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Abstract 
The accuracy of speech recognition systems today is very high. However, when speech is 
captured by a far-field microphone, it can be severly distorted by noise and reverberation 
and the performance of speech recognition degrades significantly. One way to alleviate this 
problem is to use microphone arrays. This thesis addresses the methods of combining signals 
from multiple microphones to improve the quali ty of the signal and final speech recognition 
accuracy. It summarizes the theory of speech recognition and the most popular techniques 
for array processing. Afterwards, it demonstrates and analyzes the results obtained by 
two different methods for beamforming and a method for dereverberation of multichannel 
signals. Final ly , it examines an alternative way of performing beamforming using neural 
networks. 

Abstrakt 
Sys t émy rozpoznáván í řeči v dnešn í d o b ě dosahuj í p o m ě r n ě vysoké úspěšnos t i . V p ř í p a d ě 
řeči, k t e r á je s n í m á n a v z d á l e n ý m mikrofonem a je tak n a r u š e n a m n o ž s t v í m š u m u a dozvukem 
(reverberac í ) , je ale p řesnos t rozpoznáván í značně zhoršena . Tento p r o b l é m je m o ž n é zmí rn i t 
v y u ž i t í m mikrofonních polí . Tato p ráce se zabývá technikami, k t e r é umožňu j í kombinovat 
s ignály z více mikrofonů tak, aby byla z lepšena kval i ta výs ledného s ignálu a tedy i p řesnos t 
rozpoznáván í . P r á c e nejprve shrnuje teorii rozpoznáván í řeči a uvád í nejpoužívanějš í al
goritmy pro zpracován í mikrofonních polí . Nás ledně jsou d e m o n s t r o v á n y a ana lyzovány 
výs ledky použ i t í dvou metod pro beamforming a metody dereverberace vícekanálových 
s ignálů. N a závěr je vyzkoušen a l t e r n a t i v n í způsob beamformingu za použ i t í neu ronových 
sítí . 
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Chapter 1 

Introduction 

Automat ic speech recognition is a research field a iming at automatically translating spoken 
language into text. Through last fifty years, it has evolved from recognizing small vocabu
lary of carefully pronounced words to recognizing whole languages and spontaneous speech. 
Nowadays, the accuracy of the state-of-the-art systems is already sufficient for being used 
in many applications such as intelligent personal assistants or in-car systems. 

However, the translation of speech technologies into real world applications gives rise 
to many problems which were not present in small artificial tasks. In real tasks it is often 
more convenient to use far-field rather than close ta lking microphone. This introduces lots 
of noise and reverberation which cause significant performance degradation. In such far-
field setting, possible solution is to use microphone array rather than single microphone to 
alleviate the problem. 

The usage of mult iple microphones enables to use spatial information during the speech 
pre-processing which can significantly help to separate the speech signal from surrounding 
noise. The most commonly used class of methods for combining signals from multiple 
microphones is beamforming whose goal is to artificially steer the microphone array to 
particular direction. 

This thesis w i l l address the problem of far-field speech recognition using microphone 
arrays. The goal is to implement and experiment wi th common signal processing techniques 
to deal wi th microphone arrays, denoising and dereverberation and possibly to suggest ways 
for improving them. 

In Chapter 2, we w i l l provide basic overview of how speech recognition works. Chapters 
3 and 4 w i l l sum up existing beamforming and dereverberation methods and their principles. 
In Chapter 5, we w i l l describe the datasets which we are using for experiments. Chapter 6 
follows wi th the baseline results on these datasets. Chapters 7 and 8 w i l l show and analyze 
the results of experiments w i th two beamforming methods and a dereverberation method. 
Final ly , Chapter 9 w i l l examine alternative way of performing beamforming using neural 
networks. 
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Chapter 2 

Automatic speech recognition 

The objective of speech recognition system is to convert the input speech signal into corre
sponding sequence of phonemes or words. The main obstacle of this task is a huge variabil
i ty i n speech which can be caused by speaker characteristics, speech style or environmental 
noise. A successful speech recognition system must be able to deal w i th al l this variability. 
This is achieved by training flexible statistical models reflecting different aspects of speech. 

Typ ica l architecture of speech recognition system is shown in Figure 2.1. It is composed 
of four basic blocks — feature extraction, acoustic model, language model and hypothesis 
search. This chapter wi l l provide a quick overview of each of these components. 

audio w feature !& acoustic 
signal JP* extraction model 

hypothesis w 
search W 

recognition 
result 

Figure 2.1: Speech recognition system. 

2.1 Feature extraction 

Feature extraction is the first processing unit of speech recognition system. It performs 
a transformation of the input speech signal into representation which is more suitable for 
the rest of the system. The main reasons for doing feature extraction are reduction of 
dimensionality and removal of information which is irrelevant for the recognition task. 

The process of feature extraction is inspired by findings in the field of speech perception. 
The most popular feature extraction techniques today are Mel-frequency cepstral coeffi
cients ( M F C C s ) [6] and Perceptual Linear Predic t ion ( P L P ) [ ]. They both follow similar 
processing steps, which include segmentation of the input signal, computat ion of the Fourier 
spectrum, auditory-like modifications, decorrelation and taking derivatives of final features. 

Features are also often transformed by some k ind of linear transformation to further 
increase the dimensionality reduction and robustness. The transformations used i n systems 
in this thesis include Linear Discr iminat ion Analysis ( L D A ) , M a x i m u m Like l ihood Linear 
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Transform ( M L L T ) [9] or Constrained M a x i m u m Likel ihood Linear Regression ( C M L L R ) 
[8]. 

A l though mentioned techniques are the standard appearing i n most of the modern sys
tems, alternative ways to perform feature extraction have been proposed. Recent trend 
heads towards replacing feature extraction by neural networks which are trained wi th clas
sification objective [11] [26]. 

2.2 Acoustic modeling 

The acoustic model incorporates knowledge about acoustics and phonetics. It represents 
a mapping between sequences of feature vectors and sequences of phones. To deal w i th 
variable length of feature vector sequences, it is usually based on Hidden Markov Models 
( H M M ) [10]. In H M M - b a s e d large vocabulary systems, each phone is represented by an 
H M M , which models the process of generating the sequence of feature vectors corresponding 
to this phone. Th is section w i l l briefly explain basic ideas of Hidden Markov Models as well 
as neural networks which are usually used in combination wi th H M M s . 

2.2.1 H i d d e n M a r k o v M o d e l s 

Hidden Markov M o d e l is a generative model which we can see as a finite-state automaton 
generating vectors from state-dependent probabil i ty distributions. It can be characterized 
by its topology, transit ion probabilities and output probabil i ty distributions associated wi th 
each state. The topology (number of states and possible transitions) is usually expertly 
chosen — for speech recognition, each phone is represented by H M M wi th three states and 
left-to-right topology as depicted i n Figure 2.2. Transi t ion probabilities and parameters of 
output probabil i ty distributions are estimated from training data. 

W h e n we want to evaluate the l ikelihood that a sequence of feature vectors O of length 
T was generated by given model M, we need to sum over al l possible state sequences S of 
length T. 

p(0\M) = ] T p ( 0 , S | M ) = 5 > ( 0 | S , M ) P ( S | M ) . (2.1) 
s s 

The l ikelihood of observation sequence given a state sequence and a model p ( 0 | S , M ) 
can be computed as 

T 
p(0\S,M) = l\bs(t)(o(t)), (2.2) 

t=i 
where bj denotes output probabil i ty dis tr ibut ion associated wi th state j and o(t) is the t-th. 
vector of feature vectors O . The probabil i ty of state sequence given a model P(S\M) is 

T 

P(S\M)=n°»(t-iwt). ( 2 - 3 ) 
t=2 

where aSiS. denote transit ion probabil i ty between states Sj and Sj and s(t) is the t-th element 
of the state sequence. 

Since summing over al l possible state sequences is an expensive operation, the evaluation 
is often approximated by the l ikel ihood of the best state sequence 

5 



« 1 1 « 2 2 « 3 3 

Figure 2.2: Typ ica l structure of Hidden Markov M o d e l representing one phoneme — left-
to-right topology wi th three states. 

p(0\M) = max{p (0 |S , M)P(S\M)}. (2.4) 
s 

The output probabil i ty distributions of H M M i n acoustic models can be modeled by 
Gaussian mixture models ( G M M ) , which was typical ly done i n the past. However today, 
systems using neural networks have been shown to outperform G M M s [ ]. G M M s are 
therefore usually used only i n first stages of bui lding an A S R system and the final stage 
incorporates a neural network to estimate the output probabilities. 

2.2.2 N e u r a l N e t w o r k s 

Feed forward neural network (also known as multilayer perceptron) is a mathematical model, 
which represents a transformation of its input to its output. It is basically a parametric 
function which is composed from mult iple layers of computations. Each layer is connected 
to the previous one through weight matr ix and computes its output as 

yf = / ( E 4 ' i " 1 ^ " 1 ) ' ( 2 - 5 ) 
j 

where y\ is the output of unit i in layer L, w^-L~X is an element of the weight matr ix 
between layers L — 1 and L and / is an activation function which is typical ly a logistic 
sigmoid. Figure 2.3 shows the computat ional structure of a small neural network. 

Figure 2.3: Neural network wi th two layers characterized by weight matrices W ^ i and 

W 3 , 2 . 
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The weight matrices at each layer form the parameters of the network which can be 
learnt. This way the network can be trained to perform specific task. The training procedure 
aims to minimize an error function computed from the output of the network wi th respect to 
the t raining data. The most popular t raining algori thm is back-propagation which is derived 
from chain rule used for gradient computation. More information about neural networks 
and their t raining can be found in [3]. 

In speech recognition systems, neural networks are used to estimate posterior proba
bilities of states of Hidden Markov Models given the acoustic observations. Th i s means 
it performs a multi-class classification task wi th sequences of feature vectors as input and 
H M M states corresponding to these feature vectors as target classes. 

2.3 Language modeling 

The language model incorporates knowledge about language or potentially about the domain 
of the task. Its goal is to estimate the probabil i ty of word sequences which is done by learning 
correlations between words in t raining corpora. Most popular language models are n-gram 
models, although they are being replaced by recurrent neural networks. Since this thesis 
does not focus on language modeling, more detailed description of language model w i l l be 
omitted. 

