (defined as direct measurement of camera position 
and orientation for each image) can be done with telemetry data from the GNSS/
IMU unit (Pfeifer et al., 2012; Blaha et al., 2011). Real time monitoring systems are 
also described by several authors (Kim et al., 2012; Rieke et al., 2011).
	 - Georeferencing with (additional) use of ground control points. In practice, 
extensive field work can be necessary for installation and accurate measurement 
of ground control in rough and densely forested terrain.
	 - Combination of direct georeferencing and ground control. Because of 
the relatively inaccurate position and orientation data from the onboard sensors 
the direct georeferencing method is rarely sufficient without ground control 
measurements. So, GNSS and INS data are used for an initial estimation of the 
exterior orientation parameters (EOP), which can help to speed up the further 
image processing significantly. 
	 Regarding the equipment, Hollaus et al. (2014) describes, that because of 
limited payload and space, UAVs are equipped with light-weight consumer compact 
cameras or DSLRs. They usually deliver images in high quality and resolution, but are 
often unstable concerning the parameters of inner orientation (IOP). This problem 
can be solved, while the camera lens is mechanically fixed or a fixed focal length 
is used. The camera is triggered by the RC and takes images either in predefined 
intervals (eg. every two seconds) or at predefined locations. The images are usually 
stored on a memory card and downloaded after the mission.
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3.3.4. UASs and Photogrammetry

	 Lisein et al., 2013 describes, that along with the rising use of UASs, dense 
three-dimensional reconstruction through the combined use of photogrammetry 
and Structure from Motion (SfM) state-of-the-art techniques has triggered the 
“comeback of photogrammetry”. Indeed, the ubiquitous use of digital photography 
instead of analogue photography and the continuous improvements in computer 
computation power have turned digital photogrammetry into a viable surrogate for 
laser scanning. 
	 The SfM algorithms originate from the field of computer vision and aim to 
automatically determine scene geometry, camera calibration, position and orientation 
from an unordered overlapping collection of images. This results in a sparse 3D point 
cloud and camera orientations that are subsequently used for multi-view dense 
image-matching. Hollaus et al. (2014) continues stating, that it is possible in a highly 
automated way to estimate camera geometry and calculate a 3D model from a set 
of overlapping images, invariant to scale, orientation, distortion and illumination 
changes. Point clouds as a result from image matching can be further processed in a 
similar manner like point clouds from airborne or terrestrial laser scanning and can 
be even combined with laser scanning data.
	 Whitehead et al. (2014) agrees, that the most common non-military 
application of UASs to date has been for large-scale photogrammetric mapping. 
Nevertheless, issues, such as platform stability and the use of nonmetric cameras, 
usually mean that the geometry of the imagery collected is of a lower quality than 
that obtained during traditional photogrammetric surveys carried out from manned 
aircraft (Hardin & Jensen, 2011). UAS surveys also tend to collect images with large 
amounts of overlap. This is partly because the low flying height and comparatively low 
accuracy of onboard navigational sensors, which can lead to significant differences 
between the image footprints estimated during flight planning and the actual ground 
coverage of each image, especially in undulating terrain (Haala et al., 2011; Zhang et 
al., 2011). 
	 Image footprints can also drift from expectation because of changes in the 
roll, pitch, and yaw of the UAV caused by wind and navigation corrections. In spite of 
these drawbacks, the low flying heights normally make it possible to gather imagery 
with few-centimetre spatial resolution. This level of detail combined with low costs, 
flexibility in the timing of image acquisition, and short turn-around times makes 
UAS-based photogrammetry an attractive option for many potential users across a 
broad spectrum of research and professional applications. 
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	 Also Hollaus et al. (2014) discusses, that regarding the processing of UAV-
based, high resolution and small format images, there are a few main differences 
between images from low altitude UAV platform compared to classical aerial 
platforms flying at higher altitudes. He states, that UAVs have:
- Larger rotational and angular variations between images,
- Often not systematic flight lines, due to wind, visibility, terrain conditions,
- Large perspective distortions due to relatively large height differences in a scene,
- Small footprint of the images, therefore a lot of images have to be collected (and 
processed) for a good overlap,
- Parameters of exterior orientation often unknown or not accurate,
- IOP unstable because often light-weight and low-cost compact cameras are used 
	 Whitehead et al. (2014) adds, that UAS imagery is subject to variable scales, 
high amounts of overlap, variable image orientations, and often has high amounts 
of relief displacement arising from the low flying heights relative to the variation in 
topographic relief. For these reasons standard aerotriangulation methods often fail 
for images acquired with UAVs (Haala & Rothermel, 2012). A variety of open-source 
and commercial dense stereo matching tools are now available to deal with these 
challenges. Over the last few years a number of Structure from Motion software 
packages have been developed. The SfM approach uses algorithms originally 
developed for computer vision, such as a Scale-Invariant Feature Transform 
(SIFT), which identifies similar features in conjugate images. Unlike conventional 
photogrammetry, which is bound by rigid geometric constraints, SfM is able to 
accommodate large variations in scale and image acquisition geometry. 
	 Dandois & Ellis (2013) state, that SfM differs from prior photogrammetric 
applications in that camera position and orientation data, that are conventionally 
acquired using GNSS and IMU instruments carried by the aircraft, are removed 
from the 3D modelling equation, and instead the 3D reconstruction of surface 
feature points is determined automatically based on the inherent “motion” of 
numerous overlapping images acquired from different locations. The result is an 
extremely simple remote sensing instrument: an ordinary digital camera taking 
highly overlapping images while moving around or along objects. SfM techniques 
have already proved successful for accurate generating of 3D models of open fields, 
forests and trees from aerial images acquired from a remote-controlled multi-rotor 
aircraft (Rosnell & Honkavaara, 2012; Tao et al., 2011).
	 As adds Wallace et al. (2016), SfM has built onto traditional stereoscopic 
techniques as a result of advances in computer vision algorithms and parallel 
bundle adjustments on graphics processing units. These developments have made 
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it possible to match image features in many overlapping photographs (hundreds–
thousands) acquired from different angles, which makes SfM ideally suited to 
photographs acquired from small UAVs. Whitehead et al. (2014) predicts, that, due 
to the comparatively low cost and ability to handle unconventional imagery, it is 
likely that SfM packages will increasingly become the software of choice for UAS 
photogrammetric surveys.
	 Wallace et al. (2016) specifies, that the use of SfM packages, such as Bundler 
or Agisoft Photoscan allow for a high degree of automation, and makes it possible for 
non-specialists to produce accurate DSMs and orthophoto mosaics in less time that 
it would take using conventional photogrammetric software. Various researchers 
utilize Agisoft PhotoScan in their studies, since it has been proven to be effective in 
the production of dense and accurate point clouds over forest areas (Dandois & Ellis, 
2013; Puliti et al., 2015). Photoscan offers a user-friendly processing pipeline that 
combines proprietary algorithms from computer vision SfM and stereo-matching 
algorithms to accomplish the tasks of image alignment and multiview stereo-
reconstruction (Verhoeven et al., 2012). 
	 Another software package used by scientists recently is Ecosynth (e.g. Dandois 
& Ellis, 2010, 2013). It is a suite of tools for mapping and measuring vegetation in 
three-dimensions using off-the-shelf digital cameras and open-source computer 
vision software, from the ground or using low altitude hobbyist aircraft. Ecosynth 
is capable of generating 3D and spectral imaging data useful for ecological research 
and applications (Ecosynth, 2016). Ecosynth is the entire processing pipeline and 
suite of hardware involved in generating ecological data products, such as canopy 
height models, aboveground biomass estimates, and canopy structural and spectral 
vertical profiles (Dandois & Ellis, 2013). 

3.3.5. Employment of UAS in Forestry 

	 Wallace et al. (2016) prefaces, that remote sensing generally can complement 
existing ground-based techniques, providing spatially representative characteristics 
of investigated forest stands in a more efficient manner. Data captured over varying 
spatial, spectral, and temporal scales has been shown to contain information, which 
can be used to measure and monitor various aspects of a complex forest structure. 
Advances in acquisition of this information have led to high spatial resolution three-
dimensional remote sensing becoming an important tool in forest modelling. 
	 As states Lisein et al. (2013) the recent development of operational small 
unmanned aerial systems opens the door for their extensive use in forest mapping, 
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as both the spatial and temporal resolution of UAS imagery better suit local-scale 
investigation than traditional remote sensing tools. The spatial resolution of UAS 
imagery can easily reach a sub-decimeter ground sampling distance, and the revisit 
period between two acquisitions can be selected in order to fit diverse needs of 
forest management or various scales of ecological phenomena. Small and lightweight 
UASs, in particular, are likely to become a versatile tool also for environmentalists 
and scientists (Anderson et al., 2013; Turner et al., 2012). 
	 Gatziolis et al. (2015) summarizes, that recently unmanned aerial vehicles 
equipped with user-grade cameras and inexpensive GPS devices have emerged 
as a flexible, economic alternative data source that supports the retrieval of tree 
dimensionality and location information. Flying at low altitude above the trees and 
with the camera oriented at a nadir view, UAVs acquire high-resolution images with 
a high degree of spatial overlap. In such conditions, a point on the surface of a tree 
crown or a small object on exposed ground is visible from many positions along the 
UAV trajectory and is depicted in multiple images. 
	 Automated photogrammetric systems based on computer vision SfM 
algorithms explore this redundancy to retrieve the camera location in the moment 
an image was acquired, calculate an orthographic rendition of each original image, 
and ultimately produce a precise 3D point cloud that represents objects (Rosnell & 
Honkavaara, 2012). Dey et al. (2012) underlines, that application of SfM techniques 
on UAV imagery has enabled accurate 3D modelling of forest canopies (Fig. 13.). 

	 Hollaus et al. (2014) adds, that the quick setup, the easy transport and 
operation makes a UAV system a perfect instrument for forest monitoring, because 
of the arbitrary frequency of repeating flights (Häme, 2012). This is also a great 
advantage for detection and assessment of damages from wind (Böhm, 2010), forest 
fire (Casbeer et. al., 2006) or mapping of biotic infections (Böhm, 2010).

Fig. 13. The image-based point clouds gained from images obtained by Unmanned Aerial 
Vehicles by the means of Structure from Motion software. Point cloud on the left represents  
coniferous forest in Finland, point cloud on the right broadleaf forest in Germany. Sources: 
Left image: VideoDrone (2016), Right image: Sperlich et al. (2014).
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	 But at the same time Hollaus et al. (2014) counters, that technical limitations 
can hinder the acquisition of images, especially in remote and steep forested regions. 
For fixed-wing UAVs suitable landing places are required. Narrow, rough forest roads 
or clearings are often the only possibilities in dense forested areas, but bear a high 
risk of damage of the vehicle. In case of no or low-quality GNSS signal, a manual 
flight control can be essential, with all drawbacks for image processing (overlap, 
area coverage, high rotational and angular deviations, oblique images, no exterior 
orientation parameters). Furthermore, ground control points often are simply not 
visible, and are hard to establish or measure by GNSS devices with reasonable 
accuracy in forested areas. 
	 Puliti et al. (2015) adds, that the use of user-grade cameras leads to large 
perspective distortions, poor camera geometry, and a lack of spectral consistency. In 
addition, the use of inexpensive GPSs and the lack of inertial measurement units lead 
to poor positioning accuracy. Forest surveys are further affected by the presence 
of moving objects (swinging tree tops, shade), and pronounced distortion due to 
perspective shown as trees leaning towards the sides of the image. 
	 All these factors posed challenges in the past with respect to 3D geometry 
generation from UAS imagery. Creating suitable image-based point clouds for 
assessing the required forest variables can be therefore a demanding task. As explains 
also Lisein et al. (2013), image matching in an area of vegetation is well known to be 
quite challenging, due to the numerous vegetation characteristics that hinder image 
matching: omissions, repetitive texture, multi-layered or moving objects. The abrupt 
vertical changes occurring between the trees crowns and the microtopography of 
the canopy (characterized by high variations of the relief) cause multiple omissions 
that can mar the dense-matching process.
	 Nevertheless, these issues can be partly or fully overcome, and previous 
investigations have shown that a photogrammetric digital canopy surface model may 
be generated by automatic image matching with a very satisfactory level of accuracy 
and resolution (St-Onge et al., 2008). Puliti et al. (2015) agrees, that the recent 
adoption of SfM algorithms in photogrammetric pipelines has made UAS-SfM systems 
a suitable tool for forest inventory purposes. As already mentioned, compared with 
traditional digital photogrammetry, for which accurate camera interior and exterior 
parameters are a prerequisite, SfM algorithms have the advantage of allowing 3D 
geometry generation from overlapping but otherwise unordered images acquired 
with uncalibrated cameras. 
	 The resulting photogrammetric digital surface models (photo-DSMs) can be 
advantageously combined with a DTM generated from topographic or LiDAR data 
in order to produce a hybrid photo-topo or photo-LiDAR canopy height model. 
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Photogrammetry could be advantageously used to update LiDAR canopy height 
models and to constitute multi-temporal canopy height series. As already mentioned, 
on a local scale, UAS imagery is characterized by a high image overlap and, thus, a 
high level of information redundancy. It therefore has the potential to accurately 
model the canopy surface at a very high spatial (but also temporal) resolution (Lisein 
et al., 2013). 
	 Hollaus et al. (2014) comments, that when using high resolution UAV images in 
forestry, generally the main outcomes of the image-survey are the photogrammetric 
evaluation in terms of derivation of digital surface models and orthorectified image 
mosaics. Like traditional aerial imagery, UAV-based images provide important basic 
data for various subsequent geospatial analyses. For high resolution UAV-based 
images all standard image processing, analyses and interpretation methods are 
used, possibly in combination with other remote sensing data. The images allow 
forest delineation and segmentation on relatively homogenous parts and further 
vegetation mapping (Machala & Zejdová, 2014), or even tree species classification 
(Yu et al., 2006; Gini et al., 2012). 
	 Hollaus et al. (2014) further discusses, that particular attention lies in 
single-tree-extraction, tree crown detection, height estimation or assessment and 
derivation of tree density, age-classes and further structure parameters, like stem 
or timber volume. Such parameters can be derived from point cloud data as a result 
of image matching and are a valuable support for forest inventory as well as for 
forest management (Bohlin et al., 2012b). This also includes silvicultural methods 
and planning and monitoring of harvesting.
	 For vegetation-analyses, besides classical RGB cameras, also other sensors, 
such as near-infrared cameras, multispectral or even hyperspectral sensors, are 
being combined with UAVs. Recently small and light-weight models of sensors are 
offered, which are designed especially for application with UAVs (Bendig, 2012). In 
the last years also spectrometers (Jaakkola, 2010), thermal cameras (Zarco-Tejada, 
2012), radars (Koo et al., 2012), or laser scanners (Esposito et al., 2014), are being 
mounted and tested on UAVs.
	 The application of UAV-borne laser data for forest change detection is 
documented e.g. by Wallace et al. (2012a; 2012b). Jaakkola et al. (2011) tested 
laser data from UAVs for single tree measurements. The application of IR-, hyper-, 
multispectral- or thermal sensors gets also operational, e.g. for estimation of leaf 
area index (Corcoles, 2013), calculation of narrow-band indices for detection of 
water stress in orchards (Zarco-Tejada, 2012), mapping states of vegetation and 
vegetation health (Knoth, 2011) or assessing the temperature (Bendig, 2012).
	 Regarding the practical fields of utilization of the UAV-borne RGB imagery, 
Dandois & Ellis (2013) summarize, that it may be used to observe forest canopy 
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structure and height (Machala & Janata, 2014; Baltsavias et al., 2008). Canopy height 
measurements are of great interest for the monitoring of harvests and recruitment 
(Næsset et al., 2004), the estimation of forest biomass and carbon stock (Corona & 
Fattorini, 2008) and, generally, in ecosystem process modelling. 
	 In the field of multi-source forest inventory, structural forest attributes 
are commonly extracted from the canopy height model by means of regression 
models predicting forest variables with metrics (i.e., descriptive statistic of the 
canopy height model on a particular area) (Næsset, 2002b; Næsset et al., 2004). 
The practical outcomes of utilization of canopy height models, in combination with 
field measurements, are the predictions of forest attributes of interest, such as stand 
density and maturity indicators (Lisein et al., 2013). 
	 The described SfM principles often used for processing UAV imagery relies 
on photogrammetric methods that have already been used for estimating tree height 
from overlapping images acquired using large-format, photogrammetric-grade 
cameras coupled with flight time GPS and IMU data. Including automated feature 
extraction, matching and bundle adjustment (Hirschmugl et al., 2007; Ofner et al., 
2006), these methods are currently being discussed as a highly viable alternative to 
LIDAR for 3D forestry applications (Leberl et al., 2010). 
	 As states Puliti et al. (2015) retrieving the necessary data to plan silvicultural 
activities may be one of several relevant areas of UAS applications. Currently, forest 
inventories in many countries are conducted by adopting an area-based approach 
using a combination of field samples and wall-to-wall airborne laser scanning data 
(Næsset, 2007; Vauhkonen et al., 2014). ALS is cost effective at a large scale, and in 
some countries (e.g. Norway, Finland), this technique has resulted in coordinated 
forest inventories that aggregate a multitude of private forest properties. However, 
in countries where these types of inventories are not carried out, access to accurate 
data at a small scale becomes too costly. Furthermore, for larger forest properties, 
timely and accurate data over specific forest areas are needed in the case of more 
specific pre-harvest, post-harvest, and post-disturbance inventories. 
	 Given this context, the main advantage of UASs is the possibility to map areas 
effectively with very high spatial and temporal resolution, even under cloud cover, 
because UAS flights are often conducted below the cloud layer. Additionally, relevant 
cost reductions can be achieved compared with traditional manned airborne remote 
sensing data acquisitions when the forest inventory areas are small and require a 
high spatial and/or temporal resolution. The use of UASs in forest inventory research 
is also of great interest, especially with respect to the finely detailed, multi-temporal 
component of the data and their potential use in sampling applications (Wallace et 
al., 2014). 
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3.3.6. Recent Studies of Interest

	 Only a very few researchers have used UAS platforms and SfM software for 
image-based point cloud creation for forest inventory purposes so far (e.g. Lisein 
et al., 2013; Dandois & Ellis, 2013; Wallace et al., 2016). Also a review of the main 
achievements of these studies is lacking in the literature (Puliti et al., 2015). The need 
for studying this young phenomenon is therefore obvious. The discovered scientific 
papers dealing with these issues are summed up in this chapter. 

	 Probably one of the earliest studies assessing, besides other quantities, also 
height of trees based on the estimates derived from CHM created using low-cost RS 
device and SfM computer vision, is the study of Dandois & Ellis (2010). Within this 
study, two 100 m × 225 m (2.25 ha) test sites were selected to assess 3D vegetation 
measurements by Ecosynth software against tree measurements made in the field. 
The study plots were divided into a grid of 25 m × 25 m subplots. Test site 1 was 
covered by a mixed-age forest composed of various broadleaf trees. Test site 2 was 
covered by a few-species broadleaf forest. Heights of all trees greater than 12.7 cm 
in DBH were measured across each test site before leaf-off in fall 2009 using a Haglöf 
Vertex laser hypsometer. 	
	 Aerial photographs for Ecosynth were acquired using an off-the-shelf Canon 
A470 digital camera and a kite aerial photography rig composed of an ITW Alpine  
Delta Conyne kite and of 100-lb Dacron kite line (not a UAV). Aerial photographs 
were uploaded into Bundler software for processing into 3D point clouds. Canopy 
height models were produced from the non-ground points in Ecosynth. Summary 
height statistics (CHM height metrics) were calculated across all CHM points with 
height >2 m. The relative accuracy of tree height estimates from Ecosynth CHMs was 
then tested based on the predictive strength of the strongest models obtained for the 
prediction of field-measured mean tree heights (average of the 5 tallest trees in each 
subplot; representative of dominant canopy height) across the set of subplot CHM 
height metrics using stepwise multiple linear regression.
	 Ecosynth predicted field-measured tree heights well at the site 2, where the 
largest terrain errors were observed (Adj. R2 = 0.80, RMSE = 2.9 m), yet performed 
rather poorly at the site 1 (Adj. R2 = 0.53, RMSE = 4.2 m). Since within this study the 
authors assessed only the 5 tallest trees at each subplot, the success rate of individual 
trees identification could not be determined. 

	 Three years later, the same authors presented a new study (Dandois & Ellis, 
2013). This study was carried out across three 6.25 ha (250 m × 250 m) forest research 
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study sites in Maryland USA. First two sites were centred on and expanded from the 
study sites described in the previous study. The third site was then also populated only 
by broadleaved species. Tree location, species, DBH and height of trees greater than 
1 cm DBH were hand mapped within the subplot grid between June 2012 and March 
2013. Tree heights were measured by laser hypsometer during leaf-off conditions 
for the five largest trees per subplot, based on DBH. Subplot canopy height was then 
estimated as the mean height of the 5 tallest trees, i.e., average maximum height. 
	 A hobbyist-grade multi-rotor “Mikrokopter Hexakopter” was purchased as 
a kit, constructed, calibrated and programmed for autonomous flight. The flying 
system included a manufacturer-provided wireless telemetry downlink to a field 
computer, enabling real-time ground monitoring of aircraft altitude, position, speed, 
and battery life. A Canon SD4000 point-and-shoot camera was mounted under the 
hexakopter to point at nadir and set to “Continuous Shooting mode” to collect 10 
megapixel resolution photographs continuously at a rate of 2 frames . s−1. 
	 Three-dimensional RGB point clouds were generated from the sets of aerial 
photographs using a Agisoft PhotoScan software (v0.8.4 build 1289). Agisoft was 
used for its greater computational efficiency over the open source Bundler software 
used previously (Dandois & Ellis, 2010) for vegetation point cloud generation 
(estimated at least 10 times faster for photo sets >2000). The authors also used 
Ecosynth software for vegetation structure measurements and derived also DTMs 
from the point cloud data using Ecosynth. 
	 At all sites, Ecosynth CHM metrics were compared with field measured heights 
of the five tallest trees within each subplot using simple linear regressions. At the 
sites 1 and 2, results demonstrate that Ecosynth CHMs adequately predicted field-
measured average maximum height, when either Ecosynth leaf-off (R2 0.82–0.83) 
or LiDAR DTMs (R2 0.83–0.84) were used. When Ecosynth leaf-on DTMs were used, 
the quality of canopy height predictions was lower (R2 0.62–0.67). For the third site, 
Ecosynth predictions were very low for all DTMs (R2 0.07–0.30). For Ecosynth, field 
height prediction errors with the leaf-off DTM (3.9–9.3 m RMSE) were generally 
higher than when the LiDAR DTM was used (3.2–6.8 m RMSE) but lower than when 
the leaf-on DTM was used (7.1–10.9 m RMSE). Similarly as in the previous study, the 
numbers of identified trees were not the subject of research. 

	 Lisein et al. (2013) carried out a forest inventory in autumn 2012, in order to 
compare digital canopy height models with field measurements. The forest inventory 
used variable-area circular plots installed on a systematic grid and focused exclusively 
on deciduous stands. The plot radius was adapted to keep to a minimum number of 
20 trees and ranged between 7.4 m and 18 m (10 ares) in the case of low tree density. 
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For each plot, dominant height (hdom) was calculated as the average of dominant tree 
heights, which have to be representative of the 100 tallest trees per hectare. The 
number of dominant trees measured varied for each plot and corresponded to the 
number of the plot area plus 1 (e.g., 11 dominant trees were measured on a plot of 
10 ares). In total, 36 plots located in irregular deciduous stands were inventoried.
	 A fixed-wing UAV Gatewing X100 was employed in this study, equipped 
with Ricoh GR3 still 10-megapixel camera adapted for near-infrared acquisition. 
For the SfM processing of the acquired data authors used the open source toolbox, 
MICMAC software, developed by the French mapping agency (the National Institute 
of Geographic and Forestry Information). An ABA was used to model hdom, and an 
individual tree crown approach was used for single-tree height.
	 The ABA results showed adjusted R2 of 0.82 and RMSE of 1.65 m. For the 
individual tree crown approach, concerning 86 field-measured trees, the results were 
slightly better, with adjusted R2 value of 0.91 and RMSE of 1.04 m. Unfortunately the 
authors do not state how many dominant trees they measured within their study 
plots together, or based on what key those 86 trees whose height was assessed, were 
selected. Therefore the success rate of the detection of individual trees cannot be 
evaluated. 

	 In another study Puliti et al. (2015) used a research area in a Norwegian 
boreal mainly coniferous forest. Field measurements were conducted in 38 circular 
fixed-area sample plots (400 m2). The plot data were collected by measuring the DBH 
for all trees with DBH ≥ 4 cm. Sample trees for height measurements were selected 
based on a probability proportional to stem basal area and height measured using 
a Vertex hypsometer. For trees without height measurements, height was predicted 
using height-DBH models. 
	 In this study, a SenseFly eBee fixed-wing UAV was used for the remotely 
sensed data acquisition. The eBee was equipped with a Canon S110 near-infrared 
camera as the payload. Authors used the proprietary software Agisoft PhotoScan 
Professional Edition 1.1.0 (64 bit) to generate 3D dense point clouds from the entire 
set of images.	The accuracy of the predictions of statistical models was validated at a 
plot level using leave-one-out cross-validation (CV). For each biophysical property of 
interest, the selected independent variables were used to fit the models to the field 
data by iteratively leaving one observation out at a time. The estimated parameters 
were then used to predict each variable of interest for the remaining observation. 
The root mean square error (RMSE) and mean difference (D̅) were determined. 
	 The leave-one-out CV of the selected models revealed that the errors with 
respect to the RMSE for Lorey‘s mean height (i.e. mean height weighted by basal 



53

area; referred as hL) were limited to 1.5 m and with respect to dominant height 
were limited to 0.7 m. Adjusted R2 then was 0.68 for hL and 0.95 for hdom. The mean 
difference had an absolute value of maximally 0.36 % of the ground reference value. 
As the authors confess, the error was larger for stem number, for which the RMSE 
was 538 trees . ha−1 which is 39.2 % (!) compared to field-measured counts.

	 A few more studies assessing vegetation height based on SfM principles 
applied on UAS image data was found. Briefly, their core methods and findings are 
following. The study of Zahawi et al. (2015) was focused on the use of lightweight 
UAVs to monitor tropical forest recovery while assessing also the height of trees. 
This study was carried out at 13 1-ha restoration sites established in tropical 
premontane wet forest zone. Images were acquired using a commercially available, 
hobbyist ‘multirotor hexacopter’ UAV (not further specified) equipped with Canon 
ELPH 520 HS ‘point-and-shoot’ digital camera pointed at nadir. 3D multispectral RGB 
point clouds (mean density 55 points . m-2) were generated from the digital images 
collected at each site using Agisoft PhotoScan software. The median Ecosynth height 
metric was the best overall predictor of field height for CHM with R2 equal to 0.87 
and RMSE equal to 1.37 m. 
	 Another study dealt with using UAV imagery to assess olive tree crown 
parameters (Díaz-Varela et al., 2015). Two olive tree plantations were studied, one 
with trees in 4 x 2 m grid, another with 3.75 x 1.35-m spacing between trees (narrow 
hedgerow). The UAV platform used for image acquisition was a 2-m wingspan fixed-
wing platform with up to a 1-h endurance, equipped with Panasonic Lumix DMC-GF1 
camera. The pix4UAV software was used to generate each orthomosaic and the DSM 
for each orchard. Tree height was retrieved from the DSM based on the identification 
of local maxima, likely to correspond to tree tops. Linear fits of the measured vs. 
estimated height at the individual tree/hedgerow level showed an R2 = 0.07 only and 
RMSE = 0.45 m at study plot 1 (isolated trees), while at study plot 2 (hedgerows), 
it reached the value of R2 = 0.53 and RMSE = 0.20 m. Numbers of trees were not 
assessed in this study. 
	 A case study of Wallace et al. (2016) then analysed data collected from a 30 x 
50 m plot in a dry eucalypt forest with a spatially varying canopy cover. The UAV used 
in this study was a multi-rotor Droidworx Skyjib Oktokopter equipped with Canon 
550D digital 18 Megapixel single lens reflex (DSLR) camera. The image data were 
processed in Agisoft Photoscan v1.0.0. The SfM dataset contained sufficient spatial 
detail on the upper canopy to manually identify 112 tree top locations from 136 
measured trees (82.4 %). The correlation found between field-measured and point 
cloud measured individual trees height reached R2 = 0.68, the RMSE was 1.30 m. 
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	 The last relevant study found in scientific journals is a brief research of 
Sperlich et al. (2014) studying the potential of UAV-based photogrammetric point 
clouds for single tree detection. A coniferous (1.11 ha) and a broadleaved (1.28 ha) 
forest stands were situated in Germany. The utilized UAV was a octocopter MK Okto2 
equipped with Panasonic Lumix G3. The DSM and DTM were calculated from the 
point cloud using TreesVis software. The tree crowns were detected manually based 
on visual interpretation of the data. The 1m and 2 m radii were created around each 
reference tree to seek for the modelled trees within them. On a deciduous study 
plot only 16 trees were detected, out of the 120 reference trees, for the 1 m search 
radius (i.e. 13.3 %) and 36 for the 2 m search radius (i.e. 30 %). The average success 
rate was therefore 21.65 % for broadleaf trees. On the coniferous study plot 192 out 
of 219 trees was detected within the 1 m radius (i.e. 87.7 %) and 198 trees were 
detected within the 2 m radius (i.e. 90.4 %). That makes the average of 89.05 % of 
detected coniferous trees. 

	 The pertinent information from the described research articles and the 
achieved accuracy of results of height assessment are summed up in the Table 1. 

Table. 1. The significant information and summarized results characterizing the discovered 
recent research papers focused on the assessment of height of trees using the image-
based point clouds from UAV and various SfM software. B stands for Broadleaf trees, C for 
Coniferous trees, tr. means tropical and pl. means plantation. 

Authors 
& Year Forest UAV Software Height: 

R2
Height: 
RMSE

Matched 
Trees

Dandois 
& Ellis (2010) B kite

(not "UAV")
Bundler 

& Ecosynth 0.53 - 0.80 2.9 m - 4.2 m –

Dandois 
& Ellis (2013) B hexacopter Agisoft PS 

& Ecosynth 0.07 - 0.84 3.2 m - 10.9 
m –

Lisein et al. 
(2013) B fixed-wing MICMAC 0.82 (ABA) 

0.91 (ITA)
1.65 m (ABA) 
1.04 m (ITA) ?

Sperlich et al. 
(2014) B & C octocopter TreesVis – – 21.7 % (B) 

89.1 % (C)
Zahawi et al. 
(2015) B - tr. hexacopter Agisoft PS 

& Ecosynth 0.87 1.37 m ?

Díaz-Varela 
et al. (2015) B - pl. fixed-wing pix4UAV 0.07 - 0.53 0.20 m - 0.45 

m –

Puliti et al. 
(2015) C fixed-wing Agisoft 

PhotoScan 
0.68 (hL) 

0.95 (hdom)
1.5 m (hL)

0.7 m (hdom)
rel. RMSE 
= 39.2 %

Wallace et al. 
(2016) B octocopter Agisoft 

PhotoScan 0.68 1.30 m 82.4 %  
manually
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4. Methodology

	 The methods applied in this work could be divided into several parts, 
all generally focused on studying particular characteristics of selected forest 
stands. The first part involved selection of forest study plots and thorough field 
measurements of trees present on them with the emphasis on measuring their 
height and also their position. These study plots were then the subject of UAV flight 
campaigns acquiring the images suitable for further photogrammetric processing. 
A parallel part then consisted of development and programming of unique software 
tool enabling to calculate the height of trees based on the remote sensing data, its 
application on the own data from the UAV, statistical comparison with the field-
measured data and assessment of the results. 

4.1. Characterisation of Research Area

	 Array of measurements of forest stands and series of UAV flight campaigns 
for photographing these stands were performed for the purposes of this work. 
All of those operations were held on a Training Forest Enterprise (TFE) Masaryk 
Forest Křtiny belonging to Mendel university in Brno. The enterprise is situated in 
the Czech Republic, in the South-Moravian District, north-east of the city of Brno - 
the second largest city in the country (Figure 14.). 
	 The TFE spreads over 10  492 ha of land with the forest land covering 
10 265 ha. The forests are situated at altitudes ranging from 210 to 575 meters 
above sea level and are characteristic with a variety of natural conditions, which 
predetermined the establishment of the special-purpose facility of the university. 
The area which is dominated mostly by mixed woods with 46  % of coniferous 
and 54 % of deciduous tree species contains 116 forest types situated in 4 forest 
altitudinal vegetation zones. 
	 Mean annual temperature of 7.5 °C and mean annual precipitation of only 
610 mm are limiting factors. Topography is very broken with deep-incised valleys 
and glens, especially those of the Svitava river and the Křtinský potok brook. Parent 
rock is formed by granodiorites, Culmian greywackes and limestone. About a third 
of the TFE area is situated within the Protected Landscape Area of the Moravian 
Karst. Main local tree species are spruce, pine, larch for conifers and beech and oak 
for broadleaves (TFE Křtiny, 2013).
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	 The field activities in this work were situated mainly around towns Kanice, 
Řícmanice, Bílovice nad Svitavou, Soběšice, Ořešín, Útěchov, Vranov, Adamov, 
Babice nad Svitavou, Habrůvka, Křtiny and Březina. 

Fig. 14. The localization of the Training Forest Enterprise (purple borderline) in the context 
of the Czech Republic (top-left corner - topographic map) and the city of Brno (bottom-
left corner - road map). The background orthophoto is supplemented with boundaries of 
individual municipalities (red borderlines and yellow names). The shapes of terrain in the 
TFE area are accentuated using a shaded relief. The 20 study plots are depicted by the 
green circles which are numbered with Roman numerals. Source of maps and background 
layers: WMS servers of CENIA (2015) and ČÚZK (2015).

4.2. Specification of Study Plots

	 Field measurements of relevant tree parameters were performed as an 
essential part of this work. Besides the health status and species determination of 
each tree of interest, a height of the tree was measured together with diameter at 
breast height (DBH). Also the exact positions of all the studied trees were measured 
using the total station. To embrace a sufficient variability of forest stand properties 
such as species composition, age of the trees, terrain conditions etc., together 20 
different study plots were established to perform the measurements. 
	 The study plots had circular shape and varied in size from minimal required 
area of 1000 m2 (diameter 35.68 m) to maximally 3300 m2 (diameter 64.82 m). 
The sizes of particular study plots can be seen in Table 2. The minimal required 
amount of trees in a single plot was 60 as being a double of conventional statistical 
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minimal sample size. Only trees with DBH larger than 7 cm were taken into account, 
according to Czech national forest inventorying standards (UHUL, 2003). If the 
basic plot area of 1000 m2 did not contain the required amount of trees, the size of 
the plot was enlarged (with the step of 100 m2) until the amount of at least 60 trees 
was reached.
	 The field measurements were performed between August and October 
2014, which is during the leaf-on season.  The age of stands was ranging from 31 
to 141 years. (The age was ascertained from the Forest Management Plan (FMP) 
of Masaryk Forest Křtiny. The plan was created in 2012 with the validity from 
1.1.2013 to 31.12.2022. Since the age data about the forest stands in the FMP were 
related to year 2012, two years had to be added to gain the correct age in the year 
of the measurements). The stand ages can be seen in Table 2. 
	 The localisations of the study plots were selected based on the multiple-
criteria decision analysis. The most important variables were the species 
composition, age of stands, shape and minimal size of stands, slope of the terrain 
and accessibility. Last but not least, the proximity of an open area suitable for 
launching and landing of the UAV with good viewing conditions for the pilot had to 
be taken into the consideration. Based on these criteria a variety of  forest stands 
with required properties was determined. The stands were then visited and some 
of the unsuitable stands were discarded - usually because of the presence of very 
dense undergrowth which would make the measurements enormously complicated 
or even impossible. 
	 In the end 20 study plots were established to perform the measurements 
and to be photographed by the UAV. These particular plots were situated in the 
heights between 310 and 500 meters above sea level. By the analysis of a Digital 
Terrain Model (DTM 5G - see chapter 4.6.3.  Auxiliary data) some terrain conditions 
were ascertained and derived. The average slope ranged between 1,1 and 28,5 
degrees and the shapes of terrain varied from almost flat areas to very curved and 
steep terrain. Since the slope of terrain does not give overall information about the 
terrain conditions, also the curvature values were calculated for each plot. The rate 
of terrain curvature was calculated as a range of curvature values, which means as 
the difference between maximal and minimal values of the second derivatives of 
the surface. The quantity was reaching values from 0,4 on flat areas to 13,8 on 
curved areas (dimensionless units). Slope and curvature rate values are visualised 
in Figure 15. The values calculated for each plot can be seen in Table 2. 
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Table 2.  List of the 20 study plots showing ages of the forest stands, areas of the circular 
study plots and various terrain characteristics such as average altitude, slope of the 
terrain or a rate of its curvature.
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Plot Number 

Average slope 
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Plot 
Number

Age of the 
Stand 

(2014)

Area of the
 Plot (m2)

Average 
Slope (°)

Average 
Altitude 
(m.a.s.l.)

Curvature 
Rate

I. 61 1 000 3.60 361.53 0.38
II. 61 1 000 3.13 365.18 1.26
III. 102 1 300 3.81 376.51 4.29
IV. 102 1 300 2.97 384.31 1.52
V. 70 1 000 4.49 360.01 0.50

VI. 76 1 000 3.68 381.67 0.64
VII. 99 3 300 1.99 487.29 0.41
VIII. 92 1 500 1.09 499.44 1.26
IX. 92 1 500 12.16 443.53 6.82
X. 47 1 000 8.73 453.23 1.37
XI. 125 2 000 25.14 457.92 13.80
XII. 141 1 500 23.34 310.01 7.04
XIII. 90 1 200 4.20 360.56 0.55
XIV. 90 1 200 3.53 361.18 1.91
XV. 100 1 200 6.80 360.95 1.32

XVI. 31 1 000 4.25 441.95 0.47
XVII. 31 1 000 9.10 435.72 0.83
XVIII. 71 1 400 6.81 437.67 1.14
XIX. 36 1 000 4.37 443.05 0.44
XX. 110 1 300 28.48 365.83 7.00

Fig. 15. A diagram showing the average slope of the terrain in degrees together with the 
rate of terrain curvature (non-dimensional quantity) calculated for each study plot. 
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4.3. Forest Stands Measurements

4.3.1. Equipment

	 Two different total stations and two different high-accuracy GNSS devices 
were employed for the geodetic measurements in this work. Also one hypsometer 
was utilized for measuring tree height. Particularly following devices were used: 

 Total station TOPCON GTS-105N (Fig. 16.) having specification (TOPCON, 2007):•	

Distance Measurement:
   • Range 1 / 3 / 9 prism: 2000 m / 2700 m 
      / 3400 m
   • Accuracy: ±(2 mm + 2 ppm x D) m.s.e.
Angle Measurement:
   • Method: Absolute encoder reading
   • Detecting system: H:2 sides V:1 side 
   • Accuracy: 1.5 mgon (5”)
Telescope:
   • Length: 150 mm
   • Objective Lens Diameter: 45 mm 
   • Magnification: 30x
   • Resolving Power: 3’’

 Total station TOPCON GPT-9003M (Fig. 17.) with specification (TOPCON, 2008):•	

Distance Measurement:
   • Range 1 / 3 / 9 prism 3000m / 4000m 
      / 5000m
   • Accuracy: ±(2 mm + 2 ppm x D) m.s.e.
Angle Measurement:
   • Method: Absolute encoder reading
   • Accuracy: 1 mgon (3”)
Telescope:
   • Magnification: 30x
User Interface:
   • OS Microsoft Windows® CE.NET 4.2
   • Processor Intel PXA255 400 MHz

Fig. 16. Total station TOPCON
Green Label GTS-105N.

Fig. 17. Motorized total station 
TOPCON GPT-9003M.
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 GNSS receiver TOPCON HiPer Pro (Fig. 18.) with description (TOPCON, 2004):•	

   • 40 channel, dual frequency, dual-
      constellation RTK GPS+ tracking
   • Tracking Channels (TCH) Standard:     
      40 L1 GPS (20 GPS L1+L2)
   • Optional TCH: 20 GPS L1+L2 (GD),  
      GPS L1 + GLONASS (GG), 20 GPS 
      L1+L2+GLONASS (GGD)
   • Performance: Static, Rapid Static: 
      H: 3 mm, V: 5 mm + 0.5 ppm
      RTK: H: 10 mm, V: 15 mm + 1 ppm

   Used with controller TOPCON FC-200 with specification (TOPCON, 2006):
   • Microprocessor Intel PXA270 XScale, 520 MHz, Memory 256MB SDRAM
   • Operating System Windows® CE.NET 5.0, Connectivity: Built-in BluetoothTM

   • TopSURV GPS+ Integrated Controller Software 

 GNSS receiver / controller TRIMBLE GeoExplorer 6000 Series GeoXH™ Handheld  •	

 (Fig. 19.)  with following specification (Trimble, 2011):
   • 220 channel dual frequency receiver 
      with real-time H-Star technology
   • GNSS Receiver Trimble Maxwell™ 6 
   • Systems GPS (L1C/A, L2C, L2E),  
      GLONASS (L1C/A, L1P, L2C/A, L2P)
   • GNSS Accuracy (HRMS): 
     Real-time H-Star: 10 cm + 1 ppm
     Real-time code corrected VRS or  
      local base 75 cm + 1 ppm
   • Processor TI OMAP 3503
   • RAM 256 MB, Flash 2 GB
   • OS Windows Mobile® 6.5 (Professional edition), Integrated Wi-Fi Bluetooth® 
   • TerraSync™ Trimble GPS Controller software

   Used with Trimble Zephyr 2 antenna having this specification (Trimble, 2008):
   • Frequencies: L1/L2/L5/G1/G2/LBand/E1/E2/E5ab/E6; 1176 to 1575 MHz
   • Signal Tracking: GPS, Glonass, OmniSTAR, SBAS (EGNOS), Galileo

Fig. 18. TOPCON HiPer Pro GNSS receiver 
(left) and TOPCON FC-200 Windows field 
Bluetooth controller (right).

Fig. 19. Trimble GeoXH 6000 GNSS receiver 
handheld (left) and Trimble Zephyr 2 broad 
frequency tracking antenna (right).
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 Laser rangefinder / hypsometer TruPulse 360B (Fig. 20.) having following  •	

  specification (Laser Technology, 2004):
    • Professional laser rangefinder which
       measures horizontal distance (HD),
       vertical distance (VD), slope distance
       (SD), height (HT), inclination (INC),
       missing line (ML) and azimuth (AZ).
   • Optics: 7x magnification, In-scope LCD
   • Field of View: 100 m @ 915 m away
   • Built-in Targeting Modes: Closest,  
      Farthest, Continuous and Reflector
   • Max range to reflective targets:  
      2000 m; to non-reflective targets: 1000 m
   • Accuracy: Azimuth: ± 1.0°; Inclination: ± 0.25° typical; Distance: ± 30 cm to 
      typical   targets, ± 0.3 to 1 m to very distant, weak targets.

4.3.2. Measurements of Trees 

	 The procedure of the field measurements was following. First of all the centre 
of the circular plot was allocated and stabilized by the wooden stake. The stake 
was numbered and its position was measured by a metal tapeline in the relation 
to at least three nearest trees, and documented. Subsequently a total station was 
used and a polygonal traverse was led from the stake to a nearest open area where 
another two stakes sufficiently distant from each other could be stabilized and 
localized by a high-accuracy GNSS device. The position of these stakes was then 
measured by geodetic GNSS devices TOPCON HiPer Pro (Figure 18.) and TRIMBLE 
GeoExplorer 6000 (Figure 19.).
	 As the centre of the new study plot was geodetically localized, the radius of 
the plot was determined. The minimal radius was set to 17.84 m, which corresponds 
to the area of 1000 m2. In 8 cases this area was sufficient already as it contained 60 
or more  (up to 110)  individual trees; in other cases the area had to be enlarged to 
reach this amount of trees. After demarcation of the area of interest, all the trees 
within the circular borderline were given a paper label with an individual number. 
The trees were numbered in a spiral, from plot centre to the border. Only trees 
with a DBH over 7 cm were numbered and inconvenient trees with smaller DBH 
were not taken into the consideration. 

Fig. 20. Laser rangefinder / hypsometer 
TruPulse 360B from Laser Technology Inc.
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	 When the preparation of the study area was complete, the species of each 
tree was determined and recorded into a table. In the case the tree was noticeably 
leaning or curved, it was recorded as well. Also when some damages (e.g. leafless 
crown top) or abnormalities (such as double trunk) were recognized on the tree, 
it was written as a comment to the particular field. Examples of several typical 
abnormalities can be seen in Figure 21. Afterwards the required measurements 
were performed (Figures 22. - 26.). 

Fig. 21. Most common tree abnormalities such as double trunks or highly leaning trunks. 

	 First of all the diameter at breast height was measured using a caliper. The 
diameter was measured always twice in mutually perpendicular positions and the 
average of both gained values was counted as a final DBH. In several cases, when 
the diameter of measured tree was larger than the range of the caliper (which was 
60 cm) a circumferential tape was used to measure the DBH. The recorded accuracy 
of the DBH measurements was 1 cm. Since the DBH was measured mainly for the 
purposes of a parallel study, these data were not fully utilized in this work and were 
used mainly to decide which trees should be accepted for further measurements 
based on the minimal DBH. 

Fig. 22. Measurements of the tree parameters shown on two different study plots. 
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	 Besides the DBH, the height of trees as a principal parameter in this work, was 
measured. All the heights were measured using a TruPulse 360B laser rangefinder 
/ hypsometer device (Fig. 20.). The measuring person was usually standing in the 
distance of about one tree height far from the trunk or further. The height was 
measured by the device in three steps. First of all the horizontal distance to the 
trunk was measured by the laser pulse (Fig. 23.).  If the trunk could not be hit by 
the pulse in the horizontal level, the device calculated the horizontal distance itself 
based on the actual measured slope distance and the inclination, when measuring 
in the HD (Horizontal Distance) mode. 
	 In the second step the base of the tree was focused and the bottom angle 
was measured. If the base was not sufficiently visible from the observation position 
(e.g. because of the presence of the dense undergrowth), the assisting person could 
place a sign on the nearest visible point on the ground preserving the distance 
between the measuring person and the trunk. Then the measuring person could 
focus on this sign and measure the correct angle in this way.

Fig. 23. Measurements of tree height (left) and other parameters at various study plots. 

	 Afterwards the top of the tree was aimed by the device and the upper angle 
was measured. In the case that the treetop was not visible well (e.g. was partly 
hidden by other trees), usually a new observation point had to be chosen since 
there is no accurate way how to measure the proper angle in such case. Sometimes 
the thinner trees were shaken by the assisting person to make the apex of the tree 
of interest more evident. When measuring the conifers, the treetop was considered 
the highest living verticil of the tree. In the case of broadleaved trees the highest 
living part of the crown was the target of the measurements.
	 When all the values - horizontal distance, bottom angle and upper angle were 
measured, TruPulse automatically performed the triangulation and calculated the 
final height of the tree. The device was measuring with the accuracy of 0.1 m. The 
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height of each tree was measured at least two times from mutually perpendicular 
observer points and the gained values were averaged. 
	 When the tree was leaning or there were not very ideal observing conditions, 
three up to seven measurements were performed from suitable positions to 
calculate the average. On a steep terrain the observer positions were situated 
preferably along the contour line on both sides of a tree. In the case of leaning 
trees, the observer positions were situated on the perpendiculars to the direction 
of leaning. When enough measurements were performed for each tree, the resulting 
average values were recorded into a table. The final height values were recorded 
with rounding to 0.5 m. 

Fig. 25. Geodetic measurements of the positions of the trees on different study plots. 

Fig. 24. The total station situated 
above the wooden stake just at the 
plot centre, ready for measurements 
of the positions of all the trees being 
thoroughly examined.

	 The last ascertained property of the trees 
was their position. The precise location of each 
single tree was geodetically measured using the 
total station (Fig. 24., 25.). Two total stations, 
particularly TOPCON GTS-105N (Fig. 16.) and 
TOPCON GPT-9003M (Fig. 17.) were utilized 
for this purpose. The total station was on each 
study plot positioned into the plot centre just 
above the central wooden stake (Fig. 24.). The 
assisting person then put the ranging pole of 
defined height with attached reflective prism 
on a proper place beside each tree just next 
to the trunk centre (i.e. on an imaginary circle 
intersecting the trunk midpoint and having the 
center in the total station). The operator then 
measured the position of the prism. 
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	 Since the total station allows to make a 
horizontal offset, the middle of the trunk was 
subsequently aimed by the total station and up 
to now the particular measurement was finished 
and saved (Fig. 26.). This technique ensured, 
that the precise position of the trunk centre was 
measured. In this way all the numbered trees in 
the study area were localized one by one. When 
any distant tree was hidden by some nearer tree 
the ranging pole was put to the closest visible 
place next to the tree and the trunk middle was 
localized using a larger horizontal offset. When 
the tree was obviously leaning, the measuring 
procedure did not change, but the direction of 
the leaning was noted. 

Fig. 26. Geodetic measurements of 
the tree trunk centre with a total 
station using a horizontal offset.

4.4. Data Acquisition Using Unmanned Aerial Vehicle

4.4.1. Equipment   

	 All the twenty study plots, in which all the trees were thoroughly manually 
measured, were also examined by the means of remote sensing. One remotely piloted 
aircraft system (RPAS) equipped with appropriate digital cameras was deployed 
for this mission. Particularly system composed of following elements was utilized: 

 A professional UAV Hexa-Rotor Platform DJI Spreading Wings S800 (Fig. 27., 28.) •	

having specification (DJI, 2015):
• 6 Rotors and Carbon Fibre Propellers

Carbon Fibre Frame:
   • Diagonal Wheelbase: 800 mm
   • Total Weight: 2.6 Kg
Flight Parameters:
   • Takeoff Weight: 5.0 Kg ~ 7.5 Kg
   • Load Weight: 0 Kg ~ 2.5 Kg
   • Power Battery: LiPo 16 000 mAh
   • Hover Time: Max: 18 min

Fig. 27. Unmanned Aerial Vehicle (UAV) DJI 
Spreading Wings S800.
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Components:
   • Main flight Controller (MC)
   • Inertial Measurement Unit (IMU)           
     containing a 3-axis accelerometer,      
     a 3-axis angular velocity meter and  
     a barometric altimeter.
   • GPS module with embedded digital 
      compass
   • Power Monitoring Unit (PMU)
   • Electronic Speed Controllers (ESC)
   • On-Screen Display (OSD) iOSD MK II  
      module with 5.8 GHz Video Link Kit     
      DJI AVL58       
   • Telemetry module LK24 with 2.4    
      GHz Bluetooth Data Link  Fig. 28. Landing DJI S800.

 Microcomputer Radio Remote Control System composed of  Graupner MX‑20 HoTT •	

Transmitter and Graupner GR-24 HoTT Receiver with following specifications 
(Fig. 29), (Graupner, 2015):

Transmitter:
   • 12 channels (4 x trim)
   • Modulation: 2,4 GHz FHSS HoTT
   • Range: 4000 m 
   • Operating voltage: 3,4 - 4.8 V 
   • Charging rate: 210 mA 
   • Battery: built-in NiMH 2000 mAh 
Receiver:
   • 12 channels 
   • Modulation: 2,4 GHz FHSS HoTT 
   • Operating voltage: (2,5) 3,6 - 8,4 V 
   • Charging rate: 70 mA 

Fig. 29. Graupner MX-20 HoTT Transmit-
ter with attached display showing live im-
age and telemetry UAV data.

  Two Graupner transmitters were 
utilized, one for UAV remote control, 
another equipped with external display 
receiving data from the OSD unit.
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 DJI Ground Station PC Software for route planning and waypoint setting (Fig. 30.), •	

(DJI, 2015b):
   • Adjustable Properties: Altitude, Latitude, Longitude, Forward Flight Speed,  
      Turn Mode, Head Degree, Hold Time
   • Assignments: Camera Shutter, Gimbal Control, Airdrop Control, General 
      Purpose Control
   • Flight Instruments: General 
Speed Indicator, Attitude 
Indicator, Signal Strength 
Indicator, GPS Coordinates 
Indicator, Helicopter Position 
Tracker, Pitch Position, Throttle 
Position, Servo Voltage
   • Communication: 
Hardware Interface: RS-232,  
Radio Frequency: 2.4 GHz, Data-
Throughput: Max. 115,200 bps.

Fig. 30. The laptop with running DJI Ground Station 
software during the actual flight operation.

 Two Sony NEX-5R Cameras mounted on the DJI S800 (Fig. 31.), (Sony, 2015): •	

   • Imaging Sensor: Exmor™ APS-C HD CMOS sensor (23.5 X 15.6 mm)
   • Effective Picture Resolution: 16.1  
      megapixel
   • Focal Length Conversion Factor: 1.5x
   • Colour Filter System: RGB primary 
      colour filters
   • Color Space: sRGB, AdobeRGB
   • Still Image Mode: JPEG (Standard, Fine),   
      RAW
   • Still Image Size: 4912 x 3264 (3:2, 16M)
   • ISO: Auto 100 - 3200, 
      Selectable 100 - 25600
   • Shutter Speeds: 1/4000 to 30s (Bulb)
   • Battery Type: InfoLITHIUM® 
      NP-FW50 (7.2V)

Fig. 31. Two Sony NEX-5R cameras with Voigtländer Super Wide Heliar 15 mm lenses 
mounted on the DJI S800 machine. One camera shooting in NIR, the other in RGB bands.
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 Hoya R72 Near-Infrared Filter (blocking visible light) (Fig. 31., 32.), (Hoya, 2015):•	

   • Blocking wavelengths 
      below 720 nm
   • Transmits 50 % of light at  
      the wavelength of 750 nm
   • Transmits 90 % of light 
      from 800 nm up to longer 
      wavelengths
   • Filer diameter: 52 mm

 Two Voigtländer Super Wide Heliar Aspherical II 15  mm Lenses (Fig. 31.), •	

(Voigtländer, 2015):
   • Lens Construction: 8 elements in 6 groups
   • Focal Length: 15 mm
   • Aperture Ratio: 1:4,5
   • Minimum Aperture: F 22

   • Minimum Focus: 0,5 m
   • Angle of View: 110˚
   • Mount: M-Bayonet
   • Filter Size: 52 mm

Fig. 32. Transmission curve of R72 filter (blue line).

   • Max. Write Speed: 250 MB/s
   • Max. Read Speed: 280 MB/s

	 As two digital cameras were utilized during the flights, each of them was 
capturing different part of the electromagnetic radiation. One camera had the Hot-
Mirror (a built-in filter blocking near-infrared (NIR) light generally used in digital 
cameras) manually removed, so that also NIR light could be captured by the CMOS 
sensor in required amount. The lens of that camera was at the same time equipped 
with the NIR filter Hoya R72 which was efficiently blocking all the electromagnetic 
radiation with the wavelengths shorter than 720 nm (which is all the visible light and 
the UV radiance, see Fig. 32.). As a result mainly near-infrared light was captured by 
that particular camera. 
	 The second camera was not adjusted anyhow, so it was recording images in 
standard RGB colours. Both cameras were put together by their bottoms, so that 
their lenses were in one axis and as close to each other as possible. This construction 
caused, that one camera was capturing mirror images compared to the ones from 
the other camera. Both cameras were mounted into a special light duralumin frame 
and connected to the frame of the UAV (Fig. 31.). 

 Two SanDisk 32GB Extreme PRO SDHC UHS-II Memory Cards (SanDisk, 2015):•	

   • Storage Capacity: 32GB
   • Type: UHS-II Class U3
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4.4.2. Image Data Acquisition using UAV 

	 Together 12 UAV flights were carried out to gain the required remote sensing 
data of the 20 study plots (some of the study plots were close to each other and 
could be overflown during single flight). The UAV flights were performed between 
August and October 2014. When the locality was reached with all the equipment, 
several operations had to be done before starting the flight itself. First of all the 
Ground Control Point (GCP) markers had to be positioned on selected places in or 
around the study plot. Metal plates with the size of 35 x 35 cm painted white with 
a black cross in the middle were used as the markers (Fig. 33.). 

Fig. 33. Operator setting the GNSS receiver TRIMBLE GeoExplorer 6000 for iterative 
measuring of the accurate position of a GCP marker (left) and the same device positioned 
above a marker situated on a very steep terrain (right).

	 The sites suitable for placing the GCP markers had to be in a sufficiently 
open space (not covered by shrubbery or tree crowns) to be visible from above by 
the UAV cameras. The site also had to offer a good-quality GNSS signal to locate the 
GCP markers with required accuracy. Usually 5 to 7 GCP markers were positioned 
on such places on the ground around the forest stands containing the study plots, 
before each flight. The precise position of each marker was then measured using the 
GNSS devices TOPCON HiPer Pro (chapter 4.3.1., Fig. 18.) or TRIMBLE GeoExplorer 
6000 (chapter 4.3.1., Fig. 19. and 33.).
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	 When the accurate coordinates of the GCP markers were measured, the flight 
itself was approached. Each flight was planned in the DJI Ground Station software 
before anything else. All the essential properties of the flight, such as waypoints 
position, altitude, flight speed, cameras shutter frequency etc. were set before the 
flight. All those data and instructions were then transmitted into the UAV using 
Bluetooth Data Link. 
	 Then also the cameras mounted on the machine were prepared. If needed, 
settings such as the shutter speed or aperture ratio, were adjusted according to 
the current weather and light conditions (different settings were used during 
sunny weather and different during the overcast). All the automatic software image 
enhancement techniques in the cameras such as the noise reduction, vignetting 
control or chromatic aberration corrections were turned off during all flights. 
	 To make the UAV ready to fly, the battery pack was connected to the machine 
and carefully positioned to make the device fully balanced out. The machine was 
then placed on a suitable flat open plane. The pilot then manually took of and then 
handed the control over to the Ground Station software, so that the machine fluently 
reached the required altitude level and the position of the first waypoint (Fig. 34.). 

Fig. 34. The pilot and the DJI S800 just before the takeoff (left) and the machine on another site 
rising above the forest stand, heading to the given position when starting a new mission (right).

	 The average altitude kept during the flights was usually between 100 and 
150 meters above ground. After reaching the given coordinates, the UAV could begin 
the image shooting mission and started to visit one waypoint after another. The 
average flight speed was usually kept around 10 m/s. The UAV was usually flying fully 
automatically in this part of the flight. Nevertheless the pilot was keeping continuous 
eye-contact with it and had always full control over the machine. Therefore, if any 
unexpected circumstances would appear, he could intervene into the flight any time, 
and for instance abort the mission and land manually using radio remote controller 
Graupner MX-20. 
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	 To receive the telemetry data and for live transmission of image data from the 
RGB camera onboard the UAV a separate LCD screen mounted on another Graupner 
remote controller was utilized (Fig. 29.). The data from the OSD unit (On‑Screen 
Display unit) were transmitted using the LK24 Bluetooth Data Link. This enabled 
the pilot to see continuously the places which is the machine flying above and the 
particular scenes which are the cameras shooting. 
	 During the flight, both cameras were automatically capturing orthogonal 
images of the forests below. The average shooting rate was usually 1 image per 
second (taken parallelly in both cameras). To serve as a good source of images for 
the further photogrammetric processing, it was essential to guarantee sufficient 
overlapping of neighbouring images. The route was therefore usually planned 
to ensure approximately 80  % to 90  % overlapping between following photos in 
each line (forward overlap) and approximately 70 % to 80 % overlapping between 
adjacent flight lines (lateral overlap). The average amount of flight lines was ranging 
between 4 and 8 and the size of the horizontal rectangle drawn by the UAV during 
one mission was usually varying between 100–200 m by 200–300 m. The average 
amount of images taken by each camera during single missions was then ranging 
between 60 and 260. 
	 The duration of average flight was between 7 and 15 minutes. When the 
machine went through the whole planned path and visited all the waypoints, 
it automatically flew back to the first waypoint position (Fig. 35.). Then the pilot 
usually took over the full control over the machine and landed manually. Afterwards 
the GCP markers could be collected. In this way the flight mission was completed. 

Fig. 35. The pilot (person on the right) and the assistant watching the UAV during the flight 
mission. A GNSS device measuring the position of a GCP marker can be seen on the left. 
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4.5. Hardware and Software

4.5.1. Hardware 

	 One desktop PC and one notebook PC were utilized within this work. One 

of the machines was used for processing of the image data from the UAV, one for 

programming and performing the full operation of the UAV Forest Explorer.

4.5.1.1. Desktop PC 

	 For the photogrammetric processing of the UAV data in the AgiSoft Photoscan 

software a desktop PC with following specification was utilized:

Processor Intel•	  ® Core ™ i7-4770 CPU @ 3.40 GHz  (4 cores, 8 logical 

processors), 8 MB Intel Smart Cache

RAM 32 GB, DIMM, 1333 MHz•	

HDD1: 250 GB, HDD2: 1 TB•	

64bit operation system •	

Windows 8.1 Pro•	

NVIDIA GeForce GT 640 (2 Cores @ 941 MHz, 2048 MB) Graphic Card•	

Two 24″ HP Compaq LA2405x LCD screens•	

4.5.1.2. Notebook PC

	 For the purposes of running the UAV Forest Explorer tool within the ArcGIS  

Desktop 10 software a notebook PC with following specification was used:

HP ProBook 4530s Notebook•	

Processor Intel•	  ® Core ™ i5-2450M CPU @ 2.50 GHz  (2 cores, 4 logical 

processors), 3 MB Intel Smart Cache

RAM 8 GB, DDR3•	

HDD: 750 GB•	

64bit operation system •	

Windows 7 Home Premium•	

AMD Radeon HD 7470M (1 Core @ 750 MHz, 1024 MB) Graphic Card•	

One built-in 15,6″ LCD screen and one external 24″ LG 24MP55 IPS screen•	
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4.5.2. Software 

	 The three main software products, which were for different purposes 
utilized in this work, are briefly described in this chapter. 

