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Abst rakt 
H l a v n í m cí lem t é t o p ráce je obohatit h u d e b n í s ignály charakterist ikami l idské řeči. P r á c e 
zahrnuje tvorbu audioefektu insp i rovaného efektem talk-box: ana lýzu h lasového ús t ro j í 
v h o d n ý m algori tmem jako je l ineárn í predikce, a aplikaci o d h a d n u t é h o filtru na h u d e b n í 
audio-s igná l . D ů r a z je kladen na dokonalou kva l i tu v ý s t u p u , malou latenci a n ízkou 
v ý p o č e t n í n á r o č n o s t pro použ i t í v r e á l n é m čase . V ý s t u p e m p r á c e je sof twarový plugin 
využ i t e lný v profes ionálních apl ikacích pro ú p r a v u audia a př i využ i t í v h o d n é h a r d w a r o v é 
platformy t a k é pro živé h r a n í . P l u g i n emuluje reá lné zař ízení typu talk-box a poskytuje 
podobnou kva l i tu v ý s t u p u s u n i k á t n í m zvukem. 

Abstract 
The pr imary goal of the thesis is to enhance musical signals w i th signs of human speech. 
This involves the creation of an audio effect inspired by the talk-box, by analyzing the vocal 
tract w i t h a suitable algori thm like linear predict ion and applying the calculated filter to the 
musical audio signal. A n emphasis is given to excellent output audio quality, low latency 
and smal l processing overhead for real-time use. The outcome is a usable software plug-in 
targeted to professional audio edit ing applications and for live performance as well using a 
suitable hardware platform. It w i l l emulate the real talk-box equipment or provides similar 
audio quali ty w i t h a unique sound. 
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Chapter 1 

Introduction 

The techniques of speech analysis are heavily challenged in today's industry whether speak­
ing about communicat ion technology or mobile and embedded systems. This work is 
intended to examine the most common algorithms of speech processing from a musical 
perspective, and modify them appropriately to provide artistic features, excellent output 
quali ty and sufficiently short processing t ime for real-time use. 

The use-cases of making an instrument sound as i f it was ta lk ing are very diverse and 
leaves a vast space for creativity. The two most common uses are to make the human sound 
robotic and to make the instrument's own sound more human-like [ ]. A n instrument i n this 
context can include effect modules and modula t ion devices as well . A n early technology for 
achieving this functionality was the so-called talk-box effect emerging from the late 1940s 
and used heavily by Peter Frampton. He used the Hail talkbox construction where the 
instrument's signal is fed into a compression dr iver 1 which is connected to a long plastic 
tube (Figure 1.1). The other end of the tube has to be placed into the musicians mouth 
to articulate and shape the sound traveling through the tube. The resulting signal is 
recorded w i t h a microphone and sent to an output speaker after amplification. A l though 
this technology is relatively old, a lot of musicians (Ritchie Zambora, Slash, Joe P e r r y , . . . ) 
s t i l l use it to get the exact sound of the legendary effect. 

D ig i t a l alternatives had to catch-up i n quali ty w i th the original talk-box and a lot of 
projects attempted this issue wi th different approaches. The analogue music vocoder is 
one that became wide-spread and dominant throughout the late 70's and early 80's elec­
tronic music. Th is is a fairly complex piece of electronics that uses bandpass filters to track 
the spectral envelope in different regions of the speech spectrum and applies the formant 
structure onto a carrier signal provided by a keyboard for example. Speech coding algo­
rithms like linear predict ion were also used occasionally, but their popular i ty fell behind 
the vocoder. A n example of linear predictive coding can be heard on the song Notjustmor-
eidlechatter2 composed by Paul Lansky from the a lbum More Than Idle Chatter released 
in 1994. These techniques were designed to explore the artistic potential of human voice 
and computer synthesis and not p r imar i ly to simulate the talk-box as a physical system. 
In fact, it is very hard or nearly impossible to find a suitable emulation of the talk-box. 
A l l such attempts resulted in a different sound texture and some of them gained populari ty 
for their own features. E x a m i n i n g the potential of speech coding algorithms for talk-box 
emulation is taken as a side quest of this work. This could be very hard to achieve given 

1 A small specialized diaphragm loudspeaker. 
2Available from http://www. amazon. com/More-Than-Idle-Chatter-Lansky/dp/B000003GJ8 
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the fact that a l l sorts of complex physical and acoustic phenomena are making this effect 
so authentic. Yet it w i l l serve as the main inspirat ion along the development. 

Mixer or PA System Guitar Amplifier (b) Joe Satriani performing on a talk-box 
(a) A typical talk-box configuration. setup. 

Figure 1.1: Concept of the talk-box effect. 

Today's studio trends are causing massive migrat ion of analogue effects into their soft­
ware equivalents. D i g i t a l A u d i o Workstat ions ( D A W ) use plugins to provide the desired 
effect in studio quality. The result of this thesis is a plugin module as an emulation of 
the talk-box effect. A two channel audio card wi th a microphone is sufficient to use the 
plugin which extracts the formants from the speech and synthesizes them wi th the signal 
from the instrument. The plugin has to deal w i th requirements like real-time use, excellent 
audio quality, musical texture and response, and a relatively unique sound to stand out 
from the average vocoder-like effects accessible on the market or be at least comparable to 
them i n quality. In addit ion, my goal was to produce a publ ic ly available (reference) imple­
mentation of a voice-driven effect w i th an interesting sound. Linear prediction and voice 
coding algorithms w i l l be i n the focus throughout the research phase to find an acceptable 
solution as these - for some reason - gained seemingly less attention compared to other 
voice synthesis techniques in the music industry. A n y findings regarding sound quali ty and 
processing performance optimizations would represent a contr ibution to the communicat ion 
and mul t imedia industry as well. 

The list of requirements does not stop at audio aspects. The result has to be available 
on a l l major platforms and for the widest range of D A W softwares. W i t h a well designed 
framework, the algori thm can be packaged into mult iple plugin formats to support as many 
workstations as possible. The final product has to be usable "as is" without an engineering 
degree and a l l configurations of controll ing parameters have to be meaningful and usable 
in an appropriate si tuation. A uniquely designed user interface for the plugin is also part 
of the vision. 
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1.1 Organization of the Thesis 
The thesis is d ivided into six major parts, following a progression from the most general 
topics to more and more specific issues regarding the development. In the first part, it w i l l 
continue to raise as much interest as possible i n the subject of speech synthesis and music 
creation practices w i th studio edit ing softwares and audio effects i n general. The goal is 
to point out the exact segment in which the final product could be deployed. The second 
part involving Chapter 2 w i l l be dedicated to more specific theoretical issues and formal 
definitions, that may be indispensable to describe the thesis product itself. Th is description 
w i l l reside i n the next two parts w i t h Chapter 3 being a design section, where the tonali ty 
remains theoretical, but switches over to a focused plan for assembling the final software 
product. Chapter 4 is intended to describe the very specific problems and unpredictable 
(or hardly identifiable) implementat ion issues in the design phase. Chapter 5 gives place to 
evaluation and user testing. F ina l ly , the last chapter provides a general discussion on the 
results and lays out the future directions of improvements and dis tr ibut ion. 

1.2 A brief history of digital singing 

Attempts to create artificial speech has begun way before the digi ta l era. Some experi­
ments were already made back in the 18th century lending voices to statues (and similar 
avatars) v i a speaking tubes and mysterious mechanical machines to impress the public. 
One of the earliest successful attempts at speech synthesis occurred i n Russia in 1779 when 
Kratzenste in constructed a mechanical model of the human vocal tract that was capable of 
reproducing a few steady state vowels. The first recorded success i n synthesizing connected 
speech was achieved by Kempelen Farkas (Wolfgang von Kempelen) in 1791 when he com­
pleted the construction of an ingenious pneumatic synthesizer (Figure 1.2) that was driven 
by a bellows wi th the air being forced past a whistle and an adjustable leather "vocal tract" 
[2]. 

Figure 1.2: Pneumat ic speech synthesizer developed by von Kempelen in 1791. [ ] 

In 1961, the first singing computer appeared on the scene. The IBM 7094 sang the 
song Daisy Bell w i th the vocals programmed by John K e l l y and C a r o l L o c k b a u m and the 
accompaniment by M a x Mathews. This was an inspirat ion for A r t h u r C C la rk as the 
song made its way to the legendary movie 2001 Space Odyssey released i n 1968. The 
earliest computer music project at B e l l labs i n the late 1950s yielded a number of speech 
synthesis systems capable of singing, one being an early acoustic tube model of K e l l y and 
Lockbaum [ ]. Th is was considered computat ional ly and economically too expensive at the 

6 



t ime to be used for music composit ion. 
A n early legacy of voice synthesis is the VODER device patented i n 1939 by Homer 

Dudley at B e l l Labs . The technology was first demonstrated publ ic ly at the 1939 New 
York World's Fair. It allowed speech generation using a controll ing interface which was 
fairly complicated. The solution consisted of a parallel array of ten electronic resonators 
arranged as contiguous band-pass filters spanning the important frequencies of the speech 
spectrum (such a system is sometimes referred to as a spectrum synthesiser). The device 
was controlled v i a a keyboard (i.e., played like a piano). Ten finger keys controlled the 
output gain of each of the filters, a wrist bar controlled the selection of aperiodic hiss or 
periodic buzz, whilst a foot pedal controlled the pi tch of the buzz. Three addit ional keys 
supplied appropriate stop-like transient excitat ion [ ]. Werner Meye r -Epp le r 3 recognized 
the capabil i ty of the Voder to be used i n electronic music. The device required a skil led 
operator to produce intelligible speech and making singing voice was even more challenging. 

Under the acronym V O C O D E R (VOice C O D E R ) was hiding a device capable of cod­
ing speech efficiently for further transmission and communicat ion purposes. Research was 
already i n progress from the late 1920s at B e l l Labs yielding the pair of devices known as 
the V O C O D E R for analysis and the V O D E R for speech synthesis which became more and 
more interesting for the scientific world. It was finally shown that intelligible speech can 
be produced artificially. Actua l ly , the basic structure and idea of V O D E R is very similar 
to present systems which are based on the source-filter model of speech [5]. 

Figure 1.3: A picture of the V O D E R in use. [ ] 

The Phase Vocoder debuting i n 1966 (Flanagan and Golden, B e l l Labs) , implemented 
using discrete Fourier transform, has found extensive usage i n the music industry. Despite 
that it was not pr imar i ly developed for speech coding, it can be considered a vocoding 
effect as it allowed the transformation and recreation of speech wi th different properties 
like the pi tch or playback speed. Perhaps the most notable implementat ion was produced 
by M a r k Dolson i n 1983 which took advantage of the increasing computing power at the 
time. Today's auto-tune effects are based on the phase vocoder principle. 

Linear prediction was a breakthrough i n speech processing and had a noticeable impact 
on d ig i ta l music as well (Lansky, mentioned in chapter 1). The success can be related to 

3Werner Meyer-Eppler (30 April 1913 - 8 July 1960), was a Belgian-born German physicist, experimen­
tal acoustician, phoneticist and information theorist. Source: http://en.wikipedia.org/wiki/Werner_ 
Meyer-Eppler 
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the mathematical s imilar i ty w i th the source-filter abstraction of the vocal tract [ ]. Th is 
algori thm w i l l be discussed i n the following chapters i n detail . 

