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Abstract 

A single trapped ion has proved to be one of the most convenient physical 
systems to realize and experimentally control the quantum bit, which is 
implemented as a superposition of a two-level system between two distinct 
energy levels. Additionally, the perfect isolation from surrounding environment 
of a single ion in a Paul trap placed in vacuum chamber provides a way to 
experimentally realize the harmonic oscillator level scheme. Together, these 
two physical systems allow for experimental realization of Jaynes-Cummings 
and anti-Jaynes-Cummings interactions, which provide a deterministic control 
over the motional degree of freedom in means of atom-light interaction. Such 
experimental systems have already been proven useful for enhanced quantum 
sensing, quantum computation, quantum communication and other areas of 
recent scientific interest. 

This thesis summarizes our experimental work devoted to generation and 
control over the non-classical quantum states of motion. The discrete building 
blocks of such states are the number states wi th exactly defined amount of 
energy. In the first presented experiment, we realize a generation of number 
states, with a main focus on characterization of their non-classical properties 
with respect to the controllable amount of added thermal energy. The crucial 
concept implemented to states' characterization is a 'quantum non-Gaussianity', 
which sets the limit on states achievable by application of any combination of 
coherent displacement or squeezing on a ground state. The results uncover that 
even for the sufficiently high amount of added thermal noise the crucial quantum 
non-Gaussian features are preserved, and such states can provide a significant 
enhancement of metrological sensitivity. 

Additional two experiments present a novel method of non-classical states 
generation which takes advantage of the increasing initial thermal energy. The 
heart of the generation process lies in the repetitive application of Jaynes, or 
anti-Jaynes-Cummings interactions to the initial thermal state. The motional 
population eventually converges towards the determined mixture of discrete 
energy levels, a process which we denote as an 'accumulation'. By evaluation 
of criteria of non-classicality and quantum non-Gaussianity, we prove that the 
overall amount of the non-classical aspects in resulting states is clearly enhanced 
by the repetition of the deterministic interaction process and also by increasing 
energy of the initial thermal distribution. 

Keywords: quantum state, quantum non-classicality and non-Gaussianity, 
Jaynes-Cummings and anti-Jaynes-Cummings interaction, trapped ion, 
mechanical oscillator 
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Anotace 

Jednotlivé atomy držené v Paulově pasti patř í k nejvhodnějších fyzikálních 
sys témům pro experimentální kontrolu kvantového bitu, který je realizován jako 
superpozice dvouhladinového systému mezi dvěma rozdílnými energetickými 
hladinami. Dokonalá izolace atomu od okolního prostředí v Paulově pasti 
umístěné ve vakuové komoře umožňuje také realizovat hladinové schéma 
harmonického oscilátoru. Vzájemným provázáním pohybového stuplně volnosti 
a dvouhladinového systému vzniká možnost realizace Jaynes-Cummings a 
anti-Jaynes-Cummings interakcí, které poskytují deterministickou kontrolu 
pohybového s tupně volnosti s využit ím principů interakce záření a látky. Tyto 
experimentální interakce se ukazují jako užitečné pro vývoj kvantových sensorů, 
kvantovém počítání, komunikaci a v dalších oblastech souvisejícího výzkumu. 

Tato disertace shrnuje naši experimentální práci věnovanou tvorbě a 
kontrole neklasických kvantových stavů pohybu. Základem těchto stavů 
jsou číselné stavy pohybu s přesně definovanou energií. V prvním 
z prezentovaných exper imentů realizujeme generaci těchto číselných stavů 
a zaměřujeme se především na charakterizaci jejich neklasických vlastností 
v souvislosti s množstvím přidané tepelné energie. Klíčovým konceptem 
použi tým k charakterizaci vytvořených stavů je "kvantová ne-Gaussovost", 
která určuje, jestli je možné dané pohybové stavy vytvoři t pomocí kombinace 
koherentních operací nebo stlačení aplikovaných na základní stav. Výsledky 
experimentu ukazují, že i př i výrazném množství př idaného tepelného šumu 
jsou klíčové ne-Gaussovské vlastnosti zachovány, a vytvořené stavy mohou 
poskytovat významné zvýšení metrologické citlivosti. 

Další dva experimenty představují novou metodu generace neklasických 
stavů pohybu, která využívá počáteční termální energii vs tupního stavu 
oscilátoru. Základním principem generace je opakovaná aplikace Jaynes nebo 
anti-Jaynes Cummings interakce na počáteční termální pohybový stav. Populace 
pohybových stavů směřuje k přesně dané směsi diskrétních energetických 
hladin, což je proces, který definujeme jako "akumulace". Výpočtem kritérií 
neklasičnosti a kvantové ne-Gaussovosti se podařilo dokázat, že celkové 
množství neklasických vlastností ve vytvořených stavech se zvyšuje s množstvím 
opakování interakce a také s rostoucí energií počátečního termálního stavu. 

Klíčová slova: kvantový stav, kvantová neklasičnost a ne-Gaussovost, 
Jaynes-Cummings a anti-Jaynes-Cummings interakce, chycený ion, mechanický 
oscilátor 
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1. In t roduc t ion 

The quantum mechanical treatment of light and matter, as we know it today, 
dates back to beginning of the 20th century In 1905, Albert Einstein described 
the experimentally observed photoelectric effect in means that the energy 
exchanges only in discrete packets, where the energy itself is quantized wi th 
frequency [1]. Later in 1926, Erwin Schrodinger came up with his description 
of wave mechanics, describing the quantum states as wave functions having 
certain amplitudes and phases, which may mutually interfere in constructive or 
destructive way [2]. Although his equation is well capable to describe some of 
the light-atom interactions at the single-atom level, Schrodinger himself assumed 
that the experimental control over single atom w i l l never be experimentally 
feasible, as he once proclaimed that 'We never experiment with just one electron 
or atom or (small) molecule. In thought-experiments we sometimes assume that 
we do; this invariably entails ridiculous consequences...' (1952) [3]. Just one 
year later in 1953, Wolfgang Paul proposed the way to confinement of charged 
particles wi th use of the electric fields, today well known as a Paul trap [4] 
capable of trapping single charged atoms. A later advent of the laser technology 
(1958) [5] provided the narrow frequency light sources that made it possible to 
employ the light atom interactions. In 1978, the first laser cooling techniques 
were successively experimentally demonstrated [6, 7]. The first observation of a 
single barium ion in a radio-frequency Paul trap was then reported in 1980 [8]. 

Since then, the ability of controlling single ion system has hugely 
extended, finding the practical implementation in broad range of scientific areas. 
A significant advantage of the trapped ion quantum systems, wi th respect to 
other broadly employed platforms such as quantum dots [9], superconducting 
[10] or photonic qubits [11, 12], is a good isolation from the surrounding 
environment and thus the partial resistance to the decoherence effects. Narrow 
line widths of transitions within the electronic level structure provide that the 
ion is well addressable with conventional laser technology, and allows for 
various ways of manipulation wi th the internal states. Last but not least, the 
electronic level structure, as wel l as other physical properties, remain fixed for 
each single atom of the corresponding isotope, which guarantees the mutual 
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indistinguishability of employed quibits, being a fundamental condition to create 
entangled quantum states [13, 14]. 

A list of broad application of trapped ion systems contains optical atomic 
clocks [15], quantum computation [16], simulation [17], communication [18] 
and also fundamental research [19]. This involves, for example, the engineering 
of motional quantum states in mutually coupled two-level system of the 
ionic electronic level structure, and the oscillatory normal mode of motion 
corresponding to the pseudo-potential originating from the external electric 
potentials at the electrodes of the Paul trap [19]. The basic interaction limit takes 
into account the fact, that after performing the laser cooling, the motional energy 
is efficiently subtracted to the regime where the quantized energy structure 
of the harmonic oscillator has to be taken into account. In such a case, we 
can investigate the probability of population for each energy level separately. 
The amount of residual thermal energy is often expressed as the equivalent of 
temperature, which typically reaches the scales of 1 0 - 3 K, which is close to the 
limit of absolute zero. The mechanical oscillator state of a trapped ion can be 
conveniently coupled with the ion's internal electronic levels [19], forming a 
joined Hilbert space where the motion can be detected and manipulated as a 
frequency modulation in the spectrum. 

The term 'non-classical' state of motion in this work refers to the discrete 
energy distribution of motion incompatible with any mixture of displaced 
ground states of the oscillator [20]. We present several approaches where such 
nonclassicality can be controllably engineered wi th non-linear interactions. The 
'quantum non-Gaussian' states represent the subclass of non-classical states 
that is beyond all mixtures of squeezed displaced oscillator ground states 
[21]. High quality quantum non-Gaussian states are in most experimental 
scenarios hard to prepare and observe. A wel l known property of a subclass of 
quantum non-Gaussian states is the negativity of the Wigner quasi-probability 
distribution function, however, it is not the necessary condition for the 
state to be non-Gaussian. In experiments considering single photons or 
the quantized motion in trapped atom, a specifically derived criteria can be 
conveniently used to characterize non-classical and non-Gaussian properties 
from the reconstructed population and detect them even in the presence of 
processes which destroy the negativity of Wigner function, such as losses or 
addition of thermal noise [22, 23]. 

Physically, the non-classical states of atomic motion can be employed in 
applications focused on experiments involving quantum metrology and quantum 
enhanced sensing [24-26], and quantum error correction [27-30]. It also finds 
it's applications in treating quantum engines [31, 32], or in simulation of many 
body interaction models and corresponding phase transitions [33]. 

The presented work focuses on engineering, measurement, and 
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characterization of non-classical and quantum non-Gaussian states of motion, 
implemented on the mode of motion of single 4 0 C a + ion held in a Paul trap. The 
non-classical properties of generated quantum states are evaluated from the 
measured distributions of motional populations. The presented results originate 
from three experiments, where two of them are already published in [34, 35], 
and the last measurement is currently being prepared for publication. 

The outline of this work goes as following. Chapter 2 summarizes the 
basic physical principles of ion trapping and light matter interactions at the 
level of single trapped ion interacting wi th coherent light. In the Lamb-Dicke 
regime, the coupling is limited only on carrier interaction, red and blue 
sideband transitions, where the last two are denoted as Jaynes and anti-Jaynes 
Cummings interactions. We also present there the fundamental definitions of 
mechanical non-classical and quantum non-Gaussian states and possibilities 
of their unambiguous witnessing. Chapter 3 then focuses on methods of the 
experimental control, describing mainly laser cooling, motional engineering and 
motional state readout. Each of the following three chapters is then devoted to 
a single experiment involving the manipulation with ion's motion in order to 
create and characterize mechanical non-classical states. In particular, Chapter 4 
is based on the results published in the reference [35]. The measurement focuses 
on generation of number states of motion and characterization of their quality 
with respect to losses caused by recoil heating and experimental imperfections. 
Chapter 5, based on the article [34], focuses on creation of non-classical statistical 
mixtures by repetitive anti-Jaynes interaction, where we demonstrate that the 
amount of non-classicality can be enhanced with initial thermal energy present 
in the system. Chapter 6 presents measurements which are implemented wi th 
use of Jaynes-Cummings interaction. We prove that the subtraction of the single 
quantum may lead to enhancement of non-classicality, which is also being driven 
with thermal energy. Together, these results implicate that the non-classical 
states may not always suffer from high temperatures, but they can actually, under 
certain circumstances, benefit from them. 



2. M e c h a n i c s w i t h a t r apped ion 
osc i l l a tor 

The basic physical principles of the presented experiments consider coupling 
between the internal two-level system of the ion's electronic energy level 
structure, and the motional quantum oscillator scheme, which is induced 
externally by the electric field trap potentials. In this Chapter, we present and 
discuss the basic theoretical concepts, which are necessary to understand and 
discuss the physics of the implemented experiments and measured results. 

We begin with discussion of the 4 0 C a + ion (Sec. 2.1) and energy level 
scheme of relevant low-lying valence electron energy levels. (Sec. 2.2). Further, 
we shift towards description of two-level system and mechanical quantum 
harmonic oscillator scheme, including the Lamb-Dicke approximation relevant 
for the presented experimental regimes (Sec. 2.7). Finally, we include the basic 
definition of state's non-classicality and quantum non-Gaussianity, which is 
important for understanding of the realized states of trapped ion mechanics. 

2.1 Physical properties of 4 0 C a + ion 
Calcium is the species which is commonly used for experiments in ion trapping 
community. Other elements also used for trapping experiments are Be, Mg, 
Ca, Sr and Ba, where the basic differences between the species lie in increasing 
atomic mass and also decreasing frequency differences between the transitions. 
A l l of these chemical elements belong to the group of alkali-earth metals. 
Additional elements, commonly used for the experiments of the similar type and 
not belonging to the alkali-earth group, are Aluminum (Al), Indium (Id), and 
Ytterbium (Yb). Typically, these species are being advantageously employed in 
experiments implementing atomic optical clocks [36, 37]. 

A particular choice of the calcium species is justified by simple accessibility of 
the energy transitions with use of the conventional laser technology. Especially, 
the electronic level structure provides the narrow linewidth dipole-forbidden 
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transition in the range of visible spectrum at wavelength 729 nm, which is 
commonly being used for experiments in quantum metrology and quantum 
motional manipulations wi th light. On the other hand, in the implementations 
limited by photon recoil, the relatively small mass of calcium increases its 
probability. 

Another beneficial feature of calcium is it's high attainability in nature. 
Calcium as a chemical species is the fifth most abundant element in Earth's 
crust, and the third most abundant metal at the same time [38]. Considering 
the stable isotopes, the 4 0 C a + f o r m s the most common one, reaching the 96.94 % 
abundance [39, 40]. Another stable isotope is 4 4 C a + , wi th the occurrence among 
the other isotopes reaching 2.09 %. A l l the other stable isotopes, particularly 
4 2 C a + , 4 3 C a + , 4 6 C a + and 4 8 C a + are populated with the probability less than 1 %. 

Basic physical quantities related to 4 0 C a + are as following. The standard 
atomic mass is the 40.078(4) amu [39], the nuclear spin of this particular isotope 
is zero, and so the hyperfme splitting does not occur. Since the number of protons 
and neutrons is equal, the isotope is observationally stable [40]. 

2.2 Electronic level structure 
The Fig. 2.1 presents all optical transitions within the lowest lying electronic 
states relevant for the experiments presented in this work. We employ dipole 
transitions at wavelengths A = 397, 866 and 854 nm and a quadrupole transition 
at 729 nm. In the following Sec. 2.3, we briefly describe the principles of coupling 
on the dipole and quandrupole transitions. 

In Table 2.1, we summarize the wavelengths and lifetimes of 4 0 C a + e n e r g y 
level transitions, which we implement in our experiment. The presented data 
are taken from references [41-44], and the values in brackets correspond to their 
uncertainties. 
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4 0 C a + 

4P 1/2 

397 nm 

4S 1/2 

854 nm 

3D 5/2 

729 nm 

Figure 2.1: Energy level scheme of 4 0 C a + i o n , with transitions employed in the 
experiment. Transitions used for Doppler cooling (397 nm, 866 nm), qubit manipulation 
(729 nm) and population re-shuffling to ground state (854 nm). Exact values of 
wavelengths and also the lifetimes of energy levels are written in the Table 2.1 . 
Transitions at 397 nm, 866 nm and 854 nm are dipole transitions described with dipole 
vector d e (Eq. 2.3), and 729 nm is a quardupole transitions (Eq. 2.4). 

2.3 Dipole and quadrupole transitions in 
4 0 C a + atom 

In order to describe the laser interaction wi th the atomic valence electron, we 
view the electronic transitions in terms of electric multipole expansion, which is 
in detail described for example in [45,46]. The crucial part of the total interaction 
is the Hamiltonian describing the coupling between the atom and the electric 
field, denoted as HAE. This can be expressed in terms of the electric field vector 
E(r) and the atomic polarization dipole vector P(r) as 

H = -j dhVL{r) • E 1 ( r ) + dh[p\r)], (2.1) 

where E" L(r),P" L(r) are transversal parts of the electric field and polarization 
vectors, and the center of mass of the system lies at point r = 0. The first term in 
Eq. 2.1 describes the mutual coupling wi th the atomic polarization density, and 
the second term describes the atomic self-energy from the polarization coupling 
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transition c> ~> lg> dip/quad Ä (nm) lifetime of \e) transition rate (s l ) 

4Pi/2 -> 4 S i / 2 dip 396.959(1) 6.904(26) ns 1.3553(40) -10 8 

4Pl/2 -> 3^3/2 dip 866.452(5) 6.904(26) 9.45(10) -10 6 

4P3/2 -> 4 S i / 2 dip 393.478(1) 6.639(42) ns 1.3923(41) • 10 8 

4P3/2 -> 3^3/2 dip 850.036(5) 6.639(42) 9.834(36) • 10 6 

4P3/2 -> 3Ö5/2 dip 854.444(5) 6.639(42) 8.752(32) • 10 6 

3 A / 2 -> « 1 / 2 quad 729.3478 1.163(11) s 0.8598(81) 

3^3/2 -> 4 S i / 2 quad 732.5905 1.194(11) s 0.8376(79) 

Table 2.1: List of available transitions of 4 0 C a + i o n in the energy level structure depicted 
in Fig. 2.1. The dipole transitions (dip) at 397 nm, 866 nm, 854 nm and quadrupole 
(quad) 729 nm transition are physically implemented in the experiments, while the other 
transitions at 393 nm, 850 nm and 732 nm are unused, and they are written here only 
to form a complete picture of transitions achievable within the experimental routine. 
Lifetime of the excited state defines the average time which it takes for an electron 
to spontaneously decay into the lower energy level which leads to a photon emission. 
Transition rate determines the probability of spontaneous emission at the particular 
transition. 

to it's own field. The second self-interaction term in Eq. 2.1 can be omitted for 
further investigations, and the first term describing the atom-field interaction 
can be expanded wi th use of Taylor series. In this way, the Hamiltonian in the 
Eq. 2.1 can be expressed in the form of mutipole expansion as [45] 

HAE = - < M ^ ( o ) + Q a / S d a ^ ( o ) - o ^ d ^ o ) +... (2.2) 

where the terms denote dipole, quadrupole and octupole expansion elements, 
and da, Qap and Oa^y are the corresponding moment vectors. The dipole 
moment 

da = -e- r e > a , (2.3) 

defines the oscillation to be in linear axis denoted as a, proportional to the electric 
charge. The quadrupole moment can be expressed as a tensor in a form 

1 r 2 

°-a/3 = ~2e(-rw ' re£ ~ f ^ X (2-4) 
which also describes the oscillations in transversal directions denoted wi th 
vectors ra, r^. For the considered transitions of the 4 0 C a + atom, the leading 
multipole terms are the dipole and quadrupole one, and the higher order parts 
of the Eq. 2.2 can be neglected. 

In the lowest-order dipole interaction description, the incoming 
electromagnetic wave wi th the amplitude E(r) = E 0 e k r _ a ) f , wi th wavevector 
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k, maximal amplitude E0 and the angular frequency co drives the oscillation 
in the atomic electron, which has a charge e~ and the orientation r e a . The 
oscillating dipole then decays through the emission of the single photon. In 
multilevel atoms, the polarization of the scattered photon is simultaneously 
dependent on the spatial orientation of the dipole and the polarization state 
of the incoming electromagnetic wave. The strength of the dipole interaction 
is directly proportional to the field amplitude, as described by the first term in 
Eq. 2.2. In the energy level scheme of the employed 4 0 C a + atom, all transitions 
except of the one at 729 nm can be described by the dipole approximation, 
because of the negligible contribution of the quadrupole and higher parts of 
the multipole expansion. The 3 D 5 / 2 -> 4S1/2 transition at 729 nm is denoted 
as quadrupole transition, because it has zero matrix elements of the dipole 
transition in the Eq. 2.36 (see Sec. 2.9) and the quadrupole term is the fist 
non-zero matrix element. 

Fundamental difference between the dipole and quadrupole transition also 
lies in the excited state's lifetime, and consecutively the line width of the 
particular transitions and the overall experimental ability to achieve efficient 
atom-photon coupling. The average lifetimes of the employed transitions are 
written in Table 2.1. Due to the short lifetime of the excited level 4P1/2, which is in 
order of nanoseconds, transition at 397 nm becomes suitable for the fluorescence 
detection, and also the Doppler cooling routine, which is used to reduce the initial 
oscillation energy (see details in Sec 2.8). On the other hand, the slowly-decaying 
excited state of the 3 D 5 / 2 -> 4S 1 / 2 quadrupole transition is suitable to realize the 
quantum bit and the coherent manipulations wi th mechanical states, as described 
in the following Sec. 2.4 and Sec. 2.10. 

2.4 The two-level approximation 
The two-level system approximation is an idealization of the electronic level 
structure, where only the single transition between two energy level is taken 
into account. The practical implementation in 4 0 C a + a t o m can be approximated 
by considering particular Zeeman sub-level within the ground state and 
the excited state 3 D 5 / 2 . The fundamental condition to justify the two-level 
approximation is the frequency of the electromagnetic field inducing the 
interaction to be close to resonance, and that the corresponding Rabi frequency 
of the interaction is much smaller than detuning wi th respect to the neighboring 
off-resonant transitions. 

We denote the ground state of the two-level system as |g) and the excited 
state as \e). In order to transfer the electron from |g) to |e), the energy has 
to be externally added into the system, while the opposite process can result 
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from spontaneous decay or stimulated transition back to the ground state. The 
spontaneous emission results in the emission with a statistics resembling that 
of ideal single photon state up to the attenuation, and the rate of its emission is 
corresponding to the parameter T. The system can also be driven in a coherent 
way, which requires the excited state lifetime and coherence of the interaction 
to be sufficient so that any interaction is not suppressed by the spontaneous 
emission. The two level system then exhibits a periodic development of the 
excited state population due to coupling to coherent light field, known as Rabi 
oscillation [19]. 

A coherently controlled two-level system can physically realize a quantum 
bit [47], however, in this work it rather corresponds to an internal atomic knob 
for control of its mechanical properties. The state vector of the two level system 
can be defined as 

\tl>) = a\g) + p\e), (2.5) 

denoting a superposition of the two base states |g) and \e), which represents 
the ground and excited energy levels. Here a, /S are the probability amplitudes, 
satisfying the condition | a | 2 + |/3| 2 = 1. The corresponding two-level system 
Hamiltonian is defined as [19] 

H(e) = h ^ Q e ) ( C | _ | g ) (g|) = h ^ ( 2 6 ) 

where the frequency difference coe defines the energy gap between the states |g) 
and \e) and az = (|e) (e\ — |g) (g|). Generally, the lifetime of the excited state and 
the optical quibit coherence is given by the combination of bandwidth of applied 
laser light and magnetic field noise. 

2.5 Motion of ion in a Paul trap 
This section briefly discusses the basic physical principles of operation of the Paul 
traps. We follow the derivation by [48] and [19], which describes the physical 
origin of the harmonic motion in the linear trap. For technical details of the trap 
construction and operation, we refer to work [49-51]. 

