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Abstract

Evaporation (E) and evapotranspiration (ET ) are dynamic and non-linear processes that

incorporate various internal transport mechanisms, which are essential in the unsaturated

zone in arid regions under low soil moisture conditions. The evaluation of ET from soils

and water bodies is necessary for planning and operating water resource projects such

as water supply (surface and underground), multipurpose water projects as irrigation,

power, waste transportation, and storage, flood control, and many others. FAO Penman-

Monteith (PM) equation is the most widespread method to estimate the evaporation rate

in saturated soils (Allen et al., 1998). This approach can be implemented as a boundary

condition for the Richards’ equation and related to the evaporation rate with the soil’s

water content. However, the PM equation is not valid when the soil moisture is low, and

the vapor flux is an essential component of the total water flux. In this case, the governing

equations are formed out of the coupled Richards’ equation with the heat transport, where

the boundary conditions originate from the surface energy balance and the evaporation

rate (Saito et al., 2006; Sakai; Jones, et al., 2011).

In this contribution, the numerical implementation of the Penman-Monteith method as

the boundary condition of the classical Richards equation is presented. Additionally,

the application of the coupled model of heat and water flow was included in the free

software Dual Richards Unsaturated Equation Solver. Two scenarios were designed to

test the performance of both models under a controlled meteorological environment and

the impact of the evaporation rate on the pressure head and water content, including the

energy surface balance.

Keywords: Richards’ equation, surface energy balance, vapor flow, energy flux.
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Abstract

Evaporace (E) a evapotranspirace (ET ) jsou dynamické a nelineárńı procesy, zahrnuj́ıćı

nejr̊uzněǰśı interńı mechanismy pro transport, které jsou esenciálńı v nenasycené zóně

v aridńıch oblastech s ńızkou vlhkost́ı p̊udy. Evaluace ET z p̊ud a vodńıch ploch je

nezbytná pro plánováńı a provoz projekt̊u vodńıch zdroj̊u, jako je zásobováńı vodou

(povrchové a podzemńı), v́ıceúčelové vodńı projekty určené pro zavlažováńı, výrobu en-

ergie, přepravu a zneškodňováńı odpad̊u, protipovodňová opatřeńı a mnoho daľśıch. FAO

Penman-Monteithova (PM) rovnice je nejpouž́ıvaněǰśı metodou pro odhad mı́ry evapo-

race saturovaných p̊ud (Allen et al., 1998). Tento př́ıstup může být implementován jako

okrajová podmı́nka pro Richardsovu rovnici a souviset s mı́rou evaporace vodńıho ob-

sahu p̊udy. PM rovnice však neńı platná, pokud je vlhkost p̊udy ńızká a prouděńı páry

je kĺıčovou komponentou celkového prouděńı vody. V tomto př́ıpadě jsou ř́ıd́ıćı rovnice

odvozeny od kombinace Richardsovy rovnice s rovnićı pro transport tepla, kde okrajové

podmı́nky vznikaj́ı z rovnováhy povrchové energie a mı́ry evaporace (Saito et al., 2006;

Sakai; Jones, et al., 2011).

V této publikaci je prezentována numerická implementace Penman-Monteithovy metody

jako okrajová podmı́nka klasické Richardsovy rovnice. Kromě toho, aplikace spojeného

modelu prouděńı tepla a vody byla použita jako vstup pro bezplatný software Dual

Richards Unsaturated Equation Solver. Byly navrženy dva scénáře pro testováńı výkonu

obou model̊u v kontrolovaném meteorologickém prostřed́ı a testováńı dopadu mı́ry evap-

orace na tlakovou výšku a složeńı vody, včetně rovnováhy povrchové energie.

Kĺıčová slova: Richardsova rovnice, rovnováha povrchové energie, prouděńı páry, prouděńı

energie
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Chapter 1

Introduction

Evaporation (E) is one of the components of the hydrological cycle, and accounts for 90%

of the moisture in the Earth’s atmosphere; the other 10 % is due to plant transpiration

know as evapotranspiration (ET ) (Jensen; Allen, 2016). It is an essential part of the water

budget of any region for water resources planning and management, such as irrigation

management (Jensen; Allen, 2016). Particularly, E and ET have played an important

role in arid and semiarid irrigated areas across the globe. Its importance has increased

due to the growing population and the need to reallocated water sources. Consequently,

the determination of E and ET rates is essential for efficient management of reservoirs,

especially in water-scarce regions where they rely on water stored in open reservoirs (Helfer

et al., 2012). While in humid areas, its importance lies in the expansion of supplemental

irrigation and inadequate water storage (Jensen; Allen, 2016).

Evaluation of E from soils and water bodies is necessary for planning and operating water

resource projects. Multipurpose water projects as irrigation, power, waste transporta-

tion and storage, flood control, water supply, municipal and industrial water use, and

wastewater reuse systems, as mentioned by Jensen; Allen, 2016 should take into account

evaporation since it is an energy-intensive industrial process that influences costs of food

and other products (Or et al., 2013).

Numerous different formulations are available to calculate E and ET (Kay et al., 2008),

there are physical and empirical models. Their complexity varies widely based on the

number of atmospheric variables involved in the model, from those dependent on just

1



Chapter 1. Introduction

one variable, commonly temperature (e.g., Thornthwaite, 1948), to those dependent on

more than one atmospheric variable, such as wind speed, relative humidity, radiation and

temperature (e.g., Penman; Keen, 1948). The primary purpose is to relate E and climate

variations based on experimental data collected or mathematical modeling, moreover, to

extrapolate E data from regions where are available to other places where few or no data,

except meteorological records, are available (Jensen; Allen, 2016). When using empirical

or mathematically derived formulations, the scale is also important.

Further estimates of E and ET should be more accurate as of the value of water increases

and its competition (Jensen; Allen, 2016). Although standardization of methodology and

availability of data for estimating E and ET has improved since the 1950s, the uncertainty

from ET evaluation is nowadays of high importance for agriculture and climate change

adaptability.

Evaporation and Climate Change

Expected changes in climate variables, particularly the increase in surface air tempera-

ture, evaporation is also expected to increase. Hence, it may results in alteration of the

hydrological cycle (Helfer et al., 2012). Predictions done by global climate models, not

only refers to the increase of air temperature, but also in net radiation, two driven atmo-

spheric parameters of E (Alvarez et al., 2008). Extreme weather events, such as floods

or droughts, are more likely to occur, and their effects should be considered in any future

evaluation of climate change impact (Potopová et al., 2015). As stated by Alvarez et al.,

2008, the dry seasons are expected to last longer with a reduction of rainfall intensity,

causing limitations in water storage.

In Australia, it is expected that the potential evapotranspiration will increase by 2% by

2030. The low emission scenario shows increases in evapotranspiration of around 3-6%

by 2070, while high emission scenario shows increases in evapotranspiration of around

6-10% (Helfer et al., 2012). Regarding the case of open water bodies, the forecast based

on five different global climate models and the Penman model for open water evaporation

found an increase of 2.2% for 2030, 3.9% for 2050 and 6.8% for 2070 in a high emission

scenario, and 1.7%, 3.9%, and 4.8% respectively, in a low emission scenario (Johnson et al.,

2010). In Brazil, Althoff et al., 2020 estimated 7.3% and 18.4% increases in evaporation,
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in moderate and pessimistic scenarios, respectively.

In the context of climate change, the evaluation of its effects on evaporation, considering

changes between the baseline and future climates leads to a source of uncertainty for hydro-

logical climate change impacts, from the underlying assumption that not only temperature

can have a significant effect on overall changes in E, but also other atmospheric variables

(Kay et al., 2008). Thus, for climate change assessment, the physical-based formulation of

E and ET , such as Penman-Monteith (Allen et al., 1998), are used because they included

more atmospheric variables than other formulations, and their effects are better under-

stood. However, when modeling the hydrological impacts of climate change, estimates of

E and ET are calculated from other climate variables, and many existing formulations

can be applied. What is clear is that with the intrinsic uncertainty of climate change, it is

necessary that the models to estimate evaporation be more accurate and intuitively allow

the identification of the impacts of each of its parameters and characterizations thereof.

The above was demonstrated by the study of Han et al., 2012 in China, which showed

that, for a large river basin, the Penman-Monteith equation is more sensitive to relative

humidity changes than air temperature.

In the case of the Czech Republic, droughts are known to be the most severe natural disas-

ters after floods, where the evaluation of evaporation is essential for drought studies from

different perspectives, particularly in a country where agriculture is essential (Potopová

et al., 2015). The increases in droughts’ frequency and duration can affect several water

dynamics, particularly in the south-eastern part of the country, where it is more sensitive

to climate change (Pivec et al., 2006).

Evaporation and Agriculture

In terms of productivity, evaporation represents an economical loss for agriculture and its

general perception from public opinion about its sustainability during climate crisis times,

where an approximate 70% increase in food production is required to meet the world food

demand in 2050, according to Food and Agriculture Organization of the United Nations

(FAO, (FAO, 2009)). An increase in agriculture is also an increase in water consumption,

and the only way for agriculture to be sustainable is irrigation, and water storage must

be efficient in a world with many social, economic, and environmental disparities (Althoff
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et al., 2020). Irrigated agriculture has commonly consumed more than two-thirds of the

available water supply, according to FAO (Barker et al., 1999).

Improve water management by developing water-saving technologies requires a compre-

hensive understanding and evaluation of the evaporation process associated with opened

reservoirs for storage purposes, where reservoir management strategies must evolve as the

expected changes in climate variables are taking place (Althoff et al., 2020). The losses of

water due to evaporation threat efficiency and the cost of food production, the enlarge-

ment of these losses due to climate change, cannot be neglected, and they need to be

quantified. As reported by Gökbulak et al., 2006, more water is lost by evaporation than

used for domestic and industrial purposes.

In conclusion, the challenges associated with the evaporation process are becoming more

acute as the effects of climate change become visible, and water sources have been limited.

The estimation of evaporation and its quantification remains of scientific and industrially

relevant, progress must be made to find the most suitable models for the prediction and

evaluation of short and long term impacts on different scales.

1.1 Motivation and goals

The primary motivation of this thesis is the understanding of physics of the evaporation

process in soils and further mathematical modeling and implementation of two different

approaches to address the evaporation problem, which can simulate surface evaporation

rate and sub-surface water vapor flow, in the open-source Dual Richards’ Unsaturated

Equation Solver (DRUtES , 2020) and comparing the performance of both methodologies.

This work’s general objective was to implement the mathematical model of evaporation

considering surface energy balance into in-house code DRUtES.

For this main objective, a literature review was carried out to understand soil evaporation

physics and the proposed models and methodologies to evaluate it. The FAO Penman-

Monteith methodology was chosen to quantify the potential evaporation (Allen et al.,

1998), and the coupled water, vapor, and heat transport in soils to account the sub-surface

evaporation (Saito et al., 2006; Sakai; Jones, et al., 2011). The mathematical formulation

of both models was done and used to proceed to the computational implementation in
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DRUtES. Lastly, a case study was proposed to evaluate the implementation under con-

trolled meteorological conditions where it was possible to determine if the selected models

were performing as expected.

As a result of this thesis, DRUtEs was expanded to face applications where evaporation is

a dominant process and cannot be neglected. This result is then a significant attempt to

address the industrial challenges supported by numerical modeling in the hydraulics field.

It was also intended to be user-friendly, and able to be applied for carrying out multiples

studies to evaluate evaporation. After the mathematical formulation, the implementation

phase started with the surface evaporation model and continued with the sub-surface

model due to its complexity. It is essential to highlight that implementation entails adding

detail to the model, where an iterative and incremental approach can be recommended to

construct a result gradually. Although the numerical formulation was not required for the

computational implementation, the author provided a numerical context involved in the

selected models.

1.2 Thesis structure

This chapter briefly presents in context the evaporation process as an essential part of

water management for a wide range of applications; moreover, it states the importance

of understanding and modeling it under the climate change crisis and its consequences in

agriculture and food security. Lastly, the motivation and goals of this thesis are described

in the context of numerical modeling in hydraulics.

Chapter 2 defines some basic concepts to understand the evaporation process and its

definitions, then proceeds to describe the surface evaporation, and what is happening in the

surface-soil interface, including the surface energy balance. This chapter ends describing

the sub-surface evaporation and the explanation of the three stages of this process.

Chapter 3 presents the mathematical formulation of evaporation. Firstly, Richards’s equa-

tion is stated for variable saturated porous medium, including initial condition and the

evaporation as a Neumann boundary condition using the Penman-Monteith equation. The

parameterization of the hydraulic functions is also presented. Similarly, the mathematical

formulation for liquid water, water vapor, and heat transport in a porous medium is also
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stated with their respectively, initial and boundary conditions. Also, the thermodynamics

relations used to describe the thermal and non-thermal hydraulic properties are presented.

Chapter 4 describes the Finite Element Method (FEM) and the weak formulation for

the system of partial differential equations presented in Chapter 3, some other numeric

aspects are included.

Chapter 5 contains the computational implementation of both models presented in Chapter

3, here is also described the source files that were created as part of this thesis, including

the required input files to run the models.

Chapter 6 presents the benchmark case where the implementation is evaluated and the

comparison of these two models. Chapter 7 concludes this work and present some future

research recommendations.

The Appendix section is presented other important results of this work, and collaboration

made as well. Lastly, the appendixes include the evaluation of the constitutive relations

for the liquid water, water vapor, and heat model done in Matlab as an analysis exercise

before proceeding with the implementation in DRUtES. Also, the collaborations, poster

presentations, and extra work done as a result of this thesis are presented.
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Chapter 2

Evaporation phenomenon in soil

physics

2.1 Introduction

This chapter contains a conceptual background to understand the evaporation process, and

some definitions are presented as well. It examines the evaporation as a phase transition

process controls by the thermodynamics conditions of the system. It continues describing

the evaporation accurately when the wetting surface is the soil, referred to as surface

evaporation in this work, and when the wet front is inside the porous medium during

the drying of the soil as a consequence of an increase of the net evaporation rate. This

chapter also summarizes the controlling factors of this process, such as the energy surface

balance. The first derivation of the FAO Penman-Monteith equation is also stated and

its assumptions to create a standardized method to estimate evaporation in a reference

surface, which is possible to apply in different crops across the globe.

2.2 Evaporation

Evaporation (E) is defined as a physical process by which the liquid water is transferred

to the gaseous state, so-called vapor. It is possible to identify two major factors involved

in phase changes of water, energy, and water content. Evaporation occurs when the rate

of evaporation exceeds the rate of condensation. A saturated state exists when these two
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process rates are equal, at which point the air capacity to carry water vapor molecules is

full (Shuttleworth, 2012).

Evaporation is one of the components of the hydrological cycle on a large scale. It is

identified as an essential process in the planet that flows into the global hydrological cycle

about the 60% of the precipitation by soil evaporation (20%) or through plant transpiration

(Or et al., 2013). Transpiration is defined as the water within the cells plants evaporates to

the air through plant surfaces. Evapotranspiration (ET ) is the vaporization by evaporation

and transpiration. Potential evapotranspiration (ETp) is the rate of evaporation when all

soil-surface interfaces are wet, and no restrictions in the process occur, since this is an

ideal state, it also consider as upper value to describe the maximum rate of ET (Jensen;

Allen, 2016).

Reference evapotranspiration (ETo) was developed at the end of the 20th century, as

an effort to standardize a methodology for calculating ET independently as possible from

land cover and vegetation. Nowadays, this approach has enabled comparing climate effects

on evapotranspiration rates across the globe to understand how this process has been

influenced by climate variability in different regions and environments. It is based on

standard surface parameters, such as albedo, uniform vegetation cover with a fixed surface

resistance, and standardized coefficients for aerodynamic part (Allen et al., 1998).

A comprehensive understanding of the evaporation process requires to know the physical

properties of liquid water, water vapor, and air. During the phase changes process, it is

needed to know the humidity gradients, which refers to water vapor content and energy.

When speaking of water vapor, vapor pressure is commonly used for describing the water

vapor content since it is a measure of the amount of water in vapor form present in a

sample of air (Shuttleworth, 2012).

The air has a total pressure known as atmospheric pressure, which is the sum of the partial

pressure of all the compounds in the air, including water vapor, so the vapor pressure is

the partial pressure exerted by molecules of water in the gaseous phase. Since water vapor

particles are freely flowing from the wetting front to the air and return to the liquid water

surface in the water-air interface, at a certain point, these two flows are the same, and

the equilibrium state is met where the vapor pressure exerted by water vapor is known

as saturation vapor pressure (Jensen; Allen, 2016). The water surface’s net evaporation
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rate is the difference between the rate at which molecules of water are taken from the

water surface to the adjacent air layer minus the rate at which the molecules of water

already present in the air are going back into the water (Shuttleworth, 2012). The above

is graphically depicted in Figure 2.1, where the arrows towards liquid water represent

a condensation process, and the arrows towards water vapor represents the evaporation

process.

Liquid water

Water vapor

Figure 2.1: Vaporization process and the evaporation rate. Own elaboration based on
(Shuttleworth, 2012).

If the rate at which the water molecules are going from liquid water towards water va-

por, in a temperature-dependent process, exceeds the rate at which the water molecules

are captured back from the air to the water surface, in a concentration-dependent pro-

cess, the evaporation takes places, and water leaves the surface and transfers to the air

(Shuttleworth, 2012).

To move against a force requires work, and therefore, energy must be given to separate

water molecules to give changes in phase. The amount of energy needed is directly related

to the number of molecules present and, thus, to the mass of water that changes phase.

The amount of energy needed for a liquid-to-vapor water transition is called the latent

heat of vaporization. Due to the change in separation for a transition from liquid water

to water vapor is much larger, the latent heat of vaporization for liquid water is higher

than the latent heat of fusion (Shuttleworth, 2012) . The amount of energy needed also

depends on the temperature at which the phase changes occur.

In short, the evaporation phenomenon should be understood through the amount of water

that is changing phase and, consequently, the energy available for this process.
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2.3 Surface evaporation

The current methodology for estimating E is based on the balance of energy on the surface

and mass transfer. This approach was rapidly developed in the second half of the 20th

century, as a consequence of the demands of the water industry and the competition

for available resources (Jensen; Allen, 2016). Most early studies were based on mean air

temperature as an index of evaporating demand or as an indicator of solar radiation, where

diurnal fluctuations of the air temperature at the soil–atmosphere interface inducing water

vapor evaporation at different times of the day were the first approximation to correlate E

and meteorological conditions. Few new methods involved air humidity, and none involving

wind speed were proposed yet. During the period 1896 - 1939, the scientific community

started a detailed study of this phenomenon through data collection and empirical relations

to fully understand what affected the quantity of water used by crops and crop yields in

irrigation projects (Jensen; Allen, 2016).

