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Annotation

This dissertation introduces some developments in the field of time average
digital holography widely using as a tool for vibration analysis. The work deals
with the most significant drawbacks of the method: limited measurement range
and quantitative analysis of the measured Bessel fringe patterns. Different
frequency modulation of an object wave and a reference wave in experimental
arrangements results in temporally harmonic variation of intensity values of
a digital hologram. This feature expresses a relative phase difference between
the both waves and therefore any of phase-shifting algorithms can be applied in
order to directly calculate a complex field in the hologram plane. This leads on
the one hand to improvement of lateral resolution within the reconstructed
surface of the object. On the other hand the signal-to-noise ratio is increased.
When frequency of the reference wave is in addition modulated by an integer
multiple of frequency at which the object oscillates, the measurement range of
the method can be shifted either to smaller or to larger vibration amplitudes.
The threshold of the smallest measurable amplitude is experimentally established
to be under 0.1 nm while the largest measured amplitude is about 10 pm. Phase
modulation of the reference wave is used to obtain a sequence of phase modulated
fringe patterns (reconstructed fields). Such fringe patterns can be combined by
means of phase shifting algorithms and amplitudes of vibrations can be
straightforwardly computed. This approach calculates the amplitude values
independently in every single pixel. The both frequency and phase modulation are
realized by proper control of Bragg cells.

Keywords: Vibration analysis, digital holography, time average holography,
frequency modulation, phase modulation, very small amplitudes, vibration
amplitude distribution.



Anotace
Tato prace rozviji digitalné holografickou metodu ¢asového stredovani, ktera patti
mezi dilezité nastroje v oblasti analyzy vibraci. Vyvoj se zaméfuje na nejvetsi
slabiny této metody, které jsou jeji omezeny mérici rozsah a kvantifikace
amplitud vibraci z rekonstruovanych poli. Rozdilna frekvenéni modulace
referencni a objektové viny holografického usporadani zpiisobuje harmonicky se
vyvijejici interferencéni pole digitalniho hologramu. Tato c¢asova proménnost je
urcena relativni fazovou zménou mezi obéma vlnami. Toho lze vyuzit pro primy
vypocet komplexniho pole v roviné hologramu pomoci nékterého z rodiny ,,phase-
shifting” algoritmi. Vysledkem je dosazeni lepsiho prostorového rozliseni uvnitt
meérené  oblasti  a zvyseni pomeéru signal-Sum. Je-li dale referencni vina
modulovana frekvenci odpovidajici nasobku frekvence méreného objektu, Ize
posouvat métici rozsah metody do hodnot velmi malych i velkych amplitud
vibraci. Prahova hodnota méritelnosti pro malé amplitudy vibraci byla
experimentalné stanovena pod 0.1 nm. Na druhé strané lze metodu modifikovat i
pro méreni amplitud vibraci kolem cca 10 pm. Kromé frekvencni modulace je
mozné do metody zakomponovat i modulaci faze jedné z vin holografického
usporadani. Timto zptusobem ziskdme sekvenci fazové posunutych interferenc¢nich
struktur, které lze opét pomoci ,phase-shifting” algoritmt vyuzit pro vypocet
rozlozeni amplitud vibraci nezavisle v kazdém bodé povrchu. Frekvencni i fazova

modulace je realizovana pomoci Braggovych cel.

Klicova slova: Analyza vibraci, digitdlni holografie, holografie c¢asového
sttedovani, frekvencéni modulace, fazova modulace, velmi malé amplitudy vibraci,

rozlozeni amplitud vibraci.
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Introduction

Measurement of vibrations is an integral task to engineering [1]. Vibration
analysis is on the one hand used to ascertain operation of a vast spectrum of
components, which should oscillate, like loudspeakers, ultrasonic or piezoelectric
transducers, etc., and on the other hand to check the behavior of components,
which have natural frequencies within the range of operating frequencies. This
helps to prevent the components of fatigue failure or to detect their noise-
generating parts or areas. Obviously, contactless measurement methods which do
not affect the vibrations itself are demanded. In many practical cases,
the knowledge of vibration amplitudes in a single point of the surface is not
sufficient but a distribution of amplitudes over the whole surface can only provide
the complete information.

On the market, there is a broad portfolio of vibration measurement devices, which
are usually based on the Doppler phenomenon [2]-[5], correlation analysis [2],
speckle ESPI (Electronic Speckle Pattern Interferometry) [3], [4], and others.
These methods are mostly single-point methods or their measuring capabilities in
terms of maximal vibration amplitudes or frequency range are limited. Thus,
a great attention must be paid to parameters of a device when choosing one for
a certain application. Another suitable tool for analyzing vibrations in the whole
surface is holographic interferometry, which has no limit in vibration frequency.
Holographic interferometry is comprising of two basic principles: holography and
interferometry.

In 1948 Gabor discovered holography as a lensless process for image formation by
reconstructed wavefronts [5]. The breakthrough of holography was initiated by
the development of the laser providing a powerful source of coherent light at
the beginning of 60s. The drawback of Gabor’s inline arrangement related to twin
image was addressed by the off-axis technique  introduced by Leith and
Upatnieks [6]. Denisyuk combined the ideas of Gabor and Lippmann, which led to
the invention of the thick reflection hologram [7]. At the end of 60s there was
a working method for recording and reconstruction of complete wave fields.
Besides the impressive display of three-dimensional scenes exhibiting effects like
depth and parallax, holography found many applications in the field of synthetic
holograms [8]-[10] or holographic data storage [11]. Perhaps the most important
application of holography is a measurement technique called holographic
interferometry [12], [13]. The early applications ranged from the first

measurement of vibration modes [12], [13], over deformation measurement [14],
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[15], contour measurement[16], [17], to the determination of refractive index
changes [18]-[20].

The wet chemical processing of the holographic recording media showed their
inherent drawbacks. The first attempt to capture a hologram by a digital sensor
dates back in 1967 when Goodman and Lawrence [21] recorded a wave field with
use of a vidicon. The output of the vidicon was sampled in a 256x256 array, and
quantized to eight grey levels. This was the very beginning of digital holography.
Since this date, digital holography has been developing [22], although its boom
came with the wide spread discovery of modern cameras using CCD or CMOS.
Recording and numerical reconstruction of digital holograms were introduced by
Schnars and Jueptner [23]. The most significant impact of digital holography I
find in the branch of digital holographic interferometry (DHI) [24]-[26] and digital
holographic microscopy (DHM) [27]-[30].

This dissertation is aimed to a development of the holographic method in the field
of vibration analysis. The pioneering work in this manner was done by Powell and
Stetson [12], [13] in 1965. They shew, that the image of holographically recorded
oscillating object exhibits a system of interference fringes, which map contours of
constant vibration amplitude. The method was named time average holographic
interferometry (TAHI), which, in this basic configuration, is suitable for
measurement of vibration amplitudes starting from hundreds of nanometers up to
few microns. In 1967 Goodman [31] and Aleksoff [32] took the first step in
extension of time average holographic interferometry measurement range by
means of frequency modulation (FM). The detectable smallest amplitude with
frequency modulated TAHI (FMTAHI) was estimated in 1976 by Ueda et al. [33]
to be 2.7 x 107* A.

Similarly to holography itself, TAHI has significantly changed after arrival of
the digital era. Picard et al. [34] performed time averaged holography with
a digital CCD camera. That was the beginning of using time average digital
holography (TADH). Heterodyne technique realized by acusto-optical modulators
was introduced by Clerc et al. [35]. Further, Joud et al. [36] employed acusto-
optical modulators in TADH for large amplitudes measurement while Psota et al.
[37] applied frequency modulation by means of Bragg cells for measurement of
very small amplitudes. Later on the method with ultimate sensitivity was
experimentally verified by Lédl et al. [38]. Other configurations with great

sensitivity was presented by Verrier [39].



One of the most important tasks in time-average holography (TAHI or TADH) is
to quantitatively determine the amplitude distribution from the fringe pattern
modulated by Bessel function. Numerical analysis of cosine fringes (exhibiting in
other interferometric techniques) allows for the determination of interference
phases even between the fringe intensity maxima and minima with high accuracy.
A lot effort has been put to automate the evaluation of cosine fringes coming
from holographic interferometry, but not a great work has been done to automate
Bessel fringe patterns resulting from the time average technique. The interference
phase (directly connected to the required amplitude of vibration) is most often
determined by searching for intensity maxima and minima followed by manual
fringe counting and interpolation of values between the fringes. Nevertheless,
modern digital cameras provide the advantage of very uniform and repeatable
response, and they can be considered as radiometric detectors. This can be
exploited for a normalization of the reconstructed intensity if two digital
holograms (one in vibrating and one in steady state) are captured.
The normalized intensity field can be directly inverted to the vibration amplitude
distribution since the relation between intensity and amplitude is known.
The direct inversion approach was applied by Borzsa [40] and Psota et al. in [37].
However, due to not monotonous behavior of the Bessel function, the procedure
cannot still be fully automatic. Vikram [41] and Psota et al. [42] have also used
recurrence relation of the Bessel function in order to calculate an amplitude
distribution from intensity distributions modulated by different orders of Bessel
function. A least square solution of overdetermined systems consisting of
differently modulated intensity maps was proposed by Psota et al. in [43].
However, none of the method is simultaneously full-field, robust, accurate and
fully automated.
Stetson and Brohinski [44] placed a PZT mirror in the reference arm of
a holographic arrangements in order to alter its phase and shift the Bessel fringes.
This inspired Psota et al. [45] to use Bragg cells in experimental arrangements in
for modulation of the both phase and frequency of the reference wave. This
invention resulted in the method with quantitative measurement of amplitudes of
vibrations independently in every single pixel in the extended dynamic range.
This method simultaneously addresses two main drawbacks of TADH:

e Extension of the measurement range;

e User friendly, fully automated and quick retrieval of amplitudes

independently in every single pixel;


https://en.wikipedia.org/wiki/Overdetermined_system

without excessive hardware demands. Moreover, together with complete
automatic control and data processing, the method introduces a complete solution
for full-field, contactless vibration analysis with unique accuracy and lateral
resolution.

This dissertation describes the physical nature of the method, experimentally
verifies the theoretical claims, searches for limits of the method, discusses possible
sources of distortions and quantifies them. Last but not least introduces some
results of applied engineering tasks like piezoelectric transformer vibration modes
visualization [37], [46]-[50] or measurement of a glass shell in the noise
suppression experiment [51]-[55].

The dissertation is organized into four main chapters. The first two chapters can
be summed up as a theoretical part, where some basic and generally-known
principles are defined for subsequent use in the text. The last two chapters
describe author“s selected contributions in the field of TADH.

Chapter 1 presents the physical prerequisites of digital holography, starting with
the wave theory of light, describing effects such as interference, polarization,
coherence and diffraction.

Chapter 2 presents the techniques of how to record holograms on a digital sensor.
In other words it shows how to solve the problem imposed by the limited
resolution of these detectors. Then the chapter introduces the reconstruction of
the recorded optical wave field by the numerical reconstruction. Finally, the basic
principle of vibration analysis by TADH is introduced.

In Chapter 3 the advantages resulting from Bragg cells employment are described
and experimentally verified. Namely it is lateral resolution and signal to noise
ratio (SNR) improvement, extension of dynamic range and retrieval of vibration
amplitudes. Moreover, error and uncertainty analysis is performed.

Chapter 4 is devoted to experimental results of the developed method.
Particularly it is mode visualization of ring and disc piezoelectric transformers
and measurement of amplitudes of vibration generated by a glass shell within
a noise suppression experimental study.
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Motivation

This dissertation presents a novel approach in the field of time average digital
holography. The research group (whose member is also the author) working in
Laboratory of Optical Metrology (LOM) at the Technical University of Liberec
(TUL) have been dealing with holography or digital holography for more than 10
years. During the master study program the author wrote algorithms for
processing of digital holograms like numerical reconstruction of digital holograms,
phase filtering or measurand retrieval especially for deformation measurement. He
was the leader in establishment digital holography as a standard tool in LOM.
The research and development course in LOM is usually initiated by demands of
external research groups either from academic or industry sphere. A vast
spectrum of various measurement techniques for many diverse quantities
(vibrations, deformation, displacement, shape, refractive index, temperature,
holographic PIV (Particle Image Velocimetry), DHM (Digital Holographic
Microscopy), etc.) has been developed. This was also the reason why researches of
LOM put an effort to study methods of vibration analysis. The first demand was
to measure amplitudes of vibration of oscillating piezoelectric transformers in
their whole surface. It is known, that the vibration amplitudes in this case are
very small and therefore cannot be measured by common TADH or TAHI. It was
therefore necessary to develop a new method, which is sensitive even for very
small vibration amplitudes. The method was based on frequency modulation of
reference wave by means of Bragg cells. Disadvantage of the developed method
was its upper limit (approximately 80 nm) of measurable amplitudes due to
presence of ambiguities in the reconstructed intensity field for larger vibration
amplitudes. This drawback became evident in another measurement challenge,
which was measurement of a glass shell in a study of acoustic noise suppression
by active control. Apparently the better suppression of noise requires larger
measurement range of the method when comparing the both states: with and
without suppression. The amplitude of vibration can differ about more than four
orders. Since it was also required to measure and process a big amount of data
(measured at different frequencies and at different settings of the active circuit for
the noise suppression) it was unavoidable to come up with new, automatic and
quick data processing technique. There had been no available solution fulfilling
the criteria and therefore author (based on previous developments of other teams)

started the uneasy task of even a better method development.
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1 Theory behind Digital Holography

1.1 Wave equation

In the nineteenth century Maxwell showed that light was an electromagnetic
(EM) wave and all forms of electromagnetic radiations are governed by the same
laws of electromagnetics. Electromagnetic radiation propagates in the form of
waves consisting of two related vector fields: namely the electric field E(r,t) and
the magnetic field H(r,t), that are the functions of position r and timet.
Therefore, in order to generally describe light propagation in a medium, whether
free space or a material, it is in general necessary to know six scalar functions.
These functions are not completely independent since the vectors of electric and
magnetic fields must satisfy a set of coupled equations known as Maxwell s
equations [56], [57]. Maxwell’s equations could have different forms, for

the purpose:

OE
VXxH=¢g— 1.1
X 80 atl ( )

oH
VXE=—u,— 1.2
X .uo at' ( )
V.E=0, (1.3)
V.H=0, (1.4)

describe electromagnetic field in free space. In (1.1)-(1.4), (vx) holds for
an operator of curl, (v.) is an operator of divergence, E,H are vectors of intensity
of electric resp. magnetic field, uy =47 x 1077"Hm™! is a free space permeability and
finally ¢, = 8,85 x 107'2Fm™! is a free space permittivity.

Since an electromagnetic field tends to polarize any medium it permeates,
producing an instantaneous distribution of electric and magnetic dipoles, for
the description of the electromagnetic field in a material medium it is necessary to
define two additional vector fields: the electric flux D, magnetic flux B,
respectively. The relation between the electric flux D and the electric field E
depends on electric properties of the medium. Similarly, the relation between
the magnetic flux B and the magnetic field H depends on magnetic properties of

the medium. Constitutive relations
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D = ¢E + P, (1.5)

B=uH+M (1.6)

define these relations in which P 1is the polarization density and M is
the magnetization density. Maxwell’s equations in a medium (no free electric

charges or currents), involving vector fields E, H, D, B, are expressed as

oD
VXH=¢y— 1.7

0B
VXE=—uy— 1.8
7.D =0, (1.9)
V.B = 0. (1.10)

The nature of the dielectric medium is exhibited by so called medium equation
defining the relation between the polarization density P and the electric field E.
The medium equation defines properties of the medium e.g. linearity, dispersivity,
homogeneity or isotropy. Within the scope of this work one can restrict to a light
propagating in free space where P =M =0 and therefore relations (1.1)-(1.4) are
recovered.

Using vector identity Vx (VxE)="V.(V.E)—V?E and the Maxwell’s equations

(1.1)-(1.4) one can derive wave equations:

1 0%E(r,t)
VZE ,t - _:0’ 1.11
.0 c? o0t? (1.11)
1 0%H(r,t)
V?H(r,t) —-———==0, 1.12
.0 ¢z 0t? (1.12)
1 -1 - . 2 9? 0?
where ¢ = = 299792458 ms™" is the speed of light and V* =—+-—+
UoEo 0x2 6y2

;—Zzz is the Laplace operator. Although we have obtained a wave equation for
the electric field E and another for the magnetic field H, the solution of both
equations are not independent, because the electric and magnetic fields are related
through Maxwell’s equations. Therefore each of these two vectorial wave

equations can be separated on three scalar wave equations, expressed as:
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1 9%u(r,t
( )=O

_2une) 1.13

V2u(r,t) —

where the scalar variable u(r,t) may represent each of the six Cartesian
components of either the electric or magnetic fields.

Obviously, the EM waves transport energy. The Poynting vector §:
S=EXH (1.14)

defines the flux of energy carried by the EM wave. The intensity I of the EM
wave is then defined as the amount of energy passing through the unit area per
time. Mathematically the intensity is defined as the Poynting vector modulus

averaged over time:
I ={|S|). (1.15)

The fact of using an averaged value instead of an instant value to define
the intensity of an EM wave is because no detector is able to follow fast changes

of intensity due to the very high frequency of light.

1.2 Monochromatic waves

The time dependence of E and H within the wave equations (1.11), (1.12) evinces
very often the harmonic variation. Then harmonic functions are considered as
a solution of the wave equation. All components of the electric and magnetic
fields are harmonic functions of time of the same angular frequency w. In
a general form, the electric and magnetic fields associated with a monochromatic

wave can be expressed as:

E(r,t) = Eo(r)cos(wt + (1)), (1.16)

H(r,t) = Hy(r)cos(wt + (1)), (1.17)

where the amplitudes of fields Eqo(r) and Hy(r) as well as the initial phase ¢(r)
depend on the position r, but the time dependence is carried out only in
the cosine argument through wt. When dealing with monochromatic waves, it is

usually easier to write down the monochromatic fields using complex notation!

(U =v=1):

! Complex numbers are denoted by a dot above a letter.

14



E(r,t) = Re{E(r)exp(jwi)}, (1.18)

H(r,t) = Re{Hr)exp(jwt)}, (1.19)

where E(r) and H(r) denote the complex amplitudes of the electric and magnetic
fields, respectively. The angular  frequency  w that characterizes
the monochromatic wave is related to the frequency f and the period T by:

_27t

w = 2nf T (1.20)

In the case of monochromatic waves, Maxwell’s equations (1.1)-(1.4) (using

the complex fields amplitudes E and H) are simplified by substituting d/dt = jw:

Vx H = jeywE, (1.21)
VxE=—ju,wH, (1.22)
V.E=0, (1.23)
V.H =0, (1.24)

Now, if we substitute the monochromatic waves (1.18) and (1.19) in the wave
equation (1.13), we obtain a new wave equation valid only for monochromatic

waves known as the Helmholtz equation:
V2U(r) + K2U(r) =0, (1.25)

Function U(r) represents each of the six Cartesian components of the E(r) and

H(r) vectors in (1.18) and (1.19), and wavenumber k = w/c .

u(t) A imiu; A imguy

—bl T |+ ©
Pl —p

T

Figure 1.1: Representations of a monochromatic wave at a fixed position 7: (left) the wave

function U(t) is a harmonic function of time; (middle) the complex amplitude U(r) is a fixed

phasor; (right) the complex wave function U(t) is a phasor rotating with angular velocity .
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The average of the Poynting vector as a function of the complex fields amplitudes

for monochromatic waves takes the form:
(S) = (Re{E(rexp(jwt)} x Re{H(r)exp(jwt)}) = Re{S}, (1.26)

where §, called the complex Poynting vector, has been defined as:

1.
$=cExH, (1.27)

In this way, the intensity carried by a monochromatic EM wave should be

expressed as:

I = |Re{S}| (1.28)

1.3 Monochromatic plane waves

The temporal dependence of EM fields has already been established in terms of
monochromatic waves. The solution for the spatial dependence, determined by
the complex amplitudes E(r) and H(r), can be obtained by solving the Helmholtz
equation (1.25). One of the easiest solutions for this equation, and also the most
frequently wused solution in optics, is a plane wave. The plane wave is
characterized by its wavevector k, and the mathematical expressions for

the complex amplitudes are:

E(r) = Egexp(—jkr), (1.29)

H(r) = Hyexp(—jkr), (1.50)

where the magnitudes E, and H, are now constant vectors. Each of the Cartesian
components of the complex amplitudes E(r) and H(r) will satisfy the Helmholtz
equation.