1.3 Digital audio effects 

There are a few misconceptions about certain phrases used i n the field of signal processing 
when it comes to sound waves i n general. Terms like sound effects, sound transformation, 
sound processing or audio effects are used many times for the same subject, despite they 
may refer to slightly different disciplines. Even the word "effect" can be confusing as it 
represents the perception of certain cause or phenomenon i n the m i n d of a person, which 
is inevi tably subjective and can be hard to define formally. W i t h this i n mind , one could 
separate the two most frequently used terms sound effects and audio effects by an analogy of 
the object being made and the tool used for creation [6]. The shift of the meaning of "effect" 
prevails in the semantics of these two terms: a sound effect is the change or modification 
being perceived itself and the tool used to make that change is an audio effect. A sound 
effect can provide natural or processed sounds either by synthesis or recording to produce 
specific effects on perception used to simulate actions, interaction or emotions i n various 
contexts. O n the other hand, an audio effect is the subject of research and falls into the field 
of signal processing. The fact that these terms are used interchangeably is not accidental. 
The most usual audio effects are known to modify the sound at its surface level by means 
of the retrievable amount of information from the digi tal ized waveform. Fi l ters , delay 
lines, frequency domain transformations can modify the sound quite moderately ( thinking 
of distort ion effects, espec ia l ly . . . ) but the used methods are s t i l l touching the surface 
of the information contained in the samples wi th l i t t le intelligence at a l l . A n example of 
deeper modification could be the phase vocoder which extracts the pi tch and envelope and 
resynthesizes the sound using only the information from the samples and not the samples 
themselves. Today's audio effects are reaching a matur i ty where these "levels" are melt ing 
together and it is not a coincidence that the terminology melts w i t h it at the same time. 
The definition of "audio effects" provided by the DAFX Book [ ] and explained above w i l l 
be used throughout the rest of the thesis for the sake of consistency. 

Instrument 
maker 

Instrument 
(physical limits) 

Composer 
Score 

r ) r 
Sound 

(Aesthetic limits) 
Feriormer Auditor 

Figure 1.4: Communica t ion flow in sound effect evaluation. [6] 

The result of this work has to be an audio effect targeted to d igi ta l workstations. It 
could be appropriate to make a smal l overview of currently available effects and their cat­
egorization, only to point out where this "guitar speech" effect could fit into the picture of 
studio effects, which music product ion softwares are the potential hosts and what features 
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they provide. The usual communicat ion flow between the actors of music creation (evalua-
tors of audio effects) is shown on Figure 1.4 where each actor could be a different entity or 
even the same i n every case depending on the si tuation. The categorization can be based 
on the requirements of any from these actors and would yield fairly diverse schemes as a l l 
of them have a bit different motivat ion. 

The instrument maker's perspective is perhaps the most relevant from a technical stand­
point reflecting the implementat ion concepts. The following type of components are known 
to exist i n this class: [ ]: 

• Fi l ters and delays (re-sampling) 

• Modula tors and demodulators 

• Non-linear processing 

• Spat ia l effects 

• Time-segment processing 

• Time-frequency processing 

• Source-filter processing 

• Adapt ive effects processing 

• Spectral processing 

• T ime and frequency warping 

• V i r t u a l analog effects 

• Au tomat i c mix ing 

• Source separation. 

Perceptual properties are relevant to the end-users, namely the producers, musicians 
or composers. Nevertheless, it may also be a foundation for developing user tests and 
interfaces [6]: 

Loudness The perceived intensity of sound. Relates also to dynamics, and phrasing (play­
ing styles), levels i n musical terminology like pianissimo (pp) or fortissimo (ff). A 
couple of effects is based on this quali ty such as compressors, l imiters, tremolo (am­
plitude modulat ion), noise gates, and so o n . . . 

T i m e and R h y t h m related to duration, tempo, and rhythmic modifications (accelerando, 
deccelerando) 

Pi tch Denotes the manipulat ion of note heights, intonation, transposit ion or harmony 
changes, (e.g., pi tch shifter) 

Spatial Hearing Environment acoustics, mot ion effects (Doppler, rotary speaker) as well 
as source localizat ion (distance, azimuth, elevation) 

T i m b r e Captures the texture, or essence of the sound. More specifically it relates to 
spectral attributes, like formants, short term time features as transients and attacks. 
Generally, the t imbre is what makes two sounds w i t h the same pi tch different. E x ­
ample effects include choruses, distortions, equalizers, or even vibrato. 
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1.4 Audio workstations and pluggable effect modules 
Start ing from the 1970s, the tools of music product ion have slowly but inevi tably trans­
formed from multi-channel tape recorders to integrated software and hardware solutions. 
Qual i ty issues from the A D / D A conversion could not hold back the economic and practical 
benefits of computer based recording system and nowadays, the change-over has almost 
finished. A l t h o u g h analogue recording devices are s t i l l part of the chain, the center or 
"brain" of the recording system is a digital audio workstation running on a P C or M a c 
depending on the part icular software. Since a computer has no tapes but a hard drive, the 
available space allows a non-destructive workflow whereas the old technology had to delete 
a previous recording. A D A W can have several "tracks" like a multi-channel tape recorder 
wi th many addi t ional features, like containing mult iple layers on each track or dynamical ly 
allocate or remove unused tracks. A recorded piece of audio can be processed by a unique 
signal chain assembled for a part icular track wi th a separate time-line of parameter values 
(sometimes referred to as the automation curve). Addi t ional ly , a signal chain can util ize 
inserts and sends to route the audio data flow by preference. 

Figure 1.5: Preview of ArdourS w i th several p lugin modules i n use. 

Another major benefit is the opportuni ty for ind iv idua l audio effect developers to dis­
tr ibute their work i n a form of external plugin modules (shortly plugins). These can be 
loaded into a signal chain corresponding to one of the workstation's tracks and used real­
t ime in the monitored output as well . F r o m a technical viewpoint and especially as a 
programming concern, these modules are compiled shared or dynamic l ibrar ies 4 as far as 
the computing logic goes [7]. Static information and meta-data can reside i n separate de­
scriptor files i n a chosen data definition language ( X M L or s imilar) . P l u g i n creation can 
be done w i t h a specific A P I or framework that defines the interface of the shared library. 
Frameworks do exist for different platforms wi th various approaches but their interfaces 
can be unified wi th addit ional effort. 

4Standard OS dependent binary file, .dll in Windows, .so in Linux... 
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1.4.1 O v e r v i e w of D A W appl icat ions 

In order to bu i ld a rough picture of current D A W solutions and to choose a reference 
instance for developing the plugin, an investigation has been made concerning common and 
well known D A W applications: 

Steinberg C u b a s e / N u e n d o One of the oldest representatives. It offers an impressive 
set of internal effects and support mainly the V S T plugin type as it was developed 
pr imar i ly for this product. 

A p p l e Logic The D A W supported by A p p l e and available only for their platforms. A 
major advantage is the excellent real-time support of a M a c system. Audio Unit 
plugins are supported natively and others can be ut i l ized through special wrapper 
plugins. 

A v i d ProTools S imply speaking, the industry standard i n digi ta l audio product ion. In­
stead of providing a stand-alone software, it covers hardware interfaces ("tools") for 
I / O and acceleration. It owns a unique plugin format as well which was discussed 
above. 

A r d o u r 3 A l though this D A W is significantly less widespread than the previous "big play­
ers", it is an important and only l iv ing representative from the open-source world of 
professional audio editors (pr imari ly but not exclusively for L inux) and is amongst 
the few existing open-source professional music product ion softwares at a l l . It is a 
suitable candidate to be a reference D A W for the development phase as well. 

The provided list includes only a few of the most significant D A W s , without mentioning 
a lot of high quali ty but s imilar applications. P l u g i n modules are unable to run indiv idual ly 
without a hosting environment. In technical terms a host can be any piece of program able 
to load the l ibrary at run-time and pass through audio and control data. D A W applications 
are also hosts and each of them supports slightly different features. The mode of operation 
(real-time use, G U I support, H W acceleration, etc.) may also differ from each other. 
However, some features are assumed implic i t ly , like the abi l i ty to display a plugin's own 
U I , or i n case of no special graphics, the host has to generate the control widgets based on 
the available metadata. 

1.4.2 P l u g i n modules 

A general scheme of a plugin is shown in Figure 1.6. A reasonable A P I should provide 
a straightforward documentation on wr i t ing plugin instances. The framework w i l l almost 
certainly define a function wi th the appropriate linkage as an entry point. Moreover, v i r tu­
ally a l l of them specify a function i n which the processing w i l l take place (usually p r o c e s s , 
r u n or a s imilar name). Further details about this topic can be found in [8] for example. 
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Figure 1.6: A n a t o m y of a software plugin. [ ] 

A non-exhaustive overview of the common plugin A P I s is provided below: 

Steinberg's V S T A proprietary plugin framework from the company Steinberg. It ap­
peals w i th the widest range of support amongst audio applications. Moreover, it 
supports unique user interface creation and M I D I functionality. 

A u d i o Units The plugin standard for Apple ' s M a c platform. It covers system-wide audio 
effects as well as studio applications wi th a l l the essential features like G U I support, 
real-time processing, etc. 

A v i d A u d i o extension P r i m a r y format for the ProTools family of applications. Its 
unique feature amongst the competi t ion is the abi l i ty to use hardware acceleration 
using the proprietary accessories bundled wi th a ProTools package. 

L A D S P A A slightly outdated format that has been considered as the system-wide stan­
dard for G N U / L i n u x based operating systems. It shines wi th the most simple and yet 
very well designed A P I which consists of a single header file. Open-source portabi l i ty 
and unbeatable s implic i ty has a drawback of lacking a dedicated M I D I support or 
custom user interface creation. 

L V 2 A fully fledged modern plugin A P I replacement for the emerging L i n u x audio infras­
tructure intended to be the successor of the previous L A D S P A format. It supports 
G U I creation wi th existing widget toolkits, M I D I messages, data description wi th 
static metafiles, and many other features. 

J U C E audio framework Th is is a unique member of the list being a wide-ranging C+-1-
class l ibrary for bui ld ing cross-platform applications and plugins (as stated i n their 
official website 5 ) . If an audio plugin is made wi th the J U C E library, it can be compiled 
to support many of the previous formats simultaneously. It offers high level signal 
processing classes as well, and is not l imi ted to plugin development, but aims to be 
an overall audio software toolkit . 

5http://www.juce.com/ 
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T y p e M a k e r A P I License features Notes 

V S T Steinberg proprietary M I D I , G U I widest popular i ty 
A u d i o Uni t s Apple proprietary M I D I , G U I only for A p p l e systems 

A u d i o extension A v i d proprietary M I D I , G U I H W accel. 
L A D S P A ladspa.org open-source - Very simple A P I 

L V 2 lv2plug. in open-source G U I , M I D I G U I wi th any toolki t 
J U C E R O L I l t d . open-source G U I , M I D I supports mult iple formats 

Table 1.1: Summary of p lugin architectures 

Some plugin technologies can be ut i l ized in more lightweight audio editors (e.g., Audacity 
or Garageband) w i th offline and destructive edit ing approach. Furthermore, they can be 
used in system wide audio daemon services as Pulseaudio can use L A D S P A plugins or the 
Coreaudio framework wi th Audio Units plugins. 