4.5.2.1. Agisoft PhotoScan© Professional Edition

	 The software Agisoft PhotoScan Professional Edition (Fig. 36.), version 1.0.4. 

build 1847 (64bit) was employed in this work for the photogrammetric processing 

of the images from the UAV. The software is developed by Agisoft LLC located in 

St. Petersburg in Russia. 

	 As states the Agisoft PhotoScan User Manual (2014), Agisoft PhotoScan is an 

advanced image-based 3D modelling solution aimed at creating professional quality 

3D content from still images. Based on the latest multi-view 3D reconstruction 

technology, it operates with arbitrary images and is efficient in both controlled 

and uncontrolled conditions. Photos can be taken from any position, providing 

that the object to be reconstructed is visible on at least two photos. Both image 

alignment and 3D model reconstruction are fully automated.Generally the final 

goal of photographs processing with PhotoScan is to build a textured 3D model. 

The procedure of photographs processing and 3D model construction comprises 

four main stages:

	 1. The first stage is camera alignment. At this stage PhotoScan searches for 

common points on photographs and matches them, as well as it finds the position 

of the camera for each picture and refines camera calibration parameters. As a 

result a sparse point cloud and a set of camera positions are formed. The sparse 

point cloud represents the results of photo alignment and will not be directly used 

in the further 3D model construction procedure. On the contrary, the set of camera 

positions is required for further 3D model construction by PhotoScan.

	 2. The next stage is building dense point cloud. Based on the estimated 

camera positions and pictures themselves a dense point cloud is built by PhotoScan. 

Dense point cloud may be edited and classified prior to export or proceeding to 3D 

mesh model generation. 
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	 3. Another stage is building a mesh. PhotoScan reconstructs a 3D polygonal 

mesh representing the object surface based on the dense point cloud. Additionally 

there is a Point Cloud based method for fast geometry generation based on the 

sparse point cloud alone. Generally there are two algorithmic methods available 

in PhotoScan that can be applied to 3D mesh generation: Height Field - for planar 

type of surfaces and Arbitrary - for any kind of objects.

	 Having built the mesh, it may be necessary to edit it. Some corrections, 

such as mesh decimation, removal of detached components, closing of holes in 

the mesh, etc. can be performed by PhotoScan. For more complex editing user 

can engage external 3D editor tools. PhotoScan allows to export mesh, edit it by 

another software and import it back.

	 4. After geometry (i.e. mesh) is reconstructed, it can be textured and / or 

used for orthophoto generation. Several texturing modes are available in PhotoScan, 

such as Generic, Adaptive Orthophoto, Orthophoto or Spherical.

Fig. 36.   The graphical user interface of the Agisoft PhotoScan Professional Edition 
software. The individual modifiable windows represent following content: Model, 
Workspace, Console, Ground Control and Photos.
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4.5.2.2. ArcGIS© for Desktop Advanced

	 ArcGIS© for Desktop Advanced software in the version 10.2.2. was used for 

running the UAV Forest Explorer tool in this work (Fig. 37.). ArcGIS is a collection of 

software products developed by Environmental Systems Research Institute (Esri®) 

having its headquarters in Redlands, California, United States. The software suite 

includes desktop, server, mobile, hosted, and online GIS products. The desktop GIS 

products allow users to integrate and edit data, create new map layers, and author 

maps. ArcGIS for Desktop includes a series of scalable products (Hillier A., 2011). 

	 As stated by Esri (2016) ArcGIS for Desktop is available at different product 

levels, with increasing functionality. Besides the ArcReader which is freeware, the 

core products are following:

	 •  ArcGIS for Desktop Basic, formerly known as ArcView, is the entry level of 

ArcGIS licensing offered. With ArcGIS for Desktop Basic, one is able to view and edit 

GIS data held in flat files, or view data stored in a relational database management 

system by accessing it through ArcSDE. 

	 •  ArcGIS for Desktop Standard, formerly known as ArcEditor, is the midlevel 

software suite designed for advanced editing of spatial data published in the 

proprietary Esri format. It provides tools for the creation of map and spatial data 

used in GIS, including the ability of editing geodatabase files and data, multiuser 

geodatabase editing, versioning, raster data editing and vectorization, advanced 

vector data editing, managing coverages, coordinate geometry, and editing 

geometric networks. ArcGIS for Desktop Standard is not intended for advanced 

spatial analysis.

	 •  ArcGIS for Desktop Advanced, formerly known as ArcInfo, is the 

highest level of licensing (and therefore functionality) in the ArcGIS Desktop 

product line. It allows users the most flexibility and control in all aspects of data 

building, modelling, analysis, and map display. ArcGIS for Desktop Advanced 

includes increased capability in the areas of spatial analysis, geoprocessing, data 

management, and others. ArcGIS for Desktop Advanced was utilized in this work.
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	 According to Esri (2016) and Introduction to GIS Using ArcGIS Desktop 10 

(2012) ArcGIS Desktop is comprised of a set of integrated applications, which are 

accessible either from the Start menu of a computer (ArcMap and ArcCatalog) or 

from the software itself (ArcToolbox):

	 •  ArcMap is the main mapping application which allows user to create 

maps, query attributes, analyze spatial relationships, and layout final projects.  

	 •  ArcCatalog organizes spatial data contained on a computer and various 

other locations and allows to search, preview, and add data to ArcMap as well as 

manage metadata and set up address locator services.

	 •  ArcToolbox is the third application of ArcGIS Desktop. It is easily accessed 

and used within ArcMap and ArcCatalog. ArcToolbox contains series of tools for 

geoprocessing, data conversion, coordinate systems, projections, and many more. 

	 ArcGIS enables also to create custom tools with Python. As states the 

ArcMap Help (2016), geoprocessing system tools (those installed with ArcGIS) are 

designed to perform one small but essential operation on geographic data. Using 

ModelBuilder or Python, user executes these geoprocessing tools in a sequence, 

feeding the output of one tool to the input of another. The script may be an essential 

part of user’s workflow – a task user needs to repeat again and again.

	 Scripts that user creates can be executed either outside or within ArcGIS. 

Outside ArcGIS means that the script is executed from the operating system 

command prompt, or within a development application, such as PythonWin. 

Scripts executed in this manner are referred to as stand-alone scripts. Within 

ArcGIS means user accesses a script through a tool inside a toolbox. Such tool is 

like any other tool – it can be opened and executed from the tool dialog box, used 

in models and the Python window, and called from other scripts and script tools.

	 Concerning Python, it is a free, cross-platform, open-source, general-

purpose programming language used also as a scripting language in ArcGIS 

geoprocessing. Geoprocessing functionality is accessible through Python using 

ArcGIS software’s ArcPy site-package. ArcPy provides access to geoprocessing 

tools as well as additional functions, classes, and modules that allow user to create 

simple or complex workflows effectively. 	
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	 The additional power of using ArcPy within Python is the fact that Python is 

a general-purpose programming language that is relatively easy to learn and use. 

It is interpreted and dynamically typed, which provides user with the ability to 

quickly prototype and test scripts in an interactive environment while still being 

powerful enough to support the writing of large applications.

	 Broadly speaking, ArcPy is organized in tools, environments, functions, 
classes, and modules. These can be described as follows:

	 •  Tools – A geoprocessing tool has a fixed set of parameters that provide 
the tool with the information it needs for execution. Tools usually have input 
parameters that define the dataset or datasets that are typically used to generate 
new output data. Parameters have several important properties: Each parameter 
expects a specific data types, such as feature class, integer, string, or raster. A 
parameter expects either an input or output value and either requires a value or is 
optional. Each tool parameter has a unique name. When a tool is used in Python, 
its parameter values must be correctly set so it can execute when the script is run. 
Once a valid set of parameter values is provided, the tool is ready to be executed. 
Parameters are specified as either strings or objects.

Fig. 37.  Example of the work with ArcGIS software, particularly in the environment of 
ArcMap. Several dialog boxes, including the one of the UAV Forest Explorer (right), the one 
for setting its Properties (bottom mid-left) or a table containing summary of the tool's 
results (upper mid-left) (all to be described later) can be seen at this screenshot. 
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	 When a geoprocessing tool is executed, the results of the tool are returned 

in a Result object. Typically, this object is the path to the output dataset produced 

or updated by the tool. In other cases, it may contain other value types, such as a 

number or Boolean. If an output for a tool is a multivalue parameter, the values can 

be returned as a list within a list.

	 •  Environments – Geoprocessing environment settings can be thought of 

as additional parameters that affect a tool’s results. They differ from normal tool 

parameters in that they are set separately from the tool and are interrogated and 

used by tools when they are run. Environment settings, such as an area of interest, 

the coordinate system of the output dataset, and the cell size of a new raster 

dataset, can all be specified and honoured by the tools. Environment settings are 

available from the env class as properties, which can be used to retrieve the current 

environment values and set them. 

	 •  Functions – A function is a defined bit of functionality that does a specific 

task and can be incorporated into a larger program. In addition to tools, ArcPy 

exposes a number of functions to better support geoprocessing workflows. 

Functions can be used to list certain datasets, retrieve a dataset’s properties, check 

for existence of data, validate a table name before adding it to a geodatabase, or 

perform many other useful scripting tasks.

	 •  Classes – ArcPy classes, such as the SpatialReference and Extent classes, 

are often used as shortcuts to complete geoprocessing tool parameters that would 

otherwise have a more complicated string equivalent. A class is analogous to an 

architectural blueprint. The blueprint provides the framework for how to create 

something. Classes can be used to create objects; this is often referred to as an 

instance.

	 •  Modules – ArcPy includes modules covering other areas of ArcGIS. ArcPy 

is supported by a series of modules, including a data access module (arcpy.da), 

a mapping module (arcpy.mapping), an ArcGIS Spatial Analyst extension module 

(arcpy.sa), and an ArcGIS Network Analyst extension module (arcpy.na).
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	 For example, the tools of the arcpy.sa module use tools in the Spatial 

Analyst toolbox but are configured to support Map Algebra. Thus, executing for 

instance arcpy.sa.Slope is the same as executing the Slope tool from the Spatial 

Analyst toolbox.

4.5.2.3. PythonWin

	 PythonWin software was utilized for creating the source script of the UAV 

Forest Explorer tool (Fig. 38.). PythonWin is the integrated development environ-

ment (IDE) and graphical user interface (GUI) framework  for Python that is part 

of the Python for Windows extensions. It provides a simple graphical interface for 

writing, editing and running Python programs on computers running the Microsoft 

Windows operating systems. It has an integrated debugger, and a rich Python 

editing environment. The Copyright to PythonWin belongs to Mark Hammond. 

	 The program uses IDLE (Integrated Development and Learning Environ-

ment) extensions by Guido van Rossum (the author of Python programming 

language)which is bundled with the default implementation of the language. The 

PythonWin 2.7.5 as pywin32 build 218 version was used in this work. 

Fig. 38. The graphical user interface of PythonWin IDE containing the source script of the 
UAV Forest Explorer tool. 
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4.6. Image Data Processing

	 The hundreds of images of the explored forest stands acquired during the 
twelve flight campaigns were gradually processed using different computer-aided 
techniques. The main employed processes are described in this chapter. 

4.6.1. Automated Image Registration 

	 Airborne images from the UAV were processed in several steps. Generally 

images from both cameras were registered before further photogrammetric 

processing. Based on the construction of the cameras holder, when the two 

cameras were mounted adjacent to each other by their bottoms, the images from 

one camera were mirror images in relation to the images from the other camera. 

Therefore all the images from one camera had to be rotated by the angle of 180° 

first. This was done using the “Rotate” tool in ArcGIS. 

	 Afterwards all pairs of corresponding images could be registered. For this 

purpose the “Register Raster” tool in ArcGIS was utilized with the Transformation 

Type “ADJUST”. This transformation type proved to provide most satisfactory 

results, since it optimizes for both global and local accuracy. It is accomplished by 

first performing a polynomial transformation, then adjusting the control points 

locally, to better match the target control points, using a triangulated irregular 

network (TIN) interpolation technique (ArcGIS 10.2.2. Tool Help). 

	 Because in some cases the edges of registered images could be partially 

distorted a Processing Extent was defined to clip the scene and get rid of the 

unwanted borders. To compile the registered raster with the reference raster 

into one single raster the tool “Composite Bands” was utilized. As the inputs were 

inserted the first band of the image captured in the Near-Infrared light together 

with all three bands of the image captured in the visible light (red, green, blue). 

The output was then saved as the 4-band TIFF image. An illustration showing the 

process can be seen in Figure 39. 

	 To make the procedure highly efficient, an original python script containing 

all the described functions was created to process the data continuously and fully 

automatically. The script including description of all its parts can be found in 

Appendix 1. This procedure would not be needed in cases when only RGB or only 
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NIR images would be sufficient. Since it required relatively little effort and the 

results could be subsequently used to support some visual assessment procedures 

of the forest stands, the combination of visible and Near-Infrared light into one 

multispectral image was carried out using images from all investigated areas.

Fig. 39. Example of automated image registration procedure. Inputs are images from 
both cameras mounted on the UAV: RGB image (top left) and NIR image (top right). After 
processing by the python script (bottom left) are the images rotated, registered, clipped 
and composited into a 4‑band multispectral image (displayed as spectrozonal image - 
bottom right). 

4.6.2. Photogrammetric Image Processing 

	 The multispectral images as results of the automated image registration 

were prepared for further processing. For this purpose a specialized 

photogrammetric software Agisoft PhotoScan Professional Edition version 1.0.4. 

build 1847 (64bit) was utilized (see 4.5.2. Software chapter). The data from each 

of the 12 flights were processed separately. The workflow of image processing in 

the Agisoft PhotoScan software was following:

	 First of all the multispectral images were imported to Agisoft PhotoScan 

(Fig. 40.). In the Camera Calibration settings the appropriate lens focal length in 

millimetres was stated and the images were aligned by the “Align Photos” tool. 
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During the photo alignment 

process PhotoScan found the 

camera position and orienta-

tion for each photo and built a 

sparse point cloud model. The 

alignment process was each 

time performed using High (i.e. 

maximal) Accuracy and Gener-

ic Pair preselection settings 

with the Point limit of default 

40  000 feature points. 
Fig. 40. Registered multispectral images (displayed 
in RGB) imported into Agisoft PhotoScan software.

	 According to Agisoft PhotoScan User Manual (2014) at High accuracy setting 

the software works with original photos as they are without any image reduction. 

That helps to obtain more accurate camera position estimates. Concerning the 

Pair preselection a significant portion of the time period needed for the alignment 

process of large photo sets is spent on matching of detected features across the 

photos. Image pair preselection option may speed up this process due to selection 

of a subset of image pairs to be matched. In the Generic preselection mode the 

overlapping pairs of photos are selected by matching photos using lower accuracy 

settings first. The Point limit number indicates upper limit of feature points on 

every image to be taken into account during current processing stage. 

	 When all the images were aligned and the sparse point cloud was created (Fig. 

41.), this point cloud was visually assessed. The amount of points in the sparse cloud 
was usually several hundreds 

of thousands (specifically 

between 100 000 and 700 

000 based on the flight area 

and image count). When any 

error points laying obviously 

out of the main point cloud 

were discovered, those points 

were manually selected and 

deleted (usually only few up 

to few tens of points).  
Fig. 41. Sparse point cloud as a result of image alignment 
in Agisoft PhotoScan.
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	 To improve the accuracy of the sparse point cloud the procedure of filtering 
points based on a specific criterion was performed. The “Gradual Selection” tool 
using the “Reprojection Error” was utilized for this purpose. As states the Agisoft 
PhotoScan User Manual (2014) it may be useful to find out where the points with 
high reprojection error are located within the sparse cloud, or remove points 
representing high amount of noise. Point cloud filtering helps to select such 
points, which usually are supposed to be removed. High reprojection error usually 
indicates poor localization accuracy of the corresponding point projections at the 
point matching step. It is also typical for false matches. Removing such points can 
improve accuracy of the subsequent optimization step. 
	 The maximal value of Reprojection error was checked and usually few 
hundreds of points with highest values were selected (being usually about 0,1 % of 
total point amount in the sparse point cloud). Those points were then deleted. The 
overall reprojection error of the sparse point cloud was decreased in this way. 

	 At this point a *.CSV 
file containing geodetically 
measured positions of Ground 
Control Points (GCPs) was 
imported into PhotoScan. The 
precise localization of each 
GCP marker had to be done 
manually. All single images 
where any GCP marker was 
caught by the cameras were 
opened and zoomed enough 

to display the centre of the GCP marker. If this centre could be localized (no 
branches etc. were hiding it) a flag belonging to appropriate GCP from a text file 
was positioned there (Fig. 42.). In this way all the flags representing individual 
GCPs were placed to their proper positions on the images. In this way the point 
cloud dataset was georeferenced. 
	 After georeferencing, an Optimization step could be approached. To 
achieve higher accuracy in calculating camera external and internal parameters 
and to correct possible distortion (e.g. “bowl effect” etc.) optimization procedure 
should be run. This step is especially recommended if the ground control point 
coordinates are known almost precisely - within several centimetres accuracy 

Fig. 42. Placing a Marker in the centre of a Ground 
Control Point located on a selected photograph. 
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(marker based optimization procedure) (Agisoft PhotoScan Tutorial, 2014). During 
georeferencing the model is linearly transformed using 7 parameter similarity 
transformation (3 parameters for translation, 3 for rotation and 1 for scaling). Such 
transformation can compensate only a linear model misalignment. Possible non-
linear deformations of the model can be removed by optimizing the estimated point 
cloud and camera parameters based on the known reference coordinates. During 
this optimization PhotoScan adjusts estimated point coordinates and camera 
parameters minimizing the sum of reprojection error and reference coordinate 
misalignment error (Agisoft PhotoScan User Manual, 2014).
	 After the accuracy improvement accomplished by the “Optimize” tool the 
sparse point cloud was almost prepared for dense point cloud construction. To 
define the region containing points of the sparse point cloud which should be used 
in the further processing and to crop the needless border points, a Bounding Box had 
to be modified. The size of the Bounding Box was adjusted manually. The position 
was fitted accurately parallel  to coordinate system axes by running a python script 
(PS104_bounding_box_to _coordinate_system.py provided by the Agisoft Team). 
This ensured the right positioning of the ground plane and orthogonal correctness 
of the consequent mesh. 

Fig. 43. A high quality surface representation in the 
form of the Dense point cloud in Agisoft PhotoScan.

	 To create a dense 
point cloud (Fig. 43., Fig. 
46.) a “Build Dense Cloud” 
tool was utilized. The two 
reconstruction parameters 
were set to High Quality and 
Moderate Depth filtering. 
The High Quality level as 
the second highest option 
after Ultra High Quality 
was preferred for giving 
satisfactory point density 

in several times shorter computational time compared to Ultra High Quality level 
(hours instead of days). The Moderate depth filtering mode was preferred as the 
middle option between Mild mode - conserving numerous small details on the 
foreground even though they can be outliers and Aggressive mode sorting out most 
of the outliers and smaller details. The amount of points in dense point clouds ranged 
between 20 000 000 and 110 000 000 in the cases of various flights.
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	 After the dense 
point cloud was created a 
polygonal Mesh Model (Fig. 
44., Fig. 45., Fig. 46.) could 
be generated based on the 
dense cloud data. The Mesh 
was created using the “Build 
Mesh” tool with parameters 
set to Height field Surface 
type, Dense Cloud as Data 
Source,  High (i.e. maximal) 
Polygon count and Enabled 

Interpolation. The Height field surface type was always preferred to Arbitrary 
surface type for its lower memory requirements as well as better results in canopy 
surface modelling. Whereas Arbitrary surface type is suitable for modelling of 

Fig. 44. A polygonal Mesh Model with a texture 
obtained from RGB bands of the registered images.

Fig. 45. Mesh model - a 3D polygonal mesh with texture representing the object surface 
based on the dense point cloud. Generated and displayed in Agisoft PhotoScan software.
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closed objects such as statues, Height field type should be selected for aerial 
photography processing (Agisoft PhotoScan User Manual, 2014). It builds 
“walls” connecting the edges of higher objects (canopy) with the ground in the 
way orthogonal to the ground plane defined by the position of the Bounding 
Box. The amount of vertices of Mesh models ranged from 1 500 000 to almost 
10 000 000, the amount of faces in the model then ranged between 3 000 000 to 
19 500 000. 

Fig. 46. Data processing shown on a particular conifer tree example: 1) Conifer captured 
by an RGB camera mounted on an UAV (top-left). 2) The same tree after automated image 
registration and photogrammetric image processing shown in the form of a Dense point 
cloud (top-middle); 3) a Mesh model displayed as a wireframe (top-right); 4) a shaded TIN 
model (bottom-left); 5) a shaded mesh model with a texture (bottom-middle); 6) and a 
true orthophoto exported as a 4-band multispectral image (shown as a false colour image) 
(bottom-right). Representations 2) to 6) were created in Agisoft PhotoScan software.

	 The described workflow was performed for each of the twelve datasets.   
When both the Dense Point Cloud and the Mesh Model were created in each case, 
the desired processing results could be exported from PhotoScan. Figure 46. depicts 
some of the parts of the workflow, including the input image, several intermediate 
data as well as one of the outputs. Together three different kinds of outputs were 
exported. One was a true orthophoto in the form of 4-band multispectral image 
containing Near-Infrared, Red, Green and Blue bands (Fig. 46. and Fig. 47.).
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	 The orthophoto was exported using Planar Projection type, Top XY 
Projection plane and Mosaic Blending mode as a GeoTIFF image. The maximal 
effective spatial resolution offered by the software was usually between 2 and 4 
centimetres, nevertheless the resolution of 7 by 7 centimetres was chosen for the 
export as being the right compromise between the file size and offered detail. 

4.6.3. Auxiliary data 

	 The photogrammetric processing of the UAV data provided all demanded 
2D and 3D representations of the forest stands as such. The only type of data which 
could not be successfully extracted from the UAV-borne imagery was a reliable 
representation of the terrain below the stands. The examined forest stands were 
too dense to retrieve the Digital Terrain Model (DTM) with a required accuracy 
from the point cloud. Therefore a complementary DTM was utilized. Particularly a 
Digital Terrain Model of the Czech Republic of the 4th generation (DTM 4G) and of 
the 5th generation (DTM 5G) were utilized (Fig. 48.). 

Fig. 47. A true orthophoto as an output of image processing in Agisoft PhotoScan 
software. One 4‑band GeoTIFF image with 7 by 7 cm spatial resolution displayed as a 
true colour image (left) and as a false colour spectrozonal image (right). 

	 The second type of output was a Digital Elevation Model (DEM). The DEM 
was also exported using Planar Projection type and Top XY Projection plane as a 
GeoTIFF file. The spatial resolution of exported DEMs was 15 by 15 centimetres. 
The last kind of processing output was the Dense Point Cloud. It was exported 
without any adjustments as the ASPRS LAS file. All the data were exported in the 
Czech national S-JTSK Křovák EastNorth Coordinate System.
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	 The DTM 4G represents a picture of natural or by human activity modified 
terrain surface in digital form as heights of discrete points in a regular grid (5 x 5 
m) with coordinates X, Y, H, where H means the altitude in the Baltic Vertical Datum 
- After Adjustment with total standard error of 0.3 m of height in the bare terrain 
and 1 m in forested terrain. The DTM 5G represents natural or by human activity 
modified terrain surface in digital form as heights of discrete points in irregular 
triangle network (TIN) with X, Y, H coordinates, where H means the altitude in the 
Baltic Vertical Datum - After Adjustment with total standard error of 0.18 m of 
height in the bare terrain and 0.3 m in forested terrain. The models are based on 
the data acquired by altimetry airborne laser scanning of the Czech Republic ter-
ritory accomplished between years 2009 and 2013 by the State Administration of 
Land Surveying and Cadastre (ČÚZK, 2016). 
	 These data sources have several significant advantages. First of all they are 
the latest and most accurate digital terrain representations provided for the coun-
try so far. The DTM 4G covers area of the whole Czech Republic, DTM 5G covers 
already majority of the country (including the area of interest of this work) and it 
should cover the territory of the whole Czech Republic by the end of the year 2016. 
At the same time the data can be accessed and for smaller areas also downloaded 
via the ArcGIS Online service. 
	 The DTMs were downloaded for all research areas. The DTM 4G was down-
loaded in the 5 x 5 m grid, the spatial resolution of the 5G model was adapted 
to the terrain conditions. Specifically the resolution of 0.5 x 0.5 m was used for 
the flat areas with the average slope below 20 degrees and the resolution of 0.2 x 
0.2 m was applied for the areas with the average slope over 20 degrees. 

Fig. 48. The auxiliary Digital Terrain Models DTM 4G (left) and DTM 5G (right) from ArcGIS 
Online service of State Administration of Land Surveying and Cadastre (ČÚZK, 2016).
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4.7. UAV Forest Explorer Software Tool Development

4.7.1. General Description of the UAV Forest Explorer 

	 The main core of this work was programming of a novel software tool (or 

an application) for UAV data analysis. The objective of such tool is to identify 

individual trees in forest stands and extract their heights just based on the remote 

sensing data, using the principles of Inverse Watershed Segmentation (IWS). The 

original program, which has been developed within the framework of this work, 

is named “UAV Forest Explorer” and is designed as a unique custom tool running 

under the ArcGIS© for Desktop Advanced software by Esri®. 

	 The version of ArcGIS enabling to run the tool is 10.0 or later (the tool 

was tested mainly on version 10.2). The tool was programmed in the Python 

programming language using the PythonWin IDE and is running on Python version 

2.7. One of the program ideas is the universality (within the bounds of possibility 

of the chosen approach), so that the basic installation of the Python should be 

sufficient and no external modules, libraries or packages have to be imported or 

installed. Concerning the hardware, any computer capable of running ArcGIS 10 

and its Geoprocessing tools should be able to run the UAV Forest Explorer. 

	 The application is created as an individual *.tbx file including the source 

code (python script). Since the source script is imported to the tool, loading the 

script from an external *.py file is not needed. The whole source script can be seen 

in Appendix 2. The tool can be simply added into the ArcGIS Toolbox (e.g. pasted 

into ArcCatalog to My Toolboxes) and used like any other ArcGIS tool. The program 

contains a detailed Help, which can be displayed in its graphical user interface 

(GUI). The help is also provided as a User Guide in the form of a separate *.PDF file 

called “User Guide for the UAV Forest Explorer Tool”, which is also a part of this 

work as an Appendix 3. According to those sources, also an uninitiated user should 

be able to use the tool properly.

	 The tool is working with several kinds of data from different sources. 

Particularly with UAV-borne remote sensing data, with one kind of auxiliary data 

and optionally also with the ground-truth data. The required remote sensing data 

should consist of a point cloud derived from the photogrammetrically processed 
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images of the forest stand gained by the means of an UAV. Such point cloud  should 

provide the elevation information on the forest canopy surface. 

	 The auxiliary data then should represent the elevation of the terrain below 

the forest stand of interest. In a very sparse stands such data could be hypothetically 

derived also from the UAV-based point cloud, but in most cases an additional source 

is needed. 

	 Optionally also the ground truth data can be provided to compare the 

calculated tree counts and heights with the field-measured data. Basically the tool 

can be used in two ways. In one way, when the field-measurement data are not 

provided, the tool automatically processes the remote sensing data, performs IWS 

calculations, identifies trees in the examined area and delineates their crowns. The 

results then can be evaluated mainly visually. 

	 In the other way, i.e. when the ground truth data are provided by the user 

in the demanded form, the tool performs all the previous processes as well, but 

makes also some additional computations. It takes the field measurements data and 

compares them with the results of its own trees identification process. Especially 

it compares the counts and heights of the automatically identified trees with the 

corresponding values of field-measured trees. 

	 The tool executes series of mathematical and statistical calculations for this 

purpose, working on the basis of the Individual Tree Approach (ITA) as well as of 

the Area-Based Approach (ABA). The exact outputs of this comparisons resulting 

from each combination of the tool settings are then stored also in a tabular form. 

The results of tens or hundreds of iterations (settings combinations) can be then 

seen together and assessed by the user easily in this way. 

	 Besides the possibility to use the field measurements data, the tool offers 

also some other facultative options. For instance to progressively reduce the 

number of iterations, when excluding those combinations of settings giving the 

less valuable results; to refine the cell size of the DTM, if being too coarse; to 

specify the area of interest to delimit the extent of calculations; to provide layer 

files, which then can be applied on the demanded feature classes created by the 

tool; or to choose to automatically delete the working datasets, if preserving them 

is not necessary.
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Fig. 49. The graphical user interface of the UAV Forest Explorer. The main window 
contains fields for required fundamental inputs (marked with green dots) as well as 
for optional inputs and choices. Some of the fields become active only when a proper 
checkbox is checked. Besides the fields for initial settings also the tool Help can be 
seen on the right side of the window.
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4.7.2. User-Defined Entries and Input Data for Initial Settings

	 To run the tool, user needs to define series of entries and input data sources 
at first. Some of these entries are required and some of them are optional. All these 
inputs of the initial settings are described generally in this chapter, one by one in 
the same order, as they are sorted in the tool’s GUI (Fig. 49.): 

Workspace Folder:•	  
Defines a path to an existing folder on a computer hard drive where all the outputs 
created during a particular tool run will be stored. Since the tool is programmed 
to overwrite outputs, even if there are some data in the folder, which were created 
by the tool previously, this should not cause an error and the tool should run 
successfully. 

Filename (Outputs Prefix)•	

A user-defined filename which will be given as a prefix to the outputs created by 
the tool in a particular run. The uniquely given filenames enable to differentiate 
the outputs from multiple tool runs even if more of them are stored in the same 
Workspace Folder. The filename can be derived for instance from the geographical 
name of the locality or from the characteristic properties of the forest stand being 
explored, etc. Subsequently values of all the main settings defined by the user (spatial 
resolution of rasters, interpolation methods, focal statistics circle radiuses) are in 
a specific way (e.g. abbreviated) projected into the names of the data outputs, after 
this prefix. This ensures that if any change is done in the settings, the tool produces 
new datasets in the next run with new names which encompass these altered 
settings. In this way, when the same Workspace Folder and Filename are used in 
different tool runs, all the outputs created with even slightly different settings will 
produce unique data files which can be easily distinguishable according to their 
names. 

Surface Point Cloud *.las File•	

A path to a point cloud stored in the form of a *.las data file. The point cloud should 
be acquired by the photogrammetric processing of the UAV-based imagery. The 
point cloud should contain points representing the elevation of the canopy of the 
forest stand which is being investigated. The quality of this data file affects the 
quality of outputs created by the tool. 
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Las Dataset Name•	

The name of the Las Dataset created by the tool from the Surface Point Cloud 
*.las file. The default name is “LasDataset”. This name can be optionally changed 
for instance in order to distinguish different Las Datasets from more tool runs 
saved in one Workspace Folder, which would be overwritten otherwise. The Las 
Datasets created from the same *.las file can differ mainly in the potential presence 
of constraints, which can be defined by providing an optional Delimitting Sub-Area 
by the user (described later).   

Digital Terrain Model (DTM)•	

The path to the Digital Terrain Model of the area of interest. This raster dataset file 
should comprise the elevation information of the terrain below the investigated 
forest stand. This dataset can be obtained from various sources, for instance from 
contours, from LiDAR mapping, geodetic survey, etc. The accuracy of this data file 
affects the accuracy of outputs created by the tool. 

Refine DTM Cell Size? (optional)•	

This option enables to refine the spatial resolution of the DTM, if it is too coarse. 
In steep areas, large raster cells of terrain model (e.g. 5 x 5 m of the 4G model by 
ČÚZK, or similar) may subsequently cause significant inaccuracies in estimation of 
the height of trees. To mitigate such effect, a new DTM can be created with reduced 
cell sizes. If this option is checked, following field becomes active to set the new 
value of the spatial resolution of the DTM.

New DTM Cell Size [m] (optional)•	

The value of the spatial resolution of the altered DTM after the refinement. This 
field is active only when the previous checkbox (Refine DTM Cell Size?) is checked. 
The default value is “1 m”, but any value can be given. Only when the DTM, which 
the user has available, has a poor spatial resolution, and the area of interest is 
situated in the steep or curved terrain, this option is meaningful to be used. 

Rasters Cell Size Min [m]•	

The value of the minimal spatial resolution of the raster files created by the tool 
within the Inverse Watershed Segmentations. If a variety of raster cell sizes is to 
be tested within a single tool run, this value defines the smallest raster resolution 
which the produced rasters will have. 
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Rasters Cell Size Max [m]•	

The value of the maximal spatial resolution of the raster files created by the tool 
within the Inverse Watershed Segmentations. If only one cell size is desired to be 
applied, the given value should be the same as the value of the Rasters Cell Size 
Min. If a variety of raster cell sizes is to be tested within a single tool run, this value 
defines the largest resolution of rasters which will be produced. 

Rasters Cell Size Step [m]•	

If a range of Raster Cell Size values is set in the two previous fields, more than 
one spatial resolution is to be tested within a single tool run. The Rasters Cell Size 
Step enables to define the step by which the new rasters will be graded. This field 
therefore defines a value of the raster spatial resolution, which can be iteratively 
added to the value of Rasters Cell Size Min, until the value of the Rasters Cell Size 
Max is reached. 

Interpolation Methods•	

Selectable Interpolation Methods which can be applied by the tool during the 
Inverse Watershed Segmentations. One up to eight of these methods is to be applied 
to create a Digital Surface Model (DSM) from the Surface Point Cloud *.las File. 

Focal Statistics Circle Radius Min•	  [Cell]
A minimal value standing for a number of raster cells used as a circle radius for 
calculating the local maxima in the Focal Statistics tool. This serves for smoothing 
the Canopy Height Model (CHM, a model gained by subtracting the DTM from the 
DSM) to get rid of the unwanted peaks, which could have remained in the model 
e.g. from the noise in the point cloud data. The bigger is this value, the larger is the 
generalization effect. 

Focal Statistics Circle Radius Max [Cell]•	

A maximal value standing for a number of raster cells used as a circle radius for 
calculating the local maxima in the Focal Statistics tool in order to smooth the CHM. 
If only one value for the Circle Radius is desired, the value in this field should be 
the same as the value of Focal Statistics Circle Radius Min. If the provided Max value 
is larger than the Min value, all the required values in this range are consecutively 
applied during the tool calculations graded by the step of one cell (1 cell is the 
obligatory value of the Focal Statistics Circle Radius Step). 
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Progressively Reduce Focal Statistics Subcycles? (optional)•	

If checked, this option enables to reduce the number of iterations executed by 
the tool and therefore to decrease the computation time effectively. If ranges of 
values are set in the Rasters Cell Size fields or Focal Statistics Circle Radius fields 
or multiple Interpolation Methods are selected, the tool performs a series of cycles 
within each single run (otherwise only one iteration would be carried out). Since 
some of the combinations of these settings would produce not demanded results 
with high probability, this option makes it possible to exclude these combinations 
from the tool processing. 

Delimitting Sub-Area (optional)•	

An optional polygon feature class usable to define a smaller area for the tool  
calculations than is the default one. If not provided, the calculations are performed 
in the area of the whole extent of the Surface Point Cloud *.las File or the Digital 
Terrain Model (the one whose extent is smaller). If provided, the calculations are 
delimited just to the area of this user-defined polygon, what can save the processing 
time significantly. 

Layer Files Folder (optional)•	

An optionally provided Folder containing layer files belonging to particular 
feature classes. The tool produces point and polygon feature classes representing 
identified trees and their crowns delineations. When many of these feature classes 
are produced and the user is willing to compare some of them visually, it can be 
difficult to set the demanded visual properties to each of them (e.g. to make hollow 
polygons to see the background layer, to set thickness and colour of polygon 
outlines, size and colour of points, etc.). The user is therefore given the possibility 
to create his own feature classes with defined properties of both, polygon and point 
feature classes. When these are saved with appropriate names in a single folder 
and the path to this folder is provided in this field, the tool automatically uses 
the properties of these feature classes and applies them to the particular feature 
classes which it creates. In such case both, original feature classes are produced 
together with corresponding layer files saved in a separate folder. 

Compare Data with Field-Measured Heights? (optional)•	

An essential option to compare the calculation results with the field-measured 
ground truth data. If not checked, just general outputs, such as feature classes with 
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determined tree positions and their calculated heights will be the output of the 
tool processing. If checked, and if the ground-truth data are provided in the next 
field, these outputs are compared with the field measurements automatically and 
thorough statistical calculations are performed.

Field Measurements Data (optional)•	

A path to a point feature class representing the ground-truth data. Such data 
should contain field-measured positions and heights of trees in the particular area 
of interest. Each point in such feature class is considered to be a tree meeting the 
measurement conditions (see Chapter “4.3.2 Measurements of the trees” to check 
the measurement conditions used in this work). Therefore no surplus points 
should be contained. In the attribute table of the feature class a field for unique 
identification numbers should be called “ID” and also a field called “Height” should 
be present. In this field the appropriate heights of trees in metres, measured e.g. by 
hypsometer, should be recorded. When such feature class is correctly provided, the 
tool compares the counts and heights of field-measured and calculated trees and 
executes appropriate statistical computations. The computations are performed on 
the basis of Area-Based Approach as well as on the basis of Individual Tree Approach. 
As a result, separate tabular outputs are created. The accuracy of the ground truth 
data affects the accuracy of the comparison results. This field is active only when 
the previous checkbox (Compare Data with Field-Measured Heights?) is checked. 

Delete Working Datasets? (optional)•	

An option to delete unessential datasets produced during the tool processing. The 
tool creates series of raster files and feature classes during the Inverse Watershed 
Segmentations. Many of these datasets are just intermediate data necessary for 
the processing as such, when one dataset produced by some sub-process serves 
as an input for another sub-process, and the like. These datasets can be used for 
instance for the manual control, that the tool was working according to the user’s 
expectations, but do not have to be always all necessarily kept saved. Since some 
of these datasets can require a huge storage space on a hard drive (mainly when 
a large area is processed or many iterations are performed), it can be convenient 
to choose this option and to let the tool automatically and continually delete these 
data already within the tool run. The main tool outputs and results are not affected 
and can be deleted only manually. When not checked, all the datasets created by 
the tool are preserved in the Workspace Folder. 
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4.7.3. Processing Principles and Tool Outputs

4.7.3.1. Identification of Trees and Computation of their Height

	 To understand how the UAV Forest Explorer tool is working, the processing 

background and computation principles are described in this chapter thoroughly. 

The tool, which is designed to work with remote sensing data, specifically with 

the photogrammetrically processed images gained by the means of the UAV,  can 

be used in a variety of ways. With the basic settings, it is designed to identify 

individual trees in the forest stand and to estimate their height using the Inverse 

Watershed Segmentation principles.

	 The tool can be run each time either once with a demanded user-defined 

settings, or when more different settings need to be tested, the tool can run in 

an iterative mode and can produce a series of outputs at once. These iterations 

applied each time with different values help to efficiently discover the best settings 

suitable for each particular forest stand.

	 Optionally, when the field measurements data are available, the statistical 

comparison with these ground truth data can be done by the tool, either on the 

individual tree crown basis, or on the basis of the area-based approach. The tool 

will be described step by step in the following text, in the similar order as its parts 

are sorted in the source python script (See Appendix 2). 

	 First of all, several necessary modules need to be imported by the tool to be 

used during the processing. To provide maximal versatility, only modules contained 

in the basic python package are used in this program, so that no external modules 

or libraries have to be downloaded or imported. Namely modules such as arcpy, os, 

numpy, decimal and arcpy.sa are imported. The last one stands for a Spatial Analyst 

extension, which license is automatically checked out in the beginning of each run. 

	 In the beginning of a run the tool also defines the saving options which 

enable to overwrite outputs with already existing names. Then the S-JTSK Krovak 

EastNorth Coordinate System is defined as a default coordinate system for all the 

outputs produced by the tool. 

	 Afterwards two new file geodatabases are created in the user-defined 

Workspace Folder. These geodatabases serve for saving of different kinds of 

results:
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WorkingData.gdb•	  - a file geodatabase for storage of working raster files and 

feature classes created mainly during Inverse Watershed Segmentations. 

IdentifiedTrees.gdb•	  - file geodatabase for storage of point and polygon feature 

classes representing the automatically identified treetops and appropriate 

delineations of the tree crowns.

	 All geodatabases made by the tool are created only if they are not already 

present in the Workspace Folder. If they were created earlier, all new outputs are 

subsequently stored in these existing geodatabases. This ensures that datasets 

contained in these geodatabases would not be overwritten by mistake, if the tool is 

run more times and each time directed to save outputs into an identical Workspace 

Folder. 

	 If the user defined an optional path to the Layer Files Folder in the 

settings, the tool also creates a folder in the Workspace Folder. This new folder 

called “LayerFiles” then serves as a storage place for the layer files. These layer 

files are created for all point and polygon feature classes which are stored in the 

IdentifiedTrees geodatabase. 

	 In the next step the tool creates a Las Dataset from the user-defined *.las 

file, using the “Create LAS Dataset” tool. In the case that the user has provided an 

optional Delimitting Sub-Area, this dataset can contain constraints derived from 

this feature class and all other tool outputs are then also limited by the extent of 

this demarcation. Otherwise the Las Dataset with no constraints is created and the 

extent of the tool outputs is not altered. 

	 If the user chose to Refine DTM Cell Size and defined the New DTM Cell Size in 

the initial settings, the tool performs several processes to fulfil this request. First 

of all a new file geodatabase called “RefinedDTM.gdb” is created in the Workspace 

Folder to accommodate the appropriate outputs. Subsequently the “Raster to 

Point” conversion tool is utilized to create a point feature class from the original 

DTM. In this feature class all points are situated in the middle of the original raster 

cells and contain the appropriate elevation information. 

	 Afterwards a “Spline” tool is applied to interpolate a new DTM with the 

demanded cell size from these points. The advantage is that the newly created 

raster surface passes exactly through the input points, so that the original elevation 
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information is not altered. The new DTM with the demanded spatial resolution is 

then used in all subsequent computations instead of the original DTM with coarse 

spatial resolution. 

	 The described process enables in a sort of way to improve the quality of 

the particular input dataset. Especially in steep terrain this option should enable 

to reduce the influence of errors caused by the fact, that the raster cells of the 

DTM are too large and the differences between digital number (DN) values of 

neighbouring pixels are too big. For instance if the user would have only a 4G DTM 

(Digital Elevation Model of the 4th generation from the ČÚZK) available, which has 

the spatial resolution of 5 x 5 m, the difference in elevation of adjacent raster cells 

can reach up to several metres in very steep areas easily. Using the DTM cell size 

refinement the spatial resolution of the converted DTM can be set to for instance 

1 m or less. The elevation differences between neighbouring raster cells can then 

be reduced to sub-metre values efficiently. An example of the DTM refinement 

process can be seen in Figure 50. 

Fig. 50. An example of automated DTM cell size refinement. The 5 x 5 m pixels of the 
DTM 4G from ČÚZK (left), the same raster converted to points with displayed elevation 
attribute (middle) and a new DTM with a 1 x 1 m cell size created from these points using 
the Spline interpolation (right). 

	 As the next step the tool sets the inner variables based on the user-defined 

parameters of the Rasters Cell Size Min, Rasters Cell Size Max, Rasters Cell Size Step, 

Interpolation Methods, Focal Statistics Circle Radius Min and Focal Statistics Circle 

Radius Max. The tool also checks if the given entries are logically correct and if 

not, it warns the user via the Warning Messages displayed in the Progress Dialog 

Box (i.e. the window continuously showing the progress messages, which is visible 

only if the tool is running in the Foreground - i.e. when the Background Processing 

is disabled in the Geoprocessing Options in ArcGIS). 
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	 The tool for instance checks if the provided value of Rasters Cell Size Min is 

not larger than the value of Rasters Cell Size Max. Also, in case that the Rasters Cell 

Size Min was set to “0” by the user, its value is automatically changed to the value 

of Rasters Cell Size Step, since rasters with 0 m resolution cannot be created. In the 

case that the user has set the value of Rasters Cell Size Step to “0”, it is automatically 

changed to the value of 0.1 metre. The tool warns the user also in the case when the 

value of Focal Statistics Circle Radius Min is larger than the value of Focal Statistics 

Circle Radius Max and the settings has to be corrected by the user. An example of a 

Warning Message can be seen in Figure 51.

Fig. 51. One of potential Warning Messages (green text) which can be displayed in a  
Progress Dialog Box when the user-defined initial settings was not correct. Particularly 
the value of Rasters Cell Size Min was set to 0 m and it had to be replaced by the value of 
Rasters Cell Size Step, which was 0.05 m in this case.

	 In the case that the field measurements data were provided by the user, 

the tool performs a series of processes to prepare the data for consequent 

calculations. These processes are to be explained later on in this chapter. The 

basic processing principles without the ground truth data taken into account are 

described for now. 

	 At this point the core processing part of the tool together with its related 

primary principles are to be characterized. For better understanding a broader 

description is provided first. 
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	 The tool offers an array of settings enabling to influence the form and accuracy 
of the final outputs. Since finding of the settings giving the most appropriate results 
(the counts of trees and their estimated heights the most corresponding to reality) 
can be often difficult, the tool offers a relatively simple solution. The elementary 
parameter inputs such as spatial resolution of the rasters, interpolation methods 
or the size of the circle radius used for the raster smoothing, can be set not only as 
a single values, but also as multiple values or ranges.
	 In other words, the number of identified trees and the values of their 
calculated heights depend on the settings of Rasters Cell Size(s), Interpolation 
Method(s) and Focal Statistics Circle Radius(es). Both numerical inputs can be set as 
a particular value or as a range of values. Then, between one to eight interpolation 
methods can be selected. If only one of each values/methods is set, only one 
calculation is executed during a single tool run. If the ranges of values are defined 
or multiple interpolation methods are selected, the tool runs iteratively until all the 
required combinations are carried out. In such case, tens or hundreds of iterations 
can be calculated during a single tool run easily. The presence of the user/operator 
is required only for the initial settings, the tool is working fully autonomously for 
the rest of the processing time. 
	 This makes the tool very powerful and allows to efficiently perform various 
possible combinations of settings, which do not have to be tested separately. In this 
way a computing power of a PC can be utilized primarily, instead of the operator’s 
time and effort, which can be hereby markedly saved. The tool then provides a 
series of outputs which can be mutually compared and the ones best fitting to 
reality can be selected.  
	 Principally, the tool is executing Inverse Watershed Segmentation (IWS-
based) calculations to identify trees in the remote sensing data and to estimate their 
heights. If various combinations of settings are to be tested, these calculations are 
working on the basis of three inner cycles (or loops), to accomplish the required 
iterations. The cycles can be described as follows:

Cell Size (CS) cycle•	  which encompasses all further Inverse Watershed 
Segmentation calculations and performs the required processes for each 
desired raster cell size. The number of CS cycles depends on the values of 
Rasters Cell Size Min, Rasters Cell Size Max and Rasters Cell Size Step defined 
by the user. In principle, the specific cell size employed in each CS cycle is 
applied as a spatial resolution of all rasters created within the particular 
Inverse Watershed Segmentation.
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Interpolation Method (IM) cycle•	  which is calculated for each particular 

cell size (that means that IM loop is whole enclosed within the CS loop). It 

creates a Digital Surface Model from the point cloud *.las file using required 

user-defined Interpolation Method(s). Subsequently a Canopy Height Model 

is created by subtracting the DTM from the DSM.

Focal Statistics (FS) cycle•	  which is calculated for each particular Cell Size 

and each particular Interpolation Method (that means that FS loop is 

whole enclosed within the IM loop). It smooths the CHM and calculates 

the maximum of its cells in the defined neighbourhood. Subsequently 

it executes all the further processes required to accomplish the Inverse 

Watershed Segmentations. If the field survey data are provided in the initial 

settings, most of the relevant processes and statistical calculations are also 

performed within the FS cycle. 

	 Each of these cycles has a built-in counter enabling the user to control the 

number of iterations performed during the tool run. The counts of the already 

executed loops are continuously displayed in the Progress Dialog Box. The user 

can be therefore constantly aware of the progress and knows how many iterations 

of each particular cycle (CS, IM or FS cycle) have already been carried out. Since 

the tool counts in advance also the overall number of these cycles to be performed 

within the whole tool run, it continuously shows the number of remaining cycles 

as well. User then knows at any time the amount of processes already done as well 

as the number of iterations which are to be carried out yet. 

	 If the option to Progressively Reduce Focal Statistics Subcycles was selected 

by the user, the tool appropriately adjusts the number of the cycles to be performed. 

In such case also the counters are adjusted, to keep the values, provided by them, 

correct. The tool also shows the user, how many cycles will be carried out after the 

reduction and how many cycles will be avoided thanks to the reduction. 

	 The Inverse Watershed Segmentation (IWS) calculations, which represent 

an important part of the tool processing, are incorporated within the described 

cycles. The IWS calculations basically apply series of mathematical, hydrological, 

spatial analysis, data management and conversion tools to process and analyze the 

input data with the objective to identify the trees in them. It initially inverts the 
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CHM, so that the model, which originally is formed by the peaks of the tree crowns, 

looks like a terrain full of pits, instead.
	 This inversion is important, since the subsequently employed hydrological 
instruments are capable of finding the lowest locally enclosed areas, from which 
the water would not be able to flow to any direction. These local minima of this 
negative model are then treated as the local maxima of the positive model - it is 
as the apexes of the trees. The height of these trees is then simply ascertained 
as the height of the CHM in the particular position of each treetop. The inverted 
(negative) model is also subdivided into an amount of the micro-watersheds, which 
in essence delineate the boundaries of the individual tree crowns. 
	 When progressively describing the tool, mainly based on the structure of the 
source script, the contents of the individual cycles is to be described at this point. 
Since the cycles include also all the Inverse Watershed Segmentation calculations, 
these are also depicted thoroughly in the following text. As already mentioned, the 
Cell Size cycle incorporates both two other cycles and therefore embraces most of 
the remaining steps and processes performed by the tool. The CS loop is iterating 
when the actual cell size is smaller than the given value of Rasters Cell Size Max. 
The actual cell size begins on the value of the Rasters Cell Size Min. The actual cell 
size is updated so, that it is enlarged by the value of the Rasters Cell Size Step at the 
end of each CS cycle. In this way all the required spatial resolutions are applied on 
the produced rasters, until the value of Rasters Cell Size Max is reached. 
	 Several parameters are then determined in the beginning of the CS cycle, 
especially these parameters containing the value of actual cell size e.g. for application 
in the outputs names, etc. To distinguish the individual tool outputs created based 
on different settings, some representation or abbreviation of the specific settings 
is given to the name of the outputs each time. In this case the actual cell size in 
centimetres is used in the output names just after the user-defined Filename.
	 As the next step the Interpolation Method cycle begins. The for loop ensures, 
that the tool iterates until all the Interpolation Methods set by the user are applied. 
Since the whole IM cycle is enclosed within the CS cycle, each such interpolation 
method is applied for each actual cell size. 
	 Together one up to eight Interpolation Methods can be selected by the user 
in the initial settings. These methods are subsequently used for the conversion of 
the previously created Las Dataset into the form of a continuous raster surface. 
The “LAS Dataset to Raster” tool is used for this purpose and the Digital Surface 
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Model is the result of the process. The tool offers a variety of Interpolation Types 
which can be used to produce the demanded raster files. These types are divided 
into two groups differing in the applied methods, which are described based on 
the ArcGIS LAS Dataset to Raster tool Help in the following text: 

	 1) “BINNING”, when cell values are obtained using the points that fall in 
the extent of the cell, with the exception of cells that do not contain points in their 
extent. Binning method can be specified using the options in two drop-down lists. 
Based on the logic and empirical experience only the most meaningful computation 
types and options were applied in this work and only these are described:

	 a) “Cell Assignment Type” – Method used to define the value for any cell that 
contains points within its extent. Particularly these Types were made available in 
the UAV Forest Explorer Tool:
	 – “AVERAGE” – Assigns the average value of all points in the cell.
	 – “IDW” – Uses Inverse Distance Weighted interpolation to assign cell value.
	 – “MAXIMUM” – Assigns the maximum value found in the points within cell.
	 – “NEAREST” – Uses Nearest Neighbour assignment to determine cell value.

	 b) “Void Fill Method” – The interpolation method used to define values for 
cells that do not have points within their extent. From the four available methods, 
only one following method was chosen to be used in the UAV Forest Explorer Tool, 
to simplify the processing:
	 – “NATURAL_NEIGHBOR” – Uses natural neighbour interpolation to 		
					      determine the cell value.

	 2) “TRIANGULATION”  –  Cell values are obtained by interpolating measure-
ments from a triangulated representation of the LAS dataset. Triangulation method 
can be also specified using several options in the drop-down lists. Again only 
meaningful options and combinations were applied in this work and these are also  
described:

	 a) “Interpolation Method” – The interpolation method that defines cell 
values (both two methods were made available):
	 – “LINEAR” – Uses linear interpolation against the triangulated LAS dataset	
		               surface to determine cell value.
	 – “NATURAL_NEIGHBOR” – Uses natural neighbour interpolation to 		
					      determine cell value.
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	 b) “Point Thinning Type” – Determines if LAS data points are thinned (both 
two types were made available):
	 – “NO_THINNING” – LAS points will not be thinned.
	 – “WINDOW_SIZE” – LAS points will be thinned by identifying the point that 	
				    satisfies the selection criteria within the area defined 	
				    by the window size. This option makes the following 	
				    two options (c, d) available:

	 c) “Point Selection Method” – Selection method used for thinning LAS data 
points when using WINDOW_SIZE thinning (from three options only one was made 
available):
	 – MAXIMUM – The point with the highest value in each window size is 	
			    maintained. 

	 d) “Resolution” – A numeric value that defines the area of the window size 
used for thinning points:
	 – The value of “1 metre” was applied in this option by default.

	 Concerning other options available in the LAS Dataset to Raster tool, 
following settings were applied:
	 – “ELEVATION” for the “Value Field”.
	 – “FLOAT” for the “Output Data Type”.
	 – “CELLSIZE” for the “Sampling Type”.
	 – actual cell size for the “Sampling Value”.

	 Together eight interpolation methods as the combinations of the described 
options and settings can be used in the UAV Forest Explorer tool. The names 
of the particular methods (as the result of the specific settings combinations) 
are displayed also in the GUI of the tool. For the purposes of naming of the tool 
outputs, especially to distinguish which output was created using which particular 
interpolation method, the abbreviations of the method names are made by the 
tool. These abbreviations are then used in the output names just after the cell size, 
which stands after the user-defined Filename. Following abbreviations are used in 
the tool outputs for particular interpolation methods:

	 – “BA” for “BINNING” with “AVERAGE” Cell Assignment Type and 		
		        “NATURAL_NEIGHBOR” Void Fill Method,
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	 – “BI” for “BINNING” with “IDW” Cell Assignment Type and 			 
		       “NATURAL_NEIGHBOR” Void Fill Method,
	 – “BM” for “BINNING” with “MAXIMUM” Cell Assignment Type and 		
		         “NATURAL_NEIGHBOR” Void Fill Method,
	 – “BN” for “BINNING” with “NEAREST” Cell Assignment Type and 		
		         “NATURAL_NEIGHBOR” Void Fill Method,
	 – “TLW” for “TRIANGULATION” with “LINEAR” Interpolation Method, 	
	     	           “WINDOW_SIZE” Point Thinning Type, “MAXIMUM” Point 	
		            Selection Method and “1 m” Resolution,
	 – “TLN” for “TRIANGULATION” with “LINEAR” Interpolation Method and 	
		           “NO_THINNING” Point Thinning Type,
	 – “TNW” for “TRIANGULATION” with “NATURAL_NEIGHBOR” Interpolation 	
		            Method, “WINDOW_SIZE” Point Thinning Type, “MAXIMUM” 	
		            Point Selection Method and “1 m” Resolution,
	 – “TNN” for “TRIANGULATION” with “NATURAL_NEIGHBOR” Interpolation 	
		            Method and “NO_THINNING” Point Thinning Type.

	 The Interpolation Methods displayed in the GUI of the UAV Forest Explorer 
are stated exactly in the form, which is required to be accepted by the sub-process 
performed by the utilized LAS Dataset to Raster tool. An attentive user can 
notice, that some of the method names do not directly correspond to the options 
described in the previous paragraphs. Particularly names of two interpolation 
methods are suspicious: “TRIANGULATION LINEAR NO_THINNING MAXIMUM 1” 
and “TRIANGULATION NATURAL_NEIGHBOR NO_THINNING MAXIMUM 1”. 
	 The question is, why in both cases the “MAXIMUM” Point Selection Method 
and “1 m” Resolution are stated, when in the case of using “NO_THINNING” 
Point Thinning Type, normally no Point Selection Method and no Resolution are 
applicable. The answer is, that it is because of a bug in the LAS Dataset to Raster 
tool appearing when this tool is used via python scripting. The tool simply requires 
to senselessly fill in the interpolation methods in this way, and otherwise is not 
able to execute the required computation. Unfortunately, even though informed, 
ESRI does not seem to care about debugging the tool or at least about correcting 
the erroneous tool Help. 
	 Finally, when this IWS calculation sub-process is done, a new DSM is created 
from the Las Dataset file. Both, the source LAS Dataset as well as the final DSM 
raster can be seen in Figure 52.
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Fig. 52. Visualization of a DSM creation. A particular forest of interest displayed on a 
colour-infrared image (left), LAS Dataset created from a photogrammetrically obtained 
point cloud (middle) and the final Digital Surface Model with 0.1 x 0.1 m cell size created 
by the UAV Forest Explorer using the LAS Dataset to Raster tool (right).

	 When the DSM with the demanded spatial resolution is produced, the 
Normalized Digital Surface Model (NDSM) is to be created in the following step. 
It is simply done by subtracting the DTM from the DSM using the mathematical 
“Minus” function. Whereas DTM represents the elevation of terrain and DSM 
the elevation of objects, both as a height above sea level, NDSM represents the 
elevation of particular objects just in the form of height above the ground. Since 
only data covering forest stands are utilized in this work and only height of trees is 
examined, the term Canopy Height Model is used for this specific kind of NDSM. 
	 All elevation values used in this work are in metres. All the three raster 
datasets (DTM, DSM and CHM) can be seen in Figure 53. Similarly as the DSM and 
as most of the following working outputs of IWS calculations also the CHM is stored 
in the WorkingData.gdb.

Fig. 53. Visualization of a CHM creation. A Digital Terrain Model (particularly a 5G DTM 
from ČÚZK) representing the elevation of a bare ground (left), Digital Surface Model 
representing the elevation of the canopy surface (middle) and a similarly looking Canopy 
Height Model representing the height of the canopy surface above the ground (right). 
The particular elevation information of all three rasters in the position of a selected pixel 
(arrow with "i") are displayed in metres in the Identify window on the right image. The 
cell size of all three rasters is 0.2 x 0.2 m. 
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	 At the point when both, DSM and CHM rasters are created, the last tool 

cycle is ready to begin its loop. This loop belongs to the Focal Statistics (FS) cycle 

and incorporates the rest of the IWS calculations and most of the other remaining 

computations. The loop iterates until all the required values of Focal Statistics 

Circle Radius, defined by the user in the initial settings, are applied. 

	 Similarly like in the case of the previous two loops, if only one setting is to 

be tested, the loop runs only once. And much alike in the case of the CS cycle, the 

actual value of the circle radius begins on the value of Focal Statistics Circle Radius 

Min. Also, when a range of values was set by the user in the appropriate fields in 

the tool’s GUI, the actual value of circle radius is updated at the end of each FS cycle 

in the way, that 1 cell (the obligatory value for Focal Statistics Circle Radius Step) 

is added. This is done until all required circle radius values are utilized. If more 

than one Interpolation Method was selected for the computations, this series of FS 

cycles is calculated for each of them. 

	 To summarize the logic of the cycles working within the UAV Forest Explorer 

tool, it can be described as follows. Let’s consider a case when multiple settings are 

tested within a single tool run, that means that range of values were defined by 

the user for Rasters Cell Size Min and Max and Focal Statistics Circle Radius Min and 

Max and also multiple Interpolation Methods were selected in the initial settings. 	

	 Since the FS cycle is whole encapsulated within the IM cycle, all the FS 

cycles are calculated for each Interpolation Method. Similarly, because of the fact, 

that IM cycle is encapsulated within the CS cycle, all IM cycles are calculated for 

each CS cycle. The total number of FS cycles calculated by the tool can be therefore 

derived by the multiplication of the numbers of all three cycles. That means that 

the number of basic CS cycles multiplied by the number of selected interpolation 

methods and multiplied by the number of basic FS cycles gives the total number of 

iterations carried out by the tool within a particular run. 

	 A summary information about the particular cycle being performed is 

provided by the tool in the form of a Message shown in the Progress Dialog Box in the 

beginning of each FS cycle. This enables the user to be continually informed about 

the progress of computations. These information contain the following: A name of 

a file just being processed, which is subsequently contained in the names of most 

of the tool outputs created within a particular iteration. This unique and distinct 
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name is composed of a user-defined Filename, an actual Cell Size in centimetres, an 

abbreviation of the utilized Interpolation Method and an abbreviation of “FS” followed 

by a whole number standing for the value of currently applied circle radius. 

	 Then the number of actually processed CS cycle is written together with the 

overall number of CS cycles to be calculated within the tool run. In the same way 

the numbers of actually running IM cycle and FS cycle are written together with 

the numbers of these cycles to be computed in total. Subsequently a number of 

actual FS sub-cycle is written together with the overall count of these sub-cycles 

to be performed. The FS sub-cycles are simply the FS cycles calculated for a single 

interpolation method. 

	 The next provided information are the value of actual spatial resolution 

applied on all rasters created within the particular iteration; value of actual Focal 

Statistics Circle Radius and an abbreviation of the utilized Interpolation Method. 

Concerning the Messages, the tool then normally continues to inform the user 

via Progress Dialog Box, by successive writing the messages when each specific 

sub-process is finished or another information should be written. The Dialog Box 

showing the information written in the beginning of a particular FS cycle is shown 

in Figure 54.