Obviously, the solution given by the electric and magnetic complex amplitudes
(1.29), (1.30) must satisfy Maxwell’s equations. After substitution of the complex
amplitudes (1.29), (1.30) to Maxwell’s equations (1.21), (1.22), the following

relations are obtained:

kXHO = —0)€0E0, (131)
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kXEO =(.U.LI,OH0. (132)

These two formulae are valid only for plane monochromatic waves and establish
the relationship between the electric field E, the magnetic field H and
the wavevector k. From equation (1.31) it is obvious that the electric field is
perpendicular to the magnetic field and the wavevector. In the same way,
the relation (1.32) establishes that the magnetic field H is perpendicular to E and
k. Therefore, one can conclude that k, E and H are mutually orthogonal, and
because E and H lie on a plane normal to the propagation direction defined by k,
such wave in called a transverse EM wave.
When dealing with monochromatic plane EM waves, it is useful to characterize it
by its radiation wavelength 1, defined as a distance between two nearest points
with equal phase of vibration. The wavelength is therefore expressed by:
r=er=5=2
f k
Visible light (VIS) is then an EM wave of such a wavelength that is visible to

(1.33)

the human eye. VIS is short interval of the vast electromagnetic spectrum, see Figure
1.2.

Wavelenghth

390 nm

Ultraviolet
—{100 nm

Visible

—|10um

Infrared

—|100um

760 nm

Figure 1.2: Electromagnetic spectrum with highlighted interval of visible wavelengths and

its corresponding colors.

When an EM wave passes from one medium to another its frequency remains
unchanged, but its phase velocity is modified due to its dependence on
the refractive index. The wavelength associated with the EM wave is usually

referred to the wavelength of that radiation propagating through free space.
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1.4 Polarization of electromagnetic waves

A property associated with a transversal wave is its polarization that is related to
the closed curve described by the tip of the electric (or magnetic) field vector at
a fixed point r = r, in the space.

In order to analyze the polarization character of an EM plane wave, let us assume
(without loss of generality) that the EM wave propagates along the z-axis. In this

case we have:
k = kes, (1.34)

where ey, e, e; are the unit vectors along the x, y and z-axis respectively. For

simplicity one can also consider an electric field varying along the x-axis:

E = Eycos(wt — kz)ey, (1.35)

H = Hycos(wt — kz)e,. (1.36)

The wave described by equations (1.35) and (1.36) is linearly polarized (or more
specifically, linearly x-polarized) because the electric field vector E is always along
one direction (x direction in this case).

Let consider now a linearly y-polarized wave with an addition phase of +m/2
described by:

/i1
E = E,cos (wt —kz+ E) e, = Eysin(wt — kz)e,, (1.37)

T
H = Hycos (a)t —kz + E) e1 = Hysin(wt — kz)ey. (1.38)

Since Maxwell’s equations are linear, a linear combination of several solutions will
also be a solution. In particular, the sum of plane waves described in (1.35) and
(1.36) and those described by(1.37) and (1.38) will give a solution of the wave

equation:

E = Ey[cos(wt — kz)eq — sin(wt — kz)e,], (1.39)

H = Hy[cos(wt — kz)e, + sin(wt — kz)e,]. (1.40)
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In order to examine the polarization character of this new wave, one can study
the curve described by the tip of the electric field vector at a fixed plane (e.g. z
= 0). At this position, the time dependence of the fields is:

E, = Eqcos(wt) and E, = —Eysin(wt), (1.41)

H, = Hysin(wt) and H, = Hycos(wt), (1.42)
The modulus of the electric field vector is therefore:
E2=E, +E} (1.43)
and for the magnetic field holds:
2 2 2
H>=H, +H>, (1.44)

which indicates that, at a fixed plane, the tip of the electric field vector (and
the magnetic field vector) describes a circle. That is why this wave is called
circularly polarized. While looking at the wave along the propagation direction,
one can observe that the electric field vector rotates contra-clockwise, and
therefore it is a left-hand circularly polarized wave.

If two mutually perpendicular linearly polarized waves with the same propagation
direction and frequency but with different amplitudes and relative phases are

superposed (e.g. at z = 0), we obtain:
E, = Eyycos(wt — 6;) and E,, = —Ey,cos(wt — 65). (1.45)

For such a wave, the relation between the Cartesian components of the electric
field is:
2 2
(5—0"1) + (%) _ 25—;5—;c05(92 —0,) = sin?(6, — 6,).  (1.46)

This equation represents an ellipse and thus describes an elliptically polarized
wave. In general, the principal axis of the ellipse will be tilted with respect to
the x and y axis. In particular, for 6, — 6, :237", the major and minor axis of
the ellipse will lie along the x and y axis. In this case, if in addition the amplitude
of the components are equal Ey; = Ey,, then the ellipse will degenerate into a circle.
For relative phase of 6, -6, =0,m, 2m,..., the ellipse will become a straight line,

with:
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_E
E,=T-2E,, (1.47)
EOl

which represents once again a linearly polarized wave.

Linearly x-polarized wave  Circularly polarized wave  Elliptically polarized wave

Figure 1.3: Polarization of light wave.

1.5 Interference

The superposition of two or more waves in space causes an effect of interference.
Amplitude of the resulting wave depends on relative phases of the interfering
waves. The interfering waves must be coherent as will be clarified in the next
chapter. Otherwise the interference pattern changes very quickly with the time
and the result is just the mean value of intensity. The second condition is
the same polarization direction of the both interfering waves.

The resulting wave function is described by a sum of each single wave. Such
a basic principle of superposition results from the linearity of the wave equation
(1.13). In the case of monochromatic waves with the same frequencies
the principle of superposition for complex amplitudes is still valid. It conforms to
the linearity of Helmholtz equation. If we consider two monochromatic waves
with complex amplitudes U;(r), U,(r), the resulting wave is also monochromatic

(with the same frequency) and its complex amplitude is:
U(r) = U (r) + U,(1). (1.48)

Intensities of interfering waves are I, = |U;|*> resp. I, =|U,|> and the resulting
intensity is:

) = |U@)? = |U,(r) + U,(r)|? =

— (U, ()2 + U, ()2 + U, (U (1) + Uy U (1). (1.49)

Using U, =/Le/*r and U, = /l,e/%2, where ¢, ¢, are corresponding wave phases,

the detectable intensity follows an equation:
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I = 11 + 12 + 2 1112COS(p, (150)

where ¢ = ¢, — ¢;. This relation (1.50), called interference equation, can also be
interpreted geometrically as the phasor diagram, which demonstrates that
the magnitude of the phasor U is sensitive to the phase difference ¢, not only to

the magnitudes of the constituent phasors U,,U,, see Figure 1.4.

Al

f|+.f2

4x 2n o 2 4n ®
Figure 1.4: Interference of two waves: (left) relation of total intensity I on the phase
difference ¢; (right) phasor diagram for the superposition of two waves U;,U, and phase

difference ¢ = @, — ;.

The interference equation (1.50) shows that the superposition of two waves does
not correspond to sum of their intensities due to the appearance of the component
2,/IiI,cosp. This term can be positive or negative and influences the brightness of
certain parts of interference pattern.
The visibility

Lnax — Imi

¥ i i (151

is a quantity which acts as a measure for the contrast of an interference pattern.
Intensity values I, and I, are two neighboring intensity maxima and minima.
The values I, and I, can be calculated by substituting ¢ =0, ¢ == into (1.50).
In the case of ideal monochromatic source, the visibility is then

_ 2{LL

= : 1.52
L+, (1.52)

If two parallel polarized waves of the same intensity I, = I, interfere, one observes
the maximal contrast of vV =1. For example, if the ratio of the intensities of

interfering waves is 9:1, the contrast becomes 0.6.
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1.6 Coherence

Generally the resulting intensity of two different sources, e. g. two electric light
bulbs directed on a screen, is additive. Instead of dark and bright fringes as
expected by interference equation (1.50) only a uniform brightness according to
the sum of the individual intensities can be observed. In order to generate
an interference pattern the phases of the individual waves must be correlated in
a special way. This correlation property is called coherence and describes
the ability of light to “visibly” interfere. The two aspects of coherence are
temporal and spatial coherence. The temporal coherence describes the correlation
of a wave with itself at different instants of time. A temporal coherence function
is introduced for a quantitative description of the temporal coherence. It is

defined as the autocorrelation function of a stationary complex random function
T

1 .
G)=UU(t+1)) = llmﬁ _TU (HOU(t + 1)dt. (1.53)

T—
It is easy to show that the intensity I = G(0) is equal to G(r) if r = 0. The temporal
coherence function G(r) carries information about both the intensity I = G(0) and
the degree of correlation (coherence) of stationary light. A measure of coherence
that is insensitive to the intensity is provided by the normalized autocorrelation
function:

_ 6@ _ (U U+ 1)
60O (UrUm)

which is called the complex degree of temporal coherence. Its absolute value must

g9() (1.54)

follow condition
0<|g(®)|<1. (1.55)

When considering a finite coherence length the interference equation (1.50) has to

be replaced by

I=1+1,+2J1,|g(t)|cose (1.56)
and the visibility of the interference pattern becomes:

v =20 00, (1.57)

I1+1,

For two partial waves with the same intensities I, =1, , the visibility is equal to
the complex degree of temporal coherence V =|g(7)|. For ideally monochromatic

light or, likewise, light with infinite coherence length the complex degree of
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temporal coherence becomes unity: |g(z)| = 1, while for completely incoherent light
is zero |g(r)| = 0. Values of the complex degree of temporal coherence for partially
coherent light fall in interval 0 < |g(r)| < 1. As an example, the complex degree of
temporal coherence of electric light bulbs is very close to zero what explains why
uniform brightness is observed instead of dark and bright fringes as expected by
interference (1.50).

Spatial coherence depicts the mutual correlation of different parts of the same
wavefront. If points of the extended light source are superimposed on the screen,
it may happen that one source point generates an interference maximum at
a certain point on the screen, while another source point generates a minimum at
the same screen point. In general the contributions from all source points
compensate themselves and therefore the contrast of interference pattern
vanishes.

In contrast to the temporal coherence, the spatial coherence depends not only on
properties of the light source, but also on the geometry of the interferometer. To
consider the spatial coherence, the autocorrelation function defined in (1.53) is
extended in order to get the cross correlation function also called mutual

coherence function at spatial vectors ry,r,:
G(rll T, T) = (U*(TZJ t)U(rll t+ T)) =

1 T
—lim— [ Uy DUyt + D)8, (1.58)
2T )_;
T—oo
Its normalized version forms a complex degree of coherence
G (rll T, T)
g(ryre7) = (1.59)

\/G(rll T O)G(er ra, O)
where G(ry,14,0) is the intensity at r; and G(ry 1,,0) is the intensity at r, .
The complex degree of coherence describes the degree of correlation between

the light field at r, at time t with the light field at r, at time t + 7.

1.7 Diffraction

When an optical wave is transmitted through an aperture in an opaque screen
and propagates some distance in free space, its intensity distribution is called
a diffraction pattern. If light waves were propagated as rays, the diffraction
pattern would be a shadow of the aperture. Due to the wave nature of light,
the diffraction pattern may deviate from the aperture shadow, depending on
the distance between the aperture and screen, the wavelength, and the dimensions

of the aperture.

23



There exist two basic approaches how to solve such a diffraction task:

e Rigorous methods [58] — come from laws of Physics and follow the nature
of the electrodynamic boundary conditions. They consider the opaque
screen with defined properties such as perfect or partial conductivity.
Consequently, the field in front of the aperture is also affected.

e Approximate methods [58] — include scalar approach and assume that
the impinging wave is transmitted without change at points within
the aperture, but is reduced to zero at points on the back side of
the opaque part of the screen.

Problems solved by rigorous methods are limited due to the computational
complexity. For most of optical tasks (including digital holography) the use of
rigorous approach is not necessary. Therefore, we will only concentrate on
approximate methods; however, for some special optical problems or some radio
frequency tasks the use of a rigorous method is unavoidable.

In order to set up relevant approximations, we have to define some constrains
where the approximations are still valid. The main approximation is
implementation of the scalar theory. Wave equation defined in (1.13) is valid for
homogeneous medium. In inhomogeneous medium, where the permittivity e(r) is
a function of position r, it is no longer possible to represent all components by
one function. It follows that the validity of the scalar approximation for the case
of diffraction on the aperture depends on the size of the contribution from
the edges of the aperture, where the medium is supposed to be inhomogeneous.
The scalar approximation can therefore be used if:

e the aperture is much greater than the wavelength of diffracted light
e the observation plane is in a sufficient distance from the aperture

The first scalar diffraction theory introduced by Fresnel in 1818 made
a breakthrough in understanding of light. In 1882 Kirchhoff figured out
mathematically more consistent diffraction theory. The Kirchhoff’'s theory was
then improved by Sommerfeld in 1894; however, in the paraxial area all
the theories provide more-or-less the same results.

In next paragraphs, the basic idea of the Kirchhoff approach is introduced. For
detailed analysis, see [58]. Let us consider the situation outlined in Figure 1.5.
An aperture is illuminated by a light source O and the wave amplitude U(P) is
observed at the point P. To discuss the influence of this light propagating through

the aperture, we assume a domain S consisting of three regions S1, S2, and S3.
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We need to integrate the contribution from a small area dS over the domains S1,
S2, and S3.

Figure 1.5: Geometry for Kirchhoff approach.

This domain S is enclosed by a screen S2 (there is no contribution from this area,
because the light amplitude does not exist there), a semi-sphere S3 with
the observation point P at the center (there is also no contribution due to
the Sommerfeld radiation condition), and the aperture S1 which dominates
the wave U(P) at the point P. If we skip sophisticated discussion, the next
equation called the Kirchhoff diffraction formula is obtained using wave number k

and incident wave amplitude U,:

uPp) =

jﬂf exp[—jk(ry + 11)] (cos(ry,n) + cos(ry,n))dS. (1.60)

22 ToT1
51

The part j/24(cos(ry,n) + cos(ry,n)) is usually called the inclination factor with
the unit normal vector n to the surface of the aperture.

In the Kirchhoff theory (and all other approximation methods) there are some
mathematical inconsistencies. For instance, one of the Kirchhoff’s boundary
condition supposes the field value U and its first derivative to be equal to zero
behind the opaque screen. It is in breach with the Green formula conditions
defining the wave field U and its first and second derivatives to be single-valued
and continuous within and on the domain S. However, the difference between
Kirchhoff method and rigorous methods has only an impact when the observation
plane is very close (few wavelengths) to the aperture. Otherwise the solution of
the Kirchhoff (or Sommerfeld) solution does not considerably differ from rigorous
methods.

The diffraction integral can be further simplified. If the light source is located far
from the screen, cos(r,,n) =1. In addition, if the observation point is far from

the screen, the angle cos(r;,n) becomes nearly zero and the inclination factor is
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approximately j/A. Considering distances appearing in interferometric setups,
these simplifications are perfectly relevant. This means that the complex

amplitude is given by the following expression:

uepy =20 I ko + 1l (1.61)
S1

Toh

However, except a limited number of cases, it is still difficult or even impossible
to solve the formula explicitly due to the integral term in the expression (1.61). In
order to get an “easy to solve” description of diffraction, a further approximation

must be introduced.

Figure 1.6: Coordinates in aperture and observation planes.

Let the aperture S1 be illuminated by the parallel uniformed beam from
the source; then, points (x,,y,) within the aperture S1 play the role of a light
sources which produce the diffracted pattern on the observing screen. The point
Py(x0,¥0,0) is located on the aperture plane, while the observing point P,(x,v,z) is
located on the screen, see Figure 1.6. The distance |P, P;| is expressed by rand

the complex amplitude U(P,) is calculated by:

J exp[—jkr]
Upy) = sz h(xg, Vo, 0) fdxodyo, (1.62)
51

where r = /(xy —x)% + (¥o — ¥)? + z2. However, this r makes the integration difficult.

The Taylor series decomposition:

! h(xg,¥0,0) represents transmittance function. In this case h(xg,y0,0) =1 if h(xg,yo,0) € S1

otherwise h(xy,vo,0) = 0. In general, h(xy,y,,0) can be any number including complex numbers.

26



1
r= \/(xo —x)2+ (o —y):+zi~z + E[(xo —x)% + (yo — ¥)°]
(1.63)

—5[(750 —x)? + (Yo —¥)? + -
can be used to avoid the square root in (1.62). Omitting the third and higher

terms of this expansion, the diffraction integral in arbitrary point on the screen

becomes:
_J LR )
U(x,y,z) —Z/,lexp( Az[x +y°]| x
jT. 2
X h(x,¥0,0) exp _E[Xo + ¥0°]) X (1.64)

x exp (~j2nlxo 2=+ yo -] ) dxod
p\—J 07 Yo 1z 0@Yo-
This approximation is known as the Fresnel approximation. The error caused by
the omitting of the higher terms of the Taylor series is small if the third term

meets condition:

1 (x2+y3\° =«
gkz< P <<E' (1.65)

The value n/2 is limiting value when the omitted term causes sign change of

xz“’z) = tan?(ry,n) the condition holds:

z2

the complex field U(x,y,z). Considering (
21
tan*(r,n) < — (1.66)

It follows that the Fresnel approximation can be relevantly used in the paraxial
area.

One can go even further and put exp (—i—:[xo2 + yoz]) ~1 in (1.64). The diffraction

formula:
jm

J
Ulx,y,z) = aexp( o [x* + yz]) X

gt . X y (1.67)
X ff exp (_]Zﬂ[xo P + Yo /1_2]) dxodyo
is called the Fraunhofer approximation. The condition for the Fraunhofer
approximation is %[XOZ + 02] <<§ from the same reason as in case of the Fresnel
approximation.
From the physical point of view, the Fresnel approximation replaces the spherical

waves describing the point source light propagation by waves with parabolic

wavefronts, while the Fraunhofer approximation uses even plane wavefronts.
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Figure 1.7 shows how the space behind the aperture is divided according to
the validity of different approximations.
PIangygaves

Spherical waves Parabolic waves |

Paraxial area

Fresnel zone

Fraunhofer zone

Figure 1.7: Fresnel and Fraunhofer zones.
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2 Holography

2.1 Principles of Holography

Holography involves recording and reconstruction of optical waves [59], [60].
Optical wave carries information about its amplitude and phase; however, only
the amplitude information can be retrieved by optical detectors (human eye,
photographic film, CCD, CMOS, etc.) as detected intensity. Information about
phase of the wave is lost during the recording process. Nevertheless, the phase
indicates a directionality of optical waves, thus determines the effects like depth
and parallax of the observing scene. Due to lack of “phase-sensitive” detectors, it

is necessary to code the phase information into the amplitude information, which

N

I8 "

can be detected.

[I] ~Je
Recording
medium

Object

Figure 2.1: Off-axis experimental arrangements for recording of a hologram. Recording medium
can be e.g. silver halide holographic plate or digital sensor. The reference and the object wave

are generated by the same laser source due to coherence requirements.

Such a code is based on combination of the original wave - the object wave U,
with a known reference wave U, and recording their interference pattern'.
The interference pattern is very sensitive to phase difference of the interfering
waves, see (1.50). The intensity of the sum of the two waves is recorded, forming
a transmittance h. This transmittance (called a hologram) is described by

interference formula:
h=|U,+ U |?>=|U,*+|U >+ U, U~ +U,U,. (2.1)

The hologram h carries coded information about the intensity (amplitude) and
phase of the object wave U,. This procedure is called “recording.” An

experimental arrangement for recording of a hologram is outlined in Figure 2.1.

! Coherence and polarization conditions must be fulfilled.
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The second step in holography is reconstruction of the hologram. To decode
the information from the hologram and reconstruct the object wave, the reference
wave U, must again illuminate the hologram. The result is a wave with complex

amplitude:
U= hU, ~ U, (I, + Ip) + LUy + U 2U,". (2.2)

The term LU, is the original wave multiplied by the intensity of the reference
wavel.. If I, is uniform this term constitutes the desired reconstructed wave.
The term U,2U," is a conjugated version of the original wave modulated by U,? and
the term U,.(I. + I,) represents the reference wave, modulated by the sum of

the intensities of the reference I. and the object I, wave.

RECORDING RECONSTRUCTION
Reference wave Reference wave

Reconstructed wave

Dy : N </ L ..‘ k
& Obiect w X L Y
: ect wave S
Object ) |
mage of
Hologram object Hologram

Figure 2.2: Principle scheme of a hologram recording and its reconstruction.