In 1916, solar radiation was recognized and taken into account as the primary cause of

cyclic change of environmental factors affecting the estimation of E and the importance

of the energy in the balance of water (Briggs et al., 1916). Briggs et al., 1916 initiated

their studies on applicable requirements of plants in 1910, where they also evaluated the

hourly loss of water from evaporation pans in comparison with hourly transpiration and

developed predicting equations using vertical component of solar radiation, temperature,

and vapor saturation deficit, that laid the foundation for the energy-based E estimating

methods. Later on, Hedke, 1924 proposed a method based on the assumption that energy

consumed in ET was determined by the energy available; however, the radiant energy was

not considered in his hypothesis. From 1920 to 1940, researchers focused on estimating

evaporation and seasonal effects on E. Later, Rohwer, 1931 conducted a comprehensive

study of evaporation in pans of different sizes, which had led the research of Penman

(Penman; Keen, 1948) who later extended and compared his own empirically derived

aerodynamic equation with the one obtained by (Rohwer, 1931), the foundations for the

current methodology. E was measured in California using sampling methods in 1942 by

(Blaney et al., 1942). They developed a method of estimation using mean air temperature,

percent of annual daytime hours, and average humidity.

Nevertheless, the two most popular theories were published worldwide in 1948. Thornth-
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waite, 1948 correlated the mean air temperature with E as determined by water balance,

and Penman developed the combination equation based on the surface energy balance and

the empirical aerodynamic relation (Penman; Keen, 1948) . His work was based on an

ideal combination of weather parameters in the form of an energy balance equation where

the components of evaporation, sensible heat flux, and soil heat flux sum to available net

radiation. Moreover, he also formulated evaporation in terms of an empirical aerodynamic

resistance (Penman, 1963). Later, he combined both approaches to generate the Penman

combination equation, which required only measurements of air temperature, humidity,

wind speed, and solar radiation.

Meanwhile, in Europe, engineers also developed empirical equations for estimating E.

Makkink, 1957 published an equation based on solar radiation and air temperature in

the Netherlands, and Turc, 1961 developed a formula in France for ETp also based in

solar radiation and air temperature. The energy balance method of Penman was used

by Tanner et al., 1960 to estimate the potential evapotranspiration in 1960. However,

by the time when Jensen; Haise, 1963 developed their simple equation based on solar

radiation and mean air temperatures for estimating ETp for well-watered crops at the

full cover, the Penman equation was thought to be too complicated to use, given the

status of computational tools, the weather data commonly collected during this period,

and expertise of engineers across all the fields where evaporation matters. After Olivier,

1962 developed a method based on the radiation-latitude factor derived from cloudless

day solar radiation in 1962, John Monteith reformulated Penman combination equation

using a more theoretical equation for aerodynamic transport component (Monteith, 1981).

This new equation was named after both scientists, as Penman-Monteith (PM) equation,

including the new parameters of aerodynamic resistance and surface resistance, which

provided flexibility to the PM equation for application to a wide range of surfaces and

vegetation types.

Three factors had been identified as primary factors affecting ET when the evaporating

surface is the soil surface, which is the weather, vegetation, and air-surface interface (e.g.,

soil and water bodies) (Allen et al., 1998). In this work scope, it is only considered the

impacts of weather and soil variables; moreover, vegetation is only taken into account

using the simplifications already implicit in the methods implemented . Solar radiation
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is then the most influential factor from climate variability, and it is considered as the

ultimate source of energy required to vaporize water. Air humidity, wind speed, and

air temperature are also relevant. The water vapor gradient between soil surfaces and air

depends on surface vapor pressure and vapor pressure of the air, or air relative humidity. In

addition to weather, the soil’s water content, and soil hydraulic and thermal conductivities

are also intervening in the evaporation process (Jensen; Allen, 2016).

Studies and historical data of evaporation (E) and evapotranspiration (ET ) show that,

when the soil water is not constraining, the primary variable controlling ET is the energy

provided as solar radiation. However, it is needed to quantify the energy budget at the

active surface where the ET process is taking place, to estimate the energy available to

vaporize the water (Jensen; Allen, 2016). In this sense, the energy balance relates the net

radiation Rn [MJ m−2 d−1], the sensible heat Hs [MJ m−2 d−1], the latent heat of vapor-

ization L [MJ m−3], the evaporation rate Ev [m d−1], and the soil heat G [MJ m−2 d−1]

fluxes. The vertical energy balance at the active surface is described by Equation (2.1)

and illustrated in Figure 2.2 (Sakai; Jones, et al., 2011)

Rn −Hs − LEv +G = 0 (2.1)

The exchange of energy that occurs mainly in the form of surface fluxes. The radiant

energy from the sun, latent heat (when water vapor evaporates from or condenses onto

the land), sensible heat (that warms or cools the air in contact with the surface), and soil

heat that diffuses into or out the ground (Shuttleworth, 2012). A surface flux of any of

these is the amount of that entity flowing through and normal to the surface in unit time,

per unit surface area. In the case of energy flux exchange with terrestrial surfaces, this is

the rate of flow of energy per unit area of a land surface. Moreover, the maximum rates

of surface energy transfer are constrained by the incoming energy from the sun (Jensen;

Allen, 2016; Shuttleworth, 2012).
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Rn

G
surface

LEv

Hs

Figure 2.2: Simplified surface energy balance with its components: Net radiation Rn,
latent heat of latent heat of vaporization L, evaporation rate Ev, sensible heat Hs and soil
heat G.

• Net radiation Rn: the driving input to the surface energy balance is the net flux

of radiant energy. The net radiation is itself a balance between four components:

incoming and outgoing radiation in the shortwave called solar radiation and the in-

coming and outgoing radiation in the wavelength determined by temperatures typical

of the Earth surface and the lower atmosphere long-wave radiation. Daytime net

radiation is dominated by the solar radiation balance, while nighttime net radiation

is determined by the long-wave radiation balance (Shuttleworth, 2012).

• Latent heat flux LEv: the latent heat flux is the flow of energy as latent heat away

from the surface if there is evaporation, or toward the surface if there is condensation.

During the day, evaporation is often the dominant energy flux into the atmosphere

from water surfaces or moist soil or crops, but sometimes there is a downward latent

heat flux at night with condensation at the surface as dew or frost (Shuttleworth,

2012).

• Sensible heat flux Hs: warming of the overlying air by an outgoing sensible heat

flux occurs if the temperature of the surface is higher than that of the overlying air.

Conversely, there is a cooling of overlying air and an incoming sensible heat flux

when the surface temperature is less than the air temperature. Because incoming

solar radiation during the day raises the surface’s temperature, the daytime sensible

heat flux is often outward. Commonly at night, when the surface cools, there is a net

outward flux of long-wave radiation, the sensible heat flux is inward to help support
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this (Shuttleworth, 2012).

• Soil heat flux G: when the soil surface is warming by solar radiation or indirectly by

the warming air during the day, heat is transferred downward by thermal conduction

into the soil. At night, heat is then conducted back to the surface when the top of

the soil cools. This flow is called soil heat flux (Shuttleworth, 2012).

The sign convention most often used for the surface energy balance is biased toward the

value of fluxes being positive in daytime conditions. Consequently, all radiation fluxes are

defined positive when directed toward the surface, and all the other vertical energy fluxes

are defined positive when directed away from the surface.

Lately, the main effort was made on standardization of calculation for PM equation world-

wide for different surfaces, in order to establish a benchmark reference ET equation.

2.3.1 Penman-Monteith equation

Penman; Keen, 1948 derived an equation to compute the evaporation from standard mete-

orological records of sunshine, temperature, humidity, and wind speed. The Equation (2.2)

is also named as a combination method since it combines the energy balance and the mass

transfer employing aerodynamic resistance and the surface resistance. The surface resis-

tance or bulk surface resistance rs accounts the resistance of the vapor flow through leaf

areas and soil surface, while the aerodynamic resistance refers to resistance from vegetation

and involves the friction from air flowing over the crop surface (Allen et al., 1998)

LET =
∆(Rn −G) + ρacp

(es−ea)
ra

∆ + γ
(

1 + rs
ra

) (2.2)

where ET is the evapotranspiration rate [m s−1], L is the latent heat [MJ kg−1], Rn is

the net radiation [MJ m−2 s−1], G is the soil heat flux [MJ m−2 s−1], es − ea the vapor

pressure deficit of the air [kPa], ρa is the mean air density at constant pressure [kg m−3],

cp is the specific heat of the air [MJ kg−1 K−1], ∆ is the slope of the saturation vapor

pressure graph (see Figure 3.1) [kPa K−1], γ is the psychometric constant [kPa K−1], and

ra and rs are the aerodynamic and the bulk surface resistance respectively [s m−1]. The

parameters of this equation are explained in Chapter 3.
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2 m

Reference level for weather measurements

h = 0.12 m

Soil- atmosphere interface

rs = 70 m/s

ra = 208

u2

s/m

Sola radiation Rs

αRs = 0.23 Rs

Figure 2.3: Characteristics of the hypothetical reference surface from Penman-Monteith
Equation. Own elaboration based on Allen et al., 1998.

The challenge in Equation 2.2 is to calculate the parameters to find a standardized method-

ology that simplifies the estimation of evaporation, specifically in the agriculture and food

industry. To accomplish this, FAO introduces the concept of a reference surface to avoid

the need to define unique parameters for each crop and stage of growth. The reference

surface was later defined by (Allen et al., 1998) as “a hypothetical reference crop with an

assumed crop height of 0.12 m, a fixed surface resistance of 70 s m−1, a constant specific

heat of the air 1.013× 10−3 [kJ kg−1 K−1], constant latent heat 2.45 [MJ kg−1], and albedo

0.23 ”.

The proposed reference surface refers to an extensive green grass of uniform height, ac-

tively growing, shading the ground and enough water (Allen et al., 1998). In Figure 2.3 is

depicted the assumptions of the reference surface. As a result of the reference surface, the

FAO Penman-Monteith equation was established to calculate the reference evapotranspi-

ration of this reference surface ETo (Allen et al., 1998).

2.4 Sub-surface evaporation

The FAO Penman-Monteith provides an estimate of the potential rate of evaporation

based on meteorological conditions. These types of methods are suitable for open water

reservoirs or saturated soil surfaces. When the soil becomes unsaturated, the evaporation

rate decreased relative to the potential rate of evaporation due the inability of the soil to

maintain the potential rate of evaporation (Wilson et al., 1994).

Evaporation in soils is a dynamic process characterized by low fluxes typically a few mil-
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limeters per day. However, the evaporation and consequently drying of the porous medium

exhibits dynamic changes in rates that lead to consider the dominance of various internal

transport mechanisms driven by the motion of the drying fronts and the redistribution

of the reaming liquid water (Or et al., 2013). It can be divided into three crucial stages

(Jensen; Allen, 2016).

The first stage is the phase transition to vapor at the wet soil surface, which is constrained

by the atmospheric demand and energy input and it may last only for few days in mid-

summer; however, the duration of the first stage is sharply limited by the evaporation

rate, the higher the rate of evaporation, the shorter the duration of this period. The soil

depth, the soil hydraulic properties, and land use (e.g., crops) are also factors affecting

the duration of the first stage (Jensen; Allen, 2016; Or et al., 2013). The first stage is

characterized by an initially high and relatively constant evaporation rate.

The transition from the first to the second stage begins when there are dry places on the soil

surface, and the capillary action cannot longer supply the water demand of the potential

evaporation rate. Since the surface has begun to dry, the source of water to evaporate is

mainly below the soil-atmosphere interface, and the evaporation process extends from the

drying surface to the subsurface soil. Therefore this stage is controlled by upward water

movement toward the soil surface, and during the third stage, the evaporation process

is taking place below the surface and inside the porous medium, where the water vapor

is moving through dry soil to the soil-atmosphere interface and then to the atmosphere

(Or et al., 2013). As a result of sub-surface evaporation, water vapor moves towards the

surface by molecular diffusion and mass flow due to vapor pressure fluctuations and vapor

gradients. During the second stage, a lower and gradually dropping of evaporation rate

reflecting a transition to diffusion-limited vapor transport is observed (Jensen; Allen, 2016;

Or et al., 2013; Wilson et al., 1994).

Figure 2.4 shows the typical shape of the of the stages during the evaporation in soils,

where the stage I is the maximum rate of drying when the soil surface is at or near

saturation. Stage II is when the drying begins when the hydraulic conductivity of the soil

no longer supplies enough water to the surface to keep the maximum rate. The drying

continuous until the vapor deficit between the soil and air ceases to exist. It reaches the

residual water content of the soil (Wilson et al., 1994).
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Time [T]

Evaporation

Stage I

Stage II

Stage III

rate[LT−1]

Figure 2.4: Typical curve describing the three stages of evaporation. Own elaboration
based on (Wilson et al., 1994).

So far, it has been clear that atmospheric conditions, meteorological data, and water flow

must be taken into account in the mathematical model to evaluate evaporation in soils.

However, water vapor seems to be then, another factor to consider, which must be modeled

since it is the primary variable in the second and third stages of the evaporation process.

The vapor concentration gradient drives sub-surface evaporation between nearly saturated

vapor at water-table and air vapor concentration. Lastly, fluxes from porous material are

limited by rates of energy supply for the phase change of liquid to vapor, by constraints

on soil water content to the vaporization interface, and by the rate by which vapor moves

from the soil into the atmosphere through the partially dry porous medium and above

terrestrial surfaces (Jensen; Allen, 2016) .

As the dominant presence of water vapor movement also characterized the comprehensive

studies of evaporation, especially in semiarid and arid regions where it can represent the

major part of the overall water flow, it is crucial to take it into account the liquid water flow

when evaluating hydrological fluxes and its consequences. Finally, it is worth mentioning;

water vapor flow significantly affects the movement of heat. It transports a substantial

amount of energy as the latent heat of vaporization which is at the same time an essential

flux in the surface energy balance; thus, the simultaneous evaluation of liquid water, water

vapor, and heat movement in soils are essential to understand this phenomenon (Noborio

et al., 1996; Sakai; Toride, et al., 2009) fully.
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Chapter 3

Mathematical model

3.1 Introduction

This chapter presents the derivation of the mathematical model that allows the evalua-

tion of surface evaporation and sub-surface evaporation. The classic Richards’ equation

(Richards, 1931) is presented for the flow in porous media under conditions of variable

saturation, with a Neumann boundary condition lining at the interface of the soil and

the adjacent atmosphere where the Penman-Monteith equation (Allen et al., 1998) was

used to calculate the potential evapotranspiration rate. Variably saturated flow conditions

occur above aquifers, in the vadose zone. Due to the heterogeneities of porous media, the

proper characterization of the hydraulic properties of unsaturated soils is crucial for the

modeling and understanding of any industrial application where the soil is a fundamental

part; thus, the constitutive functions are presented as well.

A second model is presented to evaluate the sub-surface evaporation with a coupled flow

of liquid water, vapor water, and heat, where the total water flux is scattered into four

components, consisting of liquid water and water vapor fluxes driven by either water

content or temperature gradients (Sakai; Jones, et al., 2011; Saito et al., 2006). In this

context, an extended Richards equation is presented, including the thermal effects coupled

with the heat flow equation. Thermal and non-thermal hydraulic conductivities are also

stated, with a Neumann boundary condition for water flow equation and Robin boundary

condition for the heat flow equation based on the surface energy balance.
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3.2 Water flow model

This section presents the formulation of the surface evaporation model. The Penman-

Monteith equation is coupled to the governing equation for the flow of water in a porous

medium: Richards equation. The evaporation rate is applied as Neumann boundary

condition for the partial differential equation (PDE), and decrease the water content in

the soil consequently. The mathematical model is based on hydrodynamics in a porous

medium where the PDE is stated, including the initial condition, boundary conditions,

and constitutive functions.

3.2.1 Governing Equations

Darcy’s law describes water flow and transport in a porous medium. This law was pub-

lished in 1956 by Henry Darcy (Darcy, 1856), where the complex flow in the porous

material was simplified built on the macro continuum approach. According to his obser-

vations and experiments, the volume flux ~q is proportional to the energy gradient, which

is considered as the total hydraulic head gradient. The equation is expressed as

~q = −Ks∇H (3.1)

where ~q is the flux [L T−1], Ks is the saturated hydraulic conductivity [L T−1], and H [L]

is total hydraulic head defined as follows

H = h+ z (3.2)

where h is the pressure head [L], z is the geodetic head [L] which can be expressed as

z =




0

0

z




(3.3)

if the coordinate system is considered positive upward, the gradient of the geodetic head

is defined as
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∇z =




0

0

1




(3.4)

Darcy, 1856 proposed his law under saturated conditions of the porous medium, where all

the pores are filled with water, and the pressure head is positive, for instance, aquifers.

Mathematically, this can be expressed as

θ = θs and K(θ) = Ks, h ≥ 0 (3.5)

where θs [L3 L−3] and Ks [L T−1] are the water content and hydraulic conductivity under

a saturated state, K(θ) [L T−1] is the unsaturated hydraulic conductivity that depends on

the water content. Darcy’s assumption accurately describes the flow in aquifers; however,

it does not represent the flow of water in the vadose zone. Hence, the unsaturated state

refers to when the porous material is not filled by water, and it can be quantified by water

content or moisture, for instance, the root zone in soils. The pressure head takes negatives

values as a result of capillary force, and it depends on the saturation of porous media.

Similarly, the unsaturated state can be mathematically defined as

θ ∈ (θr, θs) and K(θ) < Ks, h < 0 (3.6)

where θr is the residual water content [L3 L−3]. Later, Edgar Buckingham (Buckingham

et al., 1907) derived a similar law for the unsaturated state, where the constant of pro-

portionality, knows as hydraulic conductivity, depends on the water content θ introducing

K(θ) as the unsaturated hydraulic conductivity. Subsequently, Darcy- Buckingham law

was established and named after the contribution of both, can be written in terms of total

hydraulic head H as follows.