Fig. 54. A Progress Dialog Box showing the Messages containing information about 
a specific FS cycle (Inner loop information) . 
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	 The next step of the IWS calculation is the employment of the Focal Statistics 
as such. The raster file, on which the “Focal Statistics” tool is applied, is the Canopy 
Height Model. From the Neighbourhood options just the “Circle” neighbourhood 
is utilized with the Radius in “Cell” units, which is supposed to be provided by 
the user as the Focal Statistics Circle Radius value (particularly as a range from 
Min to Max values). The Statistic Type is set to “MAXIMUM” to ensure  that the 
local maxima will be accentuated in the CHM. This way the CHM is smoothed when 
keeping the original local maxima values unchanged (only surrounding lower 
values are altered). 
	 Since the “Focal Statistics” tool calculates for each input cell location a 
statistic of the values within a specified neighbourhood around it, as stated in the 
tool Help, the radius of the circle which defines this neighbourhood, can significantly 
influence the result. Basically, the larger is the radius, the more cells are taken into 
the statistical calculation and the bigger is the smoothing effect. The smoothing is 
welcome, especially because it can reduce the  unwanted roughness of the original 
CHM caused by the influence of the noise from the source point cloud data. Also 
potential gaps present in the CHM can be filled by application of this sub-process. 
An effect of the Focal Statistics can be seen in Figure 55.

Fig. 55. An example of the smoothing effect of Focal Statistics when accentuating the 
local maxima. The original CHM with some visible gaps (left), the same raster file after 
application of Focal Statistics with 1 Cell Circle Radius (middle) and 3 Cells Circle Radius 
(right). Spatial resolution of all three rasters is 0.1 x 0.1 m.

	 The Inverse Watershed Segmentation calculation continues by inverting the 
smoothed CHM. This inversion, necessary for application of further hydrological 
and related tools, is done by multiplying the smoothed CHM by the value of “-1”. 
This step virtually turns the model upside down and the peaks of treetops of the 
original model, become the pits or depressions in the new, negative model. Both, 
the CHM smoothed by the Focal Statistics and the negative of this model can be 
seen in Figure 56.
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Fig. 56. Peaks of treetops of the Canopy Height Model after Focal Statistics smoothing 
(left) and depressions visible on a negative of this model (right). Shown on an example of 
young coniferous forest stand. Images obtained using ArcScene 10.2.

	 When a negative of the smoothed CHM raster is created, the places of 
tree apexes resemble pits dug in the terrain, in this inverted model. In the real 
conditions, water poured on such surface would probably remain mainly at the 
bottoms of these deepened areas. This principle is utilized in the logic of the Inverse 
Watershed Segmentation and enables to detect the potential tree apexes as the 
areas without any outflow. That is also why several hydrological instruments are 
used within the IWS calculations. 
	 First of them is the generation of a “Flow Direction” raster using the tool of 
the same name. According to the tool Help, it creates a raster of flow direction from 
each cell to its steepest downslope neighbour. The output of the “Flow Direction” 
tool is an integer raster whose values range from 1 to 255. The tool can facilitate 
detection of sinks in an elevation model. A sink is, in an ArcGIS terminology,  a 
cell or set of spatially connected cells whose flow direction cannot be assigned 
one of the eight valid values in a flow direction raster. This can occur when all 
neighbouring cells are higher than the processing cell.
	 The created flow direction raster then serves as an input into another 
hydrological tool which is called “Flow Length”. As stated in the tool Help, it 
calculates the upstream or downstream distance, or weighted distance, along the 
flow path for each cell. In the “Downstream” mode, in which it was applied in the 
UAV Forest Explorer, it calculates the downslope distance along the flow path, from 
each cell to a sink or outlet on the edge of the raster. The further is the cell from a 
sink, the higher value it gets. The cells of sinks then receive a value of “0”. 
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	 The flow length raster is reclassified subsequently using the “Reclassify” 
tool in order to extract only the demanded values belonging to areas of sinks. To 
reach this aim, all pixels having the DN value of “0” receive a new value of “1”, 
all other pixels then receive a value of “NoData” during the reclassification. Only 
locations of presumable presence of tree apexes then remain in the dataset.
	 The reclassified raster is then converted to polygons in the next step. That is 
done using the “Raster to Polygon” conversion tool with an option to “No Simplify” 
the polygons, which preserves the exact cell edges. This newly created polygon 
feature class is then directly used as an input to the “Feature To Point” tool. This 
tool is employed to gain the centroids of all polygons from this layer. Each point 
in the output feature class is then located at the centre of gravity (centroid) of 
the input polygon. In this way, all potential locations of treetops are converted to 
points efficiently. 
	 An example of all four layers, a flow direction raster, a flow length raster, 
a reclassified raster with sinks converted to polygons as well as the centroids of 
these polygons, are depicted in the Figure 57.

Fig. 57. An example of hydrological instruments applied on a pre-processed CHM of a 
broadleaf forest. A Flow Direction raster displayed on the left and a Flow Length raster 
in the middle. The extracted sink areas displayed in the form of polygons (dark violet 
crosses) and their centroids displayed above them as yellow points on the right image 
(RGB orthophoto). The cell size of raster outputs is 0.7 x 0.7 m.

	 These obtained points represent the positions of all trees identified in the 
analysed dataset. To assign them also an attribute of height, another step must 
be done. Therefore the tool “Extract Values to Points” is called by the UAV Forest 
Explorer. This tool extracts the DN values of raster cells to the appropriate points 
and stores them into an attribute table of a new point feature class. The raster, 
utilized to extract the values from, is the CHM after the application of the Focal 
Statistics (the original values of local maxima are maintained after Focal Statistics 
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smoothing). The new point feature class then contains all the original points 

representing the trees identified under the specific settings, when each of them 

contains also the appropriate height derived from the remote sensing data. These 

height values are stored in the attribute table in the “RASTERVALU” field. The 

feature class is saved in the “IdentifiedTrees.gdb” file geodatabase and contains the 

text “_CrownTops” at the end of the file name. The points representing identified 

trees with their heights are displayed on Figure 58.

Fig. 58. An example of the results of automatic trees identification performed by the UAV 
Forest Explorer. An RGB image of the examined forest with 0.07 x 0.07 m cell size (left). 
A  smoothed CHM with 0.15 x 0.15 m cell size displayed with points representing the au-
tomatically identified trees (right). The adjoining numbers are the heights of these trees 
derived from the remote sensing data. 

	 When the trees are identified and their positions and calculated heights are 

stored on a proper place, it is time to distinguish the borderlines between individual 

tree crowns as well. Another hydrologic tool is utilized for this purpose, particularly 

a “Basin” tool. This instrument, uses the flow direction raster as an input dataset 

and creates a raster delimiting all drainage basins. As stated in the tool Help, the 

drainage basins are delineated within the analysis window by identifying ridge 

lines between basins. The input flow direction raster is analyzed to find all sets of 

connected cells that belong to the same drainage basin. The drainage basins are 

created by locating the pour points at sinks, then identifying the contributing area 

above each pour point. This results in a raster of drainage basins. 

	 These basins are a good representation of the tree crowns, since each basin 

surrounds one identified tree apex. The borderlines of the basins can then serve 



114

as individual tree crowns delineations. Therefore the basin raster is subsequently 

converted to a polygon feature class using the “Raster to Polygon” tool. An option 

to “Simplify polygons” is applied which enables to smooth polygons into simpler 

shapes. The smoothing is done in such a way that the polygons contain a minimum 

number of segments while remaining as close as possible the original raster cell 

edges, as states the tool Help. The resulting polygon feature class is then stored in 

the “IdentifiedTrees.gdb” file geodatabase and its name contains the text “_Crowns” 

in the end. The drainage basins raster together with the polygonal representation 

of basins can be seen in Figure 59.

Fig. 59. A CIR image of the forest stand of interest (left) and a drainage basins raster 
created using hydrological instruments (middle). This raster converted to a polygon 
feature class (right) then serves for individual tree crowns delineation. 

	 At this point the Inverse Watershed Segmentation process as such is 

completed. All demanded primary outputs are created, since the tree apexes are 

identified, the tree heights are estimated and the tree crowns are delineated. These 

results are stored in the “IdentifiedTrees.gdb” file geodatabase in the form of one 

point and one polygon feature class. 

	 For each particular combination of initial settings the UAV Forest Explorer 

tool creates one pair of these feature classes. When many such combinations are to 

be tested, easily tens or hundreds of these feature classes can be produced within 

a single tool run. It can be highly demanding for the user if he decides to compare 

some of these outputs visually. For this reason, the option to provide the layer files 

with required properties is given by the tool, as described earlier. These sample 

layer files should be stored in a user-defined Layer Files Folder and should meet 

specific conditions concerning their names. Particularly the layer file intended for 

the polygon feature class has to be named “Polygon_layer_file.lyr” and the layer file 

intended for point feature class has to be called “Point_layer_file.lyr”.
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	 If these sample layer files are provided correctly, the tool automatically 

uses their properties and applies them on the appropriate feature classes. It 

results in the creation of new layer files, one for each feature class, which have 

the same visual properties as the sample layer files. These new layer files are 

stored in the “LayerFiles” folder which is automatically created by the tool in the 

Workspace Folder. 

	 The method of layer files creation is based on the following operations. 

First of all a new feature layer is produced using the “Make Feature Layer” tool. 

The feature layer is temporary and is created based on the input polygon feature 

class of delineated crowns. Subsequently the tool “Apply Symbology From Layer” 

is called. This tool applies the demanded visual style of the “Polygon_layer_file.

lyr” on the particular feature layer.  The “Save To Layer File” tool is then used to 

save this updated feature layer as a layer file with the required name. This file is 

stored in the “LayerFiles” folder and contains the “_Crowns_lyr” text in the end of 

the file name. 

	 Similar procedure is carried out also with the point feature layer 

representing identified tree apexes. The layer file “Point_layer_file.lyr” is utilized 

to gain the symbology from and the newly created layer file contains the text 

“_CrownTops_lyr” in the end of the file name. 

	 The tool is programmed in the way, that when the Layer Files Folder is 

defined by the user, it has to contain both sample layer files, i.e. one for polygon 

and one for point feature layer, otherwise the process of symbology application 

cannot be performed correctly. User can either utilize the default sample layer 

files provided with the UAV Forest Explorer, or can create his own layer files with 

any kind of properties, in case of need.

	 In this way the relevant outputs of the IWS calculations, i.e. polygon and 

point feature classes, are stored in the “IdentifiedTrees.gdb” file geodatabase 

and corresponding layer files are stored in the “LayerFiles” folder. Both kinds of 

data files represent the same feature classes, with the advantage, that the layer 

files are already adjusted, based on the user demands, to facilitate the visual 

comparison between individual files. Both, original feature classes with default 

visual properties as well as layer files with demanded visual style can be seen on 

Figure 60. 
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Fig. 60. Point  feature class for tree apexes and polygon feature class for crowns deline-
ation as a result of the automatic identification of trees (left). The same feature classes 
displayed as layer files with demanded visual properties (right).

4.7.3.2. Comparison with Field Measurements Data

	 When the IWS calculations are completed, two possible situations can 

come to pass afterwards. On the one hand, the Focal Statistics circle can finish 

and either a new iteration begins, or the tool performs the remaining final 

processes and leads to the end of the whole run. On the other hand the tool can 

execute another series of processes. To carry out these additional calculations, 

one condition has to be met, and it is the fact, that the field measurements ground 

truth data have to be provided by the user in the initial settings of the UAV Forest 

Explorer. That means, that the option Compare Data with Field-Measured Heights? 

has to be checked and in the field called Field Measurements Data a required 

feature class has to be provided. 

	 As described earlier, this feature class has to be of point type and all the 

points it contains should represent the exact tree positions. In its attribute table 

two fields have to be present, field called “ID” containing unique identifier for 

each record and field called “Height” containing the measured height of each 

tree in metres. When these requirements are fulfilled, the tool automatically 

performs comparison of these field-measured data with the data acquired 

during the IWS calculations. That means, that the counts of trees and their 

heights are put to statistical testing. The synoptic outputs then enable the user 
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to compare the results of various settings relatively easily and to choose the 

most convenient ones. 

	 To understand the principles of these procedures, one part of the tool’s 

constituents, which precedes all the IWS cycles, has to be described first. These 

steps have to be carried out before the start of loops, since they are to be done 

only once and are not meant to iterate. First such step is the creation of a new 

file geodatabase in a Workspace Folder. Its name is “Comparisons.gdb” and it is 

intended as a storage place for the comparison results. Also this geodatabase is 

created only if it does not exist yet. Similarly a new folder is created. This folder is 

named “Tables” and is meant to accommodate the tabular results of comparisons 

in the Excel format. 

	 In the next step the tool potentially trims the extent of the ground truth data. 

This happens, only in the case, that the Delimitting Sub-Area is provided by the user 

in the initial settings, and this area is smaller than the area of field measurement 

data. The trimming is done using the “Clip” analysis tool and the resulting feature 

class is called “FMtreesClipped”. This file is actually created each time the sub-area 

is provided, but if its extent is not smaller than the extent of the ground truth data, 

it is in essence a copy of the field measurement dataset. 

	 Another ensuing step is the delineation of the space around the individual 

field-measured trees. This is important to fulfil the demands of the Individual Tree 

Approach and gives the basis for the tree pairing (within the meaning of pairing 

field-measured and calculated trees). Specifically Thiessen Polygons were chosen 

as the most suitable means to reach this goal. To gain them, the “Create Thiessen 

Polygons” tool is called by the UAV Forest Explorer. 

	 As stated in the tool Help, this tool is used to divide the area covered by the 

point input features into Thiessen or proximal zones. These zones represent full 

areas where any location within the zone is closer to its associated input point 

than to any other input point. Thiessen polygons are created in the way, that all 

points are triangulated into a triangulated irregular network (TIN) that meets 

the Delaunay criterion. The perpendicular bisectors for each triangle edge are 

generated, forming the edges of the Thiessen polygons. The location at which the 

bisectors intersect determine the locations of the Thiessen polygon vertices. The 

outside boundary of the output Thiessen polygon feature class is the extent of the 

point input features plus an additional 10 %.
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	 Based on this workflow, whole area of interest is divided by Thiessen 

polygons, when each of them surrounds one input point representing the field-

measured tree position. The newly created Thiessen polygons feature class contains 

the user-defined Filename in its name followed by the “Thiessens” text.

	 Since the Thiessen polygons feature class has a rectangular shape, which  

extends beyond  the usually circular area of field measurements, it has to be 

trimmed in some way as well. For this purpose another tool is called, which is 

named “Minimum Bounding Geometry”. As says its Help, it creates a feature class 

containing polygons which represent a specified minimum bounding geometry 

enclosing each input feature or each group of input features. The “CONVEX_HULL” 

option was utilized, which creates the smallest convex polygon enclosing an input 

feature. The point feature class of field measurements data was used as the input 

feature. The output feature class is then comprised of one polygon the borders of 

which are going exactly thorough the outer points of the input feature class (Fig. 

61.). The output feature class then contains the “Bounding” text after the Filename 

in its name.  

	 To extend the area of the newly created polygon a little bit, a “Buffer” tool is 

utilized. The buffer distance is set to 1 metre. This distance should ensure, that also 

tree apexes identified slightly further from the plot centre, than are the positions 

of the boundary measured trees, will be taken into consideration in the further 

tree pairing. Therefore also apexes of trees trunks of which are slightly leaning out 

of the plot, will be accepted. The name of the output feature class contains the text 

of “BoundingBuffer” after the Filename. 

	 The last step of the Thiessen polygons extent adjustment, is the clipping of the 

Thiessens feature class. The ordinary “Clip” tool is utilized and the BoundingBuffer 

feature class is used to define the clipping extent. This makes the outer borders 

of Thiessen polygons to better follow the distribution of the source points. The 

output feature class, bearing “ThiessensClip” in its name, then does not contain any 

redundant corner areas and is prepared for the further calculations. The process 

of Thiessen polygons creation and trimming can be seen on Figure 61. Potentially, 

if the Delimitting Sub-Area is provided by the user, also the Thiessen polygons are 

clipped by this area. The output then contains the text “ThiessensClipSub” in its 

name. 
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Fig. 61. The process of Thiessen polygons creation and trimming. The field-measured trees 
in an examined forest stand are displayed as purple points. The green circle represents 
the area of the circular study plot of 1000 m2 size (top left). The yellow polygons are 
the Thiessen polygons created around the trees (top right). The smallest convex polygon 
enclosing the field-measured trees is displayed as the light blue polygon together with its 
1-metre Buffer polygon displayed in dark blue (bottom left). The last image shows the 
final Thiessen polygons clipped by this buffered polygon (bottom right). 

	 In the next step an important file is created in the Comparisons.gdb file 

geodatabase. It is a table and its name is “X_Comparisons_X” (The X letters are used 

mainly to put the table at the end of all the files stored in the geodatabase and 

to accentuate it visually. This should make this file easier findable for the user, 

if too many files are stored in the geodatabase). This table is meant to contain 

all the numerical results of the mathematical and statistical comparisons of the 

particular quantities of the field-measured and automatically identified trees. The 



120

table is subsequently filled with 21 fields (i.e. columns) with appropriate names to 

accommodate the demanded values. The names of these fields are to be provided 

later on in this text.

	 The part of the preparation for comparison procedures which precedes the 

IWS cycles ends at this point. The remaining comparison calculations encapsulated 

in the FS cycle will be described in the following text. 

	 First of all, the point feature class representing the treetops identified 

automatically by the tool, is clipped by the area of the field measurements data. 

The BoundingBuffer polygon is utilized for this purpose using the “Clip” tool. 

The output point feature class is stored in the Comparisons.gdb and contains the 

text “Identified” at the end of the name. This ensures that only the relevant trees, 

identified just within the exact extent of the study plot, will be employed in the 

further calculations.

	 Subsequently, the cell size of the newly created rasters is temporarily set 

to the value of 0.1 m. This fixed cell size is important for some of the consequent 

calculations, since some too large cell sizes could cause unwanted results. In the 

next step the identified treetops are converted to raster format using the “Feature 

to Raster” conversion tool. The “RASTERVALU” field is defined as the source of 

values to be applied to the raster cells. The appropriate cells of the output raster 

file lying in the positions of the original points then contain the corresponding 

height values. All the other cells receive the NoData value. 

Fig. 62. Conversion of point feature class of identified trees to raster datasets shown on 
a randomly selected result of automatic identification of trees. Thiessen polygons (green 
polygons) and field-measured trees (green points)are displayed on all images.   A CIR 
image of a forest (left), identified trees converted to raster cells including NoData - white 
areas (middle), and the corresponding dataset with NoData substituted with Null values 
- yellow areas (right). 
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	 Since for some following calculations these NoData values are not the most 

convenient, they are replaced by the Null values in the ensuing step. The “Con” 

tool is applied to do this task using the IsNull condition. The Con tool performs 

a conditional if/else evaluation on each of the input cells of an input raster. Both, 

the original raster containing NoData values as well as the new output raster 

containing Null values instead (both can be seen in Figure 62.), are to be utilized in 

the further calculations. 

	 When the rasters containing the heights of identified trees are prepared, 

the required values can be extracted and demanded calculations can be performed. 

These calculations are intended to fulfil the requirements of the Area-Based 

Approach, but also of the Individual Tree Approach. 

	 First of all the appropriate values are extracted within the scope of the ITA. 

The “Zonal Statistics as Table” tool is called for this purpose. This tool summarizes 

the values of a raster within the zones of another dataset and reports the results to 

a table. The tool is used twice, once with the raster containing NoData values as the 

“Input value raster”, once with the raster containing Null values as the “Input value 

raster”. In both cases the ThiessensClip polygon feature class is provided as the 

“Input feature zone data”. Since the ID numbers of the Thiessen polygons feature 

class correspond to the ID numbers of the field-measured trees, the “ID” field is 

used as the “Zone field” each time. 

	 Also in both cases the “DATA” choice is applied in the “Ignore NoData” 

option, meaning that within any particular zone, only cells that have a value in 

the input Value raster will be used in determining the output value for that zone. 

NoData cells in the Value raster will be ignored in the statistic calculation, as says 

the tool Help. The “Statistical type” is then set to “ALL” meaning that all the available 

statistics can be calculated, containing the “COUNT” for count of cells within the 

zone, “MIN” for minimal cell value, “MAX” for maximal cell value, “RANGE” for 

difference between minimal and maximal cell values, “MEAN” for the average of all 

cells in the particular zone, “STD” for the standard deviation of the cells and “SUM” 

for the total value of all the cells belonging to a single zone. 

	 These computations result in the creation of two tables in the Comparisons 

file geodatabase. The table the name of which ends with “ZonalStatsCounts” 

contains the zonal statistics calculated from the raster with NoData values, the 

table the name of which ends with “ZonalStatsFull” then contains the zonal statistics 
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calculated from the raster with Null values. In both cases, each line of records 

in the created table contains the statistical information about the cells situated 

within one zone of the “Input feature zone data”, i.e. within the individual Thiessen 

polygon. Since each one Thiessen polygon literally belongs to (and envelopes) one 

of the field-measured trees, these statistics are calculated for each such tree. This 

enables for instance to count the number of trees identified in the surroundings of 

each field-measured tree as well as to know the heights of smallest or tallest one 

of them, besides the other ascertained information. Particular values can then be 

used in the consequent ITA-based computations. 

	 The “Zonal Statistics as Table” tool is applied also to fulfil the requirements 

of the ABA. In this case only the raster with NoData values is used as the “Input 

value raster”. Then the BoundingBuffer is utilized as the “Input feature zone data” 

constituting one large single zone. The “ORIG_FID” field is then defined as the 

“Zone field”. Otherwise all the settings is the same as in the previous case, using 

the “DATA” option and calculating “ALL” available statistics. The output table then 

receives the “ZonalStatsUnpaired” text for the end of its name. This table contains 

only one line of records encompassing the overall statistics calculated for all the 

identified trees situated within the area of field measurements. The count of these 

trees, their minimal or maximal height and other values are to be found in there 

and are prepared for the later use. 

	 Then comes the time to interconnect the field measurement data with 

the corresponding results of the zonal statistics. First of all a copy of the field 

measurements point feature class is created and saved in the Comparisons file 

geodatabase. The “Feature Class to Feature Class” conversion tool is called to do 

this job when preserving all the properties of the original dataset. The resulting 

feature class contains the “Joined” text in its name.

	 Consequently, the table containing the zonal statistics based on ITA, that 

means calculated from the raster file without NoData using Thiessen polygons, 

is attached to the attribute table of this Joined feature class. The “Join Field” tool 

is utilized for this purpose. The join is performed based on the “ID” fields of both 

tables, since the values in these fields represent the unique identifiers which 

correspond to each other between the two tables. After this process, the Joined 

table contains all the original values, including the heights of trees measured in 

the field, but also all the values resulting from the zonal statistics calculations. 
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That means that in this table are then present both, the counts and heights of the 

field-measured trees, together with the counts and heights of the automatically 

identified trees, besides other values. 

	 In the ensuing step this Joined table is further adjusted and extended. Since 

some calculations are to be carried out within this table, some of its fields have to 

be specified and some have to be added using the “Add Field” tool. The names of 

these fields are following:

	 “Height” for field-measured (FM) heights (existing field).

	 “MAX” for calculated heights (existing field).

	 “Diff” for their difference (added field).

	 “Abs_Diff” for absolute value of that difference (added field).

	 “Diff_sq2” for the square of that difference (added field).

	 “No_Max” for unidentified trees (added field).

	 “Height_2” for FM heights of matched trees (added field).

	 “MAX_2” for calculated heights of matched trees (added field).

	 “Diff_2” for their difference (added field). 

	 Consequently the “UpdateCursor” tool is applied to calculate demanded 

values in the newly added fields. The first calculation gives the value of 1 to the “No_

Max” field if the value in the “MAX” field is 0, it means that no tree was identified 

in the particular Thiessen polygon. All other rows then receive the 0 value. This 

enables to distinguish rows with and without any identified trees. 

	 In the next step the tool calculates the difference between measured height 

(“Height” field) and the maximal calculated height (“MAX” field) for each zone and 

stores the results in the “Diff” field. In the case that more than one tree is identified 

in the extent of one Thiessen polygon, only the tallest one is taken into consideration 

(is paired or matched with the FM tree). This approach helps to avoid the influence 

of the falsely identified trees (the right tree apex should be the tallest one in the 

zone). Subsequently an absolute value of this calculated difference is counted and 

saved in the “Abs_Diff” field and the second power of the difference is also counted 

and the result is saved in the “Diff_sq2” field. 

	 In the forthcoming step the calculations are carried out only for the zones 

containing any identified trees, it means for the zones where the field-measured 

and identified trees can be paired (matched). For such lines in the table, the height 
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values are copied into the new fields, particularly the value from the “Height” field 

is copied to the “Height_2” field and the value from the “MAX” field is copied to the 

“MAX_2” field. Afterwards the difference of the values in these fields is counted and 

the result is saved in the “Diff_2” field. This enables to calculate only the particular 

difference between the field-measured and tallest identified tree in a zone, whereas 

in the “Diff” field the values are counted even in the case that no tree was identified 

in the zone (it means such calculated value is equal to the value in the “Height” 

field). These calculations are necessary for the ensuing computations. 

	 In the following part the tool performs required mathematical and statistical 

calculations focusing on the paired trees. First of all the NumPy arrays are made 

from the “Height” field and the “MAX” field using the “FeatureClassToNumPyArray”. 

As says the instrument Help, Numerical Python (NumPy) is a fundamental package 

for scientific computing in Python, including support for a powerful N-dimensional 

array object. NumPy provides an avenue to perform complex mathematical 

operations and is part of the ArcGIS software installation. Table and feature classes 

can be converted to and from NumPy arrays using functions in the data access 

(arcpy.da) module. 

	 The number of field-measured trees is then counted as the length (number 

of records) of the array made from the “Height” field. The number of identified trees 

falling into the Thiessen polygons (and thus being considered for the comparisons) 

is then counted as the sum of values in another array. This array is created from 

the “COUNT” field of the ZonalStatsCounts table. 

	 The number of unmatched trees, i.e. the field-measured trees having no 

identified tree in their surroundings (in the corresponding Thiessen polygon) 

is then counted as the sum of values in an array made from the “No_Max” field 

in the Identified feature class table. Then the number of matched trees, i.e. field-

measured trees paired with some identified tree present in their Thiessen polygon, 

is calculated as the difference between the number of field-measured trees and 

number of unmatched trees. Afterwards also the percentage of matched trees out 

of the number of all field-measured trees is counted. 

	 The important value for later results assessment is the number of redundant 

trees. Redundant are considered the identified trees, which were not paired with 

any field-measured tree. It is counted simply as the difference between the number 

of identified trees and the number of matched trees. 
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	 Subsequently the tool calculates the Mean Absolute Error (MAE) as an 
average of absolute value differences between field-measured and calculated tree 
heights. MAE measures how far predicted values are away from observed values. 
It is calculated using the equation

𝑀𝐴𝐸 =  1
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where n is the number of observations and          is the absolute value of the residual, 
calculated as
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where yi is the predicted value and yi‘ is the observed value. The sum divided by the 
number of observations then gives the final equation
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	 The mean absolute error is on same scale of data being measured. To calculate 
the MAE within the UAV Forest Explorer a new array is created. This array comes 
from the “Abs_Diff” field in the Joined table, which contains the absolute values of 
differences between the heights of field-measured and matching identified trees 
counted for each record. Then a sum of the values in this array is calculated and 
divided by the number of observations (i.e. by the number of records in the array). 
The result, similarly as the resulting values of most of the following calculations is 
then rounded to three decimal places. 
	  As the next statistics the Root Mean Square Error (RMSE) is calculated from 
the differences between field-measured and calculated tree heights. The RMSE 
is a quadratic scoring rule which measures the average magnitude of the error. 
The differences between forecast (predicted values) and corresponding observed 
values are each squared and then averaged over the sample. Finally, the square 
root of the average is taken. As the square root of the variance of the residuals, 
RMSE can be interpreted as the standard deviation of the unexplained variance, 
and has the useful property of being in the same units as the response variable. 
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Since the errors are squared before they are averaged, the RMSE gives a relatively 

high weight to large errors. This means the RMSE is most useful when large errors 

are particularly undesirable (Meloun & Militký 2004, Song et al., 2015). The RMSE 

is calculated according the following equation

𝑅𝑀𝑆𝐸 = � 1𝑛  ��𝑦� −  𝑦�′�
�
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where n is the number of observations, yi is the predicted value and yi‘ is the 

observed value. 

	 To calculate RMSE in the UAV Forest Explorer a new array is created. This 

time the “Diff_sq2” field from the Joined table is used. This field contains the 

calculated squares of the residuals, i.e. of the differences between measured and 

calculated heights of paired trees. Similarly like in the previous case, the sum of the 

values in this array is divided by the number of records in it. Afterwards the square 

root of this value is taken and the result is rounded to three decimal places.  

	 To quantify the linear correlation between the measured and calculated 

tree heights another statistics is used. Particularly it is the Pearson’s Correlation 

Coefficient (or the Pearson Product-Moment Correlation Coefficient), which is 

usually denoted by the letter r when applied to a sample. It is basically a numerical 

measure of the strength and direction of linear relationships between pairs of 

continuous random variables. In other words it is a quantity that gives the quality 

of a least squares fitting of the predicted data to the original data. 

	 It, can take a range of values from -1 to +1 where the value r = 1 means 

a perfect positive correlation and the value r = -1 means a perfect negative 

correlation. A value of 0 indicates that there is no association between the two 

variables. It is independent of the units of measurement (Meloun & Militký, 2004 

and 2006; Drápela, 2000 and 2002; Litschmannová, 2012; Blašková et al., 2009).  

The coefficient is computed as the ratio of covariance between the variables to 

the product of their standard deviations, as can be seen in the following equations 

according to Drápela, 2002 and Litschmannová, 2012 
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where n is the number of observations, y1 , y2 are the continuous random variables 
and       and       are mean values calculated as 𝑦�� 𝑦�� 
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Correlation coefficient is thus a standardized (normalized) covariance. The 
equation then looks as follows
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where        for i = 1, 2 is a point estimate of standard derivation according to the 
following relation 
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That together gives the following complete equation
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	 To incorporate the calculation of the Pearson’s Correlation Coefficient into 

the UAV Forest Explorer, the “CorrCoef” command is called out of the NumPy 

package. Two arrays are provided as the inputs to the command, particularly 

arrays previously made from the “Height” field and from the “MAX” field of the 

Joined table. The resulting value of the coefficient is then rounded to three decimal 

places. 

	 When the Pearson’s Correlation Coefficient is calculated, there should be 

performed also a significance test which enables to decide whether, based  upon  the 

processed sample, there is a sufficient evidence to suggest that linear correlation 

is present in the population. 

	 For this purpose the null hypothesis is to be tested against the alternative 

hypothesis. The null hypothesis says that there is no linear correlation in the 

population (H0 : ρ = 0), whereas the alternative hypothesis says there is linear 

correlation (H1 : ρ ≠ 0). The t-test is used to establish if the correlation coefficient is 

significantly different from zero, and, hence that there is evidence of an association 

between the two variables. The significance of the correlation coefficient is tested 

using the following equations (Bedáňová & Večeřek, 2007; Drápela, 2002)

𝑡 =  
|𝑟|
𝑠𝑟

 

 
where r is the calculated Pearson‘s Correlation Coefficient and sr is the standard 

error of the correlation coefficient, which is calculated as 
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where n is sample size (i.e. number of observations) and n - 2 are degrees of 
freedom of the Student‘s t-distribution. When implemented to the first equation 
the result is following
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	 This mathematical equation is implemented also in the UAV Forest Explorer 

to count the significance of the ascertained correlation coefficient. The calculated 

test criterion t is then compared with the critical values of the t-statistic for 

significance level α = 0.05 (i.e. for 95% confidence interval) for the two-tailed 

test. Simplified t-table with relevant critical values corresponding to particular 

degrees of freedom was inserted to the source script for this purpose. 

	 The significance of the r value is then evaluated as follows. If the calculated 

t value is smaller than the corresponding critical value, the null hypothesis cannot 

be rejected and the counted correlation coefficient is considered to be statistically 

insignificant. On the contrary, if the t value is larger than the appropriate critical 

value, the null hypothesis is rejected and the alternative hypothesis, saying that r is 

sufficiently different from zero, is accepted. In this case the calculated correlation 

coefficient is considered statistically significant. This is how the calculated value of 

the Pearson’s Correlation Coefficient is evaluated and according to the described 

workflow receives either the label “Yes” for being statistically significant or “No” 

for being statistically insignificant.

	 Amongst the other statistics, also the Coefficient of Determination 

(R-squared) is calculated, as an important output of regression analysis, being 

a measure of how well the regression line represents the data. It is interpreted 

as the proportion of the variance in the dependent variable that is predictable 

from the independent variable. The Coefficient of Determination (denoted by r2 

or R2) is the square of the correlation (r) and expresses the strength of the linear 

association between predicted y scores and original y scores; thus, it ranges from 

0 to 1. 

	 An R2 of 0 means that the dependent variable cannot be predicted from 

the independent variable. An R2 of 1 means the dependent variable can be 

predicted without error from the independent variable and indicates that the 

model explains all the variability of the response data around its mean. Since R2 

represents the percentage of the response variable variation that is explained by 

a linear regression model, its value of 0.65, for example, means that 65 % of the 

dependent variable is predicted by the independent variable. Since the Coefficient 

of Determination is the ratio of the explained variation to the total variation, it 

can be calculated as follows (Drápela, 2002; Meloun & Militký, 2006)
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where       is the variance explained by the regression model, i.e. variability of 
the regression model points around the mean. It is also called the regression (or 
explained) sum of squares and is calculated in the following way
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and      is the total variance (total sum of squares) of the experimental points 
around the average, calculated as 
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where in both cases n is the number of observations,       is the regression model 
value for the i observation,        is the original data value for the i observation, and
    is the mean of the observed data. The Coefficient of Determination can be 
expressed also using the sum of squares of residuals (also called the residual sum 
of squares), as follows
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where         is the sum of squared errors e, which is calculated in the following 
way
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The R2 can be then calculated in both ways, as shown here
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	 In the UAV Forest Explorer the Coefficient of Determination is calculated as 
the second power of the Pearson’s Correlation Coefficient. The resulting value is 
then rounded to three decimal places. 
	 Up to this point, the performed calculations were usually taking all the 
records in the processed tables into account. This means, that records for matched 
trees, together with records for field-measured trees which were not paired with 
any identified tree, were utilized in the calculations. That results in the fact, that the 
larger is the number of field-measured trees without any matching tree, the more 
are the calculated statistics influenced by the error originating in the records of 
these trees. To facilitate evaluation of the proper values without this influence, the 
subsequent calculations within the UAV Forest Explorer are focused on processing 
only the records of paired trees. 
	 First of such calculations is an ascertainment of the difference in heights 
of field-measured trees and tallest identified trees matched to them within their 
zones. As described before, the fields “Height_2”, “MAX_2” and “Diff_2” contain only 
the values for paired trees. The last field contains the value of difference of the two 
previous fields (“Diff_2” = “Height_2” – “MAX_2”). The record lines of the zones 
where the trees were not paired, contain “<Null>” values. 
	 To utilize these fields in the demanded statistical calculations, NumPy 
arrays are created from all of them. Subsequently a sum of values in the array 
made from “Diff_2” field is created and divided by the number of records in it. This 
gives the mean difference between the heights of field-measured and identified 
trees which were matched to them. Since this difference is counted without raising 
to a power or without putting to absolute values, the resulting value gives also 
the information about the tendency of the identified trees to be on average taller 
(negative value) or smaller (positive value) than the field-measured trees. 
	 In the next step the Pearson’s Correlation Coefficient is calculated for the 
paired trees only. The arrays made from the “Height_2” field and “MAX_2” field are 
utilized for this purpose. Again the “CorrCoef” command from the NumPy package 
is called to calculate the coefficient properly. Consequently the Coefficient of 
Determination is ascertained for paired trees. It is calculated as the second power 
of the just gained Correlation Coefficient.
	 Then the average height of field-measured trees (paired and unpaired 
together) is computed. The sum of values in the array made from “Height” field is 
created and then divided by the number of field-measured trees. The same array is 
then utilized to calculate also the Standard Deviation of the field-measured heights. 
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	 Standard Deviation determines the spread of scores within a set of data. 
According to Drápela (2000) and  Meloun & Militký (2006) Standard Deviation is 
statistic used as a measure of the dispersion or variation in a frequency distribution, 
equal to the square root of the arithmetic mean of the squares of deviations of the 
observed values from their mean. Contrary to variance, which squares the units, 
the advantage of Standard Deviation, is that it preserves the units of the spread 
keeping them the same as the original data units. Standard deviation is calculated 
as the square root of the variance. The formula of the variance of a sample is 
following
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where n is the sample size (number of elements in the sample), yi is the ith element 
from the sample and       is the sample mean. After the root extraction, the equation 
for the Standard Deviation of a sample looks as follows

𝑦� 

𝑠 =  �𝑠�  =  � 1
𝑛 − 1�(𝑦� − 𝑦�)� 

𝑛

�=1
=  �� 1

𝑛 − 1�𝑦��
𝑛

�=1
� −  1

𝑛��𝑦�
𝑛

�=1
�
�

 

 

	 In the environment of the UAV Forest Explorer the Standard Deviation 
is calculated utilizing the “STD” command from the NumPy package using the 
mentioned array. At this point the calculations based on the Individual Tree 
Approach are completed. Subsequent calculations are then performed within 
the scope of the Area-Based Approach, which means regardless of the pairing of 
trees. For this purpose the “ZonalStatsUnpaired” table is used, since it contains 
the summary statistics calculated for all trees identified within the area of field 
measurements. First of all the value from the “MEAN” field is utilized, as it 
represents the average height of identified trees. Then the value in the “STD” field 
is used for the Standard Deviation of calculated heights of these identified trees. 
	 In the next step the difference between the counts of identified and field-
measured trees is calculated. This value is important, since it says how close 
the number of automatically identified trees is to the number of field-measured 
trees. The positive value means that there were identified more trees than were 
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measured in the field, negative value says that the tool identified less trees than 
were measured in the area of interest. The closer the values is to zero, the better is 
the result of the particular tool run concerning the number of identified trees. 
	 Subsequently also the difference between the average heights of identified 
and field-measured trees is calculated. The mean height of field-measured trees is 
subtracted from the mean height of trees identified within the BoundingBox. The 
positive value means that the average height of identified trees is larger than the 
average height of field-measured trees, and vice versa. In this case the values close 
to zero stand for the potentially right results concerning the height of automatically 
identified trees within the ABA. Also this output value, similarly as the values 
resulting from previous computations, is rounded to three decimal places. 
	 At this point all the calculations performed within the particular FS cycle 
are completed. All the appropriate computed values ascertained during this cycle 
are to be filled into the “X_Comparisons_X” table in the next step. The “InsertRow” 
command within the “InsertCursor” instrument is used to add a new row in the 
table and to fill the proper values into the activated fields. All 21 previously created 
fields are utilized in this step. The names of these fields and the content they stand 
for is following:

“FileName” for the name of the processed file created within individual settings.
“Measured” for the number of field-measured (FM) trees. 
“Identified” for the number of trees identified within Thiessen polygons.
“Unmatched” for the number of FM trees without any matching identified tree.
“Matched” for the number of FM trees matched with (i.e. paired to) identified trees.
“Matched_Pct” for the percentage of matched trees from all FM trees.
“Redundant” for the number of redundantly identified trees (not matched).
“__MAE__” for the Mean Absolute Error for FM and counted heights.
“__RMSE__” for the Root Mean Square Error for FM and counted heights.
“Corr_Coef” for the Pearson’s Correlation Coefficient for FM and counted heights.
“R_squared” for the Coefficient of Determination for FM and counted heights.
“Stat_Sig_R” for the Statistical Significance of the Pearson’s Correlation Coefficient.
“Mean_Diff_MT” for the Mean Difference between average values of FM and counted 
heights for Matched Trees (MT) only. 
“Corr_Coef_MT” for the Pearson’s Correlation Coefficient for Matched Trees only.
“R_squared_MT” for the Coefficient of Determination for Matched Trees only.
“Mean_FM_Ht” for the Mean height of FM trees.
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“SD_FM_Ht” for the Standard Deviation of heights of FM trees.
“Mean_IT_Ht” for the Mean height of Identified Trees (IT).
“SD_IT_Ht” for the Standard Deviation of heights of identified trees.
“Count_Diff” for the Difference between count of identified and FM trees.
“Height_Diff” for the Difference between mean height of identified and FM trees.

	 At this moment the X_Comparisons_X table is updated, since new row was 

added and filled with appropriate values. Each such row contains values calculated 

under the specific settings of the UAV Forest Explorer. Just one row can be added 

within a single FS cycle. The number of rows in the table basically corresponds to 

the number of combinations of the various tool settings, that means to the number 

of iterations (and particularly sum of individual FS cycles) carried out within the 

tool run. 

	 At the end of the FS cycle the due cycle counters are updated. Then, either the 

following FS cycle begins, or the particular series of FS subcycles ends (subcycles 

denote FS cycles performed within a single IM cycle). Since the whole FS cycle is 

enclosed within the IM cycle, the tool processing gets again to the IM cycle, when 

the last FS subcycle is finished. Here only one more operation can be executed, 

namely partial deleting of the working datasets. 

	 If the option to Delete Working Datasets? was checked by the user in the 

initial settings of the UAV Forest Explorer, the tool does not delete the data all at 

once at the end of the run, but it deletes the data continuously, just at the end of each 

IM cycle. The tool at first lists separately all the feature classes and rasters which 

were stored in the WorkingData.gdb file geodatabase during the IM cycle. Then 

it applies the “Delete” command to remove them permanently. The geodatabase 

is then empty and is ready to accommodate the new datasets created within the 

subsequent IM cycle, if there is any. In the case that the Delete Working Datasets? 

option was not selected by the user, all the datasets saved in the WorkingData 

geodatabase remain stored there.  

	 As the last step within the IM cycle, the appropriate cycle counters are 

updated. Then, either the particular loop continues and another IM cycle begins, 

or if no more Interpolation Methods should be applied within the actual CS cycle, 

the loop is finished. Because the whole IM cycle is enclosed within the CS cycle, 

the tool processing gets into the CS cycle again. Here are also the appropriate 

cycle counters updated. Before the end of the CS cycle, one more process can be 
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performed. When the option to Progressively Reduce Focal Statistics Subcycles? is 
checked in the initial settings, the tool adjusts the proper variables to fulfil this 
requirement. 
	 When large number of various combinations is to be tested based on the 
user-defined settings, that means that plenty of iterations should be calculated, 
the reduction of the FS cycles can be welcome. Usually not all combinations of Cell 
Size values and FS Circle Radius values are really meaningful and therefore desired. 
Especially the combinations of large Cell Sizes and large FS Circle Radiuses can be 
found inessential (such combinations generally lead to identifying too few trees). 
Since processing of these combinations consumes standard computing power and 
time, but leads to inapplicable results, it can be highly useful to avoid them. This 
option therefore gives the possibility to reduce the number of redundant FS cycles 
and thus to significantly decrease the computation time. 
	 Technically it works in the way, that when the reduction option is checked, 
the tool progressively reduces the value of Focal Statistics Circle Radius Max for the 
cycles with largest Cell Sizes. When the particular conditions are met, its value is 
reduced by 1 cell at the end of each Cell Size cycle. At the same time the value can 
never be reduced below 1 cell. It is ensured by the fact, that the reduction begins 
only in such CS cycle, when the number of remaining CS cycles is smaller than 
the number of FS subcycles (number of FS subcycles is the difference between FS 
Circle Radius Max and FS Circle Radius Min defined by the user, that means it is the 
original number of FS cycles to be carried out within each IM cycle).
	 In other words, when the tool processing reaches the point, that the number 
of CS cycles, which remain to be done until the end of the tool run, is smaller 
than the original number of the FS subcycles, the value of FS Circle Radius Max 
is reduced by one cell. It means that in the subsequent CS cycle the number of FS 
cycles performed within each IM cycle is of 1 value smaller than in the previous CS 
cycle. In the same manner the value of FS Circle Radius Max can be reduced within 
each CS cycle potentially up to the value of 1 cell applied within the last CS cycle. 
	 In the case that the number of CS cycles, meant to be executed based on 
the initial settings, is from the beginning smaller than the number of FS subcycles, 
the reduction begins already at the end of the first CS cycle (and is manifested 
within the IM cycles of the second CS cycle). In such case also the value of smallest 
FS Circle Radius Max is larger than 1 cell. For example when 4 CS cycles are to be 
carried out and 10 FS subcycles are demanded to be calculated, the actual number 
of FS subcycles performed within the IM cycles of the last CS cycle is 7. 
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	 The final number of FS cycles reduced by application of this option within 

the whole tool run then depends also on the number of IM cycles executed within 

each CS cycle. If there are for instance all 8 interpolation methods demanded to be 

applied, 8 IM cycles are carried out within each CS cycle. If there was no reduction 

demanded in the previous example, 10 FS subcycles would be performed within 

each IM cycle. That leads into executing 4 x 8 x 10 cycles, which is together 320 FS 

cycles. 

	 If the cycles reduction option was checked, the number of performed cycles 

is following: 8 x 10 cycles in the first CS cycle, 8 x 9 cycles in the second CS cycle, 

8 x 8 cycles in the third CS cycle and 8 x 7 FS cycles in the fourth CS cycle. That 

makes together 272 FS cycles, which means that 48 cycles were avoided thanks to 

the reduction in this case. More examples for better understanding the principles 

of the FS subcycles reduction are provided in the Appendix 3 - User Guide for the 

UAV Forest Explorer.

	 After the potential variables and counters adjustment in the scope of the 

described reduction option, the CS cycle reaches its end. Then either the next CS 

cycle starts from the beginning, or if no more CS cycles are to be carried out and all 

iterations are finished, the tool processing gets out of all of the loops. 

	 Subsequently the counts of all executed iterations within different cycles 

are recapitulated. The tool puts the numbers of performed CS, IM and FS cycles 

into the messages shown in the Progress Dialog Box and compares them with 

the predicted values. The actual total numbers and predicted numbers should 

correspond to each other. If some difference appears by chance, it can be caused 

most likely by rounding of certain values of Cell Sizes, since python manages some 

integers and float numbers in a specific way. Nevertheless in an overwhelming 

majority of cases the corresponding values should match precisely. If the reduction 

option was utilized, the tool also writes out the number of potential FS cycles to be 

performed without reduction and the actual number of FS cycles avoided thanks 

to the reduction. 

	 In the ensuing step the tool exports the X_Comparisons_X table to an *.xls 

format. This can be done only if the tool calculations results were compared with 

the ground truth data and the table thus exists. The “TableToExcel” conversion tool 

is applied for this purpose. The name of the exported table is “Comparisons.xls” 

and it is saved in the Tables folder. From here it can be easily accessed using e.g. 

Microsoft Office Excel software. 
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	 The very last process potentially executed within the UAV Forest Explorer is 
the deletion of the WorkingData.gdb file geodatabase. This can be done only if the 
Delete Working Datasets? option was applied in the initial settings. Since the data 
stored in the geodatabase were deleted continuously in such case, now only the 
empty geodatabase is to be removed. The “Delete” command is used to do this job 
and the whole geodatabase is erased from the Workspace Folder. 
	 At this point the whole run of the UAV Forest Explorer is completed and the 
tool finishes its processing. 

4.7.4. Specific Workflow Applied in this Study

4.7.4.1. Running the Tool

	 The particular settings and procedures utilized in this work are described 

in this chapter. The tool was used to process the data from the twenty examined 

study plots, to identify trees in them and to compare the results with the field-

measurements data. Concerning the initial settings and data inputs, the applied 

entries were following. 

	 As a Workspace Folder usually a newly created folder, named according to 

the study plot under investigation, was utilized. Also the Filename corresponded 

to the particular study plot and reflected the locality it was situated in, or the 

typical properties of the studied forest stand (for instance the prevailing species, 

the characteristics of the terrain, etc.), so that the certain plot could be easily 

recognised according to that name. When applying the ground truth data, the 

filename also contained some abbreviation to specify, if all field-measured trees 

were processed, or the data without suppressed trees were utilized. 

	 As a Surface Point Cloud *.las File a point cloud created from the 

photogrammetric processing of the UAV-based images in the Agisoft Photoscan 

software (See chapter 4.6.2. Photogrammetric Image Processing  for more 

information) was utilized each time. The *.las file was prepared to cover just the 

area of interest, to avoid having uselessly large datasets. For the Las Dataset Name 

usually the default “LasDataset” designation was maintained, if no experiments 

with the Las Dataset creation were carried out. 

	 For the Digital Terrain Model (DTM) field a Digital Terrain Model of the 
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Czech Republic of the 5th generation (DTM 5G) was provided each time (the DTM is 

described in the chapter 4.6.3. Auxiliary data). As also described earlier, the spatial 

resolution of the utilized DTM was 0.2 x 0.2 and 0.5 x 0.5 metres, depending on 

the terrain conditions. When the UAV Forest Explorer tool was in its early stage 

of the development, the DTM of the 5th generation was not available for the area 

of Training Forest Enterprise Masaryk Forest Křtiny yet. Therefore the tool was 

tested on the model of the 4th generation (DTM 4G), with 5 x 5 m spatial resolution, 

which was available that time. 

	 The option to Refine DTM Cell Size to a new finer value was therefore 

utilized only within testing of the tool during its development, but not during the 

full operation, when the DTM 5G with sufficient spatial resolution was employed 

on every of the twenty processed study plots. Nevertheless this option is still 

meaningful for working on areas where no such detailed DTM is available. 

	 Concerning the settings for the limitations of the tool cycles, i.e. setting of 

the Rasters Cell Sizes, Interpolation Methods and Focal Statistics Circle Radiuses, the 

tool was usually applied in a two-phase way as follows. 

	 1) First of all, when a new forest stand was taken for processing, just a basic 

calculations were used to find the most suitable range of Cell Size values for the 

particular area. The Rasters Cell Size Min was usually set to 0.1 m, Rasters Cell Size 

Max approximately to 1.5 m for mainly coniferous forests and around 2.0 m for 

mainly broadleaf forests, and Rasters Cell Size Step was set to 0.1 m. Then only 

one Interpolation Method (usually Binning with Average cell assignment type) was 

selected. Focal Statistics Circle Radius Min and Max values were then coincidently 

set to the value of 1 cell, to ensure that only one FS subcycle will be applied. Then 

a path to a folder containing sample layer files was given in the Layer Files Folder 

field. The field-measurements data were not necessarily provided. The Delete 

Working Datasets? option was not checked, to maintain the working rasters and 

feature classes, for the case of any inspection needs. 

	 With these settings the tool was run and performed usually between 15 to 

20 iterations (based on the applied CS values range) graded by 10 centimetres of 

the rasters spatial resolution. Then usually the resulting layer files were evaluated 

visually and compared between each other. The main goal of such  assessment was 

to find the upper limit of the applied Cell Size values, which are still meaningful for 

the particular forest stand. 
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	 2) Based on the previously executed primary investigation, the maximal 

relevant value of the Cell Sizes was found out. Then the full operation of the tool 

could be started. The Workspace Folder and Filename were potentially adjusted 

for the new run, the point cloud file and DTM dataset were provided the same as 

before. The limiting values defining the tool cycles were then set in the following 

way. The Rasters Cell Size Min was usually set to 0.05 m, Rasters Cell Size Max was 

set for instance the value of 1.0 m (based on the particular ascertainment from the 

basic run), and the Rasters Cell Size Step was each time set to 0.05 m. 

	 Then all 8 Interpolation Methods were selected. The Focal Statistics Circle 

Radius Min was ordinarily set to 1 cell and Focal Statistics Circle Radius Max was 

usually set to the value of 10 cells. The option to Progressively Reduce Focal Statistics 

Subcycles was selected, to decrease the computing time. Then usually a square polygon 

surrounding the area of the certain study plot was provided as the  Delimitting Sub-

Area. The Layer Files were normally not applied in this second full run. On the contrary 

the option to Compare Data with Field-Measured Heights was employed and the Field 

Measurements Data were provided for the particular study plot in the required form. 

The last option - to Delete Working Datasets was also utilized in the vast majority of 

cases. The full operation run was then started with these initial settings. 

	 The settings applied on the different forest stands varied mainly in the 

range of Cell Size values (particularly in the used Max value). The other entries 

were usually applied similarly on all the twenty study plots. Based specifically 

on this described settings of the full operation run, the tool performed just 1240 

iterations. Together 360 FS cycles were avoided thanks to the reduction (otherwise 

1600 iterations were to be performed). 

	 The tool was applied on each of the twenty study plots twice, and in some 

cases even three times. The first run was carried out using the field-measurements 

data with no adjustments, that means with all the trees meeting the elemental 

conditions, which were measured in the field. Nevertheless these data often 

contained also thicker understorey and suppressed main-storey trees, which could 

not be detected by the tool. The reason was the simple fact, that their apexes did 

not penetrate sufficiently into the canopy layer and were overshadowed by taller 

trees. Since the crowns of these trees did not  constitute a fully-fledged part of the 

canopy, they could not be represented in the photogrammetrically acquired point 

cloud or in the subsequent DSM either. 



140

	 For this reason, the second run of the tool was each time executed using 

the field-measurements data without the understorey and suppressed trees. The 

trees to be excluded were selected mainly based on the histogram of the field-

measured height data (Figure 63.) in the combination with the visual assessment 

of the DSM (the one created in the Agisoft PhotoScan software from the dense 

point cloud data) and RGB/CIR true orthophoto images of the forest stand. For 

this reason a copy of the point feature class representing the field-measurement 

data was created and from this layer the selected trees were removed. Such feature 

class was then provided as a ground truth in the second run of the tool at each 

plot. 
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Fig. 63. Histogram of field-measured height values in a particular study plot. The red line 
shows the obvious division between the understorey and suppressed trees (left) and the 
trees forming the main canopy (right). 

	 On several plots even a third run of the tool was executed. It was on the 

plots, where a significant portion of the present tree species constituted mature 

pines (in our case between 90 and 100 years old).  These trees are typical for their 

often tendency to have highly leaning or kind of twisted trunks. That causes, 

that the field-measured position of the trunk base often does not correspond to 

the position of the tree apex. Particularly three study plots were affected by this 

characteristic behaviour. On these plots the direction and rate of leaning of each 

tree was recorded during the field measurements. 

	 Then during the data processing, another copy of the field-measurements 

data was created (of the version already without suppressed trees). In this 
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	 Based on the described workflow, the tool was run twice on 17 study plots 

and three times on 3 study plots. That makes together 43 runs.  When the average 

number of iterations performed within one tool run was around 900 (the value 

varied depending on the applied Rasters Cell Size Max value), the total number of 

iterations carried out within this work was close to 40 000. 

	 The tool within these runs created series of outputs stored mainly in 

the IdentifiedTrees.gdb and Comparisons.gdb file geodatabases and also in the 

Tables folders. Concerning these results, predominantly the ...Comparisons.xls 

table was further deeply examined, since it contained together all the important 

characteristics of the trees identified within each single iteration. 

Fig. 64. The process of tree positions modification. Above the CIR image on the left are 
shown the original positions and heights of field-measured trees. Green points represent 
the main-storey trees, yellow points the suppressed and understorey trees. Above the DSM 
on the right image can be seen the same main-storey trees (green points) and these trees 
after the modification, placed on the proper positions of tree apexes (purple points). The 
yellow lines show the links between corresponding trees. Where the line is missing the 
position of the tree was not modified.

dataset a manual modification of positions of the concerned trees was carried out, 

based on the leaning notes from the field investigation and based on the detailed 

inspection of the orthophoto images and DSM of the forest stand (Figure  64.). 

Then, the third run of the tool was executed using this modified feature class as 

the field-measurements data in the case of the three particular study plots. This 

enabled to find out, if such modification has any influence on the results of the 

trees identification and heights assessment process.
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4.7.4.2. Assessing the Tool Outputs

	 The overall results of each tool run stored in the Comparisons.xls table were 

further thoroughly studied in the Microsoft Excel software. As already explained, 

for each of the twenty plots more than one tool run was performed. That resulted 

in the creation of 2 Comparisons tables for 17 study plots and creation of 3 

Comparisons tables for 3 study plots. The most suitable results meeting particular 

conditions were searched for each plot and then stored in separate “Best Results” 

tables. These resulting 43 tables can be seen in Appendix 4. The tables have slightly 

adjusted names of some columns compared to the original Comparisons tables, 

but the selected records contain the same values as the source tables. The logic 

used to select the best results, or in other words used to find the settings giving the 

results with most satisfactory specific values is described in the following text.

	 The records in the Comparisons tables were assessed both, on the ITA 

basis and also on the ABA basis. In both cases the fundamental quantity taken into 

account was the difference between count of identified and count of FM trees. This 

value calculated for each iteration was stored in the “Count_Diff” field. The value 

was important for ABA as well as the ITA method since results giving very low 

errors or showing high correlation between calculated and field-measured heights 

would be meaningless, if the number of automatically identified trees would be 

just a little portion, or on the contrary would be several times higher, than the 

number of FM trees. 

	 Concerning the ITA method, the results were divided into two groups based 

on the count difference for that reason. The first group was for the best results 

the count difference of which was in the range of -5 to +5 trees. This category was 

called “Smaller Range”. The second group called “Larger Range” then contained 

also results the count difference of which could be larger. The range varied in the 

case of tables resulting from the tool runs where all FM trees were utilized as the 

ground truth and in the case where reduced number (and also reduced number 

and modified positions) were applied as the ground truth during the tool run. 

	 In the first case the Larger Range was with count difference between -30 % 

and +10 % of FM trees provided in the particular run. In the second case the lower 

limit of the range was also -30  % of the FM trees and the upper limit was +1.5 

multiple of the difference between all FM trees measured on the plot and the 

reduced number of FM trees used in the specific run. 
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	 So for example if 80 trees were physically measured in the selected plot and 
20 of them were found to be suppressed or understorey trees and were removed 
from the ground truth data for the second tool run, the ranges used for outputs 
assessment were following: Smaller Range was from -5 to +5 trees of Count 
Difference, Larger Range was from -24 to +8 trees of Count Difference for all FM 
trees as the ground truth and from -24 to +30 trees of Count Difference for the 
reduced FM trees as the ground truth. 
	 These ranges enabled to assess the outputs from two points of view. The first 
one evaluating only those results which maximally correspond with the number of 
identified trees to the number of FM trees (Smaller Range), the second one taking 
into account also the outputs with much less identified trees than is the number 
of corresponding FM trees (Larger Range). In the second case, if very good results 
appeared with up to 30 % less trees compared to the original ground truth dataset, 
it can suggest that a lot of trees in the area are suppressed and therefore cannot be 
detected by the tool. 
	 The upper limits then give some tolerance to accept also results with 
slightly higher amount of identified trees. In the case of results from the runs with 
reduced number of FM trees the lower range of -30 % allows to incorporate also 
results indicating that even more trees could be removed from the ground truth 
data, and the upper limit of +1.5 multiple of the number of reduced FM trees then 
encompasses also the results calculated with number of identified trees similar to 
the  number of FM trees before the reduction, also giving some tolerance. 
	 Concerning the ABA the specific ranges used for outputs evaluation will be 
described later. At this point, the process of the most appropriate results selection 
is described, beginning with the ITA method. Since it may look complicated to 
process the large Comparisons tables efficiently, the applied workflow of assessing 
all the 43 tables is described in the following text. 
	 The first aim was to find records with lowest number of FM trees which 
were not paired with any identified tree in each iteration, and at the same time 
with lowest number of excessively identified trees. For this purpose all the data 
in the processed table were sorted according to the “Unmatched” field first, and 
the records in this column were gradually coloured according to the particular 
demands. Similarly were treated also records in the “Redundant” field. They were 
also sorted ascending and gradually coloured. Both columns were then visually 
assessed, utilizing the applied colours as a support, and the records with lowest 
values together in both of them were highlighted.	
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	 In the next step all the records in the table were sorted ascending according 

to the “RMSE” field and the highlighted records with lowest values of RMSE were 

also coloured. Then the table was sorted descending according to the “Corr_Coef” 

field and from the highlighted records those with the highest correlation coefficient 

were marked with a selected colour. 

	 Subsequently from these preselected records meeting the described 

requirements, one compromise “the most ideal” record was selected. This record 

was selected as having the relatively lowest numbers of unmatched and redundant 

trees, lowest value of RMSE and highest value of correlation coefficient at the same 

time. Then this record was copied into the new Best Results table (see Appendix 4). 

Since the lowest possible numbers of unmatched and redundant trees were 

preselected, also the count difference between field-measured and identified trees 

stored in the “Count_Diff” field was preferably as low as possible. Therefore the 

chosen record was stored in the new table into the Smaller Range section. The 

combination of both parameters, based on which the record was mainly selected, 

was given in the “Best Parameter” field as the “RMSE & R”.

	 In the next steps the other parameters in the scope of the Smaller Range 

were evaluated and sufficient records were selected. From the records with Count 

Difference in the range of ±5 trees the one with smallest RMSE was chosen and 

copied into the appropriate field in the new table. Similarly also the record with the 

highest value of correlation coefficient was selected and put to the table in the line 

with “R” for the “Best Parameter”. All these described parameters were searched for 

only between the records whose correlation coefficient was statistically significant, 

if possible. That means that they contained “Yes” in the field “Stat_Sig_R”. If no such 

records were found to be relevant, the records with statistically insignificant R had 

to be chosen in some cases. 

	 The last assessed parameter in the scope of the Smaller Range was the 

correlation coefficient calculated only for the matched trees. Therefore the records 

in the table were sorted descending according to the “Corr_Coef_MT” field and the 

one with highest value (and still only up to ±5 trees of the Count Difference) was 

chosen and copied to the “R for MT” field standing in the “Best Parameter” section. 

	 In a similar manner also the demanded parameters for the purposes 

of the Larger Range were searched. In this case the records with lowest RMSE, 

then highest correlation coefficient and then those with highest correlation 

coefficient for matched trees only, were selected and stored in the proper part of 



145

the appropriate Best Results table. These records could be sometimes the same 

as the results in the Smaller Range, but often were these records different, since 

the range of Count Difference was much larger in this case, as described earlier. 

