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ABSTRAKT 

Cílem této práce je využití metod sloužících k číselnému zpracování genomických 

signálů a následná tvorba programu, který pomocí těchto metod, vytvoří vhodnou 

numerickou reprezentaci metagenomických vzorků, vyextrahuje z ní vhodé příznaky a 

pomocí nich rozliší jedince zdravé a jedince s onemocněním diabetes mellitus 2. typu za 

použití metod strojového učení. 

KLICOVA SLOVA 

zpracování signálů, metagenomika, klasifikace, diabetes mellitus 2. stupně 

ABSTRACT 

The aim of this thesis is the use of methods for numerical processing of genomic signals 

and the subsequent creation of a program, which by using these methods creates a suitable 

numerical representation of metagenomic samples, extracts appropriate features and 

classifies healthy individuals and individuals with type 2 diabetes mellitus using machine 

learning methods. 
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INTRODUCTION 
As far as we know, almost all biological processes are dependant on microbes. Chemical 

cycles which are responsible for the key elements of life such as carbon, hydrogen, 

oxygen, nitrogen, phosphorus and sulfur are all at least touched by microorganisms. 

Today's life as it is, is unimaginable without using microbes in fields like pharmacology, 

medicine, agriculture, food industry etc.. Considered how important these organisms are 

for us, we propably get to conclusion they need to be thoroughly examined for our 

benefits. Metagenomics is cross-disciplinary scientific field, that is studying genetic 

material directly from a sample which can be gained from large scale of different 

environments e.g. sea, dirt or human gut. With rapid development of next generation 

sequencing there is immense opportunity to explore whole metagenomes of different 

individuals and their influence on them. 

The aim of this thesis is to find out whether it is possible to classify an individual 

with type 2 diabetes from healthy one, using data extracted from their gut metagenome. 

In order to do such classification, digital processing of genomic signals, subsequent 

analysis of features extracted from these genomic signals and machine learning algorithm 

is used. 

First part of this thesis is dedicated to current methods of classification of 

metagenomic samples. A t the beginning of this section is short description of workflow 

of metagenome sequencing methods. This description is followed by reasons for using 

alignment-free methods instead of methods that are alignment-based. In the end of this 

section there is listed couple of aligment-free classification methods which are described 

in detail. 

Next part covers various methods of digital processing of the genomic signal. It 

primarily deals with which signal representation is best for the feature extraction. It also 

mentions some different features that can be used for the classification of samples. 

In the next section I briefly describe type 2 diabetes and discuss various reasons 

why this disease can affect microbial composition in the human gut. 

Last theoretical part is about machine learning. In this chapter simple yet effective 

classification algorithm that is later used in practical part is fully described. 

In the end of this thesis I am presenting my solution for classification of 

metagenomic samples and its result along with brief statistics and disscusion of outcome 

of this work. 
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1 CLASSIFICATION OF METAGENOMIC 
SAMPLES 

The very basis of the metagenomic approach is to work with the genetic information of 

all the organisms present in the sample. Such a procedure gives us many benefits 

including: detection of the abundance of microorganisms in different environments, 

analysis of organisms that cannot be cultivated for various reasons or information on the 

composition and functions of various ecosystems [1], [2]. 

Thanks to the rapid fall in prices, next-generation sequencing (NGS) is now used, 

which significantly accelerates the development of metagenomics [3]. This type of 

analysis involves several essential steps. First, complete D N A is extracted from the entire 

sample. The D N A is then fragmented into smaller pieces using different techniques (e.g. 

sonification). Fragmentation is followed by the D N A ligation of the adapter for the final 

preparation e.g. Ilumina library. These libraries are sequenced by paired-end reads for the 

largest amplicons coverage. Use of single-end reads is also possible. The reads are then 

categorized and connected into contigs. A t this point, an optional de novo genome 

assembly is available. In order to do this process genome binning of contigs is done to 

reconstruct the complete genome and assign them to the closest possible taxonomy. 

Additionally, a functional analysis can be performed to determine the functions of the 

appropriate genes [2]. This entire process is shown in F ig 1. 

Fig 1. General process of metagenome analysis. Edited and obtained from [2]. 
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In this thesis, metagenomic sample w i l l be classified into two groups, based on 

whether it is from healthy individual or individual with type 2 diabetes. 

1.1 Alignment-based methods 
B y the end of the 20th century, there has been great progress in the field of bioinformatics, 

mainly through the development of many alignment algorithms. Not only well-known 

B L A S T algorithm, or multiple sequence aligners such as ClustalW, but also 

a whole-genome aligners such as B L A S T Z or T B D . These tools have played a crucial 

role in obtaining information about genetic materials [4]. 

A l l alignment-based programs, regardless of the alignment process, have a 

common goal. Look for the similar order of bases or amino acids that are found in 2 or 

more sequences. Output of this process are series of matches, mismatches or 

(in case of inserted or deleted base) gaps. Alignment-based programs have their 

disadvantages, considering the complexity and volume of genetic information in the 

metagenomic approach [1], [4]. 

