
VYSOKÉ UČENI TECHNICKE V BRNE
BRNO UNIVERSITY OF TECHNOLOGY

FAKULTA INFORMAČNÍCH TECHNOLOGII
ÚSTAV POČÍTAČOVÉ GRAFIKY A MULTIMÉDIÍ
FACULTY OF INFORMATION TECHNOLOGY
DEPARTMENT OF COMPUTER GRAPHICS AND MULTIMEDIA

OBJECT DETECTION ALGORITHMS ON ANDROID
PLATFORM

BAKALÁŘSKÁ PRÁCE
BACHELOR'S THESIS

AUTOR PRÁCE VOJTĚCH DLÁPAL
AUTHOR

BRNO 2014

VYSOKÉ UČENI TECHNICKE V BRNE
BRNO UNIVERSITY OF TECHNOLOGY

FAKULTA INFORMAČNÍCH TECHNOLOGIÍ
ÚSTAV POČÍTAČOVÉ GRAFIKY A MULTIMÉDIÍ
FACULTY OF INFORMATION TECHNOLOGY
DEPARTMENT OF COMPUTER GRAPHICS AND MULTIMEDIA

ALGORITMY DETEKCE OBJEKTU NA PLATFORME
ANDROID
OBJECT DETECTION ALGORITHMS ON ANDROID PLATFORM

BAKALÁŘSKÁ PRACE
BACHELOR'S THESIS

AUTOR PRÁCE VOJTĚCH DLÁPAL
AUTHOR

VEDOUCÍ PRÁCE Ing. PETR MUSIL
SUPERVISOR

BRNO 2014

Abstrakt
Cílem této práce je prozkoumat možnosti detekce objektů na platformě Android, navrhnout
a implementovat demonštratívni aplikaci, otestovat j i a zhodnotit dosažené výsledky. Je
představena platforma Android, knihovna pro počítačové vidění OpenCV a teorie pro de­
tekci objektů. Byla navržena a implementována aplikace porovnávající detekci obličejů
z OpenCV, Android A P I a navrženého detektoru používající klasifikátor. Aplikace byla
důsledně otestována a výsledky vyhodnoceny.

Abstract
A i m of this thesis is to analyze possibilities of object detection on Android platform, design
demonstrative application, test it and evaluate results. Android platform, computer vision
library OpenCV and object detection theory are being introduced. Application for com­
parison of face detection from OpenCV, Android A P I and custom detector using classifier
was designed and implemented. Application was tested and the results were evaluated.

Klíčová slova
Android, OpenCV, N D K , detekce objektů, WaldBoost, L B P

Keywords
Android, OpenCV, N D K , object detection, WaldBoost, L B P

Citace
Vojtěch Dlápal: Object Detection Algorithms on Android Platform, bakalářská práce, Brno,
FIT V U T v Brně, 2014

Object Detection Algorithms on Android Platform

Prohlášení
Prohlašuji, že jsem tuto bakalářskou práci vypracoval samostatně pod vedením pana Ing.
Petra Musila

Vojtěch Dlápal
July 30, 2014

Poděkování
Chtěl bych poděkovat vedoucímu práce Ing. Petru Musilovi za poskytnuté přínosné konzul­
tace a za trpělivost při mém pobytu v zahraničí.

© Vojtěch Dlápal, 2014.
Tato práce vznikla jako školní dílo na Vysokém učení technickém v Brně, Fakultě in­
formačních technologií. Práce je chráněna autorským zákonem a její užití bez udělení
oprávnění autorem je nezákonné, s výjimkou zákonem definovaných případů.

Contents

1 Introduction 2

2 Android platform 3
2.1 The smartphone era 3
2.2 Android progress 4
2.3 Programming for Android 5
2.4 Native development kit (NDK) 8

3 Object detection and OpenCV 9
3.1 OpenCV 9
3.2 Detection 11
3.3 Object detection using classifiers 13
3.4 Weak classifiers 13

4 Problem analysis 18
4.1 Available applications with object detection on Android 18
4.2 Approaches to build application with detection on Android platform 19
4.3 Selected approach 19

5 Design 21
5.1 Purpose of the application 21
5.2 Selection of suitable classifier 22

6 Implementation 24
6.1 Development environment 24
6.2 Application and UI 24

7 Testing 28
7.1 Test cases 28
7.2 Testing devices 30
7.3 Testing results 30

7.4 Result evaluation 33

8 Conclusion 35

A Project structure 39

B C D content 40

1

Chapter 1

Introduction

We live in a modern age when everyday life is closely connected to technology. From recent
times people can put a computer into their pockets and take it to wherever they like to.
This computer is represented by mobile devices such as modern mobile phones and tablets.

These devices are endowed with multiple sensors, such as camera, internet connection
and operating system which offers an opportunity to install new applications. These appli­
cations could be more and more complex and fulfilling undreamed-of tasks. This is becouse
of rapid technical development in the segment.

One of the fields with great potential for mobile devices is computer vision. This thesis
is focused on subdiscipline of computer vision which is prerequisite for some another more
advance subdisciplines. It is object detection, more precisely object detection on the most
successful mobile platform which is Android.

In the first chapter is introduced Android platform from different points of view. As
a platform what became the most successful, as a modern operating systems for not only
mobile devices and last but not the least, as a platform suitable to develop new application
for. The reader will get insight into specifics of application development for Android using
Software development kit and Native development kit.

Chapter 3 is dedicated to object detection. In the first section is introduced library
OpenCV which provides tools for computer vision and thus also for object detection. Fur­
ther is discussed core of object detection and multiple approaches to it are listed. Last part
of the chapter goes deeper into object detection using classifiers. Multiple terms such as
weak classifier and strong classifier are introduced. Lastly are listed and explained some of
the most popular features.

Chapter 4 analyses exploitation of object detection in applications available on the
market and available tools for development of this kind of application.

Chapter 5 explains design of demonstrating application and use of selected classifier and
chapter 6 goes into detail of implementation and used algorithm.

Testing of developed application is discussed in chapter 7. At first are introduced
selected test cases and finally results are evaluated and future work is proposed.

2

Chapter 2

Android platform

This chapter aims to introduce the reader into the world of Android platform. At first is
briefly mentioned modern history of mobile devices and then is introduced term „smartphone"
Later is introduced history of Android platform and importance of it as a market leader is
supported by statistical data.

Further is Android introduced from developer's perspective. Android is looked upon
as a system and main building blocks are mentioned. Further is explained what Android
applications consist of and how to develop them. Last part of the chapter is dedicated to
advance programing for Android using Native development kit.

The Price Gap Between iOS and Android Is Widening
Average selling price of iOS and Android smartphones worldwide

$261

• iOS
330$

Android Price Gap

$366
$374 $403

2010 2011 2012 2013 2014*

© (?) © * Forecast
©StatistaCharts SourceilDC

Figure 2.1: The difference in average price of iOS and Android devices. Taken from]

2.1 The smartphone era

Nowadays the most of people are having mobile phones. First phones were meant only for
communicating through calls. Those phones were big, heavy and expensive. These days are
different and people are familiar with word „smartphone" [14]. Smartphones are providing
to its users much more than just calling. The possibilities are nearly unlimited, as their

3

features could be extended with applications. These could combine device's hardware, such
as different sensors, with internet connection into extraordinary user experience.

Beginning of latest generation of smartphones could be related to revelation of first
mobile phone by Apple Inc. [16, 18] in 2007. Name of the product was iPhone, and it
was huge success. It introduced the concept of controlling user interface using touchscreen
to the masses. There was no hardware keyboard, just virtual one. Success of iPhone also
meant the fact, that people became more aware of possibilities of phones with operating
system. iPhone came with operating system called iOS [Jwhich comes with centralized
place for getting applications called App Store.

2.2 Android progress

Operating system Android was released in 2008 [] . It exploited some of ideas from iOS
and catched up with it's popularity. Android is opensource and therefore it is possible for
any manufacturer to use it. This resolved into that on the market appeared devices with
modern operating system which were much cheaper then iPhone, see 2.1, and began to
spread. In 2011 Android begun to have the largest installation base over mobile operating
systems [] and in 2013 sales of devices with Android were bigger than all the other
platforms together, see figure 2.2. At the moment the market share of Android is about
78.4% []what makes it leader of mobile operating systems. Every day are activated about
1.5 millions of devices with Android []. Furthermore, with growing popularity of tablets
are android devices slightly becoming substitutes for traditional PCs.