This enabled to evaluate also the results more varying in the number of identified 

trees and to subsequently allow to judge if the Larger Range enabled to find better 

results than the highly limiting Smaller Range.

	 Together 7 most satisfactory records were selected from each Comparisons 

table based on the ITA method, particularly 4 meeting the conditions of the Smaller 

Range and 3 suitable for the Larger Range. Subsequently the best results concerning 

the ABA were searched for. Also in this case the fundamental parameter was the 

Count Difference, since also now only the records with number of identified trees 

maximally corresponding to the number of field-measured trees were demanded. 

Therefore in the first stage only records with the difference of 0 trees were 

preselected, if such records were available. 

	 The second parameter used for assessing the results was the difference 

between average height of FM trees and average height of appropriate identified 

trees. Therefore from the preselected records the one with lowest value in the 

“Height_Diff” field was chosen. Such record was then copied into the Best Results 

table in the line having the “Count Diff (0)” stated as the Best Parameter. 

	 If no record having zero Count Difference was present in the investigated 

Comparisons table, the record with lowest value of this difference was selected. If 

more records had zero or another smallest Count Difference and some of them had 

similar Height Difference, the one with smallest Standard Deviation of heights of 

identified trees (with lowest value in the “SD_IT_Ht” field) was chosen. 

	 For the second most suitable result in the scope of ABA the acceptable Count 

Difference was enlarged from 0 to the range of ±1 tree. Now in this range again the 

record with lowest Height Difference was searched. The best result was also copied 

in the appropriate table to the row having “Count Diff (±1)” in the Best Parameter 

field. Both these described selected records were giving the information about the 

difference of average heights between FM and identified trees when the difference 

in their counts was minimal. 

	 To give the information from the opposite point of view, it means to find what 

is the Count Difference when the Height Difference is the lowest, another selection 

was performed. For this purpose the record with the smallest Height Difference 

from all records in the table was chosen and copied into the Best Results table in 
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the line bearing “Height_Diff” in the Best Parameter field. The Count Difference in 
such records can reach sometimes very extreme values. 
	 The last parameter used to find the required records within the Comparisons 
tables was the Standard Deviation of heights of identified trees. The range of 
records suitable for selection had to fulfil the condition of having maximally ±1 
tree of Count Difference, if possible. Then the record with lowest value in the “SD_
IT_Ht” field was located between these records and copied into the Best Results 
table into the row with corresponding name. 
	 Together 4 records were selected from each Comparisons table in the 
scope of ABA and with the 7 records acquired in the scope of the ITA altogether 11 
records were chosen as the most appropriate and stored in each Best Results table. 
The described process was applied on all 43 Comparisons tables gained during the 
previous UAV Forest Explorer runs. The resulting Best Results tables were then 
differentiated based on the numbers of study plots and also based on the form 
of the ground truth data provided for the calculations (All FM trees / Reduced 
number of FM trees / Reduced number of FM trees with modified positions). All 
these tables can be seen as Appendix 4. 
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5. Results

	 As the workflow in this study consisted of two fundamental parts, i.e. 

collecting of the field measurements ground truth data and collecting and 

processing of the data from the UAV, the results are also divided into such two 

groups, respectively. 

5.1. Results of the Field Measurements 

	 As described thoroughly in the chapter 4.3. Forest Stands Measurements, 

together 20 study plots in different forest stands and with diverse terrain and 

growing conditions was established and explored in detail within this study. The 

sizes of these circular study plots varied between 1000 m2 and 3300 m2. Differing 

were also the counts of trees present at each study plot. 

5.1.1. Counts of Field-Measured Trees

	 Together 1446 trees was measured during the field measurements. All 

these trees were meeting the required conditions (explained in chapter 4.2.  

Specification of Study Plots). The number of trees present in individual study 

plots ranged between 60 and 110 trees. The relationship between the particular 

numbers of these field-measured trees, the diameter of each study plot and the 

age of the forests stand can be concluded from the Table 3. containing all these 

three parameters. The values combined into a single diagram are then visualized 

in the Figure 65.

Table 3.  Combination of the age of examined forest stands (in the year 2014), the diameter 
of each study plot and the number of trees being measured at each plot. 

Plot Number I. II. III. IV. V. VI. VII. VIII. IX. X.
Stand Age [years] 61 61 102 102 70 76 99 92 92 47
Plot Diameter [m] 35.68 35.68 40.68 40.68 35.68 35.68 64.82 43.70 43.70 35.68
Number of Trees 93 98 64 64 72 79 60 68 71 92
Plot Number XI. XII. XIII. XIV. XV. XVI. XVII. XVIII. XIX. XX.
Stand Age [years] 125 141 90 90 100 31 31 71 36 110
Plot Diameter [m] 50.46 43.70 39.09 39.09 39.09 35.68 35.68 42.22 35.68 40.68
Number of Trees 60 60 62 67 61 66 110 63 74 62
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Fig. 65. Diagram showing the combination of the age of the investigated forest stands, 
the diameter of the study plots and the number of field-measured trees present at each 
study plot. 

5.1.2. Forest Stands Composition

	 Different kinds of information about the trees within the study plots were 

gathered during the thorough field measurements. One of them was the data 

about the composition of the forest stands. The information about all the various 

tree species which were recorded at each plot is summed in the following tables 

and graphs. 

	 The first table (Table 4.) contains the summarization of broadleaf and 

coniferous trees present on the 20 study plots together with the abbreviation of 

the prevailing type. When at least 75 % of trees in a study plot were broadleaf, 

they received letter “B”, similarly plots with more than 75 % of conifers received 

the abbreviation “C”, the remaining study plots were then marked with letter “M” 

standing for mixed forest.

	 As is clear from the table, from the total number of 1446 trees measured 

during the field measurements 684 trees were broadleaf and 762 trees were 

coniferous. The distribution of broadleaf and coniferous trees in particular study 

plots is visualised in the Figure 66.
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Plot 
Number

Number of Trees Prevailing 
TreesBroadleaf Coniferous Total

I. 92 1 93 B
II. 88 10 98 B
III. 63 1 64 B
IV. 49 15 64 B
V. 71 1 72 B

VI. 37 42 79 M
VII. 60 0 60 B
VIII. 15 53 68 C
IX. 8 63 71 C
X. 20 72 92 C
XI. 60 0 60 B
XII. 56 4 60 B
XIII. 20 42 62 M
XIV. 15 52 67 C
XV. 6 55 61 C

XVI. 0 66 66 C
XVII. 3 107 110 C
XVIII. 2 61 63 C
XIX. 19 55 74 M
XX. 0 62 62 C

Sum: 684 762 1446 8B/9C/3M

Table 4.  Summarized amount of broadleaf and coniferous trees at each study 
plot. The last column contains the abbreviations of prevailing trees, where 
B stands for Broadleaf, C for Coniferous and M for Mixed forest stand. 

Fig. 66. The visual representations of broadleaf and coniferous trees measured at each 
of the 20 examined study plots. 
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	 Together 16 different tree species were found on the study plots during the 
field measurements. Their numerical representations can be seen in Figure 67.
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Fig. 67. Representation of individual tree species summarized for all the 20 study plots. 
The species are arranged clockwise according to their count in the descending order. 

	 The most individuals were represented by Norway spruce (Picea abies) with 
348 trees, the second most abundant species was European beech (Fagus sylvatica) 
with 239 pieces, the third was then sessile oak (Quercus petraea) represented by 
200 trees. The following species were European hornbeam (Carpinus betulus) 
with 169 representatives, Scotch pine (Pinus sylvestris) with 167 trees, European 
larch (Larix decidua) with 139 individuals, followed by Douglas fir (Pseudotsuga 

menziesii) with 107 measured trees. 
	 Another nine species were represented with less than 100 trees, particularly 
it were small-leaved linden (Tilia cordata) with 42 trees, wild cherry tree 
(Cerasus avium) with 19 individuals, Norway maple (Acer platanoides) with 6 
representatives, common ash (Fraxinus excelsior) with together 4 trees or Scottish 
maple (Acer pseudoplatanus) with just two found individuals. The last four species 
were then represented each only by one single tree: European fir (Abies alba), 
large-leaved linden (Tilia platyphyllos), European hawthorn (Crataegus leavigata) 
and rowan tree (Sorbus aucuparia). The particular distribution of all the 1446 
trees amongst the individual study plots can be seen in the Table 5. 



151

Table 5.  The overall numbers of individual tree species found at particular study plots.  
The species are arranged in descending order from left to right according to their count. 
All the data were gained during the field measurements. 
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I. 0 16 52 22 0 1 0 1 0 0 0 0 0 1 0 0

II. 0 25 17 41 2 8 0 2 0 3 0 0 0 0 0 0

III. 0 15 7 40 1 0 0 1 0 0 0 0 0 0 0 0

IV. 0 16 22 10 6 5 3 0 0 0 0 0 1 0 1 0

V. 0 10 13 47 0 1 0 1 0 0 0 0 0 0 0 0

VI. 0 2 0 0 1 41 0 35 0 0 0 0 0 0 0 0

VII. 0 60 0 0 0 0 0 0 0 0 0 0 0 0 0 0

VIII. 9 10 1 1 1 1 42 0 0 0 0 2 0 0 0 1

IX. 35 8 0 0 1 27 0 0 0 0 0 0 0 0 0 0

X. 72 15 3 2 0 0 0 0 0 0 0 0 0 0 0 0

XI. 0 56 0 0 0 0 0 0 0 1 3 0 0 0 0 0

XII. 0 0 56 0 0 4 0 0 0 0 0 0 0 0 0 0

XIII. 1 0 2 2 41 0 0 0 15 1 0 0 0 0 0 0

XIV. 0 0 9 0 52 0 0 0 4 1 1 0 0 0 0 0

XV. 32 1 0 4 23 0 0 1 0 0 0 0 0 0 0 0

XVI. 0 0 0 0 0 4 62 0 0 0 0 0 0 0 0 0

XVII. 93 1 2 0 0 14 0 0 0 0 0 0 0 0 0 0

XVIII. 52 2 0 0 1 8 0 0 0 0 0 0 0 0 0 0

XIX. 0 2 16 0 32 23 0 1 0 0 0 0 0 0 0 0

XX. 54 0 0 0 6 2 0 0 0 0 0 0 0 0 0 0

Sum 348 239 200 169 167 139 107 42 19 6 4 2 1 1 1 1
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5.1.3. Field-Measured Height of Trees

	 For each of the 1446 trees the height was measured using the digital 
hypsometer. The average height of all trees measured within each of the 20 study 
plots can be seen in the Figure 68. The distribution of height values of individual 
trees present at each plot can be seen in the Figure 69. 

Fig. 68. The average field-measured height of trees within each study plot. 

Fig. 69. The box and whiskers plots showing the distribution of field-measured height of 
trees on particular study plots. The bottom and the top of the boxes represent the first and 
third quartile of the values respectively, and hence the boxes contain 50 % of the values. 
The inner line then stands for the median. The whiskers then represent the 1.5 multiple of 
the interquartiles of the lower and upper quartiles and the circles then show the outliers. 
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	 Figure 70. shows the Standard Deviation of FM height of trees at each plot.

	 Since the height of each tree was measured at least twice from different 
positions and sometimes even five or seven times (see chapter 4.3.2 Measurements 
of the trees) the acquired values had each time a particular range. The mean range 
was calculated as an average of the differences between maximal and minimal 
height values measured for each tree in a particular plot. The resulting values can 
be seen in Figure 71. 
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Fig. 70. The Standard Deviations of field-measured height of trees within each study plot. 
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Fig. 71. The average range of field-measured heights of trees within each study plot. 
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5.2. Results of the UAV Forest Explorer Runs 

	 As described in the chapter 4.7.4.2. Assessing the Tool Outputs, the statistics 

calculated within each iteration of UAV Forest Explorer runs, which were comparing 

the properties of field-measured and automatically identified trees, were used 

for selection of the best results for each study plot. These results, which at the 

same time represent the most suitable settings applicable for each explored forest 

stand, were then saved in the Best Results tables and can be seen in Appendix 4. 

The acquired results are described in the following chapters. 

5.2.1. Individual Tree Approach Results

	 Generally the statistics were calculated both, for the Individual Tree 

Approach and for the Area-Based Approach. Between the statistics calculated in the 

scope of ITA were mainly the Mean Absolute Error (MAE) and Root Mean Square 

Error (RMSE) of calculated and FM heights, Pearson’s Correlation Coefficient (R) 

of these heights together with its Statistical Significance (Stat. Sig. R), Coefficient of 

Determination (R2), Mean Difference between average heights of FM and counted 

heights for matched trees only (Mean Diff. MT), Pearson’s Correlation Coefficient 

calculated for matched trees only (R (MT)) and corresponding Coefficient of 

Determination (R2 (MT)). Between the important calculated quantities belonged 

also the number of identified trees vs. the number of FM trees, number of matched 

or also unmatched trees or the number of redundantly identified trees. 

	 From all these statistics, just selected representatives were utilized for 

choosing the best results. Mainly it was the RMSE, R and its statistical significance, 

R for matched trees and the counts of identified vs. field-measured trees. Only 

the results best fitting the requirements considering the definitions of Smaller 

Range and Larger Range of Count Differences (see chapter 4.7.4.2. Assessing the 

Tool Outputs), were selected as the most suitable ones. The best results, which 

are summed up in the following chapters are differentiated both, on the basis of 

the provided ground truth data (All FM trees / Reduced number of FM trees / 

Modified positions of FM trees) as well as the described ranges (Smaller Range / 

Larger Range). 
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Table 6. The lowest values of RMSE of the field-measured and calculated tree heights 
for particular study plots. The table is divided based on the form of field-measurements 
data (All FM Trees / Reduced Number of  FM Trees) and based on the defined ranges of 
Count Difference (Smaller Range / Larger Range). Also the average values calculated 
for each category and for each study plot are contained.

5.2.1.1. Root Mean Square Error (RMSE)

	 The best results in each category concerning the lowest values of the RMSE 
of the field-measured and calculated tree heights are summarized in the following 
table (Table 6.) and diagrams (Figure 72. and Figure 73.). 

	 The following diagrams visualise the data from Table 6. and enable to easily 
recognize the differences between various categories on individual study plots. 

RMSE All FM Trees Reduced FM Trees
AveragePlot 

Number
Smaller  
Range

Larger  
Range

Smaller  
Range

Larger  
Range

I. 10.194 9.489 10.194 7.939 9.454
II. 9.883 9.806 7.858 5.500 8.262
III. 11.846 11.565 10.615 10.125 11.038
IV. 10.302 10.302 11.161 5.703 9.367
V. 9.741 9.741 10.013 8.425 9.480

VI. 13.734 14.276 11.107 2.053 10.293
VII. 11.061 11.061 9.720 9.720 10.391
VIII. 12.806 12.806 12.964 11.990 12.642
IX. 9.865 9.599 7.389 5.070 7.981
X. 4.037 4.037 3.419 3.295 3.697
XI. 16.024 16.024 16.229 16.229 16.127
XII. 8.671 8.458 8.576 8.576 8.570
XIII. 9.989 9.989 10.819 8.651 9.862
XIV. 7.130 6.373 5.870 5.255 6.157
XV. 15.790 14.654 14.230 14.114 14.697

XVI. 3.094 3.094 0.438 0.395 1.755
XVII. 3.672 3.373 2.298 2.290 2.908
XVIII. 8.416 8.416 4.171 4.115 6.280
XIX. 6.137 6.137 2.475 2.474 4.306
XX. 12.559 12.559 10.983 9.623 11.431

Average 9.748 9.588 8.526 7.077 8.735
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Fig. 72. The lowest values of RMSE of the field-measured and calculated tree heights divided 
based on the defined categories. Diagram represents data from study plots I. to X . 
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Fig. 73. The lowest values of RMSE of the field-measured and calculated tree heights divided 
based on the defined categories. Diagram represents data from study plots XI. to XX . 

	 As described earlier, in the case of three study plots not only two, but three 
tool runs were applied to process the data. The first and second run were classically 
comparing the automatically identified trees with all field-measured trees and 
with reduced number of FM trees, respectively. The third run was then utilizing 
the reduced number of FM trees after the manual modification of tree positions 
(see chapter 4.7.4.1. Running the Tool). 
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	 This process was performed only on plots with prevailing representation of 

Scotch pine (Pinus sylvestris) in the species composition, particularly on plots XIII., 

XIV. and XV. The plot number XIX., which also contained relevant portion of Scotch 

pines was not included in this process, since the forest stand was relatively young 

(only 36 years contrary to 90 - 100 years in the case of the concerned three plots) 

and the trees were not significantly leaning yet. The effect of the tree positions 

modification can be evaluated based on Table 7. and Figure 74. 

Table 7. The lowest values of RMSE of the field-measured and calculated heights for 
three   study plots, where also the ground truth data with modified positions of trees 
were provided.

Fig. 74. The lowest values of RMSE of the field-measured and calculated tree heights. 
Diagram represents data from study plots XIII., XIV. and XV. where the ground truth data 
with Modified positions of FM trees were processed.  
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RMSE All FM trees Reduced Trees Modified Trees

AveragePlot 
Number

Smaller  
Range

Larger  
Range

Smaller  
Range

Larger  
Range

Smaller  
Range

Larger  
Range

XIII. 9.989 9.989 10.819 8.651 4.965 1.048 7.577
XIV. 7.130 6.373 5.870 5.255 3.909 0.999 4.923
XV. 15.790 14.654 14.230 14.114 9.152 8.439 12.730

Average 10.970 10.339 10.306 9.340 6.009 3.495 8.410
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5.2.1.2. Pearson’s Correlation Coefficient (R)

	 The best results in each category concerning the highest values of the 
Pearson’s Correlation Coefficient counted for the field-measured and calculated 
tree heights are summarized in the following table (Table 8.) and depicted in the 
diagrams (Figure 75. and Figure 76.).

Table 8.  The highest values of the Pearson's Correlation Coefficient of the field-measured 
and calculated tree heights for particular study plots. The table is divided based on the 
form of field-measurements data (All FM Trees / Reduced Number of   FM Trees) and 
based on the defined ranges of Count Difference (Smaller Range / Larger Range). 

	 The following diagrams are then depicting the data from Table 8. and 
enable to easily assess the differences between various categories on particular 
study plots. 

R All FM Trees Reduced FM Trees
AveragePlot 

Number
Smaller  
Range

Larger  
Range

Smaller  
Range

Larger  
Range

I. 0.117 0.131 0.059 0.172 0.120
II. 0.414 0.516 0.792 0.798 0.630
III. 0.259 0.326 0.253 0.271 0.277
IV. 0.543 0.555 0.478 0.478 0.514
V. 0.519 0.559 0.505 0.511 0.524

VI. 0.150 0.340 0.448 0.559 0.374
VII. 0.657 0.657 0.436 0.521 0.568
VIII. 0.603 0.632 0.533 0.564 0.583
IX. 0.697 0.726 0.632 0.699 0.689
X. 0.800 0.812 0.671 0.694 0.744
XI. 0.360 0.360 0.292 0.355 0.342
XII. 0.434 0.487 0.373 0.387 0.420
XIII. 0.560 0.612 0.494 0.494 0.540
XIV. 0.608 0.608 0.516 0.572 0.576
XV. 0.323 0.470 0.609 0.638 0.510

XVI. 0.752 0.767 0.969 0.969 0.864
XVII. 0.756 0.801 0.628 0.689 0.719
XVIII. 0.745 0.867 0.469 0.577 0.665
XIX. 0.708 0.783 0.644 0.644 0.695
XX. 0.544 0.663 0.450 0.549 0.552

Average 0.527 0.584 0.513 0.557 0.545



159

Fig. 75. The highest values of the Pearson's Correlation Coefficient computed for the 
field-measured and calculated tree heights for particular study plots divided based on 
the defined categories. Diagram represents data from study plots I. to X . 
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Fig. 76. The highest values of the Pearson's Correlation Coefficient computed for the field-
measured and calculated tree heights for particular study plots divided based on the 
defined categories. Diagram represents data from study plots XI. to XX . 
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	 As described in the previous chapter, in the case of three study plots with 
prevailing Scotch pine (Pinus sylvestris) in the species composition, particularly 
plots number XIII., XIV. and XV. there were three tool runs of the UAV Forest Explorer 
applied. The third run was each time performed using the reduced number of 
field-measured trees with modified positions as the ground truth (explained in 
the chapter 4.7.4.1. Running the Tool). The effect of the tree positions modification 
can be evaluated based on Table 9. and Figure 77.

Table 9.  The highest values of the Pearson's Correlation Coefficient of the field-measured 
and calculated tree heights for particular study plots, where also the ground truth data 
with modified positions of trees were provided.

Fig. 77. The highest values of the Pearson's Correlation Coefficient computed for the field-
measured and calculated tree heights for particular study plots. Diagram represents data 
from study plots XIII., XIV. and XV. where the ground truth data with Modified positions of 
FM trees were processed.  
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R All FM trees Reduced Trees Modified Trees

AveragePlot 
Number

Smaller  
Range

Larger  
Range

Smaller  
Range

Larger  
Range

Smaller  
Range

Larger  
Range

XIII. 0.560 0.612 0.494 0.494 0.758 0.862 0.630

XIV. 0.608 0.608 0.516 0.572 0.671 0.850 0.638

XV. 0.323 0.470 0.609 0.638 0.804 0.804 0.608

Average 0.497 0.563 0.540 0.568 0.744 0.839 0.625
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5.2.1.3. Pearson’s Correlation Coefficient (R) for Matched Trees Only
	
	 The Pearson’s Correlation Coefficient for the field-measured and calculated 
tree heights, which was calculated only for the Matched Trees, was also utilized for 
the results assessment (see chapter 4.7.4.2. Assessing the Tool Outputs). The best 
results in each category regarding this quantity are summarized in the following 
table (Table 10.)

Table 10. The highest values of the Pearson's Correlation Coefficient of the field-measured 
and calculated tree heights counted for Matched Trees only. The table is divided based 
on the form of field-measurements data (All FM Trees / Reduced Number of  FM Trees 
/ Modified Positions of Reduced FM Trees) and based on the defined ranges of Count 
Difference (Smaller Range / Larger Range). 

R for MT All FM Trees Reduced FM Trees Modified FM Trees

AveragePlot 
Number

Smaller  
Range

Larger  
Range

Smaller  
Range

Larger  
Range

Smaller  
Range

Larger  
Range

I. 0.165 0.275 0.422 0.458 0.330
II. 0.551 0.587 0.595 0.679 0.603
III. 0.082 0.144 0.130 0.243 0.150
IV. 0.652 0.658 0.877 0.920 0.777
V. 0.422 0.521 0.487 0.500 0.483

VI. 0.572 0.643 0.703 0.703 0.655
VII. 0.527 0.598 0.538 0.538 0.550
VIII. 0.757 0.827 0.900 0.903 0.847
IX. 0.644 0.688 0.950 0.951 0.808
X. 0.958 0.967 0.971 0.972 0.967
XI. 0.506 0.605 0.556 0.662 0.582
XII. 0.714 0.714 0.606 0.606 0.660
XIII. 0.482 0.482 0.808 0.808 0.847 0.890 0.720
XIV. 0.586 0.586 0.879 0.879 0.888 0.895 0.786
XV. 0.614 0.623 0.817 0.824 0.902 0.902 0.780

XVI. 0.978 0.978 0.971 0.973 0.975
XVII. 0.951 0.959 0.962 0.962 0.959
XVIII. 0.953 0.972 0.983 0.986 0.974
XIX. 0.769 0.915 0.960 0.960 0.901
XX. 0.856 0.873 0.968 0.970 0.917

Average 0.637 0.681 0.754 0.775 0.879 0.896 0.724
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5.2.1.4. Mean Difference of Heights for Matched Trees Only

	 This subchapter contains the summarisation of best results regarding 

the Mean Difference between average values of field-measured and counted 

heights for Matched Trees (MT) only. Since results with this value closest to zero 

contain more or less unsuitable values of other quantities, those results were not 

preferred. 

	 Instead, the average of all the values in “Mean Diff (MT)” field in the ITA 

part of each Best Results table was calculated. That means that this average 

was each time counted from 7 values (4 from Smaller Range and 3 from Larger 

Range) from the best results matching the previously described requirements. 

The diagram depicting these average values calculated for each plot and each 

version of ground truth data can be seen as the Figure 78.

Fig. 78. The average values of the Mean Difference between average values of FM and 
calculated heights for Matched Trees. Counted from all values in the ITA section of the 
Best Results tables. The diagram contains data gained using different ground truth 
data (All FM Trees / Reduced Number of  FM Trees / Modified Positions of Reduced FM 
Trees). 
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5.2.1.5. Suitable CS, IM and FS Settings of the Tool within the ITA

	 The basic settings of the UAV Forest Explorer leading to the demanded 

results are described in this chapter. The Cell Size, Interpolation Method and Focal 

Statistics Circle Radius belong to these settings. To summarize the frequencies 

and distributions of the selected settings applied for processing the data and 

resulting in the most satisfactory outputs, two approaches were used.  

	 First of all just the results meeting the requirements of both, the lowest 

Root Mean Square Error and highest Pearson’s Correlation Coefficient at one 

time (tagged as “RMSE & R” in the Best Results table) were utilized for assessing 

the most suitable settings. These results, being a compromise for both these 

main quantities and keeping the lowest Count Difference between the FM and 

identified trees at the same time, can be considered the representatives of 

the relatively most appropriate settings for each particular forest stand being 

explored. Therefore the CS, IM and FS values from the “RMSE & R” field were 

picked up from the Best Results of the each tool run. 

	 The second approach works with less limitation and accepts all the 

results in the whole ITA group. Therefore both, Smaller and Larger Range were 

utilized for this purpose. That gives together 7 results being used for the settings 

extraction regarding the outputs from each of the 43 tool runs. The summarisation 

of the ascertainment regarding the most suitable settings based on the described 

approach can be seen in the following tables and diagrams. 

	 Table 11. contains Cell Size values, Interpolation Methods and Focal 

Statistics circle radius values extracted just from the results meeting the lowest 

RMSE and highest R requirements. The CS, IM and FS values used for calculation 

of the demanded outputs were selected for each study plot and for each kind of 

the ground truth data (All FM trees / Reduced number of FM trees / Modified 

positions of the reduced FM trees). 

	 Tables 12. to 14. then contain summarized frequencies of CS, IM and 

FS values extracted from all the 301 results (43 * 7) of the ITA group. Namely 

Table 12. sums the representations of the Cell Size values, Table 13. contains 

frequencies of particular Interpolation Methods and Table 14. then shows 

summed counts of the Focal Statistics Circle Radiuses extracted from these 

results.
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Table 11.  The Cell Size, Interpolation Method and Focal Statistics circle radius values 
selected as the best results meeting the "RMSE & R" conditions for each study plot. The 
table is divided based on the form of field-measurements data.

Table 12. The Cell Size values applied for the tool runs leading to the best results concerning 
the ITA.  The table sums the frequencies from all the 301 ITA best results. 

Table 13. The Interpolation Methods applied for the tool runs leading to the best results 
concerning the ITA.  The table sums the frequencies from all the 301 ITA best results. 

Table 14. The Focal Statistics circle radiuses applied for the tool runs leading to the best 
results concerning the ITA.  The table sums the frequencies from all the 301 ITA best results. 

CS 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 - 95 100

Frequency 12 56 36 27 28 26 32 23 19 5 9 8 7 7 3 2 0 1

IM BA BI BM BN TLN TLW TNN TNW
Frequency 46 48 21 34 40 22 49 41

FS 1 2 3 4 5 6 7 8 9 10
Frequency 132 32 29 35 27 19 13 6 6 2

Plot 

Number

All FM Trees Reduced FM Trees Modified FM Trees
CS IM FS CS IM FS CS IM FS

I. 20 TNN 2 40 BI 1
II. 25 BM 1 10 BA 5
III. 25 BI 2 45 BN 1
IV. 10 BI 5 55 TNN 1
V. 15 BA 3 15 TNN 4

VI. 10 TNW 3 15 BI 5
VII. 25 BA 4 30 TLN 4
VIII. 25 BA 2 45 TNN 1
IX. 15 BN 4 10 TNW 7
X. 30 TLW 1 35 TLW 1
XI. 70 BA 1 65 TLN 1
XII. 15 BI 6 10 TLN 8
XIII. 35 TNW 1 60 TLN 1 60 TNN 1
XIV. 45 TNN 1 50 TLW 1 60 TLN 1
XV. 35 TNN 1 35 BI 1 40 TLN 1

XVI. 10 BN 5 40 BN 1
XVII. 25 TNW 1 25 TNW 1
XVIII. 10 TNW 5 65 BA 1
XIX. 30 TLN 1 10 TNW 5
XX. 20 BA 3 35 TNN 2
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	 Figure 79. contains the selected Cell Size values representing the Best 

Results meeting only the “RMSE & R” category demands, extracted for each plot. 

Figure 80. then depicts the overall frequency of particular CS values in the scope of 

the whole ITA category.
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Fig. 79. The selected Cell Size values representing the Best Results meeting the condition 
of lowest RMSE and highest R at the same time for each study plot. The diagram shows 
values gained using different ground truth data.

Fig. 80. The frequencies of Cell Size values representing the Best Results in the scope of the 
"RMSE & R" group (43 results) and in the scope of all the 301 ITA results. 
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	 The frequency of specific Interpolation Methods and Focal Statistics Circle 
Radius values applied in the case of the Best Results, meeting the conditions of 
the “RMSE & R” category as well as of the whole ITA group, are displayed in the 
Figure 81. and Figure 82. respectively.

Fig. 81. The frequency of Interpolation Methods representing the Best Results in the scope 
of the "RMSE & R" group (43 results) and in the scope of all the 301 ITA results.

Fig. 82. The frequency of Focal Statistics Circle Radiuses representing the Best Results in 
the scope of the "RMSE & R" group (43 results) and in the scope of all the 301 ITA results.
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	 Since the relationship between CS and FS values can provide much more 
information than these values as such, the frequency and distribution of their 
combinations were also ascertained. Visualisations including the trends are shown 
as the Figure 83. for the results from the “RMSE & R” category and as the Figure 84. 
for the results encompassing the whole ITA outputs group. The diagrams were 
‘jittered’ to better show the frequencies of particular combinations of values.
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Fig. 83. The combinations of CS and FS values used for acquisition of the Best Results in the 
"RMSE & R" category. The green line is the trend of data counted as the power regression.
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Fig. 84. The combinations of CS and FS values from the "RMSE & R" category and from the 
ITA group. The lines represent the trend of data calculated as the exponential regression.
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5.2.2. Area-Based Approach Results

5.2.2.1. Count Difference, Height Difference and Standard Deviation

	 The statistics calculated in the scope of the ABA were mainly the mean height 
of identified trees, standard deviation of heights of identified trees, the difference 
between the count of identified and FM trees and the difference between the mean 
height of identified and FM trees. These values could be compared also with the 
mean height of FM trees and with the standard deviation of heights of the FM trees. 
As described earlier, the Best Results regarding the ABA were selected mainly 
based on the lowest Count Difference (either 0 and ±1 tree if possible) and lowest 
Height Difference at the same time, on the lowest Height Difference only and on 
the lowest Standard Deviation in the ±1 tree Count Difference range. The values of 
the lowest Height Difference of the selected results with the Count Difference of 0 
and ±1 tree can be seen in the Table 15. 

Table 15. The lowest values of the Height Difference as the difference between mean height 
of identified and FM trees in metres. The values are extracted from the Best Results with 
Count Difference of 0 trees and from the range of ±1 tree of Count Difference.

Height 
Diff. [m] Count Difference (0 trees) Count Difference (±1 tree)

Plot 
Number

All FM 
Trees

Reduced 
FM Trees

Modified 
FM Trees Average All FM 

Trees
Reduced 
FM Trees

Modified 
FM Trees Average

I. 4.644 2.445 3.545 4.620 2.445 3.533
II. 5.091 1.600 3.346 5.091 1.498 3.295
III. 4.480 1.544 3.012 4.502 1.106 2.804
IV. 3.353 -0.028 1.663 3.353 -0.028 1.663
V. 4.812 2.381 3.597 4.716 2.353 3.535

VI. 4.543 -0.025 2.259 4.499 -0.036 2.232
VII. 0.065 0.001 0.033 -0.100 0.004 -0.048
VIII. 3.894 0.765 2.330 3.894 0.236 2.065
IX. 2.582 0.349 1.466 2.156 0.349 1.253
X. -0.460 0.378 -0.041 -0.460 -0.033 -0.247
XI. 2.462 2.437 2.450 0.785 1.432 1.109
XII. 2.112 2.926 2.519 1.961 0.581 1.271
XIII. 2.890 0.115 -0.092 0.971 2.890 -0.052 -0.040 0.933
XIV. 1.959 0.563 -0.343 0.726 1.029 0.303 0.031 0.454
XV. 2.921 -0.059 1.018 1.293 2.921 0.224 1.027 1.391

XVI. 0.011 -0.013 -0.001 0.090 0.015 0.053
XVII. -0.342 -0.493 -0.418 -0.364 -0.505 -0.435
XVIII. 0.041 0.010 0.026 0.041 0.030 0.036
XIX. 1.535 -0.059 0.738 1.465 -0.073 0.696
XX. -0.275 -0.369 -0.322 0.046 0.135 0.091

Average 2.316 0.723 0.194 1.427 2.157 0.499 0.339 1.259
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	 Since the values of Height Difference are significantly close to each other 
in the two groups of the Count Difference (0 trees and ±1 tree range), only values 
from the second group are visualised in the Figure 85. 

Fig. 85. The lowest values of the Height Difference as the difference in metres between 
average height of identified trees and FM trees. From results with ±1 tree Count Difference.

-5 

-4 

-3 

-2 

-1 

0 

1 

2 

3 

4 

-100 

900 

1900 

2900 

3900 

4900 

I. II. III. IV. V. VI. VII. VIII. IX. X. XI. XII. XIII. XIV. XV. XVI. XVII. XVIII. XIX. XX. 

H
ei

gh
t D

iff
er

en
ce

 [m
] 

Co
un

t D
iff

er
en

ce
 [t

re
es

] 

Plot Number 

All FM Trees – Count Difference 

Reduced FM Trees – Count Difference 

Modified FM Trees – Count Difference 

All FM Trees – Height Difference 

Reduced FM Trees – Height Difference 

Modified FM Trees – Height Difference 

Fig. 86. The combined diagram showing the values of Height Difference (upper part and 
right axis) and Count Difference (lower part and left axis) for each study plot and each FM 
data. Created from Best Results with the lowest Height Difference from all the tool outputs.
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	 The diagram in Figure 86. contains the data extracted from the results 
meeting the condition of the absolutely lowest Height Difference from all the 
results created by the UAV Forest Explorer within each specific run. The diagram 
contains the combination of both, the Height Difference values (line chart) and the 
Count Difference values (bar chart) resulting from the appropriate tool outputs, 
which were selected as the Best results. 
	 Values come from each study plot using all three types of ground truth data 
(All FM trees / Reduced number of FM trees / Modified positions of the reduced 
FM trees). The particular values of the source data used for the visualisation are 
then present in the Table 16. 

Table 16. The values of the Count Difference [trees] and Height Difference [metres] gained 
from the Best Results meeting the condition of the lowest value of Height Difference 
from all the tool outputs. Values gained for each study plot and for each kind of field-
measurements data.

Min. HD All FM Trees Reduced FM Trees Modified FM Trees
Plot 

Number
Count 

Difference
Height 

Difference
Count 

Difference
Height 

Difference
Count 

Difference
Height 

Difference
I. 1591 3.305 1610 0.958
II. 1083 3.480 443 0.018
III. 1481 2.402 372 0.041
IV. 1565 1.049 1 -0.018
V. 1488 3.234 1461 0.537

VI. 1801 2.592 -0.005
VII. -10 -0.003 0 0.001
VIII. 2308 1.425 12 -0.019
IX. 775 0.014 0.006
X. 4 0.019 9 -0.005
XI. 177 -0.018 3 -0.027
XII. 35 0.003 -23 -0.015
XIII. 969 0.118 13 -0.007 -5 -0.006
XIV. 155 0.008 13 0.001 -3 0.010
XV. 2523 0.154 51 0.003 1 0.007

XVI. 1 0.002 -9 -0.001
XVII. -35 0.000 -23 0.009
XVIII. 56 -0.004 1 -0.005
XIX. 149 -0.007 -0.009
XX. 7 0.001 -9 -0.014

Average 806 0.889 196 0.072 -2 0.004
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	 The last assessed quantity concerning the Best Results from the UAV Forest 
Explorer outputs from the 20 study plots, is the Standard Deviation of the height 
values of the automatically identified trees. As described earlier, the lowest values 
of the Standard Deviation were extracted only from the results whose Count 
Difference was in the range of ±1 tree. 
	 The Table 17. contains the particular values of the Standard Deviation 
together with corresponding values of Height Difference acquired within the same 
tool iterations leading to the demanded Best Results. Data were extracted from the 
outputs from all study plots using all three kinds of ground truth data (All FM trees 
/ Reduced number of FM trees / Modified positions of the reduced FM trees).

Table 17.  The values of the Count Difference [trees] and Height Difference [metres] gained 
from the Best Results meeting the condition of the lowest value of Height Difference from 
all the tool outputs. Values gained for each study plot and for each kind of FM data.

Min. SD All FM Trees Reduced FM Trees Modified FM Trees

Plot 
Number

SD of 
Height 

of IT

Height 
Difference

SD of 
Height 

of IT

Height 
Difference

SD of 
Height 

of IT

Height 
Difference

I. 1.179 4.657 1.109 2.553
II. 1.508 5.165 1.463 1.773
III. 1.387 4.785 1.475 1.719
IV. 2.556 3.353 2.487 0.271
V. 1.388 4.997 1.224 2.381

VI. 2.632 4.543 1.982 0.049
VII. 1.076 0.648 1.026 -0.270
VIII. 3.700 4.503 2.778 0.765
IX. 2.487 2.156 2.243 0.294
X. 1.668 0.785 1.509 -0.033
XI. 4.571 3.058 4.624 2.917
XII. 3.058 2.508 3.097 2.793
XIII. 3.709 4.453 1.256 0.891 1.224 0.654
XIV. 1.855 1.029 1.236 0.991 1.217 0.945
XV. 2.255 3.123 2.195 0.696 2.158 1.327

XVI. 1.772 0.011 1.553 -0.385
XVII. 1.562 -0.342 1.349 -0.493
XVIII. 2.731 0.041 1.678 -0.342
XIX. 1.791 1.988 1.354 0.176
XX. 5.252 -2.535 2.827 0.135

Average 2.407 2.446 1.923 0.844 1.533 0.975
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	 The lowest values of Standard Deviation from Table 17. are visualised in the 
combined diagram in the Figure 87. The line chart represents the values of Height 
Difference and the bar chart the values of Standard Deviation (both in m). 
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Fig. 87. The combined diagram showing the values of Height Difference (upper part and 
right axis) and Standard Deviation values (lower part and left axis) for each study plot 
and each FM data. Created from Best Results with ±1 tree of Count Difference.
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Fig. 88. The comparison of Standard Deviation of height values of field-measured trees 
and of identified trees (the lowest SD from results with Count Difference of ±1 tree).
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	 The diagram in Figure 88. is then showing the comparison of Standard 
Deviations counted for the final height values of FM trees at each plot and for the 
calculated height values of identified trees - lowest within the results with Count 
Difference of ±1 tree. The source values are then stored in the Table 18. 

Table 18.  The values of the Standard Deviation of Height values of field measured trees 
and of identified trees within the results with Count Difference of ±1 tree. 

SD of FM/IT All FM Trees Reduced FM Trees Modified FM Trees
Plot 

Number
SD of FM 

Height
SD of IT 
Height

SD of FM 
Height

SD of IT 
Height

SD of FM 
Height

SD of IT 
Height

I. 4.586 1.179 2.759 1.109
II. 5.281 1.508 3.075 1.463
III. 5.556 1.387 3.187 1.475
IV. 5.841 2.556 3.025 2.487
V. 5.360 1.388 2.867 1.224

VI. 5.960 2.632 2.176 1.982
VII. 2.398 1.076 1.426 1.026
VIII. 9.122 3.700 3.581 2.778
IX. 6.577 2.487 2.605 2.243
X. 2.688 1.668 1.709 1.509
XI. 5.400 4.571 3.174 4.624
XII. 2.569 3.058 2.173 3.097
XIII. 7.701 3.709 1.757 1.256 1.757 1.224
XIV. 4.172 1.855 1.281 1.236 1.281 1.217
XV. 7.850 2.255 2.936 2.195 2.936 2.158

XVI. 2.005 1.772 1.567 1.553
XVII. 1.690 1.562 1.194 1.349
XVIII. 3.099 2.731 1.512 1.678
XIX. 4.109 1.791 1.512 1.354
XX. 3.910 5.252 2.826 2.827

Average 4.794 2.407 2.317 1.923 1.991 1.533

5.2.2.2. Suitable CS, IM and FS Settings of the Tool within the ABA

	 This part is devoted to an assessment of the initial settings of the UAV Forest 
explorer which led to the Best Results regarding the ABA. Also now all three types of 
settings, that means Cell Size, Interpolation Method and Focal Statistics Circle Radius, 
are evaluated. Each Best Results table contains four rows, each representing the most 
appropriate result meeting various requirements. Between these requirements belong 
lowest value of Height Difference from outputs with Count Difference of 0 trees, lowest 
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value of Height Difference from outputs with Count Difference of ±1 tree, lowest value 
of Height Difference from all the outputs and lowest value of Standard Deviation of 
height values of identified trees from outputs with Count Difference of ±1 tree. 
	 Since the third mentioned kind of results i.e. lowest value of Height Difference 
from all the outputs, is rather of an informative character, then being a Best Result in 
the proper meaning, this type of results was not utilized in the settings assessment. 
	 From the remaining three types of results either only one, or all of them were 
processed. The results having the lowest Height Difference and meeting the condition 
of having the Count Difference of zero trees can be considered the most convenient 
from all the outputs. The settings from this type of results should therefore provide 
the information of the most suitable way how to process the data of the specific 
explored forest stands regarding the Area-Based Approach. These settings were 
therefore selected and arranged in the Table 19.

Plot 
Number

All FM Trees Reduced FM Trees Modified FM Trees
CS IM FS CS IM FS CS IM FS

I. 20 TNN 2 35 BI 1
II. 10 BN 4 25 BA 2
III. 35 BM 1 45 BM 1
IV. 40 BN 1 45 TNN 1
V. 10 BA 5 15 TNN 4

VI. 10 TNW 3 30 BA 2
VII. 45 BA 2 35 TNN 3
VIII. 40 TNN 1 30 TNN 2
IX. 15 BI 4 40 BN 2
X. 35 BA 1 10 TLN 5
XI. 20 BA 5 30 TNN 3
XII. 60 TLN 1 50 TNW 1
XIII. 40 BI 1 50 TNN 1 20 BI 4
XIV. 10 TNN 6 45 TLW 1 55 BI 1
XV. 10 TNN 5 35 BA 1 25 TNW 2

XVI. 15 BA 4 45 TLW 1
XVII. 5 TNW 7 10 TLN 4
XVIII. 35 BI 1 20 TNN 4
XIX. 30 TLN 1 45 TLW 1
XX. 15 TNN 4 45 BM 1

Table 19. The Cell Size, Interpolation Method and Focal Statistics circle radius values 
selected as the Best Results for each study plot. The source results were meeting the 
condition of the lowest Height Difference and the 0 trees of Count Difference (if possible). 
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	 The summarized frequencies of CS, IM and FS values extracted from the 129 
results (43 * 3) of the reduced ABA group (without the described category) are 
arranged in the Tables 20. to 22. and visualised in the Figures 89. to 91.  Namely 
representations of the Cell Size values are shown in Table 20. and Figure 89., 
frequencies of particular Interpolation Methods are contained in Table 21. and 
Figure 90. and summed counts of the Focal Statistics Circle Radiuses extracted 
from these results are to be seen in Table 22. and Figure 91.

Table 20. The frequency of Cell Sizes representing the Best Results within ABA.

Table 21. The frequency of Interpolation Methods representing the Best Results within 
ABA.  

Table 22. The frequency of Focal Statistics Circle Radius values representing the Best 
Results within ABA.

CS 5 10 15 20 25 30 35 40 45 50 55 60 65 70
Frequency 6 19 17 9 14 11 16 12 16 4 1 1 1 2

IM BA BI BM BN TLN TLW TNN TNW
Frequency 24 22 11 11 19 8 23 11

FS 1 2 3 4 5 6 7 8 9 10
Frequency 48 26 11 19 8 4 8 2 2 1

Fig. 89. The Cell Size values applied for the tool runs leading to the best results concerning 
the ABA.  The diagram sums the frequencies from the 129 ABA best results. 
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Fig. 90. The Interpolation Methods applied for the tool runs leading to the best results 
concerning the ABA.  The diagram sums the frequencies from the 129 ABA best results. 
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	 Also now the relationship between CS and FS values was examined. The 

combinations of these values leading to the Best Results within ABA are depicted 

in the Figure 92. Both types of results were used in this case, i.e. 1) only these 

meeting the condition of the lowest Height Difference within the results with Count 

Difference of 0 trees, and 2) also all the cumulative 129 results within the whole 

ABA group. 

	 Also in this case the data in the diagram were purposely 'jittered' by adding 

some random noise to reveal also the numerous overlapping values. This enables 

to better visualise the distribution and frequencies of particular combinations of 

CS and FS values.

Fig. 92. The combinations of CS and FS values from the ABA group. Includes both, the 
data only from Best Results with Count Difference of 0 trees (43 results), but also the 
data from the whole ABA group after reduction (129 results). The lines represent the 
trend of data calculated as the exponential regression.
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5.3. Interpretation of Results

	 In this chapter the results are examined, summarized, and some important 
relationships between various kinds of results are described.

5.3.1. Interpretation of DTM Processing Results

	 As described in the chapter 4.2. Specification of Study Plots, some terrain 
conditions and characteristics were derived by the analysis of the DTM 5G from 
the ČÚZK. Concerning the average slope of the terrain at each plot, the lowest value 
of 1.1° was at plot number VIII. Another 11 plots had the average slope between 2 
and 5 degrees, 4 plots between 5 and 10 degrees. One plot reached the value of 12° 
and remaining three plots had all slope larger than 20°. Particularly plot XII. had 
average slope of 23.3°, plot XI. reached the value of 25.1° and the steepest terrain 
was at plot number XX. with the average value of slope being 28.5°. 
	 The rate of curvature values gained as the difference between maximal and 
minimal curvature counted for each plot was lowest at plots number I. and VII. 
reaching the value of only 0.4. Another six plots had the value still lower than 1 and 
7 plots reached values between 1 and 2. More uneven terrain was at plot number 
III. with the value of 4.3 or plot IX. with value of 6.8. Even more rough terrain then 
could be found at plots XII. and XX., both with the curvature rate of 7. The most 
curved terrain was then at plot number XI. 
	 It is worthy of notice, that the last four mentioned study plots (IX., XI., XII. 
and XX.) are also those with highest values of the slope. These four plots with 
steepest slopes therefore can also be considered generally having the most curved 
terrain conditions from all the twenty study plots. 

5.3.2. Interpretation of Field Measurements Results

5.3.2.1. Counts of Trees and Species Composition

	 Concerning the counts of trees present at particular study plots, their 
relations to ages of forest stands and to plot sizes are clarified. Therefore the logic 
of setting the plot sizes should be reminded first. The minimal required plot size 
was 1000 m2 (diameter 35.68 m) and the minimal demanded count of trees was 
60. That means that if the 1000 m2 plot contained at least 60 trees, the size was 
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kept. If not enough trees were present in such plot, its size was enlarged (to up to 

3300 m2 which is 64.82 m diameter). 

	 The minimal number of 60 trees was measured at only 3 study plots. At 9 

study plots the count of trees ranged between 61 and 70 trees, at 4 plots between 

71 and 80 trees and from the remaining plots 3 had the count of trees between 91 

and 100 and one plot reached the maximum of 110 trees. The age of forest stands 

ranged between 31 and 141 years.

	 The plots with lowest numbers of trees (between 60 and 70) were mostly 

those with oldest trees (between 90 and 141 years) with two exceptions. One 

exception was a plot with 63 trees which were 71 years old (plot XVIII.) and 

another exception was plot XVI. with 66 trees, which were only 31 years old. This is 

interesting, since this is one of the two youngest forest stands which were examined 

and the second forest plot of the same age contained the maximal count of together 

110 trees (both with 1000 m2 plot size). The significant difference between the 

tree density of both forest stands originates in their composition, when the first 

mentioned plot consisted mainly of Douglas fir trees with larger spacing, and the 

second plot mainly of Norway spruce trees which were much closer to each other. 

	 Concerning the age, the three oldest forest stands were following: plot XX. 

with mainly Norway spruce trees which were 110 years old (plot size was 1300 m2), 

plot XI. with mainly European beech trees, which were 125 years old (with plot 

size of 2000 m2), and plot XII. with mainly sessile oak trees, which were 141 years 

old (with plot size 1500 m2). 

	 The second oldest forest stand (plot XI.) was at the same time the one with 

second largest study plot (2000 m2). Interesting is, that the forest stand with largest 

plot size was also composed of European beech trees (plot VII.) but these were 26 

years younger (99 years old). The spacing between these trees was so large, that 

the plot size had to be enlarged to 3300 m2 to reach the required minimum of 60 

trees. 

	 Regarding the forest stands composition, 8 study plots were broadleaf, 

i.e. with more than 75 % of broad-leaved trees (and from them 2 plots were fully 

broadleaf without any admixture), 9 study plots were coniferous (also 2 plots were 

fully coniferous) and 3 plots consisted of mixed deciduous and coniferous trees. 

From the particular tree species the most abundant was Norway spruce comprising 

over 24 % of all the trees present at the study plots. The second European beech 

then constituted 16.5 % and third sessile oak almost 14  % of the trees. Important 
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were also European hornbeam representing 11.7 %, Scotch pine 11.5 %, European 
larch 9.6 % or Douglas fir 7.4 % of all trees. The remaining nine species comprised 
less than 3 % of the trees. 
	 Only one study plot had only one-species tree composition. It was plot VII. 
with 100 % of European beech trees. All other plots contained at least two species in 
their composition. The lowest portions of the admixture were at the plot XVI. with 
almost 94 % of Douglas fir, plot XI. with 93.3 % of European beech, plot XII. with 
93.3 % of sessile oak, plot XX. with 87 % of Norway spruce, plot XVII. with 84.5 % 
of Norway spruce, plot XVIII. with 82.5 % of Norway spruce, plot X. with 78.3 % 
of Norway spruce or plot XIV. with 77.6 % of Scotch pine. At the remaining study 
plots the prevailing tree species constituted less than 75 % of the composition of 
the present trees. 
	 On the other hand the study plots with the most complex species composition 
were plot number VIII. with together 9 different tree species, plot IV. with 8 tree 
species, plot II. with 7 species, or plots I. and XIII. each having 6 tree species 
present. Together 5 plots then contained 5 tree species, another 5 plots contained 
4 species, 2 plots had 3 species present, 2 plots contained 2 species and 1 plot was 
constituted by one species only. 

5.3.2.2. Height of Trees

	 The field-measured height of trees can be summarized from different points 
of view. Concerning the average height of trees counted from all the trees present 
at each study plot, the lowest values began at 17 metres (plots I., II. and XVII.). Also 
plots III., V., X., XII. and XIX. had the average height lower than 20 metres. Plots 
IV., VI., XIII., XIV., XVI. and XVIII. then had the average height between 20 and 25 
metres. Plots VII., VIII., IX., XV., and XX. then reached the average height of 25 up 
to 30 metres. The tallest trees from all the study plots were then measured in the 
plot number XI., since their average height reached the value of 31.1 metres.  The 
average height of all the 1446 was then 22.6 metres.
	 The distribution of the height values ascertained at each study plot (meaning 
only one final value for each tree) can be deduced from the box-plots shown in the 
Figure 69. The diagram shows, that plots with highest dispersion of core values 
(i.e. with largest difference between first and third quartiles) were mainly plots 
I. to VI., VIII. and XIII. From these plots 5 forest stands have the prevailing trees 
broadleaf, two are mixed and only one is mainly coniferous. The age of these forest 
stands than ranged between 61 and 102 years. 
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	 On the other hand the plots with the most cumulated height values were 
plots VII., X., XIV., XVI. or XVII. From these plots only one consisted of broadleaved 
trees and 4 of coniferous trees. The age of the concerned trees then ranged between 
31 and 99 years. The forest stands with the largest numbers of detected lower-
values outliers are then at following plots: VIII., IX., X., XI., XIV. or XV. 
	 Regarding the Standard Deviation of the field-measured height values (also 
taking into account only the one final value for each tree), the largest values were 
counted for plots VIII., XV. and XIII. (between 7 and 9 metres). In the case of 12 
plots the SD varied between 3 and 7 metres, the lowest values of SD were then at 
plots number XVII., XVI., VII., XII., and X., ranging between 1.7 and 2.7 metres. The 
average value of SD for all the 20 study plots was then 4.8 metres.  
	 The last assessed quantity concerning the field-measured heights of trees is 
the range of height values counted as the difference between maximal and minimal 
height acquired by the measuring person for each particular tree. The mean of 
these ranges counted for each study plot gives the idea of the variability and also 
accuracy of the field-measured height values. The largest average range reaching 
the value of more than 1.5 m comes from the plot number XI. This is a plot with 
mainly European beech trees being 125 years old, with second steepest slope and 
with highest rate of curvature from all the study plots. This plot also contains the 
tallest trees from all examined forest stands. 
	 The second place then took number XV. with the average range of FM height 
values of almost 1.3 m. This forest stand with large portion of Scotch pine trees 
was 100 years old. The third highest value of the average range (1.2 m) then comes 
from the plot VII. This is the only one single-species forest stand, consisting of only 
European beech trees, being 99 years old. This plot also keeps the primacy in the 
size of the study plot (the one with 3300 m2 area). 
	 In the case of both European beech forest stands (plots VII. and XI.) the 
high values of the average range can be explained by the fact, that it is often quite 
difficult for the measuring person to see the real apex of the tall broadleaved tree 
with large-sized crown. In addition, when the tree crowns are closely adjacent to 
each other, it is often even impossible to reach the demanded distance from the 
tree to ensure the proper measuring conditions. The reason for the high range 
value in the case of plot XV. probably comes from the presence of relatively old 
Scotch pine trees. Their trunks were often curled and leaning and therefore it was 
also not easy for the measuring person to find the proper position and to ensure 
the highest accuracy of measurements.  
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	 Contrariwise, the lowest values of the average range of FM height values 

reached plots X., XVI. and XVII. with values between 0.4 and 0.5 metres. All three 

these forest stands were coniferous and relatively young. Forest in the plot X. 

was 47 years old and composed of Norway spruce. The terrain with almost 9° 

slope was the sixth steepest from all plots. Forest stand in the plot XVI. then 

consisted of Douglas fir being only 31 years old, situated on flat terrain. The 

study plot XVII. then contained mainly Norway spruce trees also only 31 years 

old. The terrain with slope of more than 9° was the fifth steepest. From these 

facts can be deduced, that young coniferous forest stands, even being on steeper 

terrain, offer good conditions for manual measurements of height of trees. The 

mean value of average range of height values counted for all the twenty study 

plots was then 0.87 m. 

5.3.3. Interpretation of UAV Forest Explorer Results

5.3.3.1. Individual Tree Approach Results

	 The various results regarding the statistical comparisons of the tool 

outputs with the field-measurements data are described in this chapter. Since 

the Best Results were acquired for three different types of FM data (using all 

FM trees, reduced number of FM trees without suppressed and undergrowth 

trees and in three cases also using reduced number of FM trees with manually 

modified positions), also the statistics were evaluated separately for these three 

groups. The following abbreviations will be used in this text for the described 

groups: AFM for All FM trees, RFM for Reduced number of FM trees and MFM for 

Modified positions of FM trees. 

	 Another division was then based on the ranges of Count Difference values, 

as giving the important information about the difference between identified 

and field-measured trees. Also this division (Smaller Range (SR) and Larger 

Range (LR)) was applied for evaluation of the required statistics. Since also 

the combinations of these described divisions are important, the results are 

often described as belonging to AFM-SR, AFM-LR, RFM-SR, RFM-LR, MFM-SR or 

MFM-LR.
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5.3.3.1.1. Root Mean Square Error

	 The first assessed quantity was the RMSE counted from the measured 

heights of FM trees versus the counted heights of identified trees. Its value was 

ranging between 0.4 (plot XVI.) and 16.2 (plot XI.) metres within all the divisions 

and all the study plots, with the average value of 8.5 m (including also the MFM 

group). From the average values of RMSE calculated for all the six combinations of 

groups (see Table 6. and 7.) for all the twenty study plots the differences between 

various groups can be clearly observed. 

	 Generally the larger values of RMSE were gained on average in the AFM 

group (mean RMSE 9.7 m) compared to RFM group (mean RMSE 7.8 m) and in 

the SR group (mean RMSE 8.9 m) compared to LR group (mean RMSE 8.0 m). The 

descending tendency can be deduced from average values of RMSE from particular 

groups: AFM-SR: 9.7 m, AFM-LR: 9.6 m, RFM-SR: 8.5 m and RFM-LR: 7.1 m.  

	 In the next part the average values of RMSE through all the groups are 

assessed for the specific study plots. The brackets adjacent to plot numbers contain 

brief characteristics to provide fast overview about the plots. Namely they contain 

the abbreviation of prevailing kind of species (B/C/M), the slope of the terrain in 

degrees and the curvature rate ascertained for the particular plots. 

	 The three plots with largest values of RMSE were then following: Plot XI. (B, 

25.1°, 13.8) with average RMSE of 16.1 m, plot XV. (C, 6.8°, 1.3) with the value of 

14.7 m and plot VIII. (C, 1.1°, 1.3) with mean RMSE of 12.6 m. On the contrary the 

three plots with lowest average values of RMSE were plot XVI. (C, 4.3°, 0.5) with 

the value of 1.8 m, plot XVII. (C, 9.1°, 0.8) with average RMSE of 2.9 m and plot X. 

(C, 8.7°, 1.4) with the mean value of 3.7 m. 

	 The largest difference between values from different groups concerning 

one study plot can be found in the case of plot number VI. (M, 3.7°, 0.6) when the 

RMSE value of 14.3 m (in the AFM-LR group) jumps down to only 2.1 m (in the 

RFM-LR group). Just to explain, why in some cases like here the value of RMSE is 

higher in the LR group than in the SR group (here 14.3 m vs. 13.7 m within the 

AFM group), the reason is simple. The priority when searching for the Best Results 

like RMSE or R was besides other things also the statistical significance of the 

Pearson‘s Correlation Coefficient. Since in the case of some study plots like plot VI. 

there were no statistically significant R values within the Smaller Range, the results 
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regardless this significance were picked up. Since in the case of Larger Range also 

some results with statistically significant R appeared, those were preferred, and 

even though having worse values of the main parameters, they were picked up for 

the Best Results. 

	 The last assessment of the RMSE values is focused on the study plots, where 

also FM data with modified positions of trees were utilized (plots XIII., XIV. and 

XV.). The benefit of the positions of FM trees modification is obvious from the 

acquired data. When the average value of RMSE from the AFM group is 10.6 m, and 

the average RMSE in the RFM group is 9.8 m, the average value counted from data 

in the MFM group is less than half - only 4.8 m. Then in the scope of Smaller Range 

the average value for AFM data is almost 11 m, for the RFM data it is 10.3 m and for 

the MFM group only 6.0 m. Similarly comparing data from the Larger Range group, 

the average from the AFM data is 10.3 m, from the RFM data 9.3 m and from the 

MFM data only 3.5 m.  

	 When looking at particular values, it is also apparent, that with exclusion 

of plot XVI. having the lowest values of RMSE, the plots XIV. and XIII. with ground 

truth data after modification are reaching the next lowest values within the Larger 

Range (only 0.99 m and 1.05 m respectively). That means that even though the 

examined plots with high portion of leaning Scotch pines had below-average 

values of RMSE concerning the AFM and RFM groups, the values from data after 

the modification dropped down to one of the best values from all study plots. 

5.3.3.1.2. Pearson’s Correlation Coefficient

	 The next evaluated statistics was the Pearson‘s Correlation Coefficient (R). 

The values of R ranged between 0.97 (plot XVI.) and 0.06 (plot I.) within all the 

study plots and various kinds of ground truth data, and the average value was 

0.56 (including the FMF group). Contrary to the RMSE, in this case the differences 

between various divisions were much less significant and the mean values varied 

more or less around the overall average. Particularly the average of the AFM group 

was 0.56 and of the RFM group 0.54, the mean of SR group values was 0.54 and of 

the LR group 0.59. The specific combinations of groups then had following average 

values: AFM-SR: 0.53, AFM-LR: 0.58, RFM-SR: 0.51 and RFM-LR: 0.56. 

	 When assessing the average values of R across all the division groups for 

single study plots, the 3 plots with highest values are following: Plot XVI. (C, 4.3°, 
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0.5) with mean R value of 0.86, plot X. (C, 8.7°, 1.4) with the value of 0.74 and plot 
XVII. (C, 9.1°, 0.8) with average R value of 0.72. The plots with lowest values of 
Correlation Coefficient were then following: Plot number I. (B, 3.6°, 0.4) with the 
R value of 0.12, plot III. (B, 3.8°, 4.3) with value of 0.28 and plot XI. (B, 25.1°, 13.8) 
with R reaching only 0.34. The largest difference between R values from various 
groups within single plots can be then found in plot number VI. (M, 3.7°, 0.6) with 
the highest value of 0.56 in the RFM-LR group and smallest R value of 0.15 in the 
AFM-SR group. 
	 Evaluating the three forest plots where the modified FM data were utilized, 
(plots XIII., XIV. and XV.), the differences between particular groups are more 
obvious. The average value of R within AFM group came out 0.53, within RFM 
group similarly 0.55, but within MFM group raised to 0.79. Concerning the Smaller 
Range the average R value within AFM group was 0.50, within RFM group 0.54 and 
within MFM group 0.74. Then when assessing the Larger Range the mean value 
within AFM group was 0.56, within RFM group 0.57 and within MFM group even 
0.84. The largest difference within a single plot between the specific divisions can 
be observed at plot XV., where the R raised from the value of 0.32 in the AFM-SR 
group to the value of 0.80 in the MFM-SR group (difference of 0.48). 
	 All these data show, that even though the differences between all FM trees 
and reduced number of FM trees used as the ground truth were rather negligible, 
the effect of forest positions modification raised the R values significantly.