One problem is that programs based on alignment assume a homologous sequence 

with a number of linearly sequenced sections, known as collinearity. Unfortunately, in a 

metagenomic sample, this assumption is impaired, for example, by viral genomes that are 

different due to the high frequency of mutations. 

The following disadvantage is the fact that not all the genomes are sequenced yet, 

which can lead to non-classified sequence or false positive result. 

Another major problem is the memory and time consumption of these algorithms, 

which clearly indicates a limited application to this kind of data. The number of possible 

alignments for 2 sequences grows very fast with the sequence length according to the 

formula (1.1) [4]: 

(TV!)2 

where A is a number of possible alignments and N is length of a sequences. Result of 

aligning 2 sequences with N = 100, we get to 10 6 0 possible alignments. 

This problem can be partially resolved by dynamic programming that allows to find 

optimal alignment without saving all possible solutions, but it is too computationally 

difficult and time-consuming. Therefore, we are looking for faster and more efficient 

solution, which can alignment-free methods provide [1], [4], [5]. 
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1.2 Alignment-free methods 
Alignment-free procedures can be defined as any method of quantifying a sequence 

similarity that does not use alignment, or whose output is not aligned at any step of the 

algorithm. These approaches are therefore suitable for comparing metagenomic samples 

as they are not dependent on dynamic programming and are significantly easier to 

compute. In addition, they do not affect recombination and mutation processes in viral 

genomes, so they are usable in cases where alignment-based procedures fail [4], [7]. The 

disadvantage of these methods is that they do not allow to identify the functional elements 

of the sequences [1], [6]. 

However, considering that samples sequenced so far is estimated to be only 

10"2 0 % of the total D N A on Earth [7], alignment-free methods are providing fast solution 

of analyzing and obtaining information directly from raw N G S data. There is over a 100 

different algorithms with this kind of approach [7]. In order to elucidate the procedures 

of at least some of them, the following two sections are available. 

1.2.1 DectICO 
Within all of the different techniques, ICO method was focusing on rather rare feature 

which is intrinsic correlation of oligonucleotides (ICO). It turned out to be effective as it 

was able to obtain better differences between genomic sequences, compared to other 

sequence-composition based feature methods. However, this algorithm seems to present 

inaccurate results due to high-dimensionality of the feature set. This kind of feature set 

also increased computational complexity. This inaccurate classification led to rebuilding 

original algorithm into a new one [1]. 

DectICO is supervised algorithm that classifies metagenomic samples through 

dynamic selection of optimal ICO feature set using kernel partial least squares. Workflow 

of DectICO method is shown in F ig 2[1]. 
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Fig 2. DectICO algorithm process chart. Edited and obtained from [1]. 

Results obtained by this "enhanced" ICO algorithm were more accurate when 

longer oligonucliotides were used, which can be considered as an improvement of 

original algorithm [1]. 

1.2.2 Recursive SVM 
Algorithms of supportive vectors belong to machine learning methods that are capable of 

separation non-linearly bounded data using a linear function. The basic principle is based 

on transforming the original two-dimensional space into the multi-dimensional one, 

where we are able to separate individual classes linearly. Using the algorithm, we are 

looking for hyperplane that optimally distributes training data. The data closest to the 

hyperplane are called supportive vectors [8], [9]. 

Recursive S V M ( R - S V M ) , however, is algorithm modified to perform selection 

of the feature, while building the classifier in a recursive way through multiple steps that 

are following a given descendant ladder. There is, of course risk of overfitting. To 

minimalize this risk, the basic linear kernel is used in the S V M . This keeps the least model 

complexity for cases of small sample size, while high feature dimension. Each time 

feature is selected, S V M is first applied by R - S V M on all available features. Whole 

process is driven by decision function, which is very similar to basic artificial neuron 

function: 
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n 
g(x) = sgn { a , y, (x, .x) + b}, 

i=l 
(1.2) 

where n is the number of samples in the training set, x is the feature vector of a test sample, 

xi is the vector of training sample i and yi e {- 1, 1} is the corresponding class label. The 

parameters ai's and b are trained from the training dataset by maximizing the separation 

margin and minimizing the prediction error on training data. The sum y^q.y.jc. is 

1=1 

considered as the weight vector of the features. It can be also described as a contribution 

of the feature in the trained classifier. A s a next step features are ranked by their 

differences between two classes, which are weighted by trained weights in the S V M . Top 

features are selected for the classification and feature selection at the next level [6]. 

This method was tested on metagenome dataset with high accuracy. It can be 

therefore presented as representative method for supervised classification [6]. 
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2 DIGITAL PROCESSING OF DNA SIGNAL 
Deoxyribonucleic acid ( D N A ) is made out of 4 basic building blocks (also called bases 

or nucleotides): adenine, guanine, thymine and cytosine. When D N A is processed and 

sequenced, desired output is string of letters in text format that basically shows us how is 

the D N A composed. This character representation of D N A is established by International 

Union of Pure and Applied Chemistry ( IUPAC) , and is summarized in a Tab 1 [10], [11]: 

Charac ter Exp lana t ion 

A A d e n i n e 

G Guan ine 

T T h y m i n e 

C Cytosine 

R puRine (G or A) 

Y pYr im id ine (C o r T ) 

M a M i n o (A or C) 

K Keto ( G o r T ) 

S St rong in te rac t ion (G or C) 

W W e a k in te rac t ion (A or T) 

Tab 1. IUPAC Nucleotide code characters, edited and obtained from [10]. 