In Paul trap, the charged particles are confined with electric potential <E> in 
three spatial dimensions x, y, z. The Laplace's equation A $ = 0 requires that at 
least one of these spatial components of the potential $ is negative, which would 
principally result into continuous loss of atoms in that particular direction. The 
issue can be overcome by inducing a time varying potential having both D C 
and radio-frequency (RF) electric potential implemented. The potential can be 
written as 



10 MOTION OF ION IN A PAUL TRAP 

$ 0 ( f ) = JJ + V cos(QRFt), (2.7) 

with D,RF being the frequency of the RF trap drive and U, V the amplitudes of the 
constant (DC) and time varying potentials (RF). For the time varying potential, 
we can further solve the equations of motion for a particle of mass m and charge 
Q and distance r leading to a differential equation for particle trajectory 

r'i + ^§-(U + V cos (na F 0>i = 0. (2.8) 
mr 

The Eq. 2.8 can be expressed in form of the Mathieu equation 

d2u 

— +(a-2q cos(2f))« = 0, (2.9) 

where we have used the substitutions 

a,- = -
ScCiQU 

1 ~ -2^9 ' mr D,RF 

q i = (2.0) 
mr QRF 

The Eq. 2.8 defines regions of stability for ion trapping in terms of the substituted 
coordinates at and Qj. In the practically employed lowest region of stability, 
where <SC <SC 1 [19, 48], the ion trajectory obtains the form 

= 7fcos(e0if + < )̂[1 + | 

where rf is the distance from a potential minimum of 3>o(0 a n d wi th CQf defined 

rt(t) = r f cosicoit + <f>)[l + ^ cos(nRFt)], (2.11) 

as 

» i = ft%£, (2-12) 

and the parameter /Sj resulting from a substitution 

^ = A/ai + ^r- (2-13) 

The first term in the Eq. 2.11, oscillating at the frequency G)f, corresponds to 
the 'secular motion'. The second cosine term describes the 'micromotion' which 
is a fast oscillation of the particle around the trap center at the frequency of the 
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RF-drive. The micromotion is usually an unwanted effect in the experiments 
and we aim for it's minimization within the experimental routine. It is typically 
detected by experimental method of photo-correlation measurement, where the 
arrival times of detected photons are modulated with the trap frequency (see 
Sec. 3.2). The compensation of the excess micromotion is performed by applying 
additional D C potentials in order to place the atom to the RF potential minimum, 
where the effect is limited by the residual intrinsic micromotion due to finite 
motional wavepacket extension. 

The secular motion can be decomposed into three geometrical directions, 
defining the main modes of the oscillation. In the case of the linear Paul trap wi th 
the axial symmetry, the conventional normal mode decomposition corresponds 
to the axial mode along the trap axis and radial modes which are in the plane 
orthogonal to the axial direction. Radial frequencies are dominantly determined 
by the potentials originating from the radio-frequency electrodes, according to 
the Eq. 2.8, while axial mode frequency results dominantly from the D C voltage 
applied to tip electrodes. 

The classical description of the motion of the oscillator suffices only in 
the limit of large thermal motion of ions. The regime relevant for the 
experiments presented in this thesis, however, requires introduction of the 
quantum description of the mechanical oscillator - ion. The exact frequency and 
the relative strengths of the oscillation modes can be measured spectroscopically, 
which is described in detail in Sec. 3.6. 

2.6 Single ion as a harmonic oscillator 
The quantum mechanical harmonic oscillator can be described with the 
Hamiltonian 

p mcozxz 

where co is an angular frequency of oscillation, m is the particle's mass and x, p 
are the position and momentum operators obeying the commutation relation 
[x, p] = ih in single mode of oscillation, forming together the 'phase-space' 
figure of oscillation. Following the second quantization, it is possible to express 
the motion in terms of creation and annihilation operators, which are defined as 
[52] 
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. moo,, ip 
a = \ -zr(* + —). x' 2n mco 

a 2h { X mco}-

(2.15) 

The two operators are non-Hermitian and their commutator is equal to 
[a, a?] = 1. Together, they form a number operator n = a?a, which can be 
used to further simplify and express the Hamiltonian in Eq. 2.14 as 

H = hco(n+^). (2.16) 

The Eq. 2.16 expresses the quantization of the energy levels, where the ground 
state level energy equals to E0 = -hco. Annihilat ion and creation operators a, a? 
realize subtractions and additions of the single quantum 

a In) = V « \ n — 1), 
(2.17) 

d t \n) = yn + 1 \n + 1). 

The eigenstates of the number operator ft are states with \n) exact value of 
energy, corresponding to the energy level n. These states are also denoted as 
Fock states [52, 53], and together they form the Fock basis. In such a system, any 
quantum state with the discrete energy can be created by cumulative application 
of the creation operator on the ground energy level |0) 

| n > = ^ L L | 0 > . (2.18) 

In trapped ion system, nonlinear gates similar to the creation and annihilation 
operations in ladder scheme are implemented in the joint Hilbert space wi th 
the two-level system, on red and blue frequency motional sidebands, described 
theoretically by Jaynes and anti-Jaynes Cummings interactions. 

2.7 Interaction of light with two-level atom 
in a harmonic potential 

The fundamental principle of the motional state engineering lies in the 
interaction of the valence electron of an ion wi th light, which s sensitive to 
a motional state of an atom. In the Paul trap, the transition frequency of the 
two-level system is modulated by the frequency of the secular motion forming 
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the modulation sidebands. These sidebands can be conveniently addressed wi th 
laser light while stabilizing, narrowing and fine-tuning the laser frequency, and 
in this way the motional energy can be added or subtracted. The complete 
Hamiltonian of such an interaction has a form 

H = Hm+He+Ht, (2.19) 

where Hm defined wi th the Eq. 2.16 describes the motional degree of freedom, 
He defined in Eq. 2.6 is the Hamiltonian of the two-level system, and the last 
part Hi describes the mutual interaction with light. 

The light field providing the interactions between two-level and harmonic 
oscillator system can be treated as traveling electromagnetic wave, wi th the 
wavevector k, angular frequency oo and initial phase <p. Each interaction can 
be assigned wi th the physical quantity describing it's strength denoted as a Rabi 
frequency D, [19, 54]. For the traveling light field and considering the electric 
dipole or quadrupole interaction, the interaction Hamiltonian can be found to be 
described by unified form, where we consider interaction with a single motional 
mode along x [19] 

f/(0 = | n ( | g ) (e\ + \e) <g|) x [ e i(**-«t+*) + e-Kkx-cot+4>)^ (2.20) 

where the second bracket includes the electric field component of the laser 
propagating along the direction of the motional mode x. Here, the oo and <p are 
the frequency and phase of the excitation laser beam at the position of atom. 

The transformation into the interaction picture is then expressed as 

Hint = UŠH®U0, (2.21) 

where U0 = exp[—(i/h)H0t] is the unitary transformation and H0 denotes free 
Hamiltonian H0 = Hm + He. In the rotating wave approximation where the 
rapidly oscillating frequency components are dropped [19], the H-mt becomes 

Hint(í) = |o 0 a+ exp[ir)(ae-ivt + a V v í ) > i ( * " 5 í ) + H.c, (2.22) 

with 5 being the detuning from the transition frequency, H.c. is the Hermitian 
conjugate and Rabi frequency D,0 [19] 

N ° • TTU- <2-23) 

where q ž is the stability parameter of the trap as defined in Eq. 2.10. 
Here, we have used the raising and lowering operators a+ = |g) (e\, a_ = 

\e)(g\, having the physical meaning of adding and subtracting energy in the 
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two-level system. Additionally, we have defined the Lamb-Dicke parameter r\ 
as 

" = t V w (2-24) 

which defines the ratio of the size of mechanical oscillation wavepacket 
with frequency co wi th respect to the wavelength of the involved two-level 
system transition. Physically, the Lamb-Dicke parameter describes the relative 
interaction strength of coupling of the light to motional modes compared wi th 
its coupling to the carrier two-level transition where the motional change is not 
involved. Additional step towards simplification of the Hamiltonian 2.22 takes 
advantage of the Lamb-Dicke regime, where 

rf{2n + 1) <C 1. (2.25) 

Here, n stands for the mean value of the energy distribution of involved motional 
mode. Physically, in the Lamb-Dicke regime, all the transition involving transfer 
of more than single quantum in the motional mode are strongly suppressed. The 
interaction Hamiltonian can be expanded into the first order of 7) as 

H l d ( 0 = ^ O 0 a + [ 1 + irj(ae-[vt + a V v f ) e i ( * " 5 f ) ] + H.c, (2.26) 

containing only three resonances for the values of 5 = — v, 0, v. For the case 
of 5 = 0 after the rotating wave approximation [19] the Eq. 2.26 results into 
'carrier' transition, with the Hamiltonian 

Hcar = | n 0 ( c j + e ^ + oie"**), (2.27) 

describing coupling to two-level system without affecting the motional degree of 
freedom, with cf> denoting the phase factor corresponding to the laser phase. The 
detuning of laser from the carrier transition gives the second case, with 5 = — v, 
as 

tfrsb = |n< t f (ao+e** + a f a _ e - ^ ) . (2.28) 

This interaction at the lower frequency is conventionally denoted with the 
term 'red sideband'. From the Eq. 2.28, it is apparent that the motional 
state is addressed simultaneously wi th the two-level system, where Lamb-Dicke 
parameter r) plays the role of the 'coupling efficiency', defining the fraction of the 
original Rabi frequency D,0. Based on the initial state of the two-level system, 
the finite application of the interaction corresponding to Hrsh results in either 
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subtraction of the single motional quantum while the two-level system being in 
state |g), or oppositely addition of quantum when the system is in \e). 

The complementary regime, where 5 = +v in Eq. 2.22, is described as 

tfbsb = ^ 0 j , ( a V + ^ + aa_e-^). (2.29) 

The Hhsh is denoted as anti-Jaynes-Cummings Hamiltonian, and the 
corresponding transition as a 'blue sideband'. We can denote the Rabi 
frequencies for couplings to higher and lower motional modes as O n n + 1 and 
Qn,n-i< where the scaling is quantized with carrier Rabi frequency and the 
Lamb-Dicke parameter as 

n,n+l 0 / V ( 2 3 Q ) 

which results from the properties of the annihilation and creation operators. 
The dependence of the Rabi frequency on the motional distribution provides 

a key feature for engineering of the motional states and consequently for their 
readout. The Fig. 2.2 shows the visualizations of carrier, blue and red sideband 
interactions, as they result from the Eq. 2.26. The engineered interaction at 
blue sideband can be naturally employed to append the motional quanta into 
the oscillator, for the case that two-level system is in the ground state. On the 
contrary, the red sideband coupling provides a way for energy subtraction. 

2.8 Laser cooling 
The ability of laser light to cool the atoms is hardly imaginable from a point 
of view of the classical physics. The usual applications of lasers involve laser 
cutting, ablations, heating, or generally, external addition of the energy into some 
systems. Taking into account the physics of semi-classical light-atom interaction, 
the laser light can actually realize both. It may either add or remove the energy 
on the very precise basis, even on the scale of the single motional quanta. 

The conventional scheme of the laser cooling employed in ion trapping 
experiments consists of two stages, however, recent experiments with many 
ions develop and apply new schemes for simultaneous cooling of many motional 
modes close to a motional ground state [55, 56]. 

The Doppler cooling [7] leads to the subtraction of motional energy down 
to the scale where the quantum effects start to play role. The Doppler cooling 
is followed by a sideband cooling [57], which takes advantage of the coupling 
between two-level system and the harmonic oscillator ladder in a sideband 
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a) 

|n-l,e> 
|n,e> 

|n + l,e) 

Hrsb oc a+a - a.a 

-i 

|0> 

L. 

Figure 2.2: a) Visualization of the interactions for carrier (black), red sideband (red) and 
blue sideband (blue) for two-level system being initially in the |g) state. Hamiltonian 
HIsh realizes the quantum subtraction between states \n) |g) <-> \n — 1) \e), Hcai does 
not affect the motional number, so that \n) |g) <-> |n) |e), and finally the blue sideband 
realizes transitions at \n) |g) <H>- |n + 1) |e). b) shows same two spin-motional coupling 
interactions, also pictured for additional higher energy levels. With the increasing 
energy, the initial Rabi frequency scales with the factor y n + 1 for blue sideband and 
TJ~H for the red. 

resolved regime. The red-sideband of motion is directly addressed in the pulsed 
sequence, which possibly leads, after some time of interaction, to the subtraction 
of thermal energy down to the minimal level. In this case, the motion is said to 
be 'ground-state' cooled. 

The simplest description presented here considers the absence of 
micromotion, and simplifies the treatment to only single secular motional 
mode. [19]. In case that the radiative lifetime of the excited state is much 
shorter than the period of oscillation (co <SC T, where T is the transition natural 
linewidth), the single absorption or emission process does not significantly 
affect the average ion's velocity. A t this point, the cooling can be treated as 
continuous force causing the radiation pressure. The ion thus behaves like a 
free particle, which is able to sense the motionally induced Doppler shifts. We 
can write the radiation force 

(2.31) 
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where pee is the excited state probability [58] 

Pee = TTTTTTs ™- (2-32) 
s/2 

i + 5 + (2<5e///r)2 

Here s = 2 | 0 | 2 / T 2 is the saturation parameter, D, the Rabi frequency, A = GO — co0 

the detuning from resonance, which is contained in effective detuning 5eff = 
A — kv, including the Doppler shift kv. 

The cooling mechanism can be also well understood in terms of momentum 
conservation and classically treated Doppler effect. In frame of the atom moving 
towards the laser beam, the actual transition frequency is higher due to the 
Doppler shift. As a result, the atom most efficiently absorbs the incoming photon 
in case that it moves towards the laser beam. A n atom receives a momentum kick 
A p = hk in direction of the beam, and then it spontaneously emits a photon i n a 
random direction which, performed over many iterations, leads to the effective 
net momentum transfer from laser photons and reduction of the motional energy. 
In this way, the energy may not be reduced down to the ground level, because 
the ion starts to heat again by recoils originating from the spontaneous emission. 

In order to further reduce the motional energy, additional cooling methods 
have to be employed. The 'sideband cooling' method [19] is based on individual 
addressing of motional transitions with the narrow-linewidth laser. Here, the 
lifetime of the excited state has to be much longer than the period of motion 
(GO » T). For this reason, the cooling is conveniently performed at 729 nm 
quadrupole transition wi th T _ 1 = 1.16 s (see Sec. 2.2). The condition GO » T 
defines the so-called 'sideband-resolved' regime. 

The sideband cooling process is performed in cycles of repetitive absorption 
on the red sideband followed with the spontaneous emission on the carrier, 
assuming the condition that the Lamb-Dicke criterion holds. The overall cooling 
rate Rn is then given by two factors - the probability of the excited state p e (n) of 
the motional state and the decay rate of the excited state T 

R n = TMn) = T ^f af ( ,33 , 

with ground state Rabi frequency C 0 and the r] denoting the Lamb-Dicke 
parameter of the transition. 

The heating rate is strongly dependent on the mean motional energy, and 
converges to zero when approaching the ideal ground state of motion. In 
case that there are not any other heating sources present, the main origin of 
the heating rate comes from the off-resonant carrier and first blue sideband 
excitation and the consecutive spontaneous emission back to the electronic 
ground state. While there is no change in motional mode at the carrier emission, 
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the decay on the blue sideband appends the heating rate equal to [Q,0/(2v)]27]2r. 
Here, the fj is the Lamb-Dicke parameter of emission generally different than 
7], as the emission can occur in any direction. This allows, for example, 
cooling configurations utilizing three level system where the wavelengths of 
emitted photon and cooling light are different [59]. The second source of 
heating may originate from the excitation of the first blue sideband wi th the 
probability (r]Q,0/[4v])2, which is followed by the decay on the carrier calculated 
as (r]Q,0/[4v])2r. In the steady state, the mean energy after the sideband cooling 
can be expressed as 

r 2 (\fj 

Since we have px = 1 — p 0 , the ground state occupation probability after sideband 
cooling can be written as p 0 = 1 — (r/2v) 2 which is close to 1 in case that the 
condition for the sideband-resolved regime oo » T holds. 

2.9 Angular momentum and Zeeman splitting 
A Zeeman effect describes the frequency splitting of atomic energy levels caused 
by the applied external magnetic fields [60]. The strength of the splitting and the 
number of lifted degenerate spectral components is related to the total angular 
momentum, which may be achieved by electron in the current energy level. 
Addressing of different Zeeman spectral lines allows for multiple experimental 
configurations, such as ground state cooling and coherent manipulations with 
motional state, where the overall efficiency of these operations is strongly 
dependent on the particular spectral line. On the other hand, the unwanted 
Zeeman transitions can be conveniently suppressed by adjusting the beam 
geometry and the light polarization. 

The total angular momentum / consists of an orbital momentum denoted as 
L and the electron spin S, where J = L + S. A total amount of degenerate Zeeman 
sub-levels is then equal to 2J + 1, each of them defined with a magnetic number 
rrij, acquiring the values in the range of —J, —J + 1, ...J — 1,J. In the presence 
of the external magnetic field B, the degeneracy is lifted and the corresponding 
sub-levels w i l l form the separate spectral lines. For the small magnetic fields 
on the order of a few Gauss, frequency difference between the split levels w i l l 
correspond to the linear Zeeman effect and can be approximated by 

(2.34) 

Av = <f(mjgj - mtfj)\B\, (2.35) 
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where JJ.B is the Bohr magneton, h the Planck constant, and m.j and gj are the 
magnetic quantum numbers and Lande factors for corresponding spectral lines 
[61, 62] and \B\ is the intensity of the applied magnetic field. Corresponding 
Lande factors for particular Zeeman levels of 4 0 C a + a t o m can be taken for 
example from the reference [48]. 

Since an electron is a spin-half particle and the energy level scheme consists 
of a single valence electron only, it may attain the values of S = ± 1 / 2 . In such a 
case, the eigenvalues of angular momenta would acquire the half integer values 
as well. The excited state denoted as D 5 / 2 w i l l split into total of six sub-levels, 
and the ground state S ,

1 / 2 w i l l have two sub-levels only, with m.j = ± 1 / 2 . The 
experimental measurement of Zeeman splitting of the employed 4 0 C a + a t o m is 
presented and discussed in Sec. 3.6 and schematically depicted in Fig. 3.8. 

For atom-photon interaction investigated in terms of magnetic splitting, the 
change of the total angular momentum between the photon and electron has 
to be conserved. This raises restrictions on transition between certain Zeeman 
sub-levels. Considering the interactions at most common dipole transitions, the 
circularly polarized photon w i l l change the value of m.j by Am.j = ± 1 , based 
on the sign of the circular polarization, while the absorption of photon linearly 
polarized along the direction of the B field w i l l not change the magnetic quantum 
number, so that Am.j = 0. 

The same effect is apparent for spontaneous emission at different Zeeman 
transitions. The transition which changes the momentum by Arrij = 0, ± 1 
wi l l emit linearly polarized photon, or right or left-handed circularly polarized 
photon, respectively. The transitions are commonly denoted as a_,7t and a+ 

for Am.j = —1,0,+1. The particular polarization state is always referred to 
the quantization axis, which is defined here along the direction of the applied 
B field. Corresponding transition probabilities for spontaneous emission are 
defined with Clebsch-Gordan coefficients [63]. 

A t the quadrupole 729 nm transition, the allowed change of the angular 
momenta can be \5m\ < 2, depending on the mutual orientation of beam 
polarization vector and the magnetic field, wi th respect to the Paul trap axis. 
The combin'lar states of my This can be described wi th Wigner-Eckart theorem 
[48, 64, 65] 

a = ^ ( S 1 / 2 , m | ( e . r ) ( k . r ) | D 5 / 2 , m ' ) | 

- i f ^ W Z ( ! 2 \ 5 J ? ) ^ I - (-36) 
q=-2 \ 1 I 

Here, the (Si/2 \ r2C \D5/2) denotes a reduced matrix element and the matrix 
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terms in the sum are the Wigner 3-j symbols. The geometric dependent 
part gq = cfjeiHj denotes the efficiency of transition corresponding to the 
change of the quantum number my For the axial Paul trap geometry, the 
vectors corresponding to magnetic field, beam propagation, and polarization 
can be expressed as B = (0,0,B 0 ), k = fc0(sin <p, 0, cos <fi) and e = 
(cos y cos <p, sin y, — cos y sin <p). It is useful to define the variables <p(k,B), 
denoting an angle between the wave-vector k and the magnetic field B, and 
y(e, B), which is an angle between B and the polarization e. Considered particular 
geometry together with these vectors can be conveniently used to characterize 
the coupling factors gq as 

8 = d c o s y s i n ( 2 0 ) | , 

g = —— I cos/cos(2<£) + i s iny cos <p\, 

1 ,1 

(2.37) 

g - = —— | - cos/sin(2<£) + i s i n / s i n ^ l . 
V 6 2 

The experimental realization is implemented for a fixed beam direction, 
which is incident at the angle <p(k, B) = 45° wi th respect to the B field aligned 
parallel wi th the trap axis. The strength of coupling to particular Zeeman states is 
dependent on the polarization direction e. This allows particular configurations 
of the coupling, as depicted in Fig. 2.4. Particularly, in case that y(e,B) = 0°, the 
coupling is restricted only to transitions which correspond to Am.j = 0, ± 2 , and 
is particularly useful for implementation of the sideband cooling and motional 
state manipulations (Sec. 2.10). Additionally, the case where y(e,B) = 45° 
provides reasonable coupling strength to all Zeeman sublevels, so they can be 
conveniently recognized. 

2.10 Coherent interaction on motional side­
bands 

The coherent Rabi oscillations denote the cyclic behavior of the population 
probability of the two-level system, undergoing the coherent drive. In 
implementations presented in this Thesis, they are observed either on carrier 
transition, which does not involve the interaction wi th motional mode of 
freedom, or at motional sidebands, which is accompanied with an addition 
or subtraction of the single quantum. In such a case, the condition on 
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Figure 2.3: Coupling to Zeeman levels corresponding to Arrij — 0,1,2 from left to 
right, where y(e,B) denotes a relative angle between polarization and magnetic field, 
and <p(k,B) an angle of wavevector towards the magnetic field. The configuration for 
typical experimental routine presented in this work is set to <p(k,B) — 45°, y(e,B) — 0°. 
Note that these calculations for geometric factors are similar also for other ion species 
having the same quadrupole line structure and can be thus applied also to calculations 
considering other atoms. 
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9) Am = +2 <j>(k,B) = 45°, y(e,B) = 0° 

Am 

Figure 2.4: Coupling strengths resulting from the Eq. 2.37 and Fig. 2.3 for two 
particular experimental settings of angles <p(k,B) and y(e,B). a) represents the ideal 
setting employed for our experiment, where only the transitions for sideband cooling 
(Arrij — 2) and motional state engineering (Amj = 0) are coupled, b) shows the setting 
which allows for spectroscopic measurement of all employed energy transitions. The 
transitions depicted with red lines correspond to optical pumping set to S_i/2 lines. The 
coupling strength for <j+ would show analogical results. Bar plots on the right show 
values of coefficients gm denoting the coupling efficiency to particular transitions with 
Am, calculated from the set of Eq. 2.37. 
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sideband-resolved regime has to be fulfilled, meaning that the frequency of 
the motional mode is much larger than the natural linewidth originating from 
the spontaneous decay rate (so that oo » T, where we consider oo on the 
scale of 10 6 Hz and r « 1 Hz for quadrupole transitions, see Table 2.1) 
[48]. Consequently, the Rabi oscillations are more conveniently observable at 
quadrupole 729 transition, due to the long lifetime of the excited state. 

Additionally, we consider coupling in the Lamb-Dicke regime, which restricts 
the possible interactions to 1 s t motional sideband only, neglecting the higher 
order motional modes. W i t h an ion prepared close to the motional ground state, 
there are only three achievable interactions, that being carrier, 1 s t red and 1 s t 

blue sideband, as described in Sec. 2.7. Following this treatment we describe 
the dynamics of the two-level system at carrier transition as an evolution of 
population probability of the excited state [48] 

Pe(r) = - [ 1 - YJ Pncos(Q0(l-r]2n)T)], (2.38) 
n=0 

where the sum is evaluated over the distribution of the motional modes Pn wi th 
nmax 0 0 being the maximal considered motional energy level, theoretically 
approaching infinity. For evaluations on measured data, the value of n m a x is 
set sufficiently high, so it does not significantly affect the resulting population 
distribution. 