2.4 Hypothesis search 

The previous sections summarize three components of speech recognition systems 

feature extraction used to obtain sequence of feature vectors O from input speech signal, 

acoustic model providing the l ikel ihood of feature sequence given a sequence of words 
p ( 0 | W ) , 

language model providing the prior probabil i ty of sequence of words P ( W ) . 

Using these, the overall task of speech recognition can be viewed as finding the most 
likely sequence of words given observed sequence of feature vectors: 

W = a r g m a x P ( W ' I O ) = a r g m a x p f O l W ' l P f W ' ) . (2.6) 

The hypothesis search component therefore just combines the acoustic and language model 
scores and outputs the word sequence wi th the highest score as the recognition result. The 
search of the most l ikely word sequence is typical ly done on the level of weighted finite state 
transducers which can represent both acoustic and language model jo int ly [21]. 
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Chapter 3 

Beamforming 

A s discussed i n the introduction, the speech signal captured by far-field microphone is often 
disrupted by noise and reverberation which causes significant decrease i n speech recognition 
accuracy. Using microphone arrays instead of single microphone is a possible way to facil
itate the task of restoring the clean speech signal. The most popular class of methods for 
processing microphone arrays is beamforming. The name 'beamforming' refers to purpose of 
the methods of artificially directing the array towards the desired sound source — forming 
a beam i n that direction. The directing of the array is achieved by suitable combination of 
the signals received at ind iv idual microphones. 

The main concept of beamforming methods makes use of the fact that the signals com
ing from different directions arrive at each of the microphones wi th different delay and 
attenuation. Having mult iple recordings from different spatial positions therefore gives us 
information about the direction that each of the sources comes from. The beamformer is 
then able to spatially select only the signal of interest while suppressing the others. 

In this chapter, we w i l l first define a multichannel signal model and general framework 
of beamforming methods. Then two most widely used methods wi l l be presented — delay-
and-sum and min imum variance distortionless response ( M V D R ) beamforming. Since both 
of these methods are estimating their parameters based on the delays wi th which speech 
signal arrives at microphones, methods for t ime delay estimation w i l l be also overviewed. 

3.1 Multichannel signal model 

This section w i l l introduce assumed model of signals arr iving at microphones and used 
notation. We w i l l follow notat ion and assumptions introduced by Souden [30]. 

The source speech signal s(t) is received by an array of iV microphones in the following 
form 

Vn(t)=gn(t)*s(t)+vn(t) = x n ( t ) + v n ( t ) , n = l , 2 , . . . , N (3.1) 

where * is convolution operator, gn is the channel impulse response affecting the signal on 
n-th microphone, xn{t) is reverberant speech component and vn(t) is noise component on 
n-th microphone. We assume that a l l noise components are uncorrelated wi th s(t) and that 
both noise components and speech signal are zero-mean processes. Figure 3.1 shows the 
schema of the assumed model. 

As beamforming is typical ly defined in frequency domain, we also introduce frequency-
domain counterpart of above model 
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Figure 3.1: The model of the generation of the signals received by each microphone. iV 
denotes the number of microphones, gn is the impulse response affecting signal on n-th 
microphone, vn is the noise component and yn is the received signal by n t h microphone. 

Yn{ju) = Gn{ju)S{ju) + Vn(ju) = Xn(ju) + Vn(ju), n = 1, 2 , . . , N (3.2) 

where Yn(jui), Gn(ju), S{joj),Vn(ju) are discrete-time Fourier transforms of yn(t),gn(t), s(t) 
and vn(t). 

The goal of the beamforming procedure is to recover speech component at one of the 
microphones Xno(ju) (no £ { 1 , N } w i l l be referred to as reference microphone). Th is w i l l 
be done by applying linear filter hno(ju) to the received signals. The output of beamforming 
w i l l then for each normalized angular frequency u be 

Z{ju) = ^0{ju)y{ju), (3.3) 

where H denotes transpose-conjugate operator and y(jcv) is vector of frequency-domain 
observations at each microphone 

y(joo) = [Yitfw) Y2{ju) ... YN(joo)f. (3.4) 

3.2 Delay-and-sum beamformer 

Delay-and-sum (DS) is a simple and straightforward method to perform beamforming. It 
uses the fact that microphones situated at different spatial positions receive the same source 
signal w i th different delays. Moreover, the delays vary wi th the direction from which the 
source signal is coming. If we know the delays corresponding to the desired direction, we can 
use them to shift the signals. The shift operation aligns the desired signal i n al l channels, 
while the signals coming from different directions remain unaligned. We can then simply 
average all such shifted signals which w i l l cause attenuation of the signals from unwanted 
directions. Figure 3.2 illustrates the idea — the delays r n are computed to align the desired 
speech signal, which causes the attenuation of noise coming from different direction. 

To fit this process into the general beamforming formula, we define a steering vector 

d(w) = [e~iuJT1 e~iuJT2 ... e-iuJTN], (3.5) 

where Tj is the delay of the speech signal at microphone i w i th respect to the reference 
microphone. Using this vector, the delay-and-sum filter can be defined as 

< S ( M = 4 d M - (3-6) 
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Figure 3.2: Il lustration of the idea of the Delay-and-Sum beamforming. Delays r n are 
computed to align the desired speech signal, which causes the attenuation of noise coming 
from different direction. 

If the source signal was not disrupted by any interference, the output of delay-and-sum 
beamformer would be equivalent to the original signal. Thus we say that the filter satisfies 
distortionless constraint — the signal coming from look direction is neither amplified nor 
attenuated. 

3.3 Time delay estimation 

To use the delay-and-sum beamformer, we need to know the delays of the source signal as 
received by each microphone. This can be either known apriori (from the microphone array 
architecture and posit ion of the source) or, in more common case, we need to estimate the 
delays from the received signals. 

The most popular techniques for t ime delay estimation are based on cross correlation of 
the signals [5]. For two signals XQ, X\, the cross correlation is defined as 

E{xo[l]xi[l + m]}. (3.7) 

The peak of the cross correlation should occur at the time of the delay. Thus, we can then 
estimate the delay as 

Acc 
x0,x1 

arg max W cc 
X0,Xl m . (3.8) 

Assuming ideal conditions where the two signals are just delayed versions of each other 
(xi[n] = xo[n — D]), the cross correlation function reduces to 

cc 
x0,xi 

CC 
x0,x0 

•8[n-D]. (3.9) 

A s the max imum of auto-correlation function p [m] is at m = 0, the peak of ^ ^ ^ J r a ] 
occurs indeed at the t ime of the delay m = D. However, the peak is smeared by the 
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auto-correlation function of the signal XQ. W h e n factors as noise and reverberation take 
place, this may lead to inaccuracies in the time delay estimate. To deal w i th this problem. 
K n a p p and Carter [19] proposed improved version of cross correlation called Generalized 
cross-correlation ( G C C ) implementing a frequency domain weighting. This can make the 
peak more sharp and the estimate more robust. The general formula for computing G C C is 

K'-l 

* S H = E ®[k']Sxoxi[k'W2™k'/K', (3.10) 
k'=0 

where S ^ o x i = E{Xo[k']X^[k']} is the cross-spectrum, Xoffc'] is the discrete Fourier 
transform of x n[/c], K' is the length of the D F T and $[£/] is a weighting function. The time 
delay estimate then can be again obtained as 

^*o,*i = a r S m a x * S S N • (3.11) 

Lots of choices of the weighting function have been proposed. In the case of constant 
weighting, the G C C becomes equivalent to simple cross-correlation. Table 3.1 summarizes 
other alternatives. 

c c 1 

P H A T l & o ^ M I ' W l l e r e ^ o z i ~ X 0 X i 

R o t h SX0x0[k'] ' w l l e r e ^ o x i ~ X 0 X 0 

Table 3.1: Weighting functions for generalized cross correlation. 

The R o t h weighting was proposed in [ ] and according to K n a p p [19] it should suppress 
the frequency regions where the noise i n signal XQ is large. The P H A T (PHase Transform) 
weighting is an ad-hoc technique which i n effect normalizes the magnitudes of the spectra 
of both signals XQ and x\ and uses just the phase which should contain the information 
about the delay of the signals. Since it uses the phase information from al l the frequency 
bins equally, it should perform well when the speech occupies most of the frequency bins. 
Figure 3.3 shows an example of a short segment of speech, its delayed version, and the 
cross-correlation function between the two, using constant, R o t h and P H A T weighting. It is 
visible, that in this simple case, the R o t h and P H A T weighting lead to much sharper peak 
than simple cross-correlation. 
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3.4 Minimum variance distortionless response beamformer 

The Delay-and-sum beamformer is, for its simplicity, a very common choice for beamforming 
and often performs sufficiently well . However, the main drawback of the D S method is, that 
it estimates its parameters considering only the posit ion of the desired source and not the 
positions of the interfering sound sources. Th is gives rise to M i n i m u m variance distortionless 
response beamformer ( M V D R ) [ ] [ ] which expl ici t ly aims to minimize the effect of the 
noise. 

To achieve the m a x i m u m noise reduction, it uses an estimate of noise covariance matr ix 
which represents how correlated the noise signals are between the microphones. The knowl
edge of these correlations provides the information about the directions of the noise sources 
and enables the beamformer to suppress the signals coming from these directions. 

In order to derive a filter w i th these opt imal properties, we define two performance 
measures: 

noise reduction factor 

p \ h r ,7 / l l E{\Vnotiu)\2} ( ^ 9 ) 

^n0(j«)] - E { l h H U u ) w U u W y (3-12) 

where hno(juj) is the filter, no denotes the reference microphone, Vno(ju) is 
the frequency-domain noise signal as received by the reference microphone, v ( jw) 
is the vector of frequency-domain noise signals received by each microphone 
v(joo) = [Vi(juj) V2(jcv) ... VN(JUJ)]T and superscript H denotes conjugate-transpose. 
The noise reduction factor represents the amount of noise which was suppressed by 
the beamforming procedure. Its opt imal value would be oo. 

speech distortion factor 

^ [ h " o 0 a ; ) ] = E{\Xno(juW} ' ( 3 ' 1 3 ) 
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where Xno (jui) is the frequency-domain clean speech signal as received by the reference 
microphone, x(jw) is the vector of frequency-domain clean speech signals received by 
each microphone x(ju;) = [X\(joj) X2(jui) ... X^(ju)]T and rest of the symbols have 
the same meaning as above. The speech distort ion factor represents the amount of 
speech suppressed by the beamforming procedure. Its opt imal value would be 0. 