As mentioned in previous chapter, alignment-free classification methods are based 

on quantifying a sequence, so it can be approached as digital signal. Numerical 

representations serve this purpose [11]. 

2.1 Numerical representations 
To process genomic signal as a digital one, conversion of character string into numbers 

is obviously needed. Throughout years of development in bioinformatics, many methods 

were created. [11] In this part of thesis is presented only small portion of them. 

2.1.1 Voss Numerical Mapping 
Amongst the popular techniques of D N A numerical representation is Voss Mapping 

method. It turns genomic sequence into 4 binary indicator arrays XA(n), x-r(n), xc(n), 

XG(n). Each of this array is filled with zeroes and ones, depending on position of chosen 

nucleotide. Zero in position n where chosen nucleotide is not present, one in the opposite 

situation [11]. For random sequence: A T T G C A , Tab 2 explains the described process 

best: 
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n 1 2 3 4 5 6 

Sequence A T T G C A 

x A ( n ) : 1 0 0 0 0 1 

x c ( n ) : 0 0 0 0 1 0 

x G ( n ) : 0 0 0 1 0 0 

x T ( n ) : 0 1 1 0 0 0 
Tab 2. Example of indicator arrays for given sequence. 

This method indicates purely the frequencies of the bases. It works very well for 

spectral analysis of D N A , which gives us information about coding region of the 

sequence. Unfortunately, this representation is 4 dimensional, because each base is 

represented by four dimensional vector [11]. That makes it impossible visualize without 

using Fourier transformation and therefore not very suitable for metagenomic 

classification [12]. 

2.1.2 DNA Walk 
As the name of this method suggest, it uses so called "walker" to visualize change of 

course in D N A sequence. Walker is cumulative variable which changes along the 

sequence. There are several types of D N A Walk. There are 2 basic types presented here. 

First is 2-dimensional, the other is 1-dimensional. Both are described in detail in 

following sections [11]. 

2.1.2.1 2D DNA Walk 

In two-dimensional D N A walk method walker is represented by a complex number that 

could be defined as: 

W = 0 + 0./ (2.1) 

before algorithm goes through sequence. Both real and imaginary value 

of W cumulates the values of x(n), where n is the position in the sequence and x is 

changing according to base present at position n: 
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x(n) = 1 i f A 

x{ri) = -\ i f G 

x(n) = j i f T ( 2 , 2 ) 

x{n) = -j i f C 

This type of D N A walk can sufficiently map course of the D N A sequence, without 

losing any biological information. We can even notice feature like repetitive D N A 

behaviour(in the staircase like part of the graph) in Fig 3 [11]: 

—I 1 1 1 1 1 
0 50 100 150 200 250 

Real ax is 

Fig 3. 2D DNA Walk of Helicobacter pylori [AE001439] (4066 to 5435). 

Same as with Voss mapping this method provides us with multidimensional 

visualization, meaning that this method is not suitable for feature extraction and further 

analysis [12]. 
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2.1.2.2 ID DNA Walk 

In this case we have only one dimensional walker, which works similarly, but goes only 

up (+1) when pyrimidine (C or T) occurs in sequence or down (-1) in the case of purine 

(A or G) . This type of walk therefore illustrates relative content of purine and pyrimidine 

and is shown in F ig 4[11]: 

LOO 

BO 

ra 60 

< 
Q 40 

600 800 
NT loca t ion 

1000 1200 1400 

Fig 4. ID DNA walk of H. pylori [AE001439] (4066 to 5435). 

Although this representation is one dimensional and allows us easy feature 

extraction, it is not suitable because half of the biological information is lost, because of 

mapping only purines and pyrimidines, not individual bases [12]. 

2.1.3 Phase representation 
This method of representing genomic sequence is based on visualizing phase of a complex 

number. Each of the bases is represented by complex number as F ig 5 shows: 
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Fig 5. Complex representation of nucleotides. Edited and obtained from [11]. 

This allows us to assign specific angle (phase) for each base, so it can be 

distinguished without loss of biological information. That is possible through periodicity 

of a phase (it is not changed when adding or subtracting multiple of 2%). Various signal 

representations can be visualized through this method [13]. 

2.1.3.1 Phase 

As mentioned above, each base of the sequence is represented by phase of a complex 

number. Specific values are: 

A = -x T = - - n G = - n C = - - n (2-3) 
4 4 4 4 

Assembling these values into an array, where each position corresponds to the 

position of the nucleotide leads to simple phase signal representation shown in 

Fig 6 and F ig 7: 
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100 150 200 250 300 350 400 
MT location!-] 

Fig 7. Phase representation of H. pylori, bases 1-400 

Phase provides us simple yet good representation of genomic signal. It is suitable 

for feature extraction, because it is one dimension signal, with all biological information 

preserved [12], [13]. 
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2.1.3.2 Cumulated phase 

Is defined as a sum of the phases of the whole sequence from the first element to given 

position. That can be also represented by equation (2.4) [13]: 

Pc=^Ufo-fch(fA-fr)] (2.4) 

where Pc is cumulated phase, and fn is sum of specific nucleotide (where n can be G , C, 

A or T) at a given position. 