The multiplication of the Rabi frequency D,0 wi th the square of Lamb-Dicke 
parameter rj1 points to the weak dependence of carrier coupling on the 
populations. The increasing thermal population in higher phonon states 
described with the element Pn is then responsible for the gradual damping of the 
Rabi oscillation, which can originate from contribution of axial and both radial 
motional modes. For thermal state, where Pn is described with Bose-Einstein 
distribution, the damped carrier Rabi oscillation pattern can be also expressed as 
following [48] 

l r , cos( f l 0 r ) + n0T7)2(n + 1) s i n ( f l 0 r \ 
W ) = ~(1 ; ( r . 2 f - ; 1 V V 2 ), (2.39) 

2 1 + (D,0rr]2(n + l)) 2 

where n determines the mean energy of the single motional mode. The Eq. 2.39 
can be also extended to describe the damping originating from other motional 
modes, by replacing n and r\ wi th the summation over all motional modes and 
their corresponding Lamb-Dicke parameters [48]. 

The coupling to 1ST order motional modes at red or blue sideband contains 
both the frequency dependence on the Lamb-Dicke parameter r\ and the Rabi 
frequency D,0. The excited state probabilities Pgsh(r),Pgsh(r) for 1ST blue and 
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red sidebands are directly dependent on phonon probability distribution Pn as 
following 

P e

b s b ( r ) = | [ 1 - 2 ^ c o s ( £ i n > n + 1 r ) e x p ( - y n r ) ] , (2.40) 
n 

Pe

rsh(r) = \[1 - 2 Pn c o s ^ ^ r ) e x p ( - 7 n r ) ] , (2.41) 

with 

^n ,n+l = floW»+L ^ n , n - l = ^ o W " . ( 2 - 4 2 ) 

where the coefficient describes the Rabi oscillation damping which is 
dependent on the energy of the motional mode denoted wi th n. In our 
experimental observations and also in references [19, 66] it has been found that 
the damping coefficient scales up with the motional energy and can be described 
as 

yn = y0(n + l)x, (2.43) 

with 7 0 is the damping of the motional ground state, and x is the scaling factor 
which is related with the noise properties, typically estimated as x = 0.7, see 
reference [66] and also experimental verification in Sec. 3.14.3. 

2.11 Basic definitions of non-classicality in 
ion's motion 

There are two basic ways to treat the quantum mechanical motional states. The 
first treatment employs the decomposition of arbitrary state in the number state 
basis, as described in Sec 2.6. Alternatively, the motion can be treated similarly 
as in quantum optics, using the theory of coherent states, firstly introduced by 
Glauber in 1963 [20]. In this way, the density matrix of the state can be described 
as [67] 

P = f m V > t o * « . (2-44) 

where the outer product |a) (a| denotes the over-complete non-orthogonal basis 
of coherent states. By definition in [67], i f P(a) has meaning of classical 
probability density function, then state is classical from the perspective of 
classical coherence theory of linear oscillators. Such states can be obtained 
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by classical external linear drive of such oscillators wi th a fixed frequency. If 
this is not the case, the state is called 'non-classical'. The special subclass 
of non-classical states presents sub-Poissonian statistical properties where the 
variance in phonon number is smaller than the mean phonon number [68]. This 
is also the case of Fock mechanical states, where the phonon number noise is 
principally zero, while the phase is infinitely uncertain. However, such noise 
reduction can be also approached by a displaced squeezed ground states of 
oscillators. They can be obtained using diverse linearized nonlinear dynamics 
described approximately by the interaction Hamiltonians maximally quadratic 
in the annihilation and creation operators. Such dynamics ideally keeps 
Gaussian ground-state distributions of position and momentum still Gaussian. 
To basically distinguish such trivial cases on sub-Poissonian statistics from more 
relevant and applied still imperfect Fock states, quantum non-Gaussian sub-set 
of non-classical states must be introduced. 

Similarly wi th the definition in Eq. 2.44, we define the 'quantum 
non-Gaussianity' wi th use of the following equation [21] 

where |A) = S(r)D(a) |0) is a pure Gaussian state, with displacement operator 
D(a) , squeezing S(r) and |0) denoting the vacuum state. In Eq. 2.45, the P(a) 
denotes the probability density distribution of Gaussian states |A). In case that 
the quantum state cannot be described in a way of Eq. 2.45, it is denoted as 
'quantum non-Gaussian'. 

A convenient way to characterize the quantum states is the direct 
reconstruction of number states population, where for example the Fock state 
probabilities may be directly obtained from the fit of the coherent interaction (see 
Eq. 2.40). A specific criteria has been derived [21], which distinguishes Gaussian 
and quantum non-Gaussian states based solely on the measured populations, and 
can be applied even in the presence of high losses or for states wi th positive 
Wigner functions in whole phase space. 

The stricter form of quantum non-Gaussianity criteria can be formulated 
using the hierarchical properties of the Fock states, which directly relate to 
some of the sensing applications. The hierarchical nature of the criteria also 
provides a way to gradually describe the 'quality' of generated imperfect Fock 
states, by evaluating their robustness wi th respect to thermal losses, which is 
specific for each Fock state. The genuine quantum non-Gaussianity (GQNG) 
is defined similarly to quantum non-Gaussianity (QNG), with the Eq. 2.45, 

Yl— 1 
where |A) = S{r)D{a) Yim=o cm \m) denotes the sum of coherent and squeezing 
operations applied on the mixture of number states with order (n — 1) smaller 

(2.45) 
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than the number state of interest. Therefore, the G Q N G state is such state, which 
cannot be expressed with a mixture of displaced and squeezed number states of a 
lower rank. A specific Pfi"** can be derived for each number state, for witnessing 
the G Q N G threshold. In a single term, the genuine quantum non-Gaussian state 
of rank n can be defined as a state, which cannot be achieved by 

n-l 

\iP) = D(a)S(r) 2 cm\m). (2.46) 
m=0 

Alternatively, it is possible to derive the condition for genuine quantum 
non-Gaussianity for Fock states wi th use of stellar hierarchy formalism, as 
described in the reference [69]. 

2.12 Estimation of discrete non-classicality 
on broad phonon number distributions 

In Section 2.11, we discuss the definitions of criteria of non-classicality and 
quantum non-Gaussianity. In measurements presented, we employ additional 
non-classicality measures, which are able to better describe specific features of 
probability distribution shapes. We use the Fano factor defined as [70] 

„ ( n 2 ) - ( n ) 2 , . 

which describes the ratio between the state's variance and mean phonon number. 
The values of F > 1 point to distributions wi th Poissonian or super-Poissonian 
distribution, while F < 1 corresponds to non-classical sub-Poissonian statistics. 

Klyshko's hierarchic criteria of nonclassicality [71] can be conveniently 
employed when assessing non-classical properties manifested dominantly in the 
high population of particular Fock state, as they are sensitive to population 
difference in three neighboring states. For a chosen phonon number n, the 
Klyshko's criterion is defined as 

Kn = (n + l ) P n + i P „ _ i - nPl (2.48) 

Clearly, for number states of the order n, the corresponding measure of Kn is 
negative. 

Experimentally accessible indicator of nonclassicality and quantum 
non-Gaussianity is the value of Wigner function at the origin of the phase space, 
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which can be calculated as [19] 

^ nmax 

W(0,0)=- £ ( - l ) » P B , (2.49) 

where Pn corresponds to the measured population distribution. For odd 
populations in number state basis, the origin value of Wigner function is negative 
and thus serves as a direct indicator of quantum non-Gaussianity in the low loss 
regime. However, the Eq. 2.49 fails to detect the non-classical properties for 
even states and a various range of other quantum non-classical states. This can 
be generally remedied by investigating the other regions in the phase space. 

Finally, to have a global identification of the non-classical aspects of different 
states with a large variance phonon number distribution, we employ the 
entanglement potential [72] defined as the amount of entanglement contained 
in the state 

p e n t = e ^/4(abt- a tb) p k 0 ^ g - i r M C a b W f l ( 2 5 Q ) 

where a and b are the annihilation operators for the first and the second oscillator 
mode, respectively. In quantum optics, this operation corresponds to splitting 
an optical mode on a balanced beam splitter. The entanglement potential (EP) 
measure reflects the fundamental inability to generate entanglement behind the 
beam-splitter i f the state p k at the input is not non-classical and takes further 
advantage of greater availability of measures of bipartite entanglement relative 
to measures of nonclassicality. In our case we quantify the entanglement using 
the straightforwardly computable logarithmic negativity [73] 

LN(pent) = l og 2 || pZ II (2.51) 

Here, PT denotes partial transposition and || A ||= Tr^jA^A corresponds to trace 
norm. This measure is not unique [74-76], however, it can be easily numerically 
evaluated even for high-dimensional non-Gaussian states [77]. Experimentally, 
it requires full density matrix and might too sensitive to statistical and estimation 
errors. 



3. Expe r imen ta l me thods to cont ro l 
ion 's m o t i o n 

This Chapter covers the basic description of implemented experimental routines 
of ion trapping, controlling the ion's fluorescence rate and also motional 
state. We include experimental and technical details on utilization of physical 
principles described earlier in Chapter 2. 

3.1 Laser manipulation of internal energy 
level populations 

The crucial point of the experimental control lies in addressing of the transitions 
between energy levels in the 4 0 C a + ion (see Sec. 2.1 and Fig. 3.1). This is done by 
employment of in total four lasers. The description of the laser stabilization using 
frequency offset locks to the fiber frequency comb and including the particular 
set up for stabilization of the qubit 729 nm laser to the level of a few Hz can be 
found in [50, 51]. In addition, other two lasers at 422 nm and 377 nm are used 
to produce singly ionized 4 0 C a + i o n . A t first, one of the two valence electrons 
is excited at transition 4s2S0 -> 4s4pP1 by 422 nm radiation, and in the second 
step, it is sent into continuum by laser at 377 nm. 

The transition 4S1/2 -> 4Pj/ 2 is used for Doppler cooling and also for 
fluorescence detection, due to the short excited state lifetime which is 6.9 ns. The 
light of the fluorescing atom is collected wi th a high numerical aperture lens 1, 
which is then further sent towards the E M C C D camera 2, or to the avalanche 
photo-detector3. In typical experimental setting, it is possible to detect up to 
4 X 10 4 photons per second. 

In the cooling and detection process at 4S1/2 -> 4P x / 2 transition, the finite 

1 Sil l Optics S6ASS2241, covering 2 % of full solid angle [50] 
2 ANDOR Luca, type S 
3Laser Components COUNT Blue 
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Figure 3.1: Processes of electronic state manipulation used in experiments, a) shows 
spectral lines for experimental control and motional manipulation. The fluorescent 397 
nm transition serves for Doppler cooling and also for optical pumping with circularly 
polarized beam. 866 nm serves for the re-shuffling of the dark state 3D 3 / 2 after Doppler 
cooling. The narrow quadrupole 729 nm transition defines the two-level system coupled 
with the harmonic oscillator. The beam at 854 nm serves for a reshuffling of the 3D 5 / 2 

state down to the ground state 4Si/2- In addition, the special circularly polarized beam 
at 397 nm denoted as a~ is used to distinguish transitions corresponding to two Zeeman 
levels of 4S!/2 ground state, b) shows the two-photon ionization process used for ion 
trapping. 

branching ratio of the excited state results into a probability of decay into the 
metastable 3 D 3 / 2 state. Therefore, the reshuffling laser at 866 nm is employed to 
re-excite the atom into the 4P 1 / 2 , from where the electron may decay back to the 
ground level 4S!/ 2. The two beams at 397 nm and 866 nm have to be implemented 
simultaneously, in order to detect the ion's fluorescence and reduce the motion 
in Doppler cooling step. 

The quadrupole transition at 4Sj/ 2 -> 3 D 5 / 2 is addressed with the 729 nm 
laser beam. The lifetime of the excited 3 D 5 / 2 state is very long (1.16 s), so the 
729 nm beam frequency has to be narrowed and stabilized to the bandwidth 
scale of approximately tens of Hz. This is achieved by P D H locking to a high 
finesse reference cavity, which is in detail described in work [51]. The transition 
between the states 3 D 5 / 2 -> 4P 3 / 2 serves for the reshuffling of the excited D-state 
to the ground state S j / 2 . 
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Figure 3.2: Geometry of normal motional modes in the trap and alignment of the laser 
beams, a) shows the three main directions of oscillations, where x,y represents two 
radial modes which are bound to two pairs of 'blade' electrodes (only one pair is shown 
here), z is the direction of the axial mode, b) depicts the alignment of lasers used for 
internal state control and two-photon ionization process, with respect to trap axes. A 
Doppler cooling is performed with 397 and 866 nm lasers, 729 nm provides tools for 
the motional state engineering, 377 and 422 nm lasers implement the ionization step, 
397 a~ does the optical pumping and 854 nm re-shuffles the excited state level. For the 
description of the typical pulse sequence, see Sec. 3.4. The direction of the magnetic field 
depicted with B is set as parallel to the axis of the trap in all experiments presented in 
this thesis, which allows for a convenient optical pumping scheme with the 397 circullary 
polarized beam along the trap axis. 

The geometric orientation of the laser beams wi th respect to the trap is 
depicted in Fig. 3.2. The orientation takes into account the geometry of direction 
of normal oscillation modes in the trap. The beams which are aligned under 45° 
angle have a significant overlap with all of the three motional modes of a single 
ion. This direction is used both for the Doppler cooling lasers and for the qubit 
laser. The 397 a_ beam, denoted as 'optical pumping', propagates parallel to the 
trap axis. The beam is circularly polarized, and it's direction coincides wi th the 
local magnetic field vector. This ensures that only one of the two Zeeman levels 
of the ground state Sj/2 can be coupled [59, 78]. 

3.2 Compensation of micromotion 
Micromotion is the fast oscillation which is being driven by the trap frequency 

The amplitude of the micromotion increases as a function of ion's 
distance from the trap RF potential minimum. In order to allow for independent 
compensation of the excess micromotion, additional two pairs of compensation 



COMPENSATION OF MICROMOTION 31 

Figure 3.3: Main directions of the DC potentials in the employed Paul trap. Arrows 
with labels Chj and C h 2 denote directions of the axial confinement in the trap. 
Additional pointers C h 0 and C h 3 denote direction of applied compensation voltages, 
where direction of arrow C h 3 is perpendicular with the plane of the page. Compensation 
electrodes are not pictured in the schema. 

electrodes are employed inside the vacuum chamber, wi th D C potential on scale 
of tens to one hundred volts. Fig. 3.3 depicts the simplified geometry of the two 
pairs of the micromotion compensation electrodes and of two axial electrodes in 
our linear trap, observed from a direction of imaging on the C C D camera. A l l of 
the electrodes are connected to the source of the high D C voltages 4. 

The fundamental limitation arises while aiming to compensate micromotion 
for long ion chains or large 3D ion crystals with a finite radial size [79, 80]. 
Since the amplitude of micromotion increases with the distance from the trap 
center, the full compensation cannot be achieved for all ions simultaneously. For 
compensation of the axial micromotion over the extended axial scale, our setup 
included also the possibility to drive the radial RF electrodes symmetrically, but 
with opposite phase [81, 82]. However, as this thesis is focused on experiments 
with single ions, experiments presented here employ the more conventional RF 
driving corresponding to one pair of opposite blades at ground and other pair 
oscillating at RF potential around this ground value. 

There are various experimental routines to minimize the micromotion [81]. 
At the first stage of the experiment, when the amplitude of the micromotion is 
very high, it can be detected directly wi th the C C D camera [83], and recognized 
as a motional blur caused by the fast oscillation. The coarse alignment of the 
atom is employed, to erase the blur and position the atom closer to the trap center 
[81]. 

Another method is a coincidence correlation method [81, 84], which is 
based on detection of Doppler shifts of ion moving towards and backwards to 

4powered by ISEG high DC voltage source 
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C h 0 102 V 
1382 V 

C h 2 1017 V 
C h 3 96 V 

Table 3.1: Tip voltages corresponding to the ion's position in the center of the 
trap (Chi and Ch 2), and compensation voltages which are measured to provide the 
minimal micromotional amplitude obtained by a photon correlation method (Ch 0 and 
Ch 3). Current values are valid for RF trap setting of D,RF = 30 MHz and amplitude 
corresponding to transmitted power of 4 W. 

the direction of the excitation - Doppler cooling. Then, the micro-motional 
oscillations are imprinted to the detected fluorescence as a periodical modulation 
of arrival times of incoming photons. 

We implement the correlation method as a coincidence measurement 
between the trigger derived from the RF-drive, and the ion's fluorescence 
detected with the avalanche photo-diode detector. The result is recorded 
with a two-channel time-correlating device 5 wi th 4 ps time resolution. The 
employed avalanche detector has a jitter approximately 1 ns, so the bandwidth of 
measurable correlations is approximately 1 GHz, which is large enough to cover 
the correlation signals expected at the trap frequencies around 30 M H z . 

The sample results are presented in Fig. 3.4. The displayed data show 
the correlation histogram of coincidence counts between the triggering pulse 
derived from the RF-signal and the detected fluorescent photons. For the case 
of uncompensated excess micro-motion, the correlation histogram should in 
principle show harmonic periodical signal. However, the nontrivial dependence 
of the excitation parameters in the multi-level structure of 4 0 C a + i o n , together 
with the nonlinear response of the excitation probability of the two level system 
on the effective detuning of an ion result in typical signal shown in the Fig. 3.4. 
For the compensated case, the probability of photon arrival w i l l be constant for 
all time delays, returning the flat line in the histogram. When the ion is displaced 
to the opposite side of the RF potential, one observes a change in the phase of 
the correlation signal equal to 7t. 

Additional method of micro-motion estimation is the measurement of the ion 
fluorescence in Hanbury-Brown-Twiss experimental configuration [85], where 
several very useful modifications of such scheme have been developed including 
the phase interferometry of the emitted fluorescence before the correlation 
measurement. This, contrary to the previous method, allows for the detection of 

5PicoHarp 300 
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Figure 3.4: Sample data histogram for measurement of the RF trigger - photon 
correlation, used for micromotion sensing. The vertical axis shows the histogram counts 
as a function of delay r. The histogram resolution is 0.512 ns per point. The blue and red 
lines show the case of the de-compensated excess micro-motion. The contrary phases 
imply the ion is located at the opposite side of the potential well. The yellow line shows 
the coincidence counts for nearly ideally compensated excess micro-motion. The ion is 
displaced in the direction of the C h 0 electrodes. 

the micromotion also in the direction of detection i f the scattered fluorescence. 
However, due to the small count rates on scales reaching tens of kHz at maximum, 
the data acquisition of photon-photon coincidences is much longer compared 
with to cross-correlations with external trigger at 30 M H z frequency. 

In this context we would also like to point to the recent work devoted 
to measuring enhancement in sensing the micro-motional modulation by 
correlating the fluorescent count rate wi th it's reflection at the distant mirror [86, 
87]. In such a configuration, the detection sensitivity is enhanced with respect 
to the directly observed fluorescence by a factor of more than 100 due to the 
phase-sensitive interferometric measurement of photons. 

Finally, in Table 3.1, we write the voltages corresponding to compensation 
and tip electrodes, which were measured to optimally compensate the 
micro-motion for presented experimental tests. The trap is driven in asymmetric 
configuration, where the two electrodes are grounded, and the other two are 
supplied with the RF, at the frequency corresponding to 30 M H z and the RF power 
transmitted to the trap of 4W. 
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Figure 3.5: V-like energy level scheme (a) with the measured 'quantum jumps'(b) 
for weakly continuously illuminated transition at 729 nm, showing the discrimination 
between two quibit eigenstates in <j_ basis. The detected count-rate points to the 
population of level |g) = 4S1/2> denoted as a 'bright state', while the low count rate 
around zero points ot the ion being in the 'dark state' \e) — 3D5/2-

3.3 Internal state detection 

For estimation of the population of the qubit states in the az basis we employ 
method which is in literature commonly denoted as 'electron shelving' [88, 89]. 
It enables the detection of the ion's internal state with efficiency typically higher 
than 99 %. The basic principle lies in addressing the additional electronic level 
denoted as |r), so the scheme finally operates as a V-like three level system, as 
described in Fig. 3.5 a). Thus, for the case when electron populates the state \e), 
it is impossible to detect any fluorescence except for the rate of the dark counts. 

In our experimental scheme, we realize the two-level system at 4S!/2 -> 3 D 5 / 2 

transition at wavelength 729 nm, where state |g) corresponds to the 4S1/2 level, 
and the excited level \e) is the 3 D 5 / 2 state. Fluorescence is detected at 397 nm 
transition AS^ -> 4P 3 / 2 . Once the electron is excited into the state 3 D 5 / 2 by 
the 729 nm laser, the fluorescence at 397 nm is suppressed. Therefore, the state 
\e) is denoted as a 'dark' state, while the opposite level |g) is the 'bright' state. 
The 'quantum jumps' [88] corresponding to the abrupt change in the population 
of the excited state due to the projection by photon detection are manifested 
in the famous telegraphic signal, see the Fig. 3.5 b) for the example of such 
measurement. The flat areas where the fluorescence is measured correspond to 
the situation when the ion is projected to the ground state, while the areas wi th 
rate equal to zero correspond to the projection on the excited level \e). 
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3.4 Pulsed sequence control 
The electron shelving method provides the projection to one of the eigenstates 
of the two-level system. Despite the actual superposition, the single shelving 
experiment always returns a yes/no answer, i f the atom was in the 'dark' or 
'bright' state. Therefore, any experimental sequence is implemented with a 
high number of repetitions, which allows to obtain the statistics of projections 
on the two-level system. The sequences of excitation laser pulses are directed 
with the programmable RF-generator 6 and from here, pulses are delivered to the 
set of acousto-optical modulators 7. A l l the experiments consist of a hundred 
independent sequence repetitions, which suppress the projection noise and 
provide the probability amplitudes wi th the reasonable error estimate. 

A general form of the sequence is depicted in Fig. 3.6. The sequence starts 
with the Doppler cooling, followed with optical pumping, possibly sideband 
cooling which further reduces the mechanical thermal energy, then wi th state 
manipulation and finally the state analysis. 

3.5 Optical pumping 
The optical pumping in the experimental sequence is performed in order to set 
the preference of electron transition into one of two possible Zeeman sublevels 
of the 4S 1 / 2 manifold. The splitting itself is performed with a pair of Helmholtz 
coils placed parallel with the trap axis [50, 51], inducing the external magnetic 
field of approximately 10 Gauss. The particular splitting of the spectral lines 
for employed experimental setting was measured spectroscopically (see Fig. 3.8 
in Sec. 3.6). Here, we describe the basic physical principle and experimental 
optimization process of the optical pumping. 

A weak and short optical pumping pulse at 397 nm is applied in each 
sequential experiment. The pumping photon bears a left or right hand circular 
polarization state, carrying the angular momentum Am.j = ± 1 . Consequently, 
following the photon scattering into the unwanted ground state level, an 
incoming pumping photon implements an excitation back to the excited state, 
which is followed by additional spontaneous emission. This process occurs, until 
the electron travels into the selected m level, which is unaffected by the pumping 
pulse. 