In Gabor’s original work, the hologram was recorded when the object wave and
the reference wave were parallel. Such a type of the recording is called the inline
holography. In this case, the four components of (2.2) propagate along the same
direction and cannot be observed separately. The idea with off-axis holography is
to introduce an angle ¥ between the directions of propagation of the object wave
and the reference wave. Therefore, the different terms of the interference
propagate along separated directions during the reconstruction. When
the reference wave is tilted in x directions, the reconstructed complex amplitude

becomes:
U~ U.(I, + Ip) + I, exp(—jkx sin(9)) Uy + U,? exp(jkx sin(9)) Uy*. (2.8

The phase factor exp(—jkxsin(9)) in the second term, which produces the virtual
image, indicates that the wave is deflected with an angle —9 with respect to
the direction of the illuminating wave U,. The opposite phase factor appears in
the third term, meaning that the wave producing the real image is deflected with

an angle 9. The zero order of diffraction propagates in the same direction as U,. In

30



other words, the off-axis geometry spatially separates the different orders of
diffraction, allowing an individual observation of each term. The recording and

reconstruction procedures are schematized in Figure 2.2.

2.2 Recording of digital hologram

The aim of digital holography is to record holograms, which are later stored in
a computer memory and can be reconstructed numerically afterwards. The digital
recording medium is usually CCD or CMOS camera. The basic principle of digital
hologram recording is the same as in the conventional holography. Only
the recording medium is different. The hologram is a microscopic interference
pattern generated by the coherent superposition of an object and a reference wave

as was mentioned in the previous chapter.

i
At
‘Hlijj[
e, | fi
R, nterference
Y M
A1

0 / / / / /// / / // /-loluli{{[n’nla’a'r’t'o’nfa't't't'uWn'n'n'n'fr' i tt/e\m
=

S

Figure 2.3: Interference of two plane waves at angle 6.

The spatial frequency 1/4 of such interference pattern is defined by the angle

between these two waves (see Figure 2.3):

R (2.4)

sin@

A sampling of the interference pattern constituting the hologram must follow
the sampling theorem. The sampling theorem requires that the spatial period A

must be sampled with more than two pixels:
A > 2A¢, (2.5)

where A¢ is the pixel size. For small values of angle 8 we can put sinf = 9. Hence,
the limit value for the angle 6., which is the maximum angle formed by
the reference and the object wave when the sampling theorem is followed, can be

determined as:

emax = Z_Af (2 : 6)

31



Naturally, the sampling theorem must also be followed for conventional
holography. However, the resolution of digital cameras is much lower when
compared to analog recording media and therefore it is more difficult to fulfil

the conditions of sampling theorem.

Digital
camera

Object

Ag
yT_X, Zoomed

digital hologram

Figure 2.4: Recording of a digital hologram in off-axis arrangements. The pixelated digital
sensor naturally samples the microinterference patterns. The boundary situation when
the hologram fulfills the sampling criterion is outlined in the zoomed image.

Let us consider geometry shown in Figure 2.5. The object has a width d, along
the x direction symmetrically to the optical axis, and the reference wave
propagates along the optical axis and impinges orthogonally onto the sensor.

The maximum object width d, for a given distanced is calculated according to:

do | NAS
rang = 2 _ 2 (2.7)

where N denotes number of pixels of the digital sensor in x direction. Using

the condition for the maximum angle 6,,,, (2.6) the equation (2.7) becomes':

dy , NAZ
_ 2 2 (2.8)
2A& d
and hence we obtain condition:
d, < Ad NA 99
0 Af f' ( . )

which describes the limit for a maximal width d,of the object with respect to
the distance d in order to fulfil the sampling theorem.
In practical applications one has to often record large objects. Holographical

recording of large objects can fail to meet the condition (2.9). In this case,

! Approximation tan® ~ 0 was used for small angles.
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the wave field scattered from the surface of object must be reduced by the use of

a negative lens, see Figure 2.5.

Negative
Digital

Figure 2.5: Reduction of an imaging angle by using a negative lens.

After the placement of appropriate negative lens in the experimental
arrangements, the scattered object wave field seems to come from the small

virtual image of the object of width d, instead of the large object having width d,.

1 1

Using the lens formula %ZE_Z , magnification formula Zz?zﬁ and
Al
the geometry tand = Z(Z:b) we can derive the term for distance between the lens

and the sensor:

_fg fdy
g—f (g—1)2tand

The distance between the digital camera and the small virtual image of the object

a (2.10)

is d =a+b instead of the original distanced =a+g. It can be seen, 6,.4ucea <

Bensiess thererofe it is much easier to fulfill the sampling theorem.

2.3 Reconstruction of digital holograms

The reconstruction in the conventional holography requires illumination of
the hologram by a reference wave. In digital holography this process is modeled
numerically. A digital hologram h is multiplied by a conjugated reference
wave Ur*, which results in numerical representation of a wave field in hologram
plane (with coordinates notation ¢&7). This wave field is then numerically
propagated in a free space according to laws of diffraction and the resulting
complex field is calculated in a certain reconstruction distance d — where is
the image plane (x,y).

Plane or spherical wave is usually used as a reference wave when capturing
the digital hologram [61]. This fact must be taken into consideration when

choosing appropriate reference wave for reconstruction. A plane wave having
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amplitude A and impinging the digital camera at angles 6,, 8, with respect to

the normal of the digital sensor is described by expression :
21T
Ur* = Aexp]T (sinB,& + sinb,n). (2.11)

Spherical wave which is generated by a source point at distance dg,, from

the image plane is expressed by formula:

j2rdspn  jm

Ur* = Ae 1 ead® ™), (2.12)

In order to calculate complex amplitude U at image plane (x,y) we start from
Kirchhoff integral (1.62):

kr
U(x,y)— fh(f nUr (& m 2L p(] ) d¢dn, (2.13)

where r=\/d2+(f—x)2+(n—y)2=d\[1+(§_x)2;+y)z. We focus on two basic

solutions of the Kirchhoff diffraction integral: Fresnel approximation (sometimes
called Fresnel transformation) and convolution approach.

The Fresnel approximation omits third and higher terms of the Taylor series of
function r in (2.13) in the same manner as described in chapter 1.7. The Fresnel

transformation reconstructs the complex amplitude in image by expression:

Ulx,y,d) = exp( fld[x +y])
x f REm U Emen (—221e7 + 7)) x (214

x exp (—j2nlé = +n5]) déd
Since the reconstruction is performed numerically, we need a discrete version of
the formula (2.14). The sampling of the hologram plane is naturally determined

by pixel extensions of the digital sensor 4¢ x A4n and number of pixels N x M:

§ =kAE where 1<k <N and n=I14n where 1<I<M. (2.15)
Image plane is also sampled having the same number of elements:

x =ndx where 1<n<N and y =mdy where 1<m<M. (2.16)

Substituting (2.15) and (2.16) into (2.14) one obtains discrete version of

the reconstruction formula by Fresnel transform:
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U(ndx, mdy) = —exp (—% [(ndx)? + (mAy)2]> X
N M
x Z Z h(KAE, 1An) Ur* (KAE, 1An) X
=1 (2.17)

JjIT

x exp (— 22 [(ed)? + (1)) ) x

) kn Im
X exp _]Zn(ﬁ-l_ﬁ) dédn.

Image plane pixel extensions 4x,4y are given by the size of the frame NAE x MAn,

the distance d and the wavelength 1 by equations:

=22 and Ay =2 1
x_NAE an y_MAn' (2.18)

The Fresnel transform can be effectively calculated with the use of FFT
algorithm (Fast Fourier Transform). If we take a look at the last term in
the formula (2.17) one can recognize the expression of Fourier transform.
Therefore, the formula (2.17) can be rewritten as:
. -
U(ndx, mAy) = ﬁexp (_fﬁ [(ndx)? + (mAy)z]) X

x F1 {h(kAE, [An)Ur*(kAE, LAn)exp (— % [(kA&)? + (lAn)z])},

where F~1 denotes the inverse discrete Fourier transform.

(2.19)

The convolution approach is another way of the digital hologram reconstruction.

The Kirchhoff integral (2.13) can be viewed as a superposition integral:

UGx,y) = f f R(E )UT* (€, 1) g (x — £y — 1) dédn (2.20)

with the impulse response

lexp(jk d? + x2 + y?)

(x,y) =~
7 JA - Jd? +x2 + y2

Free space, in which the diffracted wave propagates, is space-invariant

(2.21)

g(x,v,&,n) = g(x — &y —n) and therefore the superposition integral can be regarded
as a convolution. Applying convolution theorem, the reconstruction formula can

be written in the form:
U(x,y) = (hUr*) = g = FY{F(hUTr*)F(9)}. (2.22)

The reconstruction process described by (2.22) involves three Fourier transforms.
The individual Fourier transforms can be carried out using the FFT-algorithm

(Fast Fourier Transform).
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The discrete version of impulse response is
gln,m) =
1 exp (J'ZTHx/dZ +(n—N/2)?A8% + (m—M/Z)ZAnZ) (2.23)
TJA &+ (- Nj2)PAE + (m— Mj2)BnE
The shift of the coordinates about N/2 respectively M/2 is introduced due to

symmetry reasons. The Fourier transform G(k,I1) of impulse response g(n,m) is
transfer function of the linear system. Transfer function G(k,I) can be calculated

and expressed analytically as

k + N2AE2\? [ + M2An? 2\
md | ¥ ) () |

G(k,1) =exp]|j p NZAZ2 + M2A7?

, (2.24)

which saves one Fourier transform for complex field calculation within

reconstruction:
Ulx,y) = 7—"_1{T(hUr*)G}. (225)

The pixel extensions in image plane reconstructed by the convolution approach

are equal to that of the hologram:
Ax = Aé and Ay = An. (2.26)

The resolution (2.26) of the reconstructed images in image plane differs from that
of the Fresnel transform (2.18). At first sight it seems to be possible to achieve
a higher resolution with the convolution approach if the pixel extensions 4¢ x 4n
are small enough. On closer examination one recognizes that the resolution
calculated by (2.26) is only a numerical value. The physical resolution in image
plane is determined by the diffraction limit. Considering the digital camera sensor
as an aperture of the optical system NA¢ x MAn, the diffraction limit (Airy disc
diameter) defined by this rectangle aperture corresponds to the resolution of
the Fresnel transformation (2.18). It follows that Fresnel transformation can be
regarded as the “automatically scaling” algorithm, setting the resolution of
the image reconstructed by a discrete Fresnel transform always to the physical
limit.

Image plane resolution computed by the both convolution approach and Fresnel
transform is fixed; however, sometimes it is desired to have the possibility to vary

it. For that we can introduce a numerical lens [26] with focal length
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f=0/d+1/d)" (2.27)

in the reconstruction process. In (2.27) the reconstruction distance d is d = dM,
where M stands for the magnification factor. Now we can define a lens

transmission function
_ jm N\ (£2 2 -
L(E,n) = exp [7 (1/d +1/d)(E* +n )] (2.28)
and modified the formula (2.22) to be:
Ux,y) = F~HF(L hUr")F(g)}. (2.29)

We should note, that the reconstruction distance d instead of d must be applied
in the reconstruction process. A magnification of M =1 obviously corresponds to

image resolution Ax = A¢ resp. Ay = An.

LASER

A /

Figure 2.6: Principal scheme of a holographic interferometer employing components: BS - beam
splitter, NF - neutral density filter, SF - spatial filter, CO - collimating objective, OBJ - object,
FG - arbitrary waveform generator, CAM - digital camera, M - mirror, Ur denotes reference
wave while Uo stands for object wave.

The result of reconstruction process U(nAx,mAy) is a numerical representation of
a complex optical wave field in the image plane. Hence, intensity I(nAx, mAy) and

phase @(nAx, mAy) distributions can be computed as:
I(nAx, mAy) = |U(nAx, mAy)|?, (2.30)

Im{U(nAx, mAy)}
Re{U(nAx, mAy)}

@(nAx, mAy) = arctan (2.51)
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respectively. The possibility of the direct phase calculation is a real advantage
comparing to the optical reconstruction in the conventional holography, where
only the intensity distribution is available. At first sight it seems that the phase
calculation has no importance, because for rough object surfaces it varies
stochastically. However, the phase calculation brings real advantage when it
comes to applications in double exposure digital holographic interferometry [25],
[62].

An example of off-axis digital holography is provided in Figure 2.6. The object -
a steady beam cantilever - is d =0.6m apart from the sensor of AVT Stingray
digital camera with parameters N =M = 2048 pix and Af = An = 3.45 um. Light of
wavelength 1 = 532nm was emitted by Nd:YAG laser. Digital hologram, as a result
of interference between the reference plane wave and the object wave scattered
from the object, is shown in Figure 2.7 (left). Field of intensity distribution

calculated by Fresnel transform has a width of NAx:Z—‘;=92.5 mm. On closer

examination of reconstruction equation (2.2) we can distinguish three different
wave fields originating behind the hologram plane. The reconstructed wave field
includes information about the object wave (real image) I,U, as well as about its
conjugated wave (virtual image) U,2U," and reference wave (d.c.-term) U, (I, + I,),

see Figure 2.7 (right).

Figure 2.7: (left) Captured digital hologram with zoomed micro interference structure; (right)
reconstructed intensity distribution by Fresnel transformation. Green ellipses denote different
reconstructed diffraction orders and the dashed red rectangle delineates the region of interest
(ROI) — surface of the cantilever.

The real image corresponds to a wavefront converging to a sharp image, while
the virtual image belongs to a divergent wavefront that seems to be not in focus.
However the virtual image can also be reconstructed. Here the non-conjugated

reference wave must be used. This can be done by the numerical calculation of
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the field in the plane z=-d which corresponds to the object plane. For more
detailed information about the virtual image reconstruction, see [25].

Another component, which can be seen in the intensity distribution image as
a bright central square, is a d.c.-term. It is much brighter than the reconstructed
real or virtual images. The physical meaning of the bright central square is
a representation of the zero-order diffraction of the reference wave (whereas real
and virtual image represents the first or the minus first diffraction order).
The bright square can be regarded as the undiffracted part of the reference wave
or (from the calculation point of view) the d.c. - term of the Fresnel hologram. A
mutual location of these components is given by the holographic setup,
specifically, by angle of the reference and the object wave as introduced in (2.3).
If the angle is too small, the real image in Fourier domain is overlapped by
the virtual image or by the d.c.-term. To suppress the overlapping components we
can change the holographic setup in order to have all the components in
frequency domain well separated. Alternatively it is possible to use some

numerical filters [63] or phase shifting technique [64].

2.4 Time Average Digital Holography
Time average digital holography is used to measure the vibration amplitudes of
diffusely reflecting objects harmonically oscillating with an angular frequency w.

The displacement vector of the object point R can be written as:
d(R,t) = d(R) sin(wt + Py (R)). (2.52)

It is important to know the connection between the phase change Q(R) of
the scattered wave from object and the geometrical displacement d(R) of each
surface point R, which influences the optical path difference &(R). This is
the difference between the paths from the source point S of the illuminating
wavefront over the surface point R to the observation point B before and after
change of the deformation state. The phase of the object wave Q2(R) is related to
this path difference as:

Q(R) = 27”5(1?). (2.93)

Consider illumination point S and observation point B (see Figure 2.8). If

the object is deformed by oscillations, the surface point R moves from a position
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R, to a new positionR,. This change of position is called the displacement

vectord = R, — R;. Now we can determine the optical path difference as follows:

S(R) =|SRi| + | R{B| = |SR;| — | R;B| =

= SIS R1 + bl RlB - 525 R2 - bz RzB, (2'34)

where s; and s, are unit vectors in the direction of illumination, b; and b, are unit
vectors in the observation direction. Further SR, and R;B are the vectors from §

to R; or R; to B.

7 SZ

77 B[I]

Figure 2.8: Geometry regarded in time average digital holography.
From Figure 2.8 we can also determine the equation for the displacement vector:
d(R) =R{B— R,B=SR,—SR;. (2.35)

Because amplitudes of an oscillating object are much smaller than the distances
in holographic setup (the displacement d is in the nano or micrometer range,
whereas the distances|SR;|,|R;B| are in range of meters), unit vectors in
the direction of illumination s;,s, can be considered as well as in the observation
direction b;, b, can be considered parallel. Hence we can useb =b; =b,, s=5, =5,

and using (2.35) on (2.34) we get:
d(R) = d(R)[b(R) — s(R)]. (2.36)
Now we can define the so called sensitivity vector:

2
e(R) = 7”[17(1?) —s(R)]. (2.37)
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The sensitivity vector is defined by the geometry of the holographic setup. With
the use of (2.33), the phase of the object wave phase is related to

the displacement vector d as:
N(R) =d(R)e(R). (2.38)

At any time t, the illuminated surface of the object at point R diffuses an optical

wave Uy (R,t) with an amplitude U,(R), written as:
Uo(R,t) = Uy(R)ex p(jR(R) sin[wt + Yo(R)]). (2.39)

The oscillating object is recorded holographically capturing a digital hologram
according to equation h ~ |U, + U,|?, see (2.1). The reference wave U, can be either
plane or spherical. The captured hologram will necessarily be time integrated over

the exposure time T by the digital sensor:

T
h(é,n,0) = f h(E,n,0, ) dt. (2.40)
0

We can apply equation (2.19) or (2.22) in order to numerically reconstruct
the complex field in the image plane. From (2.2) it is obvious, that the computed
field is comprised of three different parts: the sharp real image, the blurred virtual
image and the d.c. term. The complex field of the real image carrying information

about the object wave is proportional to:

T

Upeat(R, ) ~ f Uo(R)exp(i2(R) sinlwt + o (R)]) dt. (2.41)
0

By proper combination of the power series components and using the Euler

formula we obtain the formula':
Z]n(A) exp(jnB) = exp(jAsin(B)), (2.42)
n=0

where J, is the n-th kind zero-order Bessel function [65]. Applying (2.42) on
(2.41), the complex field becomes:

T (00}
UreatR0) = | UoRIR(AGR)) expnlaot + o (RO de =
0 =
o r (243)
= UsR(2R)) [ explnlet + po(RID .
n=0 0

! Called Jacobi-Anger expansion.
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In time average holography the exposure time is much longer when compared to
the period of the vibration of the object! T > 2n/w. The averaging process can be

mathematically expressed by limit as time approaches infinity and therefore:

Uneat(®) = fim > Uo(®)n(0(R)) [ explinlot +po®Dde=
n=0 0

= Up(R)Jo(2(R)).
Due to the integral in (2.44), the term vanishes for all n except n=0. One should
note, that the information about the phase of vibrations y,(R) is lost during
the averaging process. The reconstructed intensity in the image plane (2.30) is

expressed as:
I(R) = [URI* = L,(R)],*(2(R)), (2.45)

where I, denotes the intensity distribution of the holographically recorded object

without presence of oscillation and can be considered unity®.
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Figure 2.9: Square of the Bessel function modulates the intensity field in each pixel of

the surface with respect to amplitude of vibrations.

From (2.45) it is obvious, that the value of vibration amplitude at each point R is
encoded in intensity field as an argument of square of the Bessel function 2.
The graphical interpretation is introduced in Figure 2.9. Because there is a steady
state at the nodes of the vibration modes, the intensity image exhibits
the maximal intensity, J,*(0) = 1, in these points. Thus, the nodal lines can usually
be identified. Furthermore there are dark fringes where J,2(2(R)) = 0. Values at

these points equal the arguments of the zeros of the zero-order Bessel function of

A typical exposure time in time average digital holography is set to be T = 1 s while the period
of the vibrations (100 Hz) starts at %ﬂ ~ 0.01s.

? In practice the reconstructed complex fields of oscillating object are multiplied by conjugate of
complex field of non-oscillating object U, and dived by its envelope: U,grm(R) = UR)Uy"(R)/|Us|
in order to normalize the function. Unless stated otherwise, the normalized distributions without
the subscript will be meant in further text. More detailed information about normalization and
speckle suppression are given in chapter 3.5.

42



the first kind. These dark fringes act as contours of vibration amplitude map.
Centers of these fringes are searched during the evaluation algorithm. The bright
fringes between these zeros, which do not correspond to nodal lines, exhibit less
intensity compared to the zero fringe. The simplest example is an out-of-plane
vibrating surface in the z-direction d(R) = (0,0,d;(R)) that is perpendicularly
illuminated s(R) = (0,0,—1) and observed b(R) = (0,0,1) with respect to the object
surface. Thus the sensitivity vector becomes e(R) = 2n/A(b(R) — s(R)) = (0,0,41/1)
and the amplitudes at the centers of dark fringes are easily calculated by

d, = bpyA/Amw  where b,, is the m-th zero of J,.

Vibration modes of cantilever

Figure 2.10: Intensity distributions reflecting vibration modes of the cantilever visualized by
time average digital holography. The modes of the cantilever’s vibrations strongly depend on
driving frequency.