~q = −K(θ)∇H (3.7)

where θ is the water content [-], and K(θ) is the unsaturated hydraulic conductivity
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function [L T−1]. By including Equation (3.2) in Equation (3.7), the Darcy-Buckingham

law can be written in terms of pressure head and geodetic head as

~q = −K(θ)(∇h+∇z) (3.8)

Flow regime conditions constrain both Darcy’s and Darcy-Buckingham’s laws, and they

only apply to laminar flow regimes. Thus, the Darcy and Darcy- Buckingham laws’ validity

can be addressed by Reynold’s number Re [-]. For porous media, the limit for laminar flow

is often assumed as 10, where Re < 10 describes the range for laminar flow. Reynold’s

number is defined for the saturated state as

Re =
‖~q‖de
υ

(3.9)

where de is the equivalent grain size [L], υ is the kinematic viscosity [L2 T−1].For the

unsaturated state, the de is a function of the water content θ. In general, the hydraulic

conductivity is described as tensor where x = (x, y, z)

K(x, θ) =




Kxx Kxy Kxz

Kyx Kyy Kyz

Kzx Kzy Kzz




(3.10)

The hydraulic conductivity depends on properties of the porous media and liquid, and the

gravity field. It is defined as

K =
kg

υ
(3.11)

where k is the permeability tensor [L2], and g is the gravitational acceleration [L T−2]. By

combining Equation (3.10) and Equation (3.8) it is obtained

~q = −




Kxx Kxy Kxz

Kyx Kyy Kyz

Kzx Kzy Kzz







∂h
∂x

∂h
∂y

∂h
∂z



−




Kxx Kxy Kxz

Kyx Kyy Kyz

Kzx Kzy Kzz







0

0

1




(3.12)
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and the volumetric flux can be written in components of vector ~q as follows

qx = −Kxx
∂h

∂x
−Kxy

∂h

∂y
−Kxz

(
∂h

∂z
+ 1

)

qy = −Kyx
∂h

∂x
−Kyy

∂h

∂y
−Kyz

(
∂h

∂z
+ 1

)

qz = −Kzx
∂h

∂x
−Kzy

∂h

∂y
−Kzz

(
∂h

∂z
+ 1

)
(3.13)

The hydraulic conductivity tensor can be simplified when the axes of anisotropy of the

domain are aligned with the global coordinate system.

K(x) =




Kxx 0 0

0 Kyy 0

0 0 Kzz




(3.14)

By combining Equation (3.14) and Equation (3.7) it is obtained

~q = −




Kxx 0 0

0 Kyy 0

0 0 Kzz







∂h
∂x

∂h
∂y

∂h
∂z



−




Kxx 0 0

0 Kyy 0

0 0 Kzz







0

0

1




(3.15)

and the volumetric flux can be written in components as follows

qx = −Kxx
∂h

∂x

qy = −Kyy
∂h

∂y

qz = −Kzz

(
∂h

∂z
+ 1

)
(3.16)

Assuming an isotropic unsaturated hydraulic conductivity, Equation (3.14), the Darcy-

Buckingham law can be expressed as

~q = −K(x, θ)∇h−Kzz(θ) (3.17)
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The law of mass conservation for a non-deformable porous medium and incompressible

fluids is defined by the following PDE

∇ · ~q − S = −∂θ
∂t

(3.18)

where S is the sink term [T−1] and t is the time [T]. Replacing the flux ~q by the Darcy-

Buckingham’s law (Equation (3.8)), the mixed-form of Richards’ is obtained. This law was

proposed in 1931 by Lorenzo A. Richards as the following second-order partial differential

equation (Richards, 1931)

∇ · (K(θ)∇h) +
∂Kzz(θ)

∂z
− S =

∂θ

∂t
(3.19)

The Equation (3.19) is known as the mixed-form of Richards’ equation because there are

two primary variables, h, and θ. As it is explained later in this chapter (see 3.2.2), the

relationship between the water content and the pressure head, and the water content and

the unsaturated hydraulic conductivity is given by suitable constitutive functions.

For an homogeneous porous medium, the term ∂Kzz(θ)
∂z can be stated as dKzz

dh
∂h
∂z . For this

thesis, Richards’ equation is expressed in the so-called h-based form, to get only as primary

solved variable the pressure head in Equation (3.19) is needed to introduce the retention

water capacity C(h) [L−1] which is considered as

C(h) =
dθ

dh
for θ ∈ (θr, θs) and h ∈ (−∞,+∞) (3.20)

However, for a positive pressure head h ≥ 0 , the retention water capacity is defines as

C(h) = 0. Thus, the capacity term can be replaced by

∂θ

∂t
=

dθ

dh

∂h

∂t
= C(h)

∂h

∂t
(3.21)

Finally, the h-based form of Richards’ equation states as

∇ · (K(θ)∇h) +
∂Kzz(θ)

∂z
− S = C(h)

∂h

∂t
(3.22)
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The Richards’ equation has a pattern of a convection-diffusion-reaction equation, where

∇ · (K(θ)∇h) is the diffusion term, ∂Kzz(θ)
∂z represents the convection term, and C(h)∂h∂t ,

as mentioned before, is the capacity term. The sink term S can be consider as reaction

term of zero order.

3.2.2 Constitutive functions

In order to solve Equation (3.22), constitutive equations should be supplied as the param-

eters in Equation (3.22), C(h), K(θ), and θ(h) depend on pressure head.

The first function presented here is the water retention curve and states the relation

between water content and pressure head. The van Genuchten’s equation presented in

1980 (Van Genuchten, 1980) is one of the most widely used and states as

θ(h) =





θr + θs−θr
(1+(−αh)n)m , ∀h ∈ (−∞, 0)

θs, ∀h ∈ 〈0,∞)

(3.23)

where α [L−1] is inverse of air entry value, n and m are pore-size distribution parameters

[-] (they are usual treated as m = 1−1/n). The water retention capacity is parameterized

as

C(h) =





αmn(−αh)n−1(θs−θr)
(1+(−αh)n)1+m

, ∀h ∈ (−∞, 0)

0, ∀h ∈ 〈0,∞)

(3.24)

For describing unsaturated hydraulic conductivity, the van Genuchten’s equation for the

soil water retention curve, coupled with Mualem’s pore-size distribution model (Mualem,

1976) was used to define the unsaturated hydraulic conductivity function as follows.

K(h) =





Ks
(1−(−αh)nm(1+(−αh)n)−m)2

(1+(−αh)n)
m
2

, ∀h ∈ (−∞, 0)

Ks, ∀h ∈ 〈0,∞)

(3.25)
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where Ks is saturated hydraulic conductivity [L T−1].

3.2.3 Initial and boundary conditions

In order to solve the proposed partial differential equation presented in Equation (3.22),

initial and boundary conditions must be given. They exert a set of additional constraints

to the problem on specified boundaries or the initial time of the solution.

Initial Condition

The initial condition provides the state of the system at the starting point of the com-

putation. For Richards’ equation, the initial state accounts either information about the

pressure head or the water content, since the function which relates h and θ is known. The

initial condition is often provided as a known distribution of the pressure head as follows.

h(x, t0) = h0(x) ∀x ∈ Ω (3.26)

or similarity

θ(x, t0) = θ0(x) ∀x ∈ Ω (3.27)

where Ω is the computational domain bounded by Γ = ∂Ω.

Boundary Condition

The boundary conditions is a concept that applies to both ordinary and partial differen-

tial equations, which is the case of Richards’ equation. The boundary can be Dirichlet,

Neumann, Robin, Mixed, and Cauchy. However, later in this thesis, the Robin type is

explored.

In general, Dirichlet condition is defined when the boundary prescribes a value of the

independent variable, in the particular case of the Equation (3.22), it refers to a known

pressure head or water content.

h(x, t) = hΓ ≡ θ(x, t) = θΓ ∀(x, t) ∈ Γ× [0, T ) (3.28)
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On the other hand, the Neumann condition is defined as the boundary that prescribes

the derivative of the independent variable; in other words, it refers to a known boundary

diffusion flux.

K(h)

(
∂h(x, t)

∂n
+ n3(x)

)
= qΓ ∀(x, t) ∈ Γ× [0, T ) (3.29)

Where n3 is the vertical component of the normal boundary vector n, practically, the

Neumann condition can be used to simulate various physical states of the system often

exhibit in nature. For instance, free drainage is a homogeneous Neumann condition, which

refers to when the pressure head gradient is zero; thus, only the geodetic gradient is taken

into account.

∂h(x, t)

∂n
+ n3(x) = 0 ∀(x, t) ∈ Γ× [0, T ) (3.30)

When the vertical coordinate system is aligned with the vertical component of the normal

vector of the boundary, the free drainage condition leads to the following.

∂H

∂z
=
∂h+ z

∂z
=
∂h

∂z
+
∂z

∂z
= 0 + 1 = 1 (3.31)

Hence, the boundary flux is equal to unsaturated hydraulic conductivity. Such a situation

often occurs when the water table lies far below the domain of interest.

Evaluation of Evaporation Boundary

Another important application of the Neumann boundary condition is to simulate precip-

itation or evaporation when it applies to the physical domain’s surface boundary. Hence,

the boundary flux qΓsurf (t) is defined as the actual evaporation, which is time-dependent,

and its evaluation takes into account the variability of atmospheric conditions.

K(h)

(
∂h(x, t)

∂~n
+ n3(x)

)
= qΓsurf (t) ∀(x, t) ∈ Γsurf × [0, T ) (3.32)

The actual evapotranspiration rate qΓsurf (t) [L T−1] is equal the reference evapotranspi-

ration ETo(t) [L T−1] if the rainfall intensity r(t) [L T−1] is greater than the reference
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evapotranspiration ETo(t), and if the rainfall intensity r(t) is small than the reference

evapotranspiration ETo(t), then the actual evapotranspiration qΓsurf (t) is calculated by

the reference evapotranspiration using the water content as follows (Kuraz; Holub, 2015)

qΓsurf (t) =





r(t)− ETo(t) if r(t)− ETo(t) ≥ 0

r(t)− ETo(t)θl(h)2/3 if r(t)− ETo(t) < 0

(3.33)

At this point, the problem that arises is how to calculate the reference evaporation. The

Penman-Monteith was implemented for evaluating the actual evaporation boundary flux.

ETo =
0.408∆(Rn −G) + γ 900

T+273u2(es − ea)
∆ + γ (1 + 0.34u2)

(3.34)

where ETo is the reference evapotranspiration [mm d−1], Rn is the net radiation at the

crop surface [MJ m−2 d−1], G is soil heat flux density[MJ m−2 d−1], Ta is mean daily air

temperature at 2 m height [℃], u2 is the wind speed measured at 2 m height [m s−1], es

is saturation vapor pressure [kPa], ea is the actual vapor pressure [kPa], ∆ is the slope

vapor pressure curve [kPa ◦C−1], and γ is psychometric constant [kPa ◦C−1].

In general, the methods for calculating evapotranspiration from meteorological data re-

quire various meteorological and physical parameters. Apart from the site location, the

Equation (3.34) uses standard meteorological records of relative humidity, solar radiation,

wind speed, and air temperature . To ensure the PM equation’s applicability, the weather

measurements should be made at 2 m above a large surface of green grass, shading the

ground and not short of water (Allen et al., 1998).

In Equation (3.34), it is possible to recognize three types of variables that affected the

reference evapotranspiration. First group intents to describe the atmospheric conditions,

which help to quantify the effect of principal weather variables on the estimation of evap-

oration. Atmospheric pressure is fundamental to determine the amount of water vapor

since it is directly related to the partial pressure performed by the water vapor in the air

(Allen et al., 1998). Furthermore, evaporation at high altitudes is driven by low atmo-

spheric pressure, and the atmospheric pressure estimation depends on the altitude of the
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site location (Shuttleworth, 2012). Despite atmospheric pressure, latent heat of vapor-

ization varies only slightly over normal temperatures, and one value of 2.45 MJ kg−1 is

used in the FAO Penman-Monteith equation. The psychometric constant relates to the

atmospheric pressure and the latent heat using the specific heat at constant pressure to

increased the temperature of a unit mass of air by one degree (Allen et al., 1998). It is

kept constant for each location, and it is defined by using atmospheric pressure. The last

parameter in this group is the vapor pressure since the water vapor is a gas, its pressure

contributes to the atmospheric pressure in air, and it is known as the partial pressure of

water vapor, which relates the amount of water in the air and consequently it is a direct

measure of the air-water content. One important value of the vapor pressure is so-called

saturation vapor pressure that is the condition when it is said the air to be saturated,

and it cannot store more water vapor molecules. Saturation vapor pressure depends on

temperature; the higher the air temperature, the bigger the storage capacity; thus, the

higher the saturation vapor pressure.
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Figure 3.1: Saturation vapor pressure as function of temperature.

As shown in Figure 3.1, the slope changes exponentially, where at low temperatures, the

slope varies slightly as the temperature increases, while at high temperatures, a small

change in temperature leads significant changes in slope. Hence, the slope is a crucial

parameter in the calculation of evaporation using the FAO Penman-Monteith equation.

The actual vapor pressure is the vapor pressure exerted by the current amount of vapor

particle in the air, and when the air is not saturated, the actual vapor pressure is lower

than the saturation vapor pressure. The difference between actual and saturation vapor
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pressure is known as vapor pressure deficit, and it is an indicator of the actual evaporative

capacity of the air (Allen et al., 1998). The atmospheric parameters are mathematically

described in table 3.1.

Table 3.1: Atmospheric parameters for Penman-Monteith Method (Allen et al., 1998).

Parameter Symbol Units Equation/Constant a

Atmospheric
pressure

Patm kPa 101.3
(

293−0.0065za
293

)5.26

Psychrometric
constant

γ kPa ℃−1 6.65× 10−4Patm

Mean saturation
vapor pressure

eo(Ta) kPa 0.6108 exp
[

17.27Ta
Ta+237.3

]

Slope of saturation
vapor curve

∆ kPa ℃−1 4098
[
0.6108 exp

(
17.27Ta
Ta+237.3

)]
/(Ta + 237.3)2

Actual vapor
pressure

ea kPa (eo(Tamin) + eo(Tamax))RHair/2

Saturation vapor
pressure

es kPa (eo(Tamin) + eo(Tamax)/2

Wind
Speed

u2 m s−1 4.87uza/ log(67.82za − 5.42)

aza is the elevation of the location, Ta is temperature of air in ℃, RHair is the relative humidity of air,
and uza is the wind speed from meteorological records.

The net radiation data, Rn required in Equation (3.34), are not commonly available but

can be estimated from the shortwave radiation, or average daily actual duration of bright

sunshine. The intensity of radiation depends on various factors, as the angle between the

direction of the sun’s rays and the normal to the surface of the atmosphere (Allen et al.,

1998; Jensen; Allen, 2016). It changes during the day, latitudes, and seasons. The solar

radiation that falls upon the top of the earth’s atmosphere on a horizontal surface is called

the extraterrestrial solar radiation, Ra (Allen et al., 1998; Jensen; Allen, 2016). Once the

radiation passes through the atmosphere, some of the radiation is scattered, reflected,

or absorbed by atmospheric gases, clouds, and dust. The amount of radiation reaching

a horizontal plane is known as solar radiation (Rs), and it widely measured across the

globe. Solar radiation is also known as shortwave radiation Rns. Rso is known as clear-

sky solar radiation, which is the solar radiation that would reach the same surface as the

solar radiation in the same period but under cloudless conditions. The fraction of solar

radiation reflected by the earth’s surface is known as albedo (α), which varies widely for the

incidence angle of the sun’s rays and surfaces. In the case of the FAO Penman-Monteith

equation, the albedo is assumed to be a value of 0.23, which corresponds to a green grass
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reference crop (Allen et al., 1998; Jensen; Allen, 2016). The net solar radiation, Rn, is

the fraction of the solar radiation that is not reflected. The radiation that is absorbed

by the earth is transformed to heat energy; as the sun, the earth also loses energy and

emits energy with wavelengths longer than waves from the sun. Therefore the terrestrial

radiation is known as the longwave radiation.

Consequently, the earth’s surface emits and receives longwave radiation, where the dif-

ference between the incoming and outgoing longwave radiation is called net longwave

radiation Rnl. Lastly, the net radiation,Rn, is the difference between incoming and out-

going radiation of short and longwave. Usually, the net radiation is positive during the

daytime and negative during nighttime (Jensen; Allen, 2016).

Table 3.2: Net radiation parameters for Penman-Monteith Method (Allen et al., 1998).

Parameter Symbol Units Equation/Constanta

Net
radiation

Rn MJ m−2 d−1 Rns −Rnl

Extraterrestrial
radiation

Ra MJ m−2 d−1 (1440/π)Gscdr [ωs sinϕ sin δ + cosϕ cos δ sinωs]

Solar
constant

Gsc MJ m−2 min−1 0.0820

Geographic
latitude

ϕ rad π
180

[decimal degrees]

Inverse distance
Earth-Sun

dr rad 1 + 0.033 cos
(

2π
365

J
)

Solar
declination

δ rad 0.409 sin
(

2π
365

J − 1.39
)

Sunset hour
angle

ωs rad arccos[− tan(ϕ) tan(δ)]

Clear-sky
radiation

Rso MJ m−2 d−1 (0.75 + 2× 10−5z)Ra

Net shortwave
radiation

Rns MJ m−2 d−1 (1− α)Rs

Long-wave
radiation

Rnl MJ m−2 d−1 σ
[
T4
max+T4

min
2

]
(0.34− 0.14

√
ea)
(

1.35 Rs
Rso
− 0.35

)
Stefan-Boltzmann

constant
σ MJ K−4 m−2 d−1 4.903× 10−9

aJ is the number of the day in the year between 1 (1st January) and 365 or 366 (31st December), α is
the albedo [-], za is the elevation of the location,T is absolute temperature of air, and Rs is radiation from
meteorological records.

To estimate the evaporation, it is crucial to quantify all the terms in the surface energy

balance Equation (2.1), the soil heat flux G is the energy consumed in heating the soil.

It is positive when the soil is warming and negative when the soil is cooling. Since the

heat flux is small compared to net solar radiation and maybe often ignored, the exchange

of energy through the soil should be taking into account (Allen et al., 1998). In this

particular model, the uncertainty increases in the estimation of the heat flux, where for
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∆t < 1 day, it may be ignored G = 0, in general, the heat flux is defined as the difference

of the air temperature in a predefined time step ∆t as follows.