From an experimental point of view, the choice between a+ and a_ can 
be made arbitrarily, however, it is necessary to choose one configuration for 

6electronics based on FPGA logic, controlled in LabView software 
7Brimrose, central frequency of modulation typically 250 MHz 
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Figure 3.6: Example of the experimental sequence used for motional state preparation, 
manipulation and state detection. The Doppler cooling represents the continuous 
illumination with 397 nm and 866 nm lasers, typically with 1.2 ms duration. The 
optical pumping initializes the state of the electron to particular rrij state of the S state. 
The sideband cooling part consists of multiple pulses of simultaneous 729 nm and 854 
nm beams, which are interrupted with short 397 <7_ optical pumping, preventing the 
population to accumulate in unwanted Zeeman component of the S state through rare 
decay of the excited P 3 / 2 state to D 3 / 2 followed by the optical reshuffling using 854 nm 
laser back to the S state manifold. The overall length of the sideband cooling sequence 
part depends on application. For ground state cooling with over 98 % of population in 
the state \ri) = 0, the required length exceeds 3 ms. State detection refers to the electron 
shelving, and also contains the gating of window for detection by the APD. 
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Figure 3.7: Optical pumping realized at the 397 nm with additional addressing beam, 
employed in the axial direction. The a+ and a_ correspond to the left or right handed 
circularly polarized photons, which induce the angular momentum change of Arrij — ± 1 . 
In the case of photon scattering into one of the states addressed with pumping pulse, the 
electron is transferred back to the excited level. 

all experiments and keep it fixed. In our experimental scheme, we choose to 
implement the experiments at a_ transitions. This also brings up an advantage 
for sideband cooling regime (see Sec. 3.8), which is realized at the 1ST axial red 
detuned sideband of the outermost transition 4S 1 / 2 (m = —1/2) -> 3D 5 / 2 (m = 
—5/2). Particularly in this case, the probability of off-resonant excitation of other 
spectral lines is decreased, as the transition is located at the edge of the spectrum. 
The principle of the optical pumping is displayed in Fig. 3.7. 

In the experiment, the setup and optimization of the optical pumping routine 
is set as following. The optical pumping beam is applied in the axial direction 
of the trap, and it's polarization is set to circular. The polarization is optimized 
in the regime of continuous laser excitation, when the standard Doppler cooling 
beam at 397 nm is turned off, so the the ion is Doppler cooled only in the axial 
direction. This is however not a significant issue for ion's stability on scale of a 
few minutes, which are required for optical pumping optimization. 

Once the polarization of the incoming beam is set to circular, the fluorescence 
radiated at 4P 1 / 2 (m = +1/2) -> 4S 1 / 2 (m = +1/2) is suppressed. Due to 
the circular polarization of the interacting photon, one of the a transitions is 
then driven maximally, while the latter is not addressed. The rotation of the 
polarization angle by n w i l l then set the preference for scattering into the second 
Zeeman sub-level. 

Typically, the power of optical pumping beam is set to approximately 15 f/W. 
We aim to illuminate the ion with the attenuated beam, which would, however, 
still reliably implement the optical pumping effect. The 397 a beam, while being 
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applied at high power for a long time, may cause the motional heating of the 
axial mode. The power of optical pumping is optimized at Rabi oscillations for 
carrier transition, and it is set to the lowest intensity and temporal length, which 
does not yet lead to the decrease of the carrier flop contrast, which would be 
caused by population scattering into the neighboring \S) state. 

3.6 Spectroscopy on the quadrupolar transition 
The spectroscopic measurements provide a tool to directly measure the energy 
level structure of the 4S 1 / 2 -> 3 D 5 / 2 transition (see scheme in Fig. 3.8). They 
allow for determination of all of the crucial information about the internal energy 
level structure of the probed transition and, at the same time, serve for precise 
estimation of its temperature or even of the full motional state. They can be used 
also to determine the magnitude of D C magnetic field at the position of ion and 
also the Zeeman splittings. 

The pulse sequence consists of Doppler cooling, optical pumping, the probe 
by a weak 729 nm laser pulse, and the state detection by electron shelving. 
Each point of the spectrum corresponds to a probability originating from 
100 repetitions of the experimental sequence. The frequency detuning of 
the 729 nm pulse is controlled by setting the modulation frequency to the 
acousto-optical modulator in double-pass configuration, while the first order 
diffracted modulated light from the second modulator is sent to the experiment. 

In order to observe transitions from both 4S 1 / 2 states, we first set the optical 
pumping such that it coincides with the a_ transition of the 4Sj/ 2 -> 4P 1 / 2 and 
implement frequency spectroscopy on the quadrupole 4S 1 / 2 -> 3 D 5 / 2 transition. 
After that, the polarization of the pumping pulse is rotated to the orthogonal 
state cr +, and the other five carrier transitions at 4S 1 / 2 -> 3 D 5 / 2 can be observed. 
The positions of measured spectral lines are determined wi th respect to the A O M 
modulation frequency. The measured spectra corresponding to 4S_j/ 2 state are 
depicted in Fig. 3.9. From the resulting values, we determine the physical 
frequency splitting of 4S 1 / 2 (m = —1/2) and 4S 1 / 2 (m = +1/2) ground state 
as 28.22 M H z , and the splitting between 3 D 5 / 2 states to be 16.92 M H z which 
corresponds to the applied magnetic field of B = 6.72 Gauss. 

A significant requirement on the amplitude of the B field is, that the induced 
Zeeman splitting should exceed the frequency modulation emerging from the 
motional modes. In addition, for some particular values of B one has to optimize 
its magnitude in order to avoid the proximity of transitions corresponding to 
different a+ or a_ lines, which could become an issue in case that the optical 
pumping is not set properly, due to the loss of population in advantage of the 
unwanted a transition. 
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Figure 3.8: Scheme of spectroscopy of quadrupole transition 4Sj/ 2 -> 3D 5 / 2 . Red solid 
lines depict the addressable transitions for optical pumping set to a_, corresponding to 
the possible Am = ±2, ±1,0. Alternatively, a+ transitions can be measured by setting 
optical pumping to a+, as depicted with black thin lines. The Zeeman splitting is induced 
with external magnetic field B — 6.72 Gauss according to the Eq. 2.35. For the current 
setting, the frequency splitting between 4S 1/ 2(m = —1/2) and 4S 1/ 2(m = +1/2) is 28.2 
MHz. The D 5 / 2 is split into 6 sub-levels differing by 16.92 MHz. 
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Figure 3.9: Measured spectrum for a_ states. The configuration of the polarization with respect to the trap axis is set to amplify 
transitions corresponding to Anij — 0, ±2. The strongest central carrier 4S 1/ 2(m = —1/2) —>• SDj^On = —1/2) is used for motional 
state engineering and detection, while the outermost 4S 1/ 2(m = +1/2) —>• 3D 5/ 2(m = —5/2) is employed for sideband-cooling. The 
second transition with Anij — +2 is not effectively addressed, because the carrier frequency lies on the edge of the A O M diffraction 
bandwidth. The central carrier transition at 4S 1/ 2(m = —1/2) —>• SDj/^m = —1/2) showed in the plot c) was measured at the A O M 
frequency 278.43 MHz. The surrounding structure shows axial and radial motional sidebands, which are measured in better detail 
in the following section 3.7. In subfigures b) and d), the coupling is suppressed, the lines present in figures correspond either to 
micromotional modulation. We note that, for this particular measurement, we measured offset corresponding to 7 % of ground state 
excitation. The constant offset came up from the improperly set optical re-shuffling with the 854 nm laser. 
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3.7 Laser spectroscopy of secular motion 
The secular motional modes are imprinted to spectral lines as a frequency 
modulation of electronic transitions, which makes them directly observable 
when setting the laser to the correct detuning. The basic condition to distinguish 
the modulation is the 'sideband resolved regime', where the motional frequency 
is much higher than the natural decay of the excited state (co » T). The strength 
of laser coupling to sidebands is driven by the energy in the motional mode. In 
Lamb-Dicke regime, the significant coupling occurs for first sideband only, wi th 
higher order modes being strongly suppressed. 

To successfully measure the oscillatory motion, the vector defining the 
direction of vibration has to have a significant projection into the direction of 
the excitation beam. In our experimental configuration, the 729 nm beam is 
aligned at the angle 45° with respect to the trap axis. This ensures that both 
the axial and radial oscillations are projected to the plane of the laser and thus 
they may effectively couple with it. For the measurement presented here, we do 
not implement the sideband cooling routine, so the initial thermal distribution 
corresponds to the Doppler cooling limit. 

Fig. 3.10 displays the spectrum of the 4S 1 / 2 (m = -1 /2 ) -> 3 D l / 2 ( m = -1 /2) . 
Horizontal axis denotes the laser frequency detuning from the central carrier 
transition. The vertical points show the resulting probability of the electronic 
state to be the excited D-state. Each point represents a probability reconstructed 
from a hundred independent measurements. 

In Fig. 3.10, the carrier transition is represented with the strongest central 
line. First axial sidebands are displaced exactly 1.188 M H z apart from the 
carrier, for the set axial D C potential of 1200 V. The radial motional modes are 
represented by the highest peaks, at \6\ = 2.074 M H z from the carrier frequency. 
The small peaks detected closest to the carrier resonance show the beating of the 
axial and radial mode and the modulation frequency vxz = vx — vz = 0.868 M H z . 
We can see the background excitation at the sides to the carrier, which arises 
despite the attenuation of the excitation laser. Wi th the increasing intensity of 
the laser beam, the line-shapes tends towards the saturation. 

3.8 Sideband cooling 
Sideband cooling brings in the possibility to further reduce the energy of the 
motional mode, typically down to mean energy around n = 0.01 phonons. It 
is also commonly denoted as the 'ground-state' cooling, as the mean motional 
energy of the oscillation mode is already very close to the minimal possible. 
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Figure 3.10: Spectroscopy of motional modes measured at 4S 1 / 2 (m = —1/2) —>• 3D 1 / 2 (m = —1/2) 
transition. The upper figure shows the broad scan of the whole spectrum, including the second radial and axial modes. 
The lower figure shows the detail of the first order radial and axial sidebands, a) 1 s t is a radial red sideband, b) 1 s t axial 
red sideband, c) carrier transition, d) 1 s t blue axial sideband, and e) 1ST blue radial sideband. The 'mod' label denotes the 
sideband at the frequency of mutual modulation between axial and radial modes. 
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Figure 3.11: A scheme of the sideband cooling routine, a) shows the cooling cycle in 
the combined electronic-motional level scheme, where the first order axial red sideband 
is addressed, and b) depicts the loop of the angular momentum change between the 
Zeeman levels. 

Fig. 3.11 depicts the cyclic scheme of the sideband cooling routine. The part 
in b) shows the dynamics between the Zeeman sub-levels. This is a repetitive 
loop, starting in the state 4S 1 / 2 (m = —1/2), following to 3D 5 / 2 (m = 5/2) wi th 
angular momentum change Arrij = —2, thento4P 3 / 2 (m = —3/2) with Amj = +1, 
and finally down to the S 1 / 2 (m = —1/2) again wi th the same Arrij = +1. 
Importantly, due to the conservation of total Am.j and the selection rules on 
dipole and quadrupole transitions, only scattering down to 4S 1 / 2 (m = —1/2) 
level is allowed, preserving the closed cooling cycle. For this type of the cooling 
loop, the optical pumping pulse in the experimental sequence is set to a_. Similar 
cooling loop can be employed also for a+. 

The part a) in Fig. 3.11 shows the dynamics of the cooling cycle in motional 
ladder scheme. We address the red modulation sideband of 4S1/2(m = —1/2) -> 
3D 5 / 2 (m = —5/2) wi th 729 nm laser. A coherent transfer of electron into the 
excited state 3D 5 / 2 (m = —5/2) leads to the subtraction of the single energy 
quantum. The lifetime of the excited state is 1.1 s, so the population cannot 
effectively transfer back to the ground state by the spontaneous emission. The 
additional laser pulse at 854 nm is employed, which addresses the transition 
between 3D 5 / 2 (m = —5/2) -> 4P 3 / 2 (m = —3/2), from where the electron quickly 
decays back to the 4S 1 / 2 (m = 1/2) ground state at the wavelength 393 nm. 

The biggest limitation of the sideband cooling efficiency lies by the 
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off-resonant excitation of the neighboring motional transitions from the state |0), 
which imposes a limit on the minimal mean energy n achievable. In case that the 
sidebands are wel l resolved, that is T <SC co, the cooling efficiency increases and 
the ion is cooled to the ground state wi th high probability. 

Additional possible issue in the cooling routine lies in the finite probability of 
the interruption of the loop. One of the reasons originates in the small probability 
of a spontaneous decay from 4Pi/2(m = +3/2) level to a lower excited state 
3 D 3 / 2 ( m = +3/2), which is approximately 6 % [90]. From here, the electron 
can be reshuffled to the 4P1/2(m = +1/2) by 866 nm beam. Finally, from 
4P1/2(m = 1/2) level, the population may decay into both Zeeman sub-levels 
45_ 1 / 2 (m = —1/2) and 4 S + 1 / 2 ( m = +1/2). We employ a short a_ optical 
pumping pulse every 1 ms which on average corresponds to the high probability 
of populating the 4S' 1 / 2 (m = +1/2) state due to this process. The electron 
scatters back to the 4S' 1 / 2 (m = —1/2) level, and the cycle may continue on. The 
sideband cooling sequence is technically implemented as a pulse train, where 
the long pulses consisting of the simultaneous excitation wi th 729 nm and 854 
nm lasers are accompanied by short pulses of optical pumping to a_. Figure 3.6 
visualizes the experimental sequence. 

Typically, in our experimental configuration, the length of the sideband 
cooling sequence varies from 2 to 4 ms. The achievable occupation of the 
motional mode after the cooling approaches n = 0 .03±0.01 phonons. The power 
of 729 nm laser is increased to 9 mW, which in our experimental configuration 
corresponds to the carrier Rabi frequency of D,0 = 2TT X (69.7 ± 0.1) kHz. On 
the contrary, the 854 nm laser is attenuated to the lowest possible intensity 
which would still reliably implement the repump. The attenuation minimizes 
the induced A C Stark shift of the excited level caused by the 854 nm beam. In 
case of frequency shift being too large, the transition is effectively detuned out 
of the 729 nm resonance. Although this issue can be partially fixed by detuning 
of the 729 nm frequency, our experience guided us to the limit of very low 854 
nm beam intensity. The 854 nm laser frequency is optimized at the reshuffling of 
the 4 S L 1 / 2 -> 3D_! / 2 carrier transition, where the correct frequency detuning is 
set to reach the best de-population of exited state to the ground state. Typically, 
the power of 854 nm laser employed in our experiments is set in a range between 
only 5 to 10 fiW. 

3.9 Motional state estimation 
The motional state readout is based on measurements of the coherent Rabi 
oscillations, as described in Sec. 2.10. Particularly, the main relevant 
transition for the presented population distribution estimations is the blue axial 
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sideband. Additionally, we measure flopping at carrier transition too, in order 
to experimentally determine the value of Rabi frequency and consequently the 
Lamb-Dicke parameter. The measured carrier and blue sideband Rabi patterns 
are fitted wi th the Eq. 2.39 and 2.40. 

In the approximation of thermal states, which result from the Doppler and 
sideband cooling steps [91], the carrier Rabi oscillation is described with the 
Eq. 2.39. The measured carrier flops are presented in the Fig. 3.12. For the 
measurement of the ground state Rabi frequency from carrier Rabi oscillation, 
we calculate the coarse value of the Lamb-Dicke parameter ? j c a l c from the 
spectroscopically measured frequency of the axial motional mode wi th use of 
the Eq. 2.24 

„ c a l c = T c o s ( a ) J — , (3.1) 

where A = 729 nm, m = 40 • 1.66 • 1 0 - 2 7 kg is 4 0 C a + atomic mass and co a x = 
2TC X 1.188 M H z is the measured frequency of the axial mode. We also employ 
the excitation angle a = TT/4 given by the alignment of the 729 nm laser beam 
with respect to the trap axis., which signifies that the laser beam is aligned at 
the angle 45° wi th respect to the trap axis. For this motional frequency, this 
initial estimation of the Lamb-Dicke parameter value results as r)caic = 0.0629. 
Estimation of 7) by measurement is discussed in in Sec. 3.11. 

For the fit of the carrier oscillations depicted in Fig. 3.12, we thus assume 
the 7j c a l c as constant, the Rabi frequency D,0 as a fitting parameter, and the mean 
energy n as well, which is a term responsible for oscillation damping. From the 
least-squares fitting method of the Eq. 2.39 into the measured data, we finally 
obtain the Rabi frequency D,0 = {2TZ X 59) kHz and the mean energy n = 14.1 
phonons. 

Once the values of Rabi frequency D,0 and Lamb-Dicke parameter ? j c a l c are 
known, it is possible to directly obtain the phonon number distribution by 
measurement of the Rabi oscillations on the blue axial sideband. This is described 
with the Eq. 2.40 as 

P e

b s b ( r ) = i [ l - ZnPn c o s ( n n , n + 1 r ) e - ^ ] . 

For the specific cases, the distribution Pn may be substituted with coherent or 
thermal statistics. The Rabi frequency scales up with the Lamb-Dicke parameter 
as Cln+i = £̂ oWn + 1, and the incoherent decay is represented with element 
Yn for each number state, which has been found to scale approximately as 
Yn = Yo(x + I ) 0 ' 7 [ 9 2 ] ( s e e Sec. 3.14.3). According to the reference [66], the 
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200 

Figure 3.12: Carrier Rabi oscillation at 4S 1/ 2(m = —1/2) —>• 3D1/2(^a. — —1/2) transition 
for the axial mode being cooled close to the ground state motion. The solid line 
corresponds to the fit by the Eq. 2.39, with the fitting parameters D,0 — {2n X 59) kHz 
and n — 14.1 phonons. 

damping is explained by the combination of multiple factors - one of them is the 
interaction with the surrounding environment where the environmental degrees 
of freedom are considered entangled with the motional state. The second origin 
of damping can be attributed to the oscillation of some classical parameter, such 
as the intensity of the laser or magnetic field noise, which can be also present in 
systems which are perfectly isolated from the environment. 

The occupation of higher motional states causes the increase in the measured 
Rabi frequency. The ability to prepare these states wi th high fidelity provides a 
feasible tool to measure this frequency scaling with unprecedented high accuracy. 
The statistical distribution of motional state population Pn provides the crucial 
information about the quantum state, which can be directly used to evaluate the 
various measures of the non-classical and quantum non-Gaussian features. 

3.10 Engineering motional quantum states 
The aim of the motional state engineering in this Thesis is to control the phonon 
number distribution Pn in such way, that we are able to construct a state wi th 
desired statistical distribution of interest. We w i l l not consider coherent aspects 
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Figure 3.13: Blue sideband Rabi oscillation at 4S 1 / 2 (m = -1/2) -> 3D1/2(m = -1/2) 
transition between the motional states |g, 0) —>• \e, 1), where in the ket state notation 
|g), | e) stands for the spin part and states |0), |1) for the motional degree offreedom. The 
axial motion is cooled close to ground state, being represented with thermal distribution 
with measured mean energy n — 0.03 ± 0.01 where the uncertainty is calculated from 
projection noise, see Sec. 3.14.4. The damping factor y0 for Fock state |0) was estimated 
as YQ — 2TC X (8.9 ± 0.2) kHz. For this measurement, the noise properties are described 
exclusively with this damping factor y, unlike for the case of the damped carrier Rabi 
oscillation, where the decay is contributed to the mean energy n. 

of generated phonon superpositions and focus solely on the phonon number 
probabilities. The methods to achieve so lie either in setting of the length of 
Doppler and sideband cooling, leading to generation of classical states wi th 
thermal distributions, or by setting the arbitrary combination of carrier and 
first order motional sideband pulses. We w i l l focus here on basic methods of 
generation and population reconstruction for thermal and Fock states of motion, 
and their statistical mixtures resulting from a mechanical thermalization or 
deterministic nonlinear manipulations of thermal states. 

3.10.1 Thermal states 

A thermal state of motion can be simply achieved by laser cooling. Statistics of 
phonon populations Pn after cooling typically obeys the Bose-Einstein thermal 
distribution [19, 58, 91] written as 
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—Yl 

n (3.2) 
n (n + l ) n + 1 ' 

which is characterized with a single variable n denoted as mean energy. The 
amount of mean thermal phonon population n can be tuned by length of the 
sideband-cooling sequence in the state preparation step. In this w a y the energy 
may be tuned from a close-to ground state, up to the Doppler cooling limit. 
Particularly, for our experiment, the scope lies between n = 0.03 up to n « 8. 

The characterization of the thermal motional distribution shrinks to the 
aim of finding the mean energy n and confirmation of the thermal character 
of the observed photon probability distribution. There are various methods to 
achieve so, including comparison of couplings to red and blue sidebands [19, 
93], measuring of the strength of motional coupling wi th respect to the carrier 
transition [48], or measuring the spatial and coherence properties of emitted 
light. They include the implementation of thermometry based on the optical 
spatial resolution of ion wavepacket [94], or related optical interferometric 
schemes [86]. However, for thermal state energy which is close to the Doppler 
cooling limit and lower, and in tight trapping potentials corresponding to 
motional frequencies on the order of a few M H z , the most convenient way of 
characterization is a direct fit of Rabi oscillations wi th the Eq. 2.40. 

We discuss two different methods to fit the population distribution of thermal 
states. For the bare estimation of the mean phonon population on the state, 
which can be apriori expected to be in a thermal, i.e. Bose-Einstein phonon 
number distribution, it becomes sufficient to employ the predetermined relation 
between the relative weights of Pn and merely use the mean phonon number n as 
the fitting parameter. We thus insert the Bose-Einstein probability distribution 
in Eq. 3.2 directly to the fitting function. (Eq. 2.40). Fitting only the single 
parameter n largely simplifies the estimation. The main source of imperfections 
of this routine lies in the fact that the actual distribution is never perfectly 
thermal. The small deviation from the motional population could originate 
mainly from the assumption of idealized cooling dynamics, which, however, can 
be disturbed by the presence of different excitation scenarios and corresponding 
parametric nonlinearities in the system. [95]. In addition, small intensity 
fluctuations of the employed Doppler cooling laser, and detection projection 
noise unavoidable for the finite number of measurement repetitions, result in 
the deviations from the thermal distribution, which do not perfectly match the 
simplified model of thermal oscillator. 

For this purposes, we often prefer to employ the estimation of probability 
phonon distribution without any assumption about its statistics. We compare 
these two estimation methods when applied on same set of data, and present 
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the results in Fig. 3.14. There, the first plot with blue line depicts the results 
from direct probability estimation, on the data set resulting from 100 repetitions 
of the sequence in each point of the measured Rabi oscillation. The second 
method shows the statistical estimation based on the fit wi th a single fitting 
parameter h. The comparison shows that in the limit of many experimental 
repetitions, the direct fit of the motional populations returns the similar results as 
the method which utilizes only the mean energy of the thermal state as a single 
fitting parameter. The method of direct estimation of populations is preferred 
for measurements in the scope of this work, due to it's applicability beyond the 
set of thermal states only. 

For our experiment, the typical energy achieved after the optimization of 
mutual detuning of 397 nm and 866 nm lasers and their intensities, the estimated 
energy of a single ion after the Doppler cooling limit was corresponding to as 
n = 8 .0±1.0 phonons on axial mode. The corresponding measured Rabi flops are 
depicted in Fig. 3.15, including the estimated probability distribution, compared 
to the ideal Bose-Einstein statistics derived from the fitted n. 

3.10.2 Number states 

There are various methods which can be implemented for the number 
state generation, such as accumulation of motion from repetitive anti-Jaynes 
interaction [34, 96], rapid adiabatic passage [24], or implementation of reservoir 
engineering [97]. The most understood method corresponds to the iterative 
excitation of the Jaynes-Cummings (JC) and anti Jaynes-Cummins (anti-JC) 
interactions, implemented on blue and red axial sidebands. This method 
is reliable, convenient to implement, and previously provided experimental 
demonstrations of low number states with very high deterministic population 
of desired |n). 