Tech fe Chart of the Day

Android Dwarfs Any Other Computing Platform
Global connected device shipments by operating system (in million units)*

Android Windows iOS / Mac OS
1,358.3

1,171.0

503.7

2012 2013 2014"

* InclJdes PCs, tablets, mobile phones and hybrid devices ** Forecast
B u s i n e s s i n s i d e r

2015"

Source: Gartner e®© štatista!

Figure 2.2: Worldwide shipments of devices by operating system. Taken from [34]. Data
from [28]

4

Global market share held by the leading smartphone operating systems in sales
to end users from 1st quarter 2009 to 4th quarter 2013

Ql Q2 Q3 Ql Q2 Q3 Q4 01 Q2 Q3 Q4 Ql Q2 03 04 Ql Q2 Q3 Q4 '09 '09 "09 '10 '10 "10 '10 '11 '11 '11 '11 '12 '12 "12 '12 '13 '13 "13 '13
• Bada* Symbian

Source: Gartner © Štatista 2014
Additional Information
Worldwide; Gartner

Figure 2.3: Global market share of smartphone operating systems. Taken from [11]

2.3 Programming for Android

Android is comprehensive open source platform designed for mobile devices [22]. Android
appears in watches, phones, tablets, TVs , and cars [1]. It is developed and maintained by
Open handset alliance 1. The latest version while writing this thesis is K i tKa t 4.4. Even
though it is not the most common version what is 4.1 Jelly Bean as is stated on the graph
2.4.

Version Codename API Distribution

2.2 Froyo 8 0.7%
2.3.3-
2.3.7

Gingerbread 10 13.5%

4.0.3-
4.0.4

Icecream
Sandwich

15 11.4%

4.1.X Jelly Bean 16 27.8%
4.2.x

Jelly Bean
17 19.7%

4.3

Jelly Bean

18 9.0%

4.4 KitKat 19 17.9%

jo iy Bean
Froyo

Gingerbread

ico Cream Sandwrch

Data collected during a 7-day period ending on July7t 2014.
Any versions with iess than 0.1% distribution are not shown.

Figure 2.4: Distribution of different versions of Android. Taken from [13]

x

www.openhandsetalliance.com

5

http://www.openhandsetalliance.com

2.3.1 Andro id as a platform

Android is build around Linux kernel. It does not contain some parts of standard linux
distributions like is X Window System. The presence of linux is hidden from the user but
even from developers. Aplications compiled as a native code for linux based operating
system can not be run on Android. Presence of Linux could be e.g. from filesystem
structure. A l l the stack of software, what Android consist of, is illustrated on figure 2.5.
Android contains bunch of libraries, what can developers rely on, as is SQLite database or
WebKit rendering engine.

Applications

Home Contacts Phone Browser Other

Activity
manager

Package
manager

Application framework
Window Content
manager providers

Telephony
manager

Resource
manager

Location
manager

View
system

Notification
manager

Surface
manager

OpenGL

SGL

Libraries
Media

framework
f

FreeType

55L

SQLite

WebKit

libc

Display
driver

Linux kernel
Flash • Binder
driver • driver

Audio • Power
driver • management

Figure 2.5: Illustration of all the software stack what Android platform consist of. Taken
from [22]

Developer who wants to develop Android applications has to use Android software
development kit (SDK). It provides A P I libraries and developer tools necessary to build,
test, and debug applications for Android [].

The standard integrated development environment for programming for Android is
Eclipse. This offers plugin called Android Developer Tools which helps by providing graph­
ical interface for creating layouts, debugging, project creation and much more [3].

Programming language for writing Android applications is Java. It is possible to use
most of standard libraries included in Java SE (Standard edition) excluding A W T and
Swing which are graphic user interface libraries which would have no use in Android since
it has its own approach for graphic user interface. Although Java as a language is open
source and free to use, Java virtual machine is not and Android does not use it. It uses

6

virtual machine called Dalvik. The compilation process consists of compiling Java code
with Java compiler into Java bytecode and then with Dex compiler into Dalvik bytecode
to be run on Dalvik virtual machine. There is a plan to replace Davik with virtual machine
called A R T [] in future versions of Android.

2.3.2 Andro id application

Android application consists of couple of building blocks. These are activities, intents,
services, content providers and broadcast receivers. A n activity is a class which usually
binds to one single screen of the application and is controlling its content and handling
user interface. Every application have to have at least one activity which is main activity.
Activities go through different states throughout applications life cycle as could be seen on
diagram 2.6.

To create a new activity has to be created class which inherits from class Activity and
implement its methods. Most importantly method onCreateO which is entry point for an
activity, and thus for whole application in terms of main activity.

Activity

User navigates
tt '.e ac' vity

App

Apps with higher priority
need memory

onCreat&(]

onStartQ

oiiResuneO

Another activity comes
into tiie foreground

I
— onPauseQ —

I
The activity is

TO longer visible

I
{

onRestanf)

User leturns
to "re activity

J

User navigates
to tfie activity

~l
The activity is finishi-rag or

being destroyed by the system

J
L ůnDestrayO

Activity
shut down

Figure 2.6: Lifecycle of Activity. Taken from [19]

Intents are tool for communicating between activities and therefore also for switching
active activity. Services serve for tasks with no user inputs, the rest of building blocks is for
work with data. User interface is hold in layouts, which are xml files with description and
placement of control elements. Figure number A . l shows how android project tree looks
like in Eclipse integrated development environment.

Resources, such as images or strings, are stored in res folder. Those can not be accessed
directly, but during the compilation is to every single resource being assigned id. Those id's
are available in auto-generated R file and thus could be accessed only through this. This

7

approach is suitable e.g. for multilingual applications so string in different languages could
be stored in strings .xml file and from the code accessed all the same way.

Big issue for Android developers are different densities of displays of all possible Android
devices. Because of this, there are multiple folders for images with different densities in the
res folder. So, when is created layout, some of drawable components have to be brought
with application in different resolutions.

Every application has to contain manifest file which holds important information about
the application such as declarations for all activities, permissions (e.g. permission to work
with camera, to access data storage or use data connections), minimal S D K version for
application to be able to build (newer version of target S D K will provide more functions,
but will cause unavailability for older devices) and also stuff like application's icon and title.

Ready application comes in Android Application Package (A P K) . This is a zip file which
consists of Android Manifest file, Dalvik executable, resources (parts of application which is
not code eq. images), native libraries and signatures. Applications are mainly distributed
to the user by so called „markets". The biggest market is Google Play Store run by Google.

2.4 Native development kit (N D K)

Sometimes, there is a need for using native code in Android application. This could be due
to memory management or performance constraints in Java or a need of reusing of some
existing code or library [12].

,flative development kit is a toolset which allows implementing parts of application using
native code languages such as C and C++. It includes a set of cross-toolchains (compilers,
linkers...) that can generate native ARM binaries, set of system headers for stable native
APIs and build system. " (Taken from official reference [4])

Official reference recommends using N D K only in specific cases such as game engines,
signalling processing or physics simulation.

Parts of application written in managed code (Java part) and native code (C /C++
part) could interact through JNI what states for Java Native Interface [8].

By programming through the JNI is possible to use native methods to create, inspect,
and update Java objects (including arrays and strings), call Java methods, catch and throw
exceptions, load classes and obtain class information and perform runtime checking [].

8

Chapter 3

Object detection and OpenCV

First part of this chapter will introduce library for computer vision OpenCV. It will give
to the reader information about its history, use cases and future. Further will be discussed
object detection. Detection will be described as a field of study and multiple approaches
to it will be listed.

Main focus gets object detection using classifier. In part of the chapter dedicated to
it will be explained what is classifier and which algorithms are used to train it. Namely
AdaBoost and WaldBoost. In the next section will be commented on concept from Viola
and Jones and the difference between weak and strong classifier will be explained. Last
section is dedicated to different popular features. These will be explained and illustrated.

3.1 O p e n C V

Computer vision is transformation of data from 2D/3D stills or videos into either a decision
or a new representation []. When computer gets an image, it is just a grid of numbers.
We need computer vision to represent it somehow or to get some information from it.