G = Cs
Ti − Ti−1

∆t
∆z (3.35)

Where G is the heat flux [MJ m−2 d−1], Cs is the soil heat capacity [MJ m−3 ◦C−1], Ti

and Ti−1 are the air temperature at the time i and time i − 1 respectively, ∆t is the

length of time interval [d], and ∆z [m] is the effective soil depth, which is determined by

the length of the time interval, for few days, ∆z can be around 0.20 m, but it can be

2 m for months. For monthly periods and assuming a constant soil heat capacity of 2.1

MJ m−3 ◦C−1 (Allen et al., 1998), soil heat flux can be approximate as follows

Gm = 0.07(Ti+1 − Ti−1) (3.36)

or, if Ti+1 is unknown,

Gm = 0.14(Ti − Ti−1) (3.37)

where Ti is the meant air temperature for month [℃], Ti−1 is the meant air temperature

for previous month [℃], and Ti+1 is the meant air temperature for next month [℃]. For

hourly estimations, the heat flux can be estimated during daylight as G = 0.1Rn, or during

the nighttime as G = 0.5Rn (Allen et al., 1998).

3.3 Liquid water, water vapor and heat flow model

In Section 3.2 was presented the model only for the flow of liquid water in porous media

accounting the surface evaporation as a Neumann boundary condition of the governing

partial differential equation. Unlike the water flow model, the following model addresses

surface evaporation and the sub-surface evaporation rate by modeling the water vapor

movement in the porous media. Moreover, the heat is also mathematically modeled by

coupling with the two phases of water flow. Knowing the temperature distribution in

the porous medium is fundamental to quantify the energy available at the surface to lead
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and fuel an evaporation process. Initial and boundary conditions must be provided for

both PDE in terms of pressure head and temperature, which define the evaporation in

the soil-atmosphere interface by using meteorological records, and hydraulic and thermal

conductivities of soil.

3.3.1 Governing equations

Liquid water and water vapor flow

The governing equation for the flow of liquid water and water vapor in a variably saturated

non-deformable porous medium is given by the law of mass conservation presented in

Equation (3.18). However, for modeling liquid water and water vapor transport, the total

water content and the total water flux is divided into two terms by the contribution of

the water presence in two different phases. Hence, the total volumetric water content θ

is defined as the sum of θl, the volumetric liquid water content [-] and θv ,the volumetric

water vapor content [-], as follows

θ = θl + θv (3.38)

Similarly, the total water flux ~qw [L T−1] can be described as the sum of the liquid water

flux and the water vapor flux as

~qw = ~ql + ~qv (3.39)

where ~ql and ~qv are the flux densities of liquid water and water vapor [L T−1], respectively.

The flux density of liquid water ~ql is described using a modified the Darcy-Buckingham

law proposed by Philip et al., 1957:

~ql = ~qlh + ~qlT = −Klh(∇h+∇z)−KlT∇T (3.40)

where ~qlh and ~qlT are the isothermal and thermal liquid water flux densities [L T−1], re-

spectively, h is the pressure head [L], z is the geodetic head [L], T is the temperature [Θ],

and Klh [L T−1] and KlT [L Θ−1 T−1] are the unsaturated isothermal and thermal hy-
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draulic conductivities for water liquid phase due to pressure and temperature respectively.

The flux density of water vapor ~qv can also be separated into isothermal ~qvh [L T−1], and

thermal ~qvT [L T−1], vapor flux densities as follows Philip et al., 1957

~qv = ~qvh + ~qvT = −Kvh∇h−KvT∇T (3.41)

where Kvh [L T−1] and KvT [L Θ−1 T−1] are the unsaturated isothermal and thermal-

hydraulic conductivities for water vapor phase. By replacing Equation (3.39) into Equa-

tion (3.18), it is obtained the equation for the flow of liquid water and water vapor in a

variably saturated non-deformable porous medium as

∂θ

∂t
= −∇ · (~ql + ~qv)− S (3.42)

The liquid water and water vapor flux densities can be replaced using Equation (3.40) and

Equation (3.41) into Equation (3.42) as follows

∂θ

∂t
=∇ · [Klh(∇h+∇z) + KlT∇T ] +∇ · [Kvh∇h+KvT∇T ]− S (3.43)

Moreover, it is possible to apply the divergence operator among the Equation (3.43) to

cluster the equation as given in Equation (3.44).

∂θ

∂t
=∇·(Klh∇h)+∇·(Klh∇z)+∇·(KlT∇T )+∇·(Kvh∇ · h)+∇·(KvT∇T )−S (3.44)

By grouping the isothermal and thermal hydraulic conductivities, it is obtained the total

hydraulic conductivities where KTh [L T−1] is the isothermal total hydraulic conductivity

and KTT [L Θ−1 T−1] is the thermal total hydraulic conductivity, as:

KTh = Klh +KvhI (3.45)
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KTT = KlT +KvT I (3.46)

Combing Equation (3.44), Equation (3.45), and Equation (3.46) it is obtained the gov-

erning liquid water and water vapor flow equation in a variably saturated porous medium

in the mixed-form where the solution is θ, h and T .

∂θ

∂t
=∇ · (KTh∇h) +∇ · (Klh∇z) +∇ · (KTT∇T )− S (3.47)

The left- side of Equation (3.47) can be expressed as the sum of the liquid water content

and the water vapor content according to 3.38 as follows.

∂θ

∂t
=
∂θv
∂t

+
∂θl
∂t

(3.48)

As stated in Section 3.2 in Equation (3.21), ∂θl
∂t is equivalent to the capacity term in

Richards’ equation. In order to simplify the primary solved variables, it is known θl is

function of the pressure head θl(h) and therefore a water retention capacity term C(h)

[L−1] is introduced as well.

The volumetric water vapor content can be expressed as an equivalent water content in

terms of volumetric air content θair [-], density of liquid water ρl [M L−3], and density of

water vapor ρv as (Philip et al., 1957)

θv = θair
ρv
ρl

= (θs − θl)
ρsvRHs

ρl
(3.49)

When the liquid and vapor phases of water in soil are in equilibrium, the vapor density

of the soil can be described as the product of the saturated vapor density ρsv [M L−3]

and the soil relative humidity RHs [-] (Saito et al., 2006).Thus, ∂θv
∂t is solved numerically

and θv is not consider as primary solved variables in Equation (3.50). A modified h-based

form of Richards equation is presented, where the primary solved variables are both the

pressure head and temperature.
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Ch
∂h

∂t
=∇ · (KTh∇h) +∇ · (KTT∇T ) +∇ · (Klh∇z)−

∂θv
∂t
− S (3.50)

In terms of the convection-diffusion- reaction equation, Ch
∂h
∂t represents the capacity term,

∇ · (KTh∇h) +∇ · (KTT∇T ) represents the diffusion term by pressure and temperature

gradient,∇·(Klh∇z) represents the convective term. Since θv is not a primary solved vari-

able and it can be calculated using the liquid water content θl, thus ∂θv
∂t is can considered

as a zero order reaction term or also sink term.

Heat flow

The governing equation for the heat flow in a variably saturated non-deformable porous

medium is given by the law of energy conservation presented in equation 3.51:

∂ST
∂t

= −∇ · (~qT ) +Q (3.51)

where ST is the storage of heat in the soil [M L−1 T−2], ~qT is the total heat flux density

[M T−3] and Q accounts for sources and sinks of energy [M L−1T−3]. The total heat

flux, ~qT , is defined as the sum of conduction of the sensible heat, the sensible heat by

convection of liquid water and water vapor, and the latent heat of vapor flow as shown in

Equation (3.52) (Saito et al., 2006).

~qT = −κ∇T + ClT~ql + CvT~qv + L~qv (3.52)

Where κ [M L T−3 Θ−1] is the thermal conductivity of soil which is dependent on the water

content, Cl and Cv [M T−2 L−1 Θ−1] are the volumetric heat capacity of liquid water and

water vapor, respectively, and L [M L−1 T−2] is the volumetric latent heat of vaporization

of liquid water. In Equation (3.51) and (3.52), the local thermal equilibrium between the

solid porous medium, liquid water, and water vapor is assumed. The storage of heat in

the soil is defined as the sum of the sensible heat in the rock, water phases, liquid water

and water vapor, and latent heat as follows (Saito et al., 2006)

ST = CsTθs + ClTθl + CvTθv + Lθv (3.53)
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where θs [-] is the volumetric fraction of solid phase which is equal to the porosity, Cs

[M T−2 L−1 Θ−1] is the volumetric heat capacity of the solid phase, and L is the volumetric

latent heat of vaporization of liquid water [M L−1 T−2]. It is known that the sum of

volumetric fraction of the three phases, solid, liquid water, and water vapor is equal to

one

θl + θs + θv = 1 (3.54)

Moreover, in Equation (3.55) is defined as the total volumetric heat capacity CT as the

sum of each phase volumetric heat capacity [M T−2 L−1 Θ−1].

CT = Cs + Cl + Cl (3.55)

Hence, the storage of heat in Equation (3.53) can be simplified by the using Equa-

tion (3.54) and Equation (3.55) as follows

ST = CTT + Lθv (3.56)

Combing Equation (3.52) and Equation (3.56) in Equation (3.51), results in the governing

equation for heat flow variably saturated porous medium.

CT
∂T

∂t
+ L

∂θv
∂t

=∇ · (κ∇T )−∇ · (Cl~qlT )−∇ · (Cv ~qvT )− L∇ · (~qv) +Q (3.57)

As defined previously in Equation (3.41), the water vapor flux can be used in Equa-

tion (3.57), it is obtained the governing heat equation in terms of the main variables h

and T

CT
∂T

∂t
+ L

∂θv
∂t

=∇ · (κ∇T )−∇ · [(Cl~ql + Cv ~qv)T ]

+L∇ · [(Kvh∇h+KvT∇T )] +Q

(3.58)

Similarly as Equation (3.50), L∂θv∂t is assumed as sink term in Equation (3.59). By
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rearranging the terms, it is possible to group and organize the diffusion coefficients due to

temperature and pressure head gradients as follows

CT
∂T

∂t
+ L

∂θv
∂t

=∇ · [(κ+ LKvT )∇T ]−∇ · [(Cl~ql + Cv ~qv)T ]

+∇ · [LKvh∇h] +Q

(3.59)

Using as a common factor the temperature gradient and the pressure head gradient, the

terms are grouped to obtain two diffusion coefficients and simplify Equation (3.59)

BTT = κI + LKvT I (3.60)

BTh = LKvhI (3.61)

The diffusion coefficients are introduced in Equation (3.59). Finally, the heat transport

equation is presented in Equation (3.62), where the primary solved variables are both the

pressure head and temperature.

CT
∂T

∂t
=∇ · (BTT∇T ) +∇ · (BTh∇h)−∇ · [(Cl~ql + Cv ~qv)T ]− L∂θv

∂t
+Q (3.62)

In terms of the convection-diffusion- reaction equation, CT
∂T
∂t represents the capacity term,

∇ · (BTT∇T ) +∇ · (BTh∇h) represents the diffusion term by pressure and temperature

gradient, −∇ · [(Cl~ql + Cv ~qv)T ] represents the convective term, and as mentioned before

L∂θv∂t is considered as sink term.

In general, a non- linear system with two unknowns, h and T , and two equations. In

Equation (3.63) is presented the mathematical model for the flow of liquid water, water

vapor and heat in a variably saturated non-deformable porous medium:





Ch
∂h

∂t
=∇ · (KTh∇h) +∇ · (KTT∇T ) +∇ · (Klh∇z)−

∂θv
∂t
− S

CT
∂T

∂t
=∇ · (BTT∇T ) +∇ · (BTh∇h)−∇ · [(Cl~ql + Cv ~qv)T ])− L∂θv

∂t
+Q

(3.63)
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3.3.2 Constitutive functions

As the unknown variables in Equation (3.63) are h pressure head and T temperature,

constitutive relations must be given in order to solve the system of equations, and these

relations should depend on these two primary solved variables. In addition to the equa-

tions already presented, it must be supplied mathematical definition for isothermal liquid

hydraulic conductivity Klh(h), thermal liquid hydraulic conductivity KlT (h, T ), isother-

mal vapor hydraulic conductivity Kvh(h, T ), and thermal vapor hydraulic conductivity

KvT (h, T ).

The isothermal liquid hydraulic conductivity Klh(h) is defined in Equation (3.11) as

Richards’ equation. The thermal liquid hydraulic conductivity function, which depends

on the temperature and the pressure head, is given by (Noborio et al., 1996)

KlT (h, T ) = Klh

(
hGwT

1

%0

d%(T )

dT

)
(3.64)

where GwT is the gain factor that quantifies the temperature dependence of the water

retention curve [-], % is the surface tension of soil water [M T−2], and %0 is the surface

tension at 25 ℃. The isothermal vapor hydraulic conductivity Kvh is described as (Noborio

et al., 1996)

Kvh(h, T ) =
D

ρl
ρvs

Mg

RT
RHs(h, T ) (3.65)

where D is the vapor diffusivity in soil [L2 T−1], R [M L2 mol−1 Θ−1] is the universal gas

constant, g is the gravitational acceleration [L T−2], and M is the molecular weight of

water [M mol−1]. The thermal vapor hydraulic conductivity function, which depends on

the temperature and the pressure head, is given by (Noborio et al., 1996)

KvT =
D

ρl
η
dρsv
dT

RHs(h, T ) (3.66)

Equations presented for isothermal and thermal-hydraulic conductivities for liquid and

vapor phase are based in thermodynamics relations that seek to describe the pressure and

temperature conditions of the system to mathematically quantify water flux in soils driven
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by both pressure head and temperature (Saito et al., 2006).

In Table 3.3 is summarized the expressions and constant values of various physical proper-

ties needed to adequately address the coupled flow of water and heat in a porous medium.

Table 3.3: Thermodynamics constitutive functions for water and heat flow model.

Parameter Symbol Units Equation/Constanta

surface tension
of soil-water

%(T ) g s−2 75.6− 0.1425T − 2.38× 10−4T 2

the surface tension
at 25 ℃ %0 g s−2 71.89

the gain
factor

GwT − 7

vapor diffusivity
in soil

D m2 s−1 τθairDa

tortuosity
factor

τ − θ
7/3
air
θ2s

vapor diffusivity
in air

Da m2 s−1 2.12× 10−5
(
Tabs
273.15

)2
universal gas

constant
R J mol−1 K−1 8.314

gravitational
acceleration

g m s−2 9.81

molecular weight
of water

M kg mol−1 0.018015

relative humidity
in soil

RHs(h, Tabs) − exp
(
hMg
RTabs

)
saturated vapor

density
ρsv(Tabs) kg m−3

10−3 exp
(
31.3716− 6014.79

Tabs
−7.924 95× 10−3Tabs

)
Tabs

liquid water
density

ρl(T ) kg m−3 1000− 7.37× 10−3(T − 4)2 + 3.79× 10−5(T − 4)3

latent heat of
vaporization

L(T ) J kg−1 2.501× 10−6 − 2369.2T

enhancement
factor

η − 9.5 + 3 θl
θs
− 8.5 exp

{
−
[(

1 + 2.6√
fc

)
θl
θs

]4}
mass fraction

of clay
fc − 0.02

thermal
conductivity

κ(θl) W m−1 ℃−1 b1 + b2θl + b3
√
θl

aT is temperature in ℃, Tabs is absolute temperature, h is pressure head, θl is the volumetric liquid
water content, b1, b2,b3 are empirical regression parameter.

The physical properties of water phases are strongly dependent on the soil temperature

distribution, while the pore-space structure and water content influence the soil’s vapor

diffusivity. As the movement of water vapor couples heat and water flow, the relative

humidity is controlled by both pressure head and temperature.

Commercial software commonly uses a factor so-called enhancement factor η to account

for the increase in the thermal vapor flux due to high-saturated liquid zones and an

increase in temperature gradients in the air phase (Saito et al., 2006). Another reason for

the enhanced vapor movement is that the actual local temperature gradient in air-filled
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pores may be significantly higher than the average temperature gradient for the bulk soil.

Regarding the soil thermal properties as thermal conductivity, they are more affected by

water content than by the mineral composition of the solid medium, according to Jury

et al., 2004.

3.3.3 Initial and boundary conditions

In comparison with Equation (3.22), the system of equation presented in Equation (3.63)

requires to be supplied an initial distribution of both, water and temperature; likewise, a

boundary condition must be provided for each equation.

Initial conditions

The initial conditions defined in Equation (3.26) and Equation (3.27) for Richards’ equa-

tion also apply for Equation (3.50). In this case, the initial state accounts for information

about the temperature distribution. Hence, the initial condition is provided as follows.

T (x, t0) = T0(x) ∀x ∈ Ω (3.67)

where Ω is the computational domain bounded by Γ = ∂Ω.

Boundary conditions

The soil-atmosphere interface is a critical boundary condition that has a significant effect

on the subsurface flow of liquid water, water vapor, and heat. At the boundary, the

evaporation rate and the heat flux must be equal to the total water flux and the heat flux

in the soil to evaluate how changes in atmospheric conditions affect the flow of water and

heat in the system.

Therefore, a suitable surface boundary for the liquid water and water vapor flow is a

Neumann boundary condition defined as the sum of the liquid water flux, ~ql(x, t), and

water vapor flux, ~qv(x, t) in the surface, is equal to the evaporation rate Ev(t) [L T−1]

(Saito et al., 2006).

‖ ~qv(x, t) ‖x=n + ‖ ~ql(x, t) ‖x=n= Ev(t) ∀x ∈ Γsurf × [0, T ) (3.68)
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Since the evaporation rate Ev(t) is influenced by soil and atmosphere conditions, more

specifically by atmospheric and soil temperature, surface, and soil moisture, it is necessary

an expression that accounts for all the driven variables. The surface evaporation rate is

often defined as proposed by (Milly, 1984)

Ev(t) =
RHs(h, T )ρsv(T )−RHairρsv(Ta)

ρlra
(3.69)

where , RHs is the soil relative humidity [-] evaluated at the soil temperature T , RHair is

the air relative humidity [-] evaluated at the air temperature Ta, ρsv is the saturated vapor

density [kg m−3], ρl is the liquid water density [kg m−3], ra is the aerodynamic resistance

to water vapor flow [s m−1], and Ev(t) is the evaporation rate [m s−1].

From the surface energy balance is possible to know the soil heat flux G [W m−2] in the

soil- atmosphere interface, which should be equal to the total heat flux prescribed in 3.52

since the law of energy conservation also applies at the boundary as Robin boundary type

as follows (Saito et al., 2006)

− κ∂T
∂n

+ [Cv ‖ ~qv ‖)T ]x=n = −G− L[‖ ~qv ‖]x=n ∀x ∈ Γsurf × [0, T ) (3.70)

Where the soil heat flux G is calculated from the surface energy balance presented in

2.1. Commonly, the equation defined in 3.70 is known as a convective boundary condition

in heat transfer problems. In general, Robin’s condition is defined when the boundary

prescribes a linear combination of the values of a function and the values of its derivative

on the boundary of the domain; it can also be defined as a weighted combination of

Dirichlet and Neumann boundary conditions.