1.5 Similar voice-driven audio plugins 

This section is dedicated to investigate similar products on the market as the developed 
plugin is intended to be. Vocoder plugins are fairly easy to obtain even for free of charge 
as part of several plugin bundles (e.g., the open source CALF plugins, the free MDA V S T 
bundle). 

Figure 1.7: Preview of the AIR Boxing Talk plugin. Source: p r o t o o l s p r o d u c t i o n . c o m 

More complex commercial formant extraction plugins are also available, al though not 
quite common and tend to lean towards interesting voice synthesis effects instead of really 
simulating a talk-box unit . Some realizations advertise themselves as "digital talkbox" 
plugins, like the free ARTICULATOR Evo from the company Antares or the Boxing Talk 
from the AIR plugins bundle, but they sound just like a precise vocoding effect in almost a l l 
cases. Even a broader web search for a dedicated talk-box simulat ion yields no reasonable 
result i f an exact ta lkbox plugin is desired. Th is phenomenon sets a suspicion that the 
mentioned physical s imulation is far more complex than it would be cost-effective, or s imply 
impossible yet w i th the current speech analysis techniques. Nevertheless, even the free 
alternatives can provide a strong inspirat ion of what a synthesis p lugin is capable of and 
how the U I layout is arranged. A lot of extra modes, and modulations can be found in 
these effects, seemingly t ry ing to fill the gap between the digi ta l , robotic sounding vocoders 
and the acoustic, organically sounding talk-box solutions. 
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Chapter 2 

Theoretical Overview of Voice 
Synthesis 

A n a l y z i n g the performer's speech is the most fundamental part of this work and requires 
some formal basis. A s the tit le suggests, this chapter provides an introduct ion to the field 
of speech processing to support any deliberation occurring in the design phase. The goal is 
not to provide a comprehensive description of speech coding but to cover the thesis subject 
itself without major theoretical gaps. 

2.1 Spectral properties of the human vocal tract 

A short int roduct ion of the biological aspects is appropriate before describing the spectral 
model on its own. 

Wi thou t going into further details, the three main stages of speech product ion are as 
follows [9]: 

1. A i r flow from the lungs provides the acoustic power needed to make any sound at a l l . 

2. The flow is modified by the periodical ly opening and closing larynx that results i n a 
sound source or excitation. 

1en.wikipedia.org/wiki/Motor_theory_of_speech_perception 

Figure 2.1: Biologica l speech system. Source: W i k i p e d i a l 
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3. The vocal tract articulates a distinct vowel from the incoming signal. 

A wide-spread representation of the speech system is the source-filter model, as the 
source is coming from the vocal cords and the vocal tract acts as an acoustic filter [ ]. It is 
a system that has its own impulse response h(t) and spectral transfer function H(f) w i th 
each configuration. 

Glo t ta l airflow 
Vocal tract 

Radiated acoustic pressure 
Vocal tract 

Exci ta t ion signal L P C Fi l ter Speech output 

model 

Figure 2.2: Ana logy between the biological speech system and the source-filter model . [1] 

The transfer function is obviously not constant as the mouth shape is changing con­
tinuously. The impl ica t ion is that the filter modeling the vocal tract is t ime varying. A 
sound source has to excite this filter in order to produce speech. If this excitat ion signal 
is periodic, the result w i l l be a voiced sound. W i t h a stochastic or noisy excitation, the 
speech w i l l be unvoiced. 
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Figure 2.3: T i m e (left) and spectral domain (right) samples of voiced (top) and unvoiced 
(bottom) speech. Source: what-when-how.com 

A real-time speech processing application has to continually track the state of the vocal 
tract i n such short intervals (frames) where it becomes much or less stationary. The spectral 
shape of voiced fragments depends on two major factors: 
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1. The fundamental frequency and the accompanying harmonics FQ inducted by vocal 
cord vibrations. 

2. The spectral envelope wi th several distinctive local max ima created by the vocal tract. 
These peaks are referred to as formants. 

The human hearing system acts like a filter bank and is most sensitive to the 
200-5600 H z frequency range i n terms of perception [ ]. Th is is where the first three for­
mants as the most important spectral features occur i n speech, characterizing any human-like 
manifestation. Reproducing the spectral envelope of the speech is the key to create a rea­
sonable talk-box simulation. 

2.2 Source-filter separation 
The previous section has led to a conclusion that any manipula t ion wi th the speech has to 
rely on the accuracy of detecting and extracting the formant structure separated from the 
excitation source. Referring to chapter 1.3, this can be considered as a deeper analysis of 
sound samples. Before going into further details of how the separation could be done, the 
meaning of the term spectral envelope has to be defined accurately to know what is going to 
be separated exactly. Taking a purely harmonic signal, the envelope could be imagined as 
the curve which passes through the points denoting the harmonics in a frequency domain 
representation. The question remains open concerning what interpolation has to be used 
to retrieve parts of the curve in-between the harmonics. Th is definition stays no longer 
val id , i f addi t ional noise or non-harmonic components are present in the signal. In this 
case, the nature of the spectral envelope becomes dependent on what exactly makes up the 
excitation and what is the resonance. W i t h a l l these concerns in mind , the (non-formal) 
definition found i n [6] is borrowed, stating that "a spectral envelope is a smoothing of a 
spectrum, which tends to leave aside the spectral line structure while preserving the general 
form of the spectrum." 

Spectral 
envelope 

n.,n 1"2 

Analysis 

Spectral Source 
envelope signal 

1 
Transformation 

Synthesis 

Figure 2.4: Source-filter analysis work-flow. 
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Three reference techniques are wide-spread (with many variations) to perform a source-
filter separation: 

T h e channel vocoder w i th several frequency bands to estimate the signal energy inside 
each band and assemble the approximation of the spectral envelope. 

Linear prediction y ielding an all-pole filter corresponding to the envelope estimate. 

Cepstral analysis techniques perform a conversion of spectral domain information wi th 
mult ipl icat ive filter components into a logari thmic scale w i th additive (and thus sep­
arable) source-filter components. 

x{n) 
o-

HAz) 

Chan. Voc. 
LPC 
Ceps 

Source signal 

ei(n) 
— • • 

Source signal 
processing 

Spectral envelope 
estimation 

Spectral envelope 
transformation 

i 

y(n) 
-o 

Figure 2.5: Source-filter estimation scheme. [6] 

Figure 2.5 depicts a typica l manipulat ion scheme where the spectral envelope of the 
signal x(n) is removed by filtering wi th the inverse H\(z) filter and replaced by a different 
envelope denoted as H^i^z). 

2.3 Linear prediction algorithms 

Linear prediction is a widely used mathematical apparatus to estimate the behavior of 
discrete-time signals from their history. Appl ica t ions are not restricted to sound waves, 
usages can be found i n many engineering areas, but the subject covered i n this thesis is 
focused on how an acoustic filter could be retrieved from a short speech signal segment. This 
topic is essential regarding the design phase. Despite the fact, that detailed descriptions 
can often be found in literature, a formal section based on [6] is dedicated to the subject 
to be a well of backward references through the development. Th is section assumes that 
the reader is familiar w i th basic d igi ta l filtering concepts like F I R and I IR filters or the 
^- t ransform. 

The basic model works wi th a discrete t ime input signal x(n) and tries to predict the 
next sample as a linear combination of past samples. The prediction of x(n) is computed 
using an F I R filter by: 

v 
x(n) = ^ a^x{n - k) (2-1) 

fe=i 
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where p denotes the prediction order and are the predict ion coefficients. A n error 
or residual signal can be calculated from the difference of the predicted samples and the 
original ones by the equation: 

e(n) = x(n) - x(n) = x(n) - ^ akx(n - k) 
k=i 

or working i n the Z domain: 

k 
the prediction filter: P(z) = ^ a^z~ 

A;=l 
the prediction error: E(z) = X(z) - X(z) = X(z)[l - P(z)] 

(2.2) 

(2.3) 

(2.4) 

Equat ion 2.4 forms the basis of analysis and synthesis and is referred to as the feed­
forward prediction scheme (Figure 2.6) due to the direction of the calculation. 

x(n) 
o • 

e(n) e(n) 
(+) 

A 

P(z) 

{+) 
• 

x(n) 
P(z) 

y{n) 
-o 

(a) analysis (b) synthesis 

Figure 2.6: Feed-forward prediction block scheme. 

Based on the previous derivation, the prediction error filter (simply inverse filter) is 
defined as: 

A{z) = 1 - P{z) = 1 - £ akx{n - k) 
k=l 

(2.5) 

and a Z domain mul t ip l ica t ion wi th the original signal w i l l yield the error signal: 

E(z) = X(z)A(z) (2.6) 

Us ing the approximated error (residual) signal as an input to the a l l pole filter H(z) defined 
by equation 2.8 w i l l produce an output signal Y(z): 

Y(z) = E(z)H(z) 

* M 1 
A(z) l-P(z) 

(2.7) 

(2.8) 

If H(z) was the predicted envelope filter to the original signal X(z) and E(z) is the 
estimated residual of X(z), then Y(z) should be a nearly matching version of the original 
input X(z). 

K n o w i n g that H(z) is pract ical ly a spectral model of the vocal tract (without a gain 
factor), it shall be called the synthesis filter or s imply L P C filter. In case of desiring 
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compression, the low numerical values of e(n) are opening the possibil i ty of efficient quan­
t izat ion. Th is requires the min imiza t ion of the residual energy by obtaining an accurate 
L P C filter. The exact calculation of L P C coefficients resembles to a problem of finding the 
min ima l energy for the error signal, E = E{e2(n)}, thus calculating its first par t ia l deriva­
tives and setting them to zero. Solving this derivation would lead to E{x(n)x(n-i)}. The 
majori ty of literature suggests a solution using the autocorrelation values 

N-l 
rxx(i) = X ! u{n)u{n -i) (2.9) 

n=i 

together w i th the Levinson-Durbin recursion method for finding the coefficients of the 
inverse filter A(z). In equation 2.9, u(n) = w(n)x(n) denotes a windowed version of a 
block wi th iV samples. 

The best spectral fit can be found by min imiz ing the residual energy, but the gain factor 
of the calculated signal segment is s t i l l ignored. To accurately model the input signal x(n), 
a modified synthesis filter is used corresponding to the following equation: 

Hg(z) = G x H(z) = ^ (2.10) 
1 - E akz~k 

where G stands for the gain factor of the calculated segment. B y using the autocorrelation 
coefficients according to equation 2.9, G can be obtained as: 

G2 = rxx(0) - £ (jfe) (2.11) 
fe=i 

The last important term to define is the •prediction gain that is essentially the ratio of 
the signal energy compared to the residual e(n). 

N-l 
E x2(n) 

GP = S ( 2 - 1 2 ) 
E e2(n) 

There are certain weaknesses of linear prediction when used for speech analysis mainly 
due to the assumption of linearity. The inverse filter A(z) does not model the incidental 
nonlinearities, that may occur from various causes, like source-tract coupling, non-linear 
wal l v ibra t ion losses, and aerodynamic effects resulting i n deviations from the ideal source-
filter model . The outcome of re-synthesis could sound "buzzy" if these factors reach an 
extreme [4]. 