Using noise reduction and speech distortion, we can define an opt imizat ion problem 
resulting i n opt imal filter — filter which removes as much noise as possible while keeping 
the speech signal undistorted. 

h^0

VDR(jcv) = arg max £ n r [ h n o ( j u ; ) ] (3.14) 
h„ 0 (jui) 

subject to vsd[hno(juj)} = 0 (3.15) 

The weights obtained by this opt imizat ion correspond to M V D R filter which has the solution 

< V D R U " ) = S ^ ^ l r, (3-16) 

where d(u>) is the steering vector defined earlier and YIN^LO) = E\y(juj)wH(jco)] is the noise 
covariance matr ix , which is usually estimated from silence parts of speech recordings. The 
derivation of 3.16 is described i n detail i n Append ix A . 

13 



Chapter 4 

Dereverberation 

The speech signal captured by distant microphones contains not only the additive noise, but 
also reflections of the signal from walls and other objects — effect known as reverberation. 
Reverberation causes the microphone to receive mult iple copies of the original signal w i th 
different delays and attenuation. Due to this effect, the resulting speech signal is less 
intelligible and the accuracy of speech recognition systems drops substantially. 

This degradation is difficult to solve due to the distinctive properties of reverberation. 
In [12], Habets points out that t radi t ional beamforming algorithms become ineffective in 
the presence of reverberation. A s a consequence, it is necessary to use special methods to 
dereverberate the input signal. There are mult iple classes of approaches which are designed 
to defeat the reverberation problem. In this work, we focused on Weighted prediction 
error method ( W P E ) as it has been shown successful in recent evaluations [16] [35], it can 
effectively make use of multichannel signals and it can be easily coupled wi th beamforming 
techniques. 

In this chapter, we first describe the properties of reverberation, review existing meth
ods for dereverberation and finally focus on the method applied i n this work — Weighted 
prediction error. 

4.1 Properties of reverberation 

Reverberation is the effect of propagation of the speech signal i n an enclosed space. O n 
the way from the speaker to the microphones it is propagated not only directly, but it 
also reflects on walls and other objects. The microphone then receives a mixture of the 
reflected signals which differ by their delay (due to different lengths of propagation paths) 
and attenuation (due to the walls absorbing different amounts of the signal). Th is has the 
effect of a smearing i n time which causes masking of subsequent phonemes. Figure 4.1 
shows a comparison of clean and reverberant speech. We can observe how the reverberation 
corrupts the transitions between the phonemes and makes them less distinct. Perceptually, 
these effects lead to speech sounding "distant" and "echoic". 
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Figure 4.1: Comparison of clean and reverberated speech. 

The sum of repeated delayed reflections of the original signal, which the microphone 
receives, can be mathematical ly described as a convolution of the original signal w i th room 
impulse response (RIR) 

y(t) = s(t)*h(t)+d(t), (4.1) 

where s(t) is the original signal, h(t) is the room impulse response, d(t) is additive noise 
and y(t) is the distorted signal received by the microphone. The room impulse response 
h(t) describes the response of the room to an impulsive sound. Accord ing to [ ], it can be 
divided into three parts corresponding to three components of the reverberation 

• direct sound Th is part of reverberant speech is the signal received through the 
shortest path from source to the microphone. 

• early reflections E a r l y reflections describe the first few copies of the signal received 
by the microphone wi th in the first 50 milliseconds after the direct sound. Th i s part 
of reverberation has been shown to improve the intel l igibi l i ty of the speech. Also in 
speech recognition systems, the early reflections are not causing much degradation 
as their effect is short-term and thus can be suppressed by conventional methods as 
cepstral mean normalization. 

• late reverberation The late reverberation describes the mixture of high amount of 
small reflections received by the microphone after the first 50 milliseconds after the 
direct signal. This part of reverberation is causing the degradation in both intell igi
bi l i ty and accuracy of the speech recognition. Most of the dereverberation methods 
are focused on compensating of this component. 

The main problem wi th the reverberated speech which causes conventional noise re
duction techniques to be inefficient is its high non-stationarity. Since the original speech 
signal is non-stationary and the reverberation is composed of copies of this speech signal, 
its characteristics also change very rapidly. The widely used methods of noise robust speech 

15 



processing are usually based on the assumption of stationary noise and thus cannot reduce 
the reverberation effectively. 

Another property of reverberation wi th great impact on the speech recognition are the 
long-term dependencies which are present i n the reverberated signal. The effect of reverber
ation is usually longer than the length of a frame used for feature extraction, which causes 
dependency between subsequent feature vectors. This contradicts the assumption of Hidden 
Markov Models in the acoustic model, that the feature vector depends only on the current 
state and not on the previous feature vectors. A s a result, the t radi t ional acoustic model 
is not very effective for modeling of the reverberant speech. Most of the dereverberation 
methods make use of these long-term dependencies to compensate for the reverberation. 

4.2 Methods for dereverberation 

The methods which a im to make speech recognizer robust to reverberation can be divided 
into several categories depending on the stage of the processing where they take place. We 
w i l l briefly overview these categories and further focus on a specific method used in this 
work. 

According to [38], the approaches can be roughly classified into the following categories 

• linear filtering Linear filtering methods work in the time or short-time Fourier trans
form ( S T F T ) domain. A s the only one of presented classes of methods, they use the 
phases of the input signal. They are suitable for combining wi th multi-microphone 
approaches. 

• spectrum enhancement Spectrum enhancement methods dereverberate the cor
rupted power spectra. They can be easily combined wi th other noise reduction ap
proaches which often act i n the power spectrum domain. 

• feature enhancement Feature enhancement methods dereverberate the features ex
tracted from the input signal. They can be combined wi th methods for uncertainty 
decoding. 

• back-end approaches Back-end approaches a im to adapt the acoustic model to be 
robust to reverberant features. This may include well-known H M M adaptation tech
niques as M a x i m u m A Posteriori ( M A P ) or M a x i m u m Likel ihood Linear Regression 
( M L L R ) adaptation or more advanced methods as R E M O S (REverberat ion M O d e l i n g 
for Speech recognition). 

For more thorough description of the mentioned methods we refer the reader to [38]. In 
this work, we focused on a method based on linear filtering as it fits the best the presented 
beamforming framework. 

4.3 Weighted prediction error method 

Weighted prediction error method ( W P E ) is based on multichannel linear prediction. It 
processes the signals in the time-frequency domain and transforms the reverberant speech 
signals from all the channels to the same number of dereverberated signals. The processing 
preserves the delay differences which makes the method suitable for preprocessing the signals 
prior to beamforming. The method was introduced by Yoshioka i n [34]. In this section, we 
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briefly summarize the crucial mathematical foundation of the method — we define the 
problem, introduce the assumed models and finally summarize the W P E dereverberation 
procedure. 

The dereverberation problem is defined as estimating the clean speech signal s from 
the observed reverberated signals yn where n denotes the index of the microphone. The 
reverberated signal can be described in time-frequency domain as 

Jk 

£ 
m=0 

Un,t,k — / hn,m,kSt—m,k i (4-2) 

where h is the narrow-band room impulse response for kth frequency bin , t is the time index 
and Jfc is the order of the room impulse response ( R I R ) . To facilitate the dereverberation 
problem, we define a model of the clean speech and a model of the reverberation process 
and then use these models to obtain the estimate of the clean speech. 

The speech is modeled wi th t ime-varying Gaussian model. This model assumes that each 
S T F T coefficient is sampled independently from complex normal dis tr ibut ion wi th mean 0 
and variance Xtk 

* : ' ) - n n ^ « p ( - ^ ) . ( « > 
k=0 t=0 l'K v T'K 7 

where $ are the parameters of the speech model . The t ime-varying variance At fc is repre
sented by an all-pole model which assumes 

K k = | A ( e x p ( ^ ) ) | 2 ' ( 4 ' 4 ) 

where A is the frequency response of the linear prediction filter and o f is the prediction 
residual power ( P R P ) . The coefficients of the filter together w i th the P R P form the speech 
model parameters $ . 

The reverberation process is modeled by multiple-input single-output auto-regressive 
model ( M I S O A R ) as 

Sk+Mk-1 

Vn,t,k = E 9n,m,kyt-m,k + St,k, (4.5) 
m=<5j, 

where gn,m,k is the 1-by-N vector of m t h coefficients of the reverberation prediction filter 
for microphone n and frequency b in k, is the order of the filter, yt fc is the vector of 
observed signals at a l l microphones for t ime t and kth frequency b in [yij,k • • • yN,t,k]T and 
5k is the prediction delay. Using the prediction delay 8k > 1 was suggested by Kinosh i t a in 
[17] and has been shown to be preventing excessive whitening problem which occurs when 
classic multichannel linear prediction is used for dereverberation. We denote the set of the 
reverberation model parameters as 

The used M I S O A R model assumes the presence of only one speaker and no background 
noise. In [36, 37] Yoshioka presented generalizations of the method which takes into ac
count the situation of mult iple sound sources. However, the basic W P E algori thm has been 
reported to be successful even in the situation, where mult iple sound sources are present, 
despite the fact that theoretically it expects only one sound source. Considering the much 
lower computat ional complexity than the extensions, we used the simple W P E in this work. 
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Combining the speech and reverberation model, we can define the probabil i ty density 
function of the reverberated signal at one of the microphones as 

K - I T - I j { \yitk 

k=0 t=o *'fe \ 

V 4 + M f e - 1 H | 
Z^m=Sk ym,kyt-m,k\ 

\,k 
(4.6) 

To optimize the parameters of both models, we maximize a log-likelihood function which 
is obtained from 4.6 as 

K-l T-l 

E E l o ^ + 
k=0 t=0 

L, _ x^Sk+Mk-l H ,, I 
\yi,t,k Z^m=Sk ym,kyt-m,k\ 

At h 
(4.7) 

Since the log-likelihood function cannot be maximized analytically for both $ and 
we need to alternate between opt imizing $ using fixed (optimizing the parameters of the 
speech model) and opt imizing while fixing $ (optimizing the reverberation prediction 
filter). 

To optimize the parameters of the speech model, we use the current estimate of the 
reverberation prediction filter to obtain the estimate of the clean speech as 

A 

st,k = yi,t,k 

&k+Mk-l 

E 9l,m,kyt-m,k 
m=8k 

( 4 i 

and use this estimate to apply linear prediction and update the all-pole model parameters 
using 4.4. 