Some results obtained by time average digital holography are in Figure 2.10 and
Figure 2.11. The beam cantilever from the example outlined in Figure 2.6 was
driven by harmonic voltage signal with different magnitudes and frequencies. One
should note that the holographical arrangement remains the same and only
the ROI is displayed.

Vlbratlon modes @100Hz

M

0.1V

Figure 2.11: Intensity maps of oscillating cantilever at frequency 100 Hz obtained by time
average digital holography. It holds that the greater supply voltage generates larger amplitudes
of vibrations and thus the dark fringes are denser.

Although we can get a sense of an amplitude distribution from the intensity map,
the aim of vibration analysis is to retrieve the amplitude distribution accurately
at each point of the surface. The common algorithm for amplitude distribution

retrieval from the intensity map usually consists of following steps:
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Preprocessing of intensity field. In order to automatically detect
the nodal line and the dark fringes, a filtering of the intensity field is
recommended [66]. Filtering helps to minimize the disturbances caused
by e.g. varying background illumination, electronic noise, speckle,
digitization and quantization or environmental distortions. Of special
importance are the shading correction to compensate for uneven
background intensity and the smoothing for suppressing the speckle
influence.

Nodal lines and dark fringes skeletonizing. This step comprises a search
for a center of the bright fringes (skeleton), where the intensity
becomes maximum — nodal line and for local extrema of the intensity
distribution correspond to the maxima and minima of the Bessel
function J,%. Usually only the dark fringes (local minima) are used but
one can use local maxima as well. The methods for fringe skeletonizing
can be divided into those based on fringe tracking, those related to
segmentation, and others. Enhance the skeleton by linking together
interrupted lines, by adding missing points, and by removal of artifacts,
line crossings or interconnections.

Numbering of the skeleton. It is important to define value of amplitude
of oscillations to each line. The skeleton lines correspond to zeroes or
local maxima of Bessel function J,* are linked to amplitude distribution
by formula d,(R) = b,, A/4m, where b,, is the detected m-th zero of J,.
Generally, a continuous amplitude distribution of oscillation can be
assumed, and therefore neighboring skeleton lines can differ in order
b, only by —1, 0, or +1, lines of different order must not intersect or
merge, lines do not end inside the field of view etc. Automatic fringe
numbering algorithms based on these constraints still usually require

manual interaction by the user.

Interpolation of remaining pizvels. After assignment of the amplitude
value to each skeleton line, the values are only known along these lines,
which represent a rather irregular distribution of points. To determine
the values at all points of a regular grid, the values of amplitude have
to be interpolated for the grid points based on the amplitude values at
the skeleton lines. Interpolation can be based on one-dimensional

splines, by bilinear interpolation or interpolation by triangulation.
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At first sight it is clear, that the amplitude retrieval from intensity map is
uncomfortable, time consuming procedure, which generally cannot be performed
automatically. This is one of the biggest drawbacks of time-average digital

holography.

b
[1 |[rad]|[nm]

n 18.1|766

I4 Amplltude
0]0] [nm]

Figure 2.12: Data flow chart of the conventional algorithm for amplitude map retrieval: I-raw
data, II-filtered intensity field, ITI-detection of dark fringes and the nodal line, IV-numbering of
the fringes and linking with corresponding value of amplitude from the table, V-interpolation of

remaining pixels.

As aforementioned, time average digital holography is used to measure
the amplitude distribution of harmonically oscillating object. The range of
measureable amplitudes by the method is limited from the both sides.

In order to examine sensitivity of time average holography for small amplitudes,

we can rewrite the Bessel functions as the power series:
J.(Q) = Z 0(—1)i(z"+2i/(2”+2ii! (n+ ) (2.46)
1=

for |Q] < w. For very small amplitudes when 2 in the formula (2.46) approaches

zero, - 0, the sensitivity of time average method is also approaching zero:

lim — = 0. (2.47)

In practice, for very small amplitudes bellow approximately 30 nm we obtain
more or less uniformly distributed intensity map as can be seen in Figure 2.13

(left). Moreover, the reliability of the algorithm for amplitude evaluation based on
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fringe skeletonizing followed by interpolation naturally depends on the density of
known amplitude values on a distribution of a regular grid. The more values we
know, the more reliable and robust is the interpolation procedure. For small
amplitudes there are only few dark fringes in the intensity field (see Figure 2.11 —
an actuator is driven by only 0.01 V). Interpolation of such a poor data
distribution is always a subject of questionable accuracy and strongly depends on
modes shape and parameters of the interpolation procedure.

Measurement of large amplitudes is also limited. As the amplitude of vibrations
(to be more precise slope of the amplitude) increases, the density of dark fringes
in the intensity map also increases, see Figure 2.11. For large amplitudes, an
asymptotic formula I=],*(2 > o) ~ cos?(2 —n/4) can be used for simplification.
When the illumination and observation direction of the object are parallel,
the argument of the Bessel function becomes2 = (4n/1)d,. Considering
the asymptotic formula, the phase change between two adjoining dark fringes!
A0 = n corresponds to amplitude change of Ad, = 1/4. In order to follow sampling
criterion, at least two samples must lie within one period of the signal and
therefore a change of amplitude between two consecutive points cannot be larger

than A/8.

Vibration modes @100Hz

L

Figure 2.13: Limits of time average digital holography: (left) for very small amplitudes of
vibrations the intensity distribution is almost even; (right) for large amplitudes of vibrations
the high density fringe pattern with low contrast is unresolvable.

Theoretically, the sampling distance between the two consecutive points is given
by pixel extension in image plane (2.18). In practice, size of speckles acts as
the smallest resolvable element in the reconstructed field. If we reconstruct using
the Fresnel transform, the speckles cover approximately two pixels?, which

tightens the maximal change of amplitudes between two neighborhood pixels in

! period of the fringe pattern I ~ cos?(4nd,/A — w/4)
? Speckle size in reconstructed image plane s = Adm (when compared to (2.18)) results in

2NAE
s = %Ax~2Ax.
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image plane to be 1/16. An example of intensity distribution with high fringe
density is in Figure 2.13 (right). More than 40 dark fringes can be counted over
the object surface. Such intensity map corresponds to amplitude distribution with

maximal value of approximately 5 um.
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3 Extension of measurement capabilities of time average

digital holography

3.1 Employment of acusto-optical modulators in holographic

arrangements

An acusto-optical modulator uses the interaction of a column of traveling acoustic
waves with an incident coherent optical beam to modulate the properties of
the transmitted optical wavefront. The modulator consists of a transparent
medium into which acoustic waves can be coupled from a piezoelectric transducer.
The transducer is driven by a radio frequency (RF) source, which introduces
periodical compressions of the acoustic medium. The acoustic wave propagates in
the medium through small local displacements of molecules leading to strain in
the medium. Associated with these strains are small changes of the local
refractive index, a phenomenon known as the acousto-optic or the photo-elastic
effect.

The driving voltage ranges in the radio frequency spectrum that is centered at
a certain center frequency f,, with a bandwidth B about that center frequency.
For a perfectly sinusoidal drive voltage of frequency fn.q the transducer launches
a sinusoidal traveling acoustic wave in the cell, which moves with the acoustic
velocity v. This traveling wave induces a moving sinusoidal phase grating with
period A =v/f,.., which interacts with the incident optical wavefront. There are
two different regimes of the acousto-optic interaction: the Raman-Nath regime

and the Bragg regime.

eBA

f0+fmod
Uin A —— Uni
N

Figure 3.1: Acusto-optical modulator in Bragg regime — Bragg cell.

In Bragg regime, which is the subject of our concern, the RF frequencies are in
the hundreds of MHz to the GHz range. Acoustic media consists of crystals and
the thickness of the acousto-optic column compared with the acoustic wavelength

introduces a preferential weighting for certain diffraction orders, and suppresses
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others. This effect is known as the Bragg effect. The dominant diffraction orders
in Bragg regime are the zero order and the single first order. Strong diffraction
into a first diffraction order occurs only when the angle of the incident beam
having the wavelength 1 = c¢/f,, satisfies Bragg angle 85, with respect to plane of

the acoustic wavefronts:

A
sinfg, = 1 (5.1)

The optical frequency of the 1st diffraction order can be determined from

the Doppler-shift relation:
v .
fi=h (1'*‘;)51"95% ~ fo + finoa- (5.2)

Thus the optical frequency of the 1st diffraction order is translated by the driven
frequency f.pq-

Until now the voltage driving the acousto-optic cell has been assumed to be
a perfect continuous wave (CW) signal. However, phase or amplitude modulation
of driven voltage has a great importance for time average digital holography as
will be shown. Generally, the driving voltage can be an amplitude and phase-

modulated CW signal, of the form
u(t) = A()sin(2m finoat — $(t)), (3.3)

where A(t) and ¢(t) are the amplitude and phase modulations, respectively.
The refractive index disturbance generated by this applied voltage then

propagates through the cell with velocity v:
An(y,t) = Cu(t — 1), (5.4)

where C is a proportionality constant, t = t, —y/v is the total time delay and time
delay t, = L/2v is required for acoustic propagation over half the length of the cell.
The optical wavefront is simply phase modulated by the moving refractive index

grating, yielding complex amplitude of the transmitted signal given by

2ndC
U, 8) = Unnexp (j 3 At = D)sinl2fyoa (¢ = 7) = bt = )]}, (35)

where U;, is the complex amplitude of the incident monochromatic optical wave.
After some operations [58] one obtain also the complex amplitude transmitted

into the first diffraction order:
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dC

U t) = o UinA(t — Dexp(—jp(t — 1)) X

2
x exp (122 ) exp (2 fmaa (¢ = o))

Thus the acousto-optic cell transforms an electrical voltage modulation applied to

(3.6)

the cell into an optical wavefront.

Figure 3.2: Bragg cells employed in a real experimental arrangement.

Introducing Bragg cells into the both arms of a holographical arrangement, as
illustrated in Figure 3.3, we can take advantage of the frequency and phase
modulation generated by the Bragg cells in order to extend measurement

capabilities of time average digital holography.

Figure 3.3: Principal scheme of an experimental arrangement for time average digital
holography measurement with the employment of Bragg-cells (BC).

50



The object wave U,and the reference wave U, are further modulated by
the acousto-optic cells placed in the object and the reference arm Ugc,, Uge, in
compliance with equation (3.6). The interference formula (2.1) for recording of

digital hologram becomes more general:

h = |UyUgco + UrUBCrl2 = (3 7)
= |U0UBC0|2 + |UrUBCr|2 + UoUBCoUr*UBCr* + UO*UBCO*UT‘UBCT' '
and parameters of the modulation (4,¢, froq) influence properties of
the reconstructed wave field (2.3).

3.2 Improvement of lateral resolution and SNNR by heterodyne
interferometry

The reconstructed optical field propagating behind hologram consists of three
different diffraction orders as derived in formula (2.3). However, only the real
image represented by term I.U, carries the required information. The remaining
terms act only as a disturbing signal. The more detailed discussion is given in
chapter 2.3. Angle 9 between the object wave and the plane reference wave
U, = exp(—jkx sin(9)) defines the mutual location of the real image, the virtual image
and the d.c. term in the image plane. The limiting value 9 =0 leads to in-line
holography where all the terms overlap each other.

For further analysis it is illustrative to examine the reconstructed field behind
the hologram in its spectral domain. Considering U,,U,, and H to be Fourier
images of U,,U,, and h, formula (2.3) can be rewritten as:

H=U+U)* (U +U,) = * * (2.8)
=U > U +U, *U, + U, U, +U, *xU,,
where symbols ** denote convolution and correlation, respectively. The spectrum

of the plane reference wave, which is represented by the Dirac d-function,

u4~ = T{Ur} = 6(f - fc) (39)

is shifted in the spectral domain about the carrier frequency f, = Sin/l(ﬁ). Substituting

(3.9) into (3.8) and using identity §xg=g=+8=g for any g, formula (3.8)

becomes:

Hx=Ex8+U,* U, + U, 6+ +xU, =5+ U, *U, + U, + U, . (3.10)
Graphical interpretation of (3.10) is shown in Figure 3.4.
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Figure 3.4: 1D outline of spectral domain of an off-axis digital hologram.

The central part of the hologram spectrum is known as the autocorrelation term
(d.c. term). Its size is associated with the highest spatial frequencies of the object
fz, which is determined by the largest lateral dimension of the object d,and

the distance d between the object and the detector: f; = %. The real image U, and

the twin image U," are twice as small as the autocorrelation term. The separation
of the terms in spectral domain is driven by the carrier frequency f, that is directly
affected by angle of the reference wave 9. From one side, the maximal value of 9 is

limited by Nyquist frequency f, < fax = se formula (2.5). On contrary,

2
2787
the individual terms cannot overlap each other and therefore the carrier frequency
must be sufficiently great: f, > 1.5f; = 1.5 %. Even though the carrier frequency is
set to be optimal, the width of spectrum belonging to useful information U, is

restricted to approximately one fourth of the total spectrum width (—fax finax)-

‘fmax 0 fmax

Figure 3.5: 1D outline of an in-line digital hologram that is free of the d.c. term and the twin
image.

To improve the reconstruction quality and lateral resolution, d.c. term and twin
image terms have to be canceled. Once the undesired terms in the spectrum are
suppressed, we can set f. =0 in the manner of in-line digital holography and bring
the object closer to the detector. Thus the bandwidth of the object widens, which
results in improvement of the lateral resolution in image plane according to

formula (2.18). Obviously, the noise in the hologram or image plane generated by
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contributions from the d.c. term and the virtual image is also suppressed, which
enhances signal-to-noise ratio (SNR).

The suppression of the d.c. term and the virtual image can be achieved by so
called phase-shifting technique, where the complex field in hologram plane is
calculated from at least three digital holograms with a mutual phase shift in
the reference wave. The calculated complex field represents only the contribution
from the real image and thus is free of the virtual image and the d.c. term.

Let us again consider the recorded field in the hologram plane. Substituting
the plane reference wave U, = |U,| and the object wave U, = |U,lexp(—jg,) into (2.1),

the formula becomes:
h = Uy > + Uy |? + 2|Ur||U,| cos(e,) (3.11)
or in the general form:
h=a+ bcos(p,), (5.12)

where the additional term a = |U,|? + |U,|? is average intensity of the hologram and
the multiplicative term b = 2|U,||U,| expresses intensity modulation.

The aim is to calculate the complex field of the object wave U, = |U,|exp(—jg,), that
is obviously proportional to the real image. The magnitude |U,| = \/E can be
easily measured; however, |U,| acts only as a normalization factor and therefore can
be set unity. The unknown phase field ¢, must be calculated accurately.
The formula (3.12) contains three unknowns variables and therefore not a single,
but at least three digital holograms with well-defined phase shifts A¢ introduced
into the reference beam or the object beam must be captured. This leads to set of

N equations:
hi = a + b cos(p, + Ap,), (5.13)

where i denotes an integer i =1,23,..N. The unknown phase ¢, can be directly
calculated as a solution of the set of equations. One should note, that phase of
the object field is a spatial function ¢,(&,7), whereas the phase shift Ag;(t) is
a temporal function. For temporal varying phase shift, the intensity at each point
of the digital hologram varies as a function of the introduced phase shift Ap; with
a temporal offset ¢, given by the unknown wavefront phase. If the hologram is
viewed during the phase shifting operation, the fringe pattern will appear to move

across the field. The phase shift is usually realized by an employment of a mirror
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mounted on a piezoelectric transducer into the reference arm. The optical path
difference generated by the mirror slight movement introduces the required phase
shift. However, the piezoelectric transducer is not perfectly linear, requires
calibration, etc. [67]. In order to suppress most of the phase shift errors, one can
replace the phase shift generated by piezoelectric transducer movement by
a frequency shift induced by Bragg cells.

The holographical arrangement is illustrated in Figure 3.3. The Brag cell in
the reference arm and the object arm is driven by sinusoidal voltage of frequency
fromoa s fo-moa, respectively. From equation (3.2) it follows that the beams are
temporally modulated by frequency w, = 2n(fy + fr_moa), respectively, w, = 2n(fy +
fo-moa), Where f, is working RF frequency of the Bragg cells. If w; # wp,
the frequency shift in one of the interfering light waves can be envisaged as

a continuous shift of the mutual phase between the light waves:
h~a+bcos(p, + (wyg — wg)t). (3.14)

The intensity at each point of the digital hologram varies as a sinusoidal function
with the beat frequency wg = 2(w, — wg) = 2Aw. The interference of two optical
waves of different frequencies is a basis of so called heterodyne technique. We
need to sample the temporal varying digital hologram with required phase shift
Ag; in order to substitute these values in (3.13). The inherent temporal sampler in
digital holography is a digital sensor via its frame rate Fps. The relative phase

shift Ap between two consecutive digital holograms is:

1 Aw

1
2p(8w) = 00 = ¢ (t + ) = @0 — R ps = o (3.13)

Formula (3.15) shows that we can generate arbitrary phase shift Ap between
frames h; and h;,, by driving the frequency of Brag cells. This can be favorable
used for a solution of the set of equations defined in (3.13). An example of such
a heterodyne detection is illustrated in Figure 3.6. The plots show how intensity
in one pixel of hologram varies in time during the heterodyne detection. The blue
points are sequences of intensity values captured by digital camera with frame
rate FPS=6.5Hz at different beat frequencies Aw. The green line represents
theoretical curve as derived in (3.14). It was verified, that the frequency difference
Aw drives the phase shift between two consecutive holograms according to (3.15).

Although a broad spectrum of phase-shifting algorithms have been developed and

described [68] (having e.g. different sensitivity to sources of error), the most
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straightforward approach is a four step algorithm. The four step algorithm

requires that four separate digital holograms are recorded.
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Figure 3.6: Intensity variation (blue points) in time within one pixel of captured digital
holograms. The green line is fitted cosine function. Different frequencies of reference and object
wave generated by the Bragg cells enables heterodyne detection with easy controllable phase
steps between two consecutive frames.

An optical phase shift Ap =m/2 is introduced between each of the sequentially
recorded holograms in the manner of (3.15). For digital camera used in our
experimental setup with FPS =6.5Hz , the frequency difference must be set to
Af = 1.625Hz. Since these are now discrete measurements, the frequency difference
dependence Ap(Aw) has been changed to the phase step index i. The function Ag;
now takes on four discrete values: Ag; = 0,m/2,m,3n/2 for i=1,2,3,4. Substituting
each of these four values into (3.13) results in four equations describing the four

measured digital holograms:

h, = a+ b cos(p,), (3.16)
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s
hzza+bcos((po+z)=a—bsin(<po), (5.17)

hs = a+ b cos(p, + ) = a— b cos(p,), (5.18)
3m
hy za+bcos(<po+7>=a+bsin(<po). (5.19)

These four equations in three unknowns a,b,¢, can be solved at each point of
the digital hologram. The intensity bias term a is eliminated by subtracting

the equations in pairs:

hy — hy = 2bcos(¢,), (5.20)

h, — h, = 2bsin(gp,). (5.21)

The complex field of the object wave can be written in a form:

U, = |U,| exp(—j@,) = |U,|(cos(e,) — jsin(e,)), and thus
U, = A((h1 — h3) — j(hy — hz)), (3.22)

where A is only a normalization factor A = 1/4|U,| and can be omitted. In the last
step, the intensity field recorded by digital camera (digital hologram) h can be
replaced in reconstruction formulas (2.19), (2.22), (2.25), (2.29) by the complex
field of object wave in the hologram plane U, and the reconstructed field in image
plane is free of the undesired terms. A deeper analysis of the example mentioned
in chapter 2.3 is provided in the next paragraph.

For a recapitulation, the object is a steady beam cantilever of the width
do—x =49 mm and the height d,_, = 21 mm. The cantilever is located at the distance
d = 600 mm apart from the sensor. The sensor is a CMOS having number of pixels
N =M = 2048 pix with pixel extensionsA¢é =An=3.45um. Laser emits light of
the wavelength 2 = 532nm. The digital hologram introduced in Figure 2.7 is
a result of superposition between a reference plane wave and the object wave
scattered from the object. A spectral domain of such a digital hologram,
theoretically described by formula (3.10), is introduced in Figure 3.7 left. Note,
that Figure 3.4 outlines the same spectral information in 1D. False colors in
Figure 3.7 represent magnitude of the complex field in a logarithmic scale.

The real image U, covers only a small part of the spectral region. The carrier
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frequency f,_,is particularly introduced in the vertical direction in which

the object has the frequency bandwidth f;_, = d(‘;y =66 mm™!.
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Figure 3.7: Spectral domain of off-axis digital hologram without (left) and with (right) phase
shifting technique. False colors represent magnitude of the spectrum in a logarithmic scale.