2.4 Numerical representation of prediction coefficients 

The coefficients at calculated from linear predict ion are mostly a subject of further cal­
culations or interpolation. Some of these operations require or suggest a different type of 
representation, to save computing resources, mainta in filter stability, or a id miscellaneous 
post-processing algorithms. Needless to say, that a l l of these representations have to con­
ta in 100 % of the information from pla in L P coefficients and provide sufficiently short time 
complexity regarding the conversion. 
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Line spectral frequencies It is generally known that L P coefficients have a wide numer­
ical dynamic range which makes them ineffective for operations like quantization. O n 
the other hand, line spectral frequencies have much better dynamic range. A l so , L S F 
coefficients are ideal for interpolation between arbitrary speech segments. Another 
useful property is that L S F coefficients reside in the spectral domain and have a close 
relationship wi th the actual formant structure. A change i n a part icular coefficient 
w i l l affect the power spectrum near the corresponding formant [9]. 

Reflection Coefficients A side-product of the Levinson Durbin recursion is a set of pa­
rameters known as the reflection coefficients of an acoustic tube model of the vocal 

Autocorrelat ion Funct ion In certain circumstances, the coefficients calculated wi th equa­
t ion 2.9 can be used without further calculat ion having attractive features for inter­
polat ion [9]. 

2.5 Analysis windows 

The theory of speech analysis and synthesis works mostly wi th short t ime segments usually 
called frames. Determining the durat ion of these chunks is up to the perceptual and motoric 
l imitat ions of our biology. M o r e specifically, to ensure that the frame contains useful static 
information, it has to capture a durat ion as long as the inert ial forces can keep the vocal 
tract in a stationary state. D u r i n g slow speech, the vocal tract 's shape and excitat ion can 
remain unchanged for even 200 ms. O n the other hand, the average durat ion of a phoneme 
is considered to be 80 milliseconds [ ]. Ex t rac t ion of the formant structure needs a more or 
less stationary spectral footprint but it is s t i l l required to have enough samples to perform 
an accurate analysis. Addi t iona l ly , i f the signal is sliced into pieces, and frequency domain 
operations are applied to the segments, the continuity of spectral characteristics might be 
distorted i f a simple rectangular "scissor" is used. This is a common signal processing issue 
and the solution is to use a window function for selecting each segment from the signal. The 
rectangular window would introduce several high frequencies due to the edges. M u l t i p l y i n g 
the input signal s(n) w i t h a window function w{n) can reduce these negative effects as 
it eliminates the mentioned edges of the rectangle. The goal here is not to describe the 
theory of windowing, but to introduce, what k ind of window functions may be considered 
in continuous real-time speech analysis for the best audio quality. 

T h e H a m m i n g window is considered as the most popular i n case of F I R filtering. It 
weighs the samples near the center w i th the highest ratio and slowly decreases w i t h 
a sinusoidal fashion close the edges of the set. 

T h e Hanning window is very similar to the previous Hamming window wi th a difference 
that the Hanning window gets very close to zero at the edges. 

tract. 

w(n) = 0.54 - 0.46 cos 0 < n < N (2.13) 

0 < n < N 
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T h e exact Blackman window w i th its derivatives, the Blackman and Blackman-Harris 
window are believed to give the best out-of-band rejection [11]. 

yt = Xi[0A2 - 0.5cos(w) + 0.8cos(2w)] (2.15) 

for i = 0 , 1 , 2 , . . . , n - 1, where n is the window length. 

Samples Normalized Frequency (XJC rad/sample) 

Figure 2.7: Compar ison of the most common window functions. 

Figure 2.7 shows a side-by-side comparison of the most common window functions. 
M a n y others are known to exist beside the mentioned window types, like the triangular, 
Bartlett, Kaiser-Bessel, Poisson, Reimann, just to mention a few. The question here is 
not only the type of window function, but the alignment and overlap ratio of each segment 
which is a specific design issue, and it w i l l be discussed i n Chapter 3. 

2.6 High-Fidelity audio filtering 
Fi l te r ing is the very essence of basic signal processing. C o m m o n description of how digi ta l 
filters work can be found i n many articles and a lot of tools are available for designing filters. 
Yet , when it comes to the implementation, a few issues just might pop up that have to be 
investigated carefully. It is not a secret, that the final product has to be ready at the time 
of wr i t ing these lines and the existence of this section is impl ied by specific problems which 
do require an addi t ional theoretical basis regarding filter implementations i n software. 

W h e n a transfer function of the form 

H ( Z ) = -, II I_ ~i (2-16) 
1 - a\z 1 - a2z z - . . . - aiZ 1 

is realized it means a conversion into a filter network or structure. There are generally more 
than one possible solutions each having unique qualities. The choice of structure can be 
influenced by factors such as the sensitivity to quantization, level of output noise due to 
ari thmetic rounding or truncation, computat ional efficiency, number of systems used, and 
type of filter [ ]. Th is section w i l l briefly introduce the most significant topologies and 
their properties. 
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Direct forms Us ing the direct relationship between the filtering topology and the differ­
ence equation, the obtained structure is shown i n Figure 2.8a. Coefficients of the transfer 
function serve directly as a mult ipl ier i n the corresponding structure which is known as the 
Direct form 1 (DF1). A s stated i n [12], there are severe coefficient sensitivity problems, 
when the poles of the filter lie close to each other or near the unit circle i n the Z plane. In­
put is processed first by the coefficients, that is why this structure is sometimes referred 
to as a zeros-before-poles realization. 

(a) Direct form 1 (b) Direct form 2 

Figure 2.8: Direct form filter structures. 

The structure i n Figure 2.8b is an alternative realization known as the Direct form 2 or 
canonic form due to the min imized number of ut i l ized processing blocks. The properties 
regarding coefficient sensitivity are very similar to D F 1 , quantization and generation of 
high level roundoff noise is s t i l l present. These forms are popular for hardware realizations, 
because they allow for a high level of parallelism. 

D F 1 is known to be more resistant to overflow problems which is not guaranteed i n D F 2 . 
Accord ing to [12]: "For a filter with an input and output magnitude less than unity, the 
inputs to all multipliers can be expressed in fractional arithmetic... If modulo arithmetic 
is used, the partial sums of products may be allowed to overflow since it is known that the 
final output will be within the range of the number system used." 

Cascade form The cascade form (Figure 2.9) reduces the coefficient sensitivity and quan­
t izat ion problems known by the previous arrangements. Here, the transfer function is 
shaped into a cascade of first or second order sections Hi(z): 

H(z) = f[Hi(z) (2.17) 
i=l 
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(n) 
- HK(z) 

y(n) 

Figure 2.9: Cascade filter realization. 

This arrangement may also require a greater control over the ordering of sections and 
the pair ing of the poles to achieve the best results. 

Parallel form A sibling of the cascade arrangement where the first or second order 
function blocks are placed i n parallel side-by-side to each other, as depicted on Figure 
2.10. The parallel structure produces even lower levels of roundoff noise than the cascade 
arrangement [12]. 

yip) 

Figure 2.10: Para l le l filter realization. 

The provided list of arrangements is by no means complete and touches only the surface 
of how a digi ta l filter can be implemented when a part icular hardware architecture is under 
examination. The decision of which structure w i l l be used, can be already predetermined 
by the purpose of filtering - an equalizer w i l l surely benefit from a cascade implementation. 
Furthermore, a specific platform can introduce addi t ional constraints. For instance, i f 
integer ari thmetic is unavoidable or parallel ism is not an option. In fact, for a software 
plugin implementation, the fundamental sample data type is almost certainly specified by 
the A P I or framework used for plugin creation which is usually a single precision floating 
point type ( f l o a t i n C language). Paral le l izat ion of the filtering algori thm inside a plugin's 
source code can also be t r icky as the host may be sensitive to thread-safeness of the called 
routines. Hardware acceleration is yet another issue which has to be thought over carefully. 
Ideally, acceleration should rely on the framework's features used for development (e.g., 
Avid's Audio extension plugins). 

x(n) 

Hi(z) 

H2(z) 

HK{z) 

+ 
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2.7 Zero State Response and Zero Input Response 

A n alternative way of filtering can be achieved through the transfer function's zero state 
and zero input response, abbreviated as Z S R and Z I R respectively. Suppose a transfer 
function H(z) and a speech signal being defined as L dimensional vector [13]: 

oo 
S = [ a ( 0 ) , . . . , s(L - 1)], a(n) = £ h(i)u(n - i) 

wi th h{n) marking the infinite-length impulse response of H(z) and u{n) being an excita­
t ion signal. Z I R is nothing more than the response of a filter structure wi th arbitrary state 
to a zero input . Th is could be even infinitely long, i f an I I R filter is used. The Z S R on the 
other hand, is the result of using a zero state filter for filtering an input signal. Considering 
a frame-based re-synthesis of a speech signal, where coefficients of H(z) change wi th each 
frame of a usual 20 - 30 ms length, there is a problem of handling the state of a constructed 
filter for H(z) at the moment of a filter change taking place. A possible solution is to use 
the property of the transfer function being decomposable to a sum of the corresponding 
Z I R and Z S R in order to perform continuous filtering on a derived excitat ion signal e(n) . 
Formal ly (based on [13]): 

S = SZIR + E H E = [ e ( 0 ) , e ( l ) , . . . , e(L - 1)] 

w i th the matr ix product E H being the zero state response of H(z) using the L dimensional 
vector E as the input signal. In this case, H has to be a mat r ix containing samples of the 
impulse response in the following form: 

H 

/h(0) h(l) - h(L-l)\ 
0 h(0) ••• h(L-2) 

\ 0 0 0 h(0) j 

(2.18) 

A non-formal explanation is that the zero input solution is the response of the system 
to the in i t i a l conditions, w i th the input set to zero. The zero state solution is the response 
of the system to the input, w i th in i t i a l conditions set to zero. The complete response is 
s imply the sum of the zero input and zero state response. 
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Chapter 3 

Conceptual Design of the Talk-box 
Emulation 

This chapter w i l l outline a design plan of an audio effect using the previously described 
theoretical basis. The goal is to use i l lustrative design tools like block diagrams, to explain 
each part of the system and support technical decisions w i t h proper reasoning. Addi t iona l ly , 
outline some alternative and potential ly viable solutions if found to be appropriate. 

3.1 Technical description of the idea 

The basic concept was roughly introduced i n previous chapters. This section w i l l guide the 
reader through a more specific description. The upcoming plugin is intended to be an exten­
sion effect module for home or studio recording setups, let it be called the formantfilter 
from now on. In practice, it requires minimal is t ic and usual equipment including a micro­
phone and v i r tua l ly any k ind of musical instrument like a synthesizer or an electric guitar. 
A recording hardware interface is also impl i c i t ly assumed. 

Figure 3.1: A min ima l hardware setup to use the plugin. 
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The formantfilter requires two input signals: one for the instrument and one for the 
microphone. In order to set up the D A W to correctly run the plugin, a two channel bus 
can be added to the session wi th the inputs routed accordingly. Us ing the effect consists 
of playing the instrument and making vocal sounds (noises, whispers, etc.) simultaneously. 
The vocal does not have to be in tune wi th the underlying harmony, the pi tch of the vocals 
should not have any effect on the note being played whatsoever. The instrument dictates 
which note w i l l be heard, instead of the vocals. 