Opt imiza t ion of the parameters of the reverberation model is analogous to opt imizat ion 
of classical multichannel linear prediction filter, w i th the modification of considering the 
t ime-varying variance. The modified formula is given by 

A 
9k 

T - l H 
t=0 yt-5k,kVt-Sk,k 

A 

At t 

ET—l 
t=o ytsk,kyt,i 

A 

\ k 

(4.9) 

The overview of a l l the steps of the algori thm is given i n Figure 4.2. The method iterates 
between estimation of the speech properties and the reverberation prediction filter unt i l it 
reaches convergence. 

A 
Initialization of the reverberation prediction filter $ 

Computation of the clean speech estimate s *—1 

• 

A 
Estimation of the speech model parameters $ 

A 
Estimation of the reverberation model parameters ^ 

Figure 4.2: The overview of the steps of the Weighted prediction error method. 
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Chapter 5 

Datasets 

This chapter w i l l describe the datasets used to evaluate the implemented methods. We used 
three datasets containing recordings from mult iple distant microphones — A M I , C H i M E 3 
and R E V E R B . Each of the datasets has slightly different properties. The A M I dataset 
includes recordings of meetings, so it has relatively small amount of background noise, but 
in contrast w i th the other sets, it contains conversational speech. O n the contrary, C H i M E 3 
dataset was recorded i n real-world conditions, so the recordings are very noisy. The last one 
is R E V E R B dataset which contains lots of reverberation. 

5.1 A M I 

The A M I Meet ing Corpus [ ] is a collection of meetings recorded i n three standardized 
meeting rooms. The recordings were obtained using 12 microphones — a headset microphone 
per participant and an 8-element circular microphone array. A l l meetings are in Engl ish , 
though mostly spoken by non-native speakers. The total amount of recorded data is about 
100 hours, which is part i t ioned into t rainining, development and evaluation sets following 
[32]. Th i s makes about 78 hours of speech for training, 9 hours for dev set and 9 hours for 
eval set. 

Figure 5.1: The recording of A M I meeting corpus . 

^hoto from http://www.amiproject.org/ami-scientific-portal. 
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5.2 C H i M E 3 

The C H i M E 3 dataset was recorded for the 3rd C H i M E Challenge for Speech Separation and 
Recognit ion [2]. It includes recordings of people speaking i n real environments including 
cafe, street junct ion, public transport and pedestrian area. Recordings were obtained using 
tablets w i th six channel microphone array. Apa r t from from the real recordings, part of the 
data were also obtained by artificially mix ing clean speech data wi th noisy backgrounds. 

Figure 5.2: The tablet used for recording the C H i M E 3 corpus 2 . 

The t raining set comprises of 1600 utterances from 4 speakers speaking in real envi
ronments and 7138 simulated utterances from 83 speakers. In the development set, there 
are 1640 real and 1640 simulated utterances from 4 speakers (which do not overlap wi th 
speakers from training data). The evaluation set contains 1320 real and 1320 simulated 
utterances from 4 other speakers. 

5.3 R E V E R B 

The R E V E R B dataset was recorded for R E V E R B challenge [18] aimed at evaluation of 
speech enhancement and recognition in reverberant environments. The recordings were 
obtained wi th distant microphone array i n reverberant rooms wi th a l imi ted amount of 
stationary noise. For al l data, 1 microphone, 2 microphone and 8 microphone versions were 
available — here we focused on 8 microphone recordings. 

The t raining data were obtained by mix ing clean data from W S J C A M 0 dataset [ ] 
w i th room impulse responses and noise signals measured in real rooms. The development 
set consists of data from 4 rooms. For three of them, the data were simulated, for the fourth 
room the recordings are real. The evaluation set consists of the same environments as dev 
set, but w i th different speakers and different positions i n the rooms. 

2Photo from http://spandh.dcs.shef.ac.uk/chime_challenge. 
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Chapter 6 

Baselines 

In this chapter, we describe buil t speech recognition systems which we used for testing of 
the implemented methods. We reference the tools we used and present the results achieved 
on the previously described datasets. 

6.1 Tools 

B e a m f o r m l t 

To compare the results of our beamforming implementation wi th the state-of-the-art, we 
used Beamformlt t oo lk i t 1 [I] as a baseline. It is a publ ic ly available tool wri t ten by Xavie r 
Anguera, in i t ia l ly for the purpose of multichannel speaker diar izat ion of meetings. It im
plements delay-and-sum beamforming including b l ind reference channel selection, two-step 
t ime delay of arrival V i t e r b i postprocessing and a dynamic output signal weighting algo
r i thm. 

K a l d i 

For bui lding the speech recognition systems, we used K a l d i speech recognition t oo lk i t 2 [23]. 
It is a freely available tool intended for use by researchers. Its core is wri t ten in C + + , using 
OpenFst l ibrary for working wi th finite-state transducers and B L A S / L A P A C K for linear 
algebra. One of the main strenghts of K a l d i is number of complete recipes for bui lding 
speech recognition systems on widely used databases. 

6.2 A M I 

The baseline system for A M I was buil t using standard K a l d i recipe. The input features 
were 13-dimensional M F C C s transformed by L D A and M L L T transforms. The G M M / H M M 
models were trained in speaker adaptive fashion using C M L L R transform. F i n a l G M M / H M M 
systems also used discriminative t raining wi th boosted M a x i m u m mutual information ( b M M I ) 
criterion. The trained models consist of about 4000 tied-states wi th roughly 20 Gaussians 
per state. Th is was used for providing an alignment for bui lding D N N system. 

The D N N system was trained on the L D A + M L L T + C M L L R transformed features wi th 
+-5 frames context and global mean and variance normalizat ion. The D N N , consisting of 6 

beamformlt toolkit http://www.xavieranguera.com/beamformit  
2 Kaldi speech recognition toolkit h t tp : / /ka ld i -as r .o rg / 
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layers of 2048 neurons, is first ini t ia l ized wi th generative pretraining using stacked restricted 
Bol t zmann machines ( R B M ) . After this, the network is trained by stochasic gradient descent 
opt imizing cross-entropy and finally trained i n sequence discriminative fashion to optimize 
state M i n i m u m Bayes Risk ( s M B R ) criterion. 

system 1-best channel Beamformlt 
dev eval dev eval 

G M M 60.5 66.1 57.4 61.9 
D N N ( C E ) 54.7 59.0 48.7 53.1 

D N N ( s M B R ) 50.55 55.12 45.0 49.6 

Table 6.1: Baseline results of A M I system. Results show word error rates [%] using data 
from only single channel (the best one) and using Beamformlt on all 8 channels. 

6.3 C H i M E 3 

The C H i M E 3 baseline system was buil t using K a l d i recipe which we modified to use C M -
L L R transformed features on the input of neural networks for better results. The input 
features and the t raining procedure of G M M / H M M system is analogous to the A M I sys
tem. The trained models consist of about 2000 tied-states wi th roughly 10 Gaussians per 
state. The D N N system was ini t ia l ized using generative pretraining and then finetuned wi th 
discriminative t raining opt imizing cross entropy criterion. 

system 1-best channel Beamformlt 

G M M 18.20 / 18.75 / 21.49 / 33.07 13.69 / 13.83 / 18.76 / 24.61 
D N N 13.51 / 13.89 / 15.68 / 28.45 9.98 / 9.87 / 13.79 / 19.11 

Table 6.2: Baseline results of C H i M E 3 system. Results show word error rates [%] using 
data from only single channel (the best one) and using Beamformlt on a l l 6 channels. The 
four results correspond to subsets — dev-simu, dev-real, eval-simu, eval-real. 

6.4 R E V E R B 

The features for the R E V E R B system were 13-dimensional M F C C s wi th L D A + M L L T trans
forms. The G M M / H M M system was discriminatively trained using boosted M M I criterion. 
The final model consisted of about 2000 tied-states wi th roughly 10 Gaussians per state. The 
D N N system was buil t using generative pretraining and discriminative t raining opt imizing 
cross entropy. The network consisted of 6 layers of 2048 neurons. 

system 1-best channel Beamformlt 

G M M 11.91 / 29.75 / 12.12 / 30.39 7.97 / 17.02 / 7.12 / 13.48 
D N N ( C E ) 10.35 / 26.12 / 10.56 / 28.95 7.21 / 15.19 / 6.67 / 12.75 

Table 6.3: Baseline results of R E V E R B system. Results show word error rates [%] using 
data from only single channel (the best one) and using Beamformlt on a l l 6 channels. The 
four results correspond to subsets — dev-simu, dev-real, eval-simu, eval-real. 
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Chapter 7 

Experiments with beamforming 

This chapter follows the theory outlined in Chapter 3. It describes the usage of the Delay-
and-Sum and M V D R method and the general steps of the beamforming procedure. It also 
introduces addit ional modifications of the basic algorithms which improved the performance 
of the methods. Final ly , it shows the overall achieved results and compares the two used 
methods. 

For bui lding the speech recognition systems i n this work, we used K a l d i speech recogni
t ion too lk i t 1 [23]. The tested methods were implemented in Mat l ab . The accuracy of the 
speech recognition systems is measured using W o r d error rate ( W E R ) , which refers to the 
percentage of words that were recognized incorrectly. 

7.1 Description of the beamforming procedure 

The general implementation of the beamforming procedure follows these steps: 

1. Segmentation Since the characteristics of the speech signal develop over t ime and 
also the direction from the microphone to the speaker can be changing, the signal 
needs to be processed in short segments. Here, we used windows of 500 milliseconds 
length wi th 250 mill isecond overlap. 

2. Transform into frequency domain Fourier transform is applied to each window 
because most of the computations are more efficient i n the frequency domain. 

3. Computat ion of the delays T ime delay estimation methods introduced in Section 
3.3 are used to get the delays corresponding to each microphone in the array. More 
details about this procedure w i l l follow. 

4. Est imation of the beamformer weights For delay-and-sum beamformer, the weights 
are determined directly from the estimated delays. For M V D R , the Equat ion 3.16 is 
used together w i th the noise covariance matr ix estimation for computing the weights. 
More thorough description wi l l follow. 

5. Appl icat ion of the beamformer The beamforming filter determined i n previous 
step is used to filter the multichannel signal. 