The real image and the autocorrelation term U, U, are not completely separated
since f._, <15fz, which results in lower but acceptable SNR in the region
belonging to the real image. Field in the hologram plane is propagated by means
of Fresnel transform to image plane, see Figure 3.8 left. The field in the image
plane is mirrored with respect to the field in the hologram plane due to Fourier

transformation included in Fresnel transform.

46
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-46 0 46
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Figure 3.8: Reconstructed intensity field in image plane in case of off-axis arrangements without
(left) and with (right) phase shifting technique.

Using the phase-shifting approach one can suppress the undesired terms in
equation (3.10). The Bragg cell in the object arm is only modulated by angular
frequency w, = 2nf, with its working RF frequency f, = 40MHz . The reference arm
Bragg cell is in addition modulated by frequency f,_moqa = FPS/4 = 1.625Hz in order
to have heterodyne technique with phase shifts between holograms A¢ =m/2:

wr = 21(fy + fr_moa), See Figure 3.6 (very top plot). A sequence of four digital
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holograms corresponding to (3.16)-(3.19) was captured and processed by formula
(3.22). The calculated magnitude spectrum, see Figure 3.7 right, bears
particularly information about the real image while the twin image and
the autocorrelation term (d.c. term) are strongly suppressed. The false colors are
again magnitudes of the complex field in the same logarithmic scale as in the left
sub figure. The improvement of SNR in case of phase-shifting technique is clearly
seen. Reconstructed intensity distribution in the image plane, which is the main
subject of concern, is then shown in Figure 3.8 right.

The power of thereal image signal' n with Ny, elements defined as
n =35 U(fp)I?/Ny, is about 30% better in case when phase-shifting technique is
employed, which helps to improve the recovered information and makes the time

average holography more sensitive (as will be discussed hereinafter).

1H] 1H|
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fz[mm™] fz[mm™)
Figure 3.9: Spectral domain of in-line digital hologram without (left) and with (right) phase
shifting technique. False colors represent magnitude of the spectrum in a logarithmic scale.

In the next step one can place the object closer to digital sensor in order to
improve the lateral resolution. If the object is d =350 mm apart from the digital
sensor, the bandwidth of the object increases to fz_,, = 121mm™" . The bandwidth
of the object in horizontal direction fz_=263mm™ approaches the maximum
bandwidth f. =290mm= determined by sampling criterion (2.5). Therefore,
d =350mm is almost the minimal possible distance between the object and
the CMOS. Naturally, lack of carrier frequency leads to mutual overlapping of all
the terms (3.10) in spectral domain of the digital hologram, as it is obvious from
Figure 3.9 left. A reconstruction of such a hologram leads to noisy intensity field,

see Figure 3.10 left. However, if the phase-shifting technique is employed,

'The power spectrum 5 can be regarded as a diffraction efficiency of a diffraction grating at
certain spatial frequency.

o8



disturbing terms in hologram plane are suppressed; see Figure 3.9 right, and thus
the reconstructed field in image plane evinces good quality. Moreover, the object

is reconstructed almost over the whole image plane maximizing the lateral

resolution.
27 27
ylmm] 0 0 yl[mm]
-27 0 27 -27 0 27
3 [mm] x [mm]

Figure 3.10: Reconstructed intensity field in image plane in case of in-line arrangements without
(left) and with (right) phase shifting technique.

3.3 Extension of dynamic range by means of frequency
modulation

The dynamic range of measurable amplitudes by time average digital holography
was estimated to be in the range starting from approximately 100 nm to few
microns, see chapter 2.4. For smaller amplitudes the first limiting factor is
the amplitude retrieval by interpolation of a sparse array of known values. This
limit is just a subject of calculation, however, when approaching zero (order of
nm), the sensitivity of time average method decreases and falls to zero, see (2.47).
The upper bound is limited to situation where fringes in the intensity field can be
counted. Otherwise, it becomes difficult to count many narrow fringes, and even
impossible when they are smaller than the optical resolution. Frequency
modulation introduced in one of the arm can address the above mentioned
problem and shift the limits of time average holography.

Let s start with arrangement shown in Figure 3.3. Oscillating object modulates
phase of the object wave in the same manner as described in (2.39). Applying
a sinusoidal signal with frequency f; + fr_moa to the Bragg cell placed in reference
arm results, according to expression (3.2), in frequency modulation of
the reference wave: Ugcr = exp(2m(fy + fr—moa)t) = exp(j(wy + Wr_moa)t). As will be

demonstrated, it is advantageous when the reference wave is modulated by an
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integer multiple wg_noq = mw of the object vibration frequency w. For simplicity,
the object wave is modulated only with working frequency wo = 2nfy: Ugc, =
exp(jwot).

The interesting third term of (3.7) describes the complex amplitude of a wave

field proportional to:
T

Urear(R, ) = f UyUgco Ur*UBCr* dt =
° (5.23)
= f exp(jR(R) sin[wt + Yy (R)]) exp(—jmwt) dt,
0

where for plane reference wave holds U, = 1. Proportionality factors influencing
only the overall brightness have been omitted for convenience. Further steps are
identical with those in the chapter 2.4 with exception of the presence of
the frequency modulation. Using expression (2.42) and applying time averaging,

formula (3.23) becomes:

00 T
UreatR,0) = lim ' 1o(2R)) [ exp(nlaot + o (RO x
T—o0 (3.24)
n=1 0
X exp(—jmwt) dt.
All terms of sum in (3.24) except for n=m are canceled due to time averaging

and thus the magnitude® of the reconstructed real image:
UR)| = |Jm(2(R))]. (3.25)

is modulated by m-th order Bessel function. In conclusion, controlling
the frequency shift of reference (or object) wave about integer multiple of
the object vibration frequency allows for control of order of the Bessel function
modulating the resulting intensity field. This result is consistent with
the unmodulated time average case where m = 0.

Time-average holography with frequency modulation can be used to increase
the sensitivity for vibrations with small as well as with large amplitudes. Small
amplitudes are such that the interference phase 2(R) « 1.

In time average holography with no modulation, the magnitude of reconstructed
field |U| = |J,(0)| is unity and has zero slope (2.47). On the other hand when m=1,
|U| = |J;(0)] has a positive slope in the dark field:

! Using magnitude distribution instead of intensity distribution (2.45) brings better sensitivity of
2
the measurements since limn_,od;—;'; =0 for all m. Notice, the classical (not digital) time

average holography has only access to the intensity distribution, which is another disadvantage
of classical approach.

60



lim— = 0.5 (3.26)

yielding visible intensity variations even for small amplitudes.

iUl 0.5 i

0 2 4 6 8 10 12 14 16 18 20
Q [rad]
Figure 3.11: Magnitude of zeroth order (blue) and first (green) Bessel function.

The following experiment comprises two aims. The first aim is to verify validity
of the formula (3.25). The second aim is to compare sensitivity of frequency
modulated with frequency non-modulated time average digital holography for
small amplitudes. The experiment was conducted with oscillating cantilever at
frequency f = w/2r = 6000 Hz supplied with different values of voltage. Properties
of such a cantilever require linear behavior in every single pixel: increasing
supplying voltage u leads to proportional increase of maximal amplitude of
vibrations d; = C,u with proportional constant C,. The experimental arrangement
is outlined in Figure 3.3. Starting with non-modulated measurement; the both
Bragg cells were only driven by harmonic signal with working RF frequency
fo = fr = fo = 40 MHz. Therefore frequency of the both wavefronts is shifted about
the same value f, and no frequency modulation is employed. A set of ten digital
holograms with different supplying voltages was captured and reconstructed using
the Fresnel transform. The magnitude of the reconstructed complex field in image

plane Uy = |]0 (%“C,,u)| holds for arrangements with sensitivity vector e=

(0,0,4w/4) in (2.38). The reconstructed magnitude images are introduced in
the left column of the black frame in Figure 3.12. The very top image represents
magnitude distribution measured at supply voltageu = 0.05V. Lower images show
how the magnitude distributions vary with increasing voltage of step Au=0.05V
up to u=0.5V. As expected, higher voltage applied on the cantilever results in its
larger vibration amplitudes and growing number of dark fringes in the magnitude
field.
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The same procedure except the Bragg cells driven signal settings was repeated for
frequency modulated time average holography. In this case, the Bragg cell in
reference arm was driven by harmonic signal having frequency f,. = fy + fromoa =
fo + mf, where m=1 and thus f. =40.006 MHz. The wavefront of the object wave
remains modulated only at working frequency f, =f,=40MHz. Resulting
magnitude distributions |Uj| = |]1 (%"Cvu)| are modulated by 1 order Bessel
function and organized with the same logic as in previous case in the right
column of the black frame in Figure 3.12. Similarly we can observe the growing

number of dark fringes when the supply voltage increases.
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Figure 3.12: (black frame) Impact of frequency modulation on magnitude maps when increasing
the supply voltage; (A, B) Measured values (red points) and theoretical values (green line)
along cross-section denoted by the red line in magnitude map for 0.05V. Left plot (A) stands for
non-modulated holography, where the sensitivity and SNR is obviously lower when compared to
modulated technique introduced in the right plot (B); (C, D, E, F) As the supply voltage
increases, the magnitude in each pixel varies. Magnitude variations at two pixels denoted by
orange and blue circle were investigated in detail and compared to theoretical curves (green
line). This was done for non-modulated (C, D) as well as modulated (D, F) technique.

Two representative pixels from the magnitude distributions were picked for
further analysis. The first pixel denoted by an orange circle (“orange point”) is
relatively far from the nodal line, while the second pixel denoted by a blue circle
(“blue point”) is closer. Since the orange point is far from the nodal line and so

closer to antinode, the amplitude of vibration is more sensitive to supply voltage
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than in case of the blue point. The development of magnitude distributions |Uj,|
and |U,| as a function of the supply voltage are plotted in the middle and down
plots in Figure 3.12.. The discrete values (blue or orange points) are measured

values while the solid line represents theoretically derived function |]0 (%"Cvu)|,
|]1 (%"C,,u)|, respectively. One can see that the measured points in the both

measurement modes (non-modulated and modulated) follow the predicted curves
described by Bessel function of corresponding order. The proportional constant
C, was set to be an optimization parameter found by means of least square fitting.
Obviously, the proportional constant obtained from |Uj,| and |U;| in the same
point must be in agreement. For orange point the fitted procedure returns
the proportional constant €, =589 in case of |U,| whereas ¢, =585 for |U,|. In
terms of amplitude, for maximal measured voltage 0.5V we obtain d,_,,, =
294.5nm and dz_p,.q = 292.5nm. The results are in a very good agreement. One can
note, that orange point measured at voltage 0.4V in case of non-modulated
technique is very close to 2™ zero of the Bessel function, see Figure 3.12 (middle).
Comparing to value b, in Figure 2.12 we can expect measured amplitude for this
supply voltage to be around 234 nm. Using the proportional constant e.g. ¢, =
589; amplitude of vibrations at 0.4V is d; = 235.6nm. The same procedure was
done for blue point. There the proportional constants are C, =141 , C, =136 for
|Uso|, |Un|, respectively, which corresponds to maximal amplitudes of vibrations
dznon(w=05)=705nm and dz_,,q(0.5) =68nm. This analysis only proves
the formula (3.25) and the reliability of the frequency modulated time average
holography but says nothing about the sensitivity of different orders m for small
amplitudes.

For that we plotted magnitude values along pixels denoted by the red line as
outlined in the very top magnitude maps in the black frame of Figure 3.12.
The cross-section is chosen to be in a nearness of a nodal line, where
the amplitude is minimal and tends to evince linear behavior. In the left graph of
the top row in Figure 3.12, magnitude values of non-modulated technique (m=0)
are plotted as a red circles. The green solid line represents theoretically predicted
values. The measured magnitudes are scattered around the theoretical curve,
moreover, the small range of the graph testifies about low sensitivity of
measurement in this range. The same results are plotted in the right hand side
graph for frequency modulated measurement (m=1). The reconstructed

magnitude values reliably follow the predicted curve. From the comparison of
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the both plots follows, that the modulated technique brings much better

sensitivity in case of very small amplitudes.

Figure 3.13: (left) The overall field of view in image plane with steady cantilever recorded by
digital holography. Red dashed line delineates ROI; (right top) magnitude distribution within
ROI of oscillating cantilever. Blue line denotes cross-section used for further analysis. Blue and
violet points (pixels) are also important due to their detailed investigation; (right down)
magnitude distribution of steady cantilever within ROI with the two important points R1 and
R2.

In order to determine the smallest measurable amplitude by the frequency
modulated holography (for our holographic arrangement); the following
experiment was carried out. The supply voltage was successively increased started
at 0 V with fine steps 0.05 mV up to 4 mV. Such low supply voltage generates
extremely small amplitudes of vibration. The aim was to find the threshold of
the supply voltage (or vibration amplitude) where noise represses measured signal
and measurement can no longer be considered as valid. Again, two representative
pixels (blue and violet points in Figure 3.13) were chosen for detailed analysis.
The graphically interpreted results of blue point are plotted in Figure 3.14.
The graph (A) represents coarse measurement executed in higher supply voltage
range. The “coarse” measurement serves for calibration of independent (x) axis

scale in order to obtain dependence on argument of Bessel function !2=47”dz

defined in (2.38) instead of supply voltage. This can be achieved with the use of
properties of the first order Bessel function J,_,...(2 =1.84)=0.58. One should
note, that for small amplitudes where 0 <0.5 the Bessel function can be
approximated by linear function J, () = %!2, see red line in Figure 3.14. Finally,
the graph (B) shows results of the “fine” measurement in the very small interval
of supply voltages (small amplitudes). When approaching zero, the measured
values (blue circles) do not significantly deviate from theoretical value up to
|Uj1|~0.001. This was considered as the measurement threshold. Using the linear

approximation:
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A
d, =2 U], (3.27)

the smallest measureable amplitude reaches d,~0.085nm or in terms of wavelength
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Figure 3.14: Values of magnitude at blue point with increasing supply voltage. The independent
axis is calibrated to argument of the Bessel function. The red line marks out the noise level and
the lowest measurable amplitude.

The level of noise presented in the reconstructed magnitude at this limiting value

is around 20%, see Figure 3.15 — blue circles. The amount of noise was computed

U]

as a nmean
((|U]1|)

) of ratio of the measured magnitudes |Uj| and theoretical data

represented by average (|U;|) along the cross-section denoted by the blue line in
Figure 3.13.

Noise [%]

u[mV]

Figure 3.15: Presence of noise in magnitude values in blue and violet point as a function of

supply voltage (or amplitude of vibrations).
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The theoretical value was estimated from magnitudes at large amplitudes and
scaled linearly with respect to supply voltage, see Figure 3.16. The theoretical
value (|Uj|) is denoted by red dashed line while the solid lines represent values of

|Uj,| at different supply voltages.
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Figure 3.16: Values of magnitude along the “blue” cross-section in Figure 3.13. Dashed red line

represents theoretical data, while solid lines represent values at different supply voltages

(amplitudes of vibrations). For small amplitudes of vibrations the deviation from the theoretical

curve rises (blue and purple curve) while larger amplitudes of vibrations result in better SNR

(yellow). The limiting acceptable value of noise in data was set to be 20%.

All the values plotted in Figure 3.16 are normalized. As long as the supply
voltage increases, the curves approach the theoretical value. This tendency can be
approximated by decreasing exponential function (green line in Figure 3.15),

which reflects the probability density distribution of speckle noise p(I) = exp(— é),

where I denotes intensity and (I) is its average. It illustrates the fact, that speckle
noise plays a crucial role in our measurement as it holds true inherently for

coherent measurement techniques like time average digital holography.
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Figure 3.17: Values of magnitude at violet point with increasing supply voltage.
The independent axis is calibrated to argument of the Bessel function. The red line marks out
the noise level and the lowest measurable amplitude.
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The same measurement procedure was repeated for pixel denoted by the violet
circle. As it is shown in Figure 3.17, the smallest measureable amplitude is five
times greater when compared with the blue point: d,~0.42 nm. The worse SNR can
also be noticed in Figure 3.15 (see the violet circles). At first sight it seems to be
in contrary with the “blue point” measurement; however, the subsequent analysis
will clarify the apparent discrepancy.

Starting with formula of the reconstructed magnitude field
|U]1(R)| = |U0(R)||]1(-Q(R))|; (3.28)

where the magnitude distribution of non-oscillating object |Uy(R)|is modulated by
the first order Bessel function, see (2.44). Using (3.28) one can define a sensitivity

S of the frequency modulated time average holography

4
alu, @] _ ('U"(R)' 5 <7dZ(R)>D (5.29)
dd, dd,

expressing the change of the measured value generated by the measured quantity

S(R) =

- amplitude of vibrations. Substituting J',(Q) = 1/2[J,(Q) — /()] [65] the formula

(3.29) becomes
4 Am
o <7dZ(R))‘ — |2 <7dz(R)>D (3.30)

The sensitivity of the time average holography is defined by wavelength,

2
SR =7"|UO(R)|<

the average exposure determining |U,(R)| and the amplitude of vibrations change
itself coded in an argument of the zeroth and the second order Bessel functions.
For extremely small amplitudes J,(Q(R)) 1 and J,(Q(R)) = 0; the formula (3.30)

simplifies to

dlu,(R)| 2
S(R) = léT(Z)l ~ 7” U, (R, (3.91)

which is in agreement with linear approximation used in (3.27). The wavelength
of laser is very stable and spatially independent. On the other hand the average
exposure |Uy(R)| varies with position R!. The discrepancy present between
measurements at the blue and the violet point can be explained by the term
|Up(R)|. The normalized value of |U,| at the blue point R1 is |Uy(R1)| =1, while
|Up(R2)| =025 at the violet point R2. This results in ratio 5:1. Since

! The spatially dependence of |Uy(R)| is in praxis caused by non-uniform illumination of
the object, which, as a consequence of the analysis, should be avoided.
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the measurement in R1 gives the best SNR in the whole reconstructed field,
the limiting value |U;;(R1)|~0.001 can be considered as a spatially independent

constant of noise threshold A|U,| reachable in our experimental arrangements’.

A Augs| _ 2 Aups|

The minimal measurable amplitude in position R2: d,_y,n(R2) = or ek = 27 025
0 .

5%A|U,l| is therefore expected to be five times larger than in R1 as verified

experimentally.

| T
(Uil :

pixels
Figure 3.18: Frequency modulation used for large amplitudes of vibrations. Red line represents
magnitude cross-section of non-modulated technique, while green and blue lines represent
modulation of order m=50 respectively m=150.

In the case of large vibration amplitudes we take advantage of the fact that
the locations of the zeros of the Bessel functions are spread apart for increasing
order m. As a consequence, the number of fringes for the same amplitudes
decreases with increasing m and therefore fringe patterns exceeding the sampling
criterion can be effectively avoided. An example is introduced in Figure 3.18.
The supply voltage of the cantilever was set to be 0.4 V, which at 100Hz
generates vibrations amplitudes of the beam cantilever out of the measuring range
of the non-modulated time average digital holography. This magnitude

distribution inside the figure is denoted by |U,| and the red cross-section is

! The exposure |Uy(R)| depends on power of the laser, reflectivity and roughness of the object,
dimensions of the object, geometrical arrangements etc. and therefore the noise threshold varies
with these parameters. The noise threshold thus slightly varies for different objects under
investigation.
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plotted separately. The yellow rectangle covers the region, where the density of
fringes is unresolvable due to speckles. Shifting the frequency of the reference
wave about a fifty times multiple of the object oscillations frequency f. = f; + mf =
40MHz + 50 x 100Hz results in magnitude distribution |Ujse|. One can observe that
the yellow rectangle has shifted closer to the edge of the cantilever as
the measurement range has. One dimensional cross-section is denoted by
the green curve in Figure 3.18. Although the measurement range has been
extended using |Ujso|, still, the fringe pattern in very close region to the edge is
not resolvable. Applying m=150 one can shift the measurement range even closer
to the edge of the cantilever and by proper combination of zeroes extracted from
magnitudes |Uy|, |U;so| and |Ujy50| the amplitude distribution can be evaluated over

the whole surface, see Figure 3.19.
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Figure 3.19: Amplitude of vibrations along the cantilever cross-section.

3.4 Evaluation of vibration amplitude independently in every
pixel using phase modulation

So far we have only assumed a harmonic signal which drives the Bragg cells.

The driving harmonic signal lead to frequency modulation, when the optical

frequency of the 1st diffraction order is translated by the working frequency f,1.