In order to calculate the soil heat flux, it is needed an equation for sensible heat, since

the air and soil temperatures are known in the boundary, it is possible to calculate the

sensible heat flux Hs [W m−2] as proposed by (Van Bavel et al., 1976)

Hs = Ca
T − Ta
ra

(3.71)

Where Ca is the volumetric heat capacity of air [J m−3K−1], Ta is the temperature of the
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air.

The net radiation Rn [W m−2] is the sum of the net shortwave radiation Rns [W m−2] and

the net longwave radiation Rnl [W m−2].

Rn = Rns +Rnl (3.72)

Based on the Stefan-Boltzmann law, the longwave radiation can be expressed as

Rnl = σεs(εaT
4
a − T 4

s ) (3.73)

Where εs is the emissivity of the soil [-] which depends on the water content and land

cover, εs is the emissivity of the atmosphere [-] which is related to the air temperature

and relative humidity (Saito et al., 2006), σ is the Stefan-Boltzmann constant equal to

5.67× 10−5 [W m−2 K−4], T is the air temperature [K] and T is the soil temperature [K].

The emissivity of soil can be calculated as proposed by Van Bavel et al., 1976 as a function

of the water content as follows

εs = min(0.90 + 0.180θl, 1.0) (3.74)

The atmospheric emissivity can be expressed as

εa = 0.70 + 5.95× 10−5ea exp

(
1500

Ta

)
(3.75)

where ea is the actual atmospheric vapor pressure [kPa], and it can be defined as follows

ea = 0.611 exp

(
17.27(Ta − 273.15)

Ta − 35.85

)
RHair (3.76)

The shortwave radiation based on albedo and the incoming global shortwave radiation Rs

[W m−2], which in this work is consider as input

Rns = (1− α)Rs (3.77)
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Chapter 4

Numerical solution

4.1 Introduction

In this chapter, an overview of the numerical solution and numerics related to Richards’

equation and the coupled systems of PDE for modeling the flow of liquid water, water

vapor, and heat in porous media are presented. Finite Difference Method is briefly de-

scribed as the application in the particular PDEs that govern both models. The weak

formulation of both problems is stated as one of the standard results of the application

of FEM . Finally, some remarks are included to provide a broader context on how the

numerical solution is implemented in DRUtES. It is important to mention the coding and

computational implementation of the solution of both models were not part of this work.

4.2 Preliminary remarks

Analytical solutions for boundary-value problems are not always available for solving

PDE, except for well-defined problems in simple geometries. For complex geometries, ma-

terial characteristics, and non-linear problems, numerical methods are often used (Chari

et al., 2000b).

Finite difference methods are one of the oldest techniques for solving boundary-value

problems, and it is an elementary form of the point-value techniques (Chari et al., 2000a).

This idea underlying this method approximates the derivatives in the partial differential

equation by a difference approximations. The computational domain is discretized in
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a mesh which determines the number of the unknowns in the resulting set of algebraic

equations. The first derivative can be approximate by forward, backward, or central

scheme according to the points used to calculate the derivative; different schemes lead to

different accuracy of the method. The second-order derivatives can be approximate by

using the first orders differences, e.g., central scheme.

Another principal mathematical technique for solving boundary-value problems is the vari-

ational method. In this method, the PDE is expressed as an energy-related formula called

a functional, and the solution of the PDE is then obtained by minimizing the functional

(Chari et al., 2000b), in continuum mechanics the solution results in the minimum poten-

tial energy. The variational method has advantages over traditional methods for solving

PDE, such as finite differences. It applies to a broader range of problems, geometries,

and media, such as homogeneous isotropic, non-linear heterogeneous anisotropic.

The energy functional can be expressed by using the inner product as

F = (u, u)− 2(f, u) (4.1)

where the inner product is defined as an integral expression

(u, v) =

∫

Ω
uvdΩ (4.2)

Ritz’s method minimizes the energy functional appropriate to the PDE. This method

assumes the unknown solution as a subject of trial functions and its parameters; the trial

functions are chosen from a family of functions to assure the functional is stationary. For

instance, the desired solution can be composed of a linear combination of trial functions,

which are defined over the entire solution domain, and imply all the boundary conditions.

The implementation of this method consists in substituting the trial solutions in the func-

tional and constraint the first variation of the functional to zero for each parameter. This

procedure yields to n equations that need to be solved for determining the n parameters

(Chari et al., 2000b). Ritz’s method is considered to be one of the predecessors of FEM .

The finite element method is a particular case of Ritz’s method. It is a versatile procedure

that offers flexibility for modeling complex geometry and results in stable and accurate

44



Chapter 4. Numerical solution 4.2. Preliminary remarks

solutions (Chari et al., 2000c). FEM has become one of the most used strategies for

solving initial boundary-value problems. This method lies in the variational techniques,

where the variational or weak statement of the problem is needed, and the approximate

solution of the weak equation by using the finite element functions (Hughes, 2000).

First, the initial boundary-value problem must be defined by partial differential equations,

knows as the strong formulation of the problem. Then, the problem’s variational formu-

lation needs to be obtained through the energy-related functional or weighted residual

expressions. It is the so-called weak formulation of the problem. The physical domain is

subdivided into sub-regions known as finite elements, where the trial solution is chosen

based on the nodal values of the elements. A set of algebraic equations is obtained either

by minimizing the functional or directly by the Galerkin procedure (Chari et al., 2000c).

Finally, the solution of the algebraic system is the parameters of the potential solution.

The weak or variational formulation of the problem is determined by two classes of func-

tions. The first one and already mentioned is the trial solution, which needs to satisfy the

Dirichlet boundary condition (e.g., u = h on ΓD) and the Neumann boundary condition

is not required in the definition. It is needed that the derivative of the trial solutions be

square-integrable. Assume that u is the trial solution and u′ is its derivative, this condition

can be mathematically stated as

∫

Ω
(u′)2dΩ <∞ (4.3)

Functions that comply with Equation 4.3 are called H1- functions. Therefore, the set of

trial solutions S is all functions that have squared-integrable derivatives and satisfy the

Dirichlet boundary condition on ΓD (Hughes, 2000); this can be written as

S =
{
u ∈ H1(Ω)|u = h on ΓD

}
(4.4)

The second set of equations is the weighting functions, they are similar to the trial solution,

but in this case, the homogeneous counterpart of the Dirichlet boundary is required as

follows (Hughes, 2000)

45



Chapter 4. Numerical solution 4.2. Preliminary remarks

V =
{
w ∈ H1(Ω)|w = 0 on ΓD

}
(4.5)

The finite element methods are built on the idea to approximate S and V by a convenient

and finite-dimensional set of functions where the weak formulation is solved in this finite-

dimensional context (Hughes, 2000).

Moreover, it is crucial to mention the strong and weak formulation of the problem is

equivalent through the integration by parts that state the following.

∫

Ω
u′wdΩ = −

∫

Ω
uw′ +

∫

Γ
uw · ndΓ (4.6)

The weak form can be obtained multiplying the equation by the weighting function and

integrate by parts.

To illustrate the reader and clarify preliminary concepts, suppose the following one-

dimensional boundary-value problem defined in x ∈ [0, 1] using the strong form as

Given f : Ω→ R and constants q and p, find u : Ω→ R such that

uxx + f = 0 on Ω

u(1) = q

−ux(0) = p

(4.7)

where f is scalar-valued function, smooth, and defined on [0,1]. The subscripts stand for

first (ux) and second derivative (uxx) respectively of the field u. In order to obtain the

weak formulation, the differential equation is multiplied by the weighting function and

integrate over the domain as follows

∫ 1

0
(uxx + f)wdx = 0 (4.8)

∫ 1

0
uxxwdx = −

∫ 1

0
fwdx (4.9)
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Using the integration by parts in the left side of the Equation 4.9 as

∫ 1

0
uxxwdx = uxw

∣∣∣
1

0
−
∫ 1

0
wxuwdx (4.10)

According to the strong formulation of the problem (Equation 4.7), −ux(0) = p and the

definition of the function space V (Equation 4.5), w(1) = 0 due to at x = 1 is a Dirichlet

boundary condition, it can be stated the weak form of the boundary-value problems as

Given f : Ω→ R and constants q and p. Find u ∈ S such that for all w ∈ V

∫ 1

0
wxuxdx =

∫ 1

0
wfdx+ w(0)p (4.11)

The Galerkin’s approximation method is based on the definition of finite-dimensional sets,

denoted by Sh and Vh, respectively. They are subsets of S and V and they are represented

over discretization of the domain Ω. Subsequently, uh and wh are defined by Equation 4.4

and Equation 4.5 as follows

Sh ⊂ S, if uh ∈ Sh then uh ∈ S (4.12)

Vh ⊂ V, if wh ∈ Vh then wh ∈ V (4.13)

Galerkin’s method states that the approximated solution’s error is orthogonal to finite-

dimensional approximation space Vh (Kuraz, 2011).Thus, the projection of the error on

the space Vh is zero. It is part of the so-called weighted residual methods. This procedure

shows that it is possible to approximate a second-order PDE by basis functions without

even knowing its second derivatives (Kuraz, 2011).

Galerkin’s approximation results in a system of linear algebraic equations due to the

structure of wh. Therefore, the weighting function is a linear combination of the basis

functions NA, also knows as shape or interpolation functions defined as if wh ∈ Vh, then

there exist constants cA, A = 1, 2, ..., n such that
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wh(x) =
n∑

A=1

cANA(x) (4.14)

NA implies that at the Dirichlet boundary NA = 0, A = 1, 2, ..., n, since wh = 0 as

necessary in Vh. Similarly, the trial solution uh is defined as

uh(x) =
n∑

A=1

dANA(x) (4.15)

Where dA are known as the degree of freedoms. Recalling the weak formulation in Equa-

tion 4.11, and substituting the definition of wh and uh in Equation 4.11 it is obtained the

matrix notation as follows

∫ 1

0

(
n∑

A=1

cANAx

)(
n∑

B=1

dBNBx

)
dx =

∫ 1

0

(
n∑

A=1

cANAx

)
fdx+NA(0)p (4.16)

In order to solve the Equation 4.16 is needed a local representation of the trial solution

and the weighting function. The local representation is then based on the partition of the

domain into finite elements Ωe which are disjoint subdomains of Ω. therefore, Ω = ∪nee=1Ωe.

As a result of local representation, Equation 4.16 is defined locally at each element in

matrix-vector notation as

cTe Kede = cTe Fe (4.17)

Where ce is the local vector of the degrees of freedom of the weighting function, Ke is

the local stiffness matrix, also knows as the conductivity matrix,de is the local vector of

degrees of freedom of the trial solution and the unknown in the system, and Fe is the local

force or source vector. After the local definition of the system, it is required to assembly

the global system to solve it finally.

4.3 Galerkin’s approximation of the problem

Initial boundary-value problems can be defined in two or three space dimensions as well.

Therefore, Ω ⊂ Rnsd where nsd(= 1, 2, 3) is the number of space dimensions. Ω is consider
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as an open set with a boundary Γ. As mentioned before, the boundary can be either

Dirichlet or Neumann type, and it can be decomposed in two sets, ΓD, consists of all the

endpoints that imply a Dirichlet boundary condition, and ΓN , consist of all the endpoints

that imply a Neumann boundary condition. Hence, Γ is a closed set of points contained in

the boundary (Γ = ΓD ∪ ΓN ) and there is no point contained in both types of boundaries

ΓD or ΓN (ΓD ∪ΓN = ∅). In terms of the preceding definitions, it is possible to conclude

Ω̄ is the union of the set and its boundary Ω̄ = Ω ∪ Γ.

4.3.1 Strong o classical formulation

In Chapter 3, two mathematical models were presented. The first model consists of one

unknown field approximated by the trail function hh. The second model is the coupled

system of partial differential equations that consist of two unknown fields approximated

by hh and T h. The solution of both models was implemented in DRUtES using Galerkin’s

Finite Element Method to solve the right side of the Equation 4.18 and 4.19. The time

derivative term is defined implicitly by the Backward Euler Method.

Water flow model

A formal statement for the strong formulation for the initial boundary-value problem given

by the Richards’ equation is the following:

Given C(h),K(θ), S, h0(x) : Ω → R, qΓhN
(x, t) : ΓN → R, and hΓD(x, t) : ΓD → R, find

h : Ω̄→ R such that

C(h)
∂h

∂t
=∇ · (K(θ)∇h) +

∂Kzz(θ)

∂z
− S (x, t) ∈ Ω× [0, T )

h(x, 0) = h0(x) x ∈ Ω

∂h(x, t)

∂n
= qΓhN

(x, t) (x, t) ∈ ΓN × [0, T )

h(x, t) = hΓD(x, t) (x, t) ∈ ΓD × [0, T )

(4.18)

Liquid water, water vapor and heat model

Likewise, the strong formulation of the initial boundary -value problem for the coupled

liquid water, water vapor and heat transport can be formally expressed as follows:

Given C(h),KTh,KTT ,Klh,BTT ,BTh, S,Q, h0(x) : Ω→ R, qΓhN
(x, t), qΓTN

(x, t) : ΓN → R,
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and hΓD(x, t), TΓD(x, t : ΓD → R, find h, T : Ω̄→ R such that

Ch
∂h

∂t
=∇ · (KTh∇h) +∇ · (KTT∇T )

+∇ · (Klh∇z)−
∂θv
∂t
− S (x, t) ∈ Ω× [0, T )

CT
∂T

∂t
=∇ · (BTT∇T ) +∇ · (BTh∇h)

−∇ · [(Cl~ql + Cv ~qv)T ]− L∂θv
∂t

+Q (x, t) ∈ Ω× [0, T )

h(x, 0) = h0(x) x ∈ Ω

T (x, 0) = T0(x) x ∈ Ω

~qw(x, t) · n = qΓhN
(x, t) (x, t) ∈ ΓN × [0, T )

h(x, t) = hΓD(x, t) (x, t) ∈ ΓD × [0, T )

~qT (x, t) · n = qΓTN
(x, t) (x, t) ∈ ΓN × [0, T )

T (x, t) = TΓD(x, t) (x, t) ∈ ΓD × [0, T )

(4.19)

4.3.2 Weak or variational formulation

By multiplying the strong formulation by the weighting function and applying the inte-

gration by parts as explained in this chapter, the weak formulation can be obtained. The

time derivative term is once again solved by the implicit Euler scheme.

Water flow model

A formal statement for the weak or variational formulation for the initial boundary-value

problem given by the Richards’ equation is the following:

Given C(h),K(θ), S, h0(x) : Ω → R, qΓhN
(x, t) : ΓN → R, and hΓD(x, t) : ΓD → R, find

hh ∈ Sh such that for all wh ∈ Vh

∫

Ω
C(h)

∂hh

∂t
whdΩ = −

∫

Ω
(K(θ)∇hh)∇whdΩ +

∫

ΓN

qΓhN
whdΓN+

∫

Ω

∂Kzz(θ)

∂z
whdΩ−

∫

Ω
SwhdΩ

(4.20)
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Liquid water, water vapor and heat model

Likewise, the weak formulation of the initial boundary -value problem for the coupled

liquid water, water vapor and heat transport can be formally expressed as follows:

Given C(h),KTh,KTT ,Klh,BTT ,BTh, S,Q, h0(x) : Ω→ R, qΓhN
(x, t), qΓTN

(x, t) : ΓN → R,

and hΓD(x, t), TΓD(x, t : ΓD → R, find hh, T h ∈ Sh such that for all wh1 , w
h
2 ∈ Vh

∫

Ω
Ch

∂hh

∂t
wh1dΩ = −

∫

Ω
(KTh∇hh)∇wh1dΩ−

∫

Ω
(KTT∇T h)∇wh1dΩ

+

∫

ΓN

qΓhN
wh1dΓN +

∫

ΓN

qΓTN
wh1dΓN

+

∫

Ω
∇ · (Klh∇z)wh1dΩ−

∫

Ω

∂θv
∂t

wh1dΩ−
∫

Ω
Swh1dΩ

(4.21)

∫

Ω
CT

∂T h

∂t
wh2dΩ = −

∫

Ω
(BTT∇T h)∇wh2dΩ−

∫

Ω
(BTh∇hh)∇wh2dΩ

+

∫

ΓN

qΓhN
wh2dΓN +

∫

ΓN

qΓTN
wh2dΓN

−
∫

Ω
∇ ·

[
(Cl~ql + Cv ~qv)T

h
]
wh2dΩ−

∫

Ω
L
∂θv
∂t

wh2dΩ +

∫

Ω
Qwh2dΩ

(4.22)

4.3.3 Local matrix-vector equations

In DRUtES, one-dimensional and two-dimensional Galerkin FEM are implemented using

linear basis functions for both dimensions. In two-dimensional problems, the domain is

divided into triangular elements.

Water flow model

The solution of the water flow model consist in one unknown field, the pressure head, thus,

the local stiffness matrix has dimension 3x3 and the source vector has dimension 3. By

using the definition of trial and weighting functions in Equation 4.14 and Equation 4.15,

where for two-dimensional with triangular elements n = 3. The local stiffness matrix is

defined for Ke[i, j](i = 1, 2, 3; j = 1, 2, 3) as

Ke[i, j] = −
∫

Ωe
C(h)

∂hh

∂t
whdΩ−

∫

Ωe
(K(θ)∇hh)∇whdΩe +

∫

Ω

∂Kzz(θ)

∂z
whdΩ (4.23)
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and the local source vector is defined as

Fe[i] =

∫

Ω
SwhdΩ (4.24)

Liquid water, water vapor and heat model

The water flow solution coupled with the heat flow model consists of two unknown fields

coupled together: the pressure head and temperature; thus, the local stiffness matrix has

dimension 6x6, and the source vector has dimension 6.

The matrix structure is divided into four block matrices based on the equation and variable

associated with the diffusion, convection, and reaction terms. The structure is schematized

as follows.