The effect should have a few control parameters, though not too many to keep it user-
friendly. The ma in function is to synthesize speech wi th the instrument sound, but other 
modes of operation can be imagined as well, like mix ing the original instrument or vocal 
signal w i th the synthesized result. A variat ion or mode where the vocal signal is pi tch shifted 
to the tone of the instrument and added to the resulting sound was also considered wi th 
various cross synthesis methods (using just the excitat ion pi tch shifted vs. the complete 
s i gna l . . . ) . 

•Einstr (p) %speech(p) ^leftip) ^rightip) speech ip) 

bypass mode 

($) 
g a i n 

o 
tone 

1 3 

bypass mode 

© 
g a i n 

0 Vip) [ Vleft(n) o yrightip) 

(a) Mono version (b) Stereo version 

Figure 3.2: I l lustrat ion of plugin instances. 

A stereo and a mono configuration are taken into account, these are depicted on Figure 
3.2. Ideally, the plugin logic should use independent processing chains on each channel. 
More channels than two are not l ikely to be ut i l ized during usual operation. 

A straight-forward atti tude is to implement the complete algori thm offline w i th a r ich 
signal processing toolki t like the one offered by M A T L A B . The real plugin version wi th 
online processing can be assembled afterwards. F ina l ly , a unique G U I can be crafted for 
the plugin to be more competit ive against s imilar products. W i t h an intention of using 
mult iple plugin technologies ( V S T , L A D S P A , etc.) for various platforms, an independent 
and simple C / C + + framework is also desired, which can be: 

1. A n external project at tempting such issues. 

2. A completely new framework wri t ten from scratch. 

The first attempt would introduce an essential dependency at the very basic level, and 
the only considerable framework - the J U C E l ibrary - seemed to be a promising but incom­
plete solution, w i th a lot of unnecessary modules which produce a potential ly huge binary. 
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For the above mentioned reasons, the decision is to use a t iny but functional framework 
wri t ten from scratch in C + + . This allows a clear formulation of the final a lgori thm itself 
which w i l l not depend on any part icular A P I , and comes wi th m a x i m u m portabil i ty. F i g ­
ure 3.3 shows how the algori thm w i l l be defined over a unified plugin interface. Chapter 4 
reveals further details about the implemented layers. 

A l g o r i t h m d e f i n i t i o n 

} f 
r \ 

W r a p p e r i n t e r f a c e 
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Plugin backends 
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V S T L A D S P A L V 2 
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Figure 3.3: Scheme of a custom plugin framework. 

3.2 Requirements and constraints 

A s the section t i t le suggests, a brief summary w i l l follow concerning the technical require­
ments. Be ing a plugin which has to support real-time processing, it is appropriate to 
investigate the max ima l acceptable latency values, and other ways of reducing the per­
ceived delay from the input to the output even i f the physical buffering is l imi ted to a 
certain amount of samples. 

A s stated in [14], the m a x i m u m time of human-perceptible audio latency is assumed 
between 2 0 - 3 0 m s . This can be assigned to a durat ion of a single analysis segment. The 
frame length is not the only factor that contributes to a latency-free operation. A smart ly 
structured analysis window has to be used to avoid artifacts and distort ion wi th min ima l 
delay. Mos t L P C coders use 20 ms frames which are further divided to sub-frames, or the 
frames overlap [13]. 

A 20 ms long durat ion for each frame implies that a l l the calculations have to take place 
in the aforementioned timespan, but the si tuation gets more complicated by recalling the 
basic mechanism of audio signal processing wi th in a plugin hosting environment. Section 
1.4 gives a rough explanation of how the plugin logic is ini t ia ted by cal l ing the p r o c e s s 
method (might have different names across A P I s ) . Scheduling this callback function is 
completely up to the host. More precisely, it is dictated by the low-level audio subsystem 
of the given platform ( A S I O , J A C K , Coreaudio) w i th adjustable buffer size that can be 
certainly expected under 20 ms. W i t h a well suited platform and hardware setup, this du­
rat ion can be easily under 10ms. W i t h respect to the actual sampling frequency (usually 
between 44 .1kHz up to 192kHz inclusively), the corresponding sample count is delivered 
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as a parameter to the p r o c e s s ( ) function wi th each callback. O n the other hand, succes­
sive speech analysis cannot be performed on frames wi th much shorter length than 20 ms. 
Therefore, the samples have to be collected across consecutive calls, and analyzed when the 
desired amount of samples become available. 

A s mentioned before, the processing algori thm has to adapt to different sampling fre­
quencies, potential ly variable input and output channel count, unpredictable amount of 
samples for each cal l and to fit the longest processing path into the time-span of one call­
back. Not satisfying these constraints can result i n t iny clicks and pops also known as 
Xruns1, or even a completely unrecognizable output. 

3.3 Algorithm design and decomposition 

W i t h respect to the previously described issues and using the information gathered in 
Chapter 2, the next step is to outline a general solution for the desired formantfilter effect. 
Th is section w i l l go through the planning stage having no feedback from the described 
solutions yet. Chapter 4 should provide the necessary information of how the discussed 
solutions perform and decide which one of them is going to be used finally. 

Preprocessor 

% speechy 
Preprocessor 

O Pinstr 

L P C analyzer 

frame buffer 

F I R 

IIR (synthesis) 

G y(n 
ASpeech(.z) — • 

Pspeech 

L P C analyzer 
G 

frame buffer Aspeech(z) 

f[Hz] 

Figure 3.4: Generalized block-scheme of the formantfilter. 

Figure 3.4 shows the basic structure under consideration. It addresses a case w i t h a 
single instrument and a voice channel, which corresponds to a mono configuration depicted 
on Figure 3.2a. A stereo arrangement can be imagined easily by dupl icat ing the upper part 
of Figure 3.4, thus yielding two distinct output signals. E a c h channel has a generalized 
preprocessing block that includes basic operations as removing the D C offset, or adjusting 
signal levels. The LPC a n a l y z e r has the responsibili ty to perform a source-filter separation 
wi th linear prediction and estimate the coefficients for the inverse filter A(z) and the corre­
sponding gain G for the analyzed frame. Parameters pinstr and pspeech denote the prediction 

1Term used collectively for events like delivering the processed samples too late or not accepting the 
provided ones in-time. 
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order for both the instrument and the speech analyzer. The idea is to take the formant 
structure of the speech signal and apply it to the calculated excitat ion e(n) of the instru­
ment. B o l d arrows are showing the path of audio samples while the white arrows indicate 
the parameters to the processing blocks. In order to remove the spectral envelope from the 
instrument signal, it is filtered wi th an F I R filter given the coefficients from A(z). The 
final stage is an I IR synthesis filter w i th the input being the residual from the instrument 
signal and A{z) placed i n the feedback loop. This is an essential cross synthesis scheme and 
it serves as a start ing point for further development. A variat ion (Figure 3.5) where the 
original signal is fed straight to the synthesis filter is also under consideration, the deciding 
factor is mainly the resulting sound texture. Us ing only the instrument excitat ion could 
destroy its musical signature over a benefit of more accurate speech reproduction. O n the 
other hand, the lack of higher harmonics and noise may hold back the proper excitat ion of 
the spectral envelope when the original instrument signal is used. A weighted combination 
of the two is also possible w i th a dedicated controll ing parameter as their ratio. 

•^instr (^) 
Preprocessor 

Preprocessor 

Pspeech 

L P C analyzer 

frame buffer 

G 

IIR (synthesis) 

G 
ASpeech(.Z*) 

y{n) 

Figure 3.5: Synthesis w i t h the original instrument signal. 

Let the LPC a n a l y s e r be examined in more detail . This should include a buffer for 
collecting the input samples and arranging them into a stream of frames. The correct 
placement and the frame size are also affecting the sound quality, processing t ime and per­
ceived latency. A few possibilities of sample buffering and windowing w i l l now be discussed. 

The simplest possible structure is to use a buffer w i th the appropriate size and collect 
the incoming samples t i l l the buffer gets full . W h e n this happens, calculate the inverse 
filter A(z) and repeat the whole procedure. Figure 3.6 depicts the si tuation considering a 
window function for mul t ip ly ing the frame samples after being ready for analysis. 

frai neo frai nei frai ne2 fran ie3 frame4 

Figure 3.6: Simple buffering of samples into frames and windowing. 

The solution i n Figure 3.6 has an advantage of s implic i ty which makes it less vulnerable 
to errors, requires relatively low processing power and can be developed and tested faster 
than the other, more complicated variations. A s a major drawback, the m i n i m u m latency 

29 



has to conform to the exact durat ion of one frame which is at least 15 ms even wi th the 
shortest usable frame size. Addi t ional ly , the accuracy of prediction may not be acceptable. 

A n enhanced version of the previous structure is shown on Figure 3.7. This arrangement 
is suggested by [9] and its focus is to maximize the positive effects of the window function 
and the accuracy of prediction wi th an impl ic i t overlap of the windowed segments. The 
samples are collected into a window wi th twice the size of a frame which is centered under 
the window segment. Th is arrangement is complicated for implementat ion and is taken as 
a backup plan i f every other fails. 

windowo window2 window4 

windowi windows 

frameo frai nei frame2 frai ne3 frame4 

Figure 3.7: Enhanced buffering and windowing. 

A compromise between the previous two arrangements is a simple but overlapped frame 
structure i l lustrated on Figure 3.8. The exact size of the frame and the overlap s t i l l remains 
a question. The next section w i l l t ry to provide some estimations related to such values 
including prediction order and suitable window functions. However, the final decision relies 
on pract ical experiments as well . A l though this arrangement is a bit more complicated 
than the simple structure on Figure 3.6, it is tempting due to the scalable overlap and thus 
the overall latency. 

frameo 

frame i 

frame2 
overlap frame3 

Figure 3.8: Simple overlapped buffering and windowing. 
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3.4 Choosing the optimal parameters of prediction 

The development t ime needed for examining a l l possible parameters, measuring prediction 
gains, and generally playing around wi th different parameters b l indly is unacceptable. This 
section w i l l gather the best recommendations found in the literature concentrating on audio 
quali ty and performance. The parameters in question are: 

• Sampling frequency 

• Predic t ion order 

• Frame length 

• Type of window function 

Parameters are qualified by the abi l i ty to give a reasonable accuracy (though not necessar­
i ly perfect) w i th no unpleasant frequencies, buzz or anything non-musical. Secondly, the 
processing t ime has to be minimized th inking of the fact, that i n a real si tuation there are 
possibly mult iple plugins and effects running simultaneously, sharing the same resources. 
The pr imary measure of accuracy for linear predictive coding is the prediction gain defined 
by equation 2.12. It depends mainly on the prediction order and the size and shape of the 
analysis window. 

Sampling frequency The sample rate affects nearly a l l parts of the processing chain. 
"Fortunately", audio plugins are not responsible for choosing the exact value, they just need 
to be prepared for the possible variations (or inform the host about the inabi l i ty to use a 
particular sampling frequency). The majori ty of audio interfaces operate wi th a sampling 
rate of 48 kHz, but more extreme products can easily reach 192 kHz. A higher frequency 
also requires more processing power, not only for the increased number of samples that has 
to be processed. The following discussions w i l l highlight that - besides other factors - the 
prediction order has to be increased as well , resulting i n higher C P U usage. 