However, phase-modulated CW signal
u(t) = sin(2ufyt — ¢(t)) (3.32)

can also be used, as it was already mentioned in chapter 3.1. From (3.6) follows,
that phase modulation of the driven voltage is transformed in phase modulation

of the 1* order wavefront

! Let us remind the working frequency f, = 40 MHz for the Bragg cells used within scope of this

work.
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Usr = Uinexp(—j@)exp(j2mfo)). (3.33)

In this chapter, it will be shown how the phase modulation of the reference arm
influences behavior of the time-average holography and how it can be exploited
for quantitative analysis of vibrations amplitudes. Let us remind, that evaluation
of amplitude distribution from intensity field obtained by time average
holography is in most cases based on interpolation method, see chapter 2.4. This
procedure has many inherent drawbacks and therefore a different approach to
quantitative analysis of amplitude distributions is demanding. Considering
the experimental setup outlined in Figure 3.3, the reference beam is phase

modulated at frequency w of the vibrating object with a modulation depth ¢g.
UrUger = exp(jquCSin(a)t))exp(iZﬂfo), (3.84)
while the object wave is only modulated by oscillations of the object:
U,Ugco = exp(j2 sinfwt + YPy]) exp(j21fy). (3.35)

The object and the reference beams superpose forming a digital hologram (3.7).

The real image of the diffracted field in the image plane
T . . T . .
Ureal = fo UoUpcoUy Uper dt = fo exp (] (-Q sin[wt + Po] —

¢Bcsin(wt))) dt =], <\/m — 20¢pccos P, + ¢BC2).

(3.36)

is computed by e.g. Fresenel transform. When oscillations of the object are
synchronized with the reference beam phase modulation ¥, =0, the formula

(3.36) simplifies to:
|Ureal| = UO(-Q - ¢BC)|- (337)

Now the loci of bright zero fringes are controllable by the user, since they appear
where 0 =¢g.. In order to verify the formula (3.37) a fine tuning of
the modulation depth ¢, was experimentally performed. The object under
investigation was (similarly as it was in the previous experiments) the beam
cantilever oscillating with frequency 1 kHz supplied with voltage 3.5 V.
The reference wave was phase modulated according to formula (3.34).
The modulation depth was successively increasing started at value ¢gzc = 0rad
with step of /31 over the whole range up to 2n. Some magnitude distributions of

the whole surface are introduced in black frame of Figure 3.20. For more detailed
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analysis four representative pixels denoted by letters A,B,C,D in Figure 3.20
(right) were picked. In these points magnitude versus modulation depth with

the fine steps was evaluated.

0.35 0.7
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Figure 3.20: (black frame) Magnitude maps of an oscillating cantilever with different phase
offsets; (right) Magnitude values at four points (A, B, C, D) are plotted as a function of

the phase offset (colored point correspond to magnitude maps in black frame).

Although some noise is presented, the magnitude follows the formula |J,(2 — ¢5c)l
within the half interval (0,m) radians that creates period of the signal. These
results can be consequently used for independent evaluation of vibrations
amplitudes in every single pixel. In chapter 3.2 it was introduced, how to recover
argument' of cosine function encoded in set of phase-shifted intensity field (3.13).
Easy use of phase-shifting interferometry is derived from the harmonic cosine
nature of interference fringes. In time average holography the intensity is
modulated by Bessel functions. Unfortunately, the Bessel function of a sum
cannot be expressed as asum of terms, which holds true for the cosine:
cos(x —y) = cos(x)cos(y) + sin(x)sin(y). Therefore the straightforward phase recovery
in the very same way as for cosine fringes is not possible. However, a possible
solution is to exploit a nearly periodic nature of the Bessel functions and regard
the modulation to be cosine. Replacing the real argument £ with an approximate
argument 2 the phase-shifting approach can be applied. We first have to capture
and reconstruct set of time average digital holograms with different phase offsets

®5c; similarly to formulas (3.16)-(3.19):

! In this case argument of cosine function physically represents phase between the reference and

the object beam.
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Uil = a+ b|]o(2 — ¢pci)|~a + blcos(2" — dpc)l, (3.38)

where additional term a is average value of the object field and multiplicative
term b is the object field in the absence of oscillations. Assuming four-step
algorithm, the optical phase shift about one fourth of the period, ¢gc =m/4, is

introduced between each of the reconstructed amplitudes of object field:

|Us|~a + blcos(27)], (5.59)
|Uy|~a + b|lcos(2* + m/4)| = a + b|sin(Q27)|, (3.40)
|Us|~a + b|cos(2* + m/2)| = a — blcos(7)|, (3.41)
and
|Uyl~a + b|cos(2* + 3m/4)| = a — b|sin(Q7)]. (3.42)

These four equations in three unknowns a,b,2 can be solved at each point of
the reconstructed field. The additional term a is eliminated by subtracting

the equations in pairs:

|Us| = [Us| = 2b|cos(27)], (8.43)

|Us| = |Uz| = 2b|sin(27)], (5.44)

and the approximate argument 2* can be computed by formula:

\ |Us| — |Us]

0" = atan <m> (3.45)

The four step algorithm is quite sensitive to deviations of the phase shift
excursion from the expected or optimal value =n/4. Some noise or outliers are also
observable in results of measurement outlined in Figure 3.20. Therefore a more
robust phase algorithm can be employed. For technique of phase-modulated time
average digital holography 13-step algorithm has provided the best results in
the used arrangements. The 13 step algorithm [69]:

—4A — 12B + 16C + 24|U,|
3D +4A — 12E — 21F — 16G )’

0" = atan< (3.46)
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where 4 = |U,| — |Uy,|, B = |Us| + |Uyq| + |Uql + |Uyol, € = [Ug| + |Ugl, D = |Uy| — |Uy3, E =

Uyl = |Usol, F = |Us| = |Us|, G = |Ug| — |Ug|, uses a frame increment of n/8.

1.5

A [rad] 0

20 15 -10 -5 0 5 10 15 20
Q* [rad]

Figure 3.21: Correction function used for compensation of angle between |cos x| and |Jo(x)],
Green line stands for 4-step algorithm, while blue line represents correction function for 13-step
algorithm.

Since the arctangent function is bounded, the resulting phase (or argument of
the Bessel function) 0" is wrapped within interval (-, m)!. Such a wrapped field
must be unwrapped [25] in order to obtain phase distribution free of the 2z jumps.
The approximate unwrapped phase 0*differs from the real argument of Bessel
function 2 due to not perfectly periodic nature of Bessel function. The difference
A= 0 - 0" is calculated as an angle between |cos x| and |J,(x)|, see equation (3.38).
A graphically representation of A for 4 step algorithm (green) as well as for 13
step algorithm (blue) is plotted in Figure 3.21. Once the angle difference is
known, the approximate phase is corrected in order to get real argument of

the Bessel function 2 = 2* + A.

Wrapped ~ Unwrapped 500
‘ i < 0 dz [nm]
P N /A\ 1300
HES =T
-7 0 n -8 0 11
Q* [rad] Q [rad]

Figure 3.22: Wrapped phase with value within interval (—m, ) (left) and corrected unwrapped
phase (right) without the phase jumps. Since phase is linearly proportional to amplitude of
vibrations, vertical colorbar stands for values of amplitudes of vibrations.

The amplitude distribution can be computed with use of magnitude distributions

with appropriate phase shifts from experiment shown in Figure 3.20. Then Figure

! The scale of arctangent function is (—m/2,m/2) but it is good practice to consider the signs of

the numerator and the denominator separately e.g. by ATAN2 function in MatLab.
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3.22 presents wrapped phase Q* obtained by 13 step phase shifting algorithm and
corrected unwrapped phase Q. It is very important to note, that the phase shifting
technique unlike other vibrations amplitude retrieval approaches is sensitive to
sign of mechanical phase of vibrations. The measured phase 2 can be easily coded
back into magnitude distribution by |Ugql| = 1/o(@)| and compared to measured
magnitude distribution |Uy,..|, see Figure 3.23. The both magnitude distributions

are in a very good agreement.

Measurement Calculation

Figure 3.23: Measured (left) and calculated (right) magnitude distribution. The both maps are

in a very good agreement as it is required.

Once the argument of Bessel function 2 is known, the amplitude distributions

independently in every single pixel is calculated by dzzﬁ(z, that comes from

(2.38) in case of normal incidence and reflection of illumination beam.

The most significant benefit of the phase modulated time average holography is
its robustness and usability. A sequence of measurements at different times was
carried out in order to asses a repeatability of the method. The total number of
conducted measurement was 15. The first seven measurements were done in
a short time, approximately 2 minutes gap in between two consecutive
measurements. The time interval between the remaining measurements was
prolonged to 10-15 minutes. The set of measured amplitude distributions was

analyzed by means of basic statistical tools. The averaged amplitude distribution

d,(R) =% N 1d,n(R) is shown in Figure 3.24. The averaged values of amplitudes

as well as standard deviation o(R) = \/%Zﬁzl(dzn(R) - dz(R))2 along the cross-section

denoted by green line in Figure 3.24 are introduced in Figure 3.25 (A).
The standard deviation defines “type A” uncertainty representing primarily
random noise presented in the measurement procedure. Noise usually consists of

an additional and multiplicative part. In the same manner one can define
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the standard deviation as o(R) =A+Bd,(R)!. After fitting the measured data,

standard deviation is determined as:

o(R) = 0.05 + 0.01 d,(R) [nm], (3.47)
or in terms of percentage of the measured amplitude 1%& = dé+ 1[%]. Considering

value d, = 300 nm , the standard deviations becomes ¢ = 3.05nm ~ 1.17 %.

500 - ’
400 »
300 — J
200 ¢
d,[nm] 100 |
z 0
-200
-300 Y

Figure 3.24: Amplitude distribution averaged from 15 measurements. Green cross-section and

blue point are used for further analysis.

The values of measured amplitudes are spread around mean value according to

laws of normal distribution as can be seen from histogram plot Figure 3.25 (B).
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Measurement Nr.
Figure 3.25: (A) Averaged values of vibrations amplitudes along the green cross-section (green
curve) and interval determined by standard deviation (black dotted curves); (B) fifteen
measurements of vibrations amplitudes at the blue point that are spread around the average
according to laws of normal distribution as can be observed in the histogram plot.

! The standard deviation o depends furthermore on values of magnitude fields. Therefore (3.47)
is also influenced by Bessel function, however, this influence was omitted in order to stay clear

75



The histogram was created from values measured at pixel denoted by blue circle.
The normal distribution is described by Gaussian function of which properties can
be used for deeper insight to error analysis. Standard deviation ¢ accounts for
68.27 percent of the Gaussian function; while two standard deviations from
the mean account for 95.45 percent and three standard deviations account for
99.73 percent. In other words, results of almost all measurements fall into interval
of 3¢, what means 3¢ = 9.2 nm~3.5% for the measurement around d, = 300 nm. One
should note, that this kind of analysis does not include evaluations of all
contributions to the dispersion of values that might reasonably be attributed to
the measurand.

3.5 Discussions and conclusions

Three techniques improving time average digital holography have been developed

and they were introduced in chapter three. Namely it is:

e Heterodyne detection realized via appropriate frequency modulation in
relation with frame rate of the digital sensor. It was shown, that using
phase-shifting technique one can improve lateral resolution up to spatial
frequency bandwidth of the digital sensor. Moreover the amount of useful
signal (playing crucial role in sensitivity of the method) is increased about
more than 30%.

e Frequency modulation, when the frequency of the Bragg cell in reference
arm is shifted about an integer multiple of frequency at which the object
oscillates. This technique results in extension of dynamic range for very
small as well as for very large amplitudes. The lower bound of
the measureable range is around 1/6000, the higher bound can be estimated
to be 204, that creates a dynamic range of the method to be 1200001.

e Phase modulation can add a well-defined bias to argument of the Bessel
function. This can be used for direct application of phase-shifting
technique resulting in rapid, accurate, robust and user-friendly evaluation

of amplitude distribution.

Although all the methods were introduced separately for clarity reasons, they
share identical hardware requirements and can be arbitrarily combined, keeping

in mind the experimental arrangements outlined in Figure 3.3. The Bragg cell

' For larger amplitudes of vibrations than 201 the recovery of amplitude distribution is
becoming more difficult due to lack of fringes at region with small amplitudes, however,
the higher bound can be further shifted
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placed in the reference arm is driven by voltage generated by an arbitrary
waveform generator: ugcg(t) = sinufr—moat — ®(t)) While ugco(t) = sin(2fy—_moat)
holds for driving signal supplying the Bragg cell employed in the object arm.
The driving signal is transformed via the Bragg cell into the 1* order wavefront
described by:

Upcr = BXP(—j(P)BXP(jZTTfR_mod)) (348)

in case of reference wave and

Upco = exp(jznfR—mod)) (349)

for the object wave. The reference beam is phase modulated at frequency w of
the vibrating object with a modulation depth  ¢gc: d = dpesin(wt)  while
the frequency is shifted about integer m of frequency of the object f and one
fourth of digital camera frame rate FPs in order to employ heterodyne technique
with m/2 phase shifts between holograms®: fi_noq = fo + mf + FPS/4. The wavefront
exiting the Bragg cell in the object arm Ug., is additionally phase modulated by
oscillations of the object exp(j2(R) sin[wt + ¥, (R)]) resulting in

UoUgco = Upexp(j2(R) sin[wt + Yo (R)])exp(j2Tfr—moa))- (3.50)

The object and the reference beam superposing on the digital sensor are forming
a digital hologram (3.7). The hologram is time integrated over exposure time T.
Due to heterodyne acquisition, the series of phase shifted holograms can be
processed by means of phase shifting approach and complex field U, replaces
the hologram field h in reconstruction process, see (3.22). The real image of

diffracted field in image plane
o T/2 ,
Ureal ~ UO 2n=—oo]n(-Q - ¢BC) f—T/z exp(]n[wt + l/JOD X

(8.51)
X exp(—jmwt) dt.

is computed by e.g. Fresnel transform. When the integration time is much
longer in comparison with the period of the vibrations, the time averaging process

lead to

|Ureal| ~ |UO||]n(-(2 - ¢BC)|- (352)

' In general, one can use FPS/M, where M is an integer in order to generate phase shifts
appropriate for the used phase-shifting algorithm.
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The formula (3.52) includes all advantages described separately in previous
subsections.

A combination of these three approaches was used for measurement of cantilever
vibrating at 1000 Hz. The supplying voltage of the cantilever started at 200 uv and
finished at 200 mv.

104}
103F
102F

log dz [nm]
101 Fi

1073 1072 107 100 107 102
log u [mV]

Figure 3.26: Measured amplitudes of vibrations of the beam cantilever at different supply
voltages. Blue points determine value of amplitude of vibrations in the marked position. Some
amplitude maps of the whole surface are also introduced and linked to corresponding
measurement.

Logarithmic increment steps of supplying voltage were chosen instead of linear
due to a huge amount of measurements. The Bragg cells in reference and object
arm were set in agreement with formulas (3.48), (3.49), respectively. For small
amplitudes the frequency of supplying signal of reference arm Bragg cell was
shifted about frequency of the cantilever in order to get the maximal sensitivity.
In total, thirteen measurements i = 0,1,2...12 with different phase offsets ¢5. = in/8
were taken for each voltage of the cantilever. Formula (3.46) and related
corrections were applied for recovery of vibration amplitude distributions d,.
Results of the measurement are introduced in Figure 3.26. Some whole-field
distributions are shown in the inner figures while the logarithmic plot represents
values measured in one pixel denoted by the black circle. Measured values (blue

points) follow the theoretical values (red dashed line) down to approximately
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0.1 nm. This noise level has already been derived in chapter 3.3. As obvious from
scale of the plot in Figure 3.26, the dynamic range of the measurement is 100000.
It is worthwhile to mention some sources of distortions degrading the magnitude

distribution. A typical intensity distribution at one instant of time is of the form:
41
|U]Tl| = |U0| (1 +V |]n (sz - ¢BC)|) NgNEg, + ngy +np, (353)

where |Uy| denotes the low frequency background intensity caused by a varying
illumination, e.g. a Gaussian profile of the expanded laser beam, or a changing
object reflectivity. The parameter V is the fringe visibility influenced mainly by
the ratio between the reference and object wave amplitudes. Parameter ng
describes the magnitude variation caused by the speckles, which act as signal
dependent coherent mnoise. The electronic noise mng,, ng originates in
photodetectors or waveform generators supplying the Bragg cells. In practical
applications of holographic interferometry electronic noise plays a minor role as
compared to the speckle noise. So normally no special care is taken regarding
electronic noise. Finally n, describes diffraction patterns of particles in the optical
paths. Special sources of distortions are environmental distortions like vibrations
and air turbulence. Therefore care has to be taken to isolate the holographic
arrangement from vibration. This is normally done with help of vibration isolated
tables. Equipment which undergoes any mechanical motion should be removed
from the vibration isolated table. Air turbulence may change the refractive index
distribution of air. Any distortions in either arm of the holographic interferometer
between measurements influence the phase drift 2.

All the aforementioned mentioned distortions affect the additive 4 and

multiplicative B noise components simplifying (3.53) to:

|Un|=4A+B . (5.54)

o (55— )

The optimization of visibility v = 2|U.||U,|/(IU,|? + |U,|?) hidden in multiplicative
noise B = |Uy|Vngng, is not as trivial as in case of non-modulated holography [32].
However, when | . (47“ d, — ¢BC)| « 1, the optimal value of parameter vV =1 holds for
|U.| = |U,|. The additional component A is eliminated due to phase-shifting, see
(3.43), (3.44). The most significant source of noise is deterministic speckle noise
described by phase Q5. The speckles are characterized by high-spatial frequency
and due to their deterministic nature they cannot be easily removed. The direct

approach to a complex field within digital holography, however, enables to lower
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the speckle noise. For that one needs to use two digitally reconstructed time-
averaged holograms: one of the vibrating object ~U,, and the other one of
the object without vibrations ~U,. The reconstructed complex field U = Re{U} +
jim{U} by formulas (2.19), (2.22), (2.25) consists of orthogonal components (real
and imaginary part). Let us consider complex field of the object without

oscillations U, and of the object undergoing harmonically oscillations U;,:
Uy = Boexp[j(Q2s + 2po)], (8.55)
4 .

Upn = Bun (5-dz = bac ) expliCs + 2p1)], (3.56)
respectively. Normalization of (3.56) with respect to (3.55) is calculated as
a product of complex field U, and conjugate of U, divided by envelope |Up|:
UpnUy”

(
|Uol?

B; 4r ]
)= B_]n (7 d, — ¢Bc) exp[j(2p1 — 2po)]. (5.57)
0
It is important to notice, that in (3.57) the high spatially varying speckle noise
0 is replaced by low frequency phase drift AQ, = 2,, — 2y, between measurements
of Uy and Uj,. Therefore a time gap between the measurements is required to be

minimized.

Figure 3.27: Non filtered magnitude distribution (top) and its filtered version (down). Detailed
subsections of the both versions is shown in the right column.

Moreover, the smooth orthogonal components of U,U,"/|Us|* can be easily low-
pass filtered without the loss of fringe contrast, see Figure 3.27. The filtering
process removing the high-frequency speckle noise is denoted by ( ). It is also

worth noticing, that phase field

41

) — MO, + %sgn (]n ( —d, - ¢BC> + 1) (3.58)
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can be used for identification of zeroes! of the Bessel function instead of searching
of minima in the intensity field as mentioned in Figure 2.12. An example of such
a phase field is introduced in Figure 3.28.

After filtering of speckle noise, which is generating high frequency disturbing

(5 dz = ac )|

where B = B,/B, denotes distortions caused by drift of environmental conditions

signal, the formula (3.54) becomes

|Un| = B |Jn (8.59)

between measurement of U, and U, (ideally if B, =B;). The magnitude
|Ujn|~|UnUs"/1Uo1?| has been used for all measurement within this scope if not

stated elsewhere.

DX®)<

Figure 3.28: (left) Magnitude map; (middle) phase map with almost no phase drift. Phase jumps

correspond to zeroes in the magnitude map; (right) phase map including a phase drift.

From (3.59) follows, that three parameters B, A, ¢5. influence the resulting
magnitude distribution. Although the error sources can be mutually compensated,

for the maximal error estimation we can apply total differential in a form

2
a|U -
d|U]n|=\/<%dB> +< |a/]1"|d/1) (5.60)

where
o\u 41
la g‘l = |In (7 d, - ¢Bc) , (3.61)
olU § 47r 47r T
A0l B (B, = )| s (B = )| 22 e 202

Due to the great coherence and the stability of laser source, the ratio A1/A?> makes
the contribution of (3.62) to the total error (3.60) about at least five orders lower
than contribution coming from (3.61) and therefore can be neglected.