We perceive this:

41 56 66 ?9 63 45 66 53 SB 76 75 65
m 43 69 ?5 56 41 51 73 5S 76 63 44 SO SO 57 &9 7S IS 73 li S3 6B 59 37

. 72 55 53 &6 Si 92 Si 74 57 72 63 42
''£7 SI 58 &S IS 78 76 73 S9 IS 69 50

Figure 3.1: Images are represented as a grid of numbers. Taken from [21]

Today's use of computer vision is very wide. It could solve tasks from surveillance
t i l l quality checking's in mass manufacturing production. Author of [21] also highlights
image-snitching for aerial and „street-map" applications such as Google Street View.

9

OpenCV is an open source library for computer vision written in C and C++ having
interface for various languages and running under multiple platforms including Android. It
is highly optimized for computational efficiency The library functions cover many areas
but main usage is to work with images from camera and machine learning. Brief list of
what OpenCV can do:

,fiasic image processing (filtering, morphology, geometrical transformations, histograms,
color space transformations), advanced image processing (like inpainting, watershed &
meanshift segmentation etc.), contour processing and computational geometry, various fea­
ture detectors and descriptors (ranging from simple Harris detector to Hough transform,
SURF, MSER etc.), object tracking, optical flow, object detection using cascades of boosted
haar classifiers, camera calibration, machine learning tools (data clustering and statistical
classifiers). " Taken from [9].

Alpha release of the library was introduced in January 1999. At the beginning it was
supported and developed by Intel. Now is OpenCV supported by OpenCV.org foundation
and primary maintained by Itseez1. In 2013 library reached 6,000,000 downloads []. Since
OpenCV is under BSD licence, everybody can use it even for commercial purposes without
any obligations. Even though there are still people from commercial and also academic
sector contributing to development.

2013

2012

2011

2010
2009

2oaa

2007

2006

2005

2004

2003

2002

2001

20(H)
1999

-V2.5.0 Release (LTS)

- ¥2.4.0 Release

— V2.3.0 Release
-v2 2 0 Release

—V2.1.0 Release
- v 2 0 0 Release (C++)

-Official Relase Version 1.0

Beta 5 Release

-Beta 4 Release

-Beta 3 Release

-Beta 2 Release
—Beta 1 Release, Linux Suppart
- Alpha Release at CVPR '00

-Project Started

O p e n C V . o r g E r a

W i l l o w G a r a g e E r a

In t e l E r a

Figure 3.2: History of OpenCV. Taken from [21]

The biggest step forward was introducing version 2.0 which came with C + + interface.
This resolved into much more comfortable way of using it for programmers. Good example
is new structure for holding images cv: :Mat. When using Mat, there is no need for manual
allocation of memory, Mat is handling it by itself.

Nowadays all modern phones comes with camera. It is usual to use them for scanning
QR codes, what is in fact a computer vision task. Optimization of OpenCV for mobile
devices is one of the subjects of current development. Another way of optimization is
exploiting graphic cards and parallelism for speeding up computations [26].

"̂www. itseez. com[9]

10

http://OpenCV.org
http://OpenCV.org

3.2 Detection

With everyday's innovation in computer science and computer hardware are opening new
ways how to use technology. One of this ways is about how do people interact with com­
puters and which tasks could be automated.

Detection means to decide whether there is a specific object present in the image or not.
Detection of objects is fundamental task for some more advance tasks as is object tracking
or object recognition, but it could be also goal by itself as for example in surveillance or
quality control. Over the time there were found some approaches how to grasp detection
task.

There are several ways how to detect an object. While choosing the right one there is
a need to consider multiple factors such as rotations in the space, presence or absence of
structural components (structural components may vary e.g. different shapes of lights on
car, glasses on the face), occlusions (Objects could be occlude by another objects), image
orientation and imaging conditions (like lighting).

Different methods have also different false positive and false negative detections. False
positive detection is when the system decides that area is containing desired objects, but in
fact it is not. False negative is when object is present on the picture, but the system does
not mark it as a successful detection.

Existing methods could be sorted out into categories mentioned in subsections.

3.2.1 Knowledge based methods

This approach is based on specific knowledge about objects, which could be objectively
stated by humans. According to this knowledge, there are some rules which apply for all
desired objects. Therefore this approach is Top-Down oriented. In case of detecting faces,
there is knowledge that there are eyes, nose, mouth... on human face, and these rules may
refer to positioning of eyes according to each other and position of nose according to eyes
etc. But the problem is to transform human knowledge into computer readable rules, which
are appropriately general and thus do not resolve into too many false detections. See [33].

>

Figure 3.3: Illustration of face as seen by knowledge based methods. Rules are based of
knowledge about facial regions. Taken from [33]

11

3.2.2 Feature based methods

This approach focus on finding invariant features of objects. Invariant means that these
features remain the same, no matter the conditions such as lighting. This approach is
Bottom-Up oriented. The feature could be e.g. shape of object segmented with edge
detector, some specific texture of the object or other feature as could be skin colour for
human face. See [33].

3.2.3 Template matching based methods

Template matching is based on having specific pattern for an object or parts of it, which is
compared to an image and correlation is computed. This pattern is prepared in advance.
The way how to do that could be e.g. comparing lines extracted from the image by following
gradient changes with the template or also by comparing features extracted with using edge
detector. Unfortunately this approach has issues with variations of shape, scale and pose.
More in [33].

Figure 3.4: Typical template for face localization. Taken from [33]

3.2.4 Appearance—Based methods

In appearance-based methods, there are some typical characteristics learned from the image
with desired object using statistical analysis and machine learning. This means that we
need set of images for training. Nowadays the most of methods for objects detection fits
into this category. See [33].

Figure 3.5: One of appearance-based methods. In this method are estimated density func­
tions fo clusters of faces and non-faces. Taken from [33]

12

3.3 Object detection using classifiers

Classifier is a function which decides whether input belongs to the object or background
class. Classifiers are made using machine learning algorithm. To the algorithm is given set
of images with desired object and those are processed to make the best possible decision
making function. This process is called learning or training.

There are many possible ways how to train a classifier. For instance artificial neural
networks, support vector machines, decision trees and so on. In section 3.3.1 will be further
discussed boosting.

3.3.1 Adaptive boosting

Sometimes it is possible to find classifier which has ability to divide data into two desired
classes. For object detection, these classes could be called object (found) and background
(not found). If error rate of this classifier is lower than 50%, then it means that it could be
useful. Those classifiers are called weak classifiers. But this high error rate is not acceptable
for any serious usage. So this is why came up the idea to combine these weak classifier
together and therefore make one with acceptable error rate. This kind of classifier is called
strong classifier and the process of making it is called boosting.

Boosting has its roots connected with machine learning algorithm P A C what stands for
probably approximately correct. The learning algorithm in P A C was only random guessing,
therefore it was weak. Then the question, whether this approach can be boosted to make
it stronger, popped up and this is how whole idea of boosting came up.

The AdaBoost algorithm was introduced in 1995 by Freund and Schapire. The idea is to
pick in each iteration one week classifier and add it to the strong classifier, so the error will
lower. Classifier is trained on annotated set of images. Those are having weights, initialized
to the same value, but over the time, images with higher error rate are getting bigger weight.
AdaBoost is abbreviation of Adaptive Boosting. This is because the algorithm can adapt
to the error rates of the individual weak hypotheses. More in [29].

3.3.2 Waldboost

The Waldboost algorithm introduced in [30] is based on AdaBoost (more specifically on real
AdaBoost which is providing real numbers) enhanced by using Wald's optimal sequential
probability ratio test. This is used for putting weak classifiers picked by AdaBoost into
right sequence and to set thresholds. Both negative (under this threshold is investigated
area not in class „object" for sure) and positive (above this threshold is investigated area
in class „object" for sure). Thresholds are set in each iteration and these are computed
using values False negative ratio and False positives, which are set beforehand. Because of
these thresholds is final classifier able to eliminate great amount of frames in early stage
and therefore is fast.

3.4 Weak classifiers

There are many possible features which could describe an image. Those differ mainly
in discriminative power and computational power demands. The real breakthrough for
object, respectively face, detection was work of Viola and Jones [] from 2001. This
meant beginning of rapid object detection era, where is possible to detect objects real-time.

13

In there were used Haar features in combination with "integral image" for speeding up
computing process, AdaBoost algorithm for feature selection and "cascade approach" for
combining classifiers and thus skipping unpromising regions what brought another speed
up.