Predict ion order A s stated in [15], the memory of the inverse filter A(z) has to cover at 
least twice the durat ion required for sound waves to propagate from the glottis to the lips 
which is ^jr where L is the length of the vocal tract (cca. 17 cm) and c is the speed of sound 
(340 m/s). This means that a memory of at least l m s is required and by speaking of the 
filter A(z), the memory is equal to the number of coefficients, thus the prediction order. 
The exact order has to be chosen prior to the usual sampling rates that audio plugins are 
dealing wi th . A s stated i n section 3.2, the expected sampling frequencies should be around 
44,1 and 192 k H z depending on the audio interface. Generally, 

F, [Hz] 

coefficients are required which leads to roughly an order between 41 and 192 for a com­
pletely intelligible speech reconstruction (which is not primarily the case). Moreover, this 
deliberation does not take into account the glot ta l and l ip radiat ion characteristics and 
other factors that would lead to even more coefficients. A t the same time, these values are 
to be taken as a min imum, meaning that for the sake of audio quality, they may have to 
be increased further. A t the same t ime, i f the sound quali ty is not degraded, there is no 
need to make a super-accurate speech reproduction, as the final product is intended to be 
a musical effect in the fashion of the talk-box, and not a speech encoder. 
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Frame length The previous section has outl ined a few solutions for buffering and win­
dowing. The proper size of the analysis window is evidently dependent on the sampling 
frequency. Several actions happening i n the vocal tract are shorter than the many times 
mentioned 20 ms t ime-span which is considered as a usual frame length i n speech coding. 
A s explained before, accuracy is not the pr imary concern, therefore, this value seems to 
be acceptable without further discussion. However, given the fact that 20 ms is an almost 
noticeable latency for a musician - especially for a singer w i t h a microphone - and knowing 
that the latency accumulates w i th other effects potential ly working wi th smal l but existing 
latencies, this value can be troublesome. Us ing overlapped frames can solve the physical 
delay from the input to the output, but the perceptual latency would s t i l l remain around 
the length of the frame itself, although slightly decreased wi th the overlapping prediction 
coefficients. Us ing a 15 ms overlap should not be noticed at a l l by the ears of listeners and 
performers. W i t h a bit of luck, the slightly lagging formant structure w i l l be unnoticeable 
as well . 

T y p e of window function Perhaps the most difficult recommendation is the type of 
window function. Section 2.5 has introduced common functions used i n signal processing. 
Presumably, many of these would produce very similar results — which makes the deci­
sion mostly an experimental concern. The pr imary literature on the subject of audio effect 
creation [6] suggests the Harming window, although it does not provide an exhaustive rea­
soning regarding this choice other than the good periodici ty w i th the edges of the function 
close to zero. 
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Chapter 4 

Implementation of the Audio 
Plugin 

Now that a l l the crucial parts have been introduced and several recommendations are 
available for the most significant issues, this chapter w i l l describe the development process 
wi th a l l the experiments and final decisions. 

4.1 Development environment and workflow 

The development platform was chosen to be a G N U / L i n u x system for being free and open-
source and having excellent low-latency audio capabilities. A s a drawback, it may be 
lacking the myr iad of D A W applications found to be available for other major platforms. 
Nevertheless, Ardour3 can be an acceptable reference D A W , despite of being a beta version 
(see Figure 1.5 for screenshot). The straight-forward workflow is the development of the 
algori thm in Ma t l ab , followed by the adoption to a plugin A P I of choice. Th is approach was 
slightly extended during the programming work. Offline operation could generally mean 
any non-realtime usecase, which is amongst the basic capabilities of every plugin framework. 
W i t h a bit of effort, the off-line plugin can be bridged into M a t l a b that is an overall work­
bench for the development. W h i l e some parts were implemented first i n M a t l a b , others 
started their existence i n C + + . A t the end, a l l the parts were transferred into C + + and 
incorporated into the final program. The bridge between the two environments was a simple 
MEX function capable of loading the plugin and sending/receiving the audio and control data 
v i a function arguments and return value. 

In order to shorten the development t ime, the Itpp1 l ibrary was used for several sig­
nal processing operations in the C + + code. In some ways, it resembles the functionality 
provided by M a t l a b , which is reflected i n the function signatures as well. 

The easiest way to run real-time audio applications under G N U / L i n u x is to use the 
Jack Audio Connection Kit. W i t h a correct configuration and a dedicated real-time ker­
nel, the reference system's (see appendix B ) latency has been successively set to 5 ms , 
which corresponds to 256 samples under a sampling frequency about 48 k H z . Fortunately, 
several L i n u x distributions are dedicated to audio or mul t imedia related tasks and come 
pre-installed wi th applications like Ardour3 and Jack. Addi t ional ly , they are pre-configured 
for real-time use. A n example of such dis t r ibut ion is the one called AVLinux. The easiest 
way to t ry the plugin is probably to use a L i v e U S B setup wi th a similar dis t r ibut ion. 

xhttp://itpp.sourceforge.net/ 
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4.2 Software framework 

A custom C + + framework was wri t ten to serve as the playground for audio related classes, 
hiding and unifying most of the plugin specific overhead. This framework was in i t ia l ly 
buil t on top of the L A D S P A A P I due to its simplicity. Figure 3.3 shows this concept 
being a wrapper interface layer. Special care was taken for using virtual functions only 
when necessary and avoid them in places wi th frequent usage (e.g., accessing the audio 
samples) as this could degrade the performance right from the beginning. Figure 4.1 shows 
a simplified class diagram of how the framework can be imagined. The class AudioFilter 
is an abstraction of a p lugin that uses ports for audio data and control parameters. The 
subclass FormantFilter derived from AudioFilter is the plugin under development. Ports 
and parameters are captured in class Port and their accompanying subclasses. The real 
framework defines several more subclasses for ControlPort to capture different types of 
controls like a linear or logari thmic pot-meter, a switch control or a selector for various 
modes of operation. 

FormantFil ter 

V 
AudioFi l ter 

+getSampleRate() 
+setSampleRate() 
-HaddPortO 
+getPort() 
+getPortByName() 
+process() 
+activate() 
-HdeactivateO 
+registerPorts() 
+registerAsPlugin() 

O 

Port 

-pdata : Por tData* 

+getName(): string 
+getDirection(): Por tDirect ion 
+getPortType(): Port Type 
+setValue(PortData&) 
+getValue(): Por tData* 
+isConnected(): bool 

"TT 

AudioPor t 

+read(int idx): Sample 
+write(int idx, Sample s) 

ControlPort 

+read(int idx): Sample 
+write(int idx, Sample s) 

Figure 4.1: Simplified class diagram of the developed software framework. 

The implementat ion of specific structures and methods are left to the module represent­
ing a part icular plugin technology. For example, i f a plugin is going to be buil t for L A D S P A , 
then the appropriate module has to be specified for compilat ion. Th is is the module where 
the declared structures are actually defined, like the private PortData which varies across 
plugin technologies. Several plugins can be compiled at the same time by automating the 
compilat ion. The low-level module implementing the L A D S P A interface can be found in 
the ladspaplugin.h and ladspaplugin.cpp source files. Others p lugin technologies can 
be implemented similarly. Due to the l imi ted t ime frame, only the L A D S P A and the J U C E 
back-end was implemented exclusively. 
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4.3 Development stages and milestones 

Al though the concept of cross-synthesis may seem to be a straight-forward procedure, a lot 
of issues occurred dur ing the development. It took a long time to establish a clear sound 
without any artifacts, noise, clicks, pops, buzz, or any unpleasant features. The biggest 
challenge was to get r id of the high energy peaks occurring when a new inverse filter A(z) 
was ready to replace the old one. M a n y solutions had been proposed addressing this issue. 
A short pair of audio samples (about 2.5 seconds) containing an "i" vowel and a musical 
"A" note w i l l be used for demonstrating different approaches of cross-synthesis to show 

how the audio output evolved to be acceptable. The spectra of the two input sounds are 
shown in Figure 4.2. A lot of experiments and repeated evaluation were performed wi th 
only t iny incremental changes i n the designed architecture, therefore the following part of 
this section w i l l present only the significant changes made towards the final solution. 

Periodogram Power Specrral Density Esrimare Periodogram Power Specrral Density Esrimare 

0 5 10 15 20 0 5 10 15 20 
Frequency (kHz] Frequency (kHz) 

(a) Spectrum of the "i" vowel (b) Spectrum of an "A" note (dist. guitar) 

Figure 4.2: I l lustrat ion of plugin instances. 

The first attempt was to use the pla in coefficients of the A(z) filter and a usual H a m m i n g 
window for mul t ip ly ing each frame. The output generated this way was full of distorted 
high frequencies both wi th M a t l a b and i n C + + using the filter classes provided by the 
Itpp l ibrary (Figure 4.3). The filter's state was saved before changing the coefficients and 
restored right afterwards. 

Initially, two possible solutions were proposed: 

1. Interpolate the coefficients using a suitable representation like the line spectral fre­
quencies 

2. Use the zero input response of the synthesis filter for smoothing out coefficient changes 
instead of saving and restoring the filter memory (see section 2.7). 

Addi t ional ly , a constant assumption was that a correct window structure discussed in 
section 3.3 can always reduce unwanted sound features. Interpolation of the coefficients 
was not a welcomed solution as it requires high amount of processing overhead, considering 
both the coefficient conversion from the L P domain and the linear interpolation itself. For 
this reason, the second alternative was implemented being simple enough to be acceptable 
as a fast solution. 
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Periodogram Power Spectral Density Estimate 

Figure 4.3: Output P S D of using pla in L P coefficients w i th state-restored filters. 

Periodogram Power Spectral Density Estimate 

Figure 4.4: Output P S D of using Z I R and Z S R for cross-synthesis. 

Using the zero input response and zero state response for cross-synthesis has made a 
few enhancements. W i t h some instrument input signals, the unwanted frequencies were 
almost completely gone from the output. However, the perceived presence of the formant 
structure seemed to appear weaker than previously. Nevertheless, using a real unfiltered 
distort ion guitar sound w i t h the sample "i" vowel produced an output w i t h s t i l l unusable 
buzzing high frequencies (the spectra is shown i n Figure 4.4). The weakness of the applied 
formant structure has been considered to be the consequence of poor harmonic content of 
the input instrument signal. If there are no frequencies at the posit ion of the formants, there 
is nothing that excites the A(z) filter on those positions and the formant structure w i l l not 
be strong enough on the output signal. For this reason, an embedded nonlinear distort ion 
(or overdrive) effect was buil t into the plugin, w i t h a gain control parameter on the U I . 
The nonlinear processing can produce richer harmonic content i n case the problem above 
really exists. If it does not, a bui l t - in overdrive can s t i l l come handy i n many situations. 
The " A " note used wi th these outputs is a distorted guitar sound, therefore, this problem 

36 



is eliminated. 
Eventually, the issue wi th filter changes was found out to be caused by the implemen­

tat ion of filters used both by M a t l a b and the Itpp library. Namely, the canonical or Direct 
Form 2 (see section 2.6). Th is form has a very bad behavior w i th instant coefficient changes 
even wi th saving and restoring the filter memory. D F 1 , however, has shown to have much 
better properties regarding this issue. To completely smooth out the filter changes, the 
final structure of the frame buffer was chosen to be similar to what is i l lustrated on Figure 
3.8 wi th a massive overlap. After every 5 ms , a new frame is produced from the actual 
window content by mul t ip ly ing it w i th a periodic Hanning window function. This way, a 
high amount of correlation is introduced between the coefficients of consecutive inverse fi l ­
ters and the perceptual delay is also minimized. Figure 4.5 shows the mentioned "i" vowel 
and "A" note synthesized wi th the final approach. It shows that the formant structure of 
the input speech is perfectly recognizable. Higher frequencies are s t i l l present, but being 
mostly periodic, it can be addressed to the distort ion effect of the guitar tone. 