6. Transform to t ime-domain and sum of segmented signals Inverse steps to 1. 
and 2. For this, we used overlap-and-add procedure. 

x ht tp : / /ka ld i -as r .o rg 
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7.2 Delay-and-sum and its adjustments 

Apar t from these basic steps, we experimented wi th several ways to improve the beamform-
ing performance, which wi l l be briefly explained as follows. 

Choice of GCC weighting function 

To estimate the t ime delay, we used the generalized cross correlation ( G C C ) introduced in 
Section 3.3. Section 3.3 discussed theoretical advantages of using different G C C weighting 
functions and showed, that they may lead to more accurate estimation of the time delay. In 
our experiments, we performed beamforming using t ime delays estimated from G C C - P H A T , 
G C C - R O T H and G C C - C C (simple cross-correlation) methods and compared the obtained 
speech recognition accuracy. Table 7.2 shows the word error rates on subsets of C H i M E 3 
dataset. 

dev simu dev real eval s imu eval real 
G C C C C 10.53 11.53 15.01 21.39 
G C C P H A T 9.96 10.23 13.92 19.94 
G C C R O T H 10.46 10.49 14.34 20.67 

Table 7.1: Comparison of different G C C weighting function on C H i M E 3 dataset. 

From the results, the P H A T weighting shows to be the best choice which is consistent 
w i th results published on different tasks. For the following experiments we use G C C - P H A T 
as impl ic i t weighting. 

Weighting of channels 

In both Delay-and-sum and M V D R beamforming methods, the contributions of the indi
v idual channels to the final signal are a l l equal. However, the quali ty of the signal captured 
by the microphones often varies and some channels may contain more corrupted signal than 
others. For these reasons, it is reasonable to weigh the signals from the channels i n the sum 
operation. To measure how much the signal from a channel can contribute to the beam-
forming, we computed average cross correlation to signals at al l the other channels and used 
this as the weighting. 

The weight for each channel was computed in the following way 

N 

WCK *£X[Ayd> X>'=1' (7-1) 
c '> l A c'<N c=l 

A c'^c 

where iV is number of the channels, c is the channel to compute weight for, d iterates over 
all the other channels and Dcci is the chosen delay between the two channels. 

Table 7.2 shows the obtained results using the weighting of the channels. For a l l subsets, 
it led to an improvement, especially on the eval subset. 

Detecting reliable parts of utterances 

Some parts of the recordings which we use as the input for beamforming may not be very 
reliable for the estimation of the t ime delays. Th is applies mainly for very noisy parts of 
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dev simu dev real eval s imu eval real 
G C C P H A T 9.96 10.23 13.92 19.94 
G C C P H A T + weighting 9.91 10.06 12.79 19.09 

Table 7.2: The improvement brought by weighting the channels on C H i M E 3 dataset. 

utterances or segments not containing speech. We experimented wi th two ways to deal w i th 
this problem. Firs t , we used Voice act ivi ty detector ( V A D ) based on neural networks [ | 
for detecting non-speech parts of utterances and eliminated them from the delay estimation 
process. Second, we detected the frames for which the cross correlation values between the 
channels were too small (we refer to this as xcorr filter). For such unreliable frames, we 
simply copied the delays from previous frames. 

The results from both of these modifications are shown i n Table 7.2. 

dev simu dev real eval s imu eval real 
G C C P H A T 9.96 10.23 13.92 19.94 
G C C P H A T -h V A D 9.97 10.15 13.53 19.52 
G C C P H A T - - xcorr filter 10.20 10.03 13.61 19.32 
G C C P H A T - - V A D + xcorr filter 9.91 10.01 13.42 19.26 

Table 7.3: The improvements brought by detecting the unreliable frames for time delay 
estimation. 

Detecting unreliable frames by both V A D and cross correlation values led to an improve
ment. However, combining both methods together d id not lead to much addit ional gain. 
This is caused by the fact that both methods largely agree on the parts which are unreliable. 
The advantage of using V A D is that it more accurate in detecting the silence parts of the 
utterances. O n the other hand, using the cross correlation values may also identify seg
ments which contain speech though they are too noisy or corrupted i n other way, therefore 
it is beneficial to skip them too. Moreover, the used V A D requires to preprocess al l the 
recordings and thus is not suitable for real-time processing. 

Figure 7.1 shows an example of an utterance wi th the unreliable parts detected by cross 
correlation based and V A D based detection. The beginning and the end of the utterance 
which contain silence were considered unreliable by both V A D and cross correlation though 
V A D was more accurate in detecting the last speech segment. The cross correlation also 
eliminated some frames i n the middle of an utterance which could have lead to an inaccurate 
estimate of the t ime delay. 
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Figure 7.1: Example of detected unreliable parts of an utterance by both cross-correlation 
(top) and V A D (bottom). 

Smoothing of the delay estimates 

The estimation of the delays is done per frame although the posit ion of the speaker is not 
expected to change much during the utterance. It is therefore beneficial to implement some 
k ind of smoothing of the t ime delays wi th in the utterance. We explored two ways to do this 

- first, we simply averaged the cross-correlation values i n subsequent frames. Second, we 
aimed to find the best path between the estimated delays through the utterance in a similar 
way as [1]. 

The smoothing of the cross-correlation values was done using 

^smoothed = (1 _ ty^smoothed + ^ ^ ^_2) 

where / is the index of frame, ^ff is the generalized cross-correlation function for frame 
/, k is the smoothing coefficient (which we set to 0.9). The smoothing was done for each 
channel, the index of the channel is omit ted from the formula for simplicity. B y doing such 
smoothing we hoped to encourage the algori thm to select delays closer to the chosen delays 
in preceding frames and prevent sudden changes in the beamforming direction. 

The second method followed the same goal but instead of s imply smoothing the values 
of the cross-correlation function, it computed a score for each delay considering the scores 
of the delays i n the previous frame and also the distances of the subsequent delays. The 
score was computed as follows 

score^,/ = max (scores j _ i x i n v _ d e l _ d i s t ( d , d!) x (7-3) 
d' 

, , ,. , , ,,, max del dist — Id — d'\ .„ 
inv del dist(d,d ') = = = — — - 1 L , (7.4) 

m a x _ d e l _ d i s t 

where / is the index of the current frame, d is the evaluated delay in the current frame, 
d! iterates over al l considered delays i n the previous frame, ^ff[d] is the value of the cross-
correlation function for delay d in current frame / . The expression inv_del_dist(<i, d') 
computes the inverse distance between subsequent delays, where m a x _ d e l _ d i s t is the max
imum distance between all the considered delays in the two subsequent frames / — 1 and / . 
The scores are computed for each channel independently, the index of the channel is omit
ted for simplicity. Because this computat ion would be quite computat ionally inefficient to 
evaluate for each possible delay, i n each frame, only a l imited number of possible delays wi th 
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the best cross-correlation values are selected as candidates and the scores are computed only 
for them. In our experiments six candidate delays has shown to be a good choice. Figure 
7.2 demonstrates the principle on a simplified case of three frames and considering only two 
best delays for each frame. 

frame 1 frame 2 

inv_del_dist(<2j, d\) 

frame 3 

*iL«<_] M4] * s [ d § ] *iL«<_] s** 
inv del distfdo, <M) 

M4] inv_deLdist(d|,d|) * * s [ d § ] 

scor eits = 
max(scorei j2 • inv-del-dist(di, d\) • \&3[df], 

score2,2 • invjdeljdist(d\, d_) ' *3[^iD 

score2,3 = 
max(scorei i2 • inv-del-dist(d,2, df) • ̂ [ d l ] 

score2,2 • inv-del-dist(d\, d%) • ^3[d2] 

Figure 7.2: The demonstration of selecting the best delay on the case of three frames and 
considering only 2-best delays for each frame. d{ denotes the i-best delay in / - t h frame by 
the cross-correlation value. ^f[d{] is the value of the cross-correlation function for delay d{. 

Figure 7.3 shows the example of the delays estimated from an utterance, the smoothed 
delays using weighted average and smoothed delays using best-path method. The best-path 
method seems to be superior as it can take into account longer relations than the averaged 
estimate. Table 7.4 shows the obtained results on C H i M E 3 dataset. 

dev simu dev real eval s imu eval real 
G C C P H A T 9.96 10.23 13.92 19.94 

G C C P H A T + average smoothing 9.92 10.1 14.1 19.85 
G C C P H A T + best-path smoothing 9.85 9.99 14.00 19.49 

Table 7.4: Improvements brought by smoothing the t ime delay estimates across the frames. 

Figure 7.3: Example of delays estimates for an utterance, and both smoothed versions. 
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Fractional delays 
The data we are using as input to beamforming are sampled wi th 16 k H z frequency. However, 
the opt imal value of the delay used to shift the signal may be at the fraction of the sampling 
period. In such case, using the sampled cross-correlation function may lead to incorrect 
estimate of the delay due to insufficient resolution. Figure 7.4 illustrates real example of 
this problem. In this case, the max imum of the cross-correlation function happened in 
between the samples, which caused detecting fake max imum three samples apart from the 
opt imal one. 

cross p , , , , , , , , , 1 1 
correlation 

-7 -6 -5 - 4 - 3 - 2 - 1 0 1 2 3 

Figure 7.4: Example of detecting spurious m a x i m u m of cross-correlation function due to 
insufficient sampling. 

This problem may be solved by interpolating the cross-correlation values between the 
samples. After detecting such fractional maximum, it is also possible to shift the original 
signals by fractions of a sample by interpolating the signals. In our experiments we used ^ 
fractions of the sampling period. 

The interpolation was done by zero-padding the spectrum of the signal. The principle is 
il lustrated by Figure 7.5. Extending the spectrum to n times the original length by adding 
zeros to the middle leads to upsampling the t ime-domain signal by factor n. 
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Figure 7.5: The upsampling of the t ime domain signal using the zero-padding of the spec
t rum. Figure shows the t ime-domain signal (top left), frequency-domain signal (top right), 
frequency-domain signal after zero-padding (bottom right) and upsampled t ime-domain sig
nal (bot tom left). 

Table 7.2 shows the results obtained by using t q fractions for delaying the signal. 

dev simu dev real eval s imu eval real 
G C C P H A T 9.96 10.23 13.92 19.94 

G C C P H A T + fractional delays 9.79 10.11 13.53 19.59 

Table 7.5: Improvements brought by using fractional delays. 