5.3.3.1.3. Pearson’s Correlation Coefficient for Matched Trees Only

	 The values of Correlation Coefficient calculated only for the Matched Trees 
give better information about matching the calculated height values to the field-
measured heights. Contrary to R described in the previous chapter, this value is 
not influenced by the FM trees which were not paired with any of the identified 
trees. 
	 The values of R for MT then ranged between 0.99 (plot XVIII.) and 0.08 (plot 
III.) and the average value for all the division groups was 0.72. The differences 
between various groups were more significant in this case. The average of the 
AFM group was 0.66, of the RFM group 0.77, and of the MFM group even 0.89. 
The mean of SR group values was then 0.71 and of the LR group 0.74. The specific 
combinations of groups then had following average values: AFM-SR: 0.64, AFM-LR: 
0.68, RFM-SR: 0.75, RFM-LR: 0.78, MFM-SR: 0.88 and MFM-LR: 0.90. 
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	 The 3 plots with largest average values of R for MT across the division 

groups were then following: XVI. (C, 4.3°, 0.5) with the mean value of 0.98, plot 

XVIII. (C, 6.8°, 1.1) with the value of 0.97 and plot X. (C, 8.7°, 1.4) also reaching the 

value of 0.97. In the contrary the study plots with lowest values of average R for 

MT were these: plot III. (B, 3.8°, 4.3) reaching the average value of only 0.15, plot I. 

(B, 3.6°, 0.4) with the value of 0.33 and plot V. (B, 4.5°, 0.5) with the mean value of 

0.48. The largest difference between R values (calculated for matched trees only) 

from various groups within single plots then comes from the plot XIII. (M, 4.2°, 0.6) 

with the highest value of 0.81 in the RFM-LR group and lowest value of 0.48 in the 

AFM-SR group.

	 When assessing the three study plots with the MFM group of values, the 

most significant differences are not between this group and the RFM group, like in 

the previous case, but already between RFM group and the AFM group. The average 

value of R for MT is 0.56 within the AFM group, then 0.84 within RFM group and 

0.89 for the MFM group. Regarding the Smaller Range the average value of R for 

MT within AFM group was 0.56, within RFM group 0.84 and within MFM group 

0.88. Then when evaluating the Larger Range the mean value within AFM group 

was also 0.56, within RFM group also 0.84 and within MFM group then 0.90. 	

The largest difference within a single plot between the specific divisions was then 

found at plot XIII., where the R for MT raised from the value of 0.48 in the AFM-LR 

group to the value of 0.89 in the MFM-LR group (difference of 0.41). 

5.3.3.1.4. Mean Difference of Heights for Matched Trees Only

	 The Mean Difference of Heights for Matched Trees was counted as the 

averaged difference between the field-measured height of matched trees and the 

calculated height of these trees. That means, that if the resulting value was negative, 

the calculated heights were on average higher, than the measured heights, and vice 

versa. From the summarised results from all plots it is obvious, that in most of the 

cases the resulting values were negative. 

	 Together 14 plots showed negative values for both AFM and RFM groups, 

one plot for AFM and MFM group, three plots had negligible difference from zero 

and only two plots showed positive values of the difference. The average mean 

difference for all plots and all types of ground truth data was -1.2 m. The average 

value for AFM group then was -1.8 m, for RFM group -0.7 m and for the MFM group 
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-0.5 m. The largest negative difference was present in the plot I. (B, 3.6°, 0.4) in the 

AFM group with the value of -4.7 m, largest positive difference was present in the 

plot XX. (C, 28.5°, 7.0) reaching the value of +0.6 m in the RFM group. 

	 The three plots with largest mean difference across the division groups 

were following: plot I. (B, 3.6°, 0.4) with the average value of -3.6 m, plot XII. (B, 

23.3°, 7.0) with the value of -2.6 m and plot XI. (B, 25.1°, 13.8) with the average 

value of -2.5 m. The plots with the average mean difference across the division 

groups closest to zero were then following: plot XVI. (C, 4.3°, 0.5) with the mean 

difference of only 0.02 m, plot VII. (B, 2.0°, 0.4) with the value of 0.06 m and plot 

XVIII. (C, 6.8°, 1.1) having the average difference of -0.15 m. The plots with the 

positive values of the mean difference across the divisions were these: plot XVII. 

(C, 9.1°, 0.8) with the mean value of +0.5 m and plot XX. (C, 28.5°, 7.0) with the 

average value of +0.4 m. 

	 The largest contrast between the mean difference values from various 

division groups within the single plots could be found in the case of plot VI. (M, 

3.7°, 0.6), having the value in the AFM group -4.4 m and in the RFM group only -0.3 

m (difference of 4.2 m). The drop of the mean difference between AFM and RFM 

groups could be observed in most of the study plots. On average the difference 

between these two groups was 1,1 m. Only in the case of two study plots, particularly 

plot X. (C, 8.7°, 1.4) and XI. (B, 25.1°, 13.8) the negative difference slightly raised in 

the RFM group compared to the AFM group. 

5.3.3.1.5. Suitable CS, IM and FS Settings of the Tool within the ITA

	 The initial settings of the UAV Forest Explorer which led to reaching of the 

Best Results within the ITA method, are described in this chapter. When assessing 

the Cell Sizes separately and only for the Best Results from the “RMSE & R” category, 

some facts can be deduced. For instance in the case of 12 study plots the CS value 

within AFM group was lower, than in the RFM group, in 3 cases the values were the 

same and in 5 cases the value within AFM group was higher than the value on the 

RFM group. 

	 The average CS value of AFM group within the “RMSE & R” category then 

was 24.8 cm, and of the RFM group on average just 10 cm higher, i.e. 34.8 cm. 

When assessing all the 301 Best Results of the ITA group, the average CS value 
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within the AFM section was 24.4 cm and within the RFM section of 8.5 cm higher, 

exactly 32.9 cm. These data manifest the general inclination to larger Cell Sizes 

when using the FM data with reduced number of trees.

	 Concerning the CS values from the occurrence point of view, the most 

frequent value within the 301 Best Results was Cell Size of 10 cm appearing 56 

times. The second place belonged to CS of 15 cm appearing 36 times and third 

place to CS of 35 cm which was used 32 times to reach some of the Best Results. 

All of the values between 5 and 45 cm appeared more than 10 times (with lowest 

frequency of CS 5 appearing only 12 times). The frequencies of Cell Sizes of 50 cm 

and larger then varied between 1 and 9 with the second largest CS value of 80 cm 

(used 2 times) and the only once appearing largest CS value of 100 cm. 

	 When evaluating the frequencies of Interpolation Methods utilized for 

reaching the Best Results within the whole ITA group, it is obvious, that some 

of the methods were less favoured than the others. Particularly methods as BM 

(Binning with ‘Maximum’ Cell Assignment) and TLW (Triangulation with ‘Linear’ 

IM and ‘Window_Size’ Point Thinning Type) were used only around 20 times each. 

The method BN (Binning with ‘Nearest’ Cell Assignment Type) was then used 34 

times and all the other 5 Interpolation Methods (BA, BI, TLN, TNN and TNW) were 

applied similarly between 40 and 50 times. 

	 When assessing separately the values of Focal Statistics Circle Radiuses 

used for reaching the Best Results within ITA, the most abundant value was 1 Cell 

with the frequency of 132. The second most often utilized value of 4 Cells was 

appearing only 35 times. The other values of FS 2 - 3 Cells and 5 - 10 Cells then 

appeared between 32 and 2 times with descending tendency from 2 to 10. 

	 Since the appearance of FS and also CS values separately does not provide 

enough information, the combinations of both values were assessed as well. From 

the diagrams in Figures 83. and 84. is apparent, that according to the expectations 

the combinations of smallest CS values and smallest FS values or large CS values 

and large FS values generally did not appear in the Best Results. For the Cell Size 

of 5 cm the most frequent FS values vary around 9 cells, for CS 10 is most often FS 

value 5 and 6, CS of 15 cm was appearing in combination with values of FS around 

4 Cells, CS 20 then liked FS values around 3 to be paired with, CS 25 and 30 often 

appeared with FS value of 2 Cells and CS values of 35 cm and larger were then most 

often utilized in the combination with FS value of 1 Cell. 
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5.3.3.2. Area-Based Approach Results

5.3.3.2.1. Count Difference, Height Difference and Standard Deviation

	 Within the Area-Based Approach the results with lowest Height Difference 
(HD), Count Difference (CD) and Standard Deviation (SD) of height values of 
identified trees were searched and exported as the Best Results. Regarding the 
four groups of results (one for the results with lowest Height Difference and with 
the Count Difference equal to 0 (CD0), another with Count Difference of maximally 
±1 (CD1), the third for outputs with lowest Height Difference at all and the last one 
for smallest Standard Deviation within the group of Count Difference of ±1), the 
outputs can be summarized as follows. 
	 First of all the first two groups were assessed. Within the group with the 
lowest Count Difference (if possible equal to zero) the Height Difference values 
ranged between -0.5 m in plot XVII. (C, 9.1°, 0.8) and 5.1 m in plot II. (B, 3.1°, 1.3) 
across all the kinds of ground truth data. The average Height Difference for this 
group then was 1.43 m. The differences between the two division groups were 
obvious. The mean Height Difference within the AFM group was 2.3 m, within the 
RFM group then 0.7 m. 
	 The three plots with largest averaged Height Difference values within the 
CD0 group across the types of ground truth data, were plot V. (B, 4.5°, 0.5) reaching 
the value of 3.6 m, plot I. (B, 3.6°, 0.4) with the value of 3.5 m and plot II. (B, 3.1°, 
1.3) reaching the value of 3.3 m. In the contrary, the three plots with the Height 
Difference values closest to zero were following: plot XVI. (C, 4.3°, 0.5) with the 
smallest mean value of only 0.001 m, plot XVIII. (C, 6.8°, 1.1) with the value of 0.03 
m and plot VII. (B, 2.0°, 0.4) also with the value of 0.03 m. The largest difference 
between the AFM and RFM groups within single study plots then appeared in plot 
VI. (M, 3.7°, 0.6), having the AFM value 4.54 m and RFM value only -0.03 m (the 
difference is 4.51 m). 
	 When assessing the three plots using the modified ground truth data, the 
largest difference is apparent still between values from AFM group (average HD 
of 2.6 m) and RFM group (average HD of 0.2 m), since the average value of MFM 
group is also almost 0.2 m. 
	 As the second basic group of Best Results the one with Count Difference 
of ±1 tree was evaluated. The values in this group ranged between -0.51 m in the 
case of plot XVII. (C, 9.1°, 0.8) and 5.09 m in the case of plot II. (B, 3.1°, 1.3) across 
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the types of ground truth data. The average Height Difference for this group then 

was 1.26 m (a bit less compared to 1.43 m of CD0 group). The differences between 

the two division groups were even more obvious in this case. The mean Height 

Difference within the AFM group was 2.2 m, within the RFM group then 0.5 m. 

	 The 3 plots with largest mean value of HD within this group through both 

main kinds of ground truth data were the same as in the case of CD0 group, i.e. plots 

V., I. and II., with the only difference, that plot V. now had of 0.1 m smaller average 

value (3.5 m vs. 3.6 m). The three plots with the HD value closest to zero were also 

the same, but values different in this case and were following: plot XVIII. (C, 6.8°, 

1.1) with the average HD value of 0.04 m, plot VII. (B, 2.0°, 0.4) having the value of 

-0.05 and plot XVI. (C, 4.3°, 0.5) reaching the value of 0.05 m. The largest difference 

between the AFM and RFM groups within single study plots then appeared again 

in plot VI., now with values of 4.50 m (AFM) and -0.04 m (RFM).

	 When assessing the three plots using the modified ground truth data, the 

largest difference the average values of HD for different groups were following: 

2.28 m for AFM group, 0.16 m for RFM group and bit larger 0.34 for MFM group. 

	 As the next evaluated group, the one containing values of absolutely lowest 

Height Difference from all the results from each tool run, was processed. The results 

with lowest HD were characteristic with sometimes unusually extreme values of 

Count Difference and therefore generally should not be considered being suitable 

for application. 

	 Assessing these results based on the kinds of ground truth data shows 

significant differences between various groups. The average value of HD within the 

AFM group was 0.89 m and within the RFM group less than twelve times smaller, 

only 0.07 m. In the AFM group 7 plots had the smallest HD value larger than 1 m, 

particularly plots I. - VI. and VIII. with the average HD of 2.5 m. The remaining 13 

plots than had the average HD of 0.02 m only. 

	 This shows that the named 7 plots did not reach satisfactory values of Height 

Difference in any of the tool iterations and the calculated heights were always 

overestimated against the ground truth. This could be caused by the presence 

of many understorey trees in these plots. When using the Reduced ground truth 

data without the suppressed trees, the average Height Differences dropped down 

to few-centimetre values (except plots I. and V. still having the values in tens of 

centimetres). 
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	 Concerning the Count Difference, its average value was 806 trees within 
the AFM group, and more than four times smaller, particularly 196 trees in the 
RFM group. In the AFM group together 10 plots had the Count Difference of more 
than 500 trees. Again these were plots I. - VI., and VIII., then IX., XIII. and XV. The 
remaining ten plots had the value between 1 and 177 trees. In the RFM group then 
only four plots showed significantly large values, particularly plots I. - III. and V. had 
values of CD between 370 and 1610 trees. The remaining 16 plots had the average 
value of only 2.3 trees. But the relevance of these CD values is limited, since they 
varied a lot between the results with low HD values from each tool run.
	 When evaluating the three plots using the Modified ground truth data, 
the average smallest HD was 0.093 m within the AFM group, -0.001 m within the 
RFM group and 0.004 m within the MFM group. The average CD values were then 
following: 1216 within AFM group, 26 within RFM group and -2 within MFM group. 
The improving tendency is therefore obvious not only in the direction from the 
AFM group towards the RFM group, but also towards the MFM group. 
	 The last assessed group within ABA then was the one with lowest Standard 
Deviation of height values of identified trees with the results with Count Difference 
of maximally ±1 tree. Also now the values of the examined quantity were assessed 
together with the values of the Height Difference. The values of SD varied through 
the two basic kinds of ground truth data from 1.03 m at plot VII. (B, 2.0°, 0.4) to 
5.25 m at plot XX. (C, 28.5°, 7.0) and the values of HD varied between -2.53 m at 
plot XX. (C, 28.5°, 7.0) and 5.17 m at plot II. (B, 3.1°, 1.3). 
	 Concerning the particular kinds of ground truth data, also in this case the 
differences between the values in the two groups were noticeable. The average SD 
within the AFM group was 2.4 m, within the RFM group then 1.9 m. The average 
value of HD was then 2.5 m within AFM group and almost three times smaller, i.e. 
0.84 m within the RFM group. Regarding the three plots using the MFM data the 
average SD then dropped from the value of 2.6 m within the AFM group to the 
value of 1.6 m within the RFM group and to the value of 1.5 m in the MFM group.
	 The three plots with lowest SD averaged across both main ground truth 
classes were then following: plot VII. (B, 2.0°, 0.4) with the average SD value of 1.05 
m, plot I. (B, 3.6°, 0.4) with the value of 1.14 m and plot V. (B, 4.5°, 0.5) with the 
average SD of 1.31 m. The three plots with highest average SD (from the described 
Best Results with lowest SD within the CD1 group) were then following: plot XI. (B, 
25.1°, 13.8) with the value of 4.60 m, plot XX. (C, 28.5°, 7.0) reaching the value of 
4.04 m and plot VIII. (C, 1.1°, 1.3) with the average SD of 3.24 m. 
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	 Interesting is then comparison of Standard Deviations of heights of FM trees 
(counted only from the final height values of all trees within each study plot) and 
of Standard Deviations of the height values of identified trees calculated by the tool 
within the CD1 group. The SD values of heights of FM trees then ranged between 1.2 
m in the plot XVII. (C, 9.1°, 0.8) and 9.1 m in the plot VIII. (C, 1.1°, 1.3). 
	 Regarding the ground truth data types, the average value of SD for FM 
heights within AFM group was 4.8 m and within RFM group 2.3 m. Corresponding 
values of SD for IT heights were 2.4 m within AFM group and 1.9 m within RFM 
group. The three plots utilizing modified FM data then showed classical tendency 
when having following values: mean SD of FM heights within AFM group was 6.6 
m, within RFM and MFM groups then 2.0 m. The average SD of IT heights was 2.6 
m within AFM group, 1.6 m within RFM group and 1.5 m within MFM group. 

5.3.3.2.2. Suitable CS, IM and FS Settings of the Tool within the ABA

	 The last assessment of the ABA results was then related to the initial settings 
of the UAV Forest Explorer which enabled to reach the particular Best Results. The 
results were evaluated based on two approaches. First only the results meeting 
the condition of lowest HD within the group with Count Difference of 0 trees were 
utilized (that gives 43 results) and then all the meaningful results within the ABA 
group were used - that means without the results with absolutely lowest HD values 
(that gives together 129 results). 
	 In the first group, i.e. in the one within CD0 group, the summarization of the 
applied settings is following. The average CS value within the AFM group was 25.0 
cm, in the RFM group then almost 10 cm larger, i.e. 34.3 cm. In the larger group 
of all the 129 results the average CS was 23.6 cm within the AFM group and 29.3 
cm within the RFM group. So, similarly like in the ITA results also now the data 
show the logical inclination to larger CS values when using reduced number of FM 
trees. 
	 Concerning the Interpolation Methods, the most often utilized methods 
within the 129 ABA Best Results were methods BA, BI, TLN and TNN, each applied 
between 15 and 20 times. The remaining interpolation methods (BM, BN, TLW 
and TNW were then utilized between 8 and 11 times. The largest difference in the 
relative frequencies compared to ITA group then noticed methods BN and TNW 
having largest slump in the case of ABA. 
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	 The Focal Statistics Circle Radius values most often used to reach some of 

the 129 Best Results within ABA were then following: again the leader was FS 

value of 1 Cell utilized 48 times, followed by FS 2 (used 26 times) and FS 4 (used 19 

times). The last FS value exceeding the threshold of 10 applications was the value 

of 3 Cells. The remaining FS values (5 to 10) were applied 8 times and less. When 

evaluating the important combinations of CS and FS values, the trend is obviously 

similar to the one of the combinations within ITA group. The only significant 

difference is in the maximal utilized CS value (in the combination with FS value 

of 1 Cell), now being only 70 cm (compared to 100 cm in the ITA case). Therefore 

it can be in a simplified way concluded, that the most often utilized combinations 

of CS and FS values are generally independent on the utilized assessment method 

(ITA vs. ABA). 

5.4. Summarization of Results

	 The Table 23. contains summarized results from all the main categories 

regarding the terrain conditions (slope and curvature), field measurements (SD and 

Range of FM heights), and both - ITA method (RMSE, R, R for MT, Mean Difference 

for MT) and ABA method (HD within CD0 and CD1, SD of heights of IT in CD1) of 

UAV Forest Explorer runs. Particularly three study plots with lowest values and 

three study plots with highest values for each of the subcategories were picked 

up and arranged into the table. Then the study plots with relatively positive and 

negative primacies were summed up. 

	 The summarized results can be described as follows. The study plot with the 

maximum of positive primacies (together 7 out of 10 possible) was plot number 

XVI. (C, 4.3°, 0.5) composed of Douglas firs being 31 years old. Even though this 

plot did not hold any primacy concerning the slope and curvature of terrain, it was 

one of the three plots with smallest Standard Deviation of field-measured heights, 

smallest range of FM heights, smallest RMSE, largest R, largest R for Matched 

Trees, smallest Mean Difference for Matched Trees and smallest HD within Count 

Difference of 0 and ±1 tree. 

	 The plot with second largest number of positive primacies (together 6) was 

then plot number VII. (B, 2.0°, 0.4) consisting of European beech trees 99 years 
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old. This plot gained the primacies already within the terrain conditions group, 

when having one of the flattest terrain with marginal curvature. 

	 Concerning the field measurements it was one of the three plots with 

lowest SD of FM heights, but at the same time one of the three plots with largest 

range of FM heights as a negative primacy. The remaining primacies were 

only positive, particularly having one of the smallest Mean Differences for MT, 

smallest HD within CD0 and CD1 and smallest SD of heights of identified trees. 

As such this was the only plot having both possible primacies within ABA (having 

smallest both HD and SD). Since it was also the only plot having both primacies 

concerning the terrain conditions, some relationship between them and the 

other satisfactory results can be deduced.

	 The next study plots with largest number of positive primacies were 

plot X. (C, 8.7°, 1.4) composed of Norway spruces being 47 years old, plot XVII. 

(C, 9.1°, 0.8) composed also of Norway spruces, in this case being 31 years old 

(both having 4 positive primacies) and plot XVIII. (C, 6.8°, 1.1) consisting also of 

mainly Norway spruces being 71 years old. This plot then had together 3 positive 

primacies.

	 The plots with largest numbers of negative primacies were then following: 

Plot XI. (B, 25.1°, 13.8) composed of European beech trees being 125 years old 

having 7 negative primacies. This plot was the one with second steepest terrain 

and highest value of curvature rate. It had also primacy in having one of the largest 

ranges of FM heights. Then it was one of the three plots with largest RMSE, lowest 

R, largest Mean Difference for MT or largest SD of heights of identified trees. In 

the case of this plot a connexion between rough terrain conditions and not very 

satisfactory results of the field measurements and the tool computations can be 

deduced. 

	 The plot with second highest number of negative primacies (together 6) 

was plot number I. (B, 3.6°, 0.4) consisting of various broadleaved trees (mainly 

sessile oaks, European hornbeams and European beeches) being 61 years old. 

This plot kept primacies in smallest R, smallest R for MT, largest Mean Difference 

for MT and largest HD within CD0 and CD1 groups. The remaining plots had 3 or 

less negative primacies.
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I. X X X X X X 2 4
II. X 0 1
III. X X 0 2
IV. X 1 0
V. X X X 1 2

VI. 0 0
VII. X X X X X X X 6 1
VIII. X X X X 1 3
IX. 0 0
X. X X X X 4 0
XI. X X X X X X X 0 7
XII. X X X 0 3
XIII. X 0 1
XIV. 0 0
XV. X X X 0 3

XVI. X X X X X X X 7 0
XVII. X X X X 4 0
XVIII. X X X 3 0
XIX. X 1 0
XX. X X X 0 3

Table 23. Summarization of results regarding study plots. 3 plots with smallest and 3 
plots with largest values concerning each category are arranged in the table.
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6. Discussion

	 First of all it should be mentioned, that the developed UAV Forest Explorer 
tool was tested mainly on ArcGIS version 10.2. During all the approximately 40 000 
iterations performed within this work, it proved to be 100% reliable and the tool 
performed well even during e.g. night-long calculations. Nevertheless, during some 
testing on version 10.3 there were observed some abnormalities causing crashing 
of the program a few times. The cause was not revealed within the scope of this 
work, therefore on versions else than 10.2, some instability may be observed. Since 
during the tool development several bugs were discovered in ArcGIS tools when 
applied for python scripting, it is possible that also this incompatibility between 
two ArcGIS versions can be caused by some bug in Esri products.  
	 One disadvantage of the presented approach can be seen in the necessity to 
provide auxiliary raster data, representing the terrain below the examined forest 
stand. This may be an obstacle in areas, where no such datasets are available. But 
this is a general problem of photogrammetric processing of the aerial image data 
of densely forested areas. Some researchers already outlined the possibility to 
use also photogrammetrically derived DTMs gained from the UAV-based imagery, 
with promising results (Dandois & Ellis, 2013). When using the leaf-off season 
SfM-derived DTM in a broadleaf forest, the accuracy of tree height assessment was 
comparable to the accuracy gained when using LiDAR-derived DTM. The results 
using leaf-on season DTM were then less satisfying. Such approach and testing in 
coniferous stands should be a subject of further studies. In this work, only LiDAR-
derived DTMs were utilized for their facile availability for the research areas. It 
should be also noted, that the accuracy and spatial resolution of the provided DMT 
influences the acquired accuracy of the calculated height of trees. 
	 The accuracy of tree height assessment is a large topic for discussion. It 
should be emphasized, that the tool can provide only as accurate results, as 
accurate are the data provided as a ground truth measured in the field. Therefore 
the precision of field measurements directly influences all the further processing. 
Many different participating variables may suffer by some error or may be biased. 
Even though the height of trees was measured by a high-quality laser hypsometer, 
the difference in height values acquired for one tree from two or more positions, 
could be significant. Especially in the case of leaning trees the range of such values 
could reach up to several metres. 
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	 Difficult was also measurement of broadleaf trees in stands with closed 

canopy, where was not easy to see the apexes of the trees and to target them from 

at least two positions. Not surprisingly the highest range values were reached in 

such plot, furthermore situated on a steep curved terrain (plot XI.). The fact, that 

this plot collected also the highest cumulative grade concerning the number of 

negative quantities in the final comparison of study plots (Table R21.), indicates 

that the rough conditions, causing the difficulties in the field measurements, can 

be projected also in the accuracy of further data processing. For this assumption 

speaks also the plot with opposite primacy, i.e. with most of the positive quantities 

(plot XVI.). This coniferous forest stand situated on a flat terrain, had the smallest 

range of field measurement heights from all the twenty study plots. 

	 Another element seemingly decreasing the accuracy of the field 

measurements was also the rounding of the final height value with a half-meter 

precision. It was, however a logical approach, taking the typical range of acquired 

values into consideration. Since all such and similar drawbacks are generally a 

common attribute of the field measurements of height of trees, it can be presumed, 

that utilization of data affected by these effects for processing within the tool, 

had similar impact, as would have only manual measurement of all the trees of 

interest. 

	 Regarding the identification of individual trees and their counts, also 

several aspects could influence the final accuracy. Besides some rather rare tree 

abnormalities, such as double trunks or dead/broken-off treetops, it were also 

the more frequent leaning trunks. Since the position of trees was measured 1.3 m 

above the ground in the middle of the trunks (using the horizontal offset made by 

the total station), the real position of apex of leaning trees in a horizontal plane 

was often somewhere else. In the most obvious cases of old pine stands (plots XIII., 

XIV. and XV.) it was proved, that manual correction of the treetops based on the 

own remote sensing data, can highly improve the accuracy of results.

	 The success rate of matching the identified trees with corresponding 

field-measured trees could be influenced also by the chosen approach of creating 

Thiessen polygons, or by making a 1-m buffer around the convex hull surrounding 

the FM trees (what could potentially exclude trees with apexes leaning more than 

1 m out of the plot). Nevertheless, these methods were chosen as giving very 

satisfactory results in most of the cases. 
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	 The general deficiency, that some suppressed and undergrowth trees cannot 

be discerned in the image-based remote sensing data, was tried to be circumvented 

in two ways. One was the utilization of a copy of field-measurements data with 

removed suppressed trees according to the histogram evaluation. Since all the 

tool calculations were processed also on all such datasets, it was obvious from the 

results, that the reduction contributed to decrease of the RMSE of heights in most 

of the plots. However, in the case of correlation coefficient, the trend was similar, 

when its value also decreased in most of the cases, what speaks rather against the 

reduction. The effect of reduction is therefore more or less disputable. 

	 The second way was usage of Larger Range during the outputs assessment. 

This enabled to take into account also results with larger Count Difference, between 

the counts of identified and field-measured trees, than was the range of only ± 5 

trees in the case of Smaller Range. The range was enlarged mainly into the negative 

direction, which means that the results with up to 30 % less identified trees, than 

are the reference trees, could be chosen as the best results. The final results show, 

that both RMSE and R values were improved by this step in most of the plots. 

This is partly logical, since it is generally easier to find more suitable values in 

the larger range of available results, partly it can indicate, that another numbers 

of suppressed trees could be removed from the reference data. Another approach 

for their selection could be chosen. Preferably all the trees could be classified as 

belonging to either dominant or suppressed tree layer, e.g. according to the Kraft’s 

classification, already during the field surveys (e.g., Assmann, 1970). 

	 The influence of suppressed trees can be observed also from the resulting 

values of Mean Difference of heights for matched trees. In most of the plots this 

value was negative for both, all and reduced FM trees used as reference data. That 

shows, that the height values of identified trees were often larger, than height 

values of corresponding FM trees. On the one hand this can indicate a general 

underestimation bias of field measurements data. On the other hand it can be 

explicated, that there was some portion of false matches, when a suppressed tree 

was paired with some taller identified tree in its neighbourhood. The highest 

negative Mean Difference values were reached in broadleaf forest stands, what 

can be explained by false matches caused by the typical crown shape of deciduous 

trees, where multiple apexes can appear and some nearby suppressed tree could 

be easily paired with such out-centric apex. Since only the highest identified tree 
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within each Thiessen polygon could be paired with FM tree, the false matches 

were caused probably mainly due to leaning trees in the case of coniferous forest 

stands. 

	 Regarding the overall accuracy of the height assessment results from the 

UAV Forest Explorer from all the study plots, following assumptions can be made. 

The average RMSE from all plots was 8.73 m, ranging between 0.40 m (plot XVI.) 

and 16.23 m (plot XI.). In the literature dealing with the same approach (use of 

UAV-based imagery and SfM software) can be often found better results. Such 

results range between 0.2 m (Díaz-Varela et al., 2015) and 10.9 m (Dandois & Ellis, 

2013) with the average value being around 2.5 m. The average value of R2 at all 

the study plots was 0.30 ranging between 0.01 (plot I.) and 0.94 (plot XVI.). In the 

available studies the value of R2 ranged between 0.07 (Díaz-Varela et al., 2015) and 

0.95 (Puliti et al., 2015) with the average value around 0,65. Also these values do 

on average seem to be better, than those reached in this work. 

	 The reason why in this work were not reached such satisfactory results as in 

the available literature, can be very simple. The main constraint on the selection of 

the Best Results in this work was the Count Difference, i.e. the difference between 

counts of identified and field-measured trees, either within the individual tree 

approach, or area-based approach. This is an important variable, since it would 

be easy to find results with lowest RMSE or highest R2, without regard to the 

numbers of actually identified trees. In such cases, numbers of identified trees 

can easily manifold exceed the numbers of FM trees, or vice versa. It is no doubt, 

that such results are not very useful for a seriously meant height assessment. In 

spite of this fact, some authors seem to ignore to uncover how many trees they 

used for their height assessment (Lisein et al., 2013), or compared only few trees 

at each plot (Dandois & Ellis, 2013). The works showing their success rate of trees 

identification, then did not reach very good results, even though their authors 

identified the trees purely manually (Wallace et al., 2016; Sperlich et al., 2014). 

	 As one of the largest advantages of the UAV Forest Explorer tool, can be 

considered the fact, that it makes it easy to select just such results, which do differ 

in the Count Difference only within demanded limits. When the settings leading to 

these results are subsequently applied on the whole forest stand, it can be expected, 

that the gained values highly correspond with not only heights, but also counts of 

the actually present trees in the explored forest stand. The serviceability of such 

results is then very high and can compete the area-wide manual inventory. 
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	 Between the remaining issues to be discussed, belongs the methodological 
improvement which could test the accuracy of the selected settings, when applied 
on the whole forest stand far beyond the area of field measurements. In further 
research some reference study plots could be established, so that two or more of 
them would be present in selected larger forest stands. Then it would be possible 
to assess suitability of the best results from one study plot, when applied on the 
corresponding study plot. Also, if differing, some average settings from both study 
plots could be selected for the final application. But future implementation of such 
approach would require more manpower and time for the field measurements.
	 Further it can be discussed, if time and economical efficiency of the UAV Forest 
Explorer could be assessed. For such assessment the records of time consumption 
of individual steps of the workflow, such as field measurements, UAV campaigns or 
photogrammetric processing of the data as well as processing within the own tool, 
would be needed. Since such data were not collected in a suitable form, it cannot 
be responsibly stated, e.g. what is the threshold area of forest stand, from which it 
is worthwhile to apply the methodology and software presented in this work. Such 
time-demands data collection and economical efficiency calculation, could be for 
sure a subject of further research. 
	 Another interesting topic is the possible calculation of other dendrometrical 
parameters. Many authors use remote sensing data to calculate and derive e.g. 
density and volume of trunks, stocking, biomass volume, carbon stocks, stand 
productivity, etc. (e.g. Borgefors et al., 1999; van Leeuwen & Nieuwenhuis, 2010). 
However, only the height of trees, being generally a fundamental quantity for all 
such calculations, was assessed in this work. Extension to deal with derivations of 
other parameters would need to be a subject of other studies. 
	 The last thing to be discussed is the potentiality of the UAV Forest Explorer 
to process also LiDAR data. Based on the high similarity of the data resulting from 
the SfM software and of the data acquired during the aerial laser scanning missions 
(both point clouds in *.las format) it can be assumed, that also the LiDAR data 
could be used as a Surface Point Cloud input for the tool. Nevertheless, such trials 
were out of the scope of this work and can be a subject of further investigations. 
	 Finally it should be emphasized, that the methods and novel software tool 
described in this work are fully in accordance with the actual trends in precision 
forestry in developed countries and have high potential to improve the accuracy 
and operability of forest inventories and to support efficient forest management. 
Hopefully such technology will soon contribute to advancement of forest praxis. 
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7. Conclusion

	 All the aims of this work were successfully accomplished. Primarily a brand 
new software application for assessing the height of trees, based on the remote 
sensing data, was developed and programmed. This application, which was called 
“UAV Forest Explorer”, was designed as a novel custom tool running within the 
ArcGIS for Desktop software. The source data to be processed by the application, 
were images from two digital cameras (RGB and NIR) mounted on an Unmanned 
Aerial Vehicle, particularly a hexacopter DJI Spreading Wings S800. 
	 To acquire such images, a series of 20 circular study plots was established 
in the Training Forest Enterprise Masaryk Forest Křtiny belonging to Mendel 
university in Brno. Different study plots were chosen to represent various kinds 
of forest stands concerning their ages, species compositions, densities of trees or 
terrain conditions. All the forest stands containing these study plots were then 
orthogonally photographed by the means of UAS. To accurately georeference the 
data, the ground control points were measured using geodetic GNSS devices. 
	 All the images were then photogrammetrically processed within Agisoft 
PhotoScan software and the image-based 3D point clouds, ready for Canopy Height 
Models formation, were created for each study plot. Alongside the source code of the 
application was progressively developed and the whole script was programmed in 
the PythonWin software. The graphical user interface of the custom tool was then 
designed in ArcMap software. The tool was projected to work with the described 
point cloud data representing the canopy surface and with auxiliary raster data 
representing the terrain under the examined forest stands. 
	 The Inverse Watershed Segmentation principles incorporated within the 
tool then enabled to identify the individual trees in the provided data and to 
calculate their height. The tool was designed in the way to optionally iterate to 
produce a series of results differing from each other due to various user-defined 
settings of the IWS applied on the processed data. The settings producing the 
results best fitting to the real numbers and heights of the examined trees were 
then sought. The most appropriate results regarding the numbers of identified 
trees could be assessed already visually, simply using the orthophoto images. 
	 To assess the height values of identified trees, the reference ground truth data 
were needed. For this purpose, all the 20 study plots were visited with necessary 
equipment and the required properties of almost 1500 trees were thoroughly 
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manually measured. First of all the height of each tree with DBH larger than 7 cm 
was measured using the laser hypsometer. The species of trees, morphological 
abnormalities or health conditions were also recorded. Then the exact position of 
the middle of each tree trunk was measured using total stations. 
	 The data acquired during the field measurements then could be provided in 
the initial settings of the UAV Forest Explorer as the ground truth. In such case the 
tool automatically compared the outputs of its own calculations, i.e. identifications 
of trees and estimation of their height, with the provided field-measurements data. 
It performed a series of mathematical and statistical calculations comparing the 
processed datasets using area-based approach as well as individual tree approach. 
	 The results of such comparison then provided values such as Mean Absolute 
Error, Root Mean Square Error, Pearson’s Correlation Coefficient and its statistical 
significance, Coefficient of Determination, but also the numbers of matched trees 
or redundantly identified trees, within the scope of ITA. For the ABA were then 
relevant values such as Height Difference between average height of field-measured 
and identified trees, Standard Deviation of these heights and Count Difference 
between numbers of measured and automatically identified trees.
	 Because each of the numerous iterations (hundreds for each study plot) 
raising from the ranges of user-defined inputs produced its own cumulative 
statistics, these were synoptically exported in a tabular form as one of the final 
outputs of the tool. The settings, which led to the results the most fitting to the 
particular field measurements, then could be easily found. These results were 
finally described in detail and the study plots were graded concerning the smallest 
and largest values of the examined variables within the scope of each approach. 
	 The tool proved to be fully applicable for height assessment of various types 
of forest stands. Since usually only little portions of the forest stands are meant to 
be used for the field measurements of the tree heights and positions, the discovered 
most suitable settings then can be applied on the full extent of these particular 
stands. Because not only the difference between the heights, but also the difference 
between the counts of measured and identified trees should be minimal, using the 
selected settings, this should guarantee, that the results will be calculated with 
highest available accuracy and will maximally fit to each particularly examined 
forest stand. The effort and time consumption of such endeavour are then to be a 
fraction compared to potential manual measurements of all such trees. 
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8. Souhrn

	 Všech cílů vytyčených v této práci bylo úspěšně dosaženo. Především byl 
vyvinut a naprogramován zcela nový softwarový nástroj pro hodnocení výšky 
stromů na základě dat dálkového průzkumu Země. Tato aplikace, jež byla nazvána 
„UAV Forest Explorer“, byla navržena jako nový uživatelský nástroj fungující 
v rámci programu ArcGIS for Desktop. Zdrojovými daty určenými ke zpracování 
tímto nástrojem byly snímky ze dvou fotoaparátů (RGB a NIR) připevněných 
k bezpilotnímu prostředku, konkrétně hexakoptéře DJI Spreading Wings S800. 
	 K získání takovýchto snímků bylo na území Školního lesního podniku 
Masarykův les Křtiny, patřícímu Mendelově univerzitě v Brně, založeno dvacet 
kruhových výzkumných ploch. Výzkumné plochy byly volené tak, aby reprezentovaly 
nejrůznější typy lesních porostů vzhledem k jejich věku, druhové skladbě, 
zakmenění, či terénním podmínkám. Všechny lesní porosty, v nichž se tyto zkusné 
plochy nacházely, byly poté ortogonálně nasnímány pomocí bezpilotního systému. 
Pro potřeby georeferencování získaných dat byly zaměřeny vlícovací body pomocí 
geodetických GNSS zařízení.
	 Všechny snímky byly následně fotogrammetricky zpracovány v programu 
Agisoft PhotoScan a pro každou zkusnou plochu bylo vytvořeno 3D mračno bodů, 
následně využité k tvorbě výškového modelu korunového zápoje. Souběžně byl 
vyvíjen návrh aplikace, jejíž zdrojový kód byl postupně naprogramován v softwaru 
PythonWin. Grafické uživatelské prostředí vlastního nástroje bylo vytvořeno 
v programu ArcMap. Nástroj byl navržen k práci s popsanými mračny bodů, 
reprezentujícími povrch korun, a s pomocnými rastrovými daty, která charakterizují 
terén pod zkoumanými lesními porosty.  
	 Principy segmentace inverzních povodí obsažené v nástroji poté umožnily 
identifikovat v poskytnutých datech jednotlivé stromy a určit jejich výšku. Nástroj 
byl navržen tak, aby mohl volitelně provést mnoho opakování a vytvořit tak řadu 
výstupů. Ty se od sebe liší na základě různých vstupních uživatelských nastavení, 
jež jsou na zpracovávaná data aplikována. Následně byla hledána nastavení vedoucí 
k výsledkům, které nejlépe odpovídaly reálným počtům stromů a jejich výškám. 
	 K zjištění přesnosti vypočtených výšek stromů bylo zapotřebí referenčních 
dat pozemního šetření. Za tímto účelem bylo všech 20 výzkumných ploch 
navštíveno s nezbytným vybavením a byly zde důkladně manuálně změřeny 
všechny požadované vlastnosti téměř 1500 stromů. Nejprve byla pomocí 
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laserového výškoměru změřena výška všech stromů s výčetní tloušťkou větší 
než 7 cm. Dále byly zaznamenány druhy stromů, v některých případech i jejich 
morfologické abnormality či zdravotní stav. Následně byla změřena přesná poloha 
středu každého kmene pomocí totální stanice. 
	 Data získaná při pozemních měřeních poté mohla být použita v základním 
nastavení UAV Forest Exploreru jako referenční data. V takovém případě nástroj 
automaticky porovnal výstupy vlastních výpočtů, tedy identifikace stromů 
a  odhadu jejich výšky, s poskytnutými daty pozemních měření. Nástroj provedl 
sérii matematických a statistických výpočtů pro porovnání zpracovávaných dat jak 
za použití plošného přístupu, tak přístupu po jednotlivých stromech. 
	 Výsledky porovnání na úrovni jednotlivých stromů poté poskytly hodnoty 
jako je střední absolutní chyba, odmocnina ze střední kvadratické chyby, Pearsonův 
korelační koeficient a jeho statistická významnost, koeficient determinace, ale také 
počty spárovaných nebo nadbytečně identifikovaných stromů. Pro plošný přístup 
byly pak důležité hodnoty jako rozdíl výšek mezi průměrnou výškou změřených 
a  identifikovaných stromů, směrodatná odchylka těchto výšek, či rozdíl mezi 
počtem změřených a identifikovaných stromů. 
	 Každá z početných iterací (řádově stovky pro každou plochu), vycházejících 
z rozmezí uživatelských vstupů, vytvořila vlastní souhrnné statistiky. Ty byly jako 
jeden z finálních výstupů nástroje exportovány ve formě přehledné tabulky. Poté 
mohla být snadno nalezena taková vstupní nastavení, která vedla k výsledkům 
nejlépe odpovídajícím patřičným pozemním měřením. Tyto výsledky byly následně 
podrobně popsány a výzkumné plochy byly zhodnoceny z hlediska nejnižších 
a nejvyšších hodnot zkoumaných veličin v rámci každého z přístupů. 
	 Nástroj se osvědčil jako plně použitelný pro hodnocení výšek stromů 
v různých typech lesních porostů. Jelikož při pozemních měřeních výšky a polohy 
stromů by mělo stačit využít jen malou reprezentativní část lesních porostů, 
zjištěná nejlepší nastavení nástroje pro danou plochu poté mohou být aplikována 
na území celého daného porostu. Poněvadž při použití zvoleného nastavení by 
neměly být minimální jen rozdíly ve výškách, ale také v počtech identifikovaných 
a měřených stromů, mělo by být zaručeno, že výsledky budou vždy vypočítány 
s nejvyšší možnou přesností a budou maximálně odpovídat každému konkrétně 
zkoumanému lesnímu porostu. Časové i fyzické nároky takovéhoto snažení by 
tak měly být pouze zlomkem ve srovnání s případným ručním měřením všech 
stromů. 
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CS   –  Cell Size
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DSM  –  Digital Surface Model
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IDLE  –  Integrated Development and Learning Environment 
IDW  –  Inverse Distance Weighted Interpolation Method
IM  –  Interpolation Method
IMU  –  Inertial Measurement Unit
INS  –  Inertial Navigation System 
IOP  –  Inner Orientation Parameters
IT  –  Identified Trees
ITA  –  Individual Tree Approach
IWS  –  Inverse Watershed Segmentation
LiDAR  –  Light Detection And Ranging
LM  –  Local Maxima 
LMF  –  Local Maxima Filtering
LR  –  Larger Range
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1.	 # * *  Registration of Images From Visible and Near-Infrared Spectrum  * * 
2.	   
3.	 “”” 
4.	 This script enables to register raster images from two cameras from     

Unmanned Aerial Vehicle into single multispectral images. 
5.	  
6.	 ArcGIS software including Spatial Analyst extension should be 
	 installed at the  computer. 
7.	  
8.	 The inputs are supposed to be images taken in Near-Infrared (NIR) light 
	 in one  folder and corresponding images taken in visible light (RGB) 
	 in another folder. 
9.	  
10.	The result images are 4-band multispectral TIFF images containing bands 
	 in this order: 1 - Near-Infrared, 2 - Red, 3 - Green, 4 - Blue. 
11.	 
12.	 
13.	       *   *   *   Instructions to properly run the script   *   *   * 
14.	 
15.	 
16.	1) First of all copy this script and paste it into the folder, where 
		  following folders are  present: 
17.	 
18.	    ./NIR - folder containing Near-Infrared images 
19.	    ./RGB - folder containing RGB images 
20.	 
21.	2) Run the script 
22.	 
23.	3) Check the results in the ./RESULT folder 
24.	 
25.	“””  
26.	  
27.	print “\n Registration of images has begun. \n”  
28.	  
29.	# Imports all necessary modules  
30.	import arcpy  
31.	import glob  
32.	import shutil  
33.	from arcpy import env  
34.	from arcpy.sa import *  
35.	  
36.	# Retrieves the ArcGIS Spatial Analyst extension license  
37.	arcpy.CheckOutExtension(“Spatial”)  
38.	  
39.	# Creates folders to store intermediate and output image data  
40.	arcpy.CreateFolder_management(“./”, “RGBROT”)  
41.	arcpy.CreateFolder_management(“./”, “COMP”)  
42.	arcpy.CreateFolder_management(“./”, “RESULT”)  
43.	  
44.	# Defines folder paths and raster suffixes  
45.	path1 = “./NIR/”  
46.	path2 = “./RGB/”  
47.	path3 = “./RGBROT/”  
48.	suffix1 = “.JPG”  
49.	suffix2 = “.TIF”  
50.	  
51.	# Defines workspace and lists all Jpeg images  
52.	arcpy.env.workspace = path2  
53.	rasters = arcpy.ListRasters(“*”, “JPG”)  
54.	  
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55.	# Rotates RGB images by 180°. The center of rotation is defined from 
	 top-left corner in local coordinates.   
56.	for raster in rasters:  
57.	    print “Rotating RGB image “ + raster  
58.	    arcpy.Rotate_management(raster, path3 + raster[:-4] + “tif”, “180”, 
        “2456 - 1632”, “”)  
59.	  
60.	print “\n Image rotation performed successfully! \n”  
61.	  
62.	# Sorts rasters before registration  
63.	list1 = glob.glob(path1 + ‘*’ + suffix1)  
64.	list2 = glob.glob(path3 + ‘*’ + suffix2)  
65.	list1.sort()  
66.	list2.sort()  
67.	rasters.sort()  
68.	  
69.	# Registers NIR images based on reference RGB images  
70.	for i in range (len(list1)):  
71.	    print “Registering NIR image “ + list1[i] + “ to reference RGB image “    	

    + list 2[i]  
72.	    arcpy.RegisterRaster_management(list1[i],”REGISTER”,list2[i],””,
        ”ADJUST”,””)  
73.	 
74.	print “\n Image registration performed successfully! \n”  
75.	  
76.	# Defines the extent in local coordinates to clip the image border  
77.	arcpy.env.extent = “200, -3064, 4712, -200”  
78.	  
79.	# Composes images from both sources into one multispectral 4-band image  
80.	for i in range (len(list1)):  
81.	    print “Composing image “ + list1[i] + “ and image “ + list2[i]  
82.	    image = rasters[i]  
83.	    bnir1 = list1[i] + “/band_1”  
84.	    brgb1 = list2[i] + “/band_1”  
85.	    brgb2 = list2[i] + “/band_2”  
86.	    brgb3 = list2[i] + “/band_3”  
87.	    composites = “./COMP/4B%s.tif” % (image[:-4])  
88.	    result = “./RESULT/4B%s.tif” % (image[:-4])  
89.	  
90.	    arcpy.CompositeBands_management((bnir1,brgb1,brgb2,brgb3),composites)  
91.	      
92.	    arcpy.CopyRaster_management(composites,result,””,””,”256”,””,””,
        ”16_BIT_UNSIGNED”,”ScalePixelValue”)  
93.	  
94.	print “\n Image bands composition performed successfully!”  
95.	  
96.	# Deletes folders with intermediate results  
97.	shutil.rmtree(“./RGBROT”)  
98.	shutil.rmtree(“./COMP”)  
99.	  
100. print “\n Intermediate data were deleted.”  
101.	   
102. print “\n All images were successfully registered and outputs are saved
	        in the RESULT folder! \n”  



1.	 #  * / * / * / * / * / *  UAV Forest Explorer  * \ * \ * \ * \ * \ * \ * 
2.	   
3.	 “”” 
4.	 This script is to be used as a source code for the ‘UAV Forest Explorer’
	 Tool in ArcGIS ©. 
5.	 The tool requires ArcGIS for Desktop Advanced, version 10.0 or later. 
6.	 The tool is running on the Python version 2.7. 
7.	 This version of the tool is for non-commercial use only! 
8.	 Not to be distributed without the awareness of the author. 
9.	 © Martin Machala 2014 - 2016 
10.	 
11.	Basic Description: 
12.	This tool serves for thorough exploration of forest stands based on the 
13.	photogrammetric data gained using an Unmanned Aerial Vehicle (UAV). 
14.	 
15.	With the basic settings the tool is designed to iteratively calculate the  	
	 Inverse Watershed Segmentation calculations to identify individual trees
16.	in the forest stand and to estimate their heights just based on the 		
	 remote sensing data. 
17.	Iterations applied each time with different settings help to efficiently 		
 	 discover the best settings suitable for each particular forest stand. 
18. 
19.	Optionally, the comparison with the field measurements ground truth data  		
	 is available, either on the individual tree crown basis, or on the basis
20.	of the area-based approach. 
21.	 
22.	For instructions on how to run the tool, check the  					   
	 ‘UAV Forest Explorer User Guide’.  
23.	“””  
24.	  
25.	# - - - Importing necessary modules (all should be available in the basic  	
	 Python installation):  
26.	import arcpy  
27.	from arcpy import env  
28.	import os  
29.	import numpy  
30.	from decimal import *  
31.	arcpy.CheckOutExtension(„Spatial“) # Checks out the ArcGIS Spatial Analyst  	
				                     extension license.  
32.	from arcpy.sa import *  
33.	  
34.	# - - - Allows to overwrite existing datasets:  
35.	arcpy.env.overwriteOutput = True  
36.	  
37.	# - - - Sets the code for S-JTSK_Krovak_East_North Coordinate System:  
38.	arcpy.env.outputCoordinateSystem = 102067     
39.	  
40.	arcpy.AddMessage(„\nUAV Forest Explorer tool has just begun running.“)  
41.	  
42.	# - - - Lists the abbreviations used in the script and tool dialog 
	 messages:  
43.	arcpy.AddMessage(„\nAbbreviations used:“)  
44.	arcpy.AddMessage(„ABA  -  Area-Based Approach“)  
45.	arcpy.AddMessage(„CHM  -  Canopy Height Model“)  
46.	arcpy.AddMessage(„CS   -  Cell Size“)  
47.	arcpy.AddMessage(„DSM  -  Digital Surface Model“)  
48.	arcpy.AddMessage(„DTM  -  Digital Terrain Model“)  
49.	arcpy.AddMessage(„FM   -  Field-Measured“)  
50.	arcpy.AddMessage(„FS   -  Focal Statistics“)  
51.	arcpy.AddMessage(„Ht   -  Height“)  
52.	arcpy.AddMessage(„IM   -  Interpolation Method“)  
53.	arcpy.AddMessage(„IT   -  Identified Trees“)  
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54.	arcpy.AddMessage(„ITA  -  Individual Tree Approach“)  
55.	arcpy.AddMessage(„MAE  -  Mean Absolute Error“)  
56.	arcpy.AddMessage(„MT   -  Matched Trees“)  
57.	arcpy.AddMessage(„Pct  -  Percent“)  
58.	arcpy.AddMessage(„RMSE -  Root Mean Square Error“)  
59.	arcpy.AddMessage(„SD   -  Standard Deviation“)  
60.	  
61.	# - - - Sets workspace folder to accomodate the output data:  
62.	wspace = arcpy.GetParameterAsText(0)  
63.	arcpy.AddMessage(„\nWorkspace folder was set to the following location:  		
	 \n‘“ + wspace + „‘.“)  
64.	  
65.	# The folders and geodatabases created by the tool are made only if they  	
	 do not exist already.  
66.	  
67.	# - - - Creates working geodatabase to accomodate the processing data:  
68.	wbase = „WorkingData.gdb“  
69.	wdbase = wspace + os.sep + wbase  
70.	  
71.	if arcpy.Exists(wdbase):   
72.	    arcpy.AddMessage(„\nNew datasets will be added to an existing 			
	     geodatabase ‚“ + wbase + „‘.“)  
73.	  
74.	else:  
75.	    arcpy.CreateFileGDB_management(wspace, wbase)  
76.	    arcpy.AddMessage(„\nNew geodatabase ‚“ + wbase + „‘ was created to 		
	     accomodate new datasets.“)  
77.	  
78.	  
79.	# - - - Creates geodatabase to accomodate appropriate results data:  
80.	rbase = „IdentifiedTrees.gdb“  
81.	rdbase = wspace + os.sep + rbase  
82.	  
83.	if arcpy.Exists(rdbase):   
84.	    arcpy.AddMessage(„\nFinal datasets will be added to an existing 
	     geodatabase ‚“ + rbase + „‘.“)  
85.	  
86.	else:  
87.	    arcpy.CreateFileGDB_management(wspace, rbase)  
88.	    arcpy.AddMessage(„\nNew geodatabase ‚“ + rbase + „‘ was created to 		
	    accomodate final datasets.“)  
89.	  
90.	  
91.	# - - - Sets the filename which will be contained in the names of the 		
	 output files:  
92.	fileNameIn = arcpy.GetParameterAsText(1)  
93.	fileName = fileNameIn + „_“  
94.	arcpy.AddMessage(„\nGiven prefix for the output file names: ‚“  			 
	 + fileNameIn + „‘.“)  
95.	  
96.	  
97.	# - - - Optionally sets specific subset area to delineate the borderline
	 for data processing:  
98.	subAreaIn = arcpy.GetParameterAsText(14)  
99.	  
100.	if arcpy.Exists(subAreaIn):  
101.	    constraints = „‘%s‘ <None> Hard_Clip“ % subAreaIn  
102.	    arcpy.AddMessage(„\nSubarea delimitting feature class: ‚“ 			 
	     + subAreaIn + „‘.“)  
103.	  
104.	else:  
105.	    constraints = “”  
106.	    arcpy.AddMessage(„\nNo delimitting subarea was defined.“)  
107.	  
108.	  
109.	# - - - Optionally creates folder to accomodate the final layer files:  
110.	layerFilesFolder = arcpy.GetParameterAsText(15)  



111.	  
112.	if arcpy.Exists(layerFilesFolder):  
113.	    folder = „LayerFiles“  
114.	    rfolder = wspace + os.sep + folder  
115.	  
116.	    if arcpy.Exists(rfolder):   
117.	        arcpy.AddMessage(„\nFinal Layer files will be added to an existing 	
            folder called ‚“ + folder + „‘.“)  
118.	  
119.	    else:  
120.	        arcpy.CreateFolder_management(wspace, folder)  
121.	        arcpy.AddMessage(„\nNew folder called ‚“ + folder + „‘ was created  	
            to accomodate Layer files.“)  
122.	else:  
123.	    arcpy.AddMessage(„\nLayer files will not be created.“)  
124.	      
125.	  
126.	# - - - Creates LAS Dataset from *.las file gained from the UAV:  
127.	DSM_las = arcpy.GetParameterAsText(2)  
128.	  
129.	lasdNameIn = arcpy.GetParameterAsText(3)  
130.	lasdName = lasdNameIn + „.lasd“ # default lasdName is „LasDataset.lasd“  
131.	DSM_lasd = wspace + os.sep + lasdName  
132.	  
133.	arcpy.CreateLasDataset_management(DSM_las, DSM_lasd, “„, constraints,  		
	 „102067“, „COMPUTE_STATS“, „RELATIVE_PATHS“)  
134.	arcpy.AddMessage(„\nLas Dataset called ‚“ + lasdName + „‘ was created
	 in the	Workspace folder.“)  
135.	  
136.	  
137.	# - - - Gives the option to continuously delete working data:  
138.	checkBoxDel = arcpy.GetParameterAsText(18)  
139.	  
140.	if str(checkBoxDel) == ‚true‘:  
141.	    arcpy.AddMessage(„\nWorking datasets will be continuously deleted.“)  
142.	  
143.	else:  
144.	    arcpy.AddMessage(„\nWorking datasets will be preserved.“)  
145.	  
146.	arcpy.AddMessage(„\n* * * * * * * * * * * * * * * * * * * * * * * * * „)  
147.	  
148.	  
149.	# - - - Sets the path to the Digital Terrain Model (DTM):  
150.	DTM = arcpy.GetParameterAsText(4)  
151.	  
152.	DTMresolutionGet = arcpy.GetRasterProperties_management(DTM, „CELLSIZEX“)  
153.	DTMresolution = float(str(DTMresolutionGet).replace(‚,‘,‘.‘))  
154.	arcpy.AddMessage(„\n - Spatial resolution of the DTM is „ 				  
	 + str(DTMresolution) + „ m.“)  
155.	  
156.	# - - - Gives the option to refine the DTM cell size, if it is too coarse:  
157.	checkBoxRR = arcpy.GetParameterAsText(5)  
158.	  
159.	# Sets the new value for the DTM spatial resolution:  
160.	newDTMresolutionIn = arcpy.GetParameterAsText(6) # by default is ‚1 m‘.  
161.	  
162.	# Potentially creates new DTM with refined spatial resolution:  
163.	if str(checkBoxRR) == ‚true‘:  
164.	  
165.	    newDTMresolution = float(newDTMresolutionIn.replace(‚,‘,‘.‘))      
166.	    arcpy.AddMessage(„\nDTM spatial resolution will be modified.“)  
167.	      
168.	    # - - - Creates new geodatabase to accomodate the refined DTM data.  
169.	    mbase = „RefinedDTM.gdb“  
170.	    mdbase = wspace + os.sep + mbase  
171.	  
172.	    if arcpy.Exists(mdbase):   



173.	        arcpy.AddMessage(„\nNew DTM datasets will be added to an existing 	
            geodatabase ‚“ + mbase + „‘.“)  
174.	  
175.	    else:  
176.	        arcpy.CreateFileGDB_management(wspace, mbase)  
177.	        arcpy.AddMessage(„\nNew geodatabase ‚“ + mbase + „‘ was created.“)  
178.	  
179.	    # Converts DTM raster to points containing the original elevation 
	     values:  
180.	    DTMpoints = mdbase + os.sep + fileName + „Orig_DTM_Points“   
181.	    valueField = „VALUE“  
182.	    arcpy.RasterToPoint_conversion(DTM, DTMpoints, valueField)  
183.	    arcpy.AddMessage(„DTM was converted to points.“)  
184.	  
185.	    # Creates new DTM raster with defined cell size using Spline 			 
	     interpolation method:   
186.	    refinedDTM = mdbase + os.sep + fileName + „Refined_DTM_“ 				  
	     + str(int(newDTMresolution*100))  
187.	    env.workspace = mdbase  
188.	    zField = „GRID_CODE“  
189.	    outSpline = Spline(DTMpoints, zField, newDTMresolution, „REGULARIZED“,  	
	     0.1)  
190.	    outSpline.save(refinedDTM)  
191.	    del outSpline  
192.	      
193.	    DTM = refinedDTM  
194.	    arcpy.AddMessage(„Refined version of the DTM was created.“)  
195.	    arcpy.AddMessage(„\n - New spatial resolution of the DTM is „ 			
	     + str(newDTMresolution) + „ m.“)  
196.	  
197.	else:  
198.	    arcpy.AddMessage(„\nDTM resolution was not altered.“)  
199.	  
200.	  
201.	# - - - Sets the rasters Cell Size (CS) variables based on user-defined 		
	 inputs:  
202.	outCellSizeMinIn = arcpy.GetParameterAsText(7)  
203.	outCellSizeMin = float(outCellSizeMinIn.replace(‚,‘,‘.‘))  
204.	arcpy.AddMessage(„\n - Minimal output cell size was set to „  			 
	 + str(outCellSizeMin) + „ m.“)  
205.	  
206.	outCellSizeMaxIn = arcpy.GetParameterAsText(8)  
207.	outCellSizeMax = float(outCellSizeMaxIn.replace(‚,‘,‘.‘))  
208.	arcpy.AddMessage(„ - Maximal output cell size was set to „ 				 
	 + str(outCellSizeMax) + „ m.“)  
209.	  
210.	outCellSizeStepIn = arcpy.GetParameterAsText(9)  
211.	outCellSizeStep = float(outCellSizeStepIn.replace(‚,‘,‘.‘))  
212.	arcpy.AddMessage(„ - Cell size Step was set to „ + str(outCellSizeStep) 		
	 + „ m.“)  
213.	  
214.	  
215.	# - - - Sets the Interpolation Method (IM) variables based on user-defined 	
	 inputs:  
216.	interpolationMethod = arcpy.GetParameterAsText(10)  
217.	interpolationMethodList = interpolationMethod.split(„;“)  
218.	interpolationMethods = len(interpolationMethodList)  
219.	arcpy.AddMessage(„\n - Number of selected Interpolation Methods: „ 		
	 + str(interpolationMethods))  
220.	arcpy.AddMessage(„ - List of selected Interpolation Methods: \n   „ 		
	 + str(interpolationMethod).replace(‚;‘,‘\n   ‚))  
221.	  
222.	  
223.	# - - - Sets the Focal Statistics (FS) variables based on user-defined 
	 inputs:  
224.	FScircleRadiusMinIn = arcpy.GetParameterAsText(11)  
225.	FScircleRadiusMin = int(FScircleRadiusMinIn)                   