Periodogram Power Spectral Density Estimate 
1 1 

Frequency (kHz) 

Figure 4.5: F i n a l output spectrum wi th a D F 1 synthesis filter. 

4.4 Assembly of the plugin and final notes 

The signal processing aspects of the formantfilter p lugin are depicted on Figure 4.6. A 
few controll ing parameters have been added, these are shown at their respective positions. 
Perhaps the most interesting feature is the one named presence that is a balance specifier 
between two synthesis paths described i n section 3.3. The two approaches are implemented 
at the same time and their respective amount can be selected w i t h a simple coefficient 
from the interval (0,1). In the first path, the instrument excitat ion is extracted, while in 
the second path, the signal is left unprocessed and goes straight into the synthesis. Other 
parameters are the gain that specifies the amount of distort ion on the input and the level 
which is the overall signal level of the plugin. The latter is needed to compensate the wide 
range of input signal levels that are affecting the output as well . In order to prevent potential 
overflow of the signal w i th wrong settings, a limiter2 is placed at the end of the processing 

2 A nonlinear signal processing block that detects possible clipping and holds back the gain to decrease 
the amount of distortion. 
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chain. It was shown i n many pract ical use-cases, that this is a welcomed feature. The mix 
parameter is a "joker" control which specifies the amount of the original instrument signal 
that is mixed to the processed one. This can be achieved wi th the D A W as well, therefore, 
it should be less important , but cannot be ignored due the offered creative potential . 

per instrument channel (twice for stereo) 
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Figure 4.6: Detai led scheme of the formantfilter 

The function of the overdrive block can be expressed wi th the following formulas 3 : 

k 

x(n) 

2a 
1-a 

1 + k 
1 + |x(n)| 

(4.1) 

(4.2) 

w i th the coefficient a determining the amount of distort ion — this value is controlled by 
the gain parameter (from the interval (0,1)) shown i n Figure 4.6. 

A n important factor is the interoperabili ty of the plugin, and the overall dependency 
on other signal processing blocks. Ideally, the effect should be usable without any further 
processing. O n the other hand, it should not l imi t other effects to be placed before or after 
the formantfilter in the signal chain. For example, the microphone input left uncompressed 
leads to huge dynamic variations that can be hard to handle, or may just be the thing 

Matlab code available at www.musicdsp.org 

38 

http://www.musicdsp.org


that a musician is going for. A solution could be to have a bu i l t - in compressor at the 
input of the speech signal. K n o w i n g that a compressor is amongst the most common plugin 
effects, wr i t ing a custom version, or even using an external (open-source) project was not a 
priority. However, if a boxed, hardware dis t r ibut ion of the effect is considered, these would 
be incorporated, together w i th better equalization and a true bypass switch. 

A n addi t ional note addressing the effect usage is the op t imal posit ion in a typica l signal 
chain. Focusing on the electric guitar, the formantfilter can be considered to be a post-
distortion effect, which means that at least the overdrive effects should precede i t . Spat ial 
effects, on the other hand, should be placed after the formantfilter. Despite this recommen­
dation, experimenting wi th different arrangements is not forbidden and may lead to usable 
results. 

A unique user interface for the plugin was in i t ia l ly planned as well, but d id not make 
it to the final release, due to the l imi ted t ime frame and the fact that it can be generated 
perfectly. Figure 4.7 shows the automated G U I created by Ardour3 dur ing an editing 
session. The indicators on the right side are displaying the exhausted C P U time compared 
to the available t ime interval between consecutive audio callbacks. These are implemented 
using just a few lines of code and are intended for testing and measuring purposes. 

formantfilt: Formant Filter Mono (by Meszaros Tanas) 

Figure 4.7: P l u g i n U I generated by Ardour3 

4.4.1 C o m p i l a t i o n a n d b u i l d issues 

The filtering problems mentioned i n the previous section has led to a decision to write 
the basic signal processing operations i n C + + from scratch including digi ta l filters, basic 
algorithms and calculations together w i th linear prediction. These are grouped under the 
sigproc namespace. Th is way, the Itpp l ibrary is not a crucial dependency anymore and 
used only for bui lding unit tests. The C M a k e configuration w i l l ignore these tests i f the 
Itpp l ibrary is absent and the compilat ion of the plugin should not stop. 

The J U C E l ibrary has a custom bu i ld system, this was integrated into the existing 
C M a k e project by generating the J U C E configuration files straight w i t h C M a k e . Th is 
solution makes it possible to use the formantfilter in applications support ing V S T plugins 
and the advantage over wr i t ing a dedicated V S T backend is that the J U C E l ibrary can 
automatical ly compile the plugin into many formats i f the appropriate S D K is provided. 
Us ing the J U C E l ibrary as an optional and temporary backend s t i l l makes the project 
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compilable without this heavyweight dependency. B y configuring the project without the 
J U C E S D K , only the L A D S P A backend w i l l be compiled, but other dedicated backends are 
wait ing to be implemented. More details about the framework can be found in the doxygen 
generated documentation and README files. 

The supported compilers are the GCC 4.8 and above wi th finished C++11 standard 
and the Microsoft Visual Studio 2013 C++ compiler on Windows systems. However, the 
Windows version w i l l compile only the J U C E backend for which both the J U C E S D K and 
the V S T S D K is required. The JUCE plugin version is included rather as a tech-preview 
and has not been tested extensively. Compi l i ng the complete solution does not differ from 
a typica l sequence of commands used by C M a k e projects. More details can be found in the 
project README files regarding the compilat ion process. 
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Chapter 5 

Testing and Evaluation 

5.1 Technical testing 
Several unit tests were developed to ensure flawless operation of the basic low level functions 
like filtering, r ing buffers used for windowing, and overall audio data pass-through tests. 
These can be ini t ia ted w i t h the make test command after bui ld ing the project tree. 

In order to measure the consumed processing power, the plugin was equipped wi th 
two addi t ional output ports, emit t ing the measured processing overhead. Let Tcb be the 
t ime available between consecutive calls to the process () method. This interval can be 
calculated from the product of the sampling frequency and the provided sample count -
both values are available at any t ime during the processing. Furthermore, let Ts be the 
t ime spent i n the process ( ) method. The ratio of £p- gives an indicat ion of the current 

^ cb 

processing overhead which can be observed i n Figure 4.7. The occupation of the C P U was 
below 10% almost a l l the t ime on the development hardware (see Append ix B ) . 

5.2 User testing 

To examine the plugin as a product, it is very hard to define objective measures that can 
be put under evaluation. The generated sound quali ty is free of unwanted artifacts, every 
other feature is dependent on the actual signal chain i n which the formantfilter effect is 
located. Therefore, a survey is used to collect user opinions in a structured manner w i th 
the following questions: 

1. How do you rate the overall output quali ty? 

(a) Poor wi th unpleasant features, clicks, pops, noise or non-harmonic frequencies. 

(b) Usable but not perfect. 

(c) Complete ly acceptable. 

(d) Excellent. 

2. C a n you imagine a musical si tuation, where you could use this effect? 

(a) No , not at al l ! 

(b) Yes, i n rare situations. 

(c) Yes, in many occasions throughout a single tune. 
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(d) Yes, complete songs can be based on this effect. 

3. Do you find the effect capable of co-operating wi th other existing effects? 

(a) No , it always sounds the same w i t h any input signal. 

(b) Yes, but only l imi ted sound textures are usable (e.g., only clean or distorted 
sounds). 

(c) Yes, the output sound responds meaningfully to every input variat ion. 

4. To what degree is this effect distinguishable from existing vocoder effects? 

(a) Sounds completely like a channel or phase vocoder. 

(b) Similar but has some unique features. 

(c) Complete ly different. 

(d) I have no experience wi th vocoder effects. 

F rom ten musicians (mostly guitarists) only four has provided a dedicated review (see 
appendix A for the full reviews). Others have completed the test survey only. The results 
are collected i n Table 5.1 wi th a value indicat ing the number of testers giving an answer 
respective to the cell posit ion. The Overal l Success co lumn should indicate an intuit ive 
summary from the received answers. 

A n interesting conclusion can be made based on the answers for question 4. The majori ty 
of guitarists does not use vocoder or talk-box effects making it hard to get a reasonable 
end-user comparison to similar products. It was a new experience for nearly a l l the test 
subjects, mostly wi th a positive impression. 

Question number a b c d Overal l Success 

1. Output quality 0 0 8 2 ***** 
2. Usabil i ty 1 3 5 1 
3. Cooperativeness 0 4 6 -
4. Novelty 1 2 1 6 •***^ 

Table 5.1: Results from user reviews 

5.3 Demonstration of the effect in-use 

To demonstrate the usage of the final plugin, several example sessions are provided both in 
exported f lac format and in a complete project representation for ArdourS. The session 
files contain a l l the effect configurations and signal routing for the plugin itself w i th other 
accompanying effects and the recorded audio regions, to il lustrate a pract ical recording 
session. 

Addi t ional ly , a cover version of the famous song Livin' on a Prayer containing well 
known marks of a talk-box effect was re-assembled using the created plugin. Here, a backing-
track free of guitar parts was used as a basis, and the traces of the ta lkbox are replaced 
using the formantfilter effect. Furthermore, the solo part is also enhanced wi th it. 

A second track is a simple improvisat ion wi th various articulations in the solo guitar 
part. 
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Chapter 6 

Conclusion 

6.1 Summary of the performed work 
The official goal of the thesis was to create an audio effect making use of speech analysis 
techniques. The method for formant extraction was chosen to be a type of linear prediction. 
After getting familiar w i th various speech detection and synthesis algorithms, an effect was 
designed inspired by the legacy of the talk-box. Al ternat ive textures can also be dialed in 
wi th the provided controll ing parameters. The designed unit was packaged into multiple 
software plugin formats to be usable in today's audio workstations. Special effort was 
made towards a cross platform implementation, w i t h a simple framework support ing various 
plugin technologies. F ina l ly , the plugin was tested by musicians and a summary was made 
about the pract ical usabil i ty and quali ty of the effect. 

Despite the fact, that the idea of cross-synthesis is by no means a novelty and quite 
a few theoretical sources are available regarding source-filter processing, implementing a 
nice sounding audio effect requires a lot of experiments. Smal l parameter changes can 
make a difference between an unusable output signal and a completely appealing sound. 
A good example is the problem w i t h the canonical filter structure and its bad resistance 
to coefficient changes that caused a lot of trouble and delay during the development stage. 
The effect was tested for real-time performance and latency free operation. A s far as the 
perceptual l imits go, these requirements were satisfied wi th no inconveniences and effortless 
playability. 