Figure 3.6: First and second Haar features selected by AdaBoost in Viola and Jones detec­
tor. The first feature exploits difference of intensity between region of eyes and region of
upper cheek. Taken from [32]

3.4.1 Haar features

Haar features got its name from Haar wavelet. It is computed as difference of two adjacent
rectangular areas, which are illustrated as black and white area. More theoretically this is
convolution of image with Haar wavelet [24]. Those are strong in detecting lines and edges.

D H • • B H

Figure 3.7: Standard and extended set of Haar features. Taken from [23]

Haar features are computationally efficient when computed on integral image. Integral
image, is image where each pixel is sum of all pixel in rectangle to the left and top of it.
This means that it is possible to get sum of whole area just by accessing one pixel.

-(A-B-D+E)+(B-C-E+F)+(D-E-G+H)-(E-F-H+I)
-A+2B-C+2D-4E+2F-G+2H-I

Figure 3.8: Calculation of Haar feature response. Values in corners are known from integral
image and response is computed according to stated formulas. Note that there are only
simple operations. Taken from []

Therefore Haar features are computed in constant time, but there is time needed to
pre-process an image to get integral image and also for normalising it, as Haar features are

14

not invariant to lighting conditions [23, 24].

A B

A+D-B-C

C D

A L
Figure 3.9: Computation of standard and extended integral image. Point A holds sum of
whole area A . Taken from []

3.4.2 Local binary patterns

Local binary patterns were introduced in []. These are very simple, yet efficient. L B P s are
computed from small matrices of pixels on grayscale images. The main idea is to threshold
surrounding pixels with one in the middle. If the intensity of pixel is higher than intensity
of one in the middle, then value for the position is 1, otherwise the value is 0. Each position
has some weight. The result is computed by putting weighted values together, what makes
a final result of L B P .

In [35] was proposed to use multi block L B P s . Those appeared to be more discriminative
than original L B P or Haar features.

Average gray-value
o f B l o c k : 7

[e l s

mi
8

y

— i — i — — m —

- H -
i \ Thresholding

0 0 1

1

1 1 -44- - j H U
Thresholding

0 1

— i — 1 —
r i i

— i — i —

-mi-
I i

- 1 —

-H4-< 0 1 1

Descr ibing

Average
gray-value

M B - L B P : 0 0 1 1 1 1 0 0

Figure 3.10: Evaluation of Mul t i block local binary patterns. One block is of size 3x2.
Taken from [35]

15

Figure 3.11: Comparison of Mul t i block L B P s with L B P s and Haar features on face samples.
Taken from [35]

3.4.3 Local Rank Functions

Local rank functions are features developed at Faculty of Information Technology, Brno
University of Technology as an alternative to existing features with high focus on possibility
to implement evaluation in hardware. More in [23]. Main idea is to compute with order
of intensities of pixels instead of intensity values. This order within the grid (usually 3x3
blocks) is called rank. This resolves into that L R F are invariat to lighting conditions or some
adjustments of picture and also into that it is easy to optimize those for high computational
efficiency

From this concept were developed more specific features called Local Rank Differences
(LRD) and Local Rank Patterns (LRP) . L R D are computed as a difference between two
ranks. L R P are computed as sum of two ranks, while the first rank is multiplied by 10. See
[]•

1 1 1

v2 v2 V 2A 27 WS M 63 b2 At. M 87

V.I
—

R(\\ 8) = 6 LRD{v. 8, 5) = 2
R(vt 5) = 4 ' LRPfv, 8, 5) = 64

1 1 1
I I I I I I I I I I I I I

Figure 3.12: Evaluation of two L R F based functions, L R D and L R D . V is gotten from the
images, then are computed ranks R for v from which are computed features using formulas
3.1. Taken from []

16

LR(v, a) = R(v, a)

LRD(v, a, b) = R(v, a) - R(v, b)

LRP(v, a, b) = 10R(v, a) + R(v, b)

(3.1)

(3.2)

(3.3)

3.4.4 Histograms of Oriented Gradients

Histogram of Oriented Gradients (HOG) is a feature which is based on computing with
the most appearing directions and magnitudes of gradients in a specific part of an image.
There are multiple possible approaches for making decision on what information from the
histogram would be representing the feature. One of those could be seen on the picture
3.13.

Figure 3.13: Calculation of H O G features. In this case, response of the feature are the
second histograms which are highlighted. Taken from []

3.4.5 Other features

There are much more features what could by used for object detection. There is also big
field for inventing new features as different types of object sensitive to different changes
in images. The listed ones are state-of-the-art useful for this project as main priority for
mobile devices is still fast evaluation as performance of those device cannot be as big as
performance of machines determined for processing computationally complex tasks but also
there is demand for mobile devices to make an object detection in real time as the purpose
of object detection on these devices leads into this sphere.

17

Chapter 4

Problem analysis

In this chapter is analyzed, how is object detection used in common applications available
on the market. The results of analysis are commented on and analysis go deeper. In
next section are introduced approaches which could be used at the moment for developing
Android application with object detection. Last section explains how are those approaches
grasped in demontrational application.

4.1 Available applications with object detection on Android

The possibility of using information technologies for object detection is well spread around
the globe for some time. Object detection in surveillance or industry has been mentioned.
The most of people are familiar with face detection on web when using the biggest social
network Facebook. In there, each uploaded photograph is processed and users are offered
to tag their friends using rectangles which are marking areas where faces has been detected.
But what about object detection on mobile devices and more precisely on devices running
operation system Android which is so largely growing these days?

The right place to go when making an research about current state of market in terms
of applications for Android is definitely Google Play store. In here could be found the most
of existing applications for end users. The topic of this thesis is Object detection algorithms
and so the first thing to do is to search for related keywords in Google Play store to relieve
what possible solutions are ready to go.

First keyword to search for is naturally „Object detection". Google Play store is very
dynamic place and new applications are being added every day, but at the moment of
search there were no applications for general object detection. Another useful keyword
„face detection", „smile detection" and „car detection". For those searches were found some
applications, usually demo applications based on OpenCV or Android face detection. More
notably application for detecting smiles for taking photos „SmileCam" or applications for
swapping faces on photos. Those applications comes with quite bad rating, about 3 points.
SmileCam was not even possible to test, as it crashed on testing device right after launching.
Most popular applications for „Face swap" do not work in real time and detections have to
be manually adjusted.

18

4.2 Approaches to build application with detection on A n ­
droid platform

A i m of this thesis is to get familiar with object detection for most popular mobile platform,
Android. Conclusions of this thesis might lead into answer to the question, why are not
applications with object detection more popular.

When making application with object detection, it is possible to grasp it in three ways:

• Using only standard Android libraries

• Using external libraries

• Do it yourself approach

When it comes to Object detection, Android A P I is not very rich. It provides whole
framework for working with camera and drawing images on the screen but object detection
is restricted only to face detection. In A P I 1 is ready to use class FaceDetector which is able
to detect faces on bitmaps. Detection is returning back objects of type Face representing
detected faces. Those object contain information about position of detected face as middle
point and distance between eyes. In A P I level 14 is added Camera.Face and its callback
Camera.FaceDetectionListener which are detecting faces with more information (such
as bounding rectangle or mouth position) right on camera frames, but for its use is need
on-device hardware support.

The state-of-the-art library for computer vision OpenCV has it's A P I for Android and
naturally, this library is providing tools for object detection, see [10]. From version 2.4.2,
devices on which should be ran application with OpenCV have to have installed OpenCV
manager which is availible in Google Play store. Becouse of this, application does not
have to include whole library by itself, and therefore are smaller of size and also have their
OpenCV part updated separately. Even though that full A P I is for Java, all the functions
are native and highly optimized. OpenCV provides classifier in class CascadeClassif ier.
Older object detections using cascade classifier in OpenCV were performed only with Haar
features, but now CascadeClassif ier support also L B P features. User can train his own
classifier using tools for OpenCV and provide is as an X M L file. Therefore any kind of
object which is feasible to detect with classifier based on Haar or L B P features, could by
detected on Android with use of OpenCV library.