However, the necessary condition to be fulfilled is the ability to minimize 
the initial population entropy which is typically approached by initialization 
of the ion in the motional ground state |g, 0). In our experiment, we could 
systematically reach the population of |g, 0) as P0 = 0.97 ± 0.02, which 
corresponds to mean number of phonons n = 0.03 ± 0.01. The corresponding 
Rabi oscillation for 1ST motional blue sideband at transition |g, 0) -> \e, 1) has 
estimated Rabi frequency D,0 = {2TZ X 71) kHz. 

For the transition |g, 0) -> \e, 1), we define the experimental 7T-pulse 
as a measured duration r, for which the maximal amount of population is 
transferred to the excited state. For the particular D,0, this has been estimated as 
7t0 = 112 LIS wi th the measured efficiency of population transfer between P0 to 
Pi being close to 0.99. 
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Figure 3.14: Comparison of two different fitting methods to measure the mean energy 
of axial motion in thermal state. Figures a) and b) show fit and the results by the method 
which employs direct reconstruction of the states' probabilities from least squares fit of 
the Eq. 2.40. The resulting distribution is then fitted with Eq. 3.2, returning the mean 
energy n — 1.5±0.2, with the error resulting from five independent measurement. Black 
columns in b) show the ideal thermal distribution modeled for corresponding n — 1.5. 
The fidelity between this Bose-Einstein probability distribution with the same n and 
the distribution estimated from a full fit of Pn is 96.5 % [47]. The upper limit on the 
probability sum in Eq. 2.40 was set to n m a x = 7, above which the remaining population 
of the thermal state is expected to be less than 1 %. Figures c) and d) show the fit by the 
thermal distribution, when n is taken as a single parameter, resulting to the mean energy 
n — 1.67. Both methods return the result which are equivalent within the estimated error 
bar. 

The experimental sequence for generation of the previously observed low 
number states |g, 1) and |g, 2) goes as following. We experimentally determine 
the exact length of the 7T-pulse by scanning the pulse duration in order to reach 
the most effective excitation to the \e, 1) level. Next, the 7T-pulse on carrier 
transition transfers the population back to the ground state of two level system, 
\e, 1) -> |g, 1). In the last step, we apply a 854 nm quenching pulse, which serves 
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Figure 3.15: a) Blue sideband transition 4S l / 2 (m = -1/2) -> 3D l / 2 (m = -1/2) at 
axial motional mode measured at the limit of Doppler cooling, which is the initial state 
before application of the sideband cooling step. The state is prepared by application 
of 1 ms of Doppler cooling sequence step (see Fig. 3.6). The mean phonon number is 
estimated n — 8.0 ± 1.0. Blue trace presents the measured data, black is the fit from 
Eq. 2.40 with measured n. b) shows the corresponding measured population (in blue), 
and theoretically estimated one (black), for the measured curves displayed in a). Fidelity 
of the populations from the full pn fit with respect to theoretical was estimated as 78.5 
%. The red error bars correspond to one standard deviation, which is evaluated for each 
population with use of the Monte-Carlo simulation method (see Sec. 3.14.4), assuming 
the projection noise from 100 population measurements on the two-level system. The 
resulting uncertainty of each population varies between ±2.2 % to ±2.9 %, with the 
average value ±2.4 %. Comparison of measured data with these uncertainties shows 
that most of the values fall into to the interval defined by single standard deviation of 
the ideal value for corresponding thermal state, which implies that the Monte-Carlo 
estimation proves itself as a good method to estimate the uncertainty in case that it is 
not possible or convenient to perform repetitive measurements. 

to eliminate the residual population of the state \e, 1), which is typically much 
below 5 %. We also apply a short optical pumping pulse at <7_ at 397 nm to 
suppress the accumulation of the population in the 4S 1 / 2 (m = +1/2) level, which 
can arise from the improbable 4P 3 / 2 (m = +3/2) -> 3D 3 / 2 (m = +3/2) decay. 

In order to generate higher order Fock states, one may choose the method 
which extrapolates the sequence for the generation of |2), that is, iterative 
excitation of blue and red sidebands with pulse lengths corresponding to n pulses. 
In order to end up in the ground state of the electronic transition, the last pulse 
for the odd number state is the carrier 7t pulse, or a red sideband 7t pulse for even 
Fock states, respectively. 

In Fig. 3.16, we plot the Rabi oscillations for generated Fock states |1) and 
12). The frequency of the oscillation increases by the factor + which leads 
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Figure 3.16: Fock states of motion at axial mode up to order |2), generated by the 
method of alternate application of blue and red sideband n pulses. The ground state Rabi 
frequency for this measurement was measured for ground state as D,0 — (2n X 71)kHz. 
For these values the populations of the measured number states was P± — 0.96 ± 0.02 
for state |1) and P2 — 0.98 ± 0.02 for state |2). The increase of motional number for the 
measured oscillations is manifested by the higher Rabi flopping frequency. 

to shortening of the corresponding oscillation period. In order to maximize 
the amount of population transferred between the \g, n) -> \e, n + 1) states (or 
between \e, n) -> \g, n + 1) states), the duration of the 7t pulse is optimized 
experimentally by scanning the pulse duration. This is important due to the time 
offset of the RF pulse generated by the programmable pulse sequencer, which 
in our case slightly varies depending on the complexity of the pulse sequence. 
Also, the oscillation damping and loss of contrast slightly shift the position of the 
pulse maximum, he experimentally measured TC pulses differ from theoretically 
estimated lengths by ± 5 \xs. 

3.11 Estimation of the Lamb-Dicke parameter 
For initial estimation of the carrier Rabi frequency and damping it is possible to 
employ the coarse value of the Lamb-Dicke parameter r], which was calculated 
from the spectroscopically measured frequency of the given motional mode 
with use of the Eq. 2.24. Once the motional ground state cooling is achieved 
in the experiment, 7) can be also precisely experimentally estimated from the 
comparison of the Rabi frequencies on the first blue motional sideband and 
on the carrier transition. In case that the mean energy n is zero, the carrier 
Rabi oscillations given by the Eq. 2.38 should become independent on motional 
coupling, and thus they should not be affected by the Lamb-Dicke parameter 
7]. The measurement of the carrier Rabi oscillation then provides the Rabi 
frequency D , 0 . The oscillations on first blue motional sideband then allow for a 
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direct estimation of Lamb-Dicke parameter without any prior knowledge of the 
trapping parameters, like motional frequency or corresponding laser excitation 
parameters. Note that by definition, the estimated Lamb-Dicke parameter is 
always related exclusively to the given excitation laser frequency and direction 
with respect to the particular normal mode of ion's motion. 

The measurements of carrier and blue sideband Rabi oscillations after ground 
state cooling are shown in Fig. 3.17. The measured oscillation pattern always 
appears damped even for ground-state cooled motion, with decay caused by the 
residual population in radial modes, which were not ground-state cooled in this 
sequence. Additionally, the damping can be typically caused by the intensity 
fluctuations of the employed laser beam, however, after implementation of the 
precise sample and hold stabilization of the 729 nm laser intensity at the input 
to the vacuum chamber, we did not observe any significant contribution of this 
kind. 

Since we have to assume the damping in the fit, we fit the carrier oscillations 
by the Eq. 2.39, where we assume the preliminary value of n] = 0.0629 together 
with the mean energy n taken as a variable, resulting into n = 14.1 ± 0 . 2 phonons. 

In the second step, we apply a sideband cooling method and reduce the axial 
motion close to the ground state. The corresponding Rabi oscillation on the 
blue sideband is then described wi th use of the formula 2.40, wi th r] and y now 
serving as fitting variables. We again employ five independent measurement 
runs, returning the final value of r]72g = 0.0611 ± 0.0002, and the damping 
Xo = 27i X (8.9 ± 0.2) kHz. 

3.12 Motional heating on axial mode 
Motional heating is a process which is manifested as a gradual increase of the 
energy in the motional mode over the time of the measurement. The main 
origin lies in the fluctuation of electric fields inside the trap, which couple to 
the motional charge [90, 98]. Alternatively, the ion may be heated by the photon 
scattering on the dipole transition. In the first case, the ion heats up to the limit 
of energy of surrounding environment, in the latter, the ion w i l l over time reach 
the energy of the limit for Doppler cooling. 

To measure the heating rate, the cooling is set close to the ground state 
of motion. We insert the time delay interval between the state preparation 
and state detection step into the experimental sequence, which is between 10 
ms and 250 ms (see Fig. 3.6). While varying the duration of the time gap, 
we are able to determine the amount of thermal heating acquired by the ion 
during the corresponding time period. The resulting energy is obtained from a 
statistical distribution, which is again extracted from a fit of the blue sideband 
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Figure 3.17: Measured Rabi oscillations at a) carrier and b) blue sideband to determine 
the Lamb-Dicke parameter. For each estimation, in total five similar measurements 
under the same experimental conditions were performed. From a), we have obtained 
Q0 = In X (58.9 ± 0.1) kHz, and n = 14.1 ± 0.2, from the fit of the BSB Rabi 
oscillations presented in b) we retrieve the experimentally determined value of 7]729 — 
0.0611 ± 0.0002 and y = 2n X (8.9 ± 0.2) kHz. 

Rabi oscillation. 
Fig. 3.18 shows the Rabi oscillations of initial close-to ground state, and 

thermal state after 250 jxs of heating, which represents the maximal waiting 
time set in the heating rate measurement. The similar measurements have been 
made for time differences ranging from 50 LIS to 250 LIS wi th 50 jxs steps. The 
amount of heating acquired by atom for each time interval is plotted in Fig. 
3.19. From a linear dependence of the axial heating rate, we deduce the resulting 
change of energy as A n = 2.7 ± 0.2. The measured amount of heating is further 
used to characterize the source of imperfections for generated complex motional 
mixtures, and their comparison with theoretical simulations. 

3.13 Heating by random photon recoils 
Significant, but to a large extent controllable source of motional heating in 
presented experiments originates from the interaction with excitation lasers in 
the sideband unresolved regime. This happens particularly in the processes of 
reshuffling of the excited state 4 i ^ / 2 or in the optical pumping. The certain 
amount of population in prepared motional quantum state is always lost in credit 
of the neighboring number states wi th the probability proportional to the square 
of the Lamb-Dicke parameter rj1. 

We measure the recoil heating experimentally, as depicted in Fig. 3.20. The 
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Figure 3.18: Axial heating rate measurement. Upper part of the figure shows the initial 
thermal state with mean energy n — 0.09 ± 0.01 phonons with corresponding statistics, 
b) is a developed state after 250 ms waiting time, with estimated n — 0.72 ± 0.05. 
Blue columns show reconstructed populations, black columns are thermal distributions 
corresponding to the measured mean energy n. 

experiment starts in ground state of motion of axial mode and the two-level 
system. We apply the carrier 7r-pulse to transfer the maximal amount of 
population to the excited state (|g, 0) -> \e, 0)), where we apply re-shuffling at 
854 nm. Before the detection step, we also add the 5 LIS optical pumping pulse. 
At this point, certain amount of population proportional to rj1 transfers into 
the neighboring energy level |g, 1). We implement five sequential repetitions of 
this 'carrier' -> 'reshuffling' -> 'optical pumping' pulse sequence, and after each 
iteration, we investigate the change of the population distribution with respect 
to the previous iteration. In the limit of a single experimental reshuffling cycle, 
the effective Lamb-Dicke parameter rj1 can be estimated, which correspond to 

V2 = APi/Po, (3-3) 

with AP1 = Piut — P{n denoting the population acquired into the state Pi during 
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Figure 3.19: Axial heating rate measurement. The amount of acquired mean thermal 
energy A n t ^ is showed as a function of delay set into the experimental sequence. From 
a linear fit, we estimate the axial heating rate as An = 2.7 ± 0.2. 

the heating, which is normalized on the population in the lowest level, initially 
being close to the ground state. After five heating steps, we estimate the average 
rj1 = 0.029 ± 0.002, where the uncertainty corresponds to a single standard 
deviation, meaning that approximately 2.9 % of P0 is transferred due to heating. 
As depicted in Fig. 3.20 c), the initial state P0 = 0.92 is reduced after two heating 
cycles to P0 = 0.85 , and after six steps the population drops to P0 = 0.75. 
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Figure 3.20: Illustration of the estimation of the heating rate due to photon recoils in the 
processes of optical re-shuffling (a) and optical pumping (b). The excitation of the two-
level system with 729 nm beam (1.) and 854 nm (2.) light is followed by the spontaneous 
emission of a 393 nm phonon back to the 4Si/2> which may cause the addition of the 
motional quantum. Similarly, this can happen also after excitation of a_ transition (3.). 
Finally, the state is probed and measured with 729 beam tuned to the first blue sideband 
(4.). c) shows the results of the measurement, for initial state with k = 0 iterations, then 
for k = 2 and k = 6 iterations. The measurement results into the value r}2 — 0.029 ±0.002. 

3.14 Approximations for reconstruction of 
motional population 

The following considerations are be related to the Rabi oscillations on the first 
blue motional sideband using the Eq. 2.40. 

Pe(j) = \[1 - Z r a X ^ c o s ( n n , n + 1 r ) e x p ( - 7 n r ) ] . 

We discuss the necessary conditions to be considered in the fitting routine, 
in order to return estimated populations which would be closest to the 
experimentally implemented state. We investigate the effect of constraints 
on fitting parameters, particularly the truncation of the probability sum, 
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then normalization of the resulting statistics, measuring scaling of damping 
coefficient with motional population, and calculation of error estimate wi th the 
Monte-Carlo methods. 

3.14.1 Truncation of motional state distribution 

The Rabi oscillation on the blue motional sideband described by the Eq. 2.40 
consists of sum over the statistical distribution Yjn=o Pn- Practically, the sum has 
to be truncated at certain maximal population denoted as n m a x . The selection of 
the sum maximum may impact the final distribution of probability. In particular, 
for the states wi th low motional energy and populations concentrated in several 
lowest n, the inclusion of very high n typically increases the noise and probability 
of population of high n, mainly due to their high oscillation frequencies which 
become more similar to the sampling rate of the oscillations. On the other 
hand, truncation at too low n can obviously deform the observed statistics by 
impossibility to resemble the population of higher phonon numbers. 

We run a simulation of the population fitting on states with various thermal 
energies. In the first step, we generate the Rabi oscillation pattern for thermal 
state wi th mean n the and the sum maximum n m a x -> oo. In the second step, we 
fit that Rabi oscillation wi th the Eq. 2.40 where the truncation parameter n m a x is 
set as a variable. Finally, in the third step, we fit the resulting distribution wi th 
the Eq. 3.2 describing a thermal motional state and project the resulting n f i t as a 
function of the original set n. The Fig. 3.21 shows the deviation from the optimal 
fit result for various n m a x and n, which is very high for the low values of n m a x 

and gradually decreasing wi th increasing n m a x . 
The final value of n m a x for the fit is then considered as a value, whose 

probability does not exceed i ^ " a x = 0.01 for a thermal state with the same 
energy as for the state under investigation. The whole process for the unknown 
motional state thus goes as following. A t first, we set the n m a x much higher than 
expected for measured state. The population distribution is fitted with the Eq. 
2.40. We calculate the mean motional energy as n = ^ nPn. Then, we simulate 
the Rabi oscillation with motional thermal distribution Pn defined with the Eq. 
3.2, fit it again with the Eq. 2.40 and select such a value n m a x where P™ax < 0.01. 
In Fig. 3.24, the selected values are marked with black arrows. 

As an example displayed in Fig. 3.24, we investigate the initial thermal state 
with mean energy of about n = 1.5, wi th the theoretical population p 7 = 0.011 
and p 8 = 0.007. In this case, we set the n m a x = 7, since it is the last element 
obtaining population higher than 1 %. Additional example is thermal state wi th 
energy close to the Doppler limit, which is approximately n = 7. Now, the sum 
is truncated at n m a x = 18, with p 1 8 = 0.011, where p 1 9 = 0.01. Similarly, this 
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Figure 3.21: Illustration of the effect of sum truncation for fits of ideal thermal states. 
The y axis shows the mean energies resulting from fits of Rabi oscillations for ideal 
thermal states n — 1.5, 3, 5, and 7, which are plotted as a function of set maximum of the 
probability sum 2 „ _ Q Pn- The resulting trends show that setting of a low maximum 
leads to under-estimation of the resulting energy. The black arrows denote the highest 
number states, which contain more than 1 % of the total population. These number states 
are thus used to set n m a x in the fitting equation. 

is applied also on states wi th n = 3 and n = 5 where n m a x = 11 or n m a x = 15, 
respectively. 

3.14.2 Population normalization and fitting constraints 

Since the Yjn Pn describes the actual probabilities of number state occupation, we 
expect the results to be positive and the sum of the probabilities to be normalized 
to 1. Generally, the completely unconstrained fit would be the most numerically 
accurate, but the outputs w i l l not comply wi th the physical constraints [99]. We 
test different settings of fitting constraints to the Eq. 2.40 and in order to find the 
fitting routine which returns most reliable outcomes. 

We illustrate the effect of the reconstruction precision on the measurement 
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of the thermal motional state with mean energy n = 3.0 ± 0.4 phonons (see 
Fig. 3.22 a). The data were taken wi th a 100 repetitions per the measurement 
point, and the time difference between data points is 10 LIS. The maximum of the 
probability sum is set as n m a x = 13, following the truncation condition described 
in previous Sec. 3.14.1. We test four settings of constraints on the least-squares 
method, as described in the Table 3.2. For each of the routines, we investigate 
the probability sum, and also the mean absolute error (MAE), defined as 

Z | p m e a s p t h I 
n \rn rn . 

MAE = — , (3.4) 
n 

which tests the fit accuracy by returning average value of residuals between 
the measured population and the idealized thermal state distribution, where 
the lowest value shows the best numerical accuracy. The results of the fitting 
routines and their comparison with the idealized state are depicted in Fig. 3.22 b). 

Method constraints M A E 
1 none 0.987 0.0269 
2 0 < pn < 1 1.005 0.01805 
3 Z P n = 1 1 0.01802 
4 0 < Pn < 1, £ Pn = 1 1 0.01792 

Table 3.2: Table of tested settings of fitting constraints. The second column denotes the 
constraints applied directly to the fit. 1 s t setting represents the unconstrained direct fit, 
2 n d the condition on the probability positiveness, 3 r d the constraint on the probability 
sum. The final 4 t h most accurate method combines both steps from 2 and 3, where only 
first is applied as a direct least-squares constraint, and the second is achieved in weighted 
normalization after the fit. M A E stands for the mean absolute error from Eq. 3.4, where 
lowest value shows fit with the best physical validity. 

A t first, we assume a simple unconstrained model. In the second approach, 
we make a simple general assumption that the probability should be greater or 
equal to 0 and the single probability should be smaller or equal to 1. In the third 
method, we force in the condition that the sum of all probabilities should be equal 
to 1. Finally, in fourth approach, we take the conditions similar to the Method 2 
and normalize the sum of the resulting probabilities to 1. 

From the comparison depicted in Fig. 3.22 b), we see that all the methods 
perform well for populations having at least 3 % probability. Beyond that, the 
unconstrained model often returns the nonphysical outputs corresponding to 
negative probabilities. Even though the method gives the best possible values 
for the least-squares fit, the results have the lowest correspondence wi th the 
ideal distribution, as can be seen from it's M A E value being higher than for 
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Figure 3.22: Test of the constraints for the fitting method, a) shows the Rabi oscillation 
corresponding to thermal state with measured n — 3.0 ± 0.4 phonons on the first 
blue axial sideband, b) shows the fits by Eq. 2.40 with various settings of fitting 
constraints, where the black points show the expected ideal populations. The properties 
of the methods are written in Tab. 3.2. For our experiment, we use the 4 t h method, 
which constraints each probability to be 0 < pn < 1, and then utilizes the weighted 
normalization of resulting probabilities to sum to 1. 
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other employed routines. From here, we infer that at least some constraints on 
probability distribution are needed. 

The 3 r d fitting method assuming the constraint on probability sum performs 
well in this particular case, there is however a probability of returning the 
negative state populations as well . We have empirically experienced around 
10 % of random failure while estimating arbitrary motional state. This also gives 
rise to additional problems in the Monte-Carlo uncertainty estimation routine 
(described in 3.14.4), leading to artificial increase of the error bar due to the failed 
estimations. This can be overcome by implementation of additional condition 
for positivity of the parameters, which however further decreases the numerical 
accuracy. 

Finally, it appears that the optimal solution is to use the 4 t h method. The 
residual statistical population is redistributed to the motional states wi th use of 
the weighted average, meaning that the highly populated levels w i l l be more 
affected. The evaluated M A E is the least of all four implementation, while 
at the same time the physical constraints on the probability positivity and 
normalization are conserved. 

3.14.3 Damping in Rabi oscillation 

A l l Rabi oscillation measurements in our experimental setup are subjected to 
decay, where in the limit of long probing times the oscillatory pattern converges 
to incoherent mixture of \S) and \D) states. In the employed fitting model 
corresponding to the Eq 2.40, we accounted for this effect wi th use of the 
exponential decay parameter yn. In the measured Rabi oscillations for various 
phonon number populations, the damping rate is expected to scale according to 
the power law [19, 48, 66] 

Yn = Yo(n + l)x, (3.5) 

with y0 governing the ground state decay and x the damping factor. The decay 
enhancement characterized wi th the factor x depends partially on the spectral 
properties of noise, which can stem from both laser frequency or intensity 
fluctuations, or from the noise in the magnetic field. In addition, motional 
frequency fluctuations or fluctuations of the ion or laser beam position can 
contribute [66, 100-102]. In the first order approximation, the laser intensity 
fluctuations are expected to play most significant role, which, theoretically, 
should correspond to x=0.7 [103]. 

We perform a measurement to experimentally determine the damping 
factor on the generated states approaching close to ideal Fock states (see 3.16). 
Populations of the prepared states are close to 100 %, we may therefore assume 
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Figure 3.23: Estimation of the accuracy of yn scaling according to the Eq. 3.5 for various 
values of scaling factor x. Black line shows directly fitted values of yn from the Eq. 2.40. 
Green, blue and red lines show the values where y0 — 0.35 kHz and other values are 
calculated from the Eq. 3.5 for various factors x. 

that damping w i l l closely match the behavior described with Eq. 3.5. We obtain 
the corresponding factors from measured Rabi oscillations without any prior 
assumption on value of scaling parameter x. Finally, we take the initial value y0 

as a reference, and evaluate with use of various scaling factors. The results 
are shown in Fig. 3.23. The initial damping factor corresponding to ground state 
was here estimated as y0 = (0.35 ± 0 . 0 2 ) kHz, where the uncertainty is estimated 
from five independent measurements. 

Fig. 3.23 shows the measured and theoretically predicted damping factors 
yn, which are bound to the order of generated Fock state. The black line shows 
the measured values of which are evaluated from the Eq. 3.5 without any 
prior assumption on the scaling with factor x. In the other traces, we calculated 
the particular value of yn from the Eq. 3.5 where y0 is taken measured as the 
ground state damping and n depicts the number state order. We found out that 
the measured trend of the dependence reliably matches wi th the prediction for 
x = 0.7, which is in agreement wi th former observations and predictions [66]. 