Pressure domain terms
in water equation

Temperature domain terms
in water equation

Pressure domain terms
in heat equation

Temperature domain terms
in heat equation




Using the definition of trial and weighting functions in Equation 4.14 and Equation 4.15,

the matrix of the pressure domain terms in the water equation is defined for Ke[i, j](i =

1, 2, 3; j = 1, 2, 3) as

Ke[i, j] =

∫

Ωe
Ch

∂hh

∂t
wh1dΩe −

∫

Ωe
(KTh∇hh)∇wh1dΩe−

+

∫

Ωe
∇ · (Klh∇z)wh1dΩe

(4.25)

The matrix of the pressure domain terms in the heat equation is defined for Ke[i, j+3](i =

1, 2, 3; j = 1, 2, 3)

Ke[i, j + 3] =

∫

Ωe
(BTh∇hh)∇wh2dΩe (4.26)

The matrix of the temperature domain terms in the water equation is defined as Ke[i +

3, j](i = 1, 2, 3; j = 1, 2, 3)
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Ke[i+ 3, j] =

∫

Ωe
(KTT∇T h)∇wh1dΩe (4.27)

The matrix of the temperature domain terms in the heat equation is defined as Ke[i +

3, j + 3](i = 1, 2, 3; j = 1, 2, 3)

Ke[i+ 3, j + 3] =

∫

Ωe
CT

∂T h

∂t
wh2dΩe −

∫

Ωe
(BTT∇T h)∇wh2dΩe

−
∫

Ωe
∇ ·

[
(Cl~ql + Cv ~qv)T

h
]
wh2dΩe

(4.28)

The source vector for the water equation is defined as Fe[i](i = 1, 2, 3)

Fe[i] = −
∫

Ω

∂θv
∂t

wh1dΩ−
∫

Ω
Swh1dΩ (4.29)

And the source vector of the heat water equation is defined as Fe[i+ 3](i = 1, 2, 3)

Fe[i+ 3] = −
∫

Ω
L
∂θv
∂t

wh2dΩ +

∫

Ω
Qwh2dΩ (4.30)

where Ωe is an arbitrary element in the domain discretization Ω.

For the elements that have a node in the boundaries, the source vector is modified by

adding a Neumann vector that contains the definition of the flux in the nodes that belong

to the Neumann boundary and 0 for the rest of nodes that do not belong to the boundary.

The local matrices are built to store the coefficients of both equations. Due to non-linearity

of the hydraulic conductivity and retention water capacity, the solution in the elements

is numerically integrated using a three-point Gaussian quadrature formula. Then, the

assembly to the global stiffness matrix and the source vector is performed in order to

solve the linear system. The resulting linear system is solved in one-dimensional problems

by LU decomposition as the direct method, and for a two-dimensional problem by the

preconditioned conjugate gradient (PCG), as an iterative method. The non-linear problem

is solved by the standard Picard method.
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Chapter 5

Computational implementation

5.1 Introduction

This chapter explains the computational process that was carried out to implement the

surface and sub-surface evaporation models to the Dual Richards’ Unsaturated Equation

Solver (DRUtES). For the implementation, two directories named Evaporation and

REevap were created within the directory models , following the modular architecture

of the selected computer program where all the source files created as result of this work

are available. The configuration files are also presented and explained.

5.2 DRUtES

The surface evaporation and sub-surface evaporation models were implemented in the

Dual Richards’ Unsaturated Equation Solver (DRUtES) (DRUtES , 2020) object-oriented

library written in Fortran 2003/2008 for solving coupled nonlinear convection-diffusion-

reaction equations. DRUtES was first created as part of the doctoral research of Doc.

Ing. M. Kuráž as free software that can be redistributed and modified under the terms

of the GPL v3 license. As open-source code, DRUtES is continuously evolving due to the

developer team’s contribution, or independent contributors.
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5.3 Surface evaporation

As stated in previous chapters, the surface evaporation model has two main parts, the

Richards’ equation and the Penman-Monteith equation as a surface boundary condition

of the PDE. Richards’ equation was already implemented in DRUtES and was not part

of this work. Therefore, this implementation’s main task was to create the evaporation

boundary subroutine, including the time-dependent meteorological records and coupling

the boundary condition with the Richards’ equation. New source files were created as part

of this implementation, but Richards’ equation source files were also modified. Within the

directory Evaporation two source codes file were created: Re_evap_bc.f90, and

Re_evap_reader.f90.

The Re_evap_bc.f90 module includes the evaporation rate calculation by PM equa-

tion, all the parameters needed for, defined in Table 3.1 and Table 3.2. This source file is

divided into two subroutines and six functions.

• evap_datadt_bc : since the calculation of the evaporation rate strongly depends

on the time interval of meteorological records, it is important to identify the data

frequency to determine the further treatment of the parameters in the Penman-

Monteith equation. The atmospheric data can be provided as hourly, daily, monthly,

or yearly data.

• evap_pm_bc :this subroutine begins with calling evap_datadt_bc to determined

the time interval of the meteorological data, and proceed to read maximum temper-

ature, minimum temperature, relative humidity, wind speed, hours of sunlight, and

incoming solar radiation. Then, the following functions are used to calculate all the

parameters needed for the evaporation rate calculation.

– pressure_atm : calculates the atmospheric pressure based on the elevation.

– e_o: calculates the mean vapor saturation pressure by means of the air tem-

perature.

– num_day_fcn : calculates de number of the day in the year of the current

simulation time.

– wind_fcn : calculates the conversation factor for the reference wind speed
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measured at 2 m based on the height of measurement.

– soilheat_fcn : calculates the soil heat flux based on the difference of tem-

peratures between the current simulation time and the previous simulation

time, and the time interval of the data.

– radiation_fcn : calculates the net radiation based on the balance of in-

coming/outgoing longwave and shortwave radiation. Moreover, it takes into

account the geographic location of the measured data

Finally, the evaporation rates is evaluated and used in the boundary condition stated

in Equation (3.33).

The module Re_evap_reader.f90 only includes one subroutine Re_evap_var where

it is read the site location and extra meteorological data information. Since the bound-

ary condition was coupled with the Richards’ equation, two existing modules were also

modified: RE_globals.f90 and RE_pointers.f90.

RE_globals.f90 module is allocated for defining all the parameters, and the variable

used in the Richards’ equations also included the additional variables used in the Penman-

Monteith equation. For calculating the net radiation is necessary to know the elevation

and latitude where the meteorological records were measured. Additionally, the albedo is

also a parameter needed for this implementation. Moreover, to determine the influence

of the sun and its rays it is important to consider the annual fluctuations of radiation

and its seasonal effect, so the current date is determined by the simulation time and the

initial period of the records, then the initial day, month and year should be specified in

evap.conf .

The potential evapotranspiration boundary condition was included as a case for the bound-

ary conditions options already available in DRUtES. The user can select a range of bound-

ary types for the bottom boundary. For time-dependent boundary types, additional data

needs to be supplied. The boundaries are identified by the ID, which for one-dimensional

case 101 ID refers to the bottom boundary, and 102 ID refers to the surface boundary,

where the meteorological records need to be supplied.

The following boundary types currently implemented for selection of the user are: (0) no

boundary condition for this domain, (1) Dirichlet boundary condition where total head
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H must be supplied as constant, (- 1) Dirichlet boundary condition, where the pressure

is equal to the vertical distance from the defined value, (2) Constant or time-dependent

Neumann boundary, (3) Free Drainage condition, (4) Seepage condition, (5) Atmospheric

boundary condition where the potential evapotranspiration rate was included. The allo-

cation of the boundary is done by using the case statement, and assigning the subroutine

evap_pm_bc for the corresponding case.

This model requires three configuration files global.conf , matrix.conf , evap.conf .

global.conf contains the definition of type of model which for this cases is RE (Richards’

equation), the problem dimension, currently implemented in 1D or 2D, the mesh genera-

tor, simulation time units (e.g seconds for this implementation), the final simulation time,

initial time step and max/min time step. Here, is also needed to define the observation

points for printing the simulation results. Finally, in this file more advanced numerical

settings can be provided. matrix.conf contains all the porous medium parameters

needed in the Richards’ equation, as the initial condition and specification of the bound-

ary conditions. The last required file is evap.conf , here as mentioned before it is needed

to specify the latitude, elevation, albedo, initial day, month, and year of the meteorological

records.

Additionally, the meteorological records are defined in the file 102.bc, where the following

data must be supplied: time[seconds], minimum temperature [°C], maximum tempera-

ture [°C], relative humidity [%], wind speed [m s−1], hours of sunshine [hours], radiation

[MJ m−2 d−1], intensity of rain [m s−1], in the same order as described. Overall, this

model does not need large additional input information, which can limit its use. On the

other hand, the additional data required is widely available, even online. The data for

the evap.conf the file is always part of any meteorological records, except for albedo.

However, albedo is a known value for regions where evaporation evaluation and water

management projects were done before since it is an important factor for the evaporation

process.

In Figure 5.1 is summarized the relevant files to the implemented surface evaporation

model where configuration files structure and subroutines is presented.
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Figure 5.1: Simplified module tree for surface evaporation model.

5.4 Sub-surface evaporation

Due to the object architecture of DRUtES, adding new diffusion-convection-reaction dif-

ferential equations is possible without having to modify the subroutines intended for the

numerical solution of the equations or their linear algebra complements. It is only neces-

sary to identify the coefficients of convection, diffusion, reaction, and capacity, implement

and assign them correctly to the corresponding variables.

From Equation (3.63), it is possible to identify the coefficients. Each equation has two
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diffusion coefficients due to both pressure and temperature gradient, one convection coef-

ficient, one capacity coefficient, and one reaction coefficient. In Equation (5.1), it is stated

the same system of equations with the respective coefficients, where i, j refers to the i-

equation and j-coefficient.





E1,1
∂h

∂t
=∇ · (D1,1∇h) +∇ · (D1,2∇T ) +∇ · (C1,1∇z)−R1,1

E2,1
∂T

∂t
=∇ · (D2,1∇h) +∇ · (D2,2∇T ) + +∇ · (C2,1∇z)−R2,1

(5.1)

where Ei,j are the capacity coefficients, Di,j are the diffusion coefficients, Ci,j , and Ri,j

are the reaction terms, define as follows

E1,1 = Ch E2,1 = CT

D1,1 = KTh D1,2 = KTT D2,1 = BTh D2,2 = BTT

C1,1 = Klh C2,1 = Cl~ql + Cv ~qv

R1,1 = −∂θv
∂t

R2,1 = −L∂θv
∂t

(5.2)

At this point, it is possible to identify that E1,1 and C1,1 are the same capacity and con-

vection coefficients as the classical Richard’s equation, already implemented in DRUtES.

In total, six new source files were created during this model implementation as follows:

• evapglob.f90: in this file are defined all the parameters used, and input variable

used in the sub-surface model.

• evapextras.f90: thermodynamics and auxiliary functions were defined in this

module according to Chapter 3.

• evap_RE_fnc.f90: this module contains the capacity, diffusion, convective, and

reaction coefficients of water flow partial differential equation.

• evap_heat_fnc.f90: this module contains the capacity, diffusion, convective,

and reaction coefficients of heat flow partial differential equation.

• REevapbc.f90: the Neumann boundary condition for water equations was imple-

mented in this module

• heatevapbc.f90: the Robin boundary condition for heat equation was imple-
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mented in this module.

• evappointers.f90: is the source file where the construction of the PDEs is

happenning. First the allocation of the couple problem is stated, after, the call of

the needed subroutine is done to allocate E1,1 and C1,2 from the classical Richard’s

equation, and the overwrite by the subroutines in evap_RE_fnc.f90 and

evap_heat_fnc.f90. In the allocation, it is also assigned the flux and the bound-

ary conditions to each differential equation.

By allocating the classical Richards’ and heat equations already implemented in DRUtES,

it is granted access for the definition of initial and boundary conditions (Neumann and

Dirichlet type), which still applies to these two new formulations. Although, the model

presented in Chapter 3 suggested a Robin Boundary type for the heat equation at the

soil surface, the boundary condition was implemented as Neumann boundary type. The

Neumann boundary condition can be mathematically stated as

~qT · n = −G ∀x ∈ Γsurf × [0, T ) (5.3)

Since the allocation of the initial condition is the same as the classical heat equation,

heat.conf should also be supplied as a configuration file.

In Figure 5.2 is summarized the relevant files to the implemented sub-surface evaporation

model where configuration files structure and subroutines are presented. The mesh direc-

tory is reserved for the mesh configuration files; for this work, the internal 1-dimensional

mesh generator of DRUtES was used. However, it is possible to read different third-party

mesh files.

The fully coupled set of equations for liquid water, water vapor, and heat transport

may seem at first sight that significantly more parameters are needed than the classi-

cal Richards’ model decoupled heat model. As presented, the soil non-thermal hydraulic

properties are described by the same parameters needed to simulate variably saturated

liquid water flow based on the Richards equation. The thermal liquid and vapor fluxes

are fully described by the functions presented in Table 3.3.
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Figure 5.2: Simplified input tree for sub-surface evaporation model.
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Chapter 6

Benchmark case of study

6.1 Introduction

This chapter presents the benchmark cases used to test and evaluate the performance of

both models, the surface, and the sub-surface evaporation. Two scenarios were proposed

under controlled meteorological conditions that allowed to identify the effect of variables

to the system and validate with the theory given in Chapter 2.

Incoming shortwave radiation is a substantial factor affecting the evaporation process, and

it was selected to be the constraint variable to evaluate the implementation of the models.

The first scenario is known as a dark condition where no incoming shortwave radiation was

considered, Rs = 0; the second scenario is characterized by constant incoming shortwave

radiation, Rs= constant. Under these two simulation conditions, the results were depicted

and analyzed.

This chapter begins with the description of the shared input for both models simulations

and continues describing the particular conditions of the simulations with the surface evap-

oration model and its results. Furthermore, this chapter finalizes describing the particular

conditions of the simulations with the coupled water and heat flow, and its results.

6.2 Input

In this study, one soil texture was chosen from the database of Carsel et al., 1988. Hy-

draulic conductivity is one of the sources of numerical difficulties when using the Richards
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equation. Sand, for instance, has a significant α and n parameters that cause the curve

to be steeper and numerically challenging. To avoid numerical instability, the parameters

shown in Table 6.1 were slightly modified to guarantee smooth simulations.

Table 6.1: Soil hydraulic parameters based on van Genuchten and Mualem models.

Input Symbol Units Value

inverse of air entry value α m−1 5e-2

Saturated hydraulic conductivity Ks m s−1 5.7e-6

Saturated volumetric water content θs - 0.36

Residual volumetric water content θr - 0.07

shape parameter n - 1.09

shape parameter m - 0.082

Based on the hydraulic parameter, water retention and hydraulic conductivity were gen-

erated and depicted in Figure 6.1.
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Figure 6.1: Soil hydraulic curves used in the simulation cases.

Besides the hydraulic properties, the numeric parameters were consistent across all the

simulations and constraint by the need for small time-steps for solving Richard’s equation

in both models, including the couple water and heat. The simulated experiments had a

total simulation time of 14 days. For the classical Richards’ equation, 14 observation times

were used the same as a day in the simulation, for the coupled heat and water flow model

17 observation times were used to capture the first stage of evaporation in more detail.

The simulation parameters are shown in Table 6.2.
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Table 6.2: Simulation parameters used in simulation case on DRUtES.

Input Units value

Simulation time s 1209600

Minimum time step s 0.001

Maximum time step s 10

iteration criterion Picard method - 1e-04

To ease the analysis and assess the models’ respect for the accuracy of capturing the

phenomena involved, the experiments were carried out in one dimension (1D). A simple

evaluation of the mesh was complete, in order to minimize any numerical oscillations in the

results and differences while comparing. For the hydrodynamic model, the mesh density

was 0.002, generating 100 nodal points. However, this density was not optimum for the

couple hydro and thermodynamics simulations. The sparse matrix for the coupled problem

has more non-zero elements that increase the computational time when the direct LU

decomposition is used to solve the linear system of equations. Due to the matrix structure,

the mesh density was set as 0.01 generating 20 nodal points. The author acknowledges

the importance to execute a mesh optimization process during the simulation study, and

strongly recommend to evaluate in detail the impact of the mesh density on the coupled

water and heat model in the future.

6.3 Surface evaporation

Surface evaporation was evaluated using the model presented in the first part of the

Chapter 3. The 20 cm long soil profile was divided into 100 elements, with observation

points at depths 0, 5, 10, 15, 18, and 2 cm. DRUtES generated the observation files at these

points to compare pressure head, water content, and Darcy flux. The bottom boundary

of the domain was set as Neumann no flux boundary type ( at z = 0), mathematically

expressed as follows.

∂h(x, t)

∂n
+ n3(x) = 0 (z = 0, t) ∈ Γbottom × [0, T ) (6.1)

Furthermore, the boundary condition at the soil interface was set as the Neumann atmo-

spheric boundary (at z = 0.2). mathematically expressed as
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K(h)

(
∂h(x, t)

∂n
+ n3(x)

)
= qΓsurf (t) (z = 0.2, t) ∈ Γsurf × [0, T ) (6.2)

It is essential to mention that there is not a Dirichlet boundary condition defined in

the system; thus, the uniqueness of the solution is not guaranteed when the water re-

tention capacity term C(h) vanishes. The initial condition can be seen as a Dirichlet

temporal-spatial condition as well if the initial conditions can keep the connection with

both Neumann boundaries. This situation is critical under near-saturated conditions in

the soil for the Richards equation when the retention capacity term becomes small. If the

retention capacity is zero, the system is singular, and it nos possible to be solved. Hence,

the system is not fully defined as only the first derivatives are provided when a problem

is only allocated by Neumann boundary conditions.

During the drying process, the problem arises with the hydraulic conductivity and its pa-

rameterization, where van Genutchen- Mualem model has been proved to lead to numer-

ical instabilities. Also, the model underestimates the unsaturated hydraulic conductivity

when the water content is closed to the residual water content (Sakai; Jones, et al., 2011).

Furthermore, the motivation to set this boundary as Neumann is purely physical. This

condition assumes the water table is located far below the domain. It is especially useful

to evaluate the drying process where the system has no other flux of water but only the

one driven by the evaporation (Saito et al., 2006; Sakai; Jones, et al., 2011). This previous

statement was assumed for both models implemented in this work. Figure 6.2 illustrates

the domain used to conduct the simulation experiments.

Uniform total hydraulic head of -0.1 m was given as initial condition that implies a linear

distribution of pressure head along with the vertical domain h = 0.1 − z. It can be

expressed mathematically as

H(z, 0) = −0.1 ∀z ∈ Ω (6.3)

The controlled atmospheric conditions were assured by setting up constant value for max-

imum and minimum temperature, air relative humidity, and wind speed. For the dark

scenario, the value of sunshine hours and incoming solar radiation were set both as zero.
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Figure 6.2: 1D domain set-up of Richards equation coupled with Penman-Monteith equa-
tions as a boundary condition.