Last approach is to build own object detecting engine. This assumes deep knowledge
about theory of object detection. Another problem is that Java A P I is too slow for such a
computationally complex task and therefore at least computational part of the application
has to be written in native code. This is an option in Android, as it provides N D K for
compiling native C / C + + code into applications. N D K comes separately from standard
development pack and programmer has to have knowledge about C / C + + , JNI, Dalvik
virtual machine fundamentals and N D K setting itself. This makes programming this way
relatively demanding and even official documentation recommends to avoid N K D if possible
[4]-

4.3 Selected approach

This thesis is comparing all the approaches. A i m of the thesis was not to train own classifier
and therefore there had to be chosen some type of objects, what already has some trained

19

classifiers available. The most common object to detect is human face. There are prepared
databases of faces which were proven while training well known classifiers as is the one from
Viola and Jones [31]. Faces has also detector in standard Android A P I thus application is
tested and also developed with main focus on face detection task. Even though, is easy to
change used classifier for another trained for another type of objects.

20

Chapter 5

Design

In this chapter is decribed what is the purpose of designed application and how is it reflected
on user interface. Further is discussed selected classifier and its format.

5.1 Purpose of the application

Application is supposed to demonstrate object detection on Android platform. The best
way how to do it is to show detection realtime as it is. Android devices are most notably
smarphones and tablets with camera and processing frames from camera is the reason
why is object detection for Android interesting as these devices are mobile and could be
taken anywhere out. It should be possible to pull out the device and use an object detec­
tion application instantly, no matter the specific purpose of application. This means that
demonstrating application should be able to process images from camera and do it as fast
as possible to give to the user realtime feel.

Demonstration should be raw, without any „juicing" like are visual effects, becouse this
would bring attention of the user out of the main purpose of the application. On the other
hand it has to visualize results. Detected objects should be highlighted. The best way is
to draw rectangle right around area which was subject to detection. As this application is
mainly for demonstrating performance, some information about this matter should be also
provided to the user. Ideal thing for this is a counter of frames per second (FPS) in the
corner of user interface.

Figure 5.1: Simple desing of the application
FPS

21

5.2 Selection of suitable classifier

Application is designed to compare multiple ways of detection object on Android platform.
There was a decision to make, which algorithm to choose for implementation of detector
in N D K . Type of object to test on was decided to be human face thus this was taken into
consideration. The main thing to consider was that detector is going to run on mobile device
which has some specifics. Very important condition was that chosen algorithm can not
have any high demands on computational power or memory requirements. Characteristics
as invariance to lighting conditions are very welcome as normalizing each frame before
detection on mobile device might be a problem.

Features selected to use are Local binary patterns. These are proven to perform well
in face detection tasks [35], are computing with integers which make evaluation fast, are
invariant to lighting conditions, are currently state-of-the-art feature for object detection
(cascade classifier in OpenCV uses L B P) and last but not the least, these are easy to
implement in native code.

LBPs are evaluated on greyscale images. Therefore image from camera which is colorful
has to be transformed to one channel greyscale before L B P evaluation.

Another thing is that when using classifier with these kind of features, objects to be
detected are of constant size. But there is demand to detect all objects on the image.
The way out form this is called image pyramid. Image pyramid is set of different sizes of
images made from original one. Using this is classifier not adjusting to image, but image
is adjusting to classifier. Images are downsampled with given ratio, interpolation strategy
and the smallest size. For instance, if object to be detected is of size 26x26 pixels then if
object is over whole space of an image then it will be detected on the smallest image from
pyramid set.

As a classifier was chosen one trained using Waldboost algorithm trained on ČVUT face
data set with parameters alpha=0.2, beta=0.1. There was no need to train new classifier
for faces. The classifier is preserved as X M L file and its structure is illustrated in figure
5.2.

<Wa ldBoos tC l a s s i f i e r c l a s s i f i e r N a m e = " N O N A M E " m i n S t d D e v = " 0 " i m a g e S i z e X = " 2 4 " i m a g e S i z e Y = " 2 4 " >

<stage posT="1 e + 5 0 " negT="-1 .0579">

< H i s t o g r a m W e a k H y p o t h e s i s p r e d i c t i o n V a l u e s = " - 1 . 2 8 3 2 0 3 1 2 5 -0 .228515625 -0 .732421875 - 0 . 5 2 1 4 8 4 3 7 5 . . . ">
<LBPFea tu re p o s i t i o n X = " 1 3 " p o s i t i o n Y = " 6 " b l o c k W i d t h = " 2 " b l o c k H e i g h t = " 2 " />

< / H i s t o g r a m W e a k H y p o t h e s i s >
</stage>

<stage p o s T = " 1 e + 5 0 " negT="-1e+50">
< H i s t o g r a m W e a k H y p o t h e s i s p r e d i c t i o n V a l u e s = " - 0 . 7 9 4 4 8 6 8 6 0 2 6 9 2 3 - 0 . 2 8 9 9 2 7 1 6 2 7 0 8 4 3 - 0 . 2 6 1 7 1 0 2 8 5 5 9 7 4 1 ...">

<LBPFea tu re p o s i t i o n X = " 1 6 " p o s i t i o n Y = " 0 " b l o c k W i d t h = " 2 " b l o c k H e i g h t = " 1 "/>
< / H i s t o g r a m W e a k H y p o t h e s i s >

</stage>

</Wa ldBoos tC lass i f i e r>

Figure 5.2: Example of X M L with classifier

22

The most important values are:

• ImageSizeX and ImageSizeY in WaldBoostClassif ier element. This is information
about size of object to be detected, provided by its width and heigh in pixels.

• PosT and NegT in stage element. These are positive and negative thresholds for one
waldboost stage. If prediction value of the stage is higher than positive threshold,
then no more stages are evaluated and detection is positive. If prediction value is
lower than negative threshold, then no more stages are evaluated and detection have
negative response.

• PredictionValues in HistogramWeakHypotesis is array with 256 values. Result of
L B P evaluation is 8bit number. This number points into array of prediction values
for current stage. Prediction values are cumulated with values from previous stages
and compared with thresholds.

• positionX and PositionY in LBPFeature element are providing information about
position of current L B P feature within image. This information could be represented
by position of top left corner of grid of L P B block, shifted left and top border of an
image by stated number of pixels.

• blockWidth and blockHeight from LBPFeature elements are providing information
about how many pixels high and how many pixels wide is one block within the L P B
grid.

23

Chapter 6

Implementation

In this chapter is described how is designed application implemented and all parameters
are stated. Each implemented detection has its own section. The main focus is on custom
detection, for which is included in-depth description of used algorithm.

6.1 Development environment

For appropriate development was used Eclipse IDE with A D T , N K D and OpenCV. A l l those
components have to be set. Usage of Tegra Development Pack 1 made things smoother as
it contains all necessary tools for development of appplication with computer vision.

6.2 Applicat ion and U I

The idea of implementing design of application is taken from demo samples which comes
with OpenCV library for Android. Application consist of only one activity. In here is
used camera from org.opencv.android.CameraBridgeViewBase. This procure all the
work with camera. Frames from camera are processed in callback function OnCameraFrame.
Images are provided as OpenCV Mat type.

6.2.1 Unprocessed camera frame

Camera frames given to callback are prepared in both interpretation as four channel R G B A
matrix an also one channel grayscale matrix. For view mode without processing, which is
used for comparison of speed to modes with processing. In this case, the given R G B A
camera frame is simply returned back.

6.2.2 Andro id detection

Android face detection from A P I 1 assumes input to be a Bitmap type of image. Therefore
OpenCV Mat has to be converted using OpenCV method Utils .matToBitmap. Then new
instance of FaceDetector is created and detection performed. The only possible parameter
to set is maximum number of detected faces. It is not possible to set minimal size of
object and this detection is ignoring small faces. Detected faces are stored into array of
FaceDetector .Face objects. From those are used atributes MidPoint and EyeDistance.

x

https://developer.nvidia.com/tegra-android-development-pack

24

https://developer.nvidia.com/tegra-android-development-pack

On position of midpoint are drawn circles with radius of eyedistance into OpenCV R G B A
Mat which will be returned as an output.

6.2.3 O p e n C V detection

This detection is all about org.opencv.objdetect.CascadeClassif ier. At first, classifier
is initiallized with X M L file which contains classifier. In this case it is lbpcascade_f rontalf ace .xml
which is now OpenCV's default classifier for faces. It is based on Local binary patterns
feature.