3.14.4 Estimation of error in probability distributions 

One of the crucial intrinsic effects in the estimation of the phonon number 
probability originates from the projection on one of two electronic levels. 
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This can be efficiently minimized by increasing the number of experimental 
repetitions, but it may never be suppressed completely The uncertainty of 
projection then propagates through the whole fitting routine and additional 
data processing, up to the final probabilities and also to evaluated measures. 
For the short measurements, where long term temperature drifts contribute 
negligibly, the majority of the experimental uncertainty can be mapped back 
to the projection noise. Wi th use of Monte-Carlo method, it is thus possible to 
determine these unknown uncertainties from the measured projection noise. 

A projection noise is mathematically described with a binomial distribution, 
where N projections of the same experiment may result in two different 
outcomes. We typically probe the corresponding two-level system wi th N = 100 
repetitions of each experiment. The error of each projection of a two-level system 
to it's eigenstate is calculated as 

where Pe denotes a probability of two-level projection. 
The Monte-Carlo routine is then employed as following. After the Rabi 

oscillation measurement, we simulate additional 100 pseudo-random realizations 
of corresponding probed Rabi oscillation, where each measurement sample is 
randomly chosen with the Gaussian probability distribution, where the standard 
deviation of such a distribution is set to be equal to the error from the projection 
noise. For each of these virtual datasets, we estimate the population distribution, 
and from these, we can evaluate the standard deviation of each probability from 
the simulations, while the mean value is always taken from the measurement. 

Typically, the obtained standard average error of estimated motional 
populations is usually ±0.02 of the estimated population. We note that, this 
value does not represent the actual full measurement uncertainty, but it is the 
lower limit on the uncertainty given by the fundamental projection measurement. 
We thus employ this routine for measurements, where we did not acquire the 
multiple data sets for a given experimental setting, otherwise the error is always 
estimated statistically from several independent measurements. 

(3.6) 
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Figure 3.24: Illustration of Monte-Carlo routine for error estimation. In the first step, 
shown in a), we calculate the projection noise from 100 projection measurements of each 
point in the Rabi oscillation. The error bars depict the corresponding single standard 
deviation. Second, we generate the 100 random realizations of Rabi oscillations, where 
each point is varied with Gaussian probability distribution, whose standard deviation 
is set to be equal to measured projection noise. The scale of the generated values 
is depicted by blue in b). Finally, each of these virtual realizations is fitted and the 
corresponding phonon number distribution contributes to the final statistics. In c), we 
plot the resulting population distribution including population uncertainties, which are 
evaluated as standard deviations of the simulated distributions of Pn. 



4. M e c h a n i c a l Fock states o f s ingle 
t r apped ion 

This chapter covers results published in [35], related to the generation 
and characterization of number states. The discussion focuses mainly on 
experimental implementation, theoretical background to the work presented in 
this chapter can be found in references [21, 23, 104]. 

The process of number state generation from ground state of motion by 
repetitive addressing of the ladder-scheme, described in Sec. 3.10.2, represents 
a conceptually simplest method. However, the experimental feasibility of this 
method requires in principle very high degree of control of the mechanical 
quantum system. It requires a deep Lamb-Dicke regime of laser-ion interaction 
and a good ground state cooling for minimization of initial state entropy. The 
sequence time necessary to prepare higher number states is longer, which results 
to bigger affection of these states by the spontaneous heating processes in a 
room-temperature environments [111]. 

It is experimentally very demanding to create a desired motional number 
state which would have nearly ideal population probability of the particular 
energy level. However, even the state wi th small amount of imperfections can be 
employed in certain applications of interest. In this chapter we w i l l attempt to 
answer the crucial question - what is the amount of thermal noise, which can be 
added to the system, so that the non-classical and quantum non-Gaussian (QNG) 
properties are preserved, necessary for the enhanced sensing applications [24] 
or quantum error correction codes [112]. 

It appears that the criteria of quantum non-Gaussianity provide a convenient 
tool to characterize the number states which undergo the noisy processes 
(see Sec. 2.11). Each criteria in the genuine quantum non-Guassian (GQNG) 
hierarchy [23] establishes a threshold value in number state basis, also specifying 
the amount of noise which is sufficient for destroying the visibility of the Q N G 
properties. We also evaluate the quantum enhanced force estimation capability 
for the realized Q N G states of single ion's mechanics. 
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4.1 Realization of the motional states 
approaching Fock states 

The motional quantum states are generated by consecutive optimized 
applications of the axial-mode blue and red sideband on the transition 
4Si / 2 -> 3 D 5 / 2 . The resulting statistical distributions of phonon populations are 
detected by probing the Rabi oscillation on this spectral line, whose frequency is 
spectroscopically measured at the detuning v = 1.188 M H z from the carrier 
transition. The population of the initial ground state |g, 0) was measured as 
98 %, corresponding to estimated mean energy n = 0.02 ± 0.02. The lengths 
of the TC pulses for red and blue sideband interactions in ladder scheme are tuned 
experimentally, in order to achieve the maximal possible pulse contrast. The 
carrier Rabi frequency O 0 = 2TZ X (69.7 ± 0.1) kHz was measured from Rabi 
oscillations at |g, 0) -> \e, 1) transition. Additional parameters used for the state 
reconstruction are Lamb-Dicke parameter r] = 0.0611 ± 0.0002 and the ground 
state damping factor y0 = 2n X (8.9 ± 0.2) kHz from the Eq. 3.5 found by fit of 
the measured Rabi flops on the motional ground state with P0 = 0.98. 

The population distributions are shown in Fig. 4.2. The measured data are 
compared with the theoretical prediction, which takes into account the finite 
heating rate influencing the state during the time of the sequence, measured 
as n = 2.7 ± 0.2 phonons/s. In simulation, we further do not consider any 
dephasing and the efficiency of the population transfer by the employed TC pulses, 
so the efficiency of the operation is for simulation set to 1. From 4.2, we see that 
the measured data agree with prediction, which takes into account merely the 
presence of the heating rate. 

The non-Gaussian properties of the noisy states are evaluated with the 
criteria forming a hierarchy [23], where the specified criteria for the given 
number state |n) allow to exclude any state which would correspond to an 
arbitrary superposition of displaced and squeezed number states \ m) for any m<n. 
The threshold probability for current number state under probe is calculated as 
[35] 

n-l 
pn = max \(n\D(a)S(r) £ cm\m)\2, (4.1) 

oc,r,CQ,...,cm m=0 

Details of theoretical derivation tailored originally for the photonic 
implementation, where the loss becomes the main state deteriorating mechanism, 
can be found in [23]. However, for mechanical systems, such as the employed 
trapped ion oscillator, thermalization due to the unavoidable direct coupling to 
the thermal environment has been found much more dominant. 
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Figure 4.1: Measured Rabi oscillations on a blue motional sideband ofr motional Fock 
states up to the order 110). The increasing motional population is manifested by higher 
oscillation frequency, scaling up as = n + 1. 
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Figure 4.2: Measured and simulated populations of the Fock states. The resulting 
measured number state probabilities are P 0 = 0.97,7^ = 0.97, P2 — 0.97, P5 — 0.95, P 8 = 
0.95, P 1 0 = 0.91, where for each of these values, the error estimate was obtained with 
use of the Monte-Carlo routine as ±0.02 (see Sec. 3.14.4). The corresponding measured 
Rabi oscillations are shown in Fig. 4.1. A theoretical simulation, represented with black 
bars, assumes solely the state's imperfection caused heating effect during preparation 
pulse sequence, measured as An = 2.7 ± 0.2 phonons/s. 

4.2 Heating dynamics on ground state of 
motion 

The main source of gradual diffusion of Fock state population towards the 
neighboring oscillator states comes from the natural heating processes in the 
trap. The heating rate in our trap has been measured as approximately 2.7 
phonons/s as presented in Sec. 3.12. This heating rate is sufficiently small to 
allow the realization of motional experiments on long scales of tens of ms, but 
this long time scale also makes it inconvenient for controllable characterization 
of robustness and thermalization depth of generated phononic Q N G states. 

The heating mechanism can be controllably implemented by photon 
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scattering. In our implementation, this is performed simply by adding a very 
short pulse at 397 nm transition before the state readout step. In the limit of 
long laser excitation-thermalization times, the population converges towards 
thermal distribution with energy corresponding to Doppler cooling limit. The 
interaction wi th the laser can be viewed as engineering of the thermal reservoir at 
the temperature parameterized by the interaction setting. Depending on the 397 
nm laser detuning, it can correspond to temperature scale from about the Doppler 
cooling limit corresponding to cooling on the 4S1/2 —> 4P1/2 transition, or much 
higher temperature reservoirs for interaction wi th a resonant or blue-detuned 
laser. 

We characterize this heating by implementing the calibration measurement 
on initial ground state of motion, in order to determine amount of energy added 
to the system as a function of length of the thermalization pulse. Formally, we 
can define the heating process as a map Mn affecting the motional distribution 
Pi in a way 

For small energies n, the Eq. 4.2 can be further simplified as 

Mn(Pi) ~ Pi + n2[apa* + a?pa - (a?a + l/2)pt - Piia^a + 1/2), (4.3) 

where terms proportional to n 4 are neglected. The map Mn in this approximation 
generally represents a change of the motional state caused by scattering with the 
recoil probability parametrized by n. 

A thermalization process described with equations 4.2 and 4.3 is valid only 
in the limit of low initial energies. For a state close to the Doppler cooling limit, 
one has to take into account the different heating dynamics wi th a steady state 
corresponding to the finite temperature of the ion on the level of few mK. The 
dynamics to reach this energy limit w i l l be however dependent on the initial 
thermal state. 

Fig 4.3 shows the initial ground state with measured n = 0.02 ± 0.02 
phonons, undergoing thermalization with different lengths of the 397 pulse, 
where the longest time is equal to 12.8 LIS. Each measured Rabi oscillation data 
are fitted to estimate the Pn (blue bars), and the corresponding estimated mean 
phonon number is used for evaluation of the idealized Bose-Einstein distribution 
expectable for the thermal motional state. The blue columns in Fig. 4.3 represent 
the measured data, and the black bars correspond to theoretical statistical 
distribution. The error estimates are evaluated by Monte-Carlo simulation 
method (described in Sec. 3.14.4). Direct quantitative comparison of measured 

(4.2) 
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population distributions with ideal thermal statistics corresponding to the same 
mean energies clearly confirms the expectation that the consecutive application 
of laser induced random photon recoils results in thermalization of the single ion 
mechanical oscillator. 

We construct a function describing the amount of thermal energy added to 
the system by a 397 nm pulse of the rate of laser induced thermalization. Fig. 4.4 
depicts in red points the observed thermal energy as a function of heating pulse 
duration r. The black dashed line shows the linear trend fitted to the data. For 
experiments presented further, we use the trend function to estimate the amount 
of energy added to the system, rather than taking the measured values directly. 
The linear approximation is expected to hold in case that the added energy is 
much lower than Doppler cooling limit. For higher values, we would expect 
the trend to continuously saturate towards this limiting value. The available 
data presented in Fig. 4.4 justify the use of linearized approach for the range of 
heating used in our experiments. The measured heating rate, when assuming the 
linear unsaturated part, was estimated to be A n = (115 ± 2) X 10 3 phonons/s. 

4.3 Heating dynamics for number states 
In this section, we describe the measurement of heating dynamics for number 
states |1), 12), with use of the heating process as described in previous Sec. 4.2. 
Analogic experiments were also performed on number states |5), |8), 110). 

For the short time scales of the experimental sequence, relevant for 
the generation of target Fock states, the heating results in the error given 
predominantly by values of (Pn,Pn_i,Pn+i). The Q N G robustness may be thus 
conveniently characterized by a simple comparison of the amount of population 
Pn wi th respect to the populations contained in neighboring states 
with the Q N G threshold probability defined as (Pn,Pn-\ + Pn+\)- m c a s e that the 
population of state undergoing heating exceeds these values, it can be shown 
that the state may be described as Gaussian [23]. The depth of non-Gaussianity 
can be then understood as an amount of thermal noise, which can be added to 
the system and at the same time, the state population is higher threshold. 

Figures 4.5 and 4.6 show the measured heating dynamics of the Fock 
states |1) and |2), respectively, illustrating the gradual thermal diffusion of 
the number state population towards the neighboring oscillator levels. For 
the measurement, we set the intensity of the Doppler heating pulse as in the 
calibration measurement, and we take the calculated heating into the simulation 
of the evolution probability. Both measured states show the slight asymmetry of 
diffusion favoring the higher motional states for short thermalization times. This 
is caused by the asymmetry in relative amplitudes for annihilation and creation 
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operations in Eq. 4.3. In Fig. 4.5, we observe the development of the Fock state 
|1) to nearly ideal thermal population distribution (n = 2.6), however, it is still 
far from reaching the limiting Doppler temperature. For the limiting case of 
infinite heating time, we except the convergence to the ideal thermal state wi th 
a temperature corresponding to the Doppler cooling limit. 

The same measurement results are also plotted in Fig. 4.7 in coordinates 
defined with (Pn,Pn-\ + Pn+\)- Here, the point located in the upper left corner 
denotes the initial state, and the heating proceeds towards the bottom right 
corner. The green ticks and red crosses denote the area, where the corresponding 
quantum states fulfill the G Q N G condition, or reject it, respectively. While 
probing the state |1), the G Q N G threshold is exceeded up to the thermalization 
pulse of the length r = 2.1 LIS, which adds the energy equal to n = 0.31 phonons. 
For the state |2), the thermal depth of Q N G is substantially lower, reaching 
n = 0.13 phonons. The corresponding thermal energies defining the depth of 
non-Gaussianity are obtained from a calibration measurement, depicted in Fig. 
4.3. 

The Fig. 4.8 analyses the exhibition of the genuine n-phonon Q N G using 
idealized and measured Fock states (red data points on the top of the plot 
range) that are deteriorated by the thermalization process. The presented 
simulations signify that the observability of the lowest Q N G features (red points) 
characterized by rejecting any mixture of \ipn) = D(a)S(r)\0) [21] in the presence 
of mechanical heating monotonously decreases with n for ideal Fock states. On 
the contrary, the generation and observation of genuine Q N G properties (blue 
points) for high Fock states inside the hierarchy in Eq. 4.1 is challenging and 
its sensitivity to imperfections in the state preparation and detection increases 
with n. 

The considered ideal thermalization dynamics corresponding to a Gaussian 
additive noise can be broadly employed for an estimation of the Q N G depth, 
analogically, as the damping was used for photonic states [113]. The thermal 
depth of presented Q N G witnesses has been evaluated as the corresponding 
increase of the mean thermal energy ň t h for the same thermalization strength 
applied to the vacuum state. This comparison allows for an experimental 
platform-independent comparison of depth of the genuine Q N G states in 
mechanical systems. In turn, these measurements can be also employed for 
testing the quality of the mechanical system or for sensing of the amount of 
the inherent thermal noise. The thermal depth of the measured states is much 
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smaller for the genuine Q N G hierarchy (Eq. 4.1), in a contrast to the lowest Q N G 
criteria [21] that actually are less demanding for the higher Fock states. Still, 
the measured 10-phonon states conclusively proved the genuine Q N G features. 
Although the absolute thermal depths shown as mean phonon numbers n t h of the 
thermalization process decrease both for the genuine Q N G features (blue values) 
and for the lowest Q N G criteria [21] (red values), their ratio increases to about an 
order of magnitude for n = 10. 

4.4 Quantum enhanced sensing of mechanical 
force 

We estimate the possible metrological advantage for phase independent 
amplitude sensing of the generated higher order number states. This is done wi th 
use of the classical Fisher information and Cramer-Rao bound. The following 
discussion is directly extracted from our work published in [35]. 

A mechanical oscillator prepared in a state approaching a Fock state can 
be directly used for a phase-insensitive sensing of a mean phonon number 
of weak force causing tiny displacement a of the mechanical oscillator [24] 
with applications in precise measurements of a small radio-frequency noise or 
quantum logic spectroscopy [114]. Let the mechanical oscillator be prepared in 
an initial state p and let D(a) denote the displacement operator characterizing 
evolution that the force induces. The Fisher information for the estimation of 
the parameter \a\2 reads 

where i^,(|a| 2) = (n|D(|a|)pD' t ' ( |a|) |n) is the phonon-number distribution on 
which the sensing is performed. The Cramer-Rao bound limits the standard 
deviation a of the force estimation according to a2 > 1/(NF) wi th N being a 
number of sensing runs. We evaluate the a saturating the Cramer-Rao bound 
for realistic states that perform the sensing. The estimation of metrological 
advantage R„ can be quantified for the state p according to 

(4.4) 

(4.5) 

where cr0 stands for the standard deviation of the displacement measurement for 
the mechanical oscillator probe prepared in the motional ground state. For ideal 
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Fock states, (4.5) approaches 

R\n)(\cc\2) = ^ , (4.6) 
V 2 n + 1 

which is independent of the estimated parameter \a\ 2. For more details on this 
derivation see the Supplementary information of [35]. 

If a state p achieves i ? p ( | a | 2 ) < R\n) for some | a | 2 , it possesses a capability 
to surpass limitation in the sensing given by the Fock state |n). Therefore, the 
sequence R\nj establishes a hierarchy of conditions for the sensing classifying 
the states approaching Fock states. Fig. 4.9 presents the metrological potential of 
the prepared motional Fock states to pass some of these conditions. Specifically, 
the realistic Fock states up to n = 10 surpass limits given by the vacuum state 
and the prepared state approaching the ideal Fock state |8) presents the capacity 
to exceed the Fock state |5). The realized state approaching 110) and all the 
higher prepared Fock states do not possess the metrological advantage against 
the ideal Fock state |8) mainly due to noise contributions including dominantly 
the residual heating during the state preparation sequence. 

For sensing of small | a | 2 , the noise affects how far is a prepared state 
approaching |n) from the threshold given by the ideal Fock states |n). The 
advantage gets lost when realistic states contain even very small deteriorating 
noise which substantially decreases the speed of the sensing in the high |n) limit. 
The metrological gain i ? p ( | a | 2 ) tends to saturate for displacement amplitudes on 
the order of 1 0 - 2 and approaches the gain expectable for the ideal Fock states. 
At the same time, the employment of realistic states with high n in the limit 
of small displacements seems to be further enhanced by effectively decreasing 
dependence of the offset amplitude in i ? p ( | a | 2 ) on n, when compared to ideal 
Fock states. This has been confirmed by a numerical simulation considering 
sensing with states resulting from idealized thermalization of Fock states and is 
in agreement wi th the approximate formula i ? p ( | a | 2 ) for | a | 2 <SC 1 that follows 
from the approximate expression for a in (4.5). 
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Figure 4.3: Calibration of the rate of laser induced thermalization on measurement for 
initial ground state on axial mode. Blue bars correspond to measured data, black bars 
show the thermal distribution corresponding to the added mean energy n. From the 
comparison of measured and theoretical statistic, it is apparent the the heating dynamics 
described with Eq. 4.3 clearly leads to generation of the thermal states. 
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Figure 4.4: Calibration of thermalization measurement, the amount of thermal energy 
An added to the ground state as a function of a length of the Doppler heating pulse at 397 
nm transition. Red points correspond to the measured values (see also previous Fig. 4.3), 
and the black dashed line relates to the fitted linear dependence. For the last value of An 
at z — 12.8 ms, the mean energy already approaches the Doppler limit, which explains 
the discrepancy with the linear fit applied to rest of the measured points. In order to 
achieve the better fitting accuracy, it would be necessary to perform a better model also 
considering the saturation which was measured as n = 8.0 ± 1.0. For short time scales at 
which the experiments are performed, it appears to be more convenient to describe the 
heating as a linear dependence on time. The resulting linear heating rate was estimated 
as An = (115 ± 2) X 103 phonons/s. 
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Figure 4.5: Heating dynamics and GQNG depth measured for Fock state |1). States 
which are marked with a green tick agree with the definition of the GQNG states (Eq. 
2.45). States denoted with the red cross do not exceed the GQNG threshold. The limiting 
maximal amount of thermal energy which can be added to the system, and at the same 
time it preserves the QNG property, is estimated as An = 0.31 phonons, corresponding 
to 2.1 fxs heating pulse. 
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Figure 4.6: Measured thermalization dynamics and GQNG depth for Fock state |2). 
Similarly to the measurement in Fig. 4.5, the states marked with green tick are probably 
genuine QNG, while the states with red cross do not surpass the the GQNG threshold. 
The GQNG depth parametrized by the amount of added thermal energy is estimated as 
An = 0.13, which is smaller when compared to An — 0.31 for a number state |1). 
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Figure 4.7: Thermalization dynamics for generated Fock states |1) in a), and |2) in 
b). Blue points correspond to measured states, and black line predicts a theoretical 
development, which corresponds to the state's distribution undergoing the addition 
of thermal energy according to the calibration measurement on the motional ground 
state (see Fig. 4.3). The dynamics progresses from the left upper corner, proceeding 
to the bottom right. The GQNG thermal depth for the number state |1) is evaluated as 
n t h = 0.31 phonons, while for the state |2) this value is substantially lower, equal to 
n t h = 0.13 phonons. 
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Figure 4.8: Characterization of the Fock states of mechanical motion. The red points 
in the upper part of the plot represent the measured populations Pn for experimentally 
generated states. The thresholds for a genuine n-phonon QNG are represented by 
blue points. The associated blue numbers quantify the thermal depth of genuine n-
phonon QNG - a maximal mean number of thermal phonons that keeps the measured 
states above the genuine n-phonon QNG thresholds. Similarly, the red points identify 
thresholds for observation of the basic QNG aspects [21] and the associated red numbers 
determine their thermal depth. The green bars depict the force estimation capability of 
a specific model of noisy Fock states, where the probability Pn exceeding the presented 
threshold values certifies a metrological advantage [24] against the previous ideal Fock 
state \n—1) in the force estimation, while the corresponding numbers quantify a thermal 
depth of this advantage for the measured states. 
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Figure 4.9: The estimation of the metrological advantage of experimentally realized 
states compared to the ground state for sensing of a small force that exerts motion 
on a mechanical oscillator. The horizontal axis quantifies the amplitude in the phase 
space that the force causes. The vertical axis shows the minimal standard deviation a 
estimated by optimization of the Fisher information in the Eq. 4.4. The a is normalized to 
the uncertainty a0 resulting from the equivalent sensing using a motional ground state. 
The black solid lines show cj/a0 for ideal Fock states. The dark yellow, blue, orange, 
and green solid lines correspond to the experimentally prepared states approaching the 
Fock states \n) — |1), |2), |5), and |8), respectively. The graph displays only the cases 
of measured QNG states approaching Fock states \n) which surpass a/a0 achievable 
with ideal Fock states |m) corresponding to any measured m < n. The colored regions 
within the borders given by dashed lines correspond to achievable cj/a0 for states with 
the phonon-number distributions within the experimental error bars. 



5. De te rm in i s t i c a c c u m u l a t i o n of 
mechan i ca l non-c lass ica l i ty 

This Chapter covers the experimental work published in reference [34] devoted 
to generation of non-classical motional states from distributions with high initial 
thermal energies. We report the acquisition of non-classical features in the 
generated state by repetitive application of anti-Jaynes Cummings interaction. 
This process is unconditional as it occurs deterministically for any initial 
thermal motional distributions without any postselection on the qubit state. 
The non-classical nature of outgoing statistical mixtures originates from a 
deterministic incoherent modulation of thermal phonon number distribution. 
The output state converges towards a state which has a significant overlap with a 
particular Fock state population. During such a process, the non-classicality can 
be deterministically increased, and manifests a strong quantum non-Gaussian 
properties. 

The chapter begins wi th the expansion of the theory of 
anti-Jaynes-Cummings interaction, applied on an arbitrarily modulated 
state wi th a diagonal matrix representation. We present and discuss the 
employed experimental methods and we compare the resulting motional 
population distributions wi th theoretically predicted values, and evaluate the 
additional criteria of non-classicality. 