This method is suitable for feature extraction as well , because it possesses all the 

important properties of the previous method. Furthermore, it is visually possible to 

distinguish each organisms signal from one another [12], as it is presented in the next F ig 

8: 

150 200 250 
NT l o c a t i o n ^ ] 

Fig 8. Cumulated phase of different organisms 
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2.1.3.3 Unwrapped phase 

This representation is, as the previous two representations, suitable for feature extraction. 

It is different though, because it does not provide us information about nucleotide 

composition of the D N A . Instead it provides us information about relative frequency of 

transitions between nucleotides [13]. 

Again, each base has its corresponding phase, but the algorithm is driven by 

transitions between bases. These transitions are described as posi t ive(A-^G, G - ^ C , 

C->T, T->A), where phase is corrected by its increase by n/2. Or negative ( A - ^ T , T - ^ C , 

C - ^ G , G - ^ A ) , where correction of phase is done by its decrease by n/2. Other possible 

transitions are neutral [13]. F ig 9 shows results of this method: 

0 50 100 150 200 2 5 0 300 350 400 
NT locations] 

Fig 9. Unwrapped phase of different organisms 

A l l of the phase representations are one dimensional, and preserve enough 

biological information to work with them in further analysis. Although it may seem from 

Fig 8 and Fig 9 that cumulated phase and unwrapped phase are enough to classify 

metagenomic data, it is not that simple. Metagenomic samples are large in the volume of 

data. Because of that, it is necessary to get simple information from larger amount of data. 

For this purpose, feature extraction is used. 
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2.2 Feature extraction 
As mentioned in the previous chapter, feature extraction is essential step for obtaining 

information needed for classification of metagenomic samples. 

Assuming that there is a signal from which features can be extracted, there are plenty 

possible features that can be obtained. The following section describes those that seem 

appropriate for the classification and further analysis [12]. The 

signals from which the features are extracted are the already mentioned phase 

representations from the previous chapter. 

2.2.1 Standard deviation 
To understand the concept of standard deviation, it is necessary to define the magnitude 

on which it is based on. The magnitude is called variation. Variation indicates how 

statistic values differ from the average but in second power. Desired information is 

therefore squared and that complicates its interpretation. In order to get back to the 

original units, we need to square root the value of variance thus obtaining standard 

deviation. Variance is defined by equation (2.5): 

where n is a number of values in the sample, x; is specific value out of set of measured 

values and x is mean value of the set of measured values. Standard deviation is then 

defined like this [14]: 

Extracting standard deviation out of phase, cumulated phase and unwrapped phase 

of different organisms can lead to interesting results which are shown in 

N 
(2.5) 

(2.6) 

Fig 10. 
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In both cases extraction of standard deviations is used from 100 D N A reads, that 

are 100 bases long. In F ig . 10 is possible to see clearly that 2 different clusters are formed, 

which are visually distinguishable. This can be there for used for classifying 2 different 

organisms. Problem might occur while classifying more organisms from metagenomic 

sample (clusters would overlap). However, goal of this work is to classify metagenomic 

samples into two groups of healthy and diseased individuals. 

2.2.2 Hjorth descriptors 
These features are originally used for analyzing E E G signals. However, signals of phases 

carry similar properties, like non-stationarity, so idea to use Hjorth descriptors as 

extracted feature is appropriate. This approach also significantly reduces computational 

time. There are three Hjorth descriptors and they are defined by following equations: 

A = Activity = cr0

2 (2.7) 

M = Mobility = — (2.8) 

C = Complexity = (2.9) 
?± 
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where go 2 is variance of genomic signal, 01 and 02 are standard deviations of the first and 

second derivatives of the signal [12], [15]. 

Visualizing Hjorth descriptors leads to results which are shown in F ig 11. 

As Fig 11 and F ig 12 suggest this method might be usable for classification. 

However same problem as with standard deviation occurs. Classifying more organisms 

in metagenomic sample could lead to cluster overlap. Machine-learning algorithms or 

cluster analysis might at least partially solve that problem [12]. For classification into two 

groups, this method as well as standard deviation seem to be usable. However you can 

also see in F ig 11. Extracted Hjorth descriptors from cumulated phase of E.coli(b\ue), H. 

pylori(red - left) and V. cholerae (red - right), that there is a slight flexion of the data, 

which is not appropriate for classification. It is caused by usage of cumulative phase and 

therefore, it w i l l be better to use standard phase to extract Hjorth descriptors as seen in 

Fig 12. 
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E.coli x H.pylor i H jo r th 
• H. p y l o r i 

• E. c o l i 

Fig 12. E. coli X H. pylori Hjorth representation from standart phase 

Classifying taxonomies of different microorganisms is not the aim of this work, 

but it is important to show that, these features are able to distinguish one organism from 

another because the underlying cause of connection between metagenomics data and T2D 

probably lies in difference of gut microbiota of healthy and sick individuals, as next 

chapter clarifies. 