Determining the reference channel 
In the beamforming process, one of the microphones needs to be chosen as a reference. Signal 
from this microphone is then not being delayed. It is convenient to choose the microphone 
wi th the cleanest signal as the reference one. To find the best channel to be used as reference, 
we computed cross correlation values of each channel to al l the other channels and chose 
the one wi th largest values 

reference_channel = arg max ^x^, [Dc,c'], (7-5) 
c ' > l A c'<N 

A c'^c 

where c and c' are the indices of channels, ^ r ^ r is the cross-correlation function between 
signals from channels c and d and DC)Ci is the chosen delay between signals from these two 
channels. This selection was done once for the entire utterance. 

Figure 7.6 shows the frequency of chosen channels on the C H i M E 3 dataset. We can 
see that mostly channel 5 was chosen which corresponds to the used microphone array 
architecture. 
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Figure 7.6: The frequency of selecting each of the channels as the reference one on C H i M E 3 
dataset. 

Table 7.2 shows the improvement obtained by computing reference channel rather than 
using a fixed one. 

dev simu dev real eval simu eval real 
G C C P H A T 
G C C P H A T + ref channel 

9.96 
10.15 

10.23 
9.96 

13.92 
14.08 

19.94 
19.93 

Table 7.6: Improvement brought by automatic selection of a reference channel. 

7.3 Minimum variance distortionless beamforming and its ad
justments 

The implementation of the M V D R beamformer followed the same steps and adjustments 
as the D S method. The difference of this method lies i n the step of estimation of the 
beamformer weights, which uses Equat ion 3.16. For this, the knowledge of noise covariance 
matr ix is required. Here, we describe the issues specific to M V D R which are mainly related 
to the noise covariance matr ix estimation and present the results achieved by this method. 

Estimation of the noise covariance matrix 

The exact computat ion of the noise covariance matr ix S j v ( w ) = E[v(juj)vH(ju)] requires 
averaging over al l the realizations of the noise signal. Practical ly, the result is approximated 
by averaging over multiple segments in t ime. To properly capture the characteristics of the 
noise, it is necessary to perform the estimation on the parts of the signal without speech. To 
identify such parts of the signal, we used Voice act ivi ty detector based on neural networks 
[22]. 

The accuracy of the V A D is a crucial factor in the performance of the M V D R beam-
former. If the V A D labels part of signal containing speech as silence, the beamformer 
evaluates the direction of the speaker as unwanted and suppresses the signals coming from 
this direction. O n the contrary, when the V A D is too greedy and detects speech even in 
the silence segments, the amount of signal available for noise covariance estimation is de
creased and the accuracy of the estimation goes down. To demonstrate this effect, we tried 
to adjust the threshold of the V A D detection to extreme values and observed the changes in 
the speech recognition accuracy after the M V D R beamforming. Table 7.8 shows that when 
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V A D fails to detect parts of speech, the performance of the beamformer drops dramatically. 
One the other hand, when V A D detects speech even i n the silence parts, the accuracy goes 
closer to the accuracy of the Delay-and-Sum. 

average W E R on C H i M E 3 
Delay-and-Sum 12.57 
M V D R + V A D threshold -5 12.55 
M V D R + V A D threshold -0.5 (optimal) 12.40 
M V D R + V A D threshold +5 23.07 

Table 7.7: The influence of V A D threshold on the M V D R method. Higher threshold means 
that less speech is detected. 

Diagonal loading 

Another issue related to the noise covariance matr ix estimation is the technique of diagonal 
loading which acts as regularizer and thus may be beneficial in cases when the data for the 
estimation are l imi ted. The modification of the method lies in adding small factor to the 
diagonal of the noise covariance matrix. 

= E jv + d i a ^ e ) . (7.6) 

This is equivalent to adding white noise to the signal observed at the microphones. In 
our experiments diagonal loading has shown to be important for the M V D R beamformer to 
properly function. 

dev simu dev real eval s imu eval real 
M V D R 9.62 9.68 13.12 18.5 
M V D R + diagonal loading 9.23 9.52 12.95 17.92 

Table 7.8: The influence of diagonal loading on the performance of M V D R on C H i M E 3 
dataset. 

7.4 Overall results 

Final ly , we present the overall results of the Delay-and-Sum and M V D R beamforming meth
ods on all three datasets and compare them to results achieved by using toolkit Beamformlt 
[!]• 

Table 7.9 shows word error rate of systems wi th implemented delay-and-sum and M V D R 
beamforming in comparison wi th the baseline systems. For A M I dataset, two results corre
spond to W E R s on dev and eval set. For C H i M E 3 the results are divided to simulated part 
of dev set, real part of dev set, simulated part of eval set and real part of eval set. R E V E R B 
results follow the same division. 
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A M I C H i M E 3 R E V E R B 

delay-and-sum 47.5 / 52.2 9.53 / 9.64 / 13.02 / 18.12 5.32 / 21.47 / 5.91 / 15.29 
M V D R 47.1 / 51.6 9.23 / 9.52 / 12.95 / 17.92 -

Beamformlt 48.7 / 53.1 9.98 / 9.87 / 13.79 / 19.11 9.51 / 20.68 / 9.28 / 12.81 

Table 7.9: Overal l results of implementation of delay-and-sum and M V D R beamformer. 

The obtained results w i th delay-and-sum method are comparable to the results ob
tained by Beamformlt toolki t , which also uses delay-and-sum. The usage of the M V D R 
method leads to addit ional improvements on both C H i M E 3 and A M I datasets. O n R E 
V E R B dataset, we d id not test M V D R beamforming as the data does not contain high 
amount of additive noise. 

7.5 Comparison of the methods 

A s the results suggest, the M i n i m u m Variance Distortionless Response beamforming is more 
efficient than the simple Delay-and-Sum. Despite its better accuracy the M V D R method 
also brings some disadvantages which are summarized as follows: 

• the need of accurate V A D A s discussed above, the performance of the M V D R 
method highly depends on high quali ty Voice act ivi ty detector. The used detection 
of the speech parts also requires preprocessing of the signals, thus is not very suitable 
for real-time processing. 

• stationarity of the noise The properties of the noise are estimated from a short 
segment preceding the speech. A s a consequence, i f the noise character changes during 
the utterance, the M V D R method may perform worse than if no estimate of the noise 
was used. 

• availability of noise example If the data does not contain enough amount of silence, 
the M V D R degrades to Delay-and-Sum method. 

In the datasets used in this work the benefits of the M V D R beamforming prevailed and 
using the method led to better results. However, the method may not be opt imal choice in 
every case and the character of the data should be take into consideration when selecting 
the method. 
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Chapter 8 

Experiments with dereverberation 

In this chapter, we present the results of experiments performed wi th Weighted prediction 
error method introduced in Chapter 4. Firs t , we describe the main steps of the implemented 
method. Then, we study the influence of the parameters, specifically the order of the filter 
and number of iterations. Then, we show the effect of the dereverberation of the signal and 
discuss the results. 

As wi th the beamforming methods, we used K a l d i speech recognition toolkit [23] for 
bui lding the speech recognition systems and the W P E was implemented i n Mat l ab . The 
accuracy is measured using W o r d error rate ( W E R ) . Most of the experiments i n this chapter 
are performed on the R E V E R B dataset and the final results are generated on all three 
datasets - R E V E R B , A M I and C H i M E 3 . 

8.1 Description of the dereverberation procedure 

The basic steps of the implementation (with the theory presented i n Chapter 4) were the 
following: 

1. Segmentation of the input signals and transform to frequency domain In 
W P E , speech and reverberation are modeled i n the time-frequency domain. Therefore 
we divided the signal into overlapping windows which were then transformed using 
F F T . We used 32 ms windows wi th 8 ms frame-shift. 

2. Iterating between the estimate of the speech model parameters and reverberation 
prediction filter. 

• Est imation of the speech model parameters We used Levinson-Durbin al
gori thm for computing the linear prediction filter coefficients, which we then used 
to estimate the power spectral density of the clean speech. In the in i t ia l itera
tion, the estimate is computed from the corrupted speech (which is equivalent to 
ini t ia l iz ing the reverberation prediction filter coefficients to zeros). In subsequent 
iterations, the computations are performed on the current estimate of the clean 
speech. 

• Est imation of the reverberation prediction filter This follows Equat ion 4.9 
using the speech variances computed in the previous step. 
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8.2 Influence of the parameters 

Here, we explore the influence of the reverberation prediction filter order and the number 
of performed iterations on the accuracy of the method. 

Filter order 

The Weighted prediction error method aims to find a filter which can predict the reverberant 
component of the corrupted signal from its past samples. The filter acts in time-frequency 
domain wi th 8 ms frame-shift (equivalent to sampling frequency 125 Hz) . The size of the 
filter is fixed during the procedure and should be set so that it can properly capture the 
properties of the reverberation. Figure 8.1 shows the influence of the filter order on the 
accuracy of the speech recognition on four subsets of R E V E R B . Note that the comparison 
was made using a G M M system, thus it does not compare to the overall results. 

Figure 8.1: The influence of the filter order (5, 10, 20 and 40) on the accuracy of speech 
recognition on four subsets of R E V E R B (development and evaluation subset w i th real or 
simulated condition). 

It can be seen that choosing the correct length of the filter has quite significant influence 
on the performance. Especial ly on the real condition, where the error rates are higher, 
setting the filter order too high leads to significant inaccuracies. The used windows are 32 
milliseconds long wi th 8 millisecond frame-shift, thus the filter order of 40 taps corresponds 
to looking about 350 mill isecond i n the past (considering the prediction delay set to 3). 
Considering such long past segment may not be important for the filter and the increased 
number of parameters l ikely causes the the inabi l i ty of learning the right prediction. 

Number of iterations 

Since W P E is an iterative method, we studied how many iterations are needed for desired 
performance. Figure 8.2 shows how the variance of the estimated clean speech evolves 
through the iterations. The variance is summed across a l l t ime points and channels and 
averaged over al l utterances i n R E V E R B . It can be seen that the first two iterations have 
the most significant effect and after this, the algori thm converges. 
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Figure 8.2: Evolu t ion of the variance of estimated clean speech through the iterations. The 
variance is summed across al l t ime points and channels and averaged over al l utterances in 
R E V E R B . 

As depicted in Figure 8.3, the accuracy of speech recognition confirms these observations. 
After the first three iterations, the improvement stops or in some cases, the accuracy even 
degrades. 

Figure 8.3: The effect of number of iterations of the Weighted prediction error method on 
the accuracy of speech recognition of four subsets of R E V E R B . 