In case of an amplitude distribution calculated by the direct inversion of

a magnitude distribution e.g. in [39], [50], [66], no phase shift ¢z- =0 need not to

! Change of Bessel function sign (zero) is found as a jump in (3.58) via sgn (signum) function
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be introduced and formula (3.60) describes the final error contribution. The error
acting in amplitude distribution is directly proportional to error dB. The situation
is becoming little bit more complicated in phase modulated holography, since
there is in addition an error contribution coming from deviations of phase offsets.

The phase offset error lies in an interval & shifting the ideal phase offset ¢z to be:

$sc = Ppc + & (3.63)

An evident error of ¢z, arrives when the phase of the reference and the object
wave are not perfectly synchronizedy, # 0, see (3.37). Moreover, the source of
multiplicative distortions denoted by dB behaves differently from the direct
inversion approach. Although the 13-step phase shifting algorithm has been used
within the scope of this dissertation by reason of robustness, for simplification
the four step algorithm (3.39)-(3.42) is considered in following analysis. A set of
magnitude distributions is necessary for employing the phase shifting approach.
The time gap between measurements results in a variation of the multiplicative
parameter B, which can be described by its mean value B,,; and an interval

defined by standard deviation o(B):
B = Byyi + o(B). (5.64)

Four phase shifted magnitude distributions including the error sources e, B yield

to:
\U1] = (Bayz + 0(B)) Icos(2), (3.65)
|U,| = (EAVE - U(f?)) |cos (Q* + % + €)|, (3.66)
|Us| = (Bavis + 0(B) ) |cos (27 + % +e)| (3.67)

and
U,| = (EAVE - J(E)) cos (.(2* + %TT[ + e). (3.68)
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These four equations in three unknowns can be solved at each point of
the reconstructed field. After some mathematical operations', formulas (3.65)-

(3.68) simplify to:

Us| = (Baye + 0(B)) Icos(2")], (3.69)
Ul = = (Bavs + 0(B)) Isin(@") cos &, (3.70)
|Us| = — (E’AVE + J(E’)) lcos(2)cos €|, (8.71)
and
|U,| = (EAVE + a(é)) sin(02*) cos e. (3.72)

The aim of the analysis is to treat the worst error, even though in some
measurements the values can be mutually compensated. Therefore a numerator of
the fraction describing the error parameter was intended to be maximal unlike
the value of denominator. Using of the approximation for small angles cose=1-

€2/2 and subtraction in pairs |U;| — |Us|, |U4| — |U,| leads to phase recovery formula
ZEAVE+2|O-(§)| 82 |U4,|_|U2|>

0= — —
atan <2BAVE —2[0(B)| 4= 2 U, — |Us]

(3.73)

The ratio cv=|§°jﬂ represents a coefficient of variation, which, together with
VE

considering 6(B) « B,yy, makes the formula (3.73) to be:

0 = atan| (1 + 2¢,) (1 + (5)2)M (3.74)
7 27 )0y = |Us| ) '
Individual disturbances contributing to overall error in the phase map AQ* can be
expressed by
0 \* a0 \°
0N = . 3.75
d j(an dcv) +(ag de) (5.75)

Substituting (3.74) into (3.75) gives the formula’

! Formula cos(x + y) = cos(x) cos(y) — sin(x) sin(y) =~ cos(x) cos(y) for very small value of y was
applied.
? Used relations:

(1+2¢,)(1+&%/4) ~ 1+ 2¢, + £%/4

2c,tanf)” + (e2/4)tan)” + tan* = tan*

(Ul = 10,1 /(U] = |U3]) = tann*
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a0’ = [(sm2vde,)’ + (sin2£de)’ (5.76)

where 2 denotes phase distribution without presence of disturbances. Similarly,

formula
_ dd,
Cdn:

dd, do* =

(3.77)

= % [(sinZ.Q*dcv)z + (sinZQ*Zde)z + (%dﬂ*)z]
provides better picture of how the individual disturbances contribute to overall
error in amplitude distribution d, =ﬁ[[2*+A([2*)], where A(Q%) is the correction
function introduced in 3.4.
Formula (3.77) holds true generally unless the applied approximations are valid.
However, it is necessary to know real values of error parameters dc,, de emerging
in the experimental arrangements, which can be substituted in relation (3.77).
A convenient way to estimate the phase offset error of the experimental
arrangements is to use the solution for phase offset ¢z, from a series of five Bessel

fringe patterns. The patterns are recorded with equally distributed g steps and

the phase offset is then calculated by formula:

5 _aws<yusl—|ull>
Be 21Uyl — U, )

As a matter of fact formula (3.78) is a solution of a set of five equations (3.38) for

(3.78)

¢5c. The solution yields the phase shift at each measurement point R. The results
can be visualized by a histogram plot, where the height of the bars represents

counts of pixels shifted about value ¢z (R).
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Figure 3.29: Normalized histogram of phase steps calculated for the whole surface of
the cantilever.
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In faultless world, the histogram would be a single bar at % having height
corresponding to total number of pixels of the field. The width, on the other
hand, reflects the error of the phase offsets. The histogram of measurement
performed by the experimental arrangements is shown in Figure 3.29. At first
sight, the histogram envelope is pretty narrow standing for high quality phase
shifting realization. HW (half width) at' 1/e* was chosen as a measure of
the error, that is more stringent in comparison to HWHM (half width at half
maximum). The measured value is e = 0.0035 rad.

In order to estimate the error dB, two complex fields of non-oscillating object
were subsequently captured with a 20 seconds time gap between measurement.
The aim of the measurement was to follow formulas (3.55) and (3.56) where
the error dB originates. As mentioned, the both fields were captured in state of

non-oscillating object” and therefore (3.55) and (3.56) become:

U, = Boexp[j(Q2s + 2p0)], (3.79)

U, = Byexp[j(Q2s + 2p1)]. (3.80)

Mean filter of a product of complex field U, and conjugate of U, divided by
envelope |U,|:

UUy"\ By

) = ——exp[j(2p1 — 2po)]. (5.81)

(
U117 By

yields to normalized complex field analogously to (3.57). Magnitude
|Ui2| = B (3.82)

affords direct access to B =B,/B,, since neither of complex fields U, U,is
modulated by the Bessel function due to steady state of the object. Magnitude
distribution |U,| is introduced in the inner image of Figure 3.30. It is obviously
seen, that magnitude values over the object surface are uniformly distributed
about 1 as expected. For error analysis statistical parameters defined in (3.64) are
required and therefore the measurement was repeatedly performed. Results of
the experiment are illustrated in Figure 3.30. The measured values at the pixel
denoted by the blue circle are plotted as a function of measurement number

(meaning acquisition at different times). The measured values of B are scattered

'e = 2.718 — Euler number

? For non-oscillating object holds d, = 0 and therefore J,(0) = 1.
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around mean value B,,; =0.977 expressed in number by standard deviation

o(B) = 0.018. The coefficient of variation c, = 'g(g)' =0.018 is used in (3.74) and
AVE

acts as a parameter in (3.77).
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Figure 3.30: Results of repetitive measurement of multiplicative parameter B in the position
marked by the blue point in the inner figure.

Once the values of the error contributions c,, ¢ are known, one can substitute
them into relations (3.76) and (3.77). Error in recovered phase d* is plotted as
a function of phase 0* itself in Figure 3.31. The blue line follows values calculated

by formula sinZQ*st, while formula sin22 dc, is represented by the green line.
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Figure 3.31: Contributions to overall measurement error coming from parameters ¢, , &,
respectively.

The contribution coming from the phase offset error e is negligible when
compared to the error caused by a variation of the multiplicative factor B. Before
the recovered phase 02* can be recalculated in order to obtain amplitude
distribution, one has to correct the phase due to difference between cosine and
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Bessel function, see chapter 3.4. This fact must also be considered in the error
analysis since wrong value of o* will produce an incorrect link to correction value
within the correction look-up table. This error contribution is in equation (3.77)
described by the term (0A(2*)/002%)d0*. The derivative 9A(2%)/002* is calculated as
a slope of function introduced in Figure 3.21. The total error occurring in
amplitude distribution as function of amplitude values is plotted in Figure 3.32.
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Figure 3.32: Error of measurement employing phase shifting technique as a function of
measured amplitude of vibrations. Relative error is introduced in the right-hand plot.

The most  significant contribution from error rate point of view is
the multiplicative noise described by c,. The error originating by incorrect phase
offset! is negligible and error coming from the correction procedure generates error

at least four times smaller.
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Figure 3.33: Error dd, in amplitude of vibrations measurement generated by deviation in
multiplicative parameter B. Green line represents theoretical value, while blue line stands for

values burdened with the error.

The peak to valley error is about 0.75 nm while RMS (Root Mean Square) error
is 0.53 nm. These value were computed for frequency modulated technique when
m=1 in (3.59); however, due to minor contribution of 9A(2*)/d2* to total error,
the same error (except some local deviations in order of 0.05nm) influences

measurement for m#1.

' This holds true for four step phase shifting algorithm. 13-step algorithm evinces results even

about two order better comparing to 4-step algorithm.
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When analyzing error behavior of the phase modulated time average digital
holography, it is also worthwhile to mention error connected with the direct
inversion of the magnitude field. The only error source in (3.60) is multiplicative
parameter B = B,y + o(B) quantitatively described by (3.61). The experiment, of
which results are introduced in Figure 3.30, determined the parameter B = B,y —

o(B) = 0.96 in the worst case. Theoretical curve |]1 (47" dz) is plotted in Figure 3.33

as the green line while the blue line in the same figure represents a measured

curve B |]1 (47" dz)

. The error in the magnitude distribution d|Uj,| produces an error

in the amplitude distribution dd, as outlined also in Figure 3.33. The error in
amplitude distribution as a function of amplitude is plotted in Figure 3.34. At
first sight direct inversion approach is much more sensitive for error distortions.
There is a crucial difference in response to presence of the multiplicative error
between phase modulated holography and the direct inversion. When averaging
a great number of measurement, the standard deviations is expected to approach
zero o(B) - 0. In case of the phase modulated holography, the ratio of magnitude
distribution pairs (3.73) results in sensitivity of the method proportional only to

the standard deviation o(B) via the coefficient of variance c, =|I;’(B)|. Hence,
AVE

the averaging of great number of measurement also suppresses effect of
the multiplicative noise (theoretically) down to zero c, » 0. On the other hand,
averaging of great number of measurement in case of direct inversion approaches
to value B - B,y;, which may not be equal to one and therefore still

the multiplicative error is presented.
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Figure 3.34: Error of measurement using direct inversion for amplitude retrieval as a function of
measured amplitude of vibrations. Relative error is introduced in the right-hand plot.

Recently, error analysis has been largely replaced by uncertainty analysis [70]. In
order to convert error contributions coming from (3.77) into standard
uncertainties, one has to estimate probability distribution of the individual

distortion sources. The histogram of phase offsets introduced in Figure 3.29 tends
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to evince the Gaussian profile corresponding to the normal distribution with
estimated standard deviation o(e) ~0.1rad. This value was estimated from
behavior of Gaussian function when approximately 95% values lie in an interval
with length of two standard deviations from the mean value. Thus, the standard

uncertainty

Ao?(e) 8m
= in|— 3.88
AT Sm( A dz) (3:85)

represents uncertainty generated by incorrect phase offset. The second source of
distortions considered within this analysis is the multiplicative factor B. As shown
in Figure 3.30 the values B are scattered according to the rectangular probability
distribution within interval B € (0.9955,1.016) with the standard deviation
o(B) = Bm“"_Bm‘" =0.018:. It follows relation

ug = /’104(7TB) sm( 7 dz>. (3.84)

holding for standard uncertainty of multiplicative parameter distortion.
Analogously to the error analysis, the third source of uncertainty is the correction

function

_ 9A(dy)
A= g dd,.

(3.85)

Last considering source of distortion is repeatability (type A uncertainty while

the above are all type B uncertainties) determined by relation (3.47):
uy = 0.05 + 0.01 d,. (5.86)

Formulas (3.83)-(3.86) can be used for definition of so called combined standard

uncertainty:

= Jue? + ug? + up? + uy? (5.87)

comprising all important sources of distortions.

Although the combined standard uncertainty u.is usually used to express
the uncertainty of measurement results, sometimes is required a measure of
uncertainty that defines an interval about the measurement result. The measure

of uncertainty intended to meet this requirement is termed the expanded

! This is only a different approach of how to calculate o(B) comparing to value introduced in
error analysis.
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uncertainty and is obtained by multiplying u. by a coverage factor k: U = ku,. In
general, the value of the coverage factor k is chosen on the basis of the desired
level of confidence to be associated with the interval defined by U = ku..
Typically, U = 2u,, that defines an interval having a level of confidence of
approximately 95 %.

For illustration, combined standard uncertainties and expanded uncertainties for

some values of measured amplitude of vibrations d, are presented in the table

below.
d, =10nm d, =100 nm d, = 1000 nm
U, [nm] 0.4 1.3 10.1
d,xU (k=2) (10.0 £ 0.8) nm (100.0 £+ 2.6) nm (1000.0 +20.2) nm

Another important parameter of a measurement technique is its time
consumption. In general, operators demand a quick and accurate measurement.
Therefore huge application software comprising of numerous packages was
developed. The whole system (built in MATLAB R2013a environment) treats
with control and settings of all hardware components as well as with the complete
data processing. The measurement time strongly depends on the employed
hardware and software equipment (PC: intel core i5 3570 CPU, 8GB RAM). In
our arrangement we must control HW components: two Rigol DG 4102 waveform
generators, AVT Stingray camera (6.5 FPS, 2048 x 2056 pixels).
The measurement procedure consists of four steps:
e [Initializing of the hardware (3.8 s)
e Capturing and saving of sequence of phase-shifted digital holograms at
steady state of the object as a reference (1.4 s)
e (Capturing and saving of phase-shifted digital holograms sequence at
oscillating state with different phase-offsets (5.7 s)!
e Loading data and data processing (6.7 s)!
In total, the whole procedure takes less than 18 s counted from the start of
the measurement to visualization of a distribution of vibration amplitudes over

the whole surface.

! Stands for 4-step phase shifting technique
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4 Experiments

4.1 Measurement of piezoelectric transformers

Years of experiments 2011-2012

Heterodyne technique YES

Frequency modulation YES (n=1)

Phase modulation NO

Amplitude distribution retrieval Direct inversion within first monotonous
technique interval of the Bessel function
Publications [37], [37], [47], [49], [50], [71]

A piezoelectric transformer (PT) is a device used for the transformation of
alternating electric voltage by the means of ultrasonic vibrations. It utilizes
reverse piezoelectric effect in the input part and direct piezoelectric effect in
the output part. The best transformation ratio is achieved at the mechanical
vibration resonance. The measurement of out-of-plane displacement as well as
the shapes of transformer vibration modes near resonant frequencies provides
useful data, applicable in theoretical research of piezoelectric transformers
behavior as well as in practical applications. A typical example is an effect of
a transformer’s properties as a function of its mechanical mounting.

PTs are used e.g. for Cold cathode fluorescent lamp electronics, high voltage
generator for cold plasma, mobile phone battery recharging etc.
High transformation ratio at no-load conditions is a specific feature of the PT's
operation. PT applications are complex, including specific transformer mounting,
wiring and driving circuit electronics. A very important parameter for
characterization pf PTs is out-of-plane displacement distribution, which can be
measured by time average holography. Maximal values of vibration amplitudes
appearing on surface of PTs are in range of tens of nanometers. Therefore one has
to use a sensitive method for very small vibration amplitudes — frequency
modulated time average digital holography introduced in 3.3.

The experimental arrangement for measurement is outlined in Figure 4.1.
The interferometer is based on the Mach-Zehnder type of a holographic

interferometer. The laser beam has a wavelength of 532 nm and power of 100
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mW. After the mechanical shutter, the beam is split by the polarizing beam
splitter, equipped with half wavelength retardation plates in two beams. Half
wavelength retardation plates help set the intensities in both beams as well as
the polarization of each beam. The first beam acts as a reference wave and could
be further attenuated if necessary by a set of gray filters placed in filter wheels.
Each beam is frequency shifted by an acousto-optic frequency modulator - Bragg
cell, with its working frequency of 40 MHz. The Bragg cell placed in the reference
arm was frequency modulated by the frequency of the PT in order to increase

the sensitivity of the method for small amplitudes.
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Figure 4.1: Outline of the experimental arrangement used for PT measurement employing
components: BS — beam splitter, SF — spatial filter, BC — Bragg cell, M — mirror, CO —

collimating objective, FG — function generator, D — driver.

Moreover the heterodyne detection was employed. The both beams are further
spatially filtered and collimated. After two reflections on mirrors M2 and M3,
the reference beam hits CCD. The object beam illuminates the sample and
the light scattered from its surface impinges on the CCD sensor. The setup is
designed as an off axis Leith-Upatnieks scheme. The angle between the beams is

set to be approximately 3°. The camera is an AVT Stingray - F 504 with
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a resolution of 2045 x 2056 pixels, each pixel having the size 3.45 pm x 3.45 pm.
The camera is connected to the computer via a Fire Wire B interface enabling
a frame rate of 6.5 FPS. The image from camera — digital hologram — is cropped
to 2048 x 2048 pixels due to Fast Fourier Transform (FFT) in the reconstruction
process. A sequence of 16 phase-shifted frames was captured and processed in
a way presented in 3.2. Retrieval of amplitude of vibrations distribution was
based on direct inversion method, since phase modulation had not been developed
yet.

The measurement was performed for ring PTs and disc PTs with a different
diameter and mounting. All piezoelectric transformers are made of hard lead

zirconate titanate ceramics (PZT, APC841 type).

Figure 4.2: Measured ring piezoelectric transformer (left) and 4-segment disc piezoelectric

transformer placed in manufactured holder (right).

The first measured samples were ring PTs with a diameter of 40mm and
thickness of 1mm. The electrodes were designed in the shape of concentric rings.
For the purpose of mounting, all transformers have a hole in the center and they
are fixed onto a precisely machined shaft by the flange as can be seen in Figure
4.2. For every mounted sample, its resonant frequencies were measured and then

the holographic method for out-of-plane vibrations measurement was applied.

51.2 kHZ 33.3 kHZ

Figure 4.3: The out-of-plane displacement of ring piezoelectric transformer at resonant
frequencies driven by 30V}, dashed white concentric circles represent the position of borderlines

between electrode segments with diameters 8 mm and 20 mm.
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The transformers were driven by voltages of 15, 30, 45, 60 V,, and the out-of-
plane displacement distributions near resonant frequencies were measured, data
was processed and results were visualized by in-house developed software. Some

illustrative examples are shown in Figure 4.3.

Figure 4.4: The out-of-plane displacement of disc piezoelectric transformers with differently
shaped electrodes driven by 30V, at resonant frequencies. A diameter of a transformer is 20
mm and the dashed white lines represent position of borderlines between electrode segments.

The second type of studied PTs were disc PTs with diameter of 20 mm and
thickness of 1 mm. Electrodes were designed in different shapes such as crescent-
shaped, 2-, 3-, 4-segments PT, ring-dot or wedge V shape. The PTs were placed
in a manufactured holder (see Figure 4.2). The disc was pushed by a spring from
the back-side to ensure that the pressure would be approximately identical during
all measurements. The PTs were driven by a voltage of 30 V,,. Some results of
disc PT measurement are shown in Figure 4.4. The intensity of pseudo-color
image corresponds to the amplitude of the vibration according to the colorbar on
the right-hand side. Since the experiment was conducted without employment of
phase modulation, only magnitude of oscillation amplitude is measured. The sign

of mechanical phase is lost.
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In order to obtain better knowledge of PTs behavior, some additional
measurements were performed:

e Infrared Camera Measurement- a surface temperature distribution was
obtained using an infrared camera (Ti55FT, Fluke Corp.). The images
were acquired after about 2 min of a steady operation in high power
regime (PTs were driven by a power amplifier (HSA4052, NF Corp.) at
constant amplitude and frequency).

e FEM Simulation - a harmonic analysis of PTs was employed using
software ANSYS in order to predict PT behavior prior to its fabrication.
Full 3D models of all tested PTs were created, applied material properties
are given in Table I. In order to obtain characteristics under load a resistor
element was also introduced.