With program that can extract features from signal representations, it is possible 

to step in the main area of this thesis which is classification of metagenomic samples in 

order to find out whether it is possible to distinguish individuals with type 2 diabetes 

(T2D) from healthy individuals based on their gut metagenome. 

3 TYPE 2 DIABETES 
Diabetes mellitus is metabolic disorder, which causes inability to process glucose in 

organism in physiological conditions due to relative or absolute insulin resistance. In this 

type of diabetes, the lack of insulin is relative, meaning that pancreas is producing enough 

insulin, but tissues in body aren't responding to it, 

in other words they are resistant. In later stages pancreatic P cells (cells that are 

responsible for producing insulin), may be depleted which leads to an absolute insulin 

deficiency [16]. Some of the risk factors for this disease are presented 

in a Tab 3 on the next page. 
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Risk f ac to r Relat ive r isk 

Age >= 45 years 

Obesi ty : BMI >= 3 0 k g / m 2 

Overwe igh t : BMI >= 25, < 30 3 0 k g / m 2 

Hyper tens ion 

Hyper l ip idemia 

Fami ly h is to ry 

One 1st degree re lat ive o r t w o 2nd degree relat ives 

T w o 1st degree relat ives o r one 1st degree and t w o 2nd degree relat ives 

Genet ic v a r i a n t car r ier 

Heterozygous 

Homozygous 

5-6x 

4-5x 

2-3x 

2-3x 

4x 

2-3x 

5-6x 

1,1 - l ,4x 

Up t o lOx 

Tab 3. Relative risk associated with type 2 diabetes risk factors, taken from [17]. 

3.1 Diagnostics & metagenome classification 

Conventional diagnosis of T2D is based on the presence of hyperglycemia. It is done by 

determining body response to insulin. T2D is diagnosed when postprandial increase in 

blood glucose is found (impaired ability of P-cells to respond to increased plasma 

glucose)[16]. 

Several studies [17], [18], 0, [19], have successfully shown that human gut 

metagenome is connected with a presence of this disease. Qin et al. [18] even pointed out 

that gathered metagenomic data from healthy and diseased individuals differ. Dysbiosis 

(state where balance of normal microbiota in human gut is disturbed) was found in 

diseased individuals. However, mentioned dysbiosis was only moderate, and in addition 

to that there was no other factor that would differentiate healthy and diseased individuals. 

Nevertheless, the study found that it is possible to differentiate these individuals through 

metagenomic samples [18]. 

This fact is crucial for the objective of this thesis which is distinguishing healthy 

individuals from T2D patients purely from the metagenomic data using digital signal 

processing. Methods described in previous chapters w i l l be used on the data gathered to 

conduct mentioned study. The following chapter describes a simple machine learning 

algorithm that w i l l be useful for classifying healthy and diseased individuals. 
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4 MACHINE LEARNING 

Machine learning is nowadays a widely used tool. Voice recognition, web search engines, 

internet translators, smart cars, predictive financial software, and other modern day 

conveniences are now built on or working with machine learning algorithms. It is, 

therefore, undoubtedly a field that is already a major part of everyday life, and wi l l 

increasingly influence us in the future. 

Technically, it is the ability of the machine to learn to solve a problem for which it 

is not directly programmed. Such a problem can be, for example: sorting statistical data, 

prediction of behavior in particular system, optimalization of computational algorithm or 

already mentioned classification of different data. This chapter briefly describes machine 

learning algorithm, which is subsequently used in the practical part to classify 

metagenomic data. 

4.1 Artificial neuron 
The first comparison of the neuron cell and the process computer element was presented 

by Warren McCul loch and Walter Pitts in 1943. The element that represented the artificial 

neuron was practically a simple function with weighted inputs, a given threshold, and a 

binary output. This simple model, however, quite accurately describes the properties of a 

real neuron. F ig 13 is illustrating similarities between proposed model and real neuron. 

e 

dendr i tes body of neuron axon 

Fig 13. Figure of similarities between neuron cell and artificial neuron 
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Neuron is a sub-unit of a much more complex neural network, an organ that is 

responsible for processes throughout the body - the brain. A n y action that is done by a 

human being is initiated by electric signal that enters through dendrites into the body of 

neuron, where it is accumulated. If the signal is large enough, in other words, exceeds a 

certain threshold, body of neuron sends an output impulse that is transmitted through the 

axon to perform the given action [21]. 