5.1 Modulation of populations by non-linear 
interactions 

In the following considerations about the non-linear interactions between a 
two-level and harmonic oscillator systems, we follow the approach described 
in [115] and [116]. Thermal state undergoing the addition or subtraction of 
energy by anti-Jaynes-Cummings (AJC), or Jaynes-Cummings (JC) interaction 
respectively, can create a statistical mixture of number state populations which 
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are non-classical. The non-classicality depends on the parameters of input 
thermal state and of the interaction. 

We consider the harmonic oscillator to be in thermal motional state wi th 
the Bose-Einstein population distribution, and the two-level system being either 
in ground, or excited state. The interaction consists of the free evolution and 
interaction parts. We can write Jaynes-Cummings interaction as 

HjC = hg(cr+a + <$o_), (5-1) 

and anti-Jaynes interaction as 

HAJC = hgfa+a* + acr-), (5.2) 

where the phase factors were set to 0 without any loss of generality of this 
description. These operations can be considered to implement the phonon 
absorption (for a operator) or emission (for a f ) . 

For the case of J-C interaction, the evolution of the initial state can be 
described wi th an unitary operator UJC = exp( —), which can be also 

h 
expressed in the qubit eigenbasis as [116] 

UjC = Agg(t) |g> <g| + Aee(t) \e) (e\ + Aeg(t) \e) <g| + Age(t) |g) (e\, (5.3) 

with 

Agg(t) = cos(gtVn), 

Aee(t) = cos(gt^n + l), 

Here, n is the operator of number of quanta n = a T a . Next, we w i l l focus on 
evolution of oscillator for the initial thermal state of the two-level system, which 
can be described with the following density matrix 

Pe = Pe \e) (e\ + (1 - Pe) |g> <g|, (5.5) 

where pe denotes the excited state probability. The dynamics of the state's 
evolution can be calculated by application of a completely positive map 
combining the qubit-oscillator state [116] 

Pout = P<Aeg(t)PthAtg(t) + (1 - pe)Agg(t)pthAgg(t)+ 
. . (5.6) 

+ peAee(t)pthAUt) + (1 - pe)Age(t)pthAge(t). 

Aeg(t) = a 
sin(gt^) 

= _ a t s i n ( g ^ 5 
V n + 1 

(5.4) 
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By placing the formulas of the operators A G G , A G E , A E G , A E E into the Eq. 5.6, we 
write the final formula modulation of the initial thermal distribution as 

P(0 = YJ in><n 

—Yl 

n 

n=0 (1 + " ) n + 1 

XPe 

-X 

cos 2(g^Vn + 1) + 1 = H sin2(gtyfn) 
n + 

+ (1 " Pe) cos2(gt^fn) -i s i n 2 (g tVn + 1) 
1 + n 

(5.7) 

The particular limit of the initial quibit state in a state with minimal thermal 
energy corresponding to the ground state further simplifies this equation, so that 
pe = 0 and the second line in the formula 5.7 can be erased completely. The 
evolution of the density matrix undergoing the Jaynes-Cummings interaction 
can then be described in the final form as: 

Pabs(0 = S l n ^ n l 
—Yl 

n 

n=0 
(1 + n)n+l 

cos2'{gt\[n) -i s in 2 (gtVn + 1) 
1 + n 

(5.8) 

In a similar way, we may describe the dynamics under the 
anti-Jaynes-Cummings interaction. This is driven wi th the elements in Eq. 
5.7 which were previously neglected for the phonon absorption description. We 
can finally write [115] 

Pem(0 = YJ l " ^ n l 

—Yl 

n 

n=0 
(1 + n)n+l 

cos2(gt^fn+~l) + 1 = H sin2(gtyfn) 
n 

(5.9) 

The effect of state's probability modulation by single phonon emission is 
simulated and depicted in Fig. 5.1. By changing the pulse area gt of the 
applied anti Jaynes-Cummings interaction, we tune the effect of probability 
modulation on the final distribution. A special case occurs when gt = 7t/2, 
which corresponds to the addition of a full single quantum at the transition 
|g, 0) -> \e, 1). For the ion with the maximum of the population in P 0 , this 
operation generates number state |1). Another special effect occurs when gt = n. 
In such a case, the population in |g, 0) undergoes the whole loop between the 
states |g, 0) -> \e, 1) -> |g, 0), so the ground state population P0 remains 
unchanged. The population in the higher energy levels is modulated, creating 
superpositions of in the two-level system between the ground and excited levels. 



MODULATION OF POPULATIONS BY NON-LINEAR INTERACTIONS 85 

a) "th = 0 b) gt = n/2 c ) gt = n 

1.0[ ' • • ^ i n - | - ' " r , T , , , Z J l [ - I T ] \ ; 

0.8 

0.6; 

0.4 

0.2 

0 0 0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5 
d) "th = 1 e) gt = n/2 f) gt = n 

0.8 

n 

Figure 5.1: Simulation of thermal distributions undergoing the anti-Jaynes Cummings 
interaction, described with the Eq. 5.9. Figures a) and d) show the statistics of initial 
thermal states before the interaction, with energies corresponding to a mean phonon 
number nth — 0 and nth — 1. Cases depicted in b) and d) show the addition of a single 
quantum using a Rabi pulse with the area gt — 7t/2, which corresponds to the transition 
|g,0) —>• |e,l). b) shows a perfect generation of Fock state 11) from ground motional state. 
In d), the whole population of level |0) is shifted to |1), leaving the probability P0 empty. 
A special cases depicted in c) and f) show the resulting populations after application of 
gt = n. For an initial thermal state close to |0), the population makes a whole cycle 
|g, 0) —>• \e, 1) —>• |g, 0), leaving the resulting state in the same state as in the beginning. 
In part f), the operation gives rise to the modulation of statistics, leading to the state 
which is strongly non-classical. 
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The origin of the modulation lies in the scaling of the Rabi frequency by factor 

V « + 1 (see Sec. 2.6). 
The Eq. 5.9 describes the addition of single quantum to the thermal initial 

distribution. In order to describe multiple repetitive interaction steps, we need 
to extend the formula to calculate probability modulation of an arbitrary input 
state. The Eq. 5.9 can be also written as [115] 

nmax 2 

Pb(0= YJ Pn[cos(gty/n + l)\ \n)(n\ + 
n=0 

nmax 2 

+ YJ pn Is in(gfvn + l ) I |n + l ) ( n + l | . (5.10) 
n=0 

In this formula, the elements of ^ PN may be arbitrarily distributed, unlike 
those in the Eq. 5.7, whose population distribution is thermal. The Eq. 5.10 can 
be conveniently used to describe the repetitive emission process. A t the end of 
the interaction, the system is traced over the two electronic state and projected 
to the space of the harmonic oscillator. 

5.2 Phonon addition in anti-Jaynes-Cummings 
interaction 

The experiment starts by the addition of the single energy quantum at the 
1ST axial motional sideband into thermal states with various energies. The 
outcome of this operation can be calculated from the Eq. 5.9 or Eq. 5.7. 

The experimental conditions are similar to those in the experiment 
described in Chapter 4. The axial motional mode frequency has been set to 
vax = 1.188 M H z . The carrier Rabi frequency was measured as D,c = 
2n X (92 ± 1) kHz and the Lamb - Dicke parameter 7)729 = (61.1 ± 0.2) X 1 0 - 3 

(see Sec. 3.11). The optimized 7t pulse length was measured as r = 91 \xs. 
The experimental sequence follows wi th sideband-cooling step, where a 

variable pulse duration is used to tune the initial thermal energy. In a motional 
manipulation step, we apply the single 729 nm pulse with length r to the 1ST blue 
motional sideband, which adds the energy given by the pulse area gt. A short 854 
nm reshuffling pulse is applied to transfer the residual D-state population back 
to the ground state of a two-level system. The state readout is performed wi th 
the electron shelving method, realizing hundred repetitions of the experimental 
sequence. The resulting population distribution is then obtained by a fit of the 
blue sideband Rabi oscillations using the Eq. 2.40. 
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Figure 5.2: Measured distributions of initial thermal state, undergoing a an addition of 
a single quantum at AJC interaction with gt — n/2, which would ideally correspond to 
the transformation of the whole population from the state |g, 0) —>• \e, 1). a) shows the 
reconstructed initial thermal states, b) depicts distributions after the addition of a single 
motional quantum. The axis denoted with ntn defines the mean energy of initial thermal 
state, axis n points out the population of corresponding number state level. 

In the first measurement we prove that, already for an initial state having 
a thermal Bose-Einstein population distribution, the incoherent modulation 
described wi th the Eq. 5.10 deterministically results into the non-classical states 
even for a broad range of initial thermal energies. The pulse area gt is in this case 
set as gt = = TT/2, which is experimentally calibrated at 1ST blue sideband 
excitation of \g, 0) -> \e, 1). While varying the initial thermal energy n, we add 
a phonon depending on the chosen gt and input state statistics which leads to a 
transfer of a whole population from P0 to Pi for an ion prepared initially in the 
motional ground state. 

The resulting statistics of initial thermal states and resulting distribution 
after the phonon addition are depicted in Fig. 5.2. The data measured after the 
interaction indeed show the obvious emergence of non-classical statistics wi th 
the benefit of Px. The state with the lowest thermal energy corresponding to 
the ground state of motion was prepared such that ntn = 0.005 ± 0.005, and 
the corresponding population P0 = (99.5 ± 0.5)%. The single phonon addition 
was measured to have an efficiency close to K = 97 %, which corresponds to the 
maximum of the 1ST blue sideband Rabi flop between the states |g, 0) -> \e, 1), 
presented in Fig. 5.3. Additional imperfection in efficiency of the full phonon 
addition step arises form the reshuffling and optical pumping steps performed 
with 854 nm and 397 nm a_ beams. This leads to approximately (2.9 ± 0.2)% loss 
of population which diffuses through photon recoils towards the neighboring 
number states. The quantitative evaluation of this contribution is described in 
more detail in Sec. 3.13. The uncertainties of resulting populations are estimated 
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with use of the Monte-Carlo routine, where the input uncertainties for each data 
point in the Rabi oscillations were sampled according to expected minimal noise 
- projection noise. 

Next, we evaluate the criteria of non-classicality for different input thermal 
states after the single quantum addition. Fig. 5.4 shows results of the 
evaluation of Fano factor F = ((An) 2 )/(n), Klyshko's criteria for nonclassicality 
[71], function at the center of the phase space W(0,0), for initial thermal 
states undergoing an addition of a single quantum with a BSB pulse area of 
gt = 7t12. The non-classicality is proved by the negativity of measured first 
order Klyshko criteria KY. The measured negative value of Winger function 
W(0,0) < 0 additionally proves the quantum non-Gaussian features for all 
the resulting states. Finally, the negative values of Fano factor point out to the 
convergence of the resulting statistics towards the sub-Poissonian distributions. 
We additionally evaluated the witness of quantum non-Gaussian properties 
based on the estimation of only two neighboring phonon number probabilities, 
Pi and P2. It unambiguously witnesses the Q N G aspects for all input thermal 
states up to mean = 4.2, where the multi-phonon contributions are already 
too high. The measured states which fulfill the quantum non-Gaussian property 
are marked wi th the red tick in Fig. 5.4. 

This measurement serves as a proof-of-principle calibration measurement of 
the phonon addition on thermal states, where we have shown that the generated 
distributions comply with the theory described by Eq. 5.10 and presented in Fig. 
5.1. 

5.3 Accumulation of motional non-classicality 
In Sec. 5.2, we have shown that the non-classical properties emerge 
deterministically from initial thermal motional states from a bare single 
nonlinear phonon addition. However, some of these features are proven weakly 
within the scale of estimated error. In order to enhance the non-classical and 
quantum non-Gaussian aspects, we implement the similar process repetitively, 
while keeping the interaction pulse area gt fixed. 

After the re-shuffling and optical pumping step, the resulting state is 
considered as an input state for the next step and the addition process is repeated, 
as depicted in Fig. 5.5. We denote a variable k to define the number of repetitions 
of such addition. After k iterations, the motional populations are measured using 
the laser spectroscopy on the blue motional sideband. 

Fig. 5.6 shows the results of reconstruction of output phonon number 
distributions Pn(k) for of up to k = 20 repetitions of the AJC process for an initial 
thermal state wi th a mean phonon number n = 1.19±0.04. The results have been 
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Figure 5.3: Calibration measurement of Rabi oscillations for 1 s t axial blue sideband at 
transition |g, 0) —>• |e, 1). The resulting parameters are D,0 — 2n X (92 ± 1) kHz, which 
corresponds to the measured length of the n pulse 91 ûs. The maximal excited state 
population was estimated from a fit as Pe — 91%, which defines the general efficiency of 
the addition operation. 

reconstructed from the measured Rabi oscillations after each displayed number 
of interaction repetitions k, where the sum maximum defining the truncation of 
the oscillator Hilbert space was set as n m a x = 7, according to the 1 % rule applied 
to the state wi th highest populations, as described in the section 3.14.1. 

The crucial parameter determining the target of the accumulation process lies 
in the parameter gt, as originally proposed in pioneering work by Blatt, Zirac and 
Zoller [96]. Specifically, the fulfillment of the relation: 

gt^Jn + 1 = In (5.11) 

with I = 1,2,3... being the whole number coefficient, and n denoting the filter 
number state. For a particular setting of gt, we manage to generate a cyclic loop 
in a transition between arbitrary motional states as \g, n) -> \e, n + 1) -> \g, n). 
The transition serves as kind of filter in the Fock state basis, which forbids 
the motional population from states with lower energy to propagate into states 
that are higher than this particular transition. Such a process leads to the 
amplification and enhancement of visibility of resulting non-classical properties, 
which we denote as 'accumulation of non-classicality'. 

As for an example, let us theoretically demonstrate this effect for an 
interaction area gt = TT/2. Substituting this to the Eq. 5.11 and putting I = 1, we 
arrive to the value of n = 3. The transition |g, 3) -> |e,4) -> \g, 3) w i l l undergo 
full period in the two-level system, so the population in the state \g, 3) is not 
depopulated upon AJC pulse. Instead, populations in the lower energy levels 
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Figure 5.4: The results of evaluation of nonclassicality for the measured phonon 
number distributions after single nonlinear anti Jaynes-Cummings interaction of atomic 
mechanical oscillator prepared in thermal state. The Fano factors evaluated for initial 
and generated phonon populations demonstrate the conversion to sub-Poissonian 
statistics for states with low initial thermal energy nth. The evaluated negative Klyshko's 
criteria for each output distribution unambiguously confirm a strong nonclassicality 
of the generated states for a broad range of initial thermal energies n^. In addition, 
the observed negative values of the Wigner quasi-distribution W(0,0) suggest that the 
generated state is always non-Gaussian. Moreover, quantum non-Gaussianity criteria 
(QNG) [22] show impact of multi-phonon contributions. The measures evaluated from 
the experimental data are displayed as full circles with error bars corresponding to 
three standard deviations. The solid lines correspond to theoretical predictions for AJC 
interaction described with Eq. 5.10 with a gt — n/2 and for given n t h with no free fitting 
parameters. 
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Figure 5.5: A simplified experimental sequence for an unconditional generation of 
nonclassical states from initially classical thermal population of atomic motion. At the 
beginning, the two-level system is in the ground state, and the oscillator in thermal 
state. The nonlinear AJC coupling is followed by a re-initialization of internal atomic 
population to the \S) level. This process is repeated fe-times, leading to the accumulation 
of motional population in a discrete energy level \n), depending on the value of gt. The 
final distribution is read out by measurement of the blue motional sideband with a probe 
of Rabi oscillation. 

wi l l be gradually transferred into P3. In the theoretical limit of infinite phonon 
addition steps, the population £ n = 0 w i l l accumulate in P 3 , while the higher levels 
wi l l arrive to P 1 5 , which is an additional discrete solution of Eq. 5.11 resulting for 
1 = 2 and gt = 7t/2. 

In the similar way, we may derive the limiting populations for other pulse 
areas gt. For gt = Ttlyjl>, we produce a mixture of states wi th n = 2,11,47, 
for gt = 7r/V5, we w i l l have n = 4,19,79 wi th coefficients I = 1,2,3. W i t h 
gt = 7T/V4 = 7r/2 we obtain accumulation at n = 3,15,35 with I = 1,2,3. 
Theoretically, wi th implementation of the particular value of gt, it is possible to 
engineer any number state filter of interest. 

The accumulation is performed for up to k = 20 repetitions of the 
anti-Jaynes-Cummings process, for initial thermal state wi th n = 1.19±0.04. We 
choose to demonstrate the accumulation for three pulse areas, which were set as 
gt = 7t/2 = 91 LIS, gt = 0.97T/2 « Tt/yjl = 80 LIS and gt = l.lx/2 « nl^fi = 
100 LIS. The lengths of the corresponding applied laser pulses were chosen wi th 
respect to the measured duration of the transition between \g, 0) -> \e, 1). 

The resulting statistics, including the evaluated non-classical features are 
shown in Fig. 5.6. The measured statistics show the convergence of motional 
population to P 4 , P3 and P 2 , respectively. Inf Fig. 5.6 b) corresponding to gt = 7t/2, 
the population converges to P3 = 0.52 ± 0.01 after 20 accumulation steps. 
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According to theoretical prediction from the Eq. 5.10, the population should 
ideally converge to to P3 = 0.63 after 20 accumulation steps. The discrepancy 
between the measured result and theory can be attributed to a residual offset in 
an experimental setting of the pulse area gt. W i t h use of gt = 1.026 rt in Eq. 
5.10, the ideal population after 20 repetitions would be Px, = 0.54, which is in 
very good agreement with the measured value. Additional limitation is the finite 
contrast of the applied 7T-pulse which defines the overall efficiency of the phonon 
addition operation. The contrast was estimated as Pe = 0.97 from measured Rabi 
oscillations on the ground motional state. The discrepancy between the theory 
and measurement can be also attributed to the motional heating originating from 
the potentials at trap electrodes, and also to heating induced by random photon 
recoils in the process of the reshuffling of the excited state population after 
each anti-JC pulse. These two effects are also the main reason for occupation 
of higher motional states and cannot be fully avoided in most experimental 
scenarios. However, improving the contrast of the 7T-pulse is feasible and in 
case of K = 1, the motional state Px, = 0.66 could be deterministically generated 
after 40 repetition steps. Theoretical estimation with an ideal 7T-pulse contrast 
and no effects of recoil heating would result in the ideal population P3 = 0.88 
after 20 repetition steps and P3 = 0.91 after 43 steps. 

The non-classical aspects of generated states are further evidenced in the 
non-classicality measures, which are displayed in Fig. 5.6 parts d) - f). The 
figure part d) shows the evolution of mean energy n of states generated 
after k iterations. A decrease of the state's variance with respect to the 
total energy is evident from the comparison of the evaluated mean energy 
and Fano factor and provides a complementary signature of convergence 
towards the energy-localized phonon number state. Fig. 5.6 e) shows the 
intersection of the Wigner function W(x, 0), which has been evaluated from 
the measured populations Pn, by considering incoherent sum of partial Wigner 

quasi-distributions corresponding to the mixed state p k = Tjn=l Pk(n) \n) (n\-
The calculation returns a prediction of the quasi-probability distribution, which 
would result from a measurement by implementation of random phase shifts of 
the local oscillator in the reconstruction process. In our considerations, we are 
interested in the possible observable amount of negative dips in the distribution, 
which proves that the quasi-probability distribution cannot be expressed as any 
mixture of the Gaussian states. The verification of the hierarchy of quantum 
non-Gaussianity criteria is depicted in the inset, where the fully colored squares 
point to the criteria of selected order, as a function of iterations k. Evaluation 
within such parameterization suggests that the non-Gaussian properties are 
indeed amplified for increasing number of iterations. 

Finally, we evaluate the entanglement potential EP defined in Eq. 2.51 and 



ACCUMULATION OF MOTIONAL NON-CLASSICALITY 93 

Figure 5.6: Measurement results for nonclassicality accumulation by repetitive 
application of the nonlinear AJC coupling. Here, k — 0 to 20 denotes number 
of repetitions, applied to the thermal motional state with mean number of phonons 
n t h = 1.19 ± 0.04. The parts a), b) and c) correspond to the generated accumulated 
statistical distributions for gt — 0.9 X n/2,gt — n/2 and gt — 1.1 X n/2. d) shows 
the evolution of mean energy and Fano factor, where the decrease for the Fano factor 
proves the convergence to the number state. Graph e) depicts the intersection of Wigner 
function W(x, 0), evaluated as a weighted sum of Wigner functions corresponding to 
ideal number states. The full squares in the inset show the fulfillment of the quantum 
non-Gaussianity criteria, proving also the accumulation of the non-Gaussian properties 
with the increasing number of operations, f) shows the increase of entanglement 
potential calculated from Eq. 2.51 with the number of iterations k. 
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quantify it using the logarithmic negativity We can see, that even though 
the increase of non-classicality sensed in this way is highest for the first step 
of accumulation, it still monotonically increases with a number of repetitions. 
Importantly, this effect can be seen even though the measurements include 
a random and unavoidable diffusion of phonon number statistics due to the 
excitation and decay on the reshuffling transition with finite Lamb-Dicke 
parameters. The accumulation process is apparently robust against experimental 
imperfections and can be applied also to states wi th high thermal energy 
resulting from a simple Doppler cooling process, irrespective of additional 
heating caused by the resetting of electronic state. 



6. Non-c lass ica l m o t i o n a l states f r o m 
J a y n e s - C u m m i n g s in te rac t ion 

Demonstrated experimental control of the motional state with use of 
the anti-Jaynes-Cummings interaction led to deterministic generation of 
non-classicality from thermal states. In this way, high fidelity number states of 
motion can be generated without the need to fully suppress the thermal energy 
of the initial state. Implementation of the contrary process corresponding to the 
phonon absorption has been shown to not just share these deterministic positive 
quantum aspects, but in addition, it is expected to counter-intuitively benefit 
from the thermal energy of the initial oscillator state [115]. 

In the following we describe the initial experimental observations of these 
aspects by implementation of the repeated phonon absorption on the thermal 
motional state of a single 4 0 C a + ion. We remind that, when comparing to the 
phonon annihilation on the photonic mode, the absorption of quanta does not 
provide any nonclassicality. However, the phonon subtraction can not be viewed 
as a linear absorption, but instead it serves as a direct source of the modulation 
of population distribution elements in the Jaynes-Cummings interaction (J-C). 

In many ways, the experimental approach is similar as the one described 
in Chapter 5. However, the populations of generated motional states are 
fundamentally different. Generally, the states with lower mean energies 
are created, while having the similar or even slightly improved measures of 
non-classicality and quantum non-Gaussianity. 

6.1 J-C dynamics of accumulation process 
In order to theoretically describe the modulation process of motional states' 
probabilities, we refer to the similar description as the one described in Sec. 5.1. 
in Eq. 5.7 and Eq. 5.8. A generalized form of the J-C coupling on the arbitrary 
incoherent mixture of phonon number states distribution can be defined as [115, 
116] 
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"•max 2 

Pr(0= E P(n)[cos(gtyfn)] \n)(n\ + 
n=0 

nmax 2 

+ YJ P(n)[sm(gtyfnj\ | n - l ) ( n - l | . (6.1) 
n=0 

Here, the crucial property to form the non-classical modulation lies again in the 
pulse area gt. 