Fortunately, the audio quali ty and texture was not subject to any complaints. Dávid 
Zoltán has made a comment, that the effect needs several external processing blocks to get 
a nicer result (equalizer, compressor), making it less comfortable: "...As a drawback, I 
could mention the need of external effects for a really usable sound, like the compressor for 
the microphone input or an overall equalizer - perhaps a simple tone and bass parameter 
would be enough... " 

Gábor Szabó has made a similar comment, stating: " . . . As a backdraft of this effect I 
would mention - it's complicated. I would like to try it either as a part of a vocal performer 
multieffect (like the ones that are made by TC Helicon) or as an independent effect pedal. 
But using it through a computer - it might be useful, but personally I would refuse this kind 
of option.... " A s a reaction, software plugins are not far from being ut i l ized i n hardware 
multi-effect units. A few solutions - like the MOD duo project 1 - are being on the way, 
loaded wi th an embedded L i n u x system for hosting plugins. Therefore, a suitable hardware 

xhttp://portalmod.com/home 
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platform can make this effect usable i n live situations as well. 
A few testers have mentioned the possibil i ty of microphonic feedbacks, to which this 

effect can be sensitive indeed. A n anti-feedback correction can be a solution. A s a draw­
back, it may restrict the performer from achieving desirable instrument feedback sounds. 
The correct acoustical arrangement and the general feedback-resistance of the part icular 
microphone can also reduce the number of unwanted feedbacks. 

6.2 Prospects for the future 

The pr imary plan is the integration of the effect into an embedded multi-effect pedalboard. 
Ei ther by designing a dedicated hardware, or - more ideally - using an existing platform 
addressing such concerns. A potential candidate is the mentioned MOD Duo project that 
gathers existing open source software plugins into a hardware device targeted to live perfor­
mances. Secondly, the implementation of several more plugin back-ends to support many 
other D A W applications. Th is is rather a t ime consuming work and not a real engineering 
problem. 

The user reactions have shown that this effect can raise interest in musicians and provide 
an inspirat ion for artistic creation. Th is can be considered as a big success from a practical 
perspective. 
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Appendix A 

Full User Reviews 

"I play bass guitar, yet I am very opened to use any - really, any - effect that I come 
across. Honestly, trying to use this kind of effect was very new to me. Playing a tone plus 
singing any tone I want - the experience was really shocking but it opened my mind. I was 
thinking about versions "OK, just admit it, you are not a singer. But, what about leaving 
the instrument behind - let it be played by others - and try to say something into the mic, 
and see what happens." That was a completely new experience. I never tried to "sing" a 
song but the feeling that no pitch will be false because it's actually corrected by the guitar 
gave me such a self-confidence that I felt more than powerful. It was really interesting to 
feel something that is in some way different to the vocoder-sounds that we have been used 
to at bands like Pendulum, but in some ways quite similar. 

An absolute - and, unfortunately untested - unique thing would be to use this effect with 
a jaw-harp or any wind instrument. The backdraft of a jaw harp is that its soundscape is 
limited by the instrument itself and the technique of the player. This effect would eliminate 
at least one - if not both - of them. What about a blues harp? Most of the blues guitarists 
play and sing simultaneously, it would be quite interesting to use this effect to spice up their 
performance. 

As a backdraft of this effect I would mention - it's complicated. I would like to try it 
either as a part of a vocal performer multieffect (like the ones that are made by TC Helicon) 
or as an independent effect pedal. But using it through a computer - it might be useful, but 
personally I would refuse this kind of option. I can imagine that some day this one receives 
its own firmware and box-on-floor layout and the computer can be avoided because this one 
is quite complicated to use on stage. 

However, it can be quite useful in studios, or in the "garages", rehearsal rooms: for 
bands who like to experiment, this gadget can be a way finding their own and unique sound." 

Gdbor Szabo 
Bass guitarist (H.A.L.) 

(full unedited review — English) 
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Tamds Meszdros gave me his own programmed voice effect to test. I run my Tumblr 
site since august last year. There are my humorous, sarcastic poems and hopefully I will 
release some minimal synth-pop songs later on. I have only two instruments so far. One 
is a semi-acoustic guitar "Dowina" and a K o r g M i c r o K o r g synth. 

I tried this effect only with the guitar. It sounds very strange. It was very hard to get 
used to it in this short time frame but it is definitely something I haven't met so far. In 
something, what I can imagine as a song, I don't think that such an effected voice would go 
through the song all the way, but it can be interesting for "bridge" or "interlude" parts of 
it. Or simply something used in the background, probably by adding some hall/delay effect 
on top of it. I found this effect very interesting. I don't know how it would sound using 
it together with a Clouds texture synths and adding some Wiard synths. But I suppose it 
would be very a special, unworldly, transcendent trip. Maybe not the most pleasant one 
ever but absolutely one to remember." 

Ma.F.F. 
maganyosfarkasokfalkaja. tumblr. com 

(full unedited review - English) 

"Meszdros Tamds told me about his thesis subject and asked me to test it. Myself being 
a guitarist as well, I have immediately accepted his request. My preferred musical styles are 
oriented towards heavier rock genres where the usage of this effect appears to be rare. For 
me, it was just one more reason for excitement. 

Before testing the effect, I have made an overview amongst the bands I'm familiar 
with, searching for appearances of similar effects and found some interesting songs from 
B o n Jov i , B lack L a b e l Society, Joe Satr iani or from Daft P u n k as well, although from a 
different genre. I have never used a talkbox before and felt myself as a newbie. It was 
hard to get used to talking while playing at the same time, but after some practice, I got 
synchronized with the effect. 

In my opinion, the software is working very well and I think that Tamds has made the 
most of it. The test was accomplished with a middle-class microphone and a cheaper kind 
of electric guitar. Even so, I haven't experienced any significant feedback with a high signal 
output, which is impressive even compared to commercial effects. Despite having just a few 
controlling parameters, a lot of different textures could be set with the presence and gain 
"knob" which I find to be a big advantage. After getting familiar with the effect, I tried to 

play different parts of songs from the above mentioned artists. The best match I could get 
is the style of Daft P u n k . Additionally, a good approximation can be made to the talkbox 
guitar intro heard in the song Livin' on a Prayer from Bon Jovi. As a drawback, I could 
mention the need of external effects for a really usable sound, like the compressor for the 
microphone input or an overall equalizer - perhaps a simple tone and bass parameter would 
be enough. 

After the test, my overall impression was very positive." 

Dávid Zoltán 
guitarist from band A n k h 

(full review — translation from hungarian by Mészá ros T a m á s ) 
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"Although the talkbox was a popular modulation effect in music production during the 
late 20th century, various reissues are still frequently used today. Human voice is a versatile 
tool for sound creation and by fusing it with instrumental playing, we can get a very exciting 
and colorful musical accessory. 

As an active musician and music devotee, I find it very important for new tones to 
emerge in the contemporary musical genres. Meszdros Tamds has developed a modern 
music creation tool, that is able to make some melodies richer, more interesting and more 
"alive". The created tool connects the musician's own vocal organs with the instrument in 
his hands, opening up new artistic possibilities. I would also list the extendability of digital 
processing amongst the benefits of this effect. The result is a usable modulation effect that 
may become popular amongst today's modern musicians. 

The behavior of the effect in live situations is still uncertain with the apparently high 
input sensitivity. Microphonic feedback is perhaps the most potential threat. However, it 
would certainly perform well in a studio environment." 

Ing. Pal Tamds 
drummer and sound engineer from the band H.A.L 

Ph.D. student at BUT FEEC Department of Telecommunications 
(full review — translation from Hungarian by Meszaros Tamas) 

"I have been testing the demo application on my usual gig-setup: Through a set of few 
basic pedal effects, I normally run the guitar signal directly to the top-boost channel of a 
vintage VOX AC30 amplifier. For the demo, I have set the input gain of the amplifier to 
low in order to allow good headroom without too much distortion (the amplifier is known to 
easily run into saturation due to lack of the internal negative feedback). I have been testing 
both with the distortion pedals on as well as fully by-passed. 

The testing microphone was a dynamic Shure SM57 — perceived as an established stan­
dard in the community. The room setup didn't let me move the microphone too far from the 
AC30 (around 1.5 m), so I had to tweak the gain knobs on all devices in the chain to avoid 
the feed-back. The room was a 2-by-4 m "garage-band" style rehearsal room with carpets 
on the walls and ceiling to eliminate. 

Immediately after connecting the application, I was surprised by the quality of the sound, 
especially on the louder side of the master volume knob. The sound was very pronounced 
and clean with no obtrusive artifacts. There was no lack of bass nor I had to adjust the 
treble setting. It took me a while to synchronize playing guitar and singing at the same 
time to achieve the desired talk-box-like effect. The application offers limitless number of 
creative sounds and ways to play and sing. The application can be used both for solo-style 
of guitar playing, as well as for power-chords — again resulting in different sounds. Not 
only the player is not limited by the style of guitar playing, but also the vocal part of the 
effect is very versatile and yields interesting effects with different style of vocal input. E.g. 
the most obvious was to use long voiced singing modulated by the vocal tract to achieve 
"wah" style of effect. However, I have also tried rhythmic modulation using e.g. fricatives 
and various styles of "funny cha-cha" sounds. Personally, I liked the rhythmic sounds with 
simple guitar solos. 

From the user-point of view, the biggest advantage is the modularity of the application, 
i.e. it's built as a plugin and apparently, the effect is available also as a VST plugin. Apart 
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from my stomp-box effects, I used a software compressor on the guitar to smooth out the 
playing. This makes the usage and development of the effect very versatile and creative. 

A suggestion for further development would be to add a dynamic envelope shaping of 
the parameters of the effect, i.e. attack, sustain, release to smooth out the triggering of the 
microphone input by the guitar. 

In general, this effect is very creative and offers interesting sounds. Once I found my 
style of playing, it was difficult to stop playing. This effect has exactly what it is supposed 
to have: very high "fun" and "inspiration" factors." 

Ing. Ondrej Glembek, PhD. 
lead guitarist of the band RockMood 

(full unedited review - English) 
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Appendix B 

Recording Environment 

Operat ing system U b u n t u 14.04.2 x86_64 

Kerne l version 3.16.0-38-lowlatency 

Host C P U I n t e l ® Core™ i3 C P U M 370 @ 2.40GHz 

Host memory 4 G B 

Reference D A W Ardour3 ; version Ardour3.5.403-dfsg-3-ubuntul4 

U S B audio interface Mackie Onyx Blackjack 

Figure B . l : O n y x Blackjack recording interface. 

Microphone Behringer XM 1800 S 

Instrument used on recordings Epiphone L P Special 
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Appendix C 

DVD Content 

The following files and folders can be found on the D V D : 

/AudioSamples Contains the demo audio tracks wi th the plug-in sounds. 

/Distribution Compi led binaries of the plug-in. 

/ProjectTree The project tree managed by C M a k e . It contains the D T p X source code of 
the thesis as well. 

/RecordingSessions Contains the recording session project files of the demo tracks for 
opening i n Ardour3. The B o n Jov i track can be opened using the session file 
livinonprayer.ardour 

runardour. sh A bash script for running Ardour3 wi th an environment set up to recognize 
the plugins correctly. Th is can be used wi th a L i v e U S B setup of a L i n u x dis t r ibut ion 
intended for mul t imedia edit ing purposes (AVLinux, Ubuntu Studio, etc.). 
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