8.3 Effect of the dereverberation 

To show that the method does have the intended effect of removing the reverberant part of 
speech, we show an example of the dereverberated utterance. Figure 8.4 shows a comparison 
of spectrograms of a reverberant and a dereverberated utterance. We can see that the W P E 
method removed the temporal smearing of phonemes caused by reverberation. 
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Figure 8.4: Example of the spectrograms of reverberated and dereverberated signal. 

8.4 Overall results 

To conclude, we show the results obtained by applying the W P E method on al l three datasets 
- C H i M E 3 , A M I and R E V E R B . Table 8.1 compares the accuracies on the testsets using 

both M V D R and Delay-and-Sum beamforming together w i th the W P E . 

A M I C H i M E 3 R E V E R B 

D S 47.5 / 52.2 9.53 / 9.64 / 13.02 / 18.12 5.32 / 21.47 / 5.91 / 15.29 
D S + W P E 47.61 / 52.14 9.42 / 9.51 / 12.53 / 17.98 4.89 / 15.01 / 5.56 / 12.65 

M V D R 47.1 / 51.6 9.23 / 9.52 / 12.95 / 17.92 -
M V D R + W P E 47.07 / 51.53 9.15 / 9.42 / 12.43 / 17.53 -

Table 8.1: Overal l results (Word error rates) of Weighted prediction error method on three 
datasets. 

The dereverberation brought substantial improvement on the R E V E R B dataset, while 
on C H i M E 3 , the difference was rather moderate and on the A M I dataset, the result d id 
not change much. This is l ikely caused by the amount of reverberation present in the data, 
which is strongest i n R E V E R B . 
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Chapter 9 

Neural network based beamforming 

Methods for beamforming presented i n the previous text are well-established and often used 
in speech community. A l though they work well and significantly outperform the single-
channel case, there is s t i l l space for improvement. This chapter explores a novel approach 
for beamforming exploit ing neural network framework. 

The main idea of the methods i n this chapter is to connect the beamforming and the 
speech recognition into one joint system. This is i n contrast w i th the conventional methods 
where the preprocessing stage and speech recognition stage are two separate parts which 
do not share any information. In such setting, the beamforming is following a speech 
enhancement objective such as noise reduction or higher signal-to-noise ratio. A l though 
these measures are clearly correlated wi th accuracy of the speech recognizer, the relationship 
may not be that strong and opt imizing the front-end wi th respect to these measures may 
not be opt imal for the final speech recognition goal. 

This motivates the need for joining the back-end classification and front-end preprocess
ing and learn them together to optimize the final objective of accurate speech recognition. 
This may enable the beamforming to focus more on the enhancement which is beneficial 
for the following system. Since the state-of-the-art systems today employ deep neural net
works for the acoustic modeling, the direct approach for connecting the acoustic model w i th 
the beamforming would be to extend the network to the preprocessing stage. B y this, the 
t raining of the network w i l l backpropagate the errors back to the beamforming. The fol
lowing text presents particular approaches for doing this together wi th the experiments we 
performed. Note than the work presented i n this Chapter is s t i l l quite open and w i l l be 
subject of future research. 

9.1 Published approaches 

Recently, the topic of neural network based beamforming gained attention and several works 
in this area were published. A p a r t from the recently published papers, we wi l l also present 
two past works related to the same idea. 

• Likelihood maximizing beamforming Seltzer, in his dissertation [ ], followed 
the idea of using the information from the acoustic modeling i n the beamforming 
procedure. To do this, he optimized the parameters of the beamformer to maximize 
the l ikel ihood of the best path in the Hidden Markov M o d e l . B y this, he achieved 
substantial improvement in speech recognition accuracy. This approach was developed 
on G M M - H M M architecture and does not combine well wi th the Deep neural network 
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approach which is used today. However, this work shows that joint opt imizat ion of 
beamformer and acoustic model has the potential of improving the performance of the 
system. 

• Antenna array beamforming The beamforming methods are not unique to micro
phone array processing. The same concept can be used for any array of sensors such 
as antennas. In the field of antenna array signal processing, the beamforming using 
neural networks has been successfully explored before. In [7], neural methods are 
used to determine the weights of the beamformer. In this case, the network performs 
solely the task of beamforming and is trained using known input-output pairs. This 
differs from our case where we a im to t ra in the beamforming to follow a higher level 
objective. Nevertheless, the work done i n antenna field shows the suitabil i ty of using 
neural networks for the task of array signal processing. 

• Learning the speech front-end using C L D N N s In series of papers [26, 28, 2 | 
Sainath et al . explored using deep neural networks for both beamforming and feature 
extraction. The methods bu i ld upon convolutional long short-term memory deep 
neural network ( C L D N N ) architecture which combines time-convolutional, frequency-
convolutional and long short-term memory layers. In [ ], Sainath showed the abili ty 
of this architecture to learn to extract features similar to auditory-like filterbanks and 
match the performance of log-Mel features. In [28], the network was further extended 
to perform multichannel preprocessing. For this, the waveform from each channel is 
processed by a group of learnable filters represented by the first layer of the network. 
The outputs of the filters are then summed across the channels and passed to the 
C L D N N . Th i s was further extended by experiments i n p "] where multi task training 
and factorization of the input layer were incorporated to improve the results. 

The results presented by Sainath show improvement over standard beamforming tech
niques and the first layer of the network is also shown to learn the spatial filtering. 
One drawback of this approach is that the learnt filters look into fixed directions and 
do not adapt to the input data as conventional beamformers. Moreover, the network 
was trained on relatively large dataset and having more l imi ted amount of t raining 
data could influence the abi l i ty of learning the desired processing. For these reasons, 
we decided not to follow this architecture. 

• Deep beamforming A different approach of neural network based beamforming was 
published by X i a o i n [33]. In contrast w i th [28], the network architecture i n this case 
is much more constrained. It involves a neural network which learns to predict the 
beamforming weights from the values of cross-correlation functions between the signals 
from different channels. The learned weights are then used to process the multichannel 
signal, followed by fixed feature extraction and a standard D N N classifier. 

Due to the usage of the cross-correlation functions as the input of the network, this 
architecture should be able to adapt the beamforming to the input data and not focus 
on fixed directions. A s we decided to use this architecture i n our experiments, we w i l l 
describe it in more detail in the following text. 
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9.2 Used architecture 

The architecture of the network we used to jo int ly learn beamforming and acoustic modeling 
is inspired by [33]. A s depicted in Figure 9.1, it consists of four main blocks — weights 
estimating D N N , beamforming, feature extraction and D N N classifier. Weights estimating 
D N N is used to predict the coefficients of the beamforming filter from the values of cross-
correlation functions between the channels. This is the part of the network whose purpose 
is to learn the beamforming. The beamforming block uses the predicted weights to filter 
the spectra of al l channels and to produce the beamformed spectrum. This is passed to 
feature extraction block which is fixed to perform conventional feature extraction. Extrac ted 
features are then used by D N N classifier to predict the H M M states posteriors. In this 
section, we describe each of these blocks in detail, discuss its inputs, outputs and the way 
to propagate and backpropagate through the block. 

GCC 
PHAT 

Weights estimating 
D N N 

Feature 
extraction 

D N N 
Beamforming Feature 

extraction classifier 
spectra —*• 

state 
posteriors 

Figure 9.1: The architecture of the deep neural network performing beamforming and clas
sification to H M M states. 

Weights estimating DNN 

This block aims to predict the opt imal weights of the beamformer from the values of cross-
correlation functions between the signals from all channels. Its input is vector 

[ < f i I [ - M : M ] ] V c , 1..C, c 2 = 1..C, c i / c 2 , 

where V™AT[-M : M] = [*™AT[-M] . . . V™AT[0] . . . *™AT[M}}, C is the number 
of channels and M is the max imum considered delay, which we set to 10. The length of the 
input vector is ( 2 M + 1) • ( £ ) . 

The output of the block is a vector of the predicted beamformer weights tt>c[/c], where 
c is the index of channel and k is the index of frequency b in . These weights are complex, 
thus we represent their real and imaginary component separately as [k], w\ [k]. 

The computat ion of the weights from the cross-correlation coefficients is done by a feed
forward neural network wi th logistic sigmoid as activation function. 

Beamforming block 

The inputs to the beamforming block consists of the weights predicted by the weight es
t imat ing D N N w and the short-time spectra of al l channels computed from 20 ms 
windows wi th 10 ms overlap Xc^, where c is the index of a channel and k is a frequency 
bin . The spectra are again represented by their real and imaginary parts X^k,X^,k. The 
output of the component is the spectrum of the beamformed signal Y,R, Y,1. 
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The computat ion of the beamforming block is fixed and follows standard equations for 
complex number arithmetics 

Yt = Y . w - r x ^ = Y . K i + wli{)<xc,i + x i i i ) 

c c 

c 

yi = Y s w * x l i + w l i x * - (9-3) 
c 

To be able to backpropagate the error from the output of the component towards the 
Weights estimating D N N , we need to compute the derivatives of each of the outputs w i th 
respect to the beamforming weights. This is done by: 

dYt

R 

dwc,i 

dY/ 
dw* 

X c,l 

X c,l 

dYt

R 

d w i i 

dY/ 

-X 

X. c,l-

(9.4) 

(9.5) 

Feature extraction block 
In the feature extraction block, we implemented full chain of operations which we performed 
to extract features i n previously buil t systems. A s depicted in Figure 9.2, these include: 

• extraction of the M F C C s — this includes the absolute value, mul t ip ly ing by bank of 
M e l filters, logari thm and Discrete cosine transform ( D C T ) 

• C M N — speaker-dependent cepstral mean normalizat ion 

• splice — taking the +-3 context frames 

• L D A + M L L T and C M L L R transforms 

• splice — taking the +-5 context frames 

• global C M V N — speaker-independent cepstral mean and variance normalizat ion 

This computat ion stays fixed during the training of the whole architecture. To be able to 
t ra in the Weights estimation D N N , we need to be able to backpropagate through the whole 
feature extraction process. Most of the operations can be interpreted as an affine transform, 
thus the backpropagation is identical to backpropagating through standard layer in neural 
networks. The splice components concatenate vectors from their input, which means that 
to backpropagate through these components need to copy the errors on the output to the 
inputs following the same pattern. The remaining nonlinear parts of the process are the 
absolute value and logari thm for which the derivatives of the outputs w i th respect to their 
inputs can be derived as follows: 
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Figure 9.2: Deta i l of feature extraction block. 