We consider the example of motional state evolution following the Eq. 6.1 
on the population being initially in the state |g, 1). The interaction with pulse 
area gt = TZ/2 forms a perfect subtraction of single quantum to the ground 
state of motion, so that |g, 1) -> \e, 0). A more interesting situation happens 
for gt = 7t. The population undergoes the whole cycle, so that |g, 1) -> |e, 0) -> 
|g, 1), returning the same input state of the operation. For repetitive multiple 
operations wi th fixed gt = TC, the population of |g, 1) w i l l still remain unchanged. 
The population of higher phonon states w i l l gradually converge towards the state 
|g, 1). In this way, it becomes possible to engineer the accumulation process 
similar with the one described in Chapter 5, where in the limit of high number 
of iterations, the population accumulates at the certain energy level n. Generally, 
the condition to engineer the number state 'filter' can be described wi th 

gt^Jn = In. (6.2) 

where I is an integer value. In order to focus the accumulation process on the 
number state n, we set the pulse area as gt = Inl^fn and apply the sufficient 
amount of repetitive interactions. 

The scaling of solution gt from Eq. 6.2 with integer value of I leads to the 
accumulation also to higher motional states. Also, the solutions may acquire 
the similar results for different values of / and n. For the previously discussed 
example of gt = 7i, the solution of Eq. 6.2 returns discrete values of n = 1,4,9,16 
for I = 1,2,3,4. The probability of occupation of these higher order motional 
states wi l l rise with the increasing mean energy of the initial thermal state, 
because the higher states w i l l be more populated. For states with low mean 
energy, the higher contributions can be neglected. 

In Fig. 6.1, we depict the simulations of single and repetitive quantum 
subtractions with Jaynes-Cummings interactions for gt = 7t, for two different 
initial states. In Fig. 6.1 b) and e), we can see that the single subtraction leads to 
the enhancement of the population Px at the cost of higher probabilities P^,P^. 
In the limit of infinite iterations, shown in Fig. 6.1 c), f), the energy levels 
p2,Pj, are emptied, and the higher populations converge to P4,Pg and -F}6. A t 
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the same time, the population probability P0 is left untouched, as the coupling 
to red sideband does not exist for ground state of motion. We also see that the 
amount of population accumulated into the higher order number states increases 
with the energy, so that for higher energies, the operation forms a more complex 
statistical mixture, also enhancing it's non-classicality measures, which is proved 
in the measurement described in Sec. 6.2. 

6.2 Experimental non-classical states in J-C 
interaction 

We first characterize the state generated with the single subtraction in J-C 
interaction. Next, this step is repeated k-times. We reconstruct the measured 
populations of energy levels and compare them to the predicted behavior, which 
takes into account thermal energy acquired by the system within the sequence 
duration (see Sec. 3.12), the limited operation efficiency, and the heating by 
re-shuffling prior to the state readout (see Sec. 3.13). 

The experimental sequence starts by preparation of the thermal motional 
state wi th energy n = 0.93 ± 0.06. The resulting populations are compared wi th 
ideal Bose-Einstein distribution reconstructed from the measured state's energy. 
The pulse area gt = 7t is set by setting the pulse duration to r = 272 LIS. The 
pulse is applied on the 1ST red motional sideband. The phonon number statistics 
is reconstructed from the blue axial sideband with use of the Eq. 2.40. We repeat 
the phonon subtraction step up to k = 5 iterations, which is already sufficient 
for amplification of fundamental positive aspects of initial thermal energy. 

For the experiment, ground state Rabi frequency was measured as 
D,0 = 2xx (60.2 ± 0.1) kHz, Lamb-Dicke parameter rj = (0.0611 ± 0.0002) 
and ground state decay rate y0 = 0.42 ± 0.06 kHz. A special attention is devoted 
for experimental estimation of pulse area gt, which has to be set to gt = 7t wi th 
high accuracy. This value can be theoretically calculated from the measured 
Rabi frequency, however, due to the limiting offset in the response of employed 
electronic elements, the realistic length of the pulse is longer. Physically, the 
pulse area n corresponds to the whole period of the population transfer between 
the states |g, 1) -> \e, 0) -> |g, 1) at red sideband, as depicted in Fig. 2.2. As the 
anti-Jaynes-Cummings interaction is described with the very same interaction 
strength 7]Q,0 when starting from the excited state, the similar process wi th 
exactly same interaction times is performed also on blue sideband as a cycle 
between the states |g, 0) -> \e, 1) -> |g, 0). Therefore, the optimal interaction 
time r = 272 LIS corresponding to gt = 7t pulse was estimated on the blue 
sideband and then applied to red sideband interaction from the state |g, 1). 
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Figure 6.1: A simulation of the result of phonon absorption applied to red sideband with 
the coupling constant gt — n. a) shows a thermal distribution with n = 1. b) plots the 
resulting state after the single interaction, showing already a significant enhancement in 
Pv c) shows a modulation in limit of infinite accumulation steps, leading to accumulation 
of population at states |1) and |4). The similar scenario is shown in the second row, 
however now with the initial thermal energy corresponding to n = 5, depicted in d). 
A single subtraction already returns the highly non-classical modulation with Pi larger 
than P 0 , as shown in e). The limiting case f) shows the convergence of populations into 
11), |4), |9), 116) which are the results for indexes / = 1,2,3,4 in the Eq. 6.2. 
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The probabilities are shown in Fig. 6.2 wi th blue columns. After the single 
interaction step, the process shows a significant enhancement of the population 
probability Pi. This effect is further amplified by repetitive interactions. The final 
measurement outcome after five iterations shows a clear convergence towards 
the states Pi and P 4 , which is in close agreement with a theoretical prediction. 
The most significantly populated states had probabilities P 0 = 0.45 ± 0 . 0 1 ^ = 
0.43 ± 0 . 0 1 andP 4 = 0.08 ±0 .02 . The third accumulation maximum, theoretically 
predicted at P g , is not observable in this measurement due to the low initial 
energy. The error bars, corresponding to a single standard deviation, were 
statistically evaluated from five independent measurements of each state. 

The black columns displayed together with the measured data in Fig. 6.2 refer 
to a theoretical prediction of dynamical process for the initial thermal state. The 
simulations also contains the known imperfections, describing heating process 
and imperfect efficiency corresponding to the limited Rabi flop contrast. The 
blue sideband Rabi flop contrast at the n pulse duration was measured as 95 %. 
In this case, we assume that 95 % of the initial state's population undergoes 
the interaction, while the remaining 5 % remains it's initial state. We also 
estimated that 5.8% of the excited state population undergoes diffusion to the 
neighboring motional states due to the photon recoils within the reshuffling 
and optical pumping (see Sec. 3.13). Finally, we assume the axial heating 
itself, adding the energy of A n = 2.7 phonons/s withing the time passed from 
the initialization of the input state. Taking into account all the experimental 
imperfections, the predicted evolution corresponds to the measured state on the 
scale of approximately 2 - 3 standard deviations, which is a satisfying result i f 
taking into account the complex nature of the system and the number of free 
experimental parameters. The aim of this simulation was to merely confirm 
the conceptual behavior of the phonon number distributions rather than provide 
their accurate predictions. 

The non-classical properties of the generated distributions are characterized 
by evaluation of entanglement potential (EP) of the generated states and Klyshko 
criteria. The observed clear increase of the EP wi th the number of appended 
accumulation pulses is depicted in Fig. 6.3. The blue points show values resulting 
from measurement with error bar corresponding to standard deviation retrieved 
from 5 consecutive measurement runs. The black line shows a theoretical 
prediction of expected value of EP. The accuracy of the simulation is to some 
extent limited with truncation of the distribution sum, which performed over all 
populations predicted to have more than 1 % of motional occupation, as described 
in Sec. 3.14.1. Theoretically, EP should equal zero for any thermal motional 
state, since such a state does not contain any non-classicality. The cut of the 
distribution sum at certain maximal level induces a small offset in entanglement 
potential. 
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Figure 6.2: Reconstructed phonon distributions for initial thermal state with n — 
0.93 ± 0.06 undergoing repetitive additions of energy gt — n at red axial sideband. 
Here, n denotes the population level, Pn the occupation probability of the corresponding 
number state, and k describes the number of repetitive additions. Blue bars depict the 
measured data, black ones are values resulting from theoretical predictions. 

However, the dominant limitation stems from the projection noise resulting 
from the finite number of experimental repetitions for estimation of the electron 
state population. To quantify this effect, we employ a Monte-Carlo routine to an 
ideal population distribution corresponding to thermal state wi th a given mean 
thermal energy, and generate an ideal pattern of Rabi oscillations corresponding 
to it's distribution. We assume that each of the points of this ideal flopping would 
be measured from 100 projections of a two-level system. In the next step, we 
variate each point of this flop wi th the Gaussian distribution, where the standard 
deviation is defined by the projection noise, similarly as in the experiments 
described in Chapter 4 and 5. The simulated Rabi oscillations are also used to 
estimate the expected error for the entanglement potential. For each of the 100 
simulations, the EP is calculated and the error bars are taken from the minimal 
and maximal EP value. These are depicted as gray dashed lines in Fig. 6.3. 

The measured data in Fig. 6.4 clearly demonstrate the increase of the EP with 
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Figure 6.3: Measured and theoretically simulated value of entanglement potential for 
initial thermal state with n — 0.93 ± 0.06, undergoing up to k — 5 repetitive phonon 
subtractions. The measured error bar corresponds to a one standard deviation estimated 
from 5 independent measurements. The black line shows the predicted values, the 
gray dashed lines depict the lower and upper bound of the standard simulation error 
originating from the projection noise (see main text for details). 

number of phonon subtractions k applied to the initial thermal state. We measure 
the values of EP follow the predicted behavior within one standard deviation. 

We probe the possible non-classicality by evaluation of Klyshko's criteria 
of non-classicality, described by an Eq. 2.48 [71]. Such a criteria can form a 
hierarchy dependent on n, where for each n exists a specific Klyshko criteria. For 
the current measurement, we evaluate the hierarchy up to the order 7, and depict 
the result in Fig. 6.4. The values of KY and K4 show a statistically significant 
amount of negativity. The negative value is apparent even after the single 
phonon subtraction, and gradually increases wi th the added accumulation steps. 
Physically, the negative value points to the fact that the occupation probabilities 
PY and P4 are significantly larger than at least one of the neighboring oscillator 
states. The effect is much more pronounced for Klt in agreement with the 
expectation of the dominant population of Pi and suppressed population in P2. 
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Figure 6.4: Evaluated hierarchy of Klyshko criteria Kn. The horizontal axis denotes 
the order of the Klyshko criteria n, the vertical line then number of accumulation pulses 
increasing from top to bottom. The columns related to P± and P 4 prove a clear non-
classical nature of the generated states. The gray squares show the Klyshko parameter 
values, where we measured the negative values, but the negativity was smaller than 
single standard deviation. The white squares denote positions where the Klyshko 
parameter resulted positive. 

6.3 Thermally induced non-classical features 
We explore the effect of phonon subtraction and accumulation for states wi th 
various initial thermal energies. We prepare five additional thermal states, which 
together with the already described measurement (Sec 6.2) form a set of total 
six measurements. For each initial thermal state, we perform the sequence 
of five repetitive subtractions, which became sufficient for enhancement of 
the observability of the target phenomena relevant for thermally stimulated 
nonclassicality. 

The plot chart in Fig. 6.5 depicts the dynamics for three initial thermal 
energies. The rows represent low n = 0.14 ± 0 . 0 3 , intermediate n = 2.0 ± 0 . 1 and 
high n = 2.9 ± 0.3 initial thermal energy. The first column shows the measured 
thermal distributions, the second one states after single interaction, and the third 
the distribution after k = 5 repetitive interactions. The data processing and 
simulations were performed following the recipe described Sec. 6.2. 

The overall comparison of dynamics occurring for various energies shows 
that the dynamics of accumulation process applied to states wi th increasing 
initial energies leads to generation of number states which correspond to filters 
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Figure 6.5: Measurement of the repeated phonon absorption for different input thermal 
energies for gt — n. States with increasing energy form a more pronounced non-classical 
modulations, where the solutions corresponding to higher multiples of gt — In become 
evident. The errors correspond to a single standard deviation resulting from statistical 
evaluation of five independent measurements. Theoretical simulation including the 
simulation of the effect of projection noise is depicted by black bars. 
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based on pulse areas gt of higher order multiplies of rc. For the state with a 
low initial energy n = 0.14 ± 0.03, we see that the effect phonon absorption is 
generally very weak, performing in limiting case only around 10 % of population 
transfer into the state Pi, while significant part of this can be contributed to 
the effect of heating. For both of the additional measurements, initiating from 
thermal states n = 2.0 ± 0.1 and n = 2.9 ± 0.3, we were able to observe the 
convergence towards the state P4 wi th a significant strength, see Fig. 6.5 f) and 
i). Moreover, we can observe a significant enhancement of probability Pl even 
after the single interaction, unlike in case of low initial energy, as depicted in 
Fig 6.5 e), h). For the result in Fig. 6.5 f), we measure Pi = 0.37 ± 0.03 and 
P4 = 0.14 ± 0.02, and even the third maximum P9 = 0.08 ± 0.04. For a highest 
initial thermal energy, the state after five iterations shown in Fig. 6.5 i) returns 
Pi = 0.33 ± 0.03, P4 = 0.16 ± 0.03 and P9 = 0.10 ± 0.05. From the presented 
results, it is clearly apparent that the states wi th high initial thermal energy are 
able to form the more complex statistical mixtures than states wi th low n. 

In order to systematically evaluate the corresponding enhancement of 
nonclassical features of generated states, we evaluate the Klyshko hierarchy and 
entanglement potential measures. The hierarchy is depicted in the plot matrix 
in Fig. 6.6. The horizontal axis defines the order of the Klyshko criteria n which 
is under the probe. Vertical axis label refers to the initial thermal state n t h . The 
k = 0 refers to initial thermal states, k = 1 corresponds to a single absorption, 
and k = 5 to five cycles in total. The results show that for the increasing number 
of iterations, the negativity in Klyshko parameters KY and K4 increases, pointing 
to the increasing non-classicality which is being accumulated in the system. The 
accumulation in particular states Px and P4 also complies with the expected trend 
of convergence towards solutions of Eq. 6.2 where gt = 7t. 

The estimated entanglement potential is displayed in Fig. 6.7 a). The 
results prove both the enhancement by number of accumulation steps and wi th 
increasing thermal energy. The red points in the Fig. 6.7 show the EP for thermal 
states, which grows with mean energy due to the finite measurement projection 
noise, as described in Sec. 6.2. 

We simulate this effect with use of the Monte-Carlo simulation, similarly as 
for the previous measurement in Sec. 6.2, and find out that the measured offset 
in entanglement potential quantitatively agrees with a theoretical prediction. 

The blue and yellow points in Fig 6.7 a) corresponding to states after k = 1 
and k = 5 phonon subtractions, show the measured values of EP well beyond 
the numbers corresponding to thermal states. A t the same time, estimated 
state energy for k = 0,1,5 iterations remains similar, as depicted in Fig 6.7 b), 
proving that the effect of non-classicality enhancement clearly originates from 
the performed interactions, and it is thus not an effect of increasing thermal state 
energy. Finally, the Fig. 6.7 proves the most crucial aspect, which is a the growth 
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Figure 6.6: Matrices of estimated Klyshko non-classicality criteria. The vertical axis 
denotes the initial thermal energies of states ntn. The horizontal variable n has a 
meaning of the Klyshko criteria order. From left to right, the plots show the results for 
initial thermal states (fe = 0), distributions undergoing a subtraction of single phonon 
(k = 1), and finally the accumulation of five subtraction processes (fe = 5). The grey 
squares show results, where small negative value was evaluated, which did not exceed 
the interval of a single standard deviation. For all the employed initial thermal states, 
except for the one with lowest energy, we observe the effect of non-classicality growth 
as a function o k. The increasing energy contributes especially to enhancement of the 
criteria K4. 
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of EP with the increasing thermal energy of the input state. This is manifested 
as an increasing delta between measured EP corresponding to k = 1 and k = 5 
datasets. For example, for the state with initial thermal energy n = 0.68(7) 
the A E P = 0.16, but for the state wi th n = 2.9(3) it is already much higher, 
A E P = 0.42. 

We note that, results presented in this Chapter are preliminary, though 
sufficient enough to prove the validity of the states generation and it's usability 
to prove the quantum non-Gaussian properties. In order to provide the 
satisfactory comparison of the generated states wi th their theoretical prediction, 
the experiment has been currently instantiated with use of the new laser setup 
with improved coherence properties, stabilized magnetic field in the trap setup 
and other improvements. 
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Figure 6.7: a) Entanglement potential and b) mean energies as n — ̂ w nPn of the initial 
states (red) undergoing a single (blue) and five phonon absorption cycles (yellow). The 
trend in measured EP suggests the enhancement of non-classicality for both increasing 
energy and the number of iterations. At the same time, the energy difference between 
datasets of k — 1 and k — 5 (in b)) is relatively small, which proves that the enhancement 
of EP shown in a) indeed comes from the phonon subtraction, and it is thus not an artifact 
from an increasing Hilbert space size. 



7. C o n c l u s i o n s 

Further development of quantum technology and its applications depends 
on the quality, costs and robustness of experimental resources that must be 
conclusively proved. For bosonic implementations of quantum technology, 
including mechanical experiments with trapped ions, quantum non-Gaussian 
states of phononic oscillators are highly needed as resources. The Fock states 
are the most fundamental quantum non-Gaussian elements, challenging for 
many bosonic platforms but already providing tools for quantum force sensing 
beyond the standard quantum limit. Moreover, they are critical elements for 
building Fock state superpositions wi th much broader applications in quantum 
error correction, quantum sensing and interferometry, quantum simulations, and 
quantum thermodynamics. 

The presented work provides a complex set of experimental measurements 
which focuses on generation and characterization of quantum states 
implemented on motional degree of freedom of the trapped ion system. 
We employed the broadly used method of phonon addition and subtraction at 
1 s t motional sidebands [19], and we extended it's application to create complex 
statistical mixtures. We have used the criteria of non-classicality and genuine 
quantum non-Gaussianity to characterize the quantum states and analyzed 
their robustness to the addition of thermal energy. We have further proved that 
initial thermal energy can be beneficial for the observable non-classical features, 
which is in contrast wi th conventional intuition on conditions for sources of 
nonclassicality to be well isolated from the surrounding environment. 

We have focused on generation of high number states and we probed their 
properties while undergoing the controllable thermalization. We have applied 
the specifically developed hierarchy of quantum non-Gaussianity criteria [21, 
23], which provides a tool to qualitatively express the amount of non-classical 
features which are being present in the phonon population distribution. We 
measured and evaluated the depth of the quantum non-Gaussian features, which 
characterizes the minimal amount of thermal energy added to the system to 
destroy the observability of quantum state's non-Gaussianity. We additionally 
performed the controllable experimental heating of ion to precisely calibrate this 
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effect on mechanical system. For the most robust state |1), we have measured 
the limiting energy preserving the non-Gaussian properties as n = 0.31, 
while for increasing energy of measured number states, this gradually drops 
down to the energy of 0.02 phonons measured for number state 110). Still, 
despite the decreasing robustness with respect to the motional heating, we have 
estimated by calculation of Fisher information and evaluation of the metrological 
advantage, that employment of the higher order number states provides the 
potential enhancement of the accuracy of phase insensitive sensing of small 
coherent displacement. The highest metrological advantage was evaluated for 
the generated state |8), for higher state 110) was lost due to the large uncertainty 
in population distribution. Together, the presented routine of characterizing the 
motional states with genuine Q N G criteria hierarchy proves to be a feasible tool 
for conclusive, hierarchical and sensitive evaluation of Fock state properties. 

The second experiment extends the method of motional engineering 
to application of repetitive anti Jaynes-Cummings interactions. We have 
implemented the scheme, which was theoretically proposed already in 1995 by 
Blatt et. al. [96] and within the best of our knowledge, it was not experimentally 
verified up to date. We have shown that the repetitive application of fixed 
length pulse on the blue axial sideband leads to the dynamical accumulation of 
motional population into a particular number state, which can be controllably 
tuned by varying the length gt of the employed interaction pulse. Crucially, 
this generation method manages to overcome the fundamental requirement 
of majority of other protocols for preparation of Fock states, which is the 
minimization of the initial state entropy. 

By evaluation of the Klyshko criteria and entanglement potential, we proved 
that the capability to detect non-classcial features increase wi th high energy 
of the initial thermal state, which becomes apparent even for the single added 
quantum (see Fig. 5.4). We probed the dynamics of repetitive phonon emission 
processes, which were measured for various pulse length, where each of the 
dynamics shows the convergence towards a different number state, particularly 
towards |2), |3), |4) for pulse areas gt = 0.9 X TT/2,7I/2 and 1.1 X TT/2. We also 
proved that the repetitive addition of energy enhances the measured amount of 
entanglement potential and the Fano factor which shows the convergence to the 
sub-Poissonian, thus non-classical statistics. 

In the last presented experiment we demonstrated the accumulation of 
non-classicality by addressing the red motional sideband. The point of the 
demonstrated physics lies in the possibility to generate a non-classical quantum 
state even by the absorption of phonon, which is in striking contrast to photon 
annihilation process in photonic quantum systems. We have proved that the 
presence of non-classical and quantum non-Gaussian features is directly driven 
by increasing energy of initial thermal state. For various thermal distributions at 
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input, we estimated the resulting distributions after a single and five repetitive 
phonon absorptions, and we proved that estimated entanglement potential 
grows with the initial thermal energy. The estimated hierarchy of Klyshko 
criteria illustrated increase of non-classicality wi th thermal energy and number 
of iterations, and also shows the convergence of the distribution towards 
the number states |1) and |4), which corresponds to a theoretical prediction 
calculated for many phonon absorptions. 

We foresee the application of the presented results mainly in improvement 
of methods used for quantum enhanced sensing [24]. The method of states's 
characterization using the genuine Q N G criteria also provides a crucial milestone 
of experimental witnessing the intrinsic properties of highly non-classical 
states. Such states are broadly applicable in fields of optical frequency 
metrology [114, 117], quantum error correction [112] and test of quantum 
thermodynamical phenomena [118, 119]. Together with the recently published 
work demonstrating the number state generation approaching 1100) on the 
same experimental platform, [25], the set of here demonstrated genuine Q N G 
criteria w i l l allow for the optimization and comparison of these quantum 
states across different experimental platforms [120, 121]. The realized 
experiments involving the motional accumulation by repetitive interactions 
demonstrates the unprecedented possibility to deterministically acquire the 
quantum non-Gaussian properties in thermal states, and thus promises a feasible 
bypass for no-go theorem for Fock states processing [122]. The experimental 
routine may be directly extended into non-linear couplings with solid-state 
mechanical oscillators [109, 123-125]. 

A space for potential improvement lies in the possible enhancement of 
the set trapping frequencies, which would allow to speed up the stage of the 
state preparation. Also, the increase in laser power leading to increase in 
Rabi frequency would decrease a period of probed Rabi oscillations. Together, 
these two effects would accelerate the motional dynamics, while at the same 
time suppressing the diffusion to higher energies induced by a thermal heating 
process. A crucial technical issue which limited all experimental processes lied 
in non-ideal contrast of the employed Rabi flops, and also in high damping of 
the Rabi oscillations under probe. The possible improved electronic intensity 
stabilization and the fiber noise cancellation method could reduce this decay, 
which could lead to higher flop contrast and thus to more deterministic phonon 
gates and also more precise estimation of phonon statistics. Additionally, we 
expect that the employment of the passive magnetic shielding in form of the 
external box wi l l decrease the externally induced fluctuations of magnetic fields, 
which would also result towards increased coherence of the two-level system 
probe. During the preparation of the thesis, these improvements were partially 
implemented, which already led to improvement of the presented Ramsey 
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coherence times on 4S 1 / 2 -> 3 D 5 / 2 transition to beyond 10 ms. 
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