226.	arcpy.AddMessage(„\n - Minimal Focal Statistics Circle Radius was set to „ 	
	 + str(FScircleRadiusMin) + „ cell(s).“)  
227.	                   
228.	FScircleRadiusMaxIn = arcpy.GetParameterAsText(12)  
229.	FScircleRadiusMax = int(FScircleRadiusMaxIn)  
230.	arcpy.AddMessage(„ - Maximal Focal Statistics Circle Radius was set to „ 		
	 + str(FScircleRadiusMax) + „ cell(s).“)  
231.	  
232.	FScircleRadiusStep = 1  
233.	arcpy.AddMessage(„ - Focal Statistics Circle Radius Step is by default „ 		
	 + str(FScircleRadiusStep) + „ cell.“)  
234.	  
235.	  
236.	# - - - Gives the option to progressively reduce the number of Focal 		
	 Statistics Subcycles:  
237.	checkBoxRFS = arcpy.GetParameterAsText(13)  
238.	  
239.	if str(checkBoxRFS) == ‚true‘:  
240.	    arcpy.AddMessage(„\nNumber of FS subcycles will be progressively 		
	     reduced.“)  
241.	  
242.	else:  
243.	    arcpy.AddMessage(„\nNumber of FS subcycles will not be modified.“)  
244.	      
245.	  
246.	# - - - Gives the option to use field measurements data:  
247.	checkBoxFM = arcpy.GetParameterAsText(16)  
248.	  
249.	# - - - Sets the path to the field measurements point feature class:  
250.	# Is available only when the checkBoxFM (Boolean parameter 16) is checked  	
	 (True).  
251.	fieldMeasurements = arcpy.GetParameterAsText(17)  
252.	  
253.	arcpy.AddMessage(„\n* * * * * * * * * * * * * * * * * * * * * * * * * „)  
254.	  
255.	  
256.	# - - - Field measurement data basic processing:  
257.	if arcpy.Exists(fieldMeasurements):  
258.	      
259.	    arcpy.AddMessage(„\n <O> Field measurement data were provided
	     and will be processed <O>“)  
260.	  
261.	    # - - - Creates geodatabase to accomodate the outputs of field-measured 	
	     and calculated data comparisons.  
262.	    cbase = „Comparisons.gdb“  
263.	    cdbase = wspace + os.sep + cbase  
264.	  
265.	    if arcpy.Exists(cdbase):   
266.	        arcpy.AddMessage(„\nComparison outputs will be added to an 
            existing geodatabase ‚“ + cbase + „‘.“)  
267.	  
268.	    else:  
269.	        arcpy.CreateFileGDB_management(wspace, cbase)  
270.	        arcpy.AddMessage(„\nNew geodatabase ‚“ + cbase + „‘ was created to 	
            accomodate comparisons outputs.“)  
271.	  
272.	  
273.	    # - - - Creates folder to accomodate the output tables.  
274.	    tables = „Tables“  
275.	    rtables = wspace + os.sep + tables  
276.	  
277.	    if arcpy.Exists(rtables):   
278.	        arcpy.AddMessage(„\nOutput comparison tables will be added to 		
            an existing folder called ‚“ + tables + „‘.“)  
279.	  
280.	    else:  
281.	        arcpy.CreateFolder_management(wspace, tables)  



282.	        arcpy.AddMessage(„\nNew folder called ‚“ + tables + „‘ was created 	
283.	        to accomodate comparison tables.“)  
284.	  
285.	    # - - - Clips the field measurement data if the subarea is provided 
	    and is smaller than the field measurements area:  
286.	    if arcpy.Exists(subAreaIn):  
287.	        fieldMeasClipped = cdbase + os.sep + fileName + „FMtreesClipped“  
288.	        arcpy.Clip_analysis(fieldMeasurements, subAreaIn, fieldMeasClipped)  
289.	        fieldMeasurements = fieldMeasClipped  
290.	        arcpy.AddMessage(„\nField measurements data were potentially 
            clipped using the subarea delimitting feature class.“)  
291.	  
292.	    else:  
293.	        arcpy.AddMessage(„\nField measurements data were not clipped.“)  
294.	  
295.	  
296.	    # - - - Creates Thiessen Polygons to make zones around individual 		
	     measured trees:  
297.	    thiessens = cdbase + os.sep + fileName + „Thiessens“  
298.	  
299.	    if arcpy.Exists(thiessens):  
300.	        arcpy.AddMessage(„\nThiessen polygons already exist.“)  
301.	  
302.	    else:  
303.	        arcpy.CreateThiessenPolygons_analysis(fieldMeasurements, thiessens,	
	         „ALL“)  
304.	        arcpy.AddMessage(„\nThiessen polygons were created based on the 
            field measured tree positions data.“)  
305.	  
306.	  
307.	    # - - - Creates convex bounding polygon around field-measured trees:  
308.	    bounding = cdbase + os.sep + fileName + „Bounding“  
309.	      
310.	    if arcpy.Exists(bounding):  
311.	        arcpy.AddMessage(„\nBounding polygon already exists.“)  
312.	  
313.	    else:  
314.	        arcpy.MinimumBoundingGeometry_management(fieldMeasurements, 
            bounding, „CONVEX_HULL“)  
315.	        arcpy.AddMessage(„\nBounding polygon was created around field 
            measured trees.“)                  
316.	  
317.	  
318.	    # - - - Creates a buffer around the bounding polygon:  
319.	    boundBuffer =  cdbase + os.sep + fileName + „BoundingBuffer“  
320.	  
321.	    if arcpy.Exists(boundBuffer):  
322.	        arcpy.AddMessage(„\nBuffer of the bounding polygon already 
            exists.“)  
323.	  
324.	    else:  
325.	        buffDistance = „1 Meters“  
326.	        arcpy.Buffer_analysis(bounding, boundBuffer, buffDistance)  
327.	        arcpy.AddMessage(„\nBuffer was created around the bounding 
            polygon.“)       
328.	  
329.	  
330.	    # - - - Clips Thiessen polygons using the buffered bounding polygon:  
331.	    thiessenClip = cdbase + os.sep + fileName + „ThiessensClip“  
332.	  
333.	    if arcpy.Exists(thiessenClip):  
334.	        arcpy.AddMessage(„\nClipped thiessen polygons already exist.“)  
335.	  
336.	    else:  
337.	        arcpy.Clip_analysis(thiessens, boundBuffer, thiessenClip)  
338.	        arcpy.AddMessage(„\nThiessen polygons were clipped using the 
            buffered bounding polygon.“)  



339.	  
340.	        if arcpy.Exists(subAreaIn):  
341.	            thiessenClipSub = cdbase + os.sep + fileName + 
                „ThiessensClipSub“  
342.	            arcpy.Clip_analysis(thiessenClip, subAreaIn, thiessenClipSub)  
343.	            thiessenClip = thiessenClipSub  
344.	            arcpy.AddMessage(„\nThiessen polygons were potentially clipped 	
                using the subarea delimitting feature class.“)  
345.	              
346.	        else:  
347.	            arcpy.AddMessage(„\nThiessen polygons are prepared for the 
                data comparison.“)  
348.	  
349.	  
350.	    # - - - Creates table where the calculated and field-measured data will 	
	     be compared:  
351.	    arcpy.env.workspace = cdbase  
352.	    compTabName = fileName + „X_Comparisons_X“  
353.	    comparisonTable = cdbase + os.sep + compTabName  
354.	      
355.	    # Sets required field names for the Comparisons table:  
356.	    column1 = „FileName“        # for the name of each processed file with 	
	                                 individual settings.  
357.	    column2 = „Measured“        # for the number of field-measured (FM) 
                                    trees.  
358.	    column3 = „Identified“       # for the number of trees identified by the 	
	                                 tool.  
359.	    column4 = „Unmatched“       # for the number of FM trees without 
                                    matching identified trees.  
360.	    column5 = „Matched“         # for the number of identified trees 
                                    matched to FM trees.  
361.	    column6 = „Matched_Pct“     # for the percentage of matched trees from 	
                                    all FM trees.  
362.	    column7 = „Redundant“       # for the number of redundantly identified 	
	                                 trees (not matched).  
363.	    column8 = „__MAE__“         # for the Mean Absolute Error between field 	
	                                 measured and counted heights.  
364.	    column9 = „__RMSE__“        # for the Root Mean Square Error for field 	
	                                 measured and counted heights.  
365.	    column10 = „Corr_Coef“      # for the Pearson‘s Correlation Coefficient 	
                                    for FM and counted heights.  
366.	    column11 = „R_squared“      # for the Coefficient of Determination for
                                    FM and counted heights.  
367.	    column12 = „Stat_Sig_R“     # for the Statistical Significance of the 		
	                                Pearson‘s Correlation Coefficient.  
368.	    column13 = „Mean_Diff_MT“   # for the Mean Difference between average 	
	                                 heights for Matched Trees only.  
369.	    column14 = „Corr_Coef_MT“   # for the Pearson‘s Correlation Coefficient 	
	                                 for Matched Trees only.  
370.	    column15 = „R_squared_MT“   # for the Coefficient of Determination for 	
	                                 Matched Trees only.  
371.	    column16 = „Mean_FM_Ht“     # for the Mean height of FM trees.  
372.	    column17 = „SD_FM_Ht“       # for the Standard Deviation of heights of 	
	                                 FM trees.  
373.	    column18 = „Mean_IT_Ht“     # for the Mean height of identified trees.  
374.	    column19 = „SD_IT_Ht“       # for the Standard Deviation of heights of 	
	                                identified trees.  
375.	    column20 = „Counts_Diff“    # for the Difference between count of 		
	                                identified and FM trees.  
376.	    column21 = „Heights_Diff“   # for the Difference between mean height 
                                    of identified and FM trees.  
377.	  
378.	    if arcpy.Exists(comparisonTable):  
379.	        arcpy.AddMessage(„\nComparison data will be added to the 		   	
            existing table.“)  
380.	  
381.	    # Creates the table and defines data types of its columns:  



382.	    else:   
383.	        arcpy.CreateTable_management(cdbase, compTabName)  
384.	        arcpy.AddField_management(comparisonTable, column1, „TEXT“)  
385.	        arcpy.AddField_management(comparisonTable, column2, „SHORT“)  
386.	        arcpy.AddField_management(comparisonTable, column3, „SHORT“)  
387.	        arcpy.AddField_management(comparisonTable, column4, „SHORT“)  
388.	        arcpy.AddField_management(comparisonTable, column5, „SHORT“)  
389.	        arcpy.AddField_management(comparisonTable, column6, „DOUBLE“)  
390.	        arcpy.AddField_management(comparisonTable, column7, „SHORT“)  
391.	        arcpy.AddField_management(comparisonTable, column8, „DOUBLE“)  
392.	        arcpy.AddField_management(comparisonTable, column9, „DOUBLE“)  
393.	        arcpy.AddField_management(comparisonTable, column10, „DOUBLE“)  
394.	        arcpy.AddField_management(comparisonTable, column11, „DOUBLE“)  
395.	        arcpy.AddField_management(comparisonTable, column12, „TEXT“,,,15)
396.	        arcpy.AddField_management(comparisonTable, column13, „DOUBLE“)  
397.	        arcpy.AddField_management(comparisonTable, column14, „DOUBLE“)  
398.	        arcpy.AddField_management(comparisonTable, column15, „DOUBLE“)  
399.	        arcpy.AddField_management(comparisonTable, column16, „DOUBLE“)  
400.	        arcpy.AddField_management(comparisonTable, column17, „DOUBLE“)  
401.	        arcpy.AddField_management(comparisonTable, column18, „DOUBLE“)  
402.	        arcpy.AddField_management(comparisonTable, column19, „DOUBLE“)  
403.	        arcpy.AddField_management(comparisonTable, column20, „SHORT“)  
404.	        arcpy.AddField_management(comparisonTable, column21, „DOUBLE“)  
405.	          
406.	        arcpy.AddMessage(„\nComparison table was created as ‚“ 			 
            + compTabName + „‘.“)  
407.	  
408.	    arcpy.AddMessage(„\n* * * * * * * * * * * * * * * * * * * * * * * * „)  
409.	  
410.	else:  
411.	    arcpy.AddMessage(„\nField measurement data were not provided.“)    
412.	    arcpy.AddMessage(„\nComparison table was neither created, nor 
        updated.“)  
413.	    arcpy.AddMessage(„\n* * * * * * * * * * * * * * * * * * * * * * * * „)  
414.	  
415.	  
416.	# - - - Corrects the user-defined inputs and writes Warning Messages if 		
	 necessary:  
417.	# Returns a Warning Message when the value of Rasters Cell Size Min is 		
	 larger than the value of Rasters Cell Size Max.  
418.	if outCellSizeMin > outCellSizeMax:  
419.	    arcpy.AddWarning(„\n ! ! ! Minimal cell size cannot be larger than 		
	     Maximal cell size ! ! !“)  		
420.	  
421.	# If the value of Rasters Cell Size Min is set to 0 m, it is changed to 
    the value of Rasters Cell Size Step:  
422.	elif outCellSizeMin == 0:   
423.	    outCellSizeMin = outCellSizeStep  
424.	    arcpy.AddWarning(„\n ! ! ! Minimal cell size was altered from ‚0‘ to 
        ‚“ + str(int(outCellSizeMin*100)) + „‘ cm ! ! !“)   
425.	  
426.	# If the value of Rasters Cell Size Step is set to 0 m, it is changed to 		
	 the value of 1 m:  
427.	elif outCellSizeStep == 0:  
428.	    outCellSizeStep = 1  
429.	    arcpy.AddWarning(„\n ! ! ! Cell size Step cannot be ‚0‘ ! The value 
        was changed to ‚“ + str(outCellSizeStep) + „‘ ! ! !“)  
430.	  
431.	# Returns a Warning Message when the value of Focal Statistics Circle 
    Radius Min is larger than the value of Focal Statistics Circle Radius Max.  
432.	elif FScircleRadiusMin > FScircleRadiusMax:   
433.	    arcpy.AddWarning(„\n ! ! ! Minimal FS Circle Radius cannot be larger 
        than Maximal FS Circle Radius ! ! !“)  
434.	      
435.	else:  
437.	    arcpy.AddMessage(„\nInputs were checked and the Inverse Watershed 		
	     Segmentation calculations will be performed.“)  



438.	arcpy.AddMessage(„\n* * * * * * * * * * * * * * * * * * * * * * * * * „)  
439.	  
440.	# - - - Sets the initial processing Cell Size to the value of Rasters 		
	 Cell Size Min:  
441.	outCellSize = outCellSizeMin  
442.	  
443.	# - - - Sets the initial values for cycle counters:  
444.	CScycleSubtotal = 1  
445.	  
446.	IMcycleSubtotal = 1  
447.	  
448.	FScycleSubtotal = 1  
449.	  
450.	  
451.	# - - - Calculates the number of CS, IM and FS cycles to be performed:  
452.	getcontext().prec = 10  
453.	CScycleTotal = (int(((Decimal(outCellSizeMax)-Decimal(outCellSizeMin))/		
	 Decimal(outCellSizeStep))+1))  
454.	arcpy.AddMessage(„\nNumber of CS cycles to be performed: „ 				 
	 + str(CScycleTotal))  
455.	  
456.	IMcycleTotal = int((interpolationMethods) * CScycleTotal)  
457.	arcpy.AddMessage(„Number of IM cycles to be performed: „ + 
    str(IMcycleTotal))  
458.	  
459.	FScycles = int(((FScircleRadiusMax-FScircleRadiusMin)/
    FScircleRadiusStep)+1)  
460.	FScycleTotal = int(FScycles * CScycleTotal * interpolationMethods)  
461.	FScycleTotalOrig = FScycleTotal  
462.	arcpy.AddMessage(„Number of unreduced FS cycles to be performed: „ 		
	 + str(FScycleTotal))  
463.	  
464.	  
465.	# - - - Optionally adjusts the FS counter if the FS cycles reduction is 		
	 required:  
466.	if str(checkBoxRFS) == ‚true‘:  
467.	    if CScycleTotal >= FScycles:  
468.	        cycleReduction = sum(range(FScycles))  
469.	    else:  
470.	        cycleReduction = sum(range(CScycleTotal))  
471.	  
472.	    cycleReductionTotal = (cycleReduction * interpolationMethods)  
473.	    FScycleTotal = FScycleTotal - cycleReductionTotal  
474.	      
475.	    arcpy.AddMessage(„\nNumber of FS cycles avoided by the reduction: „ 		
	     + str(cycleReductionTotal))  
476.	    arcpy.AddMessage(„Number of reduced FS cycles to be performed: „ 		
	     + str(FScycleTotal))  
477.	  
478.	else:  
479.	    arcpy.AddMessage(„\nNumber of FS cycles will not be reduced.“)  
480.	  
481.	  
482.	# - - - Performs the iterative Inverse Watershed Segmentation and other 		
	 calculations:  
483.	# - - - Begins the loop encompassing the Cell Size cycles:  
484.	while outCellSize <= outCellSizeMax * 1.001:  
485.	      
486.	    arcpy.AddMessage(„\n\n    >>> Running CS Cycle „ + str(CScycleSubtotal) 
        + „ out of „ + str(CScycleTotal) + „ <<<\n“)  
487.	  
488.	    arcpy.env.cellSize = outCellSize  
489.	  
490.	    outCellSizeCm = outCellSize * 100  
491.	  
492.	    resolutionStr = str(int(round(outCellSizeCm)))  
493.	    resolution = resolutionStr  



494.	  
495.	    arcpy.AddMessage(„\nResolution of outputs was set to „ + resolution 		
	     + „ cm.“)  
496.	  
497.	    if round(outCellSizeCm) < 10:  
498.	        resolution = „00“ + resolution  
499.	  
500.	    elif round(outCellSizeCm) >= 10 and round(outCellSizeCm) < 100:  
501.	        resolution = „0“ + resolution  
502.	      
503.	    else:  
504.	        resolution = resolution  
505.	  
506.	    # - - - Begins the loop encompassing the Interpolation Methods cycles:  
507.	    for interpolation in interpolationMethodList:  
508.	  
509.	        interpolation = interpolation.strip(„‘“)  
510.	  
511.	        arcpy.AddMessage(„\n\n    >> Running IM cycle „ 				  
            + str(IMcycleSubtotal) + „ out of „ + str(IMcycleTotal) + „ <<\n“)  
512.	  
513.	        # - - - Sets the Interpolation Methods abbreviations:  
514.	        if interpolation == „BINNING AVERAGE NATURAL_NEIGHBOR“:  
515.	            intAbbrev = „_BA“  
516.	        elif interpolation == „BINNING IDW NATURAL_NEIGHBOR“:  
517.	            intAbbrev = „_BI“              
518.	        elif interpolation == „BINNING MAXIMUM NATURAL_NEIGHBOR“:  
519.	            intAbbrev = „_BM“  
520.	        elif interpolation == „BINNING NEAREST NATURAL_NEIGHBOR“:  
521.	            intAbbrev = „_BN“  
522.	        elif interpolation == „TRIANGULATION LINEAR WINDOW_SIZE MAXIMUM 1“:  
523.	            intAbbrev = „_TLW“  # Thinned  
524.	        elif interpolation == „TRIANGULATION LINEAR NO_THINNING MAXIMUM 1“:  
525.	            intAbbrev = „_TLN“  # No Thinning  
526.	        elif interpolation == „TRIANGULATION NATURAL_NEIGHBOR WINDOW_SIZE 	
            MAXIMUM 1“:  
527.	            intAbbrev = „_TNW“  # Thinned  
528.	        elif interpolation == „TRIANGULATION NATURAL_NEIGHBOR NO_THINNING 	
	         MAXIMUM 1“:  
529.	            intAbbrev = „_TNN“  # No Thinning  
530.	        else:  
531.	            arcpy.AddMessage(„\nIncorrect interpolation method was 		
                selected!\n“)  
532.	  
533.	        intAbb = str(intAbbrev)  
534.	  
535.	  
536.	        # - - - Creates Digital Surface Model (DSM) from the *.lasd file:  
537.	        DSM = wdbase + os.sep + fileName + resolution + intAbb + „_DSM“  
538.	  
539.	        arcpy.AddMessage(„\n- Interpolation Method applied: „ 			 
            + str(interpolation))  
540.	        arcpy.AddMessage(„- Interpolation Method abbreviation: „ 			 
            + str(intAbb))  
541.	  
542.	        arcpy.LasDatasetToRaster_conversion(DSM_lasd, DSM, „ELEVATION“, 		
            interpolation, „FLOAT“, „CELLSIZE“, outCellSize)  
543.	  
544.	        DSMresolutionGet = arcpy.GetRasterProperties_management		   	
            (DSM, „CELLSIZEX“)  
545.	        DSMresolution = float(str(DSMresolutionGet).replace(‚,‘,‘.‘))   
546.	        #arcpy.AddMessage(„\n- DSM was created with the resolution of „ 		
            + str(int(DSMresolution*100)) + „ cm.“)  
547.	        arcpy.AddMessage(„\n- DSM was created with the resolution of „ 		
            + str(int(round(DSMresolution*100))) + „ cm.“)  
548.	          
549.	  



550.	        # - - - Creates Canopy Height Model (CHM) by subtracting DTM 		
            from DSM:  
551.	        CHM = wdbase + os.sep + fileName + resolution + intAbb + „_CHM“  
552.	          
553.	        outMinus = Minus(DSM, DTM)  
554.	        outMinus.save(CHM)  
555.	        del outMinus  
556.	  
557.	        CHMresolutionGet = arcpy.GetRasterProperties_management	                         	
            (CHM, „CELLSIZEX“)  
558.	        CHMresolution = float(str(CHMresolutionGet).replace(‚,‘,‘.‘))   
559.	        #arcpy.AddMessage(„- CHM was created with the resolution of „ 		
            + str(int(CHMresolution*100)) + „ cm.“)  
560.	        arcpy.AddMessage(„- CHM was created with the resolution of „ 		
            + str(int(round(CHMresolution*100))) + „ cm.“)  
561.	          
562.	  
563.	        # - - - Sets the initial values of certain FS variables:  
564.	        FScircleRadius = FScircleRadiusMin  
565.	  
566.	        FScycle = 1  
567.	  
568.	  
569.	        # - - - Begins the loop encompassing the Focal Statistics cycles:  
570.	        while FScircleRadius <= FScircleRadiusMax:  
571.	              
572.	            processedFileName = fileName + resolution + intAbb + „_FS“ 		
                + str(FScircleRadius)  
573.	  
574.	            arcpy.AddMessage(„\n\n    > Running FS cycle „ 				 
                + str(FScycleSubtotal) + „ out of „ + 
                str(FScycleTotal) + „ <\n“)  
575.	  
576.	            # Writes the summary information in the beggining of each FS 		
                cycle:  
577.	            arcpy.AddMessage(„\nInner loop information:“)  
578.	            arcpy.AddMessage(„\n~ Processed file: „ + processedFileName)  
579.	            arcpy.AddMessage(„\n~ CS Cycle: „ + str(CScycleSubtotal) 		
                + „ / „ + str(CScycleTotal) + „ ; IM Cycle: „  
580.	                             + str(IMcycleSubtotal) + „ / „ 			 
                                 + str(IMcycleTotal) + „ ; FS Cycle: „ 	               	
                                 + str(FScycleSubtotal)  
581.	                             + „ / „ + str(FScycleTotal) 				  
                                 + „ ; FS Subcycle: („ + str(FScycle) + „ / „ 	
                                 + str(FScycles) + „)“)  
582.	            arcpy.AddMessage(„~ Resolution: „ + resolutionStr + „ cm  ; 		
                FS Circle Radius: „ + str(FScircleRadius))  
583.	            arcpy.AddMessage(„~ IM abbrev.: „ + str(intAbb))  
584.	  
585.	  
586.	            # - - - Applies the Focal Statistics to smooth the CHM and to 	
                accentuate its local Maxima:  
587.	            FS = CHM + „_FS“ + str(FScircleRadius)  
588.	            outFocalStats = FocalStatistics(CHM,	            			 
	             NbrCircle(int(FScircleRadius), „CELL“), „MAXIMUM“, „DATA“)  
589.	            outFocalStats.save(FS)  
590.	            del outFocalStats  
591.	            arcpy.AddMessage(„\n\nFocal Statistics were applied on CHM 		
                using „ + str(FScircleRadius) + „ cell(s) circle radius.“)  
592.	  
593.	  
594.	            # - - - Makes a negative CHM (inverts the CHM smoothed by 
                Focal Statistics):  
595.	            Neg = FS + „_neg“  
596.	            outTimes = Times(FS, -1)  
597.	            outTimes.save(Neg)  
598.	            del outTimes  



599.	            arcpy.AddMessage(„\nNegatives were counted with the raster 	  	
	             resolution of „ + resolutionStr + „ cm.“)  
600.	              
601.	  
602.	            # - - - Creates Flow Direction raster from the negative CHM:  
603.	            FDir = Neg + „_FDir“  
604.	            outFlowDirection = FlowDirection(Neg)  
605.	            outFlowDirection.save(FDir)  
606.	            del outFlowDirection  
607.	            arcpy.AddMessage(„\nFlow Directions were counted with the 
                raster resolution of „ + resolutionStr + „ cm.“)  
608.	  
609.	  
610.	            # - - - Creates Flow Length raster from the Flow Direction  	                 	
                raster:  
611.	            FLen = FDir + „_FLen“  
612.	            outFlowLength = FlowLength(FDir, „DOWNSTREAM“)  
613.	            outFlowLength.save(FLen)  
614.	            del outFlowLength  
615.	            arcpy.AddMessage(„\nFlow Lengths were counted with the raster 	
                resolution of „ + resolutionStr + „ cm.“)  
616.	  
617.	  
618.	            # - - - Reclassifies the Flow Length raster:  
619.	            Rec = FLen + „_Rec“  
620.	            outReclass = Reclassify(FLen, „Value“, RemapValue([[0,1]]), 	                                  	
                „NODATA“)  
621.	            outReclass.save(Rec)  
622.	            del outReclass  
623.	            arcpy.AddMessage(„\nReclassifications were counted with the 
                raster resolution of „ + resolutionStr + „ cm.“)  
624.	  
625.	  
626.	            # - - - Converts reclassified rasters to polygons:  
627.	            Pol = Rec + „_Pgn“  
628.	            arcpy.RasterToPolygon_conversion(Rec, Pol, „NO_SIMPLIFY“, 		
                „VALUE“)  
629.	            arcpy.AddMessage(„\nRasters were converted to polygons.“)  
630.	  
631.	  
632.	            # - - - Makes centroid points from the created polygons:  
633.	            Poi = Pol + „_Pnt“  
634.	            arcpy.FeatureToPoint_management(Pol, Poi, „CENTROID“)  
635.	            arcpy.AddMessage(„\nPolygons were converted to points.“)  
636.	  
637.	  
638.	            # - - - Extracts the height values from CHM raster to the 
                created points:  
639.	            resultsPathName = rdbase + os.sep + fileName + resolution 	 	
                + intAbb + „_FS“ + str(FScircleRadius)  
640.	  
641.	            ExPoi = resultsPathName + „_CrownTops“  
642.	            ExtractValuesToPoints(Poi, FS, ExPoi, „NONE“, „VALUE_ONLY“)  
643.	            arcpy.AddMessage(„\nParticular CHM raster values were extacted 	
                to points.“)  
644.	  
645.	  
646.	            # - - - Creates the crown delineations using the Basin tool:  
647.	            Bas = FDir + „_Basin“  
648.	            outBasin = Basin(FDir)  
649.	            outBasin.save(Bas)  
650.	            del outBasin  
651.	            arcpy.AddMessage(„\nBasin raster was created with the 
652.            resolution of „ + resolutionStr + „ cm.“)  
653.	  
654.	            # - - - Converts Basin raster to simplified polygon feature 
                class:  



655.	            BasPol = resultsPathName + „_Crowns“  
656.	            arcpy.RasterToPolygon_conversion(Bas, BasPol, „SIMPLIFY“, 		
                „VALUE“)  
657.	            arcpy.AddMessage(„\nBasin raster was converted to polygons.“)  
658.	  
659.	  
660.	            # - - - Optionally applies symbology to the new polygon and 
                point layers from a selected layer files (just for visual 
                purposes).  
661.	            if arcpy.Exists(layerFilesFolder):  
662.	                  
663.	                arcpy.AddMessage(„\nGiven layer files will be applied to 		
                    update the symbology.“)  
664.	  
665.	                # - - - Applies symbology to the new polygon layer 	           	
                    (crown delineations):  
666.	                newPolLyrName = fileName + resolution + intAbb + „_FS“ 		
                    + str(FScircleRadius) + „_Crowns_lyr“  
667.	                newPolLyrFile = arcpy.MakeFeatureLayer_management(BasPol, 	
                    newPolLyrName)  
668.	  
669.	                polLayerFile = layerFilesFolder + os.sep 			    	
                    + „Polygon_layer_file.lyr“ # such layer file must be provided  
670.	                arcpy.ApplySymbologyFromLayer_management(newPolLyrFile, 		
                    polLayerFile)  
671.	  
672.	                BasPolLyr = rfolder + os.sep + newPolLyrName + „.lyr“  
673.	                arcpy.SaveToLayerFile_management(newPolLyrFile, BasPolLyr)  
674.	  
675.	                arcpy.AddMessage(„\nPolygon layer files were created.“)  
676.	  
677.	  
678.	                # - - - Applies symbology to the new point layer 		   	
                    (crown apexes):  
679.	                newPoiLyrName = fileName + resolution + intAbb + „_FS“ 		
                    + str(FScircleRadius) + „_CrownTops_lyr“  
680.	                newPoiLyrFile = arcpy.MakeFeatureLayer_management(ExPoi, 		
                    newPoiLyrName)  
681.	  
682.	                poiLayerFile = layerFilesFolder + os.sep 			             	
                    + „Point_layer_file.lyr“ # such layer file must be provided  
683.	                arcpy.ApplySymbologyFromLayer_management(newPoiLyrFile, 		
                    poiLayerFile)  
684.	  
685.	                ExPoiLyr = rfolder + os.sep + newPoiLyrName + „.lyr“  
686.	                arcpy.SaveToLayerFile_management(newPoiLyrFile, ExPoiLyr)  
687.	  
688.	                arcpy.AddMessage(„\nPoint layer files were created.“)  
689.	  
690.	            else:  
691.	                arcpy.AddMessage(„\nLayer files were not applied.“)  
692.	  
693.	  
694.	            # - - - Compares the calculated and measured heights of trees 
                and stores results in the Comparisons table:   
695.	            if arcpy.Exists(fieldMeasurements):  
696.	                  
697.	                arcpy.AddMessage(„\n* * * * * * * * * * * * * * * * * * *„)  
698.	                arcpy.AddMessage(„\n <> Field measurements data will be 
                    used for the calculations assessment <> „)  
699.	  
700.	  
701.	                # - - - Clips the CrownTops point layer by the field 		
                    measurements area (buffered bounding polygon):  
702.	                clippedExPoi = cdbase + os.sep + processedFileName 		
                    + „_Identified“  
703.	                arcpy.Clip_analysis(ExPoi, boundBuffer, clippedExPoi)  



704.	                arcpy.AddMessage(„\nCrown Tops within the field measurement 	
                    area were identified.“)  
705.	  
706.	                # Specifies the environment extent:  
707.	                if arcpy.Exists(subAreaIn):  
708.	                    arcpy.env.extent = subAreaIn  
709.	                else:  
710.	                    arcpy.env.extent = DSM  
711.	  
712.	                # Sets the cell size for subsequently created rasters:  
713.	                tempCellSize = 0.1  
714.	                arcpy.env.cellSize = tempCellSize  
715.	  
716.	  
717.	                # - - - Converts the points containing calculated heights 
                    of trees to raster cells:  
718.	                treeHeight = „RASTERVALU“  
719.	                Ras = Poi + „_Ras“  
720.	                arcpy.FeatureToRaster_conversion(ExPoi, treeHeight, Ras, 		
                    tempCellSize)  
721.	                arcpy.AddMessage(„\nPoints with extracted elevations were 	
                    converted to raster cells.“)  
722.	  
723.	  
724.	                # - - - Creates a copy of the previous raster when 
                    replacing NoData with Zero values (necessary for 
                    subsequent calculations):  
725.	                RasZ = Poi + „_RasZ“   
726.	                outCon = Con(IsNull(Ras),0, Ras)  
727.	                outCon.save(RasZ)  
728.	                del outCon  
729.	                arcpy.AddMessage(„\nRaster cells with ‚NoData‘ values were 	
                    replaced by ‚0‘ values.“)  
730.	  
731.	  
732.	                # - - - Calculates the Zonal Statistics from the raster 
                    cells:  
733.	                # a) for the area of individual Thiessen polygons around 
                    field measured trees:  
734.	                compResultsPathName = cdbase + os.sep + fileName + 
                    resolution + intAbb + „_FS“ + str(FScircleRadius)  
735.	                zoneField = „ID“  
736.	                zonalTable1 = compResultsPathName + „_ZonalStatsCounts“  
737.	                zonalTable2 = compResultsPathName + „_ZonalStatsFull“  
738.	  
739.	                ZonalStatisticsAsTable(thiessenClip, zoneField, Ras, 	  	
                    zonalTable1, „DATA“, „ALL“) # Includes also NoData values  
740.	                arcpy.AddMessage(„\nZonal statistics were calculated for 		
                    original raster cells using Thiessen polygons.“)  
741.	                  
742.	                ZonalStatisticsAsTable(thiessenClip, zoneField, RasZ, 	  	
                    zonalTable2, „DATA“, „ALL“) # Includes zeroes instead of 		
                    NoData values  
743.	                arcpy.AddMessage(„\nZonal statistics were calculated for 		
                    modified raster cells using Thiessen polygons.“)  
744.	  
745.	                # b) for the area of buffered bounding polygon around field 	
                    measured trees:  
746.	                zoneFieldBB = „ORIG_FID“  
747.	                zonalTable3 = compResultsPathName + „_ZonalStatsUnpaired“  
748.	                ZonalStatisticsAsTable(boundBuffer, zoneFieldBB, Ras, 		
                    zonalTable3, „DATA“, „ALL“)  
749.	                arcpy.AddMessage(„\nZonal statistics were calculated for 	
750.                original raster cells using buffered bounding polygon.“)    
751.	  
752.	                # - - - Makes comparison of data and counts correlation 		
                    coefficients and appropriate error values:  



753.	                  
754.	                # - - - Joins the field measured trees with the table of 		
                    calculated trees (without NoData):  
755.	                joinedTrees = processedFileName + „_Joined“  
756.	                fmTabID = „ID“  # field measurements table ID  
757.	                zsTabID = „ID“  # zonal statistics table ID   
758.	                  
759.	                fieldMeasCopy = arcpy.FeatureClassToFeatureClass_conversion	
                    (fieldMeasurements, cdbase, joinedTrees) 
                    # Makes a copy of Field Measurements dataset  
760.	                fieldMeasJoin = arcpy.JoinField_management(fieldMeasCopy, 		
                    fmTabID, zonalTable2, zsTabID) # Joins Zonal Statistics 
                    table to that copy  
761.	                arcpy.AddMessage(„\nThe Field Measurement table and the 
                    table of calculated tree heights were joined.“)  
762.	  
763.	  
764.	                # Names of present and new colums for the Field 
                    Measurement table including the join:  
765.	                joinCol1 = „Height“     # for field measured (FM) heights 	   	
                                            (existing column)  
766.	                joinCol2 = „MAX“        # for calculated heights 		   	
                                            (existing column)  
767.	                joinCol3 = „Diff“       # for their difference  
768.	                joinCol4 = „Abs_Diff“   # for absolute value of that 		
                                            difference  
769.	                joinCol5 = „Diff_sq2“   # for the square of that difference  
770.	                joinCol6 = „No_Max“     # for unidentified trees  
771.	                joinCol7 = „Height_2“   # for FM heights of matched trees  
772.	                joinCol8 = „MAX_2“      # for calculated heights of matched 	
                                            trees  
773.	                joinCol9 = „Diff_2“     # for their difference  
774.	  
775.	                # Adds new colums to the Field Measurement table including 	
                    the join  
776.	                arcpy.AddField_management(fieldMeasJoin, joinCol3, „DOUBLE“)  
777.	                arcpy.AddField_management(fieldMeasJoin, joinCol4, „DOUBLE“)  
778.	                arcpy.AddField_management(fieldMeasJoin, joinCol5, „DOUBLE“)  
779.	                arcpy.AddField_management(fieldMeasJoin, joinCol6, „SHORT“)  
780.	                arcpy.AddField_management(fieldMeasJoin, joinCol7, „DOUBLE“)  
781.	                arcpy.AddField_management(fieldMeasJoin, joinCol8, „DOUBLE“)  
782.	                arcpy.AddField_management(fieldMeasJoin, joinCol9, „DOUBLE“)  
783.	                arcpy.AddMessage(„\nNew columns were added to the Field 		
                    Measurement table with a join.“)  
784.	  
785.	  
786.	                # - - - Calculates demanded values in the newly added 
                    fields:  
787.	                joinFields = [joinCol1, joinCol2, joinCol3, joinCol4, 	  	
                    joinCol5, joinCol6, joinCol7, joinCol8, joinCol9]  
788.	  
789.	                with arcpy.da.UpdateCursor(fieldMeasJoin, joinFields) as 		
                    cursor:  
790.	                    for row in cursor:  
791.	                        if row[1] == None:  
792.	                            row[1] = 0  
793.	                            row[5] = 1  
794.	                        elif row[1] == 0: # Marks rows without matching 
                            trees(with no calculated heights)  
795.	                            row[5] = 1  
796.	                        else:  
797.	                            row[5] = 0  
798.	                        row[2] = row[0] - row[1] # Counts the difference 
                            between ‚Height‘ field (measured heights) 
                            and ‚MAX‘ field (calculated heights)  
799.	                        row[3] = abs(row[2]) # Calculates absolute values 	
                            of that difference  



800.	                        row[4] = row[2]**2 # Calculates the second power 
                            of that difference  
801.	                        if row[1] > 0:  
802.	                            row[6] = row[0]  
803.	                            row[7] = row[1]  
804.	                            row[8] = row[6] - row[7]  
805.	                        cursor.updateRow(row)   
806.	  
807.	                arcpy.AddMessage(„\nDifferences between measured and 		
                    calculated tree heights were counted.“)  
808.	  
809.	  
810.	                # - - - Performs required mathematical and statistical 		
                    calculations using Individual Tree Approach (ITA):  
811.	                arcpy.AddMessage(„\n* * * * * * * * * * * * * * * * * * „)  
812.	                arcpy.AddMessage(„\nResults of the identified and 
                    fild-measured trees comparisons:“)  
813.	                arcpy.AddMessage(„\n\n~ Comparisons for Individual Tree 		
                    Approach (paired trees): „)  
814.	  
815.	                # Makes arrays from certain columns, to prepare them for 		
                    further calculations:  
816.	                joinArray1 = arcpy.da.FeatureClassToNumPyArray
                    (fieldMeasJoin, joinCol1) # Makes array from ‚Height‘ field  
817.	                joinArray2 = arcpy.da.FeatureClassToNumPyArray
                    (fieldMeasJoin, joinCol2) # Makes array from ‚MAX‘ field  
818.	  
819.	                measuredTrees = len(joinArray1)              
820.	                arcpy.AddMessage(„\nMeasured trees: „ + str(measuredTrees))  
821.	  
822.	                # Gets number of identified trees falling into the Thiessen 	
                    polygons (and thus being compared):  
823.	                zonalCol = „COUNT“  
824.	                zonalArray = arcpy.da.TableToNumPyArray(zonalTable1, 		
                    zonalCol)  
825.	                identifiedTrees = zonalArray[zonalCol].sum()   
826.	                arcpy.AddMessage(„\nIdentified trees:  „ + 
                    str(identifiedTrees))  
827.	                  
828.	                # Calculates the number of unmatched trees (measured trees 	
                    with no identified tree in their Thiessen polygon):  
829.	                joinArray3 = arcpy.da.FeatureClassToNumPyArray 	                       
                    (fieldMeasJoin,joinCol6)  
830.	                unmatchedTrees = joinArray3[joinCol6].sum()  
831.	                arcpy.AddMessage(„\nUnmatched trees:  „ + 
                    str(unmatchedTrees))  
832.	  
833.	                # Calculates the number of matched trees (paired measured  	
                    and identified trees based on Thiessen polygons):  
834.	                matchedTrees = measuredTrees - unmatchedTrees  
835.	                arcpy.AddMessage(„\nMatched trees:  „ + str(matchedTrees))  
836.	  
837.	                # Calculates the percentage of matched trees out of all 		
                    measured trees:  
838.	                matchedTreesPerc = float(matchedTrees) / 				  
                    float(measuredTrees) * 100  
839.	                matchedTreesPercRound = round(matchedTreesPerc,2)  
840.	                arcpy.AddMessage(„\nMatched trees percentage:  „ 			 
                    + str(matchedTreesPercRound) + „ %“)  
841.	  
842.	                # Calculates the count of identified without matched trees 	
                    (shows if any redundant trees were identified):  
843.	                redundantTrees = identifiedTrees - matchedTrees  
844.	                arcpy.AddMessage(„\nRedundantly identified trees:  „ 		
                    + str(redundantTrees))  
845.	  
846.	                # Calculates the Mean Absolute Error as an average of 	  	



                	    absolute value differences between measured and 
                    calculated tree heights:  
847.	                joinArray4 = arcpy.da.FeatureClassToNumPyArray
                    (fieldMeasJoin, joinCol4)  
848.	                absDiffSum = joinArray4[joinCol4].sum()  
849.	                absDiffMean = absDiffSum / len(joinArray4)  
850.	                absDiffMeanRound = round(absDiffMean, 3)  
851.	                arcpy.AddMessage(„\n\nMean Absolute Error (MAE):  „ 		
                    + str(absDiffMeanRound))  
852.	  
853.	                # Calculates the Root Mean Square Error from the 
                    differences between measured and calculated tree heights:  
854.	                joinArray5 = arcpy.da.FeatureClassToNumPyArray
                    (fieldMeasJoin, joinCol5)  
855.	                sqDiffSum = joinArray5[joinCol5].sum()  
856.	                sqDiffMean = sqDiffSum / len(joinArray5)  
857.	                sqDiffMeanRoot = sqDiffMean ** 0.5  
858.	                sqDiffMeanRootRound = round(sqDiffMeanRoot, 3)  
859.	                arcpy.AddMessage(„\nRoot Mean Square Error (RMSE):  „ 	  	
                    + str(sqDiffMeanRootRound))  
860.	      
861.	                # Calculates Pearson‘s Correlation Coefficient for measured 	
                    and calculated tree heights:  
862.	                corrCoef = numpy.corrcoef(joinArray1, joinArray2)[0, 1]  
863.	                corrCoefRound = round(corrCoef, 3)  
864.	                arcpy.AddMessage(„\nPearson‘s Correlation Coefficient (R): „ 	
                    + str(corrCoefRound))  
865.	                  
866.	                # Calculates Coefficient of determination (R-squared) for 		
                    measured and calculated tree heights:  
867.	                squaredR = corrCoef ** 2  
868.	                squaredRround = round(squaredR, 3)  
869.	                arcpy.AddMessage(„\nCoefficient of determination 			 
                    (R-squared):  „ + str(squaredRround))  
870.	  
871.	                # Tests for the statistical significance of calculated 		
                    Correlation Coefficient:  
872.	                n = matchedTrees # sample size  
873.	                R = corrCoef # Pearson‘s Correlation Coefficient  
874.	                T = (R*((n-2)**0.5))/((1-R**2)**0.5) # Test statistic using 	
                    Student‘s t-distribution  
875.	  
876.	                dof = n - 2  # degrees of freedom  
877.	  
878.	                    # critical values for alfa = 0.05 for the two-tailed 	 	
                        test:  
879.	                if dof >= 100:  
880.	                    cv = 1.984                
881.	                elif dof >= 80 and dof < 100:  
882.	                    cv = 1.99  
883.	                elif dof >= 60 and dof < 80:  
884.	                    cv = 2.0  
885.	                elif dof >= 40 and dof < 60:  
886.	                    cv = 2.021                  
887.	                elif dof >= 20 and dof < 40:  
888.	                    cv = 2.086  
889.	                elif dof >= 10 and dof < 20:  
890.	                    cv = 2.228  
891.	                elif dof >= 5 and dof < 10:  
892.	                    cv = 2.571  
893.	                elif dof >= 2 and dof < 5:  
894.	                    cv = 4.303  
895.	                else:  
896.	                    cv = 12.706  
897.	  
898.	                if T > cv:  
899.	                    statSig = „Yes“   



900.	                else:  
901.	                    statSig = „No“  
902.	  
903.	                arcpy.AddMessage(„\nStatistically significant R:  „ 		
                    + str(statSig))  
904.	  
905.	                # Calculates the Mean Difference between measured and 	  
                    calculated tree heights of matched trees only (without zero 
                    values):  
906.	                joinArray6 = arcpy.da.FeatureClassToNumPyArray
                    (fieldMeasJoin, joinCol9, skip_nulls=True)  
907.	                diffMatchSum = joinArray6[joinCol9].sum()  
908.	                diffMatchMean = diffMatchSum / len(joinArray6)  
909.	                diffMatchMeanRound = round(diffMatchMean, 3)  
910.	                arcpy.AddMessage(„\n\nMean Difference of average heights 
                    for Matched trees only:  „ + str(diffMatchMeanRound))  
911.	  
912.	                # Calculates Pearson‘s Correlation Coefficient for measured 	
                    and calculated tree heights of matched trees only 
                    (without zero values):  
913.	                joinArray7 = arcpy.da.FeatureClassToNumPyArray
                    (fieldMeasJoin, joinCol7, skip_nulls=True) # Makes array  
                    from FM heights without Zero values.  
914.	                joinArray8 = arcpy.da.FeatureClassToNumPyArray
                    (fieldMeasJoin, joinCol8, skip_nulls=True) 
                    # Makes array from calculated heights without Zero values.  
915.	  
916.	                if len(joinArray6) < 1:  
917.	                    joinArray7 = [0]  
918.	                    joinArray8 = [0]  
919.	  
920.	                corrCoefMatch = numpy.corrcoef(joinArray7, joinArray8)[0,1]  
921.	                corrCoefMatchRound = round(corrCoefMatch, 3)  
922.	                arcpy.AddMessage(„\nPearson‘s Correlation Coefficient (R)  	
                    for Matched trees only: „ + str(corrCoefMatchRound))  
923.	  
924.	                # Calculates Coefficient of determination (R-squared) for 		
                    measured and calculated tree heights of matched trees 
                    only (without zero values):  
925.	                squaredRmatch = corrCoefMatch ** 2  
926.	                squaredRmatchRound = round(squaredRmatch, 3)  
927.	                arcpy.AddMessage(„\nCoefficient of determination (R-squared) 	
                    for Matched trees only:  „ + str(squaredRmatchRound))  
928.	  
929.	                # Calculates the average height of field-measured trees:  
930.	                fmHeightSum = joinArray1[joinCol1].sum() # sum of field 
                    measured heights  
931.	                fmHeightMean = fmHeightSum / measuredTrees # mean of field 
                    measured heights  
932.	                fmHeightMeanRound = round(fmHeightMean, 3)  
933.	                arcpy.AddMessage(„\n\nAverage height of field-measured 
                    trees:  „ + str(fmHeightMeanRound))  
934.	  
935.	                # Calculates Standard Deviation (SD) for heights of 
                    field-measured trees:  
936.	                fmhArray = numpy.asarray(joinArray1, float) # Prepares the 	
                    Height array  
937.	                stDevFMH = numpy.std(fmhArray) #SD of field-measured heights  
938.	                stDevFMHround = round(stDevFMH, 3)  
939.	                arcpy.AddMessage(„\nStandard Deviation (SD) of  	                      
                    field-measured heights:  „ + str(stDevFMHround))  
940.	  
941.	  
942.	                # - - - Performs required mathematical and statistical 	      	
                    calculations using Area-Based Approach (ABA):  
943.	                arcpy.AddMessage(„\n\n~ Comparisons for Area-Based Approach 	
                    (unpaired trees): „)  



944.	                  
945.	                # Calculates average height of identified trees:  
946.	                unpairCol1 = „MEAN“  
947.	                unpairArray1 = arcpy.da.TableToNumPyArray(zonalTable3, 	  	
                    unpairCol1) # average height of identified trees in proper 
			      area  
948.	                unpairArray1Num = unpairArray1[unpairCol1].sum() # one-value 	
                    array converted to float number  
949.	                unpairArray1NumRound = round(unpairArray1Num, 3)  
950.	                arcpy.AddMessage(„\nAverage height of identified trees:  „ 	
                    + str(unpairArray1NumRound))  
951.	  
952.	                # Calculates Standard Deviation for heights of identified 	 	
                    trees:  
953.	                unpairCol2 = „STD“  
954.	                unpairArray2 = arcpy.da.TableToNumPyArray(zonalTable3, 		
                    unpairCol2) # SD of identified trees heights  
955.	                unpairArray2Num = unpairArray2[unpairCol2].sum() # one-value 	
                    array converted to float number  
956.	                unpairArray2NumRound = round(unpairArray2Num, 3)  
957.	                arcpy.AddMessage(„\nStandard Deviation (SD) of calculated 	
                    heights:  „ + str(unpairArray2NumRound))  
958.	  
959.	                # Calculates difference between the counts of identified and 	
                    field-measured trees:  
960.	                countDiff = identifiedTrees - measuredTrees  
961.	                arcpy.AddMessage(„\nTrees count difference:  „ 	  	  	
                    + str(countDiff))  
962.	  
963.	                # Calculates difference between average heights of  	                     	
                    identified and field-measured trees:  
964.	                heightDiff = unpairArray1Num - fmHeightMean  
965.	                heightDiffRound = round(heightDiff, 3)  
966.	                arcpy.AddMessage(„\nDifference between average heights:  „ 	
                    + str(heightDiffRound))  
967.	  
968.	  
969.	                # - - - Fills the proper values into the comparison table:  
970.	                inCursor = arcpy.da.InsertCursor(comparisonTable,[column1, 	
                    column2, column3, column4, column5, column6, column7,  
971.	                column8, column9, column10, column11, column12, column13, 	
                    column14,column15, column16, column17, column18, column19, 	
                    column20, column21])  
973.	                inCursor.insertRow([processedFileName, measuredTrees, 
                    identifiedTrees, unmatchedTrees, matchedTrees, 
                    matchedTreesPercRound, redundantTrees, absDiffMeanRound, 
974.	                sqDiffMeanRootRound, corrCoefRound, squaredRround, statSig,  
975.	                diffMatchMeanRound, corrCoefMatchRound, squaredRmatchRound, 	
                    fmHeightMeanRound, stDevFMHround, unpairArray1NumRound, 
976.	                unpairArray2NumRound, countDiff, heightDiffRound])  
977.	                del inCursor  
978.	                  
979.	                arcpy.AddMessage(„\n\nComparison table was filled with 	 	
                    appropriate data.“)  
980.	                arcpy.AddMessage(„\n* * * * * * * * * * * * * * * * * * „)  
981.	  
982.	  
983.	                # Sets back the appropriate Cell Size  
984.	                arcpy.env.cellSize = outCellSize  
985.	  
986.	  
987.	            else:  
988.	                arcpy.AddMessage(„\nField measurement data were not 		
                    provided.“)  
989.	  
990.	  
991.	            # - - - Updates counters before the completion of the FS cycle:  



992.	            FScycleResidue = FScycleTotal - FScycleSubtotal  
993.	  
994.	            arcpy.AddMessage(„\n\nFS cycle „ + str(FScycleSubtotal) 	  	
                + „ completed! Remaining FS cycles: „ + str(FScycleResidue))  
995.	            arcpy.AddMessage(„\n...................“)  
996.	  
997.	            FScircleRadius = FScircleRadius + FScircleRadiusStep  
998.	  
999.	            FScycle = FScycle + 1  
1000.           FScycleSubtotal = FScycleSubtotal + 1  
1001.	               
1002.           # - - - End of FS cycle.  
1003.	   
1004.	   
1005.	 # - - - Optionally deletes rasters and feature classes from the 
           working geodatabase before each IM cycle completes:  
1006.	 if str(checkBoxDel) == ‚true‘:  
1007.	               
1008.           arcpy.AddMessage(„\nWorking datasets created so far will be 		
                deleted.“)  
1009.           arcpy.env.workspace = wdbase  
1010.           fcs = arcpy.ListFeatureClasses()  
1011.           rsts = arcpy.ListRasters()  
1012.	   
1013.           for fc in fcs:  
1014.	           arcpy.Delete_management(fc)  
1015.	                   
1016.           arcpy.AddMessage(„\nWorking feature classes from IM cycle „ 	                        	
                + str(IMcycleSubtotal) + „ were deleted.“)  
1017.	   
1018.           for rs in rsts:  
1019.	           arcpy.Delete_management(rs)  
1020.	                   
1021.           arcpy.AddMessage(„\nWorking rasters from IM cycle „ 	            	
                + str(IMcycleSubtotal) + „ were deleted.“)  
1022.	   
1023.	 else:  
1024.	      arcpy.AddMessage(„\nWorking datasets were not deleted.“)  
1025.	   
1026.	   
1027.	      # - - - Updates counters before the completion of the IM cycle:  
1028.	      IMcycleResidue = IMcycleTotal - IMcycleSubtotal  
1029.	           
1030.	      arcpy.AddMessage(„\n\nIM cycle „ + str(IMcycleSubtotal) 	  	
                + „ completed! Remaining IM cycles: „ + str(IMcycleResidue))  
1031.	      arcpy.AddMessage(„\n_ _ _ _ _ _ _ _ _ _ _ _ _ _ „)  
1032.	           
1033.	      IMcycleSubtotal = IMcycleSubtotal + 1  
1034.	           
1035.	      # - - - End of IM cycle.  
1036.	   
1037.	   
1038.     # - - - Updates counters before the completion of the CS cycle:  
1039.     CScycleResidue = CScycleTotal - CScycleSubtotal  
1040.	           
1041.     arcpy.AddMessage(„\nCS cycle „ + str(CScycleSubtotal) 			             	
          + „ completed! Remaining CS cycles: „ + str(CScycleResidue))  
1042.     arcpy.AddMessage(„\n* * * * * * * * * * * * * * * * * * * *“)  
1043.	   
1044.     outCellSize = outCellSize + outCellSizeStep  
1045.	
1046.     CScycleSubtotal = CScycleSubtotal + 1  
1047.	    
1048.	   
1049.     # - - - Progressively reduces number of FS subcycles, if required:  
1050.     if str(checkBoxRFS) == ‚true‘:  
1051.          if CScycleResidue < FScycles:  



1052.               FScircleRadiusMax = FScircleRadiusMax - 1  
1053.               FScycles = FScycles - 1  
1054.               arcpy.AddMessage(„\nNumber of FS subcycles was reduced 
                    by 1 to actual value of „ + str(FScycles) + „.“)  
1055.	   
1056.	      else:  
1057.	          arcpy.AddMessage(„\nNumber of FS subcycles was maintained 	
                    at „ + str(FScycles) + „.“)  
1058.	   
1059.     else:  
1060.	      arcpy.AddMessage(„\nNumber of FS subcycles was maintained at „ 	
                + str(FScycles) + „.“)  
1061.	   
1062.     # - - - End of CS cycle.  
1063.	       
1064.	   
1065.# - - - Recapitulation of the performed cycles counts and checking with 		
     the expected values:  
1066.arcpy.AddMessage(„\n\n    All loops were finished!“)  
1067.	   
1068.arcpy.AddMessage(„\n\nTotal number of CS cycles performed: „ 	  		
     + str(int(CScycleSubtotal)-1) + „ ; Predicted: „ + str(CScycleTotal))  
1069.	   
1070.arcpy.AddMessage(„\nTotal number of IM cycles performed: „ 		  		
     + str(int(IMcycleSubtotal)-1) + „ ; Predicted: „ + str(IMcycleTotal))  
1071.	   
1072.arcpy.AddMessage(„\nTotal number of FS cycles performed: „ 				 
     + str(int(FScycleSubtotal)-1) + „ ; Predicted: „ + str(FScycleTotal))  
1073.	   
1074.if str(checkBoxRFS) == ‚true‘:  
1075.     arcpy.AddMessage(„\nNumber of potential FS cycles without 
 	       reduction: „ + str(FScycleTotalOrig))  
1076.     arcpy.AddMessage(„Number of FS cycles avoided thanks to the 			
	       reduction : „ + str(cycleReductionTotal))  
1077.	   
1078.else:  
1079.     arcpy.AddMessage(„\nNumber of FS cycles was not reduced.“)  
1080.	   
1081.	   
1082.# - - - Exports the comparison table as an Excel file:  
1083.if arcpy.Exists(fieldMeasurements):  
1084.     arcpy.env.workspace = rtables  
1085.     tableName = fileName + „Comparisons.xls“  
1086.     arcpy.TableToExcel_conversion(comparisonTable, tableName)  
1087.     arcpy.AddMessage(„\n\nComparison table was exported in the ‚“ 		
	       + tables + „‘ folder as file: ‚“ + tableName + „‘.“)  
1088.	   
1089.else:   
1090.     arcpy.AddMessage(„\n\nNo comparison tables were exported.“)  
1091.	   
1092.	   
1093.# - - - Optionally deletes the already emptied Working geodatabase:  
1094.if str(checkBoxDel) == ‚true‘:  
1095.     arcpy.management.Delete(wdbase)  
1096.     arcpy.AddMessage(„\n“ + wbase + „ geodatabase was deleted!“)  
1097.	   
1098.else:  
1099.     arcpy.AddMessage(„\nGeodatabase with working datasets was 
	       preserved.“)  
1100.	   
1101.arcpy.AddMessage(„\n\n Je to tam, kemo!\n\n“)  	   
1102.
1103.# - - - End of the script.  
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1) Introduction

	 This User Guide describes the hardware and software requirements, 
demanded inputs, default and optional data outputs, background of processing 
principles and instructions for initial settings of the UAV Forest Explorer tool. 

2) Hardware Requirements

	 Any personal computer (desktop or notebook PC) capable of running 
ArcGIS  10 software and its geoprocessing tools should be able to run the UAV 
Forest Explorer. 

3) Software Requirements

	 The tool requires ArcGIS© for Desktop Advanced software by Esri®, version 
10.2 or later. The tool was tested on ArcMap 10.2 with 100% reliability. The stability 
on newer versions of ArcMap was not fully tested. The tool is running on the Python 

version 2.7. 

4) Installation Instructions

	 The tool is to be used similarly like any other tool within ArcGIS Desktop 
software. The UAV_Forest_Explorer.tbx file should be saved on a computer hard 
drive. Then, in ArcCatalog this file should be located and copied. Afterwards, still 
in ArcCatalog, the path to Toolboxes/My Toolboxes should be located and the file 
should be pasted here. 
	 Since the tool contains the source code (python script) already imported 
into it, searching for the external *.py file is not needed. To guarantee maximal 
universality, the tool does not need to install or manually import any external 
libraries, packages or modules. 
	 When the *.tbx file is pasted to the My Toolboxes folder, it can be unfolded 
and the tool in it can be double-clicked. This opens the graphical user interface of 
the UAV Forest Explorer tool. At this point the tool is ready to be used. 

5) General Tool Description

	 This tool serves for thorough exploration of forest stands based on the 
photogrammetric data gained using an Unmanned Aerial Vehicle (UAV). With the 
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basic settings the tool is designed to iteratively calculate the Inverse Watershed 
Segmentation calculations to identify individual trees in the forest stand and to 
estimate their heights just based on the remote sensing data. Iterations applied 
each time with different settings help to efficiently discover the best settings 
suitable for each particular forest stand. 

6) Usage

	 The tool can be used basically in two ways. Either without or with the field 
measurements ground truth data. The difference is following. When the ground 
truth data are not provided, the tool automatically processes the remote sensing 
data, performs Inverse Watershed Segmentation calculations, identifies trees in 
the area of interest and delineates their crowns. The results then can be assessed 
chiefly manually and compared between each other mainly visually. 
	 When the field-measurements data are provided by the user, the tool performs 
all the previous processes as well, but makes also some additional computations. It 
takes the ground truth data (which have to meet specific conditions), and compares 
them with the results of its own calculations. Especially it compares the counts and 
heights of the automatically identified trees with these values of field-measured 
trees. The tool performs series of mathematical and statistical calculations for this 
purpose, working on the basis of the Individual Tree Approach (ITA) as well as of 
the Area-Based Approach (ABA). The exact outputs of this comparisons resulting 
from each combination of the tool settings are then stored also in a tabular form. 
The results of tens or hundreds of iterations (settings combinations) can be then 
assessed by the user easily in this way. 
	 Besides the possibility to use the field-measurements data, the tool offers 
also some other facultative options. For instance to progressively reduce the 
number of iterations, when excluding those combinations of settings giving the less 
valuable results; to refine the cell size of the DTM, if being too coarse; to specify the 
area of interest to delimit the extent of calculations; to provide layer files, which 
then can be applied on the demanded feature classes created by the tool; or to 
choose to delete the working datasets, if preserving them is not necessary. 
	 The tool enables the user to control the processes it makes while running. 
When the Background Processing is disabled in the Geoprocessing Options 
of ArcMap, the progress of the tool processing can be watched via Messages 
continuously displayed in the Progress Dialog Box.

UAV Forest Explorer User Guide			    	 III



7) Elementary Data Inputs and Processing Principles

	 The tool accepts several data inputs. Some of them are obligatory, some can 
be provided just optionally. Only two data inputs are required to enable the tool to 
run and to perform the fundamental operations resulting to identification of trees. 
These data inputs are following:

Point cloud •	 in the form of *.las file containing the elevation information of 
the forest canopy surface covering the area of interest. Dataset should be 
derived from the photogrammetric processing of the UAV-borne imagery. 

Digital Terrain Model (DTM) •	 in the form of a raster dataset with cell values 
representing the elevation of the terrain below the examined forest stand. 
Can be obtained from various sources (contours, LiDAR mapping, geodetic 
survey, etc.). If being too coarse, the spatial resolution of the DTM can be 
optionally refined by the tool to the desired values. 