Detection itself is happening when calling detectMultiScale method. Parameters are:

• scaleFactor is stating density of image pyramid. In other words, this parameter
says how much is reduced image size in each iteration (e.q. new width = width /
scaleFactor). Default value is 1.1, this was changed to 1.3 according to setting of
custom detector.

• minNeighbors is value which is stating how many positive detections has to be around
detection to be marked as true positive. Higher values leads to more false negatives,
lower values leads to more false positives. Default value is 3 which seems to be ideal.
Custom detector is not exploiting the neighbour concept and therefore the value is
set to 0 to be comparable.

• flags is unused for L B P classifier. It is remainder for classificator using Haar cascade.

• minSize and maxSize are parameters to set minimal and maximal size of object to
be detected. This could speed up the classification, if it is known, that objects to be
detected are supposed to have certain size. Those parameters are set to 0 as custom
detector is searching for all sizes of objects.

Detection gives its result as a matrix of rectangles with areas of positives detection.
Those rectangles are draw into input R G B A Mat and returned as a result.

6.2.4 Custom detector

The custom detector is written in native code using C++. This is possible because of use
of N D K . The detect is performed in native function MyDetector. It had to be declared as
a native function.

Usage of classifier

Classifier for custom detector is saved in asset folder of the project as an X M L file. It needs
to be loaded and parsed on each start of application. Class Stage is representing data from
the classifier. Parsed data are stored as an array of Stages. Parsing of X M L file is one of
the things to make with standard Android libraries. There are even three possible parsers:

• D O M - Stores whole document tree to the memory. Is able to go backwards and add
elements.

• S A X - Is based on events and callbacks assigned to them. Use less memory than
D O M .

• XMLPullParser - Use less memory than D O M , but is more easy to use than S A X .

25

The chosen one is XMLPullParser . Parsing, as a long term task, has to be out of User
Interface thread. This is one of the reasons why is it performed on start of the application
as a background process using AsyncTask.

Usage of JNI

One of the problems to solve was how to pass arguments to the native function. Java ob­
jects with OpenCV Mat types has available method getNativeObjAddr which is returning
address of Mat in the memory. This address is in native code casted to reference to Mat.
So this is how frame with image from camera in both multichannel and greyscale are passed
to native code. Another thing to pass are data of classifier. Those are passed as Java array
of objects and thus are retrieved as j object Array type.

Data for classification are obtained in function loadStages. In there is used Java Native
Interface (JNI) to get values from Java objects. It is iterated through the array of Java
objects and values are extracted. When native function is called from Java, it comes with
pointer to JNIEnv what is pointer to structure which is storing pointers to all JNI functions.

At first is needed to get object from array and cast it into j object. The call for getting
object is GetObjectArrayElement. Then is gotten class of the object using GetObjectClass.
Then follow calls for getting values such as getlntField or getFloatField in combination
with obtaining field id's of desired field using GetFieldID with given class, field name and
type. Values are stored into arrays. Array with prediction Values is treated similarly but
it is copied into new array so the old one could be released. A l l calls which are returning
some sort of object are creating local reference which is stored in reference table. This
could have the most 512 entries, so reference are cleaned using DeleteLocalRef in each
iteration. Finally, all the arrays are wrapped and returned for further processing.

Image pyramid

Image pyramid is simulated by using function resize from OpenCV. This function takes
parameters for new size and interpolation method. New size is set as 1/1.3 of previous
size. It seemed like good compromise between number of images in pyramid and possibility
miss positive detection. Interpolation method is set as INTER.CUBIC. This is a bicubic
interpolation over 4x4 pixel neighborhood. It provides fair information loss and even that
it is slower than some another methods, performance was not measurable within whole
application.

Resizing is happening within the cycle on the highest level, so it wraps function for
detection and this one is called again for every image in pyramid. This cycle breaks when
size of next image would be smaller than scanning window (size of object to be detected).

Scanning window

Size of scanning window is determined by used classifier. Moving step for scanning window is
set to 2. This means that scanning window is not activated on every position in image but it
is skipping every other row and column. This does not resolve into false negative detections
because window shifted by only one pixel represents barely the same information according
to trained classifier. This also helps with speeding up the application as on positions with
positive detections is high number of stages of classifier to be evaluated.

Scanning window is represented by rectangle initialized with position and size. This

26

rectangle is used for initializing new Mat what is passed to feature evaluation. This initial­
ization is called in OpenCV terminology „creating Region Of Interest(ROI)".

Feature evaluation

Function for feature evaluation is core of whole application. In here are the highest demands
for optimization, becouse this function is called for every ROI which means for example for
resolution 800x480 87,849x calls. The feature what is worked with is Local Binary Patterns.

The computation is happening inside the cycle what is iterating through all the stages
of given classifier. Every stage has specific parameters for position of current feature within
the ROI and block size. At first is computed value of center block. Position of topleft corner
of central block of current feature within ROI is computed as position of topleft corner of
feature summed with width of block on x axis and high on y axis. Then intensities of all
pixels in the block are summed up.

Used L B P features are in 3x3 blocks. Algorithm is to give each block specific weight.
The order of iterating through blocks in right order according to weights is achieved by
using constant array where are stored positions of blocks within the 3x3 grid. In the most
inner cycle is at first gotten sum of pixels for current block according to array with order.
This sum of current block is compared to sum of central block. There is no need to compare
average intensities within the block as average intensities could be compared as good as
sums. If the sum of current block is bigger, then the final result is actualized using binary
OR operation with variable which holds number which has in binary representation 1 on
position of weight for current block. This variable is initialized as 1 and in each iteration
binary shifted to the left, so e.g. in first iteration it changes from 000000016 —> 000000106.

After all 8 iterations, the number representing final result for the stage is used as key for
stage's array of prediction values. From there is taken prediction value which is cumulated
with prediction values from previous stages. This is compared to stage's thresholds. If
the cumulated value is bigger than positive threshold, then ROI is decided to be positive
detection, if the value is smaller, then the ROI is rejected as negative detection. Otherwise
the iteration continues with next stage t i l l all the stages are evaluated. Then the ROI is
decided to be positive detection.

Positive detections highlighting

Finally, every positive detection is stored into vector of rectangles as a rectangle initialized
by ROI adjusted to real size of detection according to current ratio of image downsampling.

27

Chapter 7

Testing

In this chapter is described how were designed test cases, which devices were used for testing
and testing results will be listed and explained. Finally results are evaluated and future
work following this thesis is proposed.

7.1 Test cases

Testing was focusing on comparison of speed of used detectors. Application was turned on
and then were computed average frame rates. Frame rates were provided by FPS counter
from OpenCV and recorded using Logcat tool from Android debug bridge.

For testing were chosen two scenarios. The first one was to aim camera of device
with application on printed picture with people 7.1. The second scenario was to lay the
device with application on the table so the camera was covered so the surface for detection
consisted of black background with noise.

Figure 7.1: Image used for testing

For both scenarios were tested OpenCV detection, Android A P I detection and detection
using custom detector. This was performed with camera setting for maximal resolution
of 800x480 what represented high resolution and with maximal resolution 240x160, what

28

represented low resolution. Testing device Sony Xperia M do not offer resolution 800x480
so it was adjusted to 768x432.

It must be said that Android A P I detection suffered with plenty of false negative detec­
tions on given scenarios, namely on those with lower resolution. Custom detection appeared
to have more false positives than OpenCV, but not obviously, see figures below.

Figure 7.2: Android detection is set to detect only specific sizes of faces, therefore its hard
to compare results.

Figure 7.3: OpenCV detector has the best performance

Figure 7.4: Custom detection suffers from false positives

29

7.2 Testing devices

Testing devices covers whole specter of phones from low-end to high-end. The first phone
did not fulfil requirements of application and application was not able to run.

L G Optimus One
Released 2010
OS 2.2 Froyo
C P U 600 MHz A R M 11
G P U Adreno 320

Huawei Ascend G300 is device what was used for development. It is low-end device,
new modern version of Android is running on it due to custom modification.

Huawei Ascend G300
Released 2012
OS 4.3 Jelly Bean
C P U 1 GHz Cortex-A5
G P U Adreno 200

Sony Xperia M is representative of devices with dual-core processor. It could be classified
as a middle-class device.