The vibration distribution of a PT is affected by operating mode and clamping.
When operated in higher power regime, the vibrations are connected with more
pronounced temperature distribution. Infrared camera measurement revealed
the most critical parts when operated in high power regime. These were usually
the areas close to the input lead contact. The surface temperature was typically
below 60°C, however, it reached 100°C for smile 1/2 D PT. Holographic
interferometry and FEM simulation enabled normal displacement visualization.
Measured vibrations distribution were affected by electrode placement
imperfection, PT clamping. The influence of the electrode pattern symmetry was
clearly visible in the vibration displacement distribution. Results of

the aforementioned techniques are shown in Figure 4.5.

(0] 100 200 O 100 200 45 75
Amplitude [nm] Amplitude [nm] Temperature [°C]

Figure 4.5: Investigation of disc PT by different techniques. Namely it is FEM simulation (left),
holographic measurement (middle) and infrared camera visualization (right).
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4.2 Comparison of frequency modulated technique to

single point laser interferometer

Years of experiments 2012 - 2013
Heterodyne technique YES
Frequency modulation YES (n=1)
Phase modulation NO

Amplitude distribution retrieval ) ) )
) Direct inversion
technique

Publications [38], [72]

The experiment introduced in this chapter shows the comparison of amplitude of
vibration measurement simultaneously performed with three different methods on
the same sample. The aim is to experimentally prove the capability of
the frequency modulated time average digital holography combined with
heterodyne technique and phase averaging. The methods used as a bench mark are
Doppler vibrometry performed with commercial single point vibrometer (Ometron)

and single point interferometer in Michelson configuration which is improved with
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Figure 4.6: Holographic and interferometric arrangements for small amplitude vibration

SYNCHRONIZATION

FPD

measurement.(BS-beam splitter, M-mirror, SF spatial filter, CO-collimating objective, O-
focusing objective, FG-function generator, OS — oscilloscope, LIA — lock-in amplifier, L- lens,
FPD - fast photodiode).
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Figure 4.6 outlines the measurement arrangement which includes two of three
mentioned different measurement methods. Considering the readability of
the scheme, the vibrometer measurement is not depicted there. Digital holographic
measurement is based on the Mach-Zehnder type of holographic interferometer
having the same parameters when compared to piezoelectric transformer
measurements in chapter 4.1. The data processing is also performed in the same

way as in 4.1.

z - 7 " \ 8 B %”' " = = . - y B
e e e revrenas Py
Figure 4.7: Photography of the experimental arrangement with highlighted optical paths.

The arrangement combines three different techniques. The inner image (A) presents
the measured piezoelectric element - object.

For the Michelson interferometric measurement a stabilized He-Ne laser with
a wavelength of 632.8 nm is used as a light source. The beam is divided by
a beamsplitter BS2 to two interferometer arms. The sample with the mirror M6 is
placed at the first arm. The sample can vibrate with the frequency of the applied
electric field from AC source. An active element, holding a constant phase
difference m/2 between waves from both arms, is situated in the second reference
arm. Beams are joined after reflection, and the interference pattern is projected to
the photodiode by the lens. The lock-in amplifier (LIA) and, simultaneously,
the oscilloscope (OS) are used for signal detection. With use of lock-in amplifier
technique the Michelson interferometer enables to measure amplitudes in the order

of 10 m.
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The vibrometer was precisely set to measure at the same point as
the interferometric method. Since the holographic method measures in a whole-
field, after the data evaluation, it was necessary to consider just the values from
the area, which correspond to single-point methods.

The object under investigation is piezoelectric ~unimorph membrane.
The measurement was realized for three different driven frequencies: 2 khz, 9khz
and 13 khz. For every frequency, a set of measurement for different excitation
voltages (10 V, 20 V, 30 V, 50 V, 100 V, 200 V) of the unimorph was performed.
Due to thermal properties and relevance of measurements, the different method
measurements were done in the same time. Detected harmonic voltage at
the photodiode is proportional to the intensity so it is possible to measure voltage
on the photodiode. The harmonic part of the signal can be detected and amplified
by lock-in amplifier technique. The lock-in amplifier compares the detected
voltage with the reference signal from the voltage generator. This reference signal
has a frequency of the electric field applied on the sample. The output voltage
from the lock-in amplifier is proportional to the product of measured and
sinusoidal reference voltages. This comparison of signals can be made at a desired
integration time, much longer than is the period of applied AC voltage. Therefore
the device is able to detect a very small signal of reference frequency from a high-
noise signal, where the noise level is about three orders of magnitude higher. This
amplifier measures effective voltage so the amplitude of harmonic vibration of

the sample can finally be calculated from the equation
_ Uoyr 2 1
Upp 21 (4:1)

where Uyyr is the voltage detected by the lock-in amplifier, U,, is the peak to peak

d

voltage and 2 is wavelength of used laser.

In Figure 4.8 the measured data for 13 kHz drive frequency obtained by
simultaneous measurement are plotted. From the physical point of view,
the linear behavior was predicted. Therefore, the deviation from linearity as
a reliability factor was also calculated and visualized in Figure 4.8. In Figure 4.9
the relative deviations between methods are plotted. These deviations are
calculated as an amplitude difference between the two methods divided by
the value of a reference method. As a reference method it was considered the lock-
in interferometric method. On the basis of obtained data, one may claim all

methods fulfill linearity requirements and the deviation between methods
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(especially for amplitude larger than 1 nm) is in tolerance range of the methods.
The same measurement for driven frequency 2 kHz (where the range of
amplitudes is different) is presented in Figure 4.11 and Figure 4.12.

The interferometric lock-in method and the vibrometer based method are
generally considered as a reliable and precise method and it was shown,
the holographic method has comparable parameters. Some results obtained by

the holographic method are presented in Figure 4.13
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Figure 4.8: (up) Results of measurement (holographic method — blue line, vibrometer based
method — green line, interferometric lock-in method — red line); (down) linear regression of
the measured data. The linearity of holographic method, vibrometer based method and
interferometric lock-in method are 99,72%, 99,85% and 99,55%.
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Figure 4.9: (up) Relative deviations between holographic and interferometric method
(the average deviation is 7,513%); (middle) relative deviations between holographic and
vibrometer method (the average deviation is 4,25%) and down - relative deviations between
vibrometer and interferometric method (the average deviation is 6,85%);
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Figure 4.10: Relative deviations between methods (same ordering as in previous figure) for
amplitudes larger than approximately Inm with average deviation 4,47%, 2,54% and 2,93%.
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Figure 4.11: (up) The measured data (holographic method — blue line, vibrometer based
method — green line, interferometric lock-in method — red line); (down) linear regression of
measured data. The linearity of holographic method, vibrometer based method and
interferometric lock-in method are 99,73%, 99,85% and 99,90%.
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Figure 4.12: Up - relative deviations between holographic and interferometric method, middle -
relative deviations between holographic and vibrometer method and down - relative deviations

between vibrometer and interferometric method. The average deviation is smaller than 4%.
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Figure 4.13: Results of piezoelectric unimorph measurement for driven frequency 2 kHz and
excitation voltages 50V, 100V and 200V by digital holography. The white square denotes an

area corresponding to the measuring area of the single point methods.

4.3 Noise suppression in curved glass shells using macro-

fiber-composite actuators

Years of experiments 2014 - 2015

Heterodyne technique YES

Frequency modulation YES (n=1, n=10, n=>50)

Phase modulation YES

Amplitude distribution retrieval Least square approach and 13-step phase
technique stepping technique

Publications [51]-[55]

This chapter introduces some experimental results of measurement during
the semi-active control of noise transmission in a curved glass shell with attached
piezoelectric macro fiber composite (MFC) actuators. The semi-active noise
control is achieved via active elasticity control of piezoelectric actuators by
connecting them to an active electric shunt circuit that has a negative effective
capacitance. Using this approach, it is possible to suppress the vibration of
the glass shell in the normal direction with respect to its surface and to increase
the acoustic transmission loss of the piezoelectric MFC-glass composite structure.
The effect of the MFC actuators connected to the negative capacitance shunt
circuit on the surface distribution of the normal vibration amplitude is studied
using phase and frequency modulated time average digital holography
(PEFMTADH). The frequency dependence of the acoustic transmission loss
through the piezoelectric MFC-glass composite structure is estimated using
measurements of the specific acoustic impedance of the curved glass shell.

The specific acoustic impedance is measured using two microphones and a laser
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Doppler vibrometer (LDV). The results from the LDV measurements are
compared with the holographic data. The results of the experiments show that
using this approach, the acoustic transmission loss in a glass shell can be
increased by 35 dB in the frequency range around 270 Hz and by 31 dB in
the frequency range around 720 Hz. The experiments indicate that PFMTADH
measurements provide an efficient tool that can be used for fast and accurate
measurements of the acoustic transmission loss in large planar structures.

Due to their physical nature, noise and vibrations are accompanied with the flow
of mechanical or acoustic energy. Propagation of acoustic energy and
the reflection of acoustic waves at interfaces of two different materials are
controlled by a physical property called specific acoustic impedance z,,. Specific
acoustic impedance of a planar structure is a frequency-dependent parameter

defined as an acoustic sound pressure p divided by particle velocity v:

Zm = —, (4.2)

The sound shielding efficiency of the noise isolation devices (NID) can be
expressed using the physical quantity called acoustic transmission loss, which is
defined as a ratio of the acoustic powers of the incident and transmitted acoustic
waves and usually expressed in the decibel scale. For the purposes of our study, it
is convenient to express the acoustic transmission loss (TL) in terms of

the specific acoustic impedance of the NID:

Zm
1+, (4.3)

TL = 20l0g10 ZZ
a

where z, is the characteristic acoustic impedance of air. From (4.3)(4) follows that
large values of the TL correspond to large values of the specific acoustic
impedance z,, of the NID. In the passive noise shielding approach, the large values
of z, can be achieved by increasing the weight of the sound barrier. Such
a situation is often unacceptable in real-world devices. Therefore, it is very
challenging to increase the value of z, to a great extent with keeping the weight
of the structure as small as possible.

Figure 4.14 outlines the Mach-Zehnder type of holographic interferometer used for
the measurement. The laser beam has a wavelength of 532 nm and a power of
150 mW. Similarly to previous experiments, behind the mechanical shutter,
the beam is split in two by the polarizing beam splitter equipped with half-

wavelength retardation plates. Half-wavelength retardation plates help to set
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the intensities in both beams as well as the polarization of each beam. The first
beam acts as a reference wave and it could be further attenuated if necessary by
a set of gray filters placed in the filter wheels. Each beam is frequency-shifted by
means of an acousto-optic frequency modulator - Bragg cell with a fundamental
frequency of 40 MHz. It is important to note, that measurement of piezoelectric
MFC-glass composite structure requires great dynamic range of the method.
Measured amplitudes of vibration start from nanometers at frequencies for which
the negative capacitance (NC) shunt circuit is optimized. On the other hand,
when the negative capacitance shunt circuit is disconnected (or detuned),
the amplitudes of vibration at resonant frequencies of the curved glass reach units
of microns. Therefore the frequency modulation as described in chapter 3.3 must
be employed.

The beams exiting the Bragg cells are spatially filtered and the reference beam is
collimated. The object beam illuminates the measured window and the light
scattered from its surface interferes with the reference wave. The negative lens
reduces the imaging angle and the measured window having size of 420 x 300
mm can thus be measured. The setup is designed as an in-line scheme combined
with heterodyne technique of holograms acquisition (see chapter 3.2) in order to

maximize the lateral resolution and suppress the overlapping diffraction terms.
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Figure 4.14: An outline of the experimental arrangements used for glass shell measurement.
Negative lens (NL) is used to reduce the imaging angle. Other components: BS-beam splitter,
M-mirror, SF spatial filter, CO-collimating objective, O-focusing objective, F G-function
generator, BC — Bragg cell, D — driver.

The measurement of the transmission loss by acoustic method was conducted at

frequency range from 200 Hz to 800 Hz. Results are represented by solid green

103



line in Figure 4.16. Subsequently, frequencies of 290 Hz and 735 Hz were
identified with a minimum value of the acoustic transmission loss, which
corresponds to dominant vibration modes of the curved glass shell. Finally, two
values 270 Hz and 720 Hz of a frequency w, were chosen, for which the NC was
adjusted (marked by the violet and the blue circles). For more detailed technical
description as well as physical background regarding the noise suppression, see

the original papers.

ol )
» Measured Window. ® =

Figure 4.15: A photography of the experimental arrangement. ROI (region of interest) delineates
the investigated surface of the glass shell. Position of MFCs is outlined by black dashed
rectangles.

The profiles of the vibration modes of the curved glass shell were measured using
digital holography in the frequency ranges from 265 Hz to 275 Hz and from 715
Hz to 730 Hz in the two situations, when the NC was disconnected (OFF) and
when the NC was connected and adjusted at the frequency 270 Hz, 720 Hz,
respectively. Moreover, the NC was slightly detuned by capacity value in order to
see the influence of this parameter. Figure 4.16 down shows the results. Values
within each figure of amplitude distribution introduce RMS (Root Mean Square)
value of the amplitudes over the whole surface. Two interesting features can be

observed from the results.
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Figure 4.16: Results of experiments carried out on the glass shell with attached MFC for noise

suppression. The 1D plot shows result of acoustic measurement. Magnitude maps of ROI

measured at 270 Hz and 720 Hz by holographic method are introduced in the red dashed

rectangles. The false color maps represent amplitudes of vibration within the ROI while the NC

circuit is ON or OFF and for different values of capacity of the NC circuit. One should note
that the colorbar is not linear due to large dynamic range of the measurement.

Apparently, one can see the suppression of the amplitude of vibrations in
situation when the NC circuit was on and off. That corresponds to an increase in
the TL by approximately 35 dB respectively 31 dB due to the effect of the NC
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circuit. The sign of the amplitude is also worth noting. The sign changes when
the frequency passes the optimized value or a resonant frequency of the system.
This behavior is important from the metamaterial engineering point of view. It
also shows importance of phase modulation in time average digital holography
bringing the advantage of the amplitude sign sensitivity, which would remain
otherwise hidden.
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Conclusion

This dissertation is aimed to research and development of an advanced method
for amplitudes of vibration measurement based on the digital holographic
approach. The vibration analysis is massively used in many branches of industry
as well as in research and development. The high demand for contactless, full-
field and very sensitive method for vibration measurement combined with its
complete lack let us to start with the method development. Although there is
a vast amount of techniques for vibration analysis that are based on different
principles, digital holography has offered new opportunities. Method for vibration
measurement based on digital holography is called time-average digital
holography (TADH). TADH is a whole-field method with great lateral resolution
and unprecedented sensitivity. On the other hand, since its discovery, TADH has
contended with drawbacks like a limited measurement range or lack of
automatable quantitative analysis. The aim of this work was to push the limits
of TADH and make the method easy-to-use and applicable in vast range of
different applications. Based on previous research carried out in our research
group I employed acusto-optical modulator (Bragg cell) into the experimental
arrangement and combined advantages resulting from frequency and phase
modulation of a reference or/and an object wave. The new method can be called
phase and frequency modulated time average digital holography (PFMTADH).
All theoretically derived impacts on the method caused by my inventions were
experimentally verified by measurement of a beam cantilever.

As described in detail in chapter 3.1, different frequency modulation of the object
and the reference wave in experimental arrangements results in a temporally
harmonic development of intensity values in digital hologram. This expresses
the relative phase variation between the both waves. In this way, an arbitrary
phase shift between frames of the digital sensor can be used for solution of a set
of equations by means of phase-shifting algorithms. As a result, one obtains
wavefield in the digital hologram plane that is free of undesired diffraction orders
called d.c. term or twin image. Thus a bandwidth of the object in a digital
hologram plane can be extended up to the bandwidth of the whole digital
hologram. This leads to an improvement of the lateral resolution within
the surface of the object. The experiment carried out in the chapter 3.1 shew
the improvement of lateral resolution corresponding to the object surface about
a factor of two when compared to the non-modulated technique. In a frequency

domain, the object bandwidth (in horizontal direction) accounts for more than
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90% of the whole bandwidth of the digital hologram. These numbers are
indicative (based on experimental data in selected experiment), since lateral
resolution in Fresnel holography depends on laser wavelength, parameters of used
digital camera and distance between object and the camera.

In addition, as a consequence of better lateral resolution, the measurement range
of the method in case of large amplitudes is increased. Better lateral resolution
inevitably mitigates the sampling criterion for the Bessel fringe pattern
modulating the magnitude field over the object surface. Therefore larger
amplitudes exhibiting a denser fringe pattern can be resolved and evaluated.

Due to combination of more digital holograms in phase-shifting technique, signal-
to-noise ratio is also increased when compared to the single captured digital
hologram. The demonstrative experiment exhibited more energy within
the spectral domain of the object about 30%.

Typical frequency modulation in order to use the phase-shifting technique ranges
in fractions of frame rate of the digital camera (units of Hz). However, when
the reference wave is further modulated by an integer multiple of frequency at
which the object oscillates, the order of the Bessel function defining the fringe
pattern varies in connection with the integer value. Therefore one can easily make
use of properties of different orders of the Bessel function. For very small
amplitudes it is beneficial to modulate the reference wave by frequency of
the object oscillations. This leads to the first order Bessel function that exhibits
sufficient slope for small values of vibration amplitudes. In chapter 3.2, 1
experimentally established the threshold of the smallest measurable amplitude to
be under 0.1 nm. On the other hand, in the case of large vibration amplitudes one
can take advantage of the fact that the locations of the zeros of the Bessel
functions are spread apart for increasing order of the Bessel function.
Experimentally I reached amplitude of vibration larger than 9 um measured with
modulation of reference wave by 150th multiple of the objet oscillations.
The dynamic range of the measurement has been increased due to frequency
modulation up to 10000.

The second major challenge of the dissertation was aimed at retrieval of
vibrations amplitude values coded in the Bessel fringe pattern due to lack of fully-
automatic procedure, which I designed and developed for this purpose.
The method uses Bragg cells in the holographic arrangements that modulate
phase of the reference wave. A sequence of phase modulated fringe patterns is

reconstructed and with the use of suitable phase-shifting algorithm, the amplitude
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of vibrations can be straightforwardly computed. This procedure is elaborately
introduced in the chapter 3.3 together with appropriate experimental verification.
A repeatability of the method was determined on the basis of experimental study
to be 0.01 of measured amplitude in nm plus bias 0.05 nm having an impact only
for very small amplitudes.

In the chapter 3.4 1 verified that frequency and phase modulation can be
arbitrary combined in order to exploit benefits of the both approaches.
The dynamic range of 10000 was reached also with the employment of the phase
modulation. Further in the chapter 3.4 the sources of possible distortions
influencing the accuracy of the method are discussed. The contributions of
individual distortions are included in a resulting formula describing the total error
of the measurement. Individual contributions to the total error are experimentally
established and substitute into the error equation. Finally I determined
the uncertainty of the method. As an example, expanded uncertainty (k=2) was
calculated for nominal amplitude of vibrations 10 nm to be (10.0 £ 0.8) nm and
(1000.0 £ 20.2) nm for nominal value 1000 nm.

The developed techniques were applied in many experiments. Some of
the experiments were selected in order to demonstrate the capability of
the method. Measurement of disc and ring piezoelectric transformers is introduced
in the chapter 4.1. The characteristic feature of this measurement was very small
amplitudes of vibrations of the transformers. Maps of vibration amplitudes over
the transformers surface with differently shaped electrodes at resonant frequencies
were measured and the results have been used for further research in the field of
piezoelectricity and the transformers design. A reliability of the method was
experimentally verified by simultaneous measurement of a piezoelectric unimorph
by three different techniques and results are presented in the chapter 4.2. Namely
it was laser interferometry with lock-in amplifier, commercial laser vibrometer
and the developed holographic method. It was proofed that all the methods
provide comparable results and the difference is in the 5 % interval.

Some results in the chapter 4.3 were obtained during an investigation of a semi-
active noise control by active elasticity control of piezoelectric actuators.
A characteristic feature of the measurement is its large dynamic range (when
the control is on and off) and large number of performed measurements (different
setting of the control circuit).

As T already mentioned in the chapter “Motivation,” trends of development in

measurement techniques (either my personal or as a LOM) are mainly influenced
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by requirements of applied research. That is why I put effort into improvement of
the time average digital holography in the described way, however, I have not
exhausted all the potential hidden in the PFMTADH. Within scope of this
dissertation I only dealt with harmonically oscillating objects. In some papers
from the very beginning of holographic interferometry authors indicate, that
frequency modulation can also be used for analysis of non-harmonic vibrations
[73]. Moreover, I have omitted amplitude modulation (for my purpose useless)
[74], easily accomplished by the Bragg cells. Phase modulation was also used for
phase of vibration measurement [75]. All this ways open some new opportunities

for further improvement of the method.
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