	 Based just on these data, the tool is able to identify the treetops in the area 
of interest and to assign the appropriate heights to them. The number of identified 
trees depends on the settings of Raster Cell Size(s), Interpolation Method(s) and 
Focal Statistics Circle Radius(es) applied. Both numerical inputs can be set as a 
particular value or as a range of values. Then between one to eight interpolation 
methods can be selected. If only one of each values/methods is set, one calculation 
is performed during a single tool run. If the ranges of values are defined or multiple 
interpolation methods are selected, the tool runs iteratively. In such case, tens or 
hundreds of iterations can be calculated during one tool run easily. 
	 Basically, the tool is performing three inner loops/cycles to process Inverse 
Watershed Segmentation (IWS) calculations iteratively: 

Cell Size cycle 1.	 which performs all further calculations for each desired raster 
cell size (based on Raster Cell Size Min, Max and Step).

Interpolation Method cycle 2.	 which is calculated for each particular Cell Size. 
It creates Digital Surface Model (DSM) from the LAS Dataset using required 
interpolation method(s). Subsequently a Canopy Height Model (CHM) is 
created by subtracting the DTM from the DSM.

UAV Forest Explorer User Guide			    	 IV



Focal Statistics cycle 3.	 which is calculated for each particular Cell Size and 
each particular Interpolation Method. It smooths the CHM, calculates the 
maximum of its cells in the defined neighbourhood and performs the other 
IWS processes.

	 Between optional data inputs belongs the delimitting sub-area, which can 
restrict the calculations for the particular area of interest. It should be provided 
in the form of polygon feature class. When not provided, the calculations are 
performed for the whole area covered by the point cloud dataset or the DTM (the 
smaller of them).

8) Elementary Data Outputs 

	 The tool produces several kinds of data outputs. All of them are stored in 
the user-defined Workspace Folder. The outputs are created mostly in the form of 
feature classes, raster datasets and tables, when some of them are stored in the file 
geodatabases and some of them just in folders (both are created automatically by 
the tool). Some data outputs are created by default, some of them can be produced 
just based on optional settings. Between the elementary data outputs belong:

WorkingData.gdb •	 - a file geodatabase containing working raster files and 
feature classes created during each Inverse Watershed Segmentation. This 
geodatabase can optionally be deleted by the tool automatically. 

IdentifiedTrees.gdb •	 - a file geodatabase containing following datasets: 

- Point feature classes (‘...CrownTops’) where points represent the apexes 
of identified trees. The tree heights, calculated as local maxima of uniquely 
generated and smoothed Canopy Height Model (CHM), are in the attribute 
tables of these feature classes stored in the ‘RASTERVALU’ column. 

- Polygon feature classes (‘...Crowns’) where polygons represent simplified 
borderlines between individual tree crowns.

Optionally, when the sample layer files are provided by the user, the tool can 
also create layer files for both these feature classes. The produced layer files 
are then stored in the ‘LayerFiles’ folder. 
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	 Besides those basic outputs, the tool can perform also several optional 
computations and create consequent outputs.

	 If the user has the field measurement ground truth data available, the 
tool gives the option to compare the calculation results with them. The field 
measurement data should be provided in the form of a point feature class, where 
each point represents the position of a tree and contains the appropriate height as 
an attribute. The tool then creates additional outputs such as Comparisons.gdb file 
geodatabase or Tables folder. The calculations performed by the tool when the field 
measurement data are provided are thoroughly described later on in the proper 
part of this document (Chapter 10 - Field-Measurements Data Utilization).

	 The tool can produce together 4 file geodatabases (Comparisons.gdb, 
IdentifiedTrees.gdb, RefinedDTM.gdb and WorkingData.gdb) and up to two folders 
(LayerFiles and Tables) filled with output data. 

	 All outputs of this tool are positioned using S-JTSK Krovak EastNorth 
coordinate system. 

9) Initial Settings of the Tool

	 In this section the initial settings of the UAV Forest Explorer tool is described. 
Using the graphical user interface of the tool, user can see series of fields to be 
filled. Some of them are compulsory, some are optional. The names of these fields 
and their purpose are described one by one. 

	 Workspace Folder - The path to a folder on a computer hard drive, where 
all the tool outputs will be stored. An empty folder is recommended. 

	 Filename (Outputs Prefix) - A unique filename, which will be used as a 
prefix for the names of all the tool outputs. Can express the characterization of the 
forest stand just being processed (e.g. OldPines) or the description of the location 
(e.g. Site1) etc. 
	 Most of the tool outputs will consist of this filename, followed by the raster 
cell size (in cm), interpolation method abbreviation and focal statistics circle radius 
(in cells) applied in the particular run. This ensures that each settings applied 
during each iteration generates unique and easily distinguishable results. 
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	 For instance ‘OldPines_065_BM_FS3_CrownTops’ is the name of the feature 
class (representing crown tops) created using 65-cm raster cell size, ‘Binning’ 
interpolation method with ‘Maximum’ cell assignment type and 3-cell Focal 
Statistics circle radius.

	 ! Warning: Filename should not include any spaces or diacritics !

	 Surface Point Cloud *.las File - A point cloud in the form of *.las file 
representing the canopy surface of the forest stand being under investigation. 
Point cloud should be derived from the photogrammetric processing of the imagery 
acquired using an UAV. 

	 Las Dataset Name - Name of the LAS Dataset (*.lasd file) created from the 
provided *.las file. The default name is ‘LasDataset.lasd’. 

	 Digital Terrain Model (DTM) - A raster dataset with cell values representing 
the elevation of the terrain below the investigated forest stand. Can be obtained 
from various sources (contours, LiDAR mapping, geodetic survey, etc.).

	 Refine DTM Cell Size? (optional) - Gives the option to refine the spatial 
resolution of the DTM, if being too coarse. The aim is to reduce the differences 
between neighbouring raster cells in steep areas. When keeping the source 
elevation information, the refined DTM should better represent the shape of the 
natural terrain. 
	 If checked, the provided DTM is converted to points and then a new DTM is 
created using the Spline interpolation (“Interpolates a raster surface from points 
using a two-dimensional minimum curvature spline technique. The resulting 
smooth surface passes exactly through the input points.”). The new DTM is then 
stored in the RefinedDTM.gdb file geodatabase and its name contains the new DTM 
cell size (in cm).

	 New DTM Cell Size [m] (optional) - The demanded spatial resolution of 
the refined DTM. The default value is 1 m. The field is active only when the Refine 

DTM Cell Size? checkbox is checked. 
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	 Rasters Cell Size Min [m] - The minimal value of the spatial resolution of all 
the raster files created during the Inverse Watershed Segmentation calculations. 
The cell size of those rasters has an influence on the number of identified trees. 
Finer cell size will result in more distinguished trees than a coarser one. 

	 Rasters Cell Size Max [m] - The maximal value of the spatial resolution of 
all the raster files created during the Inverse Watershed Segmentation calculations. 
When only one particular cell size is desired for the processing, the value should 
be the same as the value of Raster Cell Size Min.

	 Rasters Cell Size Step [m] - The value of the spatial resolution step added 
to the previously used value of the raster spatial resolution after each Cell Size 
cycle. Is relevant only if a range of values is set in the previous two fields (Raster 

Cell Size Max is larger than Raster Cell Size Min). 
	 Example: If Raster Cell Size Min is set to 0.2 m, Raster Cell Size Max is set to 
0.5 m and Raster Cell Size Step is set to 0.1 m, together four Cell Size cycles will be 
performed with following raster spatial resolutions: 0.2, 0.3, 0.4 and 0.5 metres.

	 Interpolation Methods - Interpolation Method(s) to be used for the LAS 
Dataset to Raster conversion. Different interpolation methods may lead to different 
results concerning the number and heights of the identified trees. Following 
abbreviations are used in the tool outputs for particular interpolation methods:

	 – “BA” for BINNING with AVERAGE Cell Assignment Type,
	 – “BI” for BINNING with IDW Cell Assignment Type,
	 – “BM” for BINNING with MAXIMUM Cell Assignment Type,
	 – “BN” for BINNING with NEAREST Cell Assignment Type.

The Void Fill Method applied for Binning interpolations is NATURAL_NEIGHBOR.

	 – “TLW” for TRIANGULATION with LINEAR Interpolation Method, WINDOW_
SIZE Point Thinning Type, MAXIMUM Point Selection Method and 1m Resolution,
	 – “TLN” for TRIANGULATION with LINEAR Interpolation Method and NO_
THINNING Point Thinning Type,
	 – “TNW” for TRIANGULATION with NATURAL_NEIGHBOR Interpolation 
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Method, WINDOW_SIZE Point Thinning Type, MAXIMUM Point Selection Method 
and 1m Resolution,
	 – “TNN” for TRIANGULATION with NATURAL_NEIGHBOR Interpolation 
Method and NO_THINNING Point Thinning Type.

One up to all eight interpolation methods can be selected.

	 Focal Statistics Circle Radius Min [Cell] - The minimal value of Circle 
Radius as a neighbourhood for Focal Statistics applied on the CHM. The Statistics 
type is MAXIMUM (“Calculates the largest value of the cells in the neighbourhood 
area around each cell”). 
	 The local maxima of the CHM (the elevation values of potential tree apexes) 
are preserved. Using the focal statistics, the surface of the CHM is partly smoothed 
and the potential noise is reduced. The higher the value of circle radius, the 
larger smoothing and generalization effect. The accepted values for this field are 
integers.

	 Focal Statistics Circle Radius Max [Cell] - The maximal value of Circle 
Radius as a neighbourhood for Focal Statistics applied on the CHM. When only 
one particular Focal Statistics Circle Radius value is desired for the processing, the 
value should be the same as the value of Focal Statistics Circle Radius Min. 
	 The value of Focal Statistics Circle Radius Step is by default 1 Cell. Therefore 
when for instance the value of Focal Statistics Circle Radius Min is set to 1 and the 
value of Focal Statistics Circle Radius Max is set to 5, together five Focal Statistics 
cycles will be performed. The outputs will then contain abbreviations from _FS1 
to _FS5 in their names. The accepted values for this field are integers. 

	 Progressively Reduce Focal Statistics Subcycles? (optional) - Gives the 
option to progressively reduce the number of Focal Statistics (FS) subcycles to 
significantly decrease the computation time. It is meaningful when large number 
of iterations should be calculated, but not all combinations of Cell Size (CS) values 
and FS Circle Radius values are desired. Especially the combinations of large Cell 
Sizes and large FS Circle Radiuses can be found inessential. 
	 When this option is checked, the tool potentially reduces the value of 
Focal Statistics Circle Radius Max for the cycles with largest Cell Sizes. When the 
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particular conditions are met, the value is reduced by 1 cell after each Cell Size 

cycle, but the value is never reduced below 1 cell. It is ensured by the fact, that 

the reduction will begin only in such CS cycle, when the number of remaining CS 

cycles is smaller than the number of FS subcycles (number of FS subcycles is the 

difference between FS Circle Radius Max and FS Circle Radius Min). 

	 The following examples should enable to better understand the effect of the 

reduction of FS subcycles performed when this option is chosen.

Example1:

	 Rasters Cell Size Min is set to 0.1 m, Rasters Cell Size Max is set to 0.5 m 

and Rasters Cell Size Step is set to 0.1 m. The number of CS cycles to be performed 

is therefore 5. Only one Interpolation Method is selected, FS Circle Radius Min 

is set to 1 and FS Circle Radius Max is set to 4. The number of FS subcycles to be 

performed within each Interpolation Method (IM) cycle is therefore 4. In normal 

case (without reduction) 1 IM cycle would be performed within each CS cycle and 

4 FS subcycles would be performed within each IM cycle. That makes together 

20 FS cycles to be performed during one tool run. When the option to reduce FS 

subcycles will be checked, the cycles will be performed as follows: 

	 CS cycle 1: performed 1 IM cycle and 4 FS subcycles (FS1, FS2, FS3, FS4),

	 CS cycle 2: performed 1 IM cycle and 4 FS subcycles (FS1, FS2, FS3, FS4),

	 CS cycle 3: performed 1 IM cycle and 3 FS subcycles (FS1, FS2, FS3),

	 CS cycle 4: performed 1 IM cycle and 2 FS subcycles (FS1, FS2),

	 CS cycle 5: performed 1 IM cycle and 1 FS subcycle (FS1).

	 The number of FS cycles performed during the tool run is then 14. That 

means that together 6 FS cycles were avoided thanks to the reduction. Namely 

following combinations were not processed: CS 0.3 and FS 4; CS 0.4 and FS 3 and 

FS 4; CS 0.5 and FS 2, FS 3 and FS 4, where CS 0.3 is the Cell Size cycle with 0.3 m 

spatial resolution and FS 4 is Focal Statistics with a 4-cell circle radius used for the 

CHM smoothing. All other combinations were processed as usually. 
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Example 2:

	 Rasters Cell Size Min is set to 0.05 m, Rasters Cell Size Max is set to 1 m and 
Rasters Cell Size Step is set to 0.05 m. The number of CS cycles to be performed is 
therefore 20. All 8 interpolation methods are selected, FS Circle Radius Min is set 
to 1 cell and FS Circle Radius Max is set to 10 cells. The number of FS subcycles 
to be performed within each Interpolation Method (IM) cycle is therefore 10. In 
normal case (without reduction) 8 IM cycles would be performed within each CS 
cycle and 10 FS subcycles would be performed within each IM cycle. That makes 
together 1600 FS cycles to be performed during one tool run. When the option to 
reduce FS subcycles is be checked, the cycles are performed as follows: 

	 CS cycle 1 to CS cycle 11: performed 8 IM cycles and 10 FS subcycles (FS1 to 
FS10), which makes 80 processed FS cycles per each CS cycle.
	 CS cycle 12 to CS cycle 20: performed 8 IM cycles and 9 down to 1 FS 
subcycles decreasing by 1 in each CS cycle (it means cycles FS1 to FS9 in CS cycle 
12; FS1 to FS8 in CS cycle 13; ... FS1 to FS5 in CS cycle 16; ... FS1 to FS2 in CS cycle 
19; and only FS1 in CS cycle 20). 

	 The number of FS cycles performed during the tool run is then 1240. That 
means that together 360 FS cycles were avoided thanks to the reduction. Just 
combinations of the largest Cell Sizes with largest FS circle radiuses were gradually 
avoided, since those combinations would provide the less usable results. The 
computation time needed for running the tool can be decreased markedly this way.

	 Delimitting Sub-Area (optional) - Optionally provided polygon feature 
class which defines the extent of a particular area of interest. All the calculations 
will be then processed only in this area. Useful to delimit e.g. just the area of the 
selected study plot. Most of the processed data will be copied and clipped by this 
feature class, if being larger. This limitation can reduce the computation time 
significantly. If not filled, the calculations will be processed for the whole area of 
the provided point cloud or DTM (the one which is smaller). 

	 Layer Files Folder (optional) - The path to the folder containing sample 
layer files. One layer file should represent the demanded style of point feature 
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classes created by the tool as ‘CrownTops’. Such layer file should be named ‘Point_

Layer_File.lyr’. Another layer file should represent the demanded style of polygon 
feature classes created by the tool as ‘Crowns’. This layer file should be named 
‘Polygon_Layer_File.lyr’.

	 If provided, the tool creates additional outputs in the new ‘LayerFiles’ folder, 
which is situated in the Workspace Folder. The advantage is, that all outputs stored 
in the ‘IdentifiedTrees.gdb’ will have their equivalent layer files with demanded 
properties created in this folder. This facilitates visual comparisons of the results, 
if needed. For instance the sample layer files provided together with UAV Forest 
Explorer are coloured light green, to be easily visible above the background 
orthophoto images, and the polygons are hollow. The user then does not need to 
set such properties to all the feature classes. All the identified tree tops and all 
distinguished tree crowns, created under particular settings, can then be easily 
compared with other layer files, which represent feature classes resulting from 
different settings.

	 Compare Data with Field-Measured Heights? (optional) - Gives the 
option to provide field-measured positions and heights of trees and to compare 
the results of the tool calculations with this ground-truth data. If checked, the 
following field (Field Measurements Data) becomes active.

	 Field Measurements Data (optional) - Optionally provided point feature 
class containing the field-measured positions of trees and their heights. This 
ground truth data then will be used by the tool to be compared with the results of 
its own calculations and trees identification.
	 In the attribute table of this feature class a column named ‘Height’ has to 
be present. This column should be containing the heights of trees (in metres) 
measured e.g. by hypsometer. The tool then compares the counts and heights of 
trees from both sources, i.e. calculated ones with field-measured ones. 

	 Delete Working Datasets? (optional) - Gives the option to sequentially 
delete the Inverse Watershed Segmentation calculations working datasets. Those 
datasets are the most space-demanding of all the results created by the tool (for large 
areas or for hundreds of iterations they can reach the level of tens of gigabytes). At 
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the same time these datasets do not have to be necessarily preserved. This option 
therefore enables to not excessively occupy the hard drive space. 
	 If checked, all the rasters and feature classes are deleted from the working 
geodatabase before each IM cycle is completed. Before the entire tool run is 
finished, also the WorkingData.gdb geodatabase is deleted completely.

10) Field-Measurements Data Utilization

	 This chapter is devoted to explanation of the tool processing principles 
which are applied when the ground truth data are provided by the user in the 
initial settings of the tool. The tool in such case performs series of mathematical 
and statistical calculations, which enable efficiently compare the results of 
automatic trees identification with the data measured in the field. The calculations 
are performed on the basis of two principles:

	 1) On the basis of the Individual Tree Approach, when the trees are paired. 
It means that Thiessen polygons are created around the field-measured (FM) trees 
and the tool is looking for the highest identified tree within each Thiessen polygon 
to be matched with appropriate FM tree. Also the number of trees identified in 
the area of Thiessen polygons is taken into consideration to provide maximally 
reliable results. 

	 2) On the basis of the Area-Based Approach, when the trees are not paired. 
Instead the number of identified trees within the area of interest (i.e. area defined 
by the field-measured trees) is calculated together with the average height of those 
trees. Both values are then compared with corresponding data of the FM trees. 

	 When the field measurements data are employed, the tool creates the 
following additional outputs:

Comparisons.gdb•	  - a file geodatabase containing: 

	 - Point feature class (‘...Identified’) with trees identified by the tool just in 
the area of field measurements and with their calculated heights stored in the 
attribute table.
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	 - Point feature class (‘...Joined’) with points corresponding to the field 
measurement trees. The attribute table contains calculations comparing field-
measured heights with calculated heights of paired trees.

	 - Tables (‘...ZonalStatsCounts’, ‘...ZonalStatsFull’, ‘...ZonalStatsUnpaired’) 
containing summary statistics calculated for identified trees, either paired or 
unpaired with the field measurement data. 

	 -   Table (‘...X_Comparisons_X’) encompassing the overall results of compari-
sons from all iterations performed by the tool under the specified Filename. Each 
row of the table stores data calculated for each unique combination of tool settings 
(each one iteration) which are written into the following 21 fields (columns) of the 
table: 

	 1) Processed filename, unique for outputs of each combination of tool 
	 settings, the abbreviations of which it contains; 
	 2) Number of field-measured trees; 
	 3) Number of trees indentified by the tool; 
	 4) Number of unmatched (unpaired) trees, i.e. FM trees without any 
	 matching identified tree; 
	 5) Number of matched (paired) trees; 
	 6) Percentage of matched trees (from the amount of FM trees); 
	 7) Number of redundant trees (i.e. identified trees which were not  
                  matched to any FM trees); 
	 8) Mean Absolute Error (MAE) as an average of absolute value differences 
	 between measured and calculated tree heights; 
	 9) Root Mean Square Error (RMSE) calculated from the differences  
	 between measured and calculated tree heights; 
	 10) Pearson’s Correlation Coefficient (R); 
	 11) Coefficient of determination (R-squared), similarly as R also computed 
	 as a relation of measured and calculated tree heights; 
	 12) Statistical significance of the Pearson’s Correlation Coefficient (as ‘Yes’ 
	 for statistically significant R and ‘No’ for statistically insignificant R); 
	 13) Mean Difference between average heights calculated for matched trees 
	 only; 
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	 14) Pearson’s Correlation Coefficient calculated for matched trees only; 	
	 15) Coefficient of Determination calculated for matched trees only. 
	
	 All these values were counted on the basis of individual tree crown approach. 
The last six values in the table are then calculated on the basis of the area-based 
approach: 

	 16) Mean height of field-measured trees; 
	 17) Standard Deviation of heights of field-measured trees; 
	 18) Mean height of identified trees; 
	 19) Standard Deviation of heights of identified trees; 
	 20) Count difference between the quantities of identified and field 
	 measured trees; 
	 21) Height difference between average heights of identified and field 
	 measured trees. 

Tables •	 folder - folder in which the Comparisons table is automatically 
exported in the form of an *.xls file. The table then serves as a well arranged dataset 
where all the results of all different settings applied by the tool, can be easily seen 
and compared. The settings giving the best results either on the ITA or ABA basis, 
can be then selected efficiently. 

11) Suggested workflow

	 The recommended workflow could be shown on a following model example: 
A large forest stand is to be investigated and the field measurements were performed 
on a representative site(s) inside that stand. The user can delimit a subset area just 
around the area of field measurements and apply required amount of iterations 
with various settings on it. This can be done in more steps, to find the optimal 
settings (mainly the range of Cell Size values).

	 First a large range of Cell Size values can be tested with only one Interpolation 
Method selected and only 1 cell given for the Circle Radius of the Focal Statistics. 
For instance the Raster Cell Size Min can be set to 0.1 m, Raster Cell Size Max set 
to 2.0 m and Raster Cell Size Step set to 0.1 m, which will process 20 iterations. 
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From the Comparisons table the suitable range of Cell Size values giving the best 
results can be selected (e.g. we can see that meaningful results are given only for 
the resolutions below 0.6 m). 

	 Then in second step the range of Cell Size values can be limited to maximally 
0.6 m, the Rasters Cell Size Min can be decreased to 0.05 m and the same value can 
receive the Rasters Cell Size Step. Then all 8 Interpolation Methods can be selected 
and the range of Focal Statistics Circle Radiuses can be set e.g. from 1 to 10 with 
progressive reduction of the Focal Statistics subcycles. Such settings will cause 
to process 600 iterations within one tool run (360 iterations are avoided thanks 
to the reduction option). Processing so many iterations on the area of the whole 
forest stand could be unwantedly demanding on the computation time, but when 
processed on the subset area, the time consumption is significantly lowered. 

	 When all the calculations are performed and the tool run is completed, the 
results can be evaluated. All the data outputs are stored in the Workspace Folder in 
the appropriate geodatabases or folders. To compare some of the results visually, 
the feature classes in the IdentifiedTrees.gdb file geodatabase can be accessed, or 
the corresponding layer files in the LayerFiles folder can be displayed, in the case 
that the sample layer files were provided in the initial settings. 

	 In the next step the Comparisons table can be examined (either as a ...X_
Comparisons_X table in ArcMap or as an ...Comparisons.xls table e.g. in Excel). Here 
two kinds of results can be sought. First of all the best result for the ITA method, 
i.e. calculated for the paired trees. Such result can be characterised by the high 
values of statistically significant Pearson’s Correlation Coefficient and Coefficient 
of determination, low values of Mean Error, Mean Absolute Error and Root Mean 
Square Error. At the same time the number of identified and matched trees should 
be noticed. For instance only results with at least 90 % of matched trees and at 
the same time with maximally 10 % of redundant trees (counted from the number 
of field-measured trees) can be taken into consideration. Then result meeting the 
best all these conditions can be selected. 

	 The second kind of results is the one calculated for ABA method, i.e. for 
the unpaired trees. In this case fewer values are being investigated. One value 
is the Counts Difference, where for example the range corresponding to 10  % 
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of field measured trees can be decided as convenient. Then the mean height of 
identified trees can be compared with the mean height of field-measured trees 
and the lowest height difference can be searched between the results meeting the 
first condition. Then also the standard deviations of the heights of identified trees 
can be compared with standard deviation of the heights of field-measured trees. 
The result with the lowest Count difference, Height Difference and possibly also 
the Standard Deviation can be then selected as the most suitable one for the ABA 
method. 

	 When the best result is selected for each method, the settings used for 
acquiring those results should be highlighted. These settings can be subsequently 
applied on the area of the whole forest stand, if needed. This enables to calculate 
the counts and heights of trees very fast even for large areas, and if the forest stand 
is homogenous, also with high reliability.

12) Legal Information

	 The tool was created in the scope of the Dissertation Thesis called “Design 
of Application for Assessing the Height of Trees in Forest Stands Based on Images 
from an Unmanned Aerial Vehicle” which was produced within the Applied 
Geoinformatics doctoral study program at the Department of Forest Management 
and Applied Geoinformatics at Mendel University in Brno, Czech Republic.

	 Author: Ing. Martin Machala
	 Supervisor: doc. Ing. Martin Klimánek, Ph.D.

This version of the tool is for non-commercial use only.
Not to be distributed without the awareness of the author.
Support: xmachala@mendelu.cz
 
	 © Martin Machala 2014 - 2016
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Ar
ea

-B
as

ed
 

Ap
pr

oa
ch Count Diff (0) 35 BI 1 68 68 17 51 75.00 17 7.178 10.591 -0.093 0.009 No -2.752 0.404 0.163 19.368 2.759 21.813 1.199 0 2.445

Count Diff (±1) 35 BI 1 68 68 17 51 75.00 17 7.178 10.591 -0.093 0.009 No -2.752 0.404 0.163 19.368 2.759 21.813 1.199 0 2.445
Height Diff 5 TNN 1 68 1678 0 68 100.00 1610 3.082 3.884 0.237 0.056 No -2.782 0.237 0.056 19.368 2.759 20.326 1.507 1610 0.958
SD IT Ht 25 TNW 2 68 68 18 50 73.53 18 7.442 10.630 0.008 0.000 No -2.782 0.277 0.077 19.368 2.759 21.920 1.109 0 2.553

Plot II. Best Parameter CS IM FS Mea-
sured
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RMSE & R 25 BM 1 98 99 32 66 67.35 33 7.548 9.883 0.414 0.172 Yes -4.017 0.496 0.246 17.061 5.281 22.226 1.508 1 5.165
RMSE 25 BM 1 98 99 32 66 67.35 33 7.548 9.883 0.414 0.172 Yes -4.017 0.496 0.246 17.061 5.281 22.226 1.508 1 5.165
R 25 BM 1 98 99 32 66 67.35 33 7.548 9.883 0.414 0.172 Yes -4.017 0.496 0.246 17.061 5.281 22.226 1.508 1 5.165
R for MT 10 TLN 4 98 94 34 64 65.31 30 7.945 10.313 0.377 0.142 Yes -4.102 0.551 0.303 17.061 5.281 22.131 1.518 -4 5.070

La
rg

er
 

Ra
ng

e RMSE 25 TLW 1 98 105 30 68 69.39 37 7.467 9.806 0.383 0.147 Yes -4.153 0.536 0.287 17.061 5.281 22.101 1.464 7 5.040
R 30 BM 1 98 78 40 58 59.18 20 7.881 10.258 0.516 0.266 Yes -3.340 0.487 0.237 17.061 5.281 22.365 1.505 -20 5.304
R for MT 25 BA 1 98 107 33 65 66.33 42 7.672 9.983 0.405 0.164 Yes -3.805 0.587 0.345 17.061 5.281 21.799 1.526 9 4.737

Ar
ea

-B
as

ed
 

Ap
pr

oa
ch Count Diff (0) 10 BN 4 98 99 32 66 67.35 33 7.788 10.171 0.359 0.129 Yes -4.140 0.504 0.254 17.061 5.281 22.152 1.548 1 5.091

Count Diff (±1) 10 BN 4 98 99 32 66 67.35 33 7.788 10.171 0.359 0.129 Yes -4.140 0.504 0.254 17.061 5.281 22.152 1.548 1 5.091
Height Diff 5 BM 1 98 1181 2 96 97.96 1085 5.564 7.318 0.269 0.072 Yes -5.227 0.440 0.194 17.061 5.281 20.542 2.143 1083 3.480
SD IT Ht 25 BM 1 98 99 32 66 67.35 33 7.548 9.883 0.414 0.172 Yes -4.017 0.496 0.246 17.061 5.281 22.226 1.508 1 5.165

Appendix 4  –  Best Results of UAV Forest Explorer Runs



Plot II. Best Parameter CS IM FS Mea-
sured
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RMSE & R 10 BA 5 57 58 13 44 77.19 14 4.903 8.363 0.733 0.537 Yes -0.879 0.582 0.339 20.860 3.075 22.631 1.499 1 1.771
RMSE 15 BN 4 57 54 11 46 80.70 8 4.540 7.858 0.656 0.431 Yes -1.136 0.546 0.298 20.860 3.075 22.710 1.527 -3 1.850
R 35 BM 1 57 52 15 42 73.68 10 5.364 8.905 0.792 0.627 Yes -0.778 0.595 0.354 20.860 3.075 22.809 1.473 -5 1.949
R for MT 35 BM 1 57 52 15 42 73.68 10 5.364 8.905 0.792 0.627 Yes -0.778 0.595 0.354 20.860 3.075 22.809 1.473 -5 1.949

La
rg

er
 

Ra
ng

e RMSE 15 BA 2 57 111 5 52 91.23 59 2.963 5.500 0.556 0.310 Yes -1.278 0.641 0.411 20.860 3.075 21.790 1.865 54 0.930
R 10 BM 7 57 45 16 41 71.93 4 5.648 9.246 0.798 0.636 Yes -0.727 0.587 0.344 20.860 3.075 22.998 1.483 -12 2.138
R for MT 5 TNN 7 57 106 7 50 87.72 56 3.419 6.330 0.604 0.364 Yes -1.188 0.679 0.461 20.860 3.075 21.962 1.681 49 1.103

Ar
ea

-B
as

ed
 

Ap
pr

oa
ch Count Diff (0) 25 BA 2 57 57 14 43 75.44 14 5.416 8.992 0.655 0.429 Yes -0.859 0.529 0.279 20.860 3.075 22.460 1.486 0 1.600

Count Diff (±1) 35 BA 1 57 58 13 44 77.19 14 5.197 8.759 0.613 0.375 Yes -0.862 0.542 0.294 20.860 3.075 22.358 1.492 1 1.498
Height Diff 10 BA 1 57 500 2 55 96.49 445 2.541 4.302 0.421 0.177 Yes -1.721 0.649 0.421 20.860 3.075 20.877 1.990 443 0.018
SD IT Ht 35 TNW 1 57 57 14 43 75.44 14 5.396 8.930 0.677 0.458 Yes -1.014 0.506 0.256 20.860 3.075 22.632 1.463 0 1.773

Plot III. Best Parameter CS IM FS Mea-
sured
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fied
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RMSE & R 25 BI 2 64 66 23 41 64.06 25 9.153 11.846 0.252 0.063 No -3.216 0.042 0.002 18.766 5.556 22.885 1.806 2 4.119
RMSE 25 BI 2 64 66 23 41 64.06 25 9.153 11.846 0.252 0.063 No -3.216 0.042 0.002 18.766 5.556 22.885 1.806 2 4.119
R 10 TLN 6 64 61 26 38 59.38 23 9.852 12.454 0.259 0.067 No -3.241 -0.071 0.005 18.766 5.556 23.358 1.669 -3 4.592
R for MT 15 BN 4 64 63 27 37 57.81 26 10.405 13.045 0.181 0.033 No -3.784 0.082 0.007 18.766 5.556 23.438 1.522 -1 4.673

La
rg

er
 

Ra
ng

e RMSE 25 BA 2 64 70 21 43 67.19 27 8.971 11.565 0.219 0.048 No -3.083 0.086 0.007 18.766 5.556 22.704 2.021 6 3.938
R 10 BA 7 64 48 30 34 53.13 14 10.228 12.900 0.326 0.106 No -2.912 -0.059 0.003 18.766 5.556 23.522 1.496 -16 4.756
R for MT 15 BA 4 64 56 28 36 56.25 20 11.402 14.061 0.004 0.000 No -4.561 0.144 0.021 18.766 5.556 23.341 1.538 -8 4.575

Ar
ea
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ed
 

Ap
pr

oa
ch Count Diff (0) 35 BM 1 64 64 25 39 60.94 25 10.009 12.709 0.171 0.029 No -3.617 -0.052 0.003 18.766 5.556 23.246 1.900 0 4.480

Count Diff (±1) 40 TNW 1 64 64 21 43 67.19 21 9.733 12.461 0.055 0.003 No -4.153 0.006 0.000 18.766 5.556 23.268 1.703 0 4.502
Height Diff 5 BN 1 64 1545 0 64 100.00 1481 5.684 7.367 0.052 0.003 No -4.545 0.052 0.003 18.766 5.556 21.167 3.061 1481 2.402
SD IT Ht 10 TNW 6 64 64 28 36 56.25 28 10.752 13.456 0.139 0.019 No -4.036 0.017 0.000 18.766 5.556 23.551 1.387 0 4.785

Plot III. Best Parameter CS IM FS Mea-
sured
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RMSE & R 45 BN 1 43 46 12 31 72.09 15 7.881 11.474 0.253 0.064 No -0.973 0.068 0.005 21.930 3.187 23.354 1.848 3 1.424
RMSE 20 BM 3 43 48 10 33 76.74 15 7.315 10.615 0.228 0.052 No -0.951 0.012 0.000 21.930 3.187 23.324 1.907 5 1.394
R 45 BN 1 43 46 12 31 72.09 15 7.881 11.474 0.253 0.064 No -0.973 0.068 0.005 21.930 3.187 23.354 1.848 3 1.424
R for MT 20 BA 3 43 48 13 30 69.77 18 8.838 12.665 -0.014 0.000 No -1.630 0.130 0.017 21.930 3.187 23.499 1.536 5 1.569

La
rg

er
 

Ra
ng

e RMSE 15 BM 4 43 60 9 34 79.07 26 6.876 10.125 0.220 0.048 No -0.986 0.013 0.000 21.930 3.187 23.388 1.743 17 1.458
R 40 BN 1 43 58 10 33 76.74 25 7.148 10.453 0.271 0.074 No -0.765 -0.034 0.001 21.930 3.187 23.212 1.858 15 1.282
R for MT 55 BN 1 43 32 15 28 65.12 4 9.593 13.452 0.007 0.000 No -1.767 0.243 0.059 21.930 3.187 23.637 1.457 -11 1.706

Ar
ea

-B
as

ed
 

Ap
pr

oa
ch Count Diff (0) 45 BM 1 43 43 11 32 74.42 11 7.704 11.085 0.226 0.051 No -1.086 0.050 0.003 21.930 3.187 23.474 1.737 0 1.544

Count Diff (±1) 45 BI 1 43 42 14 29 67.44 13 9.192 12.961 0.028 0.001 No -1.206 0.100 0.010 21.930 3.187 23.036 1.852 -1 1.106
Height Diff 10 BN 1 43 415 1 42 97.67 373 3.471 4.981 0.072 0.005 No -1.654 0.076 0.006 21.930 3.187 21.971 2.825 372 0.041
SD IT Ht 10 TLN 7 43 44 12 31 72.09 13 8.168 11.747 0.154 0.024 No -1.373 0.055 0.003 21.930 3.187 23.649 1.475 1 1.719



Plot IV. Best Parameter CS IM FS Mea-
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RMSE & R 10 BI 5 64 67 19 45 70.31 22 7.046 10.302 0.543 0.295 Yes -1.869 0.561 0.315 20.938 5.841 24.160 2.432 3 3.222
RMSE 10 BA 5 64 67 19 45 70.31 22 7.047 10.302 0.543 0.295 Yes -1.870 0.561 0.315 20.938 5.841 24.160 2.431 3 3.222
R 10 BA 5 64 67 19 45 70.31 22 7.047 10.302 0.543 0.295 Yes -1.870 0.561 0.315 20.938 5.841 24.160 2.431 3 3.222
R for MT 10 TNN 5 64 69 20 44 68.75 25 7.305 10.770 0.513 0.263 Yes -2.005 0.652 0.425 20.938 5.841 24.096 2.436 5 3.159

La
rg

er
 

Ra
ng

e RMSE 10 BA 5 64 67 19 45 70.31 22 7.047 10.302 0.543 0.295 Yes -1.870 0.561 0.315 20.938 5.841 24.160 2.431 3 3.222
R 20 TNN 3 64 45 27 37 57.81 8 8.767 12.309 0.555 0.308 Yes -1.353 0.557 0.310 20.938 5.841 24.569 2.605 -19 3.632
R for MT 10 TNN 6 64 45 27 37 57.81 8 9.059 12.760 0.479 0.229 Yes -1.804 0.658 0.434 20.938 5.841 24.549 2.731 -19 3.611

Ar
ea
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ed
 

Ap
pr

oa
ch Count Diff (0) 40 BN 1 64 64 20 44 68.75 20 8.010 11.390 0.410 0.168 Yes -2.292 0.449 0.202 20.938 5.841 24.291 2.556 0 3.353

Count Diff (±1) 40 BN 1 64 64 20 44 68.75 20 8.010 11.390 0.410 0.168 Yes -2.292 0.449 0.202 20.938 5.841 24.291 2.556 0 3.353
Height Diff 5 BM 1 64 1629 0 64 100.00 1565 4.888 6.908 0.396 0.156 Yes -4.344 0.396 0.156 20.938 5.841 21.986 3.143 1565 1.049
SD IT Ht 40 BN 1 64 64 20 44 68.75 20 8.010 11.390 0.410 0.168 Yes -2.292 0.449 0.202 20.938 5.841 24.291 2.556 0 3.353

Plot IV. Best Parameter CS IM FS Mea-
sured
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RMSE & R 55 TNN 1 40 35 11 29 72.50 6 7.332 12.207 0.462 0.214 Yes -0.064 0.827 0.683 24.600 3.025 24.917 2.633 -5 0.317
RMSE 50 BA 1 40 39 9 31 77.50 8 6.201 11.161 0.401 0.161 Yes 0.107 0.854 0.730 24.600 3.025 24.360 2.606 -1 -0.240
R 30 TNW 2 40 35 12 28 70.00 7 8.040 12.744 0.478 0.228 Yes -0.187 0.711 0.505 24.600 3.025 25.166 2.668 -5 0.566
R for MT 45 TNW 1 40 37 12 28 70.00 9 8.197 13.338 0.255 0.065 No -0.672 0.877 0.769 24.600 3.025 25.141 2.477 -3 0.541

La
rg

er
 

Ra
ng

e RMSE 20 TLW 2 40 76 2 38 95.00 38 2.824 5.703 0.393 0.155 Yes -0.251 0.715 0.512 24.600 3.025 24.111 2.456 36 -0.489
R 30 TNW 2 40 35 12 28 70.00 7 8.040 12.744 0.478 0.228 Yes -0.187 0.711 0.505 24.600 3.025 25.166 2.668 -5 0.566
R for MT 40 TLN 2 40 28 15 25 62.50 3 9.770 14.954 0.236 0.056 No -0.659 0.920 0.846 24.600 3.025 25.187 2.841 -12 0.587

Ar
ea

-B
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ed
 

Ap
pr

oa
ch Count Diff (0) 45 TNN 1 40 40 11 29 72.50 11 7.631 12.534 0.356 0.126 No -0.150 0.684 0.468 24.600 3.025 24.572 2.747 0 -0.028

Count Diff (±1) 20 TLN 3 40 40 10 30 75.00 10 7.110 12.063 0.315 0.099 No -0.322 0.743 0.552 24.600 3.025 24.807 2.649 0 0.207
Height Diff 30 BI 2 40 41 8 32 80.00 9 5.781 10.717 0.342 0.117 No -0.141 0.852 0.725 24.600 3.025 24.582 2.583 1 -0.018
SD IT Ht 45 TLN 1 40 39 13 27 67.50 12 8.645 13.743 0.302 0.092 No -0.586 0.867 0.751 24.600 3.025 24.871 2.487 -1 0.271

Plot V. Best Parameter CS IM FS Mea-
sured
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RMSE & R 15 BA 3 72 73 25 47 65.28 26 7.027 9.807 0.519 0.269 Yes -2.817 0.349 0.122 17.931 5.360 22.647 1.503 1 4.716
RMSE 10 BA 5 72 72 23 49 68.06 23 7.029 9.741 0.475 0.226 Yes -3.267 0.327 0.107 17.931 5.360 22.743 1.477 0 4.812
R 15 BA 3 72 73 25 47 65.28 26 7.027 9.807 0.519 0.269 Yes -2.817 0.349 0.122 17.931 5.360 22.647 1.503 1 4.716
R for MT 20 BA 2 72 77 23 49 68.06 28 7.880 10.730 0.287 0.083 Yes -3.757 0.422 0.178 17.931 5.360 22.532 1.475 5 4.601

La
rg

er
 

Ra
ng

e RMSE 10 BA 5 72 72 23 49 68.06 23 7.029 9.741 0.475 0.226 Yes -3.267 0.327 0.107 17.931 5.360 22.743 1.477 0 4.812
R 20 TNW 3 72 50 32 40 55.56 10 8.133 10.883 0.559 0.312 Yes -2.563 0.388 0.151 17.931 5.360 22.957 1.355 -22 5.026
R for MT 40 BI 1 72 50 34 38 52.78 12 8.671 11.577 0.489 0.239 Yes -2.372 0.521 0.271 17.931 5.360 22.546 1.522 -22 4.615

Ar
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ed
 

Ap
pr

oa
ch Count Diff (0) 10 BA 5 72 72 23 49 68.06 23 7.029 9.741 0.475 0.226 Yes -3.267 0.327 0.107 17.931 5.360 22.743 1.477 0 4.812

Count Diff (±1) 15 BA 3 72 73 25 47 65.28 26 7.027 9.807 0.519 0.269 Yes -2.817 0.349 0.122 17.931 5.360 22.647 1.503 1 4.716
Height Diff 5 BN 1 72 1560 1 71 98.61 1489 5.335 7.376 0.133 0.018 No -4.914 0.373 0.139 17.931 5.360 21.164 2.241 1488 3.234
SD IT Ht 10 TLN 5 72 73 25 47 65.28 26 7.598 10.354 0.435 0.189 Yes -3.425 0.287 0.082 17.931 5.360 22.928 1.388 1 4.997



Plot V. Best Parameter CS IM FS Mea-
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RMSE & R 15 TNN 4 53 53 17 36 67.92 17 7.379 10.997 0.466 0.217 Yes -1.557 0.369 0.136 20.632 2.867 23.013 1.224 0 2.381
RMSE 40 TLN 1 53 57 14 39 73.58 18 6.428 10.013 0.445 0.198 Yes -1.661 0.399 0.159 20.632 2.867 22.749 1.422 4 2.117
R 20 TNW 3 53 48 17 36 67.92 12 7.318 10.909 0.505 0.255 Yes -1.672 0.329 0.108 20.632 2.867 22.989 1.374 -5 2.357
R for MT 25 BA 2 53 48 21 32 60.38 16 8.721 12.398 0.428 0.183 Yes -1.407 0.487 0.237 20.632 2.867 22.810 1.345 -5 2.178

La
rg

er
 

Ra
ng

e RMSE 10 TNW 5 53 77 9 44 83.02 33 5.176 8.425 0.327 0.107 Yes -2.019 0.363 0.132 20.632 2.867 22.901 1.512 24 2.269
R 20 BA 3 53 43 19 34 64.15 9 7.871 11.536 0.511 0.261 Yes -1.323 0.369 0.136 20.632 2.867 22.818 1.325 -10 2.186
R for MT 40 BI 1 53 47 18 35 66.04 12 7.800 11.535 0.391 0.153 Yes -1.410 0.500 0.250 20.632 2.867 22.594 1.557 -6 1.962

Ar
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-B
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ed
 

Ap
pr

oa
ch Count Diff (0) 15 TNN 4 53 53 17 36 67.92 17 7.379 10.997 0.466 0.217 Yes -1.557 0.369 0.136 20.632 2.867 23.013 1.224 0 2.381

Count Diff (±1) 20 TLN 3 53 54 17 36 67.92 18 7.487 11.135 0.422 0.178 Yes -1.738 0.319 0.102 20.632 2.867 22.985 1.313 1 2.353
Height Diff 5 BN 1 53 1514 0 53 100.00 1461 2.677 3.732 0.294 0.086 Yes -2.485 0.294 0.086 20.632 2.867 21.169 2.265 1461 0.537
SD IT Ht 15 TNN 4 53 53 17 36 67.92 17 7.379 10.997 0.466 0.217 Yes -1.557 0.369 0.136 20.632 2.867 23.013 1.224 0 2.381

Plot VI. Best Parameter CS IM FS Mea-
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RMSE & R 10 TNW 3 79 77 22 57 72.15 20 10.675 14.349 0.104 0.011 No -4.734 0.420 0.177 24.323 5.960 28.866 2.632 -2 4.543
RMSE 10 TLW 3 79 83 19 60 75.95 23 10.125 13.734 0.081 0.007 No -4.849 0.401 0.161 24.323 5.960 28.822 2.585 4 4.499
R 20 TNW 1 79 84 24 55 69.62 29 10.874 14.557 0.150 0.023 No -4.461 0.376 0.141 24.323 5.960 28.759 2.520 5 4.436
R for MT 5 BA 8 79 75 26 53 67.09 22 11.417 15.076 0.147 0.022 No -4.868 0.572 0.327 24.323 5.960 29.035 2.390 -4 4.713

La
rg

er
 

Ra
ng

e RMSE 30 TNN 1 79 64 26 53 67.09 11 10.577 14.276 0.278 0.077 Yes -3.982 0.569 0.324 24.323 5.960 28.893 2.266 -15 4.570
R 15 TNN 3 79 58 30 49 62.03 9 11.243 14.876 0.340 0.115 Yes -3.794 0.537 0.288 24.323 5.960 29.091 2.275 -21 4.768
R for MT 35 BA 1 79 59 29 50 63.29 9 11.523 15.243 0.228 0.052 No -4.164 0.643 0.414 24.323 5.960 28.951 2.177 -20 4.628

Ar
ea

-B
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ed
 

Ap
pr

oa
ch Count Diff (0) 10 TNW 3 79 77 22 57 72.15 20 10.675 14.349 0.104 0.011 No -4.734 0.420 0.177 24.323 5.960 28.866 2.632 -2 4.543

Count Diff (±1) 10 TLW 3 79 83 19 60 75.95 23 10.125 13.734 0.081 0.007 No -4.849 0.401 0.161 24.323 5.960 28.822 2.585 4 4.499
Height Diff 5 BM 1 79 1880 0 79 100.00 1801 6.041 7.936 0.219 0.048 No -5.353 0.219 0.048 24.323 5.960 26.915 2.572 1801 2.592
SD IT Ht 10 TNW 3 79 77 22 57 72.15 20 10.675 14.349 0.104 0.011 No -4.734 0.420 0.177 24.323 5.960 28.866 2.632 -2 4.543

Plot VI. Best Parameter CS IM FS Mea-
sured
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RMSE & R 15 BI 5 40 37 8 32 80.00 5 6.837 12.782 0.394 0.155 Yes -0.269 0.598 0.358 29.688 2.176 30.100 1.928 -3 0.412
RMSE 15 TLN 4 40 43 6 34 85.00 9 5.481 11.107 0.359 0.129 Yes -0.332 0.626 0.392 29.688 2.176 29.795 2.073 3 0.108
R 20 TNN 4 40 35 9 31 77.50 4 7.423 13.464 0.448 0.201 Yes -0.231 0.618 0.382 29.688 2.176 30.165 1.944 -5 0.478
R for MT 30 BN 2 40 36 8 32 80.00 4 6.723 12.814 0.383 0.147 Yes -0.198 0.703 0.494 29.688 2.176 30.029 2.051 -4 0.342

La
rg

er
 

Ra
ng

e RMSE 5 TNN 7 40 79 0 40 100.00 39 1.636 2.053 0.552 0.304 Yes -0.303 0.552 0.304 29.688 2.176 28.577 2.716 39 -1.111
R 5 TLN 7 40 84 0 40 100.00 44 1.668 2.106 0.559 0.312 Yes -0.220 0.559 0.312 29.688 2.176 28.622 2.818 44 -1.066
R for MT 30 BN 2 40 36 8 32 80.00 4 6.723 12.814 0.383 0.147 Yes -0.198 0.703 0.494 29.688 2.176 30.029 2.051 -4 0.342

Ar
ea

-B
as

ed
 

Ap
pr

oa
ch Count Diff (0) 30 BA 2 40 40 6 34 85.00 6 5.491 11.141 0.343 0.118 No -0.108 0.612 0.374 29.688 2.176 29.663 2.093 0 -0.025

Count Diff (±1) 35 BA 2 40 40 7 33 82.50 7 6.228 12.114 0.310 0.096 No -0.100 0.586 0.343 29.688 2.176 29.651 2.049 0 -0.036
Height Diff 35 BI 2 40 39 7 33 82.50 6 6.191 12.110 0.318 0.101 No -0.038 0.619 0.383 29.688 2.176 29.682 2.075 -1 -0.005
SD IT Ht 45 TNN 1 40 41 6 34 85.00 7 5.434 11.128 0.348 0.121 Yes -0.145 0.650 0.423 29.688 2.176 29.737 1.982 1 0.049



Plot VII. Best Parameter CS IM FS Mea-
sured
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RMSE & R 25 BA 4 60 62 11 49 81.67 13 5.697 11.564 0.657 0.431 Yes 0.172 0.448 0.200 29.925 2.398 30.300 1.024 2 0.375
RMSE 25 BI 4 60 63 10 50 83.33 13 5.335 11.061 0.617 0.380 Yes 0.081 0.399 0.159 29.925 2.398 30.307 1.042 3 0.382
R 25 BA 4 60 62 11 49 81.67 13 5.697 11.564 0.657 0.431 Yes 0.172 0.448 0.200 29.925 2.398 30.300 1.024 2 0.375
R for MT 80 BN 1 60 63 14 46 76.67 17 7.424 13.784 0.418 0.175 Yes -0.089 0.527 0.278 29.925 2.398 30.355 1.232 3 0.430

La
rg

er
 

Ra
ng

e RMSE 25 BI 4 60 63 10 50 83.33 13 5.335 11.061 0.617 0.380 Yes 0.081 0.399 0.159 29.925 2.398 30.307 1.042 3 0.382
R 25 BA 4 60 62 11 49 81.67 13 5.697 11.564 0.657 0.431 Yes 0.172 0.448 0.200 29.925 2.398 30.300 1.024 2 0.375
R for MT 75 BI 1 60 54 17 43 71.67 11 8.931 15.338 0.386 0.149 Yes 0.412 0.598 0.358 29.925 2.398 29.821 1.167 -6 -0.104

Ar
ea

-B
as

ed
 

Ap
pr

oa
ch Count Diff (0) 45 BA 2 60 60 15 45 75.00 15 8.122 14.452 0.345 0.119 Yes 0.174 0.218 0.048 29.925 2.398 29.990 1.144 0 0.065

Count Diff (±1) 70 BA 1 60 60 12 48 80.00 12 6.830 12.976 0.300 0.090 Yes 0.199 0.342 0.117 29.925 2.398 29.825 1.172 0 -0.100
Height Diff 80 BI 1 60 50 17 43 71.67 7 9.011 15.439 0.341 0.116 Yes 0.423 0.576 0.331 29.925 2.398 29.922 1.161 -10 -0.003
SD IT Ht 30 TNN 4 60 59 11 49 81.67 10 5.961 11.941 0.502 0.252 Yes -0.225 0.291 0.085 29.925 2.398 30.573 1.076 -1 0.648

Plot VII. Best Parameter CS IM FS Mea-
sured

Identi-
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Un-
matched Matched Matched
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RMSE & R 30 TLN 4 56 60 9 47 83.93 13 5.509 11.741 0.436 0.190 Yes -0.084 0.384 0.148 30.446 1.426 30.689 1.105 4 0.242
RMSE 25 BA 4 56 61 6 50 89.29 11 4.090 9.720 0.285 0.081 Yes 0.112 0.401 0.160 30.446 1.426 30.320 0.989 5 -0.126
R 30 TLN 4 56 60 9 47 83.93 13 5.509 11.741 0.436 0.190 Yes -0.084 0.384 0.148 30.446 1.426 30.689 1.105 4 0.242
R for MT 30 TLW 4 56 54 12 44 78.57 10 7.254 14.022 0.143 0.020 No -0.258 0.538 0.290 30.446 1.426 30.787 1.191 -2 0.341

La
rg

er
 

Ra
ng

e RMSE 25 BA 4 56 61 6 50 89.29 11 4.090 9.720 0.285 0.081 Yes 0.112 0.401 0.160 30.446 1.426 30.320 0.989 5 -0.126
R 100 TLW 1 56 40 23 33 58.93 7 12.738 19.003 0.521 0.272 Yes 0.360 0.445 0.198 30.446 1.426 30.497 1.187 -16 0.051
R for MT 30 TLW 4 56 54 12 44 78.57 10 7.254 14.022 0.143 0.020 No -0.258 0.538 0.290 30.446 1.426 30.787 1.191 -2 0.341

Ar
ea

-B
as

ed
 

Ap
pr

oa
ch Count Diff (0) 35 TNN 3 56 56 10 46 82.14 10 6.209 12.682 0.232 0.054 No -0.025 0.460 0.211 30.446 1.426 30.448 1.168 0 0.001

Count Diff (±1) 15 BA 8 56 55 11 45 80.36 10 6.655 13.217 0.295 0.087 Yes 0.035 0.462 0.213 30.446 1.426 30.451 1.101 -1 0.004
Height Diff 35 TNN 3 56 56 10 46 82.14 10 6.209 12.682 0.232 0.054 No -0.025 0.460 0.211 30.446 1.426 30.448 1.168 0 0.001
SD IT Ht 35 BI 3 56 55 11 45 80.36 10 6.791 13.406 0.151 0.023 No 0.207 0.404 0.163 30.446 1.426 30.177 1.026 -1 -0.270

Plot VIII. Best Parameter CS IM FS Mea-
sured
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fied

Un-
matched Matched Matched
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RMSE & R 25 BA 2 68 70 18 50 73.53 20 7.878 13.311 0.548 0.300 Yes -1.940 0.756 0.572 28.669 9.122 32.073 4.380 2 3.403
RMSE 10 BI 6 68 73 17 51 75.00 22 7.505 12.806 0.576 0.332 Yes -2.210 0.750 0.563 28.669 9.122 32.833 4.188 5 4.164
R 10 BA 6 68 72 20 48 70.59 24 7.932 13.473 0.603 0.364 Yes -1.833 0.739 0.545 28.669 9.122 32.702 4.201 4 4.033
R for MT 25 BI 2 68 72 18 50 73.53 22 7.891 13.313 0.548 0.301 Yes -1.979 0.757 0.572 28.669 9.122 32.066 4.344 4 3.397

La
rg

er
 

Ra
ng

e RMSE 10 BI 6 68 73 17 51 75.00 22 7.505 12.806 0.576 0.332 Yes -2.210 0.750 0.563 28.669 9.122 32.833 4.188 5 4.164
R 45 TNN 1 68 60 23 45 66.18 15 8.669 14.124 0.632 0.399 Yes -1.273 0.775 0.600 28.669 9.122 32.836 3.987 -8 4.167
R for MT 45 BI 1 68 56 22 46 67.65 10 8.585 14.287 0.582 0.339 Yes -1.251 0.827 0.684 28.669 9.122 32.473 4.201 -12 3.804

Ar
ea

-B
as

ed
 

Ap
pr

oa
ch Count Diff (0) 40 TNN 1 68 69 21 47 69.12 22 8.430 14.160 0.566 0.321 Yes -1.735 0.721 0.519 28.669 9.122 32.563 4.171 1 3.894

Count Diff (±1) 40 TNN 1 68 69 21 47 69.12 22 8.430 14.160 0.566 0.321 Yes -1.735 0.721 0.519 28.669 9.122 32.563 4.171 1 3.894
Height Diff 5 BM 1 68 2376 0 68 100.00 2308 5.820 9.815 0.488 0.238 Yes -5.615 0.488 0.238 28.669 9.122 30.094 5.115 2308 1.425
SD IT Ht 15 TNN 4 68 69 18 50 73.53 19 8.441 13.896 0.489 0.240 Yes -2.988 0.604 0.365 28.669 9.122 33.172 3.700 1 4.503



Plot VIII. Best Parameter CS IM FS Mea-
sured
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RMSE & R 45 TNN 1 54 56 12 42 77.78 14 7.714 14.362 0.533 0.284 Yes -0.401 0.838 0.702 32.963 3.581 33.516 2.802 2 0.553
RMSE 10 TNW 7 54 58 9 45 83.33 13 6.504 12.964 0.372 0.138 Yes -1.106 0.803 0.644 32.963 3.581 33.845 2.877 4 0.882
R 45 TNN 1 54 56 12 42 77.78 14 7.714 14.362 0.533 0.284 Yes -0.401 0.838 0.702 32.963 3.581 33.516 2.802 2 0.553
R for MT 20 BA 3 54 55 15 39 72.22 16 9.446 16.551 0.426 0.182 Yes -0.642 0.900 0.811 32.963 3.581 33.478 2.920 1 0.515

La
rg

er
 

Ra
ng

e RMSE 35 BI 1 54 71 8 46 85.19 25 5.673 11.990 0.422 0.178 Yes -0.355 0.789 0.623 32.963 3.581 32.566 3.053 17 -0.397
R 25 TLN 3 54 45 17 37 68.52 8 10.416 17.228 0.564 0.318 Yes -0.644 0.858 0.736 32.963 3.581 34.133 2.963 -9 1.170
R for MT 20 BI 4 54 38 20 34 62.96 4 12.189 19.052 0.487 0.237 Yes -0.661 0.903 0.815 32.963 3.581 34.534 2.764 -16 1.572

Ar
ea

-B
as

ed
 

Ap
pr

oa
ch Count Diff (0) 30 TNN 2 54 54 14 40 74.07 14 9.055 16.125 0.381 0.145 Yes -0.827 0.892 0.795 32.963 3.581 33.728 2.778 0 0.765

Count Diff (±1) 40 BI 1 54 55 12 42 77.78 13 7.755 14.713 0.437 0.191 Yes -0.151 0.849 0.721 32.963 3.581 33.199 2.905 1 0.236
Height Diff 25 BI 2 54 66 10 44 81.48 22 6.644 13.223 0.487 0.237 Yes -0.359 0.832 0.692 32.963 3.581 32.944 3.021 12 -0.019
SD IT Ht 30 TNN 2 54 54 14 40 74.07 14 9.055 16.125 0.381 0.145 Yes -0.827 0.892 0.795 32.963 3.581 33.728 2.778 0 0.765

Plot IX. Best Parameter CS IM FS Mea-
sured
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RMSE & R 15 BN 4 71 72 13 58 81.69 14 5.015 9.865 0.668 0.446 Yes -1.210 0.634 0.402 28.549 6.577 31.171 2.999 1 2.622
RMSE 15 BN 4 71 72 13 58 81.69 14 5.015 9.865 0.668 0.446 Yes -1.210 0.634 0.402 28.549 6.577 31.171 2.999 1 2.622
R 35 BM 1 71 74 15 56 78.87 18 5.455 10.447 0.697 0.486 Yes -1.097 0.633 0.400 28.549 6.577 31.276 3.008 3 2.727
R for MT 15 TLN 4 71 69 15 56 78.87 13 5.803 11.113 0.610 0.372 Yes -1.194 0.644 0.415 28.549 6.577 31.075 3.120 -2 2.525

La
rg

er
 

Ra
ng

e RMSE 10 TNW 5 71 77 13 58 81.69 19 4.938 9.599 0.694 0.481 Yes -1.328 0.588 0.345 28.549 6.577 31.284 2.860 6 2.734
R 10 TLN 8 71 55 18 53 74.65 2 6.121 11.343 0.726 0.527 Yes -0.782 0.649 0.422 28.549 6.577 31.870 2.390 -16 3.321
R for MT 20 TNN 3 71 61 18 53 74.65 8 6.287 11.640 0.695 0.482 Yes -0.636 0.688 0.473 28.549 6.577 31.359 2.906 -10 2.809

Ar
ea

-B
as

ed
 

Ap
pr

oa
ch Count Diff (0) 15 BI 4 71 71 19 52 73.24 19 7.183 12.806 0.589 0.347 Yes -0.784 0.595 0.354 28.549 6.577 31.131 2.772 0 2.582

Count Diff (±1) 45 BI 1 71 72 17 54 76.06 18 6.453 11.564 0.644 0.415 Yes -0.123 0.511 0.261 28.549 6.577 30.705 2.487 1 2.156
Height Diff 5 TNW 2 71 846 0 71 100.00 775 3.413 6.502 0.522 0.272 Yes -3.141 0.522 0.272 28.549 6.577 28.563 3.618 775 0.014
SD IT Ht 45 BI 1 71 72 17 54 76.06 18 6.453 11.564 0.644 0.415 Yes -0.123 0.511 0.261 28.549 6.577 30.705 2.487 1 2.156

Plot IX. Best Parameter CS IM FS Mea-
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RMSE & R 10 TNW 7 57 56 4 53 92.98 3 2.677 7.396 0.605 0.366 Yes -0.467 0.927 0.859 31.307 2.605 31.950 2.395 -1 0.643
RMSE 10 TLN 8 57 55 4 53 92.98 2 2.620 7.389 0.604 0.365 Yes -0.367 0.928 0.861 31.307 2.605 31.870 2.390 -2 0.563
R 30 BM 2 57 57 6 51 89.47 6 3.668 9.070 0.632 0.399 Yes -0.512 0.919 0.845 31.307 2.605 32.062 2.313 0 0.755
R for MT 40 TNW 1 57 62 5 52 91.23 10 3.072 8.358 0.594 0.353 Yes -0.316 0.950 0.902 31.307 2.605 31.438 2.936 5 0.131

La
rg

er
 

Ra
ng

e RMSE 10 TNW 5 57 77 2 55 96.49 22 1.690 5.070 0.656 0.431 Yes -0.438 0.928 0.861 31.307 2.605 31.284 2.860 20 -0.023
R 30 TLW 4 57 41 16 41 71.93 0 8.596 15.264 0.699 0.488 Yes -0.356 0.931 0.867 31.307 2.605 32.673 2.257 -16 1.366
R for MT 60 TNW 1 57 48 10 47 82.46 1 5.753 12.472 0.445 0.198 Yes -0.317 0.951 0.904 31.307 2.605 32.005 2.468 -9 0.698