The artificial neuron works in the same way and is described by the equation: 

y = f 9 (4.1) 

It has N possible inputs (xi, xi, XN) whose importance is given by weights (wi, wi, 

WN). Value of 3 then defines the threshold necessary for so-called neuron activation. The 

body of the neuron is represented by the chosen function. For the classification of data 

into 2 groups as in this case, the unit step or sign function (due to binary output) is the 

most appropriate. These functions are shown on F ig 14: 

CK.> 0 ; f(cv) = l 

ok < 0 ; f(cK) = 0 

Fig 14. Sign function (left) and unit step function (right) 

CK> o; f(ck)=1 

CK 

One artificial neuron with 2-dimensional inputs thus defines the boundary line that 

we obtain by simply modifying the equation (4.1) getting: 

y = W jX j + w2x2 -9=0 

-JEj + 
9_ (4.2) 

w, 9 
where L is a slope of a line and — is representing its shift along axis X2 [21]. 

w1 
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Such boundary line is a good tool for classifying 2 different sets of data on a plane as 

displayed on Fig 15, where everything above is classified as group A , all under the line 

as group B . 

> 
X l 

Fig 15. Classification of 2 random sets of data by artificial neuron 

For classification of data in 3-dimensional space, neuron must be fed with 3-

dimensional input and weights. Other thing needed is an algorithm that teaches the 

computer to construct a line that best differentiates these two groups of features. Such 

algorithm is described in following part of this chapter. 

4.2 Supervised learning and 5-rule 
Supervised learning is the process of finding best values for weights. In order to have 

neuron capable of successful classification of new input data, training on already 

classified data is mandatory. Learning is then iteration process, where we adapt weights 

after each evaluation of input and output data. Training data must be arranged at random. 

One iteration of this process, where every piece of training data was sent into the neuron, 

is called epoch. In the end of each epoch, recapitulation is done to check how many of 

the input data neuron successfully classified (in other words how many times the weights 

were changed). From this recapitulation is then concluded i f the training process 

continues or is done [21]. 

One of the many ways to adapt weights of neuron used as simple classifier is so-

called 8-rule. This way adapts the weights through following equation: 

w(t +1) = w(t) + ju[d(t) - y ( 0 > ( 0 (4.3) 
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where correction of weights is dependent on the value of deviation of output y from 

desired output d and on learning rate [i and input values x. Learning rate is set in range of 

0 to 1 and its value affects how much the weights w i l l change in next iteration [21]. 

Whole algorithm is briefly described in Fig 16 below: 

Input x 

initialized w & S-

© 

Desired output d 

Neuron 

calcula 
outt 

t ion of 
DUt V 

d 

+ 

f 

End of t ra in ing 

© 
Mchange of 

© 
V 

Tra ined neuron 

Fig 16. Flowchart of 6-rule algorithm. 

This is last theoretical part of this work that needed to be covered in order to 

describe the whole process of practical part of this thesis. Testing the real dataset and 

summarizing the result of the tests is introduced in following chapter. 
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5 RESULTS 
In order to test the actual datasets with mentioned methods, Python (version 3.6.5) 

program was implemented using following libraries: numpy, math, Biopython, 

matplotlib, mpl_toolkits.mplot3d, xlrd and xlswriter. A l l information and documentation 

about the libraries is freely accessible on official websites. Commented source codes of 

each part of the program are available in supplementary data. 

Program itself is divided into 2 working blocks that are described in the flowcharts 

in F ig 17: 

I m p o r t i n g m o d u l e s 
D e f i n i n g f u n c t i o n s 

I n i t i l i z i n g v a r i a b l e s 

( Export ing 
data to * .x ls file 

L o a d i n g d a t a 
f r o m * , x l s f i l e 

loading data 
1 iteration - 1 person. 

Hjorth 
centroids Stand, dev. of connected Stand, dev. 

reads 

loading indiv. reads 
1 it = 1 read 

Calculating standard 
phase signal of read 

Extracting Hjorth descriptors 
from phase signal 

Neuron with 
J - r u l e 

E x t r a c t i n g f e a t u r e 
f r o m d a t a o f 1 p a t i e n t 

Resu l t 
o f c l a s s i f i c a t i o n 

Fig 17. Flowchart of implemented program 
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5.1 Used datasets 
For testing implemented classification algorithm, data offered by study [18] from its first 

stage were used. It is dataset containing sequenced gut metagenomes of 145 Chinese 

individuals (age from 14 to 75 years), from which 71 suffer from T2D and 74 are healthy 

control group, further information gathered about those patients can be found in 

supplementary data. 

Testing the whole dataset that mentioned study offered would be very time 

consuming and would brought other problems with data mining, processing and also 

implementing much advanced structure, since dataset from whole metagenome of only 1 

person is approximately 3 - 5 gigabytes big. 