While for the constant radiation, they were constant non zero values as 2 and 8, respec-

tively. The atmospheric conditions are summarized in Table 6.3.

Table 6.3: Input atmospheric parameters for zero shortwave radiation and constant short-
wave radiation.

Input units Rs=0 Rs=const

Minimum temperature °C 20 20

Maximum temperature °C 25 25

Relative humidity % 50 50

Wind speed m s−1 2 2

Sunshine hours hrs 0 2

Solar radiation MJ m−2 d−1 0 8

Albedo - 0.23 0.23

6.3.1 Results and discussion

As the atmospheric parameters were constant during all the simulation for both scenarios,

shortwave radiation equal to zero and constant, the evaporation rate is constant. Accord-

ing to the Penman-Monteith equation (see Equation (3.34)), the energy flux is balanced

by the difference between the net radiation and the soil heat flux. As the air temperature

is constant, the soil heat flux is zero for both cases, and the net radiation dominated the

evaporation process. Hence, an increase in the shortwave radiation caused an increment
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in the net radiation and, consequently, in the evaporation rate.

Table 6.4: Results of numerical simulation of evaporation rate and energy fluxes for sce-
nario without shortwave radiation and without shortwave radiation.

Scenario Rs = 0 Rs = const

Evaporation rate [mmd−1] 1.6988 4.4138

Soil heat flux [MJd−1m−2] 0 0

Net radiation [MJd−1m−2] 2.035 5.988

The approximation provided by the Penman-Monteith method corresponds to the maxi-

mum value of stage I of the evaporation process. It is often seen as the upper boundary

of the evaporation rate and called the potential evaporation rate. This approach ignores

the evaporation happening inside the soil and only takes into account that evaporation

occurs at the surface of the soil. Therefore, stage II is not considered, and the vapor flux

is neglected. The assumptions of the PM equation have been proved to be insufficient

for estimating the evaporation rate in several experimental studies and simulations (e.g.,

(Wilson et al., 1994)). During stage I, the evaporation process is controlled primarily by

the atmospheric conditions and, to a lesser extent, by the soil properties, which validate

this model during this stage.

Figure 6.3 shows the depth distribution of pressure head and water content along with

the soil profile for all the simulated days, without shortwave radiation and with short-

wave radiation. For the scenario without shortwave radiation, the profiles have a linear

distribution with depth, expected behavior for the stage I.

Usually, during the transition from stage I and II, the non-linearity characterizes the

pressure head, and water content profile distribution during stage II. The development

of non-linearity in the profiles can be correlated with high evaporation rates, which are

observed with shortwave radiation. Since this model does not capture the stage II of the

evaporation process, the non-linear trend for the scenario with shortwave radiation, the

onset of stage II is not the explanation.

As the evaporation progress, the surface dried out, and the water content is close to the

residual water content, as shown in Figure 6.4. Although the evaporation rate keeps

constant, the system generates a large pressure gradient at the surface to maintain the

boundary condition, approximately -15000 m (see Figure 6.3). At this moment, small
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Figure 6.3: Results of numerical simulation of Pressure head (upper) and water content
(bottom) with shortwave radiation (right) and without shortwave radiation (left) for the
simulation time in the domain.

68



Chapter 6. Benchmark case of study 6.3. Surface evaporation

−150

−100

−50

0

0.0 2.5 5.0 7.5 10.0 12.5

time [days]

p
re

s
s
u

re
 h

e
a

d
 [

m
]

Radiation

no Rs

with Rs

0.15

0.20

0.25

0.30

0.35

0.0 2.5 5.0 7.5 10.0

time [days]
w

a
te

r 
c
o

n
te

n
t 

[−
]

Figure 6.4: Results of numerical simulation of vertical distribution of pressure head (upper)
and water content (bottom) at different simulation times without shortwave radiation (left)
and with shortwave radiation (right).

changes in the water content lead to significant changes in the pressure head, and the

simulation is no longer stable. Once the large gradient was developed at the boundary,

the simulation did not proceed and stop around day 11.

For the dark scenario, the evaporation rate was small enough not to dry the surface

significantly during the simulation time (see Figure 6.4 right). Hence, the soil could

maintain the flux at the boundary without developing large gradients in pressure. By

setting the shortwave radiation as 8 MJ m−2 d−1 certainly, the evaporation rate increased,

and there was not soil heat flux to balance the energy at the surface and then decreased

the evaporation flux. In inclusion, the results are in agreement with the assumption of the

Penman-Monteith equation and its limitation.

By integrating the evaporation rate is possible to quantify the total losses of water due to

evaporation. In the specific case where the evaporation rate is constant, the cumulative

evaporation flux is linear. The cumulative evaporation flux is a crucial function to analyses

specifically in industrial applications of water sources and their storage to minimize the

losses by evaporation.
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Figure 6.5: Results of numerical simulation of cumulative evaporation flux without short-
wave radiation and with shortwave radiation.

6.4 Sub-surface evaporation

Surface evaporation was evaluated using the model presented in the second part of the

Chapter 3. The 20 cm long soil profile was divided into 100 elements, with observation

points located at depths 0, 5, 10, 15, 18, 2 cm. Two conditions must be supplied at

each boundary as initial conditions since two coupled partial differential equations were

solved in this model. The bottom boundary of the domain was set as Neumann no flux

boundary type (z = 0) for water (Equation 6.4) and heat flow (Equation 6.5), these can

be mathematically expressed as

∂h(x, t)

∂n
+ n3(x) = 0 (z = 0, t) ∈ Γbottom × [0, T ) (6.4)

∂T (x, t)

∂n
+ n3(x) = 0 (z = 0, t) ∈ Γbottom × [0, T ) (6.5)

The boundary condition at the soil interface was set as the Neumann atmospheric bound-

ary (z = 0.2) for the water equation determined by the evaporation rate, and Robin

boundary equals the soil heat flux determined by the surface energy balance for the heat

equation. Both conditions are expressed mathematically as follows.
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Figure 6.6: 1D domain set-up of water coupled with heat flow model.

‖ ~qv(x, t) ‖x=n + ‖ ~ql(x, t) ‖x=n= Ev(t) (z = 0.2, t) ∈ Γsurf × [0, T ) (6.6)

~qT · n = −G (z = 0.2, t) ∈ Γsurf × [0, T ) (6.7)

Uniform total hydraulic head of -0.1 m was given as initial condition that implies a linear

distribution of pressure head again along with the vertical domain h = 0.1 − z and an

initial temperature of the system of 25°C the same as the air temperature. Figure 6.6

illustrates the domain used to conduct the simulation experiments.

H(z, 0) = −0.1 ∀z ∈ Ω (6.8)

T (z, 0) = 25 ∀z ∈ Ω (6.9)

Similarly to the previous model, the controlled atmospheric environment was applied,

and two scenarios were studied: the dark and the constant shortwave radiation. The
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atmospheric conditions are summarized in Table 6.5.

Table 6.5: Input atmospheric parameters for zero shortwave radiation and constant short-
wave radiation.

Input units Rs=0 Rs=const

Air Temperature °C 25 25

Relative humidity % 50 50

Radiation W m−2 0 100

Albedo - 0.23 0.23

6.4.1 Results and discussion

In order to present and evaluate the simulated results, the discussion starts analyzing the

hydro and thermodynamics at the boundary employing the time series of the evaporation

rate for different values of air resistance that leads the discussion further to the solution

of the state variables (h, θ, T ) in the entire domain. Finally, some numerical aspects will

be presented as the last remarks.

Water and heat dynamics at the atmospheric boundary

Figure 6.7 shows the results of evaporation rate and surface temperature for scenarios

without shortwave radiation (left) and constant shortwave radiation (right) using three

different aerodynamic resistances. The evaporation rate decreases rapidly at the beginning

of all the scenarios. Thereafter, it stabilizes and becomes close to constant value during

stage I. Further, the evaporation rate decreases again during stage II and stabilizes again

when approximating to 0, which is considered as the stage III by Wilson et al., 1994.

Stage I and Stage II are distinguished for both scenarios and all values of air resistances.

A mean stage I evaporation rates ranged from 0.2 to 1 cm d−1 for dark scenarios and

from 0.35 to 1.4 cm d−1 for constant radiation scenarios. The duration of stage I is longer

for dark scenarios than for constant shortwave radiation scenarios. Hence, the higher the

evaporation rate during stage I, the shorter the duration of the first stage. Scenarios

with lower air resistance present higher evaporation rate, expected behavior from a direct

analysis of the Equation (3.69), and validated from the results. However, the relation

between the evaporation rate and air resistance is not linear since the dependency between

temperature and vapor density is not linear, and consequently to the air vapor pressure.

The initial decrease of the evaporation rate is caused by the decrease of soil surface temper-
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Figure 6.7: Results of numerical simulation of the evaporation rates (upper) and soil sur-
face temperature (bottom) time series for different values of the air resistance ra, without
shortwave radiation (left) and with shortwave radiation (right).

ature (Figure 6.7 bottom). For dark scenarios, the drop in temperature ranged from 18.5

to 20.1 ℃ and for the constant radiation from 19 to 24.3 ℃. The temperature fluctuations

at the surface are due to the heat loss from the latent heat of vaporization during stage

I. It leads to a proportional decrease in the losses during stage II. The drop in surface

temperature decreased the soil surface vapor density (see Figure 6.8 upper left and right).

According to soil relative humidity time series (see Figure 6.8 upper left and right), the

end of stage I occurs when relative humidity becomes smaller than one at the surface.

From the beginning of stage II, the relative humidity governs the evaporation rate even

though the temperature is increasing during this period and consequently increased in the

saturation vapor density and stabilization of the vapor density. A sudden but smaller drop

in the evaporation rate can be noticed in stage II with an increase in the temperature.

These alterations in the system occurred when the soil dried out, leading to low volumetric

water content. At the begging of stage II, the pressure head rises as shown in Figure 6.9,
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Figure 6.8: Results of numerical simulation at the soil surface of vapor density(upper)
and soil relative humidity (bottom) time series for different values of the air resistance ra,
without shortwave radiation (left) and with shortwave radiation (right).

while the drying front progressed in the soil, small changes in water content leads to a

significant increase in the pressure head, this increase affects the relative humidity causing

a reduction that subsequently decrease the evaporation rate. The stage III is blurred and

somewhat arbitrary, where is driven only by a vapor-diffusion process and it can be seen

as the ending of the evaporation process as the system balance with the atmosphere and

tends to the equilibrium.

The evaporation process stops when the vapor pressure in the adjacent layer of air and

the vapor pressure at the surface boundary of the soil is in equilibrium. Therefore, the

equilibrium is defined when these two quantities are equal. The vapor density of the

74



Chapter 6. Benchmark case of study 6.4. Sub-surface evaporation

−1000

−750

−500

−250

0

0 5 10 15

p
re

s
s
u
re

 H
e
a
d
 [
m

]

No Rs

−1000

−750

−500

−250

0

0 5 10 15

Air_resistance

100 s/m

30 s/m

300 s/m

with Rs

0.24

0.28

0.32

0.36

0 5 10 15

time [days]

w
a
te

r 
c
o
n
te

n
t 
[−

]

0.24

0.28

0.32

0.36

0 5 10 15

time [days]

Figure 6.9: Results of numerical simulation of pressure head (upper) and liquid water
content (bottom) time series for different values of the air resistance ra, without shortwave
radiation (left) and with shortwave radiation (right) at the surface boundary.

atmosphere is approximately 0.00864 kg m−3, from Figure 6.8, it is possible to conclude

that for the scenarios without shortwave radiation, the cases with ra = 30 s m−1 and ra =

100 s m−1 reach the equilibrium, while for the dark scenario and case of ra = 300 s m−1,

the equilibrium was not accomplished yet as for all the cases with constant shortwave

radiation.

At the equilibrium, it is possible to quantify the total losses of water from the soil due to

the evaporation by the difference between the amount of water stored in the soil at the

initial time and the water content at h= -7500 m (see Figure 6.11 upper right) multiplied

by the length of the domain, for the case of ra = 100 s m−1, the cumulative evaporation

rate is 2.4 cm, as shown in Figure 6.10. In conclusion, the stage I of evaporation is

dominating by the hydrodynamics while stage II is dominating by the thermodynamics

where the vapor flux is dominant.
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Figure 6.10: Results of numerical simulation of the components of the surface energy
balance (upper) for ra = 100 s m−1 and cumulative evaporation flux (bottom) without
shortwave radiation (left) and with shortwave radiation (right) with different values of air
resistance ra.

Figure 6.10 shows the components of the surface energy balance for the case where ra = 100

s m−1. The soil heat flux G is negative (downward) at the beginning of stage I when the

soil is warming and shows a change in the trend with a short peak approximately in day

5 (or earlier for the scenario of constant shortwave radiation) at the beginning of stage II.

The peak represents the flux of latent heat towards the surface. Besides, the net radiation

has a strong impact on the surface temperature and the retardation of the equilibrium

state of the system. It is evident in Figure 6.10 (upper right), where fluxes have not

reached the equilibrium yet. Net radiation, Rn, is leading the flow of energy towards the

colder soil surface, and it is expected to tend to zero as stage II took place.
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Despite the differences in the domain set-up, the presented results agree with the ones

reported by Sakai; Jones, et al., 2011; Or et al., 2013; Saito et al., 2006; Wilson et al.,

1994; Iden et al., 2019.

Depth profiles of state variables

Figure 6.11 shows the depth distribution of the pressure head, the water content, and

the temperature for different simulation times for a value of air resistance equal to 100

s m−1 with shortwave radiation and without shortwave radiation. At the beginning of

the simulation, the depth distribution of h, θl, T is linear, similar to the first model with

constant shortwave radiation. With the progressing of the evaporation over time, the

depth distribution of the three variables becomes not linear. The non-linear distribution

is presented faster in higher evaporation rates, which can be observed with shortwave

radiation.

The non-linearity of the profiles is due to the transition from stage I and II, especially

impacting the pressure head. The pressure head distribution shows a robust non-linear

behavior during stage II when the suction drastically increased at the top boundary. The

resulting impact is the decrease in the evaporation rate and a large pressure head gradient.

The gradient of the three state variables was zero at the beginning of all the simulations,

and as the time progress, the gradient became greater. It is expected that when the soil

dried out until the equilibrium, the gradient should be zero, where the pressure head,

water content, and temperature were the same among the depth profile. The simulation

time seemed insufficient for the hydrodynamics process to reach the equilibrium, while the

temperature reached gradient zero around day 11. It is clear for scenarios with shortwave

radiation and aerodynamic resistance higher than 30 s m−1, the simulation did not last

enough to evaporate the maximum amount of water available and reach the equilibrium.

Anticipating the numerical instabilities of the unsaturated hydraulic parameterization, the

residual water content was lower than the value reached at the end of the simulation time

for the whole domain and far from the residual value.

As can be expected, the convective flux is dominant mechanism transport that must not

be neglected when modeling evaporation in soils. Equation (6.10) is depicted as a sample

of the local stiffness matrix in the surface node, where the evaporation process takes place
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Figure 6.11: Results of the numerical simulations with an aerodynamic resistance ra =
100 sm−1. Vertical distribution of pressure head (top), volumetric water content (middle),
and temperature (bottom) at different simulation times without shortwave radiation (left)
and with shortwave radiation (right).
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mainly during the simulation time. Diffusion dominant problems are characterized by

asymmetric stiffness matrix, while dominant convection problems are characterized by a

non-symmetric matrix.




−1.899× 10−4 1.851× 10−4 −1.215× 10−5 1.215× 10−5

1.845× 10−4 −1.894× 10−4 1.215× 10−5 −1.215× 10−5

−7.490× 10−9 7.490× 10−9 −1.6101× 104 1.701× 103

7.490× 10−9 −7.490× 10−9 1.698× 103 −1.6098× 104




(6.10)

Due to the coupling structure of the local matrix and recalling how the assembly of the local

matrix is done on DRUtES, it is possible to see both hydrodynamic and thermodynamic

modeling of evaporation are both convective dominant at the surface boundary.
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Chapter 7

Conclusion and future work

7.1 Introduction

This chapter summarizes the conclusions and lessons learned during the execution of this

thesis. The limitations of these models implemented from experience in the development

of this work are also described, including the limitations stated in the literature. This

chapter ends with brief descriptions of future research aims that were not contemplated

in this work, but are part of the state of the art of the modeling of phase transition in

porous media.

7.2 Conclusions

In this thesis, the Penman-Monteith equation was implemented as a boundary condition

for the Richards’ equation in the h-based form in the open-source software Dual Richard’s

Unsaturated Equation solver (DRUtES), the couple liquid water, water vapor, and heat

model was also coded. The evaporation rate was included as a Neumann boundary con-

dition for the water equation, and the energy surface balance was applied as a Neumann

boundary condition for the heat equation. Constitutive functions and parameterization of

the non-thermal and thermal-hydraulic conductivities for liquid and vapor were also pre-

sented. A test case was described to verify the behavior of the models, compare them, and

identify the evaporation process stages in soils. Due to numerical instabilities associated

mostly with the improper parameterization of the non-thermal liquid hydraulic conduc-

tivity when the soil reaches the drying conditions close to the residual water content and
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long simulation time as a result of small-time step required for the solution of Richard’s,

the benchmark was not validated. Nonetheless, the preliminary results raised essential

questions to lead a fruitful discussion. As part of this work, some numerical aspects of the

solution and implementation were explained.

7.3 Future work

During the development of this work, some limitations were faced, and due to the scope

and time constraint were not implemented, but they constitute further aims research to

continue study evaporation and phase transition in soils.

Parameterization of hydraulic properties

Mualem- van Genuchten model for the liquid non-thermal hydraulic conductivity is com-

monly used to parameterize the unsaturated hydraulic conductivity. However, Sakai;

Toride, et al., 2009 showed that it is not adequate to assume the evaporation process

stops at the residual water content, an empirical parameter part of the model, which

causes numerical instabilities and underestimates the unsaturated hydraulic conductivity

for a dry zone in the soil. Moreover, one of the assumptions of the Mualem’s model is all

the capillaries are filled, and thus a systematic underestimation of hydraulic conductivity

for dry soils can happen. Peters et al., 2015 studied the sensitivity of the numerical mod-

els to the parameterization of the soil hydraulic conductivities. This limitation should be

considered especially for coarse soil textures that reach the residual water content at high

values of pressure head (Fayer et al., 1995).