Ar
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-B
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ed
 

Ap
pr

oa
ch Count Diff (0) 40 BN 2 57 57 7 50 87.72 7 4.110 9.985 0.584 0.341 Yes -0.146 0.927 0.860 31.307 2.605 31.656 2.413 0 0.349

Count Diff (±1) 10 TNN 7 57 57 5 52 91.23 5 3.164 8.517 0.532 0.283 Yes -0.348 0.928 0.861 31.307 2.605 31.672 2.529 0 0.365
Height Diff 50 TLN 1 57 56 11 46 80.70 10 6.225 12.836 0.545 0.298 Yes 0.157 0.898 0.806 31.307 2.605 31.313 2.744 -1 0.006
SD IT Ht 20 BA 4 57 56 8 49 85.96 7 4.799 10.792 0.553 0.306 Yes 0.007 0.844 0.712 31.307 2.605 31.601 2.243 -1 0.294



Plot X. Best Parameter CS IM FS Mea-
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RMSE & R 30 TLW 1 92 93 7 85 92.39 8 1.409 4.037 0.769 0.591 Yes -0.283 0.956 0.913 19.467 2.688 20.021 1.918 1 0.554
RMSE 30 TLW 1 92 93 7 85 92.39 8 1.409 4.037 0.769 0.591 Yes -0.283 0.956 0.913 19.467 2.688 20.021 1.918 1 0.554
R 15 TNN 3 92 95 13 79 85.87 16 2.375 5.684 0.800 0.641 Yes -0.134 0.958 0.918 19.467 2.688 19.993 1.686 3 0.526
R for MT 15 TNN 3 92 95 13 79 85.87 16 2.375 5.684 0.800 0.641 Yes -0.134 0.958 0.918 19.467 2.688 19.993 1.686 3 0.526

La
rg

er
 

Ra
ng

e RMSE 30 TLW 1 92 93 7 85 92.39 8 1.409 4.037 0.769 0.591 Yes -0.283 0.956 0.913 19.467 2.688 20.021 1.918 1 0.554
R 10 TNN 5 92 86 12 80 86.96 6 2.198 5.366 0.812 0.660 Yes -0.177 0.959 0.919 19.467 2.688 20.280 1.565 -6 0.813
R for MT 15 BN 4 92 79 16 76 82.61 3 2.985 6.641 0.751 0.563 Yes -0.265 0.967 0.935 19.467 2.688 20.457 1.609 -13 0.990

Ar
ea

-B
as

ed
 

Ap
pr

oa
ch Count Diff (0) 35 BA 1 92 92 12 80 86.96 12 2.769 5.718 0.740 0.547 Yes 0.864 0.737 0.543 19.467 2.688 19.008 1.892 0 -0.460

Count Diff (±1) 15 TLN 3 92 92 11 81 88.04 11 2.064 5.169 0.787 0.620 Yes -0.241 0.925 0.856 19.467 2.688 20.066 1.786 0 0.599
Height Diff 15 BI 3 92 96 11 81 88.04 15 2.358 5.485 0.702 0.493 Yes 0.146 0.797 0.635 19.467 2.688 19.486 1.970 4 0.019
SD IT Ht 5 BI 10 92 92 8 84 91.30 8 1.670 4.399 0.750 0.562 Yes -0.413 0.934 0.872 19.467 2.688 20.252 1.668 0 0.785

Plot X. Best Parameter CS IM FS Mea-
sured
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matched Matched Matched
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RMSE & R 35 TLW 1 85 84 5 80 94.12 4 1.310 4.180 0.668 0.446 Yes -0.207 0.966 0.933 20.035 1.709 20.251 1.768 -1 0.215
RMSE 5 BI 10 85 90 3 82 96.47 8 1.039 3.419 0.563 0.317 Yes -0.358 0.940 0.884 20.035 1.709 20.330 1.601 5 0.295
R 10 TLN 5 85 85 6 79 92.94 6 1.541 4.593 0.671 0.451 Yes -0.240 0.963 0.927 20.035 1.709 20.414 1.539 0 0.378
R for MT 30 BM 1 85 87 7 78 91.76 9 1.807 5.058 0.643 0.413 Yes -0.366 0.971 0.942 20.035 1.709 20.363 1.758 2 0.328

La
rg

er
 

Ra
ng

e RMSE 30 TNW 1 85 91 3 82 96.47 9 0.917 3.295 0.641 0.411 Yes -0.217 0.971 0.942 20.035 1.709 20.116 1.823 6 0.080
R 10 BN 7 85 73 13 72 84.71 1 3.026 6.963 0.694 0.481 Yes -0.293 0.960 0.922 20.035 1.709 20.734 1.419 -12 0.699
R for MT 5 TNW 9 85 91 4 81 95.29 10 1.183 3.809 0.635 0.404 Yes -0.328 0.972 0.944 20.035 1.709 20.187 1.888 6 0.151

Ar
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-B
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ed
 

Ap
pr

oa
ch Count Diff (0) 10 TLN 5 85 85 6 79 92.94 6 1.541 4.593 0.671 0.451 Yes -0.240 0.963 0.927 20.035 1.709 20.414 1.539 0 0.378

Count Diff (±1) 40 TLN 1 85 84 6 79 92.94 5 1.663 4.659 0.637 0.405 Yes 0.171 0.913 0.834 20.035 1.709 20.002 1.509 -1 -0.033
Height Diff 15 TNN 3 85 94 6 79 92.94 15 1.535 4.614 0.658 0.433 Yes -0.134 0.958 0.918 20.035 1.709 20.030 1.656 9 -0.005
SD IT Ht 40 TLN 1 85 84 6 79 92.94 5 1.663 4.659 0.637 0.405 Yes 0.171 0.913 0.834 20.035 1.709 20.002 1.509 -1 -0.033

Plot XI. Best Parameter CS IM FS Mea-
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RMSE & R 70 BA 1 60 61 17 43 71.67 18 10.652 16.024 0.336 0.113 Yes -1.285 -0.134 0.018 31.050 5.400 31.835 5.227 1 0.785
RMSE 70 BA 1 60 61 17 43 71.67 18 10.652 16.024 0.336 0.113 Yes -1.285 -0.134 0.018 31.050 5.400 31.835 5.227 1 0.785
R 65 TLN 1 60 56 21 39 65.00 17 12.035 17.741 0.360 0.130 Yes -3.091 0.506 0.256 31.050 5.400 34.705 4.696 -4 3.655
R for MT 65 TLN 1 60 56 21 39 65.00 17 12.035 17.741 0.360 0.130 Yes -3.091 0.506 0.256 31.050 5.400 34.705 4.696 -4 3.655

La
rg

er
 

Ra
ng

e RMSE 70 BA 1 60 61 17 43 71.67 18 10.652 16.024 0.336 0.113 Yes -1.285 -0.134 0.018 31.050 5.400 31.835 5.227 1 0.785
R 65 TLN 1 60 56 21 39 65.00 17 12.035 17.741 0.360 0.130 Yes -3.091 0.506 0.256 31.050 5.400 34.705 4.696 -4 3.655
R for MT 55 TNN 2 60 42 27 33 55.00 9 14.882 20.426 0.300 0.090 No -3.021 0.605 0.366 31.050 5.400 34.622 5.335 -18 3.572

Ar
ea

-B
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ed
 

Ap
pr

oa
ch Count Diff (0) 20 BA 5 60 60 21 39 65.00 21 13.284 19.065 0.080 0.006 No -3.481 -0.078 0.006 31.050 5.400 33.512 4.795 0 2.462

Count Diff (±1) 70 BA 1 60 61 17 43 71.67 18 10.652 16.024 0.336 0.113 Yes -1.285 -0.134 0.018 31.050 5.400 31.835 5.227 1 0.785
Height Diff 30 BI 1 60 237 6 54 90.00 183 6.495 10.879 0.186 0.035 No -3.123 -0.041 0.002 31.050 5.400 31.032 6.662 177 -0.018
SD IT Ht 15 BI 7 60 61 21 39 65.00 22 13.496 19.310 0.034 0.001 No -3.977 -0.051 0.003 31.050 5.400 34.108 4.571 1 3.058



Plot XI. Best Parameter CS IM FS Mea-
sured
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RMSE & R 65 TLN 1 58 56 19 39 67.24 17 12.191 17.981 0.278 0.077 No -3.091 0.506 0.256 31.862 3.174 34.705 4.696 -2 2.843
RMSE 70 BA 1 58 61 15 43 74.14 18 10.760 16.229 0.180 0.032 No -1.285 -0.134 0.018 31.862 3.174 31.835 5.227 3 -0.027
R 70 TNN 1 58 54 19 39 67.24 15 12.154 17.930 0.292 0.085 No -2.952 0.462 0.214 31.862 3.174 34.619 4.820 -4 2.757
R for MT 70 TLN 1 58 56 19 39 67.24 17 12.703 18.499 0.099 0.010 No -3.477 0.556 0.310 31.862 3.174 34.681 4.719 -2 2.819

La
rg

er
 

Ra
ng

e RMSE 70 BA 1 58 61 15 43 74.14 18 10.760 16.229 0.180 0.032 No -1.285 -0.134 0.018 31.862 3.174 31.835 5.227 3 -0.027
R 55 TLN 2 58 43 26 32 55.17 11 15.380 20.838 0.355 0.126 No -2.907 0.591 0.350 31.862 3.174 34.812 5.322 -15 2.950
R for MT 35 BN 3 58 47 23 35 60.34 12 14.650 20.107 0.173 0.030 No -3.711 0.662 0.438 31.862 3.174 35.125 5.156 -11 3.263

Ar
ea

-B
as

ed
 

Ap
pr

oa
ch Count Diff (0) 30 TNN 3 58 58 19 39 67.24 19 12.808 18.648 0.046 0.002 No -3.575 0.286 0.082 31.862 3.174 34.299 6.390 0 2.437

Count Diff (±1) 25 BA 4 58 59 19 39 67.24 20 12.329 18.076 0.229 0.052 No -2.271 0.074 0.005 31.862 3.174 33.294 4.890 1 1.432
Height Diff 70 BA 1 58 61 15 43 74.14 18 10.760 16.229 0.180 0.032 No -1.285 -0.134 0.018 31.862 3.174 31.835 5.227 3 -0.027
SD IT Ht 65 BN 1 58 58 20 38 65.52 20 13.125 18.862 0.135 0.018 No -3.456 0.398 0.159 31.862 3.174 34.779 4.624 0 2.917

Plot XII. Best Parameter CS IM FS Mea-
sured

Identi-
fied

Un-
matched Matched Matched
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RMSE & R 15 BI 6 60 61 15 45 75.00 16 5.964 8.671 0.418 0.174 Yes -2.059 0.269 0.072 17.942 2.569 19.902 3.212 1 1.961
RMSE 15 BI 6 60 61 15 45 75.00 16 5.964 8.671 0.418 0.174 Yes -2.059 0.269 0.072 17.942 2.569 19.902 3.212 1 1.961
R 15 BN 5 60 55 17 43 71.67 12 7.018 9.401 0.434 0.188 Yes -3.348 0.335 0.112 17.942 2.569 21.307 3.155 -5 3.366
R for MT 10 TLW 7 60 65 15 45 75.00 20 6.956 9.418 0.257 0.066 No -3.464 0.714 0.509 17.942 2.569 21.196 3.364 5 3.254

La
rg

er
 

Ra
ng

e RMSE 20 BA 4 60 66 14 46 76.67 20 5.803 8.458 0.381 0.145 Yes -1.599 0.211 0.045 17.942 2.569 19.519 3.271 6 1.578
R 55 TNN 1 60 66 20 40 66.67 26 7.073 9.828 0.487 0.237 Yes -2.130 0.143 0.020 17.942 2.569 20.008 3.270 6 2.067
R for MT 10 TLW 7 60 65 15 45 75.00 20 6.956 9.418 0.257 0.066 No -3.464 0.714 0.509 17.942 2.569 21.196 3.364 5 3.254

Ar
ea

-B
as

ed
 

Ap
pr

oa
ch Count Diff (0) 60 TLN 1 60 60 21 39 65.00 21 8.183 10.954 0.134 0.018 No -2.834 0.257 0.066 17.942 2.569 20.053 3.236 0 2.112

Count Diff (±1) 15 BI 6 60 61 15 45 75.00 16 5.964 8.671 0.418 0.174 Yes -2.059 0.269 0.072 17.942 2.569 19.902 3.212 1 1.961
Height Diff 45 BA 1 60 95 8 52 86.67 43 4.722 7.320 0.070 0.005 No -0.763 0.200 0.040 17.942 2.569 17.944 3.218 35 0.003
SD IT Ht 40 TNN 2 60 61 18 42 70.00 19 7.006 9.752 0.336 0.113 Yes -2.711 0.430 0.185 17.942 2.569 20.450 3.058 1 2.508

Plot XII. Best Parameter CS IM FS Mea-
sured
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matched Matched Matched
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RMSE & R 10 TLN 8 58 57 16 42 72.41 15 7.132 9.659 0.322 0.104 Yes -3.268 0.456 0.208 18.190 2.173 21.290 3.151 -1 3.100
RMSE 15 BI 6 58 61 13 45 77.59 16 5.799 8.576 0.320 0.103 Yes -2.059 0.269 0.072 18.190 2.173 19.902 3.212 3 1.713
R 60 BN 1 58 54 16 42 72.41 12 6.717 9.427 0.373 0.139 Yes -2.607 0.260 0.068 18.190 2.173 20.738 3.169 -4 2.548
R for MT 45 BM 1 58 63 12 46 79.31 17 6.275 8.643 0.289 0.083 No -3.370 0.606 0.368 18.190 2.173 21.251 3.162 5 3.062

La
rg

er
 

Ra
ng

e RMSE 15 BI 6 58 61 13 45 77.59 16 5.799 8.576 0.320 0.103 Yes -2.059 0.269 0.072 18.190 2.173 19.902 3.212 3 1.713
R 25 BI 4 58 41 22 36 62.07 5 8.070 10.897 0.387 0.150 Yes -1.284 0.165 0.027 18.190 2.173 19.953 2.299 -17 1.763
R for MT 45 BM 1 58 63 12 46 79.31 17 6.275 8.643 0.289 0.083 No -3.370 0.606 0.368 18.190 2.173 21.251 3.162 5 3.062

Ar
ea

-B
as

ed
 

Ap
pr

oa
ch Count Diff (0) 50 TNW 1 58 58 15 43 74.14 15 6.986 9.566 0.230 0.053 No -3.290 0.477 0.227 18.190 2.173 21.116 3.112 0 2.926

Count Diff (±1) 40 BI 2 58 57 17 41 70.69 16 6.927 10.087 0.122 0.015 No -1.240 0.277 0.077 18.190 2.173 18.770 3.397 -1 0.581
Height Diff 80 BA 1 58 35 28 30 51.72 5 9.806 12.613 0.229 0.053 No 0.434 0.287 0.082 18.190 2.173 18.174 2.761 -23 -0.015
SD IT Ht 10 TNN 8 58 59 12 46 79.31 13 6.178 8.735 0.195 0.038 No -3.155 0.507 0.257 18.190 2.173 20.983 3.097 1 2.793



Plot XIII. Best Parameter CS IM FS Mea-
sured
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RMSE & R 35 TNW 1 62 60 19 43 69.35 17 6.961 10.966 0.527 0.278 Yes -3.026 0.356 0.127 21.250 7.701 26.117 3.734 -2 4.867
RMSE 15 TLN 3 62 66 16 46 74.19 20 6.265 9.989 0.549 0.302 Yes -2.900 0.242 0.059 21.250 7.701 25.450 4.760 4 4.200
R 35 TLW 1 62 57 20 42 67.74 15 6.924 10.927 0.560 0.314 Yes -2.808 0.240 0.057 21.250 7.701 26.213 3.795 -5 4.963
R for MT 35 BN 1 62 66 18 44 70.97 22 8.156 12.278 0.334 0.112 Yes -4.039 0.482 0.232 21.250 7.701 25.154 5.629 4 3.904

La
rg

er
 

Ra
ng

e RMSE 15 TLN 3 62 66 16 46 74.19 20 6.265 9.989 0.549 0.302 Yes -2.900 0.242 0.059 21.250 7.701 25.450 4.760 4 4.200
R 25 BM 2 62 56 20 42 67.74 14 6.532 10.463 0.612 0.374 Yes -2.560 0.144 0.021 21.250 7.701 26.745 1.487 -6 5.495
R for MT 35 BN 1 62 66 18 44 70.97 22 8.156 12.278 0.334 0.112 Yes -4.039 0.482 0.232 21.250 7.701 25.154 5.629 4 3.904

Ar
ea
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ed
 

Ap
pr

oa
ch Count Diff (0) 40 BI 1 62 62 21 41 66.13 21 8.884 12.759 0.337 0.114 Yes -2.175 0.247 0.061 21.250 7.701 24.140 3.844 0 2.890

Count Diff (±1) 40 BI 1 62 62 21 41 66.13 21 8.884 12.759 0.337 0.114 Yes -2.175 0.247 0.061 21.250 7.701 24.140 3.844 0 2.890
Height Diff 5 TLW 1 62 1031 0 62 100.00 969 5.756 8.989 0.473 0.223 Yes -5.466 0.473 0.223 21.250 7.701 21.368 8.087 969 0.118
SD IT Ht 35 TLN 1 62 62 16 46 74.19 16 7.273 11.359 0.384 0.148 Yes -3.656 0.441 0.194 21.250 7.701 25.703 3.709 0 4.453

Plot XIII. Best Parameter CS IM FS Mea-
sured
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RMSE & R 60 TLN 1 43 40 8 35 81.40 5 5.259 10.819 0.425 0.181 Yes -0.326 0.758 0.575 26.244 1.757 26.795 1.277 -3 0.551
RMSE 60 TLN 1 43 40 8 35 81.40 5 5.259 10.819 0.425 0.181 Yes -0.326 0.758 0.575 26.244 1.757 26.795 1.277 -3 0.551
R 65 BN 1 43 38 10 33 76.74 5 6.461 12.041 0.494 0.244 Yes -0.343 0.678 0.460 26.244 1.757 26.763 1.397 -5 0.519
R for MT 10 TLN 8 43 40 9 34 79.07 6 6.038 11.645 0.352 0.124 Yes -0.829 0.808 0.653 26.244 1.757 27.162 1.260 -3 0.918

La
rg

er
 

Ra
ng

e RMSE 10 TLN 6 43 49 5 38 88.37 11 3.852 8.651 0.347 0.120 Yes -0.822 0.762 0.581 26.244 1.757 26.924 1.356 6 0.680
R 65 BN 1 43 38 10 33 76.74 5 6.461 12.041 0.494 0.244 Yes -0.343 0.678 0.460 26.244 1.757 26.763 1.397 -5 0.519
R for MT 10 TLN 8 43 40 9 34 79.07 6 6.038 11.645 0.352 0.124 Yes -0.829 0.808 0.653 26.244 1.757 27.162 1.260 -3 0.918

Ar
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ed
 

Ap
pr

oa
ch Count Diff (0) 50 TNN 1 43 43 9 34 79.07 9 6.089 11.913 0.190 0.036 No -0.259 0.774 0.598 26.244 1.757 26.360 1.506 0 0.115

Count Diff (±1) 15 BA 5 43 42 9 34 79.07 8 6.497 12.006 0.149 0.022 No 0.097 0.378 0.143 26.244 1.757 26.192 1.713 -1 -0.052
Height Diff 10 TLW 5 43 56 5 38 88.37 18 4.172 9.108 0.086 0.007 No -1.005 0.591 0.349 26.244 1.757 26.237 3.796 13 -0.007
SD IT Ht 30 BM 2 43 42 9 34 79.07 8 6.109 11.701 0.320 0.102 No -0.873 0.792 0.627 26.244 1.757 27.136 1.256 -1 0.891

Plot XIII. Best Parameter CS IM FS Mea-
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RMSE & R 60 TNN 1 43 42 3 40 93.02 2 2.238 5.884 0.758 0.574 Yes 0.056 0.766 0.586 26.244 1.757 26.476 1.371 -1 0.231
RMSE 20 TNW 3 43 45 2 41 95.35 4 1.867 4.965 0.623 0.388 Yes -0.653 0.844 0.712 26.244 1.757 26.974 1.345 2 0.730
R 60 TNN 1 43 42 3 40 93.02 2 2.238 5.884 0.758 0.574 Yes 0.056 0.766 0.586 26.244 1.757 26.476 1.371 -1 0.231
R for MT 60 TLW 1 43 39 6 37 86.05 2 3.951 9.036 0.586 0.343 Yes -0.441 0.847 0.718 26.244 1.757 27.027 1.238 -4 0.783

La
rg

er
 

Ra
ng

e RMSE 35 TLN 1 43 65 0 43 100.00 22 0.824 1.048 0.840 0.706 Yes -0.436 0.840 0.706 26.244 1.757 25.252 4.713 22 -0.992
R 40 BM 1 43 51 0 43 100.00 8 0.939 1.159 0.862 0.742 Yes -0.740 0.862 0.742 26.244 1.757 26.918 1.446 8 0.674
R for MT 75 BM 1 43 32 11 32 74.42 0 7.091 12.789 0.425 0.181 Yes -0.780 0.890 0.793 26.244 1.757 27.405 1.279 -11 1.160
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Ap
pr

oa
ch Count Diff (0) 20 BI 4 43 43 6 37 86.05 6 4.421 9.327 0.456 0.208 Yes 0.209 0.545 0.297 26.244 1.757 26.152 1.722 0 -0.092

Count Diff (±1) 15 BA 5 43 44 4 39 90.70 5 3.204 7.366 0.561 0.315 Yes 0.140 0.541 0.293 26.244 1.757 26.204 1.735 1 -0.040
Height Diff 20 BA 5 43 38 8 35 81.40 3 5.582 10.832 0.450 0.203 Yes 0.197 0.508 0.258 26.244 1.757 26.238 1.756 -5 -0.006
SD IT Ht 35 TLN 2 43 42 4 39 90.70 3 2.798 7.005 0.716 0.512 Yes -0.349 0.798 0.637 26.244 1.757 26.899 1.224 -1 0.654



Plot XIV. Best Parameter CS IM FS Mea-
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RMSE & R 45 TNN 1 67 64 11 56 83.58 8 3.628 7.219 0.608 0.370 Yes -0.902 0.223 0.050 21.142 4.172 22.932 1.665 -3 1.790
RMSE 35 TNW 1 67 72 8 59 88.06 13 3.619 7.130 0.437 0.191 Yes -1.619 0.515 0.266 21.142 4.172 23.014 2.235 5 1.872
R 45 TNN 1 67 64 11 56 83.58 8 3.628 7.219 0.608 0.370 Yes -0.902 0.223 0.050 21.142 4.172 22.932 1.665 -3 1.790
R for MT 20 TLN 3 67 64 12 55 82.09 9 4.555 8.582 0.419 0.176 Yes -1.477 0.586 0.344 21.142 4.172 23.088 2.294 -3 1.947

La
rg

er
 

Ra
ng

e RMSE 35 TLW 1 67 74 6 61 91.04 13 3.101 6.373 0.439 0.193 Yes -1.605 0.534 0.285 21.142 4.172 22.925 2.283 7 1.783
R 45 TNN 1 67 64 11 56 83.58 8 3.628 7.219 0.608 0.370 Yes -0.902 0.223 0.050 21.142 4.172 22.932 1.665 -3 1.790
R for MT 20 TLN 3 67 64 12 55 82.09 9 4.555 8.582 0.419 0.176 Yes -1.477 0.586 0.344 21.142 4.172 23.088 2.294 -3 1.947

Ar
ea

-B
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ed
 

Ap
pr

oa
ch Count Diff (0) 10 TNN 6 67 67 12 55 82.09 12 4.251 8.054 0.535 0.286 Yes -1.345 0.576 0.332 21.142 4.172 23.101 2.230 0 1.959

Count Diff (±1) 45 BI 1 67 66 13 54 80.60 12 4.749 8.675 0.439 0.193 Yes -0.377 0.184 0.034 21.142 4.172 22.170 1.855 -1 1.029
Height Diff 20 TLN 1 67 222 1 66 98.51 156 2.550 5.157 0.218 0.047 No -2.109 0.464 0.216 21.142 4.172 21.149 4.464 155 0.008
SD IT Ht 45 BI 1 67 66 13 54 80.60 12 4.749 8.675 0.439 0.193 Yes -0.377 0.184 0.034 21.142 4.172 22.170 1.855 -1 1.029

Plot XIV. Best Parameter CS IM FS Mea-
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RMSE & R 50 TLW 1 56 53 7 49 87.50 4 3.407 7.674 0.484 0.234 Yes -0.786 0.857 0.735 22.786 1.281 23.655 1.289 -3 0.869
RMSE 45 TNN 1 56 60 4 52 92.86 8 2.226 5.870 0.409 0.167 Yes -0.476 0.797 0.635 22.786 1.281 23.140 1.501 4 0.354
R 15 TNW 5 56 52 9 47 83.93 5 4.265 8.701 0.516 0.267 Yes -0.952 0.838 0.703 22.786 1.281 23.887 1.198 -4 1.101
R for MT 20 TNN 4 56 52 8 48 85.71 4 3.792 8.359 0.372 0.138 Yes -0.750 0.879 0.773 22.786 1.281 23.607 1.259 -4 0.821

La
rg

er
 

Ra
ng

e RMSE 35 TLW 1 56 69 3 53 94.64 16 2.062 5.255 0.296 0.088 Yes -0.896 0.860 0.740 22.786 1.281 23.178 2.148 13 0.392
R 80 TLN 1 56 41 17 39 69.64 2 7.032 12.030 0.572 0.327 Yes -0.360 0.741 0.548 22.786 1.281 23.579 1.157 -15 0.794
R for MT 20 TNN 4 56 52 8 48 85.71 4 3.792 8.359 0.372 0.138 Yes -0.750 0.879 0.773 22.786 1.281 23.607 1.259 -4 0.821

Ar
ea

-B
as

ed
 

Ap
pr

oa
ch Count Diff (0) 45 TLW 1 56 56 8 48 85.71 8 3.839 8.344 0.389 0.151 Yes -0.814 0.859 0.739 22.786 1.281 23.349 2.267 0 0.563

Count Diff (±1) 50 TLN 1 56 57 8 48 85.71 9 3.706 8.352 0.364 0.132 Yes -0.608 0.869 0.756 22.786 1.281 23.088 2.186 1 0.303
Height Diff 25 TLN 2 56 69 6 50 89.29 19 3.214 7.454 0.197 0.039 No -0.876 0.820 0.672 22.786 1.281 22.787 3.421 13 0.001
SD IT Ht 10 TLW 7 56 55 9 47 83.93 8 4.368 8.884 0.374 0.140 Yes -0.992 0.843 0.710 22.786 1.281 23.777 1.236 -1 0.991

Plot XIV. Best Parameter CS IM FS Mea-
sured

Identi-
fied

Un-
matched Matched Matched

 %
Redun-

dant MAE RMSE R R2 Stat 
Sig R

Mean 
Diff (MT) R (MT) R2 (MT) Mean 

FM Ht
SD 

FM Ht
Mean 
IT Ht

SD 
IT Ht

Count 
Diff

Height 
Diff

M
od

ifi
ed

 P
os

it
io

ns
 o

f T
re

es
In

di
vi

du
al

 T
re

e 
Ap

p.
Sm

al
le

r 
Ra

ng
e

RMSE & R 60 TLN 1 56 58 3 53 94.64 5 1.666 4.705 0.664 0.441 Yes -0.510 0.833 0.693 22.786 1.281 23.296 1.346 2 0.511
RMSE 10 BA 7 56 61 2 54 96.43 7 1.502 3.909 0.625 0.391 Yes -0.722 0.851 0.724 22.786 1.281 23.209 2.243 5 0.423
R 10 BI 7 56 60 3 53 94.64 7 1.844 4.734 0.671 0.450 Yes -0.729 0.841 0.707 22.786 1.281 23.255 2.243 4 0.469
R for MT 35 TNN 2 56 56 4 52 92.86 4 2.190 5.724 0.514 0.264 Yes -0.703 0.888 0.789 22.786 1.281 23.472 1.398 0 0.686

La
rg

er
 

Ra
ng

e RMSE 20 BI 3 56 66 0 56 100.00 10 0.797 0.999 0.797 0.635 Yes -0.353 0.797 0.635 22.786 1.281 22.816 1.675 10 0.030
R 10 BA 6 56 71 0 56 100.00 15 0.850 1.056 0.850 0.723 Yes -0.758 0.850 0.723 22.786 1.281 23.005 2.164 15 0.219
R for MT 20 TNN 3 56 62 1 55 98.21 7 1.167 3.099 0.433 0.187 Yes -0.773 0.895 0.800 22.786 1.281 23.465 1.347 6 0.679

Ar
ea

-B
as

ed
 

Ap
pr

oa
ch Count Diff (0) 55 BI 1 56 56 6 50 89.29 6 3.171 7.026 0.590 0.349 Yes 0.412 0.608 0.370 22.786 1.281 22.443 1.803 0 -0.343

Count Diff (±1) 35 BI 2 56 57 6 50 89.29 7 3.040 7.160 0.454 0.206 Yes -0.087 0.716 0.513 22.786 1.281 22.817 1.659 1 0.031
Height Diff 40 BI 2 56 53 7 49 87.50 4 3.423 7.572 0.583 0.340 Yes 0.050 0.657 0.431 22.786 1.281 22.796 1.714 -3 0.010
SD IT Ht 35 BN 2 56 55 5 51 91.07 4 2.640 6.332 0.578 0.334 Yes -0.827 0.862 0.744 22.786 1.281 23.730 1.217 -1 0.945



Plot XV. Best Parameter CS IM FS Mea-
sured
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matched Matched Matched
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RMSE & R 35 TNN 1 61 64 18 43 70.49 21 9.750 15.790 0.323 0.105 Yes -1.888 0.447 0.199 29.262 7.850 31.829 2.440 3 2.567
RMSE 35 TNN 1 61 64 18 43 70.49 21 9.750 15.790 0.323 0.105 Yes -1.888 0.447 0.199 29.262 7.850 31.829 2.440 3 2.567
R 35 TNN 1 61 64 18 43 70.49 21 9.750 15.790 0.323 0.105 Yes -1.888 0.447 0.199 29.262 7.850 31.829 2.440 3 2.567
R for MT 15 TNN 3 61 66 19 42 68.85 24 10.313 16.627 0.265 0.070 No -2.299 0.614 0.377 29.262 7.850 32.126 2.433 5 2.864

La
rg

er
 

Ra
ng

e RMSE 40 BI 1 61 50 18 43 70.49 7 8.862 14.654 0.470 0.221 Yes -0.593 0.309 0.096 29.262 7.850 31.822 2.395 -11 2.559
R 40 BI 1 61 50 18 43 70.49 7 8.862 14.654 0.470 0.221 Yes -0.593 0.309 0.096 29.262 7.850 31.822 2.395 -11 2.559
R for MT 10 BI 6 61 47 22 39 63.93 8 11.391 17.699 0.274 0.075 No -2.245 0.623 0.388 29.262 7.850 32.656 2.230 -14 3.393

Ar
ea

-B
as

ed
 

Ap
pr

oa
ch Count Diff (0) 10 TNN 5 61 61 21 40 65.57 21 11.286 17.691 0.223 0.050 No -2.579 0.562 0.316 29.262 7.850 32.183 2.436 0 2.921

Count Diff (±1) 10 TNN 5 61 61 21 40 65.57 21 11.286 17.691 0.223 0.050 No -2.579 0.562 0.316 29.262 7.850 32.183 2.436 0 2.921
Height Diff 5 BM 1 61 2584 0 61 100.00 2523 4.143 8.231 0.381 0.145 Yes -3.825 0.381 0.145 29.262 7.850 29.416 2.789 2523 0.154
SD IT Ht 25 BN 2 61 62 19 42 68.85 20 10.567 16.940 0.225 0.051 No -2.655 0.451 0.203 29.262 7.850 32.385 2.255 1 3.123

Plot XV. Best Parameter CS IM FS Mea-
sured

Identi-
fied

Un-
matched Matched Matched
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RMSE & R 35 BI 1 55 58 14 41 74.55 17 8.282 14.741 0.609 0.370 Yes 0.305 0.717 0.514 31.682 2.936 31.563 2.596 3 -0.119
RMSE 40 BI 1 55 50 13 42 76.36 8 8.069 14.230 0.587 0.345 Yes 0.400 0.389 0.151 31.682 2.936 31.822 2.395 -5 0.140
R 35 BI 1 55 58 14 41 74.55 17 8.282 14.741 0.609 0.370 Yes 0.305 0.717 0.514 31.682 2.936 31.563 2.596 3 -0.119
R for MT 10 BA 6 55 50 18 37 67.27 13 10.470 17.314 0.452 0.205 Yes -0.455 0.817 0.667 31.682 2.936 32.496 2.327 -5 0.814

La
rg

er
 

Ra
ng

e RMSE 35 TNN 1 55 63 13 42 76.36 21 7.969 14.114 0.619 0.384 Yes -0.001 0.464 0.216 31.682 2.936 31.876 2.430 8 0.195
R 45 BA 1 55 41 20 35 63.64 6 11.530 17.834 0.638 0.407 Yes 0.656 0.658 0.433 31.682 2.936 32.172 2.178 -14 0.490
R for MT 15 BI 4 55 46 18 37 67.27 9 10.504 17.360 0.436 0.190 Yes -0.491 0.824 0.679 31.682 2.936 32.660 2.288 -9 0.978

Ar
ea

-B
as

ed
 

Ap
pr

oa
ch Count Diff (0) 35 BA 1 55 55 16 39 70.91 16 9.354 15.959 0.566 0.320 Yes 0.179 0.778 0.606 31.682 2.936 31.623 2.584 0 -0.059

Count Diff (±1) 25 BA 2 55 54 14 41 74.55 13 8.267 14.921 0.542 0.294 Yes 0.104 0.776 0.602 31.682 2.936 31.906 2.363 -1 0.224
Height Diff 5 TLW 8 55 106 5 50 90.91 56 4.271 8.999 0.442 0.195 Yes -0.675 0.499 0.249 31.682 2.936 31.685 2.495 51 0.003
SD IT Ht 25 TNN 2 55 54 15 40 72.73 14 9.065 15.780 0.431 0.186 Yes -0.427 0.650 0.422 31.682 2.936 32.378 2.195 -1 0.696

Plot XV. Best Parameter CS IM FS Mea-
sured

Identi-
fied

Un-
matched Matched Matched
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RMSE & R 40 TLN 1 55 52 9 46 83.64 6 5.371 11.086 0.761 0.579 Yes -0.111 0.722 0.522 31.682 2.936 32.487 2.250 -3 0.805
RMSE 10 TNN 5 55 60 6 49 89.09 11 4.000 9.152 0.646 0.417 Yes -0.744 0.815 0.664 31.682 2.936 32.349 2.410 5 0.667
R 40 BN 1 55 53 11 44 80.00 9 6.189 12.290 0.804 0.646 Yes -0.246 0.877 0.769 31.682 2.936 32.608 2.164 -2 0.926
R for MT 10 BA 6 55 51 9 46 83.64 5 5.260 11.278 0.703 0.494 Yes -0.364 0.902 0.814 31.682 2.936 32.617 2.251 -4 0.935

La
rg

er
 

Ra
ng

e RMSE 10 TLN 5 55 64 5 50 90.91 14 3.607 8.439 0.602 0.362 Yes -0.887 0.782 0.612 31.682 2.936 32.260 2.504 9 0.579
R 40 BN 1 55 53 11 44 80.00 9 6.189 12.290 0.804 0.646 Yes -0.246 0.877 0.769 31.682 2.936 32.608 2.164 -2 0.926
R for MT 10 BA 6 55 51 9 46 83.64 5 5.260 11.278 0.703 0.494 Yes -0.364 0.902 0.814 31.682 2.936 32.617 2.251 -4 0.935

Ar
ea

-B
as

ed
 

Ap
pr

oa
ch Count Diff (0) 25 TNW 2 55 55 10 45 81.82 10 5.856 11.908 0.725 0.525 Yes -0.554 0.834 0.696 31.682 2.936 32.700 2.374 0 1.018

Count Diff (±1) 25 TLW 2 55 55 10 45 81.82 10 5.855 11.908 0.724 0.525 Yes -0.563 0.835 0.697 31.682 2.936 32.709 2.370 0 1.027
Height Diff 35 BA 1 55 56 10 45 81.82 11 5.974 12.050 0.676 0.457 Yes 0.197 0.826 0.682 31.682 2.936 31.689 2.609 1 0.007
SD IT Ht 15 BM 4 55 54 13 42 76.36 12 7.448 13.837 0.716 0.512 Yes -0.650 0.828 0.685 31.682 2.936 33.009 2.158 -1 1.327



Plot XVI. Best Parameter CS IM FS Mea-
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RMSE & R 10 BN 5 66 70 2 64 96.97 6 0.933 3.094 0.732 0.537 Yes -0.258 0.967 0.935 21.864 2.005 22.018 1.957 4 0.155
RMSE 10 BN 5 66 70 2 64 96.97 6 0.933 3.094 0.732 0.537 Yes -0.258 0.967 0.935 21.864 2.005 22.018 1.957 4 0.155
R 45 TNN 1 66 62 5 61 92.42 1 1.730 4.962 0.752 0.565 Yes 0.310 0.959 0.920 21.864 2.005 21.797 1.742 -4 -0.066
R for MT 35 TNW 1 66 64 4 62 93.94 2 1.412 4.579 0.683 0.467 Yes -0.083 0.978 0.957 21.864 2.005 22.073 1.888 -2 0.209

La
rg

er
 

Ra
ng

e RMSE 10 BN 5 66 70 2 64 96.97 6 0.933 3.094 0.732 0.537 Yes -0.258 0.967 0.935 21.864 2.005 22.018 1.957 4 0.155
R 50 TNW 1 66 59 7 59 89.39 0 2.189 5.975 0.767 0.588 Yes 0.008 0.973 0.947 21.864 2.005 22.280 1.663 -7 0.417
R for MT 35 TNW 1 66 64 4 62 93.94 2 1.412 4.579 0.683 0.467 Yes -0.083 0.978 0.957 21.864 2.005 22.073 1.888 -2 0.209

Ar
ea

-B
as

ed
 

Ap
pr

oa
ch Count Diff (0) 15 BA 4 66 66 4 62 93.94 4 1.459 4.557 0.673 0.453 Yes 0.053 0.965 0.931 21.864 2.005 21.875 1.772 0 0.011

Count Diff (±1) 10 BA 6 66 66 3 63 95.45 3 1.166 3.838 0.704 0.495 Yes -0.050 0.961 0.924 21.864 2.005 21.954 1.846 0 0.090
Height Diff 15 BI 4 66 67 3 63 95.45 4 1.156 3.834 0.705 0.497 Yes 0.032 0.966 0.932 21.864 2.005 21.866 1.789 1 0.002
SD IT Ht 15 BA 4 66 66 4 62 93.94 4 1.459 4.557 0.673 0.453 Yes 0.053 0.965 0.931 21.864 2.005 21.875 1.772 0 0.011

Plot XVI. Best Parameter CS IM FS Mea-
sured
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fied

Un-
matched Matched Matched
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RMSE & R 40 BN 1 59 63 0 59 100.00 4 0.354 0.438 0.969 0.939 Yes 0.187 0.969 0.939 22.322 1.567 21.963 1.738 4 -0.359
RMSE 40 BN 1 59 63 0 59 100.00 4 0.354 0.438 0.969 0.939 Yes 0.187 0.969 0.939 22.322 1.567 21.963 1.738 4 -0.359
R 40 BN 1 59 63 0 59 100.00 4 0.354 0.438 0.969 0.939 Yes 0.187 0.969 0.939 22.322 1.567 21.963 1.738 4 -0.359
R for MT 35 TNW 1 59 63 1 58 98.31 5 0.631 2.631 0.626 0.392 Yes -0.064 0.971 0.944 22.322 1.567 22.134 1.839 4 -0.188

La
rg

er
 

Ra
ng

e RMSE 10 BA 6 59 65 0 59 100.00 6 0.317 0.395 0.968 0.937 Yes 0.018 0.968 0.937 22.322 1.567 22.011 1.802 6 -0.311
R 40 BN 1 59 63 0 59 100.00 4 0.354 0.438 0.969 0.939 Yes 0.187 0.969 0.939 22.322 1.567 21.963 1.738 4 -0.359
R for MT 40 TLN 2 59 53 7 52 88.14 1 2.810 7.326 0.432 0.186 Yes 0.220 0.973 0.946 22.322 1.567 22.182 1.580 -6 -0.140

Ar
ea

-B
as

ed
 

Ap
pr

oa
ch Count Diff (0) 45 TLW 1 59 59 1 58 98.31 1 0.660 2.638 0.634 0.402 Yes -0.016 0.966 0.933 22.322 1.567 22.309 1.709 0 -0.013

Count Diff (±1) 10 TLN 7 59 59 3 56 94.92 3 1.366 4.683 0.510 0.260 Yes -0.116 0.967 0.934 22.322 1.567 22.337 1.768 0 0.015
Height Diff 20 BI 5 59 50 10 49 83.05 1 3.865 8.708 0.483 0.233 Yes 0.175 0.960 0.921 22.322 1.567 22.321 1.543 -9 -0.001
SD IT Ht 50 TNN 1 59 60 1 58 98.31 2 0.774 2.665 0.602 0.362 Yes 0.333 0.953 0.909 22.322 1.567 21.937 1.553 1 -0.385

Plot XVII. Best Parameter CS IM FS Mea-
sured
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RMSE & R 25 TNW 1 110 106 8 102 92.73 4 1.509 3.793 0.731 0.534 Yes 0.443 0.951 0.905 16.986 1.690 16.687 1.473 -4 -0.299
RMSE 25 BI 1 110 114 7 103 93.64 11 1.551 3.672 0.653 0.426 Yes 0.511 0.906 0.820 16.986 1.690 16.323 1.657 4 -0.663
R 15 TLW 2 110 114 9 101 91.82 13 1.611 3.954 0.756 0.571 Yes 0.369 0.871 0.759 16.986 1.690 16.610 1.521 4 -0.377
R for MT 25 TNW 1 110 106 8 102 92.73 4 1.509 3.793 0.731 0.534 Yes 0.443 0.951 0.905 16.986 1.690 16.687 1.473 -4 -0.299

La
rg

er
 

Ra
ng

e RMSE 15 BI 2 110 121 6 104 94.55 17 1.361 3.373 0.646 0.418 Yes 0.365 0.870 0.756 16.986 1.690 16.333 1.706 11 -0.653
R 30 BI 1 110 98 15 95 86.36 3 2.511 5.252 0.801 0.641 Yes 0.691 0.958 0.918 16.986 1.690 16.671 1.325 -12 -0.315
R for MT 15 TNN 3 110 96 16 94 85.45 2 2.521 5.520 0.761 0.580 Yes 0.472 0.959 0.920 16.986 1.690 16.902 1.316 -14 -0.084

Ar
ea

-B
as

ed
 

Ap
pr

oa
ch Count Diff (0) 5 TNW 7 110 112 10 100 90.91 12 1.708 4.235 0.750 0.562 Yes 0.375 0.945 0.892 16.986 1.690 16.644 1.562 2 -0.342

Count Diff (±1) 5 TLW 7 110 112 9 101 91.82 11 1.610 4.068 0.718 0.515 Yes 0.372 0.940 0.884 16.986 1.690 16.623 1.595 2 -0.364
Height Diff 35 BI 2 110 75 35 75 68.18 0 5.412 8.795 0.672 0.452 Yes 0.721 0.935 0.874 16.986 1.690 16.986 1.067 -35 0.000
SD IT Ht 5 TNW 7 110 112 10 100 90.91 12 1.708 4.235 0.750 0.562 Yes 0.375 0.945 0.892 16.986 1.690 16.644 1.562 2 -0.342



Plot XVII. Best Parameter CS IM FS Mea-
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RMSE & R 25 TNW 1 101 106 2 99 98.02 7 0.833 2.298 0.601 0.362 Yes 0.486 0.957 0.915 17.347 1.194 16.687 1.473 5 -0.659
RMSE 25 TNW 1 101 106 2 99 98.02 7 0.833 2.298 0.601 0.362 Yes 0.486 0.957 0.915 17.347 1.194 16.687 1.473 5 -0.659
R 20 BI 2 101 97 6 95 94.06 2 1.460 3.815 0.628 0.394 Yes 0.555 0.953 0.907 17.347 1.194 16.830 1.306 -4 -0.517
R for MT 30 TNN 1 101 102 6 95 94.06 7 1.470 3.854 0.604 0.365 Yes 0.562 0.962 0.926 17.347 1.194 16.665 1.487 1 -0.682

La
rg

er
 

Ra
ng

e RMSE 15 TLW 2 101 114 2 99 98.02 15 0.801 2.290 0.599 0.359 Yes 0.440 0.955 0.913 17.347 1.194 16.610 1.521 13 -0.737
R 15 BM 4 101 83 18 83 82.18 0 3.187 6.707 0.689 0.475 Yes 0.377 0.943 0.890 17.347 1.194 17.297 1.074 -18 -0.049
R for MT 30 TNN 1 101 102 6 95 94.06 7 1.470 3.854 0.604 0.365 Yes 0.562 0.962 0.926 17.347 1.194 16.665 1.487 1 -0.682

Ar
ea

-B
as

ed
 

Ap
pr

oa
ch Count Diff (0) 10 TLN 4 101 100 6 95 94.06 5 1.413 3.883 0.572 0.327 Yes 0.453 0.952 0.907 17.347 1.194 16.853 1.349 -1 -0.493

Count Diff (±1) 25 BM 1 101 102 6 95 94.06 7 1.386 3.900 0.560 0.314 Yes 0.403 0.946 0.894 17.347 1.194 16.842 1.441 1 -0.505
Height Diff 20 BM 3 101 78 23 78 77.23 0 3.999 7.709 0.652 0.425 Yes 0.356 0.945 0.892 17.347 1.194 17.356 1.087 -23 0.009
SD IT Ht 10 TLN 4 101 100 6 95 94.06 5 1.413 3.883 0.572 0.327 Yes 0.453 0.952 0.907 17.347 1.194 16.853 1.349 -1 -0.493

Plot XVIII. Best Parameter CS IM FS Mea-
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RMSE & R 10 TNW 5 63 68 11 52 82.54 16 4.015 8.416 0.745 0.555 Yes -0.601 0.936 0.876 24.103 3.099 25.025 2.349 5 0.922
RMSE 10 TNW 5 63 68 11 52 82.54 16 4.015 8.416 0.745 0.555 Yes -0.601 0.936 0.876 24.103 3.099 25.025 2.349 5 0.922
R 10 TNW 5 63 68 11 52 82.54 16 4.015 8.416 0.745 0.555 Yes -0.601 0.936 0.876 24.103 3.099 25.025 2.349 5 0.922
R for MT 10 BI 6 63 58 13 50 79.37 8 4.590 9.331 0.733 0.537 Yes -0.370 0.953 0.908 24.103 3.099 25.155 2.257 -5 1.052

La
rg

er
 

Ra
ng

e RMSE 10 TNW 5 63 68 11 52 82.54 16 4.015 8.416 0.745 0.555 Yes -0.601 0.936 0.876 24.103 3.099 25.025 2.349 5 0.922
R 55 BI 1 63 46 18 45 71.43 1 6.268 10.817 0.867 0.751 Yes 0.674 0.937 0.879 24.103 3.099 24.960 1.749 -17 0.857
R for MT 45 TNN 1 63 52 16 47 74.60 5 5.560 10.595 0.714 0.510 Yes -0.029 0.972 0.944 24.103 3.099 25.057 2.272 -11 0.954

Ar
ea

-B
as

ed
 

Ap
pr

oa
ch Count Diff (0) 35 BI 1 63 64 11 52 82.54 12 4.106 8.755 0.649 0.422 Yes 0.015 0.929 0.863 24.103 3.099 24.144 2.731 1 0.041

Count Diff (±1) 35 BI 1 63 64 11 52 82.54 12 4.106 8.755 0.649 0.422 Yes 0.015 0.929 0.863 24.103 3.099 24.144 2.731 1 0.041
Height Diff 5 TNN 8 63 119 6 57 90.48 62 2.775 6.385 0.621 0.386 Yes -0.908 0.855 0.730 24.103 3.099 24.099 2.418 56 -0.004
SD IT Ht 35 BI 1 63 64 11 52 82.54 12 4.106 8.755 0.649 0.422 Yes 0.015 0.929 0.863 24.103 3.099 24.144 2.731 1 0.041

Plot XVIII. Best Parameter CS IM FS Mea-
sured

Identi-
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matched Matched Matched
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RMSE & R 65 BA 1 42 42 2 40 95.24 2 2.237 5.545 0.422 0.178 Yes 1.107 0.916 0.838 25.917 1.512 24.715 1.721 0 -1.202
RMSE 50 BI 1 42 45 1 41 97.62 4 1.267 4.171 0.322 0.103 Yes 0.589 0.940 0.884 25.917 1.512 25.081 1.850 3 -0.835
R 30 BN 3 42 37 6 36 85.71 1 3.783 9.337 0.469 0.220 Yes -0.243 0.980 0.959 25.917 1.512 26.264 1.627 -5 0.347
R for MT 35 TNW 2 42 37 6 36 85.71 1 3.814 9.369 0.449 0.202 Yes -0.299 0.983 0.966 25.917 1.512 26.306 1.645 -5 0.389

La
rg

er
 

Ra
ng

e RMSE 25 TLN 2 42 67 1 41 97.62 26 0.968 4.115 0.322 0.104 Yes -0.168 0.970 0.940 25.917 1.512 24.911 2.283 25 -1.006
R 75 BM 1 42 29 13 29 69.05 0 8.034 13.800 0.577 0.333 Yes -0.533 0.980 0.961 25.917 1.512 26.964 1.396 -13 1.047
R for MT 40 TNW 3 42 29 13 29 69.05 0 8.002 13.947 0.470 0.221 Yes -0.350 0.986 0.972 25.917 1.512 26.660 1.508 -13 0.743

Ar
ea

-B
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ed
 

Ap
pr

oa
ch Count Diff (0) 20 TNN 4 42 42 3 39 92.86 3 2.086 6.701 0.370 0.137 Yes -0.234 0.978 0.957 25.917 1.512 25.927 1.855 0 0.010

Count Diff (±1) 20 BN 4 42 42 4 38 90.48 4 2.683 7.695 0.397 0.157 Yes -0.308 0.981 0.962 25.917 1.512 25.947 1.950 0 0.030
Height Diff 10 TNN 8 42 43 3 39 92.86 4 2.180 6.792 0.327 0.107 Yes -0.285 0.969 0.940 25.917 1.512 25.911 1.937 1 -0.005
SD IT Ht 30 BA 3 42 42 1 41 97.62 1 1.029 4.124 0.309 0.095 No 0.257 0.956 0.914 25.917 1.512 25.574 1.678 0 -0.342
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RMSE & R 30 TLN 1 74 74 17 57 77.03 17 3.779 6.969 0.668 0.446 Yes -0.798 0.621 0.386 17.784 4.109 19.319 2.620 0 1.535
RMSE 5 TLN 9 74 79 13 61 82.43 18 3.281 6.137 0.648 0.420 Yes -1.243 0.631 0.399 17.784 4.109 19.500 2.530 5 1.716
R 30 BI 1 74 71 19 55 74.32 16 4.022 7.215 0.708 0.501 Yes -0.350 0.769 0.592 17.784 4.109 19.051 2.171 -3 1.267
R for MT 30 BI 1 74 71 19 55 74.32 16 4.022 7.215 0.708 0.501 Yes -0.350 0.769 0.592 17.784 4.109 19.051 2.171 -3 1.267

La
rg

er
 

Ra
ng

e RMSE 5 TLN 9 74 79 13 61 82.43 18 3.281 6.137 0.648 0.420 Yes -1.243 0.631 0.399 17.784 4.109 19.500 2.530 5 1.716
R 35 TLW 1 74 56 20 54 72.97 2 4.023 7.245 0.783 0.613 Yes -0.236 0.667 0.444 17.784 4.109 19.823 2.793 -18 2.039
R for MT 40 TNN 1 74 53 24 50 67.57 3 4.671 8.047 0.767 0.588 Yes -0.147 0.915 0.837 17.784 4.109 19.874 1.584 -21 2.090

Ar
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ed
 

Ap
pr

oa
ch Count Diff (0) 30 TLN 1 74 74 17 57 77.03 17 3.779 6.969 0.668 0.446 Yes -0.798 0.621 0.386 17.784 4.109 19.319 2.620 0 1.535

Count Diff (±1) 5 BA 9 74 75 15 59 79.73 16 4.049 7.417 0.485 0.235 Yes -1.320 0.654 0.427 17.784 4.109 19.249 2.824 1 1.465
Height Diff 5 BI 5 74 223 1 73 98.65 150 2.331 4.343 0.410 0.168 Yes -2.004 0.686 0.470 17.784 4.109 17.777 3.350 149 -0.007
SD IT Ht 5 BN 9 74 73 15 59 79.73 14 3.937 7.063 0.560 0.313 Yes -1.361 0.676 0.457 17.784 4.109 19.772 1.791 -1 1.988

Plot IX. Best Parameter CS IM FS Mea-
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RMSE & R 10 TNW 5 53 56 1 52 98.11 4 0.807 2.475 0.632 0.399 Yes -0.406 0.956 0.914 19.991 1.512 20.282 1.608 3 0.291
RMSE 10 TNW 5 53 56 1 52 98.11 4 0.807 2.475 0.632 0.399 Yes -0.406 0.956 0.914 19.991 1.512 20.282 1.608 3 0.291
R 10 TNW 6 53 54 3 50 94.34 4 1.447 4.166 0.644 0.415 Yes -0.411 0.949 0.900 19.991 1.512 20.384 1.544 1 0.393
R for MT 35 TNW 1 53 56 2 51 96.23 5 1.103 3.685 0.477 0.227 Yes -0.294 0.960 0.921 19.991 1.512 20.149 1.606 3 0.158

La
rg

er
 

Ra
ng

e RMSE 5 TLN 9 53 76 1 52 98.11 24 0.800 2.474 0.631 0.399 Yes -0.388 0.955 0.912 19.991 1.512 19.745 1.735 23 -0.245
R 10 TNW 6 53 54 3 50 94.34 4 1.447 4.166 0.644 0.415 Yes -0.411 0.949 0.900 19.991 1.512 20.384 1.544 1 0.393
R for MT 35 TNW 1 53 56 2 51 96.23 5 1.103 3.685 0.477 0.227 Yes -0.294 0.960 0.921 19.991 1.512 20.149 1.606 3 0.158

Ar
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ed
 

Ap
pr

oa
ch Count Diff (0) 45 TLW 1 53 53 5 48 90.57 5 2.072 5.593 0.575 0.330 Yes -0.270 0.944 0.891 19.991 1.512 19.931 2.821 0 -0.059

Count Diff (±1) 25 BA 2 53 53 4 49 92.45 4 1.984 5.520 0.224 0.050 No -0.044 0.857 0.735 19.991 1.512 19.917 1.439 0 -0.073
Height Diff 25 BI 2 53 52 4 49 92.45 3 1.984 5.521 0.223 0.050 No -0.080 0.855 0.731 19.991 1.512 19.981 1.436 -1 -0.009
SD IT Ht 15 BI 4 53 52 5 48 90.57 4 2.287 5.989 0.309 0.096 Yes -0.214 0.868 0.754 19.991 1.512 20.167 1.354 -1 0.176

Plot XX. Best Parameter CS IM FS Mea-
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RMSE & R 20 BA 3 62 62 14 48 77.42 14 7.302 12.666 0.482 0.232 Yes 0.945 0.834 0.696 28.137 3.910 26.314 5.932 0 -1.823
RMSE 45 TNN 1 62 64 13 49 79.03 15 6.780 12.559 0.334 0.111 Yes -0.346 0.803 0.645 28.137 3.910 27.416 5.601 2 -0.721
R 15 BI 4 62 63 17 45 72.58 18 8.193 13.647 0.544 0.296 Yes 0.529 0.805 0.648 28.137 3.910 26.752 5.923 1 -1.385
R for MT 45 BN 1 62 61 15 47 75.81 14 7.019 12.855 0.489 0.239 Yes -0.407 0.856 0.732 28.137 3.910 28.183 5.625 -1 0.046

La
rg

er
 

Ra
ng

e RMSE 45 TNN 1 62 64 13 49 79.03 15 6.780 12.559 0.334 0.111 Yes -0.346 0.803 0.645 28.137 3.910 27.416 5.601 2 -0.721
R 55 BI 1 62 51 18 44 70.97 7 9.091 13.873 0.663 0.439 Yes 2.407 0.830 0.689 28.137 3.910 26.633 4.197 -11 -1.504
R for MT 25 BN 2 62 68 15 47 75.81 21 7.116 13.112 0.426 0.182 Yes -0.530 0.873 0.762 28.137 3.910 28.560 4.444 6 0.422

Ar
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-B
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ed
 

Ap
pr

oa
ch Count Diff (0) 15 TNN 4 62 62 16 46 74.19 16 7.676 13.560 0.525 0.276 Yes 0.246 0.630 0.396 28.137 3.910 27.862 5.609 0 -0.275

Count Diff (±1) 45 BN 1 62 61 15 47 75.81 14 7.019 12.855 0.489 0.239 Yes -0.407 0.856 0.732 28.137 3.910 28.183 5.625 -1 0.046
Height Diff 10 TLN 5 62 69 15 47 75.81 22 7.423 13.365 0.462 0.213 Yes -0.026 0.599 0.359 28.137 3.910 28.138 5.470 7 0.001
SD IT Ht 45 BI 1 62 61 16 46 74.19 15 8.721 13.887 0.427 0.182 Yes 1.740 0.783 0.613 28.137 3.910 25.602 5.252 -1 -2.535



Plot XX. Best Parameter CS IM FS Mea-
sured

Identi-
fied

Un-
matched Matched Matched

 %
Redun-

dant MAE RMSE R R2 Stat 
Sig R

Mean 
Diff (MT) R (MT) R2 (MT) Mean 

FM Ht
SD 

FM Ht
Mean 
IT Ht

SD 
IT Ht

Count 
Diff

Height 
Diff

Re
du

ce
d 

N
um

be
r 

of
 F

M
 T

re
es

In
di

vi
du

al
 T

re
e 

Ap
p.

Sm
al

le
r 

Ra
ng

e

RMSE & R 35 TNN 2 47 46 8 39 82.98 7 5.512 11.831 0.397 0.157 Yes 0.441 0.948 0.899 29.755 2.826 28.953 3.069 -1 -0.802
RMSE 55 BI 1 47 51 6 41 87.23 10 5.934 10.983 0.340 0.116 Yes 2.354 0.828 0.685 29.755 2.826 26.633 4.197 4 -3.122
R 20 TNN 4 47 43 9 38 80.85 5 6.470 12.968 0.450 0.203 Yes 0.805 0.693 0.480 29.755 2.826 28.918 5.025 -4 -0.837
R for MT 30 BM 2 47 48 8 39 82.98 9 5.333 11.815 0.383 0.147 Yes -0.200 0.968 0.936 29.755 2.826 29.891 2.827 1 0.135

La
rg

er
 

Ra
ng

e RMSE 15 BA 4 47 63 5 42 89.36 21 4.333 9.623 0.373 0.139 Yes 0.869 0.858 0.736 29.755 2.826 26.830 5.864 16 -2.925
R 15 BN 7 47 35 13 34 72.34 1 8.116 14.659 0.549 0.301 Yes -0.059 0.961 0.924 29.755 2.826 30.469 2.519 -12 0.714
R for MT 50 BM 1 47 41 10 37 78.72 4 6.422 12.975 0.466 0.217 Yes -0.330 0.970 0.941 29.755 2.826 29.636 5.020 -6 -0.119
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Ap
pr
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ch Count Diff (0) 45 BM 1 47 47 11 36 76.60 11 7.172 13.877 0.378 0.143 Yes -0.360 0.966 0.934 29.755 2.826 29.386 4.806 0 -0.369

Count Diff (±1) 30 BM 2 47 48 8 39 82.98 9 5.333 11.815 0.383 0.147 Yes -0.200 0.968 0.936 29.755 2.826 29.891 2.827 1 0.135
Height Diff 45 TLN 2 47 38 9 38 80.85 0 6.056 12.464 0.416 0.173 Yes 0.350 0.951 0.904 29.755 2.826 29.742 2.706 -9 -0.014
SD IT Ht 30 BM 2 47 48 8 39 82.98 9 5.333 11.815 0.383 0.147 Yes -0.200 0.968 0.936 29.755 2.826 29.891 2.827 1 0.135

Explanatory note:

CS - Cell Size,
IM - Interpolation Method,
FS - Focal Statistics Circle Radius,
Measured - number of field-measured (FM) trees,
Identified - number of trees identified within Thiessen polygons,
Unmatched - number of FM trees without any matching identified tree,
Matched - number of FM trees matched with (i.e. paired to) identified trees,
Matched % - percentage of matched trees from all FM trees,
Redundant - number of redundantly identified trees (not matched),
MAE - Mean Absolute Error for FM and counted heights,
RMSE - Root Mean Square Error for FM and counted heights,
R - Pearson’s Correlation Coefficient for FM and counted heights,
R2 - Coefficient of Determination for FM and counted heights,
Stat Sig R - Statistical Significance of the Pearson’s Correlation Coefficient,
Mean Diff (MT) - Mean Difference between average values of FM and counted heights for Matched Trees (MT) only, 
R (MT) - Pearson’s Correlation Coefficient for Matched Trees only,
R2 (MT) - Coefficient of Determination for Matched Trees only,
Mean FM Ht - Mean height of FM trees,
SD FM Ht - Standard Deviation of heights of FM trees,
Mean IT Ht - Mean height of Identified Trees (IT),
SD IT Ht - Standard Deviation of heights of identified trees,
Count Diff - Difference between count of identified and FM trees,
Height Diff - Difference between mean height of identified and FM trees. 
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