First decision to make was to choose between parts of contigs of whole data or just 

individual reads downloaded directly from S R A database. To decide which part w i l l be 

better for purposes of this thesis couple of reads and parts of contigs was tested and plotted 

through mpl_toolkits.mplot3d module which Python offers. In terms of resulted plots, 

very similar results are achieved in both contigs and read as seen in F ig 18: 

One d o t o n t h e s e f i g u r e s r e p r e s e n t s 
H j o r t h d e s c r i p t o r s e x c t r a c t e d f r o m 1 read 

o f s t a n d a r d phase r e p r e s e n t a t i o n 

MLfOdl * DLFC01 reads NLFQ01 X DLF0Q1 contigs 

Fig 18 Comparison of contig and read plots of metagenomic data 

Red dots - patient DLF001, blue dots - patient NLFOOl 

Reads have a constant length of 148 bp, but their disadvantage is that some bases 

are not identified and it is important to take this into account when implementing the 

program. Portions of contig are corrected so this is not the problem. On the other hand, 

parts of contigs are different in size without any alteration, and each further processing 

result w i l l therefore carry a different amount of information. For this particular reason, 

the tests presented in the following parts of this work are performed on 1,000 random 
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reads per 1 patient, which were downloaded directly from the S R A database using fastq-

dump program. Two groups of files were downloaded, as mentioned in the first paragraph 

of this section. These files are also available in supplementary data. 

5.2 Used feature extraction 

The next step to solve the problem of classifying downloaded metagenomic samples is to 

select the correct feature extraction. From the amount of data shown in F ig 19: 

O n e d o t o n t h e s e f i g u r e s r e p r e s e n t s 

H j o r t h d e s c r i p t o r s e x c t r a c t e d f r o m 1 r e a d 

o f s t a n d a r d p h a s e r e p r e s e n t a t i o n 

NLFQ02 x H ja r th 
HLFM2 X DLFW2 5TT3 

• Data from sick patient 

• Data from healthy patient 

Fig 19. Example of different feature extraction from metagenomic data. 
Red dots - DLF002, blue dots -NLF002. 

it can easily be inferred that classification by a mere neuron would not be possible in this 

case. The biggest problem would occur i f this approach would be tested on whole datasets 

since they come out with different lengths, making the number of features different for 

each patient. One cloud, which represents the patient in any of the graphs shown, should 

be modified/simplified to get the same amount of features for all patients and at the same 

time it should keep as much original information as possible. 

The procedure chosen to test the algorithm proposed for this work was extracting 

another feature from these clusters of data, keeping all of the information of the 1 patients 

cloud in 3 coordinates. Please note that from now on, every described feature was 
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extracted was from Hjorth descriptors cloud, since they were proved to be calculated 

faster than standard deviations of different phase representations. 

Following subchapters are presenting several options of follow-up feature 

extraction. 

5.2.1 Centroids 
Centroid is nothing else but the calculated center of a given cluster of data. Calculation 

of centroid coordinates is done according to equation 5.1: 
N N N 

Hxi Z -̂
x c = J ^ ; y c = ± ^ ; z c = J ^ (5.1) 

N N N 

where xi (Activity), yi (Mobility) and Zi (Complexity) are coordinates of all points in the 

cluster and N is number of elements in the cluster. F ig 20 shows how the centroid layout 

is plotted from each patient's Hjorth parameter clusters. 

Sick x Healthy centroids Hjorth 

• Data from healthy patients 

Fig 20. Centroids extracted from Hjorth descriptors of each patient. 
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5.2.2 Standard deviation 
This approach is very similar to the previous one except that the feature extracted from 

the cluster of Hjorth descriptors is a standard deviation instead of centroid. On F ig 21 its 

plotted layout can be seen. 

Sick x Healthy STDs f rom Hjorth 

• Data from healthy patients 

Fig 21. Standard deviations extracted from Hjorth descriptors. 

5.2.3 Hjorth descriptors of connected reads 
The last approach is somewhat different from the previous two. In this case, we do not 

calculate Hjorth descriptors from each read separately, but 1 Hjorth descriptor from all 

reads linked together from one patient getting immediately 3 coordinates in 3D space for 

each patient. Plotted layout of this feature is in F ig 22: 
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H j o r t h d e s c r i p t o r s of c o n n e c t e d r e a d s 

1 d o t = 1 p a t i e n t 

• Data from sick patients 
• Data from healthy patients 

Fig 22. Hjorth descriptors extracted from connected reads of each patient. 

A l l of these features were extracted from the data mentioned in the previous 

section using the featureExtractionScript.py, which can also be found in the 

supplementary data along with exported features in *.xls files. 

These features were classified with neuron using 8-rule. Results are presented and 

discussed in the following section. 

5.3 Classification outputs & statistics 
The final features extracted from the data have been submitted to the neuron. The initial 

parameters were estimated to: w = [1, 1, 1], 0 = 0,3, \i = 0,001. Training group was 

designed from actual features specifically for each group of feature extraction. For 

example: from extracted standard deviation, data from 3 sick and 2 healthy individuals 

were taken and very slightly changed (6 t h decimal spot) to make a training group for 

neuron. Wi th this setup classification process started. Example of its output can be seen 

on Fig 23Fig 23: 
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Python - neuro n.py:29 'S 

T r a i n i n g phase i s done. I t t o o k : 1100 epochs. 

Weights changed f r o m : [1 1 1] t o : [0.10324671 0.10324671 0.10324671]. 