DNN classifier 

The D N N classifier is the standard part of acoustic model i n speech recognition system. Its 
input are the extracted features and outputs are the posteriors of the Hidden Markov Models 
states. The propagation and backpropagation process follows the usual neural network 
training procedure. 

9.3 Description of the training 

To t ra in the whole architecture, we examined three procedures which differ by the way the 
Weights estimation D N N and D N N classifier blocks are ini t ial ized. 

1. The first alternative initializes both blocks to be consistent wi th delay-and-sum beam-
forming. The steps are following: 

(a) The Weight estimation D N N is trained to predict the weights of the beamformer 
derived from the analytic delay-and-sum beamforming. This is done by minimiz
ing mean square error objective. 

(b) The D N N classifier is trained on the analytically beamformed data. 

(c) The whole architecture is assembled and the D N N classifier network i n finetuned 
while keeping the Weights estimation D N N fixed. 

(d) B o t h blocks are fine-tuned. 

2. The second alternative initializes only the Weight estimation network from the delay-
and-sum beamforming. The steps are the following: 

(a) (same as i n 1) The Weight estimation D N N is trained to predict the weights of 
the beamformer derived from the analytic delay-and-sum beamforming. This is 
done by min imiz ing mean square error objective. 
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(b) The whole architecture is assembled and the D N N classifier network i n trained 
while keeping the Weights estimation D N N fixed. 

(c) B o t h blocks are fine-tuned. 

3. In the th i rd alternative, we let the whole architecture learn joint ly from scratch without 
any ini t ia l izat ion. 

9.4 Results 

Table 9.1 summarizes the results obtained by three t raining procedures described i n the 
previous section and compares them to the accuracy of the Delay-and-sum beamforming 
which was used for in i t ia l izat ion in the first two alternatives. 

dev simu dev real eval simu eval real 
D S 9.53 9.64 13.02 18.12 
D N N (1) 9.44 9.28 12.97 17.95 
D N N (2) 9.56 9.53 12.93 18.25 
D N N (3) 12.11 13.24 16.56 21.06 

Table 9.1: The results of the neural network based beamforming compared to Delay-and-
sum. 

The first t raining procedure, where both the Weight estimation D N N and D N N classifier 
were ini t ia l ized from the Delay-and-sum beamforming managed to fine-tune the beamform
ing procedure to outperform (though moderately) the Delay-and-sum baseline. The second 
experiment, in i t ia l iz ing only the Weight estimation D N N led to similar, slightly worse re
sults. Training the whole architecture without any ini t ia l izat ion resulted in notably worse 
results. 

The results show the importance of proper ini t ia l izat ion of the network, mainly the 
Weight estimation D N N . To get r id of the dependence of this ini t ia l izat ion on previous 
analytic beamforming, it could be possible to ini t ial ize the network to perform simple sum 
of al l the channels. Overal l , the performance of the neural-network based beamforming 
shows the potential of the architecture to improve the beamforming procedure. However, the 
achieved improvements are quite small and the performance is worse than the best results 
achieved wi th M V D R beamformer. The results could be further improved by exploring 
alternative t raining procedures and opt imizing the parameters of the whole architecture. 

9.5 Future directions 

To conclude the discussion of neural network based beamforming, we suggest several ways, 
how this approach could be further improved. 

• Tuning the training procedure There are many aspects of the current architecture 
and training procedure which could be more thoroughly investigated. This includes 
the ways to init ial ize the networks, tuning the learning rates and sizes of the networks 
or using different features on the input of the Weights estimation D N N . 

• Treating the complex values In the current approach the complex values of the 
weights are represented by separating their real and imaginary components. This may 
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not be ideal as the amplitude-phase form better represents the information which is 
important for the following beamforming. The learning of the amplitude and phase 
thus may be easier for the network. However, as the phase is circular, this representa
t ion could also bring some problems. One of the options to solve this could be using 
complex-valued networks as explored previously in the antenna array field [31]. 

• D a t a augmentation The t raining of the neural networks is highly data dependent. 
Simulat ing addit ional t raining data by artificially adding noise has been previously 
shown to bring significant improvements [15]. Moreover, i n the case of D N N based 
beamforming, the simulated data could be effectively used for better ini t ia l izat ion 
using the information about the clean version of the data. Apa r t from adding the 
noise, the data could be also largely extended by permuting the channels i n the real 
data. 
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Chapter 10 

Conclusion 
10.1 Summary of performed work 

In this thesis, we have presented the methods for microphone array processing for the 
far-field speech recognition task. Part icularly, we focused on two beamforming techniques 
(Delay-and-sum and M i n i m u m variance distortionless response). These techniques enable 
to combine signals from multiple microphones to reduce the noise. Addi t ional ly , we used 
Weighted error prediction method to deal w i th the problem of reverberation. 

We evaluated the methods on three datasets ( A M I , C H i M E 3 and R E V E R B ) and achieved 
significant improvement over the single microphone case which corresponds to the published 
state-of-the-art. We explored modifications of these methods leading to better results. We 
found that the M V D R method outperforms simple Delay-and-sum and discussed the prop
erties of both methods. We also showed how the dereverberation can further improve the 
results. 

In the end, we investigated a novel method of performing beamforming using neural 
network framework, which combines the speech recognizer and the beamformer into one 
joint trainable system. The results of the performed experiments showed m i l d improvement 
over the Delay-and-sum method. We suggested several ways how the accuracy could be 
further improved. 

10.2 Future directions 

Short-term perspective 

In the nearest future, the continuation of this work is two-fold. Firs t , we w i l l use the 
findings of this work i n the projects of the B U T Speech@FIT group. This may involve 
solving technical problems such as dealing wi th ad-hoc microphone arrays or more efficient 
implementation. The second direction, we would like to follow, is further research of the 
methods to jo int ly t ra in the front-end and the back-end processing as discussed in Chapter 
9. 

Long-term perspective 

From a broader point of view, there are lots of problems i n far-field speech recognition 
which remain unsolved. Machines s t i l l cannot match the abil i ty of humans of separating 
the voice of interest in very noisy and crowded environments. One of the ways to get 
closer to the human performance could be higher interconnection of beamforming wi th 
speaker recognition systems which could make the beamformer able to more reliably focus 
on particular speaker. 
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Appendix A 

Derivation of the Minimum Variance 
Distortionless Response filter 

In this section, we present the derivation of the M i n i m u m Variance Distortionless Response 
filter ( M V D R ) . The notation which was introduced i n Section 3.4 is following 

UJ angular frequency 
no index of the reference microphone 
h n o O ^ ) t n e beamforming filter 
£ n r noise reduction factor 
vsd speech distort ion factor 
Xn0(Jw) frequency-domain speech signal as received by reference microphone 
Vno(jw) frequency-domain noise signal as received by reference microphone 

the vector of frequency-domain speech signals received by each microphone 
x(jw) = [Xi{ju) X2{ju) ... XN(jtv)]T 

the vector of frequency-domain speech signals received by each microphone 
v( jw) = [Vi(joo) V2(joo) ... VN(JLO)]T 

the steering vector d(u) = [e~miT1 e~miT2 ... e~lU!TN], where Tj is the delay 
of the speech signal at microphone i w i th respect to the reference microphone 

x(jw) 

v( jw) 

d(u) 

The M V D R filter is defined as a solution to an opt imizat ion problem 

hn0

VDR(Ju) = arg max enr[hno(ju) 
h„ 0 (jui) 

subject to vsd[hno(juj)} = 0. 

Since the noise reduction factor is defined as 

E{M0(JU)V(JUJ)\2} 

and the numerator does not depend on the filter hno(jui), we can rewrite the maximizat ion 
as minimiza t ion of the denominator 

KVDR(M = arg m i n J E{ |hf 0 ( J a ; )v ( J a;) | 2 }. (A.2) 
h n 0 t?w) 
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We can also reformulate the constraint. The speech distort ion factor w s ^[h n o (jcj)] is 
defined as 

^
[ h

"
o ( j a ; ) ]  =

 Enx^m '
 ( A

'
3 )  

thus we can derive 

E{\Xno(ju)-h"0(juMju)\2} 
E{\Xno(ju)\*} 1 ' > 

E{\Xno(ju) - hf Q ( ju ; )x( ju ; ) | 2 } = 0 (A.5) 

E{\Xno(ju) - h*(ju)Xno(ju)d(u)\2} = 0 (A.6) 

E{\l-h»(ju)d(u)\2} = 0 (A.7) 

h*(ju)d(u) = l. (A.8) 

Together, we reformulated the opt imizat ion problem to 

K V D R ( M = wgmm E{\h»(ju)v(ju)\2} (A.9) 
h„ 0 (JUI) 

subject to h^0(ju)d(u) = 1. (A.10) 

To find the opt imal h ^ y D H ( j u ; ) , we define the Lagrangian function 

£ [ h „ 0 ( j u / ) , 7 ] = £ { | h f 0 ( j a ; ) v ( j a ; ) | 2 } + 7 ( h £ ( j W ) d ( W ) - 1) = ( A . l l ) 

= E{h%0(ju)v(ju)vH(ju)hno(ju)} + 7 « ( j u ; ) d ( u ; ) - 1) = (A.12) 

= h%0(ju)E{v(ju)vH(ju)}hno(ju) + 7 « ( j u ; ) d ( u ; ) - 1) = (A.13) 

= h^(ju)SN(ju)hno(ju) + 7 « ( j u ; ) d ( u ; ) - 1). (A.14) 

To find the extreme of the Lagrangian function, we differentiate it w i th respect to the 
coefficient of the filter 

d£[h (ju,)r?] = 2 h U u ) l i N { j u ) + l d H { u ) ( A 1 5 ) 

and equate this to zero 

2h%Q(juj)VN(juj) + >ydH(u;) = 0 (A.16) 

h«(ju) = -1-1dH(u)V-\ju). (A.17) 

This already gives us the formula of the filter, the last step is to determine the value of 
7 using A . 8 

h £ t f w ) d % ; ) = l (A.18) 

-^d(oj)^\joj)d(oj) = 1 (A.19) 

7 = -2(dH(uj)J:^1d(Lo))-1. (A.20) 

Substi tut ing A .20 to A .17 , we get 

a-" (LO)ZJn d(to) 

which is the final formula for the M V D R filter. 
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