Meteorological data

During the modeling of evaporation, the interface soil-atmosphere is an important bound-

ary condition that significantly affects the subsurface dynamics of water and heat. The

uncertainty related to the measurement of all the parameters involved in the evaporation

process at the boundary should be controlled by direct measurement of every compo-

nent of the surface energy balance, including precipitation in short time intervals. For

some applications, hourly data can be enough to catch the diurnal variations of these

parameters, however for extreme events, like flash floods, where evaporation studies can
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be implemented, a higher frequency of the data will be necessary (e.g., every minute.). In

general, standard daily meteorological data from weather stations are available, which do

not provide detailed information to carry out evaporation modeling studies. When data is

not available in the frequency needed, the hourly data need to be calculated from standard

daily data to get the daily maximum and minimum and their time of occurrence and use

this calculated data as an input for the simulation (Saito et al., 2006). This procedure

incorporates a different source of uncertainty than those frequently known for soil flow

modeling, and it can have a negative impact int the results.

Resistance parameter for evaporation modeling

The surface resistance is a highly sensitive parameter for evaporation modeling. Camillo

et al., 1986 studied its effect and proposed a methodology to fit this parameter based on

surface temperature and soil water content. They showed the surface resistance parameter

should be taken into account in the latent heat flux term in the surface energy balance.

Otherwise, the evaporation would be overestimated and would lead to additional errors

in long-term evaporation simulations. It is expected to have a function that relates to the

surface resistance factor and water content.

Local thermal non-equilibrium modeling

In the model implemented in this thesis, assume local thermal equilibrium (LTE) between

the phases, liquid water, water vapor, and porous medium, calculating then one temper-

ature, which is assumed to be equal among the phases with a volume average thermal

properties (Heinze et al., 2019). LTE is the most common approach to estimated tem-

perature in multi-phase systems; however, in some applications, this approach seems to

be insufficient to capture the real behavior of temperature in the physical domain. When

the assumptions of LTE are not met, considering separate phase temperatures is another

approach known as local thermal non-equilibrium (LTNE). In this approach, every phase

would have a partial differential equation with a transfer term, which accounts for the heat

transfer between phases, in other words, this term is either a sink or source of thermal

energy in both equations (Rees et al., 2005).
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Appendix A

Additional work

A.1 Codes

A Github repository was made to get access to codes used and created in this thesis

in https://github.com/julianaarbelaez/Evaporation-Modelling-2020. The following codes

are available:

• DRUtES source code for the implementation of the Penman-Monteith couple to the

Richards’ equation and the input files in Fortran

• DRUtES source code for the implementation of the coupled model of water and heat

flow and the input files in Fortran

• The post-processing scripts for plotting the results in RStudio

• The testing script for the constitutive functions in Matlab

A.2 Estimation of annual evapotranspiration using satellite

spatial data

As part of understanding the trend of the evapotranspiration process and its relation

with meteorological data, an online application was developed based on satellite data.

The annual evaporation rate was calculated using the Penman-Monteith equation between

1970-2000 in the Czech Republic. For the calculations, the following annual data was used:

average temperature, incoming solar radiation, wind speed, and water vapor pressure,
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available https://www.worldclim.org. The result of this work is depicted in Figure A.1,

where the evaporation rate is spatial distribute in the Czech republic. The application is

available at https://rpubs.com/julianaarbelaez/evapotranspiration.

Figure A.1: Annual evapotranspiration data between 1970-2000 in Czech Republic.

A.3 Poster presentations

As a result of this thesis, three abstract and two posters were presented:

1. Event: International conference on mathematical modeling and computational meth-

ods in applied sciences and engineering. Olomouc, Czech Republic.September 16–20,

2019. Title: Mathematical model of water flow in a porous medium under phase

changes due to evaporation. Results: One abstract and one poster.

2. Event: European Geosciences Union General Assembly 2020.Vienna, Austria. May

4-8, 2020. Online Title: Numerical solution analysis of water flow in a porous

medium under phase transition due to evaporation. Results: Two abstracts and

one poster.
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Mathematical model of water flow in porous
medium under phase changes due to

evaporation

Michal Kuraz 1, Juliana Arbelaez Gaviria 1

1 Czech University of Life Sciences Prague, Prague, Czech Republic
Contact e-mail: kuraz@fzp.czu.cz

The purpose of this contribution is to present a numerical model simu-
lating coupled water and heat flow in porous medium with phase changes
due evaporation. Evaporation is a dynamic and nonlinear process that in-
corporates various internal transport mechanisms. The governing equations
are formed out of the coupled Richards equation with heat transport equa-
tion, the boundary conditions originate from energy balance equation. The
nonlinear nature of this problem, which originates both from the nonlin-
ear Richards equation and latent heat exchange, which in turn governs the
heat gradient, requires a proper temporal discretization in order to maintain
numerical solution of sufficient qualities. The net evaporation rate is temper-
ature and water content dependent, where the heat transferred downward by
thermal conduction into the soil when the soil surface is warming by solar ra-
diation or conducted back to the surface when the temperature of the top of
the soil cools. Evaporation rates from terrestrial surfaces is very common to
quantify in terms of flow of energy leaving the evaporating surface as latent
heat of vaporization in the water vapour. In this contribution we will present
numerical implementation of this coupled dynamic process and describe the
computational difficulties, which arise from this nonlinear process.
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Mathematical Model

The governing equation for flow of liquid water and water vapor in a
variably saturated non-deformable porous medium is given by the law
of mass conservation presented in (1):

∂θ

∂t
= −∇· ~qw + S (1)

where

~qw = ~ql + ~qv (2)

The flux density of liquid water ql is described using a modified the
Darcy-Buckingham law:

~ql = ~qlh + ~qlT = −Klh(∇h +∇z)−KlT∇T I (3)

The flux density of water vapor ~ql can also be separated into isother-
mal ~qvh and thermal ~qvT vapor flux densities as follows

~qv = ~qvh + ~qvT = −Kvh∇h−KvT∇T (4)

Finally, the governing equation is given by combination of the law of
mass conservation and the modified Darcy-Buckingham law:

Capacity

Ch
∂h

∂t
=

Difussion

∇·KTh∇h +∇·KTT∇T +

Convection

∇·Klh∇z −
∂θv
∂t

(5)

By grouping the isothermal and thermal hydraulic conductivities, it is
obtained the total hydraulic conductivities as:

KTh = Klh + KvhI (6)
KTT = KlT + KvT (7)

The volumetric water vapor content can be expressed as an equivalent
water content

θv = θair
ρv
ρl

= (1− θl)
ρsvHr

ρl
(8)

The total heat flux ,qT , is the sum of conduction of the sensible heat,
the sensible heat by convection of water and the latent heat of vapor
flow

~qT = −κ∇T + ClT~ql + CvT~qv + L~qv (9)

Local thermal equilibrium between phases is assumed.
The storage of heat in the soil is defined as the sum of the storage of

sensible heat in the phases and latent heat:

ST = CTT + Lθv (10)

The governing equation for the heat flow in a variably saturated non-
deformable porous medium is given by the law of energy conservation:

Capacity

CT
∂T

∂t
=

Difussion

∇·CTh∇h +∇·CTT∇T +

Convetion

∇·ClKlhT∇z −L
∂θv
∂t

(11)

The terms are grouped to obtain two diffusion coefficients

CTT = κI + ClTKlT + CvTKvTI + LKvTI (12)
CTh = ClTKlh + CvTKvhI + LKvhI (13)

Constitutive Equations

The unsaturated hydraulic conductivity Klh is obtained from the satu-
rated hydraulic conductivity Ks and the combination of pore-size dis-
tribution model of Mualem and van Genutchen’s model of the soil wa-
ter retention curve:

Klh =




Ks

(1−(−αh)nm(1+(−αh)n)m)2

(1+(−αh)n)
m
2

, ∀h ∈ (−∞, 0)

Ks, ∀h ∈ 〈0,∞)
(14)

The thermal hydraulic conductivity KlT is defined as follows

KlT = Klh

(
hGwT

1

γ0

dγ

dT

)
(15)

The thermal and isothermal vapor hydraulic conductivities are de-
scribed as

Kvh =
D

ρl
ρsv
Mg

RT
Hr (16)

KvT =
D

ρl
η
dρsv
dT

Hr (17)

Initial and Boundary Conditions

The initial conditions for water and heat flow equations are given as:

h(x, t0) = h0(x) ∀x ∈ Ω (18)

T (x, t0) = T0(x) ∀x ∈ Ω (19)

where Ω is de computational domain bounded by Γ = ∂Ω.

qv(x, t) + ql(x, t) = Ev(t) ∀x ∈ Γsurf × [0, T ) (20)

Evaporation rate Ev and the soil surface heat flux density G are de-
termined from the surface energy balance.

−κ∂T
∂n

+ [ClT~ql + CvT~qv + L~qv]x=n = −G (21)

−G = −Rn + Hs + LEv (22)

where Rn is the net radiation, and Hs is the sensible heat flux density.

Implementation Challenges

• How to treat non-homogeneous domain for the convective term
• Time step selection for the temperature is also θv.
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Evaporation is a dynamic and nonlinear process that incorporates var-
ious internal transport mechanisms which is important in the unsaturated
zone in arid regions under low soil moisture conditions [1, 2]. The govern-
ing equations are formed out of the coupled Richards equation with the
heat transport equation, where the boundary conditions originate from the
surface energy balance. The purpose of this contribution is to present a nu-
merical model simulating coupled water and heat flow in a porous medium
with phase changes due to evaporation.The nonlinear nature of this prob-
lem, which originates both from the nonlinear Richards equation and latent
heat exchange, which in turn governs the heat gradient, requires a proper
temporal discretization in order to maintain numerical solution of sufficient
qualities. The net evaporation rate is temperature and water content depen-
dent, where the heat transferred downward by thermal conduction into the
soil when the soil surface is warming by solar radiation or conducted back to
the surface when the temperature of the top of the soil cools. Evaporation
rates from terrestrial surfaces are very common to quantify in terms of en-
ergy flow leaving the evaporating surface as latent heat of vaporization of the
water vapor. In this contribution, it is presented a numerical implementation
of this coupled dynamic process and describes the computational difficulties
which arise from this nonlinear process, including a numerical comparison be-
tween the common approach for evaluating evaporation in soils by using the
Penman-Monteith [3] equation and the coupled water and heat flow modeling
approach.
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Introduction

Evaporation (ET) is a dynamic and nonlinear process that incorporates various internal transport
mechanisms, which is essential in the unsaturated zone in arid regions under low soil moisture
conditions.FAO Penman-Monteith (PM) equation is the most widespread method to estimate
the evaporation rate in saturated soils. This approach can be implemented as a boundary
condition for the Richards’ equation and related to the evaporation rate with the water content
in the soil. However, the PM equation is not valid when the soil moisture is low, and the vapor
flux is an essential component of the total water flux. In this case, the governing equations
are formed out of the coupled Richards’ equation with the heat transport, where the boundary
conditions originate from the surface energy balance and the evaporation rate (Saito et al.,
2006; Sakai et al., 2011).

Methodology

Two models were implemented in the Dual Richards’ Unsaturated Equation
Solver (DRUtES). The first model accounts for surface evaporation by
coupling the Richards’ equation and the Penman-Monteith equation

∇ · (K(θ)∇h) +
∂Kzz(θ)

∂z
= C (h)

∂h

∂t
(1)

The initial condition

h(x, t0) = h0(x) ∀x ∈ Ω (2)

The surface boundary condition

K(h)

(
∂h(x, t)

∂n
+ n3

)
= qΓsurf

(t) ∀(x, t) ∈ Γsurf × [0,T ) (3)

Including the actual evapotranspiration

qΓsurf
(t) =

{
r(t)− ETo(t) if r(t)− ETo(t) ≥ 0

r(t)− ETo(t)θl(h)2/3 if r(t)− ETo(t) < 0
(4)

And the Penman-Monteith equation for the evaporation rate

ETo =
0.408∆(Rn − G ) + γ 900

T+273u2(es − ea)

∆ + γ (1 + 0.34u2)
(5)

The second model accounts for sub-surface evaporation by coupling a
modified Richards’ equation and the heat equation





Ch
∂h

∂t
=∇ · (KTh∇h) +∇ · (KTT∇T )

+∇ · (Klh∇z)− ∂θv
∂t

∀x ∈ Ω

CT
∂T

∂t
=∇ · (BTT∇T ) +∇ · (BTh∇h)

−∇ · [(Cl~ql + Cv ~qv)T ])− L
∂θv
∂t

∀x ∈ Ω

(6)

Initial condition for both partial differential equations

h(x, t0) = h0(x) ∀x ∈ Ω (7)

T (x, t0) = T0(x) ∀x ∈ Ω (8)

The surface boundary condition for the water equation

‖ ~qv(x, t) ‖x=n + ‖ ~ql(x, t) ‖x=n= Ev(t) ∀x ∈ Γsurf × [0,T ) (9)

Including the evaporation rate

Ev(t) =
Hr(h,Ts)ρsv(Ts)− RHairρsv(Ta)

ρlra
(10)

The surface boundary condition for the heat equation

− κ∂T
∂n

+ Cv [‖ ~qv ‖ T ]x=n = −G − L[‖ ~qv ‖]x=n ∀x ∈ Γsurf × [0,T ) (11)

Including the surface energy balance

Rn − Hs − LEv + G = 0 (12)
h: pressure head [m]. K(θ): unsaturated hydraulic conductivity[ms−1]. C (h): retention water capacity [m−1]. t:

time [s]. qΓsurf
(t): boundary surface flux [ms−1]. r(t): rain intensity [ms−1]. θl : liquid water content [-]. ETo

: the reference evapotranspiration [mmday−1]. Rn: the net radiation [MJm−2day]. G : soil heat flux density

[MJm−2day−1]. u2: the wind speed measured at 2 m height [ms−1].es :saturation vapor pressure [kPa], ea: the

actual vapor pressure [kPa]. ∆: the slope vapor pressure curve [kPa◦C−1 ]. γ: psychometric constant [kPa◦C−1 ].

T : temperature ◦C . Hs : sensible heat [MJm−2day−1]. L is the latent heat, ~qv : vapor flux [ms−1]. ~ql : liquid flux

[ms−1]. θv : vapor water content[-]. Hr(h,Ts): soil relative humidity [-]. ρsv : saturation vapor density [kgm−3].

Ts : soil temperature ◦C . Ta: air temperature ◦C . RHair : air relative humidity [-]. ρl : liquid water density [kgm−3].

ra: aerodynamic resistance to water vapor flow [sm−1]. n: normal vector to the surface.

Results

A 20 cm long soil profile was used to perform the numerical experiments in
1D. The simulated experiments had total simulation time of 14 days,
where the hydraulic properties and the numeric parameters were consistent
across all the simulations.Two scenarios were proposed under controlled
meteorological conditions.

• The first scenario is known as a dark condition where no incoming
shortwave radiation was considered, Rs = 0.

• The second scenario is characterized by a constant incoming shortwave
radiation, Rs = constant.
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Figure 1: Results of numerical simulation of the evaporation rates (upper) and soil surface temperature (bottom)

time series for different values of the air resistance ra, without shortwave radiation (left) and with shortwave

radiation (right).
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Figure 2: Results of the numerical simulations with an aerodynamic resistance ra = 100 s/m.

Conclusions

• The numerical implementation of the Penman-Monteith method as the boundary
condition of the classical Richards equation was presented.

• The application of the coupled model of heat and water flow was implemented in the
free software Dual Richards Unsaturated Equation Solver (DRUtES).

• Two scenarios were designed to test the performance of both models under a controlled
meteorological environment and the impact of the evaporation rate on the pressure head
and water content.
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Abstract	
	
This	research	aims	to	observe	the	behaviour	between	heat	flow	at	the	limit	of	the	unsaturated	
area	 and	 the	 earth's	 surface	 (evaporation)	 through	 different	methods	 based	 on	 the	 surface	
energy	balance.	This	behavior	has	been	determined	by	the	DRUtES.	DRUtES	is	a	free	software	
able	 to	 determine	 the	 evaporation	 in	 the	 surface	 using	 climate	 and	 hydraulic	 parameters	
determined	 by	 the	 Richard	 equation.	 Richards’	 equation	 describes	 the	 flow	 of	 water	 in	 an	
unsaturated	porous	medium	due	to	the	actions	of	gravity	and	capillarity	neglecting	the	flow	of	
the	non-wetting	phase,	usually	air.		
	
The	 results	 obtained	 have	 been	 compared	 with	 the	 Penman-Monteith	 potential	
evapotranspiration	 model,	 this	 one	 as	 a	 referenced	 value.	 The	 results	 obtained	 help	 to	
understand	the	 loss	of	water	 in	the	unsaturated	area.	This	 first	approach	using	DRUtES	and	
evaporation	methods	will	allow	a	deeper	 investigation	 in	the	future	regarding	the	 impact	of	
climate	change	on	climate	variables	and	their	effects	on	soil	moisture	(unsaturated	area)	and	
natural	aquifer	recharge.	
	

Key	words:	Evaporation,	surface	energy,		unsaturated	zone,	Penman-Monteith.	



Appendix B

Evaluation of constitutive relations

As presented in Section 3.3, the model for the coupled flow of liquid water, vapor water,

and heat required several constitutive functions. They were analyzed separately to assure

the physical and mathematical sense before proceeding with implementation to avoid

incorrect code, the result of this analysis done in Matlab R2019b (MATLAB , 2020) is

present below.

Figure B.1: Isothermal vapor hydraulic conductivity.
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Figure B.2: Thermal vapor hydraulic conductivity.

Figure B.3: Thermal liquid hydraulic conductivity.
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Figure B.4: Capacity term for heat equation.
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Figure B.5: Saturated water vapor density as function of temperature.
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Figure B.6: Derivative of saturated water vapor density as function of temperature.
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Figure B.7: Surface tension as function of temperature.
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Figure B.8: Derivative of surface tension as function of temperature.
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Figure B.9: Vapor diffusivity in air as of liquid water content.
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Figure B.10: Vapor diffusivity in soil as of liquid water content.
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Figure B.11: Liquid water density as function of temperature.
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Figure B.12: Specific heat capacity as function of temperature.

Figure B.13: Soil relative humidity as function of temperature and pressure head.
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Figure B.14: Water vapor content as function of temperature.
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Figure B.15: Tortousity factor in gaseous phase.
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Figure B.16: Enhancement factor function.
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