Sony Xperia M
Released 2013
OS 4.1 Jelly Bean
C P U Dual-core 1 GHz Krait
G P U Adreno 200

Devices in Nexus series are special phones designed by Google as a reference devices for
Android developers. Testing device Nexus 4 could be classified as a high-end.

Nexus 4
Released 2012
OS 4.4.2 K i tKa t
C P U Quad-core 1.5 GHz Krait
G P U Adreno 305

7.3 Testing results

The fastest detection was performed by device Nexus 4 using OpenCV detection. See 7.5
and 7.3. This is expected result as Nexus 4 is device with the highest computational power
and OpenCV is highly optimized. Even though, this is not fast enough to be considered as
real-time.

30

Nexus 4 800x600

aimg

• black

OpenCV Custom Android API

Figure 7.5: Comparison of achieved frames per seconds while performing detection on device
Nexus 4 using camera resolution 800x480 pixels

Both custom and Android API1 detection are too slow for any real use on resolution
as high as 800x480. Values for Sony Xperia M on high resolution are reflecting values for
Nexus 4, but the slow down is not as big as expected. See 7.6 Android A P I detection for
black background got even higher value than on Nexus. This could be given by conditions
for measuring, as this trend is not confirmed by measurements on low resolution, see 7.3.

Xperia M 768x432

• img

• black

OpenCV Custom Android API

Figure 7.6: Comparison of achieved frames per seconds while performing detection on device
Sony Xperia M using camera resolution 768x432 pixels

Testing on device, what was used for development, Huawei Ascend G300, revealed much
smaller differences than tests on more modern phones. Results for OpenCV and Android
A P I detection got so close together, that it could be considered as similar performance.
This trend was confirmed by measurements on low resolution, see 7.3. Difference between
custom and OpenCV was also shortened. In this case OpenCV performed only about 2.5x
faster than custom detector. The gap on low resolution was bigger. OpenCV performed
about 3.5x faster in there.

31

Ascend G300 800x480

OpenCV Custom Android API

Figure 7.7: Comparison of achieved frames per seconds while performing detection on device
Huawei Ascend G300 using camera resolution 800x480 pixels

Value of detection on image for OpenCV detection for low resolution on Nexus got over
the milestone of 15 FPS . This could be considered as real-time detection. Custom detector
for this case is about 5 times slower but giving performance what could be usable for some
applications.

Nexus 4 240x160

OpenCV Custom Android API

Figure 7.8: Comparison of achieved frames per seconds while performing detection on device
Nexus 4 using camera resolution 240x160 pixels

Values for Xperia for low resolution are similar as for Nexus, but a bit slower. Value
for black background for Android A P I detection is an exception wchich could be caused
by various reason. This measuring was not getting steady in frame rates, so final value
is an average of multiple different values with big differences. Android A P I detection for
low resolution was not giving good detection results, because of its setting, what was not
possible to change, so those results are inconclusive.

Lowening camera resolution is a must for object detection on Huawei Ascend G300.
Wi th as low resolution as 240x160, detection begins to be feasible for use in applications.

Noticeable is difference of performance of custom detector on different phones throwout
the experiment. While for 800x480 is OpenCV on Nexus about 6x faster than on Ascend,

32

Figure 7.9: Comparison of achieved frames per seconds while performing detection on device
Sony Xperia M using camera resolution 240x160 pixels

Ascend G300 240x160

Z img

• black

OpenCV Custom Android API

Figure 7.10: Comparison of achieved frames per seconds while performing detection on
device Huawei Ascend G300 using resolution 240x160 pixels

custom detector have similar performance on all phones. For detection on image even
Ascend appears to be the fastest. Detetion on black background looks more convincing. In
there is Nexus about 2.8x faster than Ascend, but still Ascend appears to be about 1.7x
faster than Xperia.

7.4 Result evaluation

This shows how much important is optimization. OpenCV detector is able to use all the
hardware possibilities of modern devices much better than custom detector. These could
be multicore CPUs, N E O N instructions 7.12 or even computations on G P U 7.11. While
C P U could process only one pixel in time, N E O N coprocessor could process 16 of them
[26].

The way how to improve custom detector leads into the same way. Another speedup
would be achieved by hardcoding values of detector into native code. Now are those passed

33

from java and extracted using JNI which appeared to be quite expensive operation.
Performance of detectors on modern devices is sufficient for performing detection and

more generally computer vision tasks in future applications. The key is to set parameters
of detector to fit into task. For instance to skip needless computations as could detecting
in frames of size where is not expected positive detections, as for some tasks are sizes of
objects to detect known in advance.

The future is in new devices and optimization to its hardware capabilities. Possibilities
for applications with object detection and computer vision on mobile devices are wide and
exploiting new features of new devices as using G P U are very promising. See [26].

Figure 7.11: Here is stated how much are some of tasks performed by OpenCV speeded up
by exploiting G P U for computations. Note the speed up for Viola-Jones detector. Taken
from [26]

CPU
GPU

itive image
processing

pedestrian
detection (HOG) keypoints

Figure 7.12: Here is stated how much could be some of basic tasks performed by OpenCV
speeded up by Exploiting N E O N instructions. Taken from [26]

Tegra CPU
I Tegra NEON

canny median optical color morph- gai
blur flow conversion ology blur detector

5.4x
4 6 x 2 6x

• - - '"- "
morph- gaussian FAST Sobel pyrDown image

34

Chapter 8

Conclusion

Goals of this thesis were to get familiar with mobile platform Android and application de­
velopment for it using Software development kit and also Native development kit, to get
familiar with OpenCV library for computer vision, to propose solutions demonstrating the
detection of objects on Android platform using native calling, implement and test the de­
signed program and evaluate the results. A l l the tasks from assignment were accomplished.

Getting familiar with Android and OpenCV was satisfied by studying textbooks and
official documentation, practicing acquired knowledge by exercising when making multiple
demo applications and integrating useful parts into final demonstrating application.

As a best demonstration of object detection algorithms on Android platform was chosen
application for detection of human faces using detection from OpenCV library, Android A P I
and self designed detector implemented in native code.

Demonstrative application was developed using ready made classifier for face detection
which used L B P features and was trained using Waldboost algorithm. This approach was
selected as current state of the art for the task.

Final application was tested on multiple Android devices from different parts of current
Android device market spectrum. Tests revealed that custom implementation of detector is
way behind detector from OpenCV in performance. It was proposed to redesign application
to avoid JNI calls and put more attention into optimization and exploiting hardware capa­
bilities of modern devices such are N E O N instructions, muticore CPUs and computations
on G P U .

Another way how to make better detector for Android than offers OpenCV could be to
differentiate from it by using classifier which is using different kind of features such as L R F .
That could bring improvement in both speed and precision for some types of objects.

Current state of object detection algorithms is sufficient for some purposes on some
more modern devices. The future of object detection and more generally computer vision
is very promising. Wi th both hardware and software improvements, which are in sector
of mobile devices moving rapidly forward, should be possible to use those technologies to
improve our everyday life.

The future work following up this thesis should focus on improving overall detection
performance using new hardware possibilities of devices such as exploiting mobile G P U
for computations and also on designing application which uses object detection for solving
some real problems.

35

Bibliography

[1] Android, www.android.com. Accessed: 2014-07-13.

[2] Android activations to reach 1 billion - Business Insider, h t t p s : / / i n t e l l i g e n c e ,
b u s i n e s s i n s i d e r . c o m / a n d r o i d - a c t i v a t i o n s - t o - r e a c h - l - b i l l i o n - 2 0 1 3 - 4 .
Accessed: 2014-07-20.

[3] Android Developer Tools — Android Developers.
h t tp : / /deve loper . andro id . com/ too l s /he lp /ad t .h tml . Accessed: 2014-07-15.

[4] Android N D K — Android Developers.
h t tps : / /deve loper .andro id .com/ too l s / sdk /ndk / index .h tml . Accessed:
2014-07-10.

[5] Android sdk — android developers.
h t tps : / /deve loper .andro id .com/sdk/ index .h tml . Accessed: 2014-07-20.

[6] Introducing A R T — Android Developers.
h t t p : / / sou rce . and ro id . com/dev i ce s / t e ch /da lv ik / a r t . h tml . Accessed:
2014-07-15.

[7] Introduction, h t tp :
/ /docs .o rac le . com/ j avase /7 /docs / t echnotes /gu ides / jn i / spec / in t ro .h tml .
Accessed: 2014-06-09.