T h r e s h o l d changed f r o m : 9.3 t o : 0.5610900000000062 

S i c k p a t i e n t s : 30 

H e a l t h y p a t i e n t s : 4 4 

[ F i n i s h e d i n 3.639s]  

Python - neuron.py:21 <S 

T r a i n i n g phase i s done. I t took: 1100 epochs. 
Weights changed from: [1 1 1] t o : [0.10324671 0.10324671 6.10324671]. 
T h r e s h o l d changed from: 6.3 t o : 6.5616800060000662 
S i c k p a t i e n t s : 39 
He a l t h y p a t i e n t s : 32 
[ F i n i s h e d i n 3.642s] 

Fig 23. Output of classification of healthy control group(up) and sick individuals(down) 

represented by Hjorth descriptors of connected reads. 

Rest of the outputs is well-documented in supplementary data. A l l them are 

summarized in statistical Tab 4: 

Cent ro ids 

TP: 29 FP: 21 

FN: 42 TN: 53 

Speci f ic i ty : 71,622% 

Sens i t i v i t y : 40,845% 

Accuracy : 56,552% 

Standard Dev ia t ions 

TP: 44 FP: 40 

FN: 27 TN: 34 

Speci f ic i ty : 45,946% 

Sens i t iv i ty : 61,972% 

Accuracy: 53,793% 

H j o r t h o f c.r. 

TP: 39 FP:30 

FN: 32 TN: 44 

Speci f ic i ty : 59,459% 

Sens i t i v i t y : 54,930% 
Accuracy : 57,241% 

Tab 4. Statistical evaluation of accuracy, efficiency and results of implemented algorithms. 

5.4 Discussion 
Result of this work are two scripts programmed in the Python (3.6.5). One is used for 

feature extraction from metagenomic data and the other is used for classification of 

patients with T2D. Both of these programs are usable with minor adjustments (for 

example: changing variable with number of patients, or number of reads, etc.) on samples 

of any formats supported by Biopython library. 

Here, mentioned programs were used on parts of data provided by the study [18] 

and reached the results summarized in the Tab 4. 

A t first glance, we can claim that the classification of any of the three methods 

was unsuccessful. None of these approaches exceeded the threshold of 60% and therefore, 

this method cannot be declared successful on the basis of the tests done in this thesis. Out 

of all three approaches, Hjorth descriptors from connected reads seem to be most accurate 
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one, with balanced specificity and sensitivity. Nevertheless, its accuracy is only around 

57% which is not enough. 

The key to success in this case could be definitely the test of the entire dataset, not 

just its parts as it is done in this work. Another possible upgrade of this method would be 

the use of a better machine learning algorithm (e.g. artificial neural network using deep 

learning to analyze the whole datasets). 
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6 CONCLUSION 
This thesis describes different methods of classification of metagenomic samples and how 

they can be done. Such methods can be used in different manners of biological 

exploration. This work particularly targets the problem of classifying patients with T2D. 

First chapter describes current methods and sums up all basic information needed 

to dive into digital processing of D N A signal. It also briefly describes some machine 

learning algorithms that were previously tested and proven useful in classification of 

metagenomics samples. Here however I present different approach and machine learning 

algorithm and this chapter is therefore, to present and introduce the reader to other 

approaches that showed some good results. 

Digital processing of D N A signal is described in second chapter. There is fair 

amount of information about ways of converting character strings to digital signal. It 

focuses mainly on signal representations that are used on the real-data tests in chapter 5. 

Phase representations were proven very useful for metagenomic data in many cases and 

are essential in case of this work too. It also describes the other but not less important part 

of D N A signal processing which is extracting features important for classification of a 

real data. 

Third chapter was written to summarize important information about the condition 

of type 2 diabetes. It mainly points out why should be the goal of this work possible. 

The last theoretical chapter is a brief introduction to machine learning algorithm 

used in this thesis. 

Practical part of this work describes how implemented program works and on 

which data it was tested. Each approach that was used to test the mentioned datasets is 

fully described. Final test on real data was not successful in case of this work. Three 

different features were extracted and used to classify without providing any satisfying 

result. In the following discussion I summarize the results of practical part of this thesis 

and contemplate how better results could be achieved. I think approaches presented in 

this thesis might have some potential but they must be definitely used tested on the larger 

sets of data. 
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LIST OF ABBREVIATIONS 
N G S - Next-generation sequencing 

D N A - Deoxyribonucleic acid 

B L A S T - Basic Local Alignment Search Tool 

T B D - Track Before Detect 

ICO - Intristic Correlation of Oligonucleotides 

S V M - Supportive Vectors Machine 

R - S V M - Recursive Supportive Vectors Machine 

I U P A C - International Union of Pure and Applied Chemistry 

E E G - Electroencephalogram 

N T - - Nucleotide 

B P - Base pairs 

S T D - Standard deviation 

T P - True positive 

F P - False positive 

T N - - True negative 

F N - - False negative 

I T - Iteration 



LIST OF SUPPLEMENTARY DATA 
1) C D containing 2 python scripts (one for feature extraction, other for 

classification), scripts outputs, all of the used patient data with their 

description, resulting statistics and pdf version of bachelor's thesis. 
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