[8] JNI Tips — Android Developers.
h t t p : / / d e v e l o p e r . a n d r o i d . c o m / t r a i n i n g / a r t i c l e s / p e r f - j n i . h t m l . Accessed:
2014-06-14.

[9] OpenCV. h t tp : / / i t seez .com/0penCV/ . Accessed: 2014-07-21.

[10] OpenCV4Android usage models — OpenCV.
ht tp: / /opencv.org/platforms/android/opencv4android-usage-models .html.
Accessed: 2014-07-08.

[11] • Smartphone operating systems: global market share 2009-2013 — Statistic,
h t tp : / /www.s t a t i s t a . com/s t a t i s t i c s /263453 /
global-market-share-held-by-smartphone-operat ing-systems/ . Accessed:
2014-07-20.

[12] Native Development K i t (NDK) - A n Android Tutorial.
http://www.ntu.edu.sg/home/ehchua/programming/android/android_ndk.html,
2012-07-01.

36

http://www.android.com
https://intelligence
http://developer.android.com/tools/help/adt.html
https://developer.android.com/tools/sdk/ndk/index.html
https://developer.android.com/sdk/index.html
http://source.android.com/devices/tech/dalvik/art.html
http://developer.android.com/training/articles/perf-jni.html
http://itseez.com/0penCV/
http://opencv.org/platforms/android/opencv4android-usage-models.html
http://www.statista.com/statistics/263453/
http://www.ntu.edu.sg/home/ehchua/programming/android/android_ndk.html

[13] Dashboards — Android Developers.
h t tps: / /developer .android.com/about /dashboards/ index.html, 2014-07-07.
Accessed: 2014-07-20.

[14] Smartphone - Wikipedia, the free encyclopedia.
h t tp : / / en .wik iped ia .o rg /wik i /Smar tphone , 2014-07-16. Accessed: 2014-07-16.

[15] Android (operating system) - Wikipedia, the free encyclopedia.
h t tp : / / en .wik iped ia .o rg /wik i /Andro id_(opera t ing_sys tem) , 2014-07-21.
Accessed: 2014-07-21.

[16] Apple Inc. - Wikipedia, the free encyclopedia.
h t t p : / / e n . w i k i p e d i a . o r g / w i k i / A p p l e _ I n c , 2014-07-21. Accessed: 2014-07-21.

[17] iOS - Wikipedia, the free encyclopedia. h t t p : / / e n . w i k i p e d i a . o r g / w i k i / I o s ,
2014-07-22. Accessed: 2014-07-22.

[18] iPhone - Wikipedia, the free encyclopedia.
h t t p : / / e n . w i k i p e d i a . o r g / w i k i / I P h o n e , 2014-07-22. Accessed: 2014-07-22.

[19] Activity — Android Developers.
h t tp : / /deve loper . andro id .com/ re fe rence /andro id /app /Ac t iv i ty .h tml ,
2014-07-23. Accessed: 2014-07-24.

[20] Gary Bradski. Learning OpenCV : computer vision with the OpenCV library.
O'Reilly, Sebastopol, C A , 2008.

[21] Gary Bradski. Learning OpenCV : Computer Vision in C++ with the OpenCV
Library. O'Reilly & Associates, Sebastopol, C A , 2012.

[22] Marko Gargenta. Learning Android. O'Reilly Media, Sebastopol, C A , 2014.

[23] Adam Herout, Pavel Zemcik, Michal Hradis, Roman Juranek, Jifi Havel, Radovan
Josth, and Martin Zadnik. Low-level image features for real-time object detection.
IN-TECE Education and Publishing, page 25, 2009.

[24] Roman Juranek. Acceleration of Object Detection Using Classifiers. PhD thesis, 2012.

[25] Timo Ojala, Matt i Pietikainen, and Topi Maenpaa. Multiresolution gray-scale and
rotation invariant texture classification with local binary patterns. Pattern Analysis
and Machine Intelligence, IEEE Transactions on, 24(7):971-987, 2002.

[26] Kar i Pull i , Anatoly Baksheev, K i r i l l Kornyakov, and Victor Eruhimov. Real-time
computer vision with opencv. Communications of the ACM, 55(6):61-69, 2012.

[27] Felix Richter. The price gap between ios and android is widening,
h t tp : / /www.s ta t i s ta .com/char t /1903/
average-se l l ing-pr ice-of -andro id-and- ios -smar tphones / , 2014-06-01.
Accessed: 2014-07-20.

[28] Janessa Rivera and Laurence Goasduff. Gartner says worldwide traditional pc,
tablet, ultramobile and mobile phone shipments are on pace to grow 6.9 percent in
2014. http://www.gartner.com/newsroom/id/2692318, 2014-03-27. Accessed:
2014-07-21.

37

https://developer.android.com/about/dashboards/index.html
http://en.wikipedia.org/wiki/Smartphone
http://en.wikipedia.org/wiki/Android_(operating_system
http://en.wikipedia.org/wiki/Apple_Inc
http://en.wikipedia.org/wiki/Ios
http://en.wikipedia.org/wiki/IPhone
http://developer.android.com/reference/android/app/Activity.html
http://www.statista.com/chart/1903/
http://www.gartner.com/newsroom/id/2692318

[29] Robert E Schapire. A brief introduction to boosting. In Ijcai, volume 99, pages
1401-1406, 1999.

[30] Jan Sochman and Jiri Matas. Waldboost-learning for time constrained sequential
detection. In Computer Vision and Pattern Recognition, 2005. CVPR 2005. IEEE
Computer Society Conference on, volume 2, pages 150-156. I E E E , 2005.

[31] Paul Viola and Michael Jones. Rapid object detection using a boosted cascade of
simple features. In Computer Vision and Pattern Recognition, 2001. CVPR 2001.
Proceedings of the 2001 IEEE Computer Society Conference on, volume 1, pages
I - 511. I E E E , 2001.

[32] Paul Viola and Michael J Jones. Robust real-time face detection. International
journal of computer vision, 57(2):137-154, 2004.

[33] Ming-Hsuan Yang, David Kriegman, and Narendra Ahuja. Detecting faces in images:
A survey. Pattern Analysis and Machine Intelligence, IEEE Transactions on,
24(l):34-58, 2002.

[34] Jay Yarow. This chart shows google's incredible domination of the world's computing
platforms, h t tp : //www. bus ines s ins ide r . com/
androids-share-of-the-computing-market-2014-3, 2014-03-28. Accessed:
2014-07-21.

[35] Lun Zhang, Rufeng Chu, Shiming Xiang, Shengcai Liao, and Stan Z L i . Face
detection based on multi-block lbp representation. In Advances in biometrics, pages
I I - 18. Springer, 2007.

38

Appendix A

Project structure

A fiĵ S m o j e N a t i v e
••> S ä A n d r o i d 4.0,3
A & src

A H0 c i . b o r e c . v o d l . bp
;> [7] M a i n A c t i v i t y . j a v a
[> [7] S t a g e j a v a
[> J7] X M LP arming.Java

A |§5 g e n [Gene ra t ed Java F i le :]
A {J} c z . b o r e c . v o d l . b p

t> [J] B u i l d C o n f i g . j a v a
r> fj] R Java

A 0} o r g . o p e n e v
l> [T] R.java

i> Bfe A n d r o i d D e p e n d e n c i e s
r> ^5? assets
i> § 5 7 b i n
J & jn i

A n d r o i d . m k
@ A p p l i c a t i o n . r n k

[c| j n i _ p a r t . c p p
• £ U III;:

r> & ob j
J res

L> i & d r a w a b l e
& d r a w a b l e - h d p i
& d r a w a b l e - l d p i
Q$ d r a w a b l e - m d p i

L> d r a w a b l e - n o d p i
(23? d r a w a b l e - x h d p i

J l a y o u t

jo , s u r f a c e _ v i e w . x m l
i> v a l u e :

|oj A n d r o i d M a n i f e s t . x r n l
p ro jec t , p r o p e r t i e s

Figure A . l : Demonstration of application structure from developer's perspective. Image is
taken from Eclipse development environment

39

Appendix B

CD content

Attached C D contains:

• project source codes

• Thesis in P D F

• Application project with source

• Application as a A P K file

• Readme file

