
Automatic real-time transcription of
multimedia conference

Master thesis

Study programme: N2612 – Electrical Engineering and Informatics
Study branch: 3906T001 – Mechatronics

Author: Bc. Anna Kamenskaia
Supervisor: Ing. Ondřej Smola

Liberec 2019

Automatic real-time transcription of
multimedia conference

Diplomová práce

Studijní program: N2612 – Electrical Engineering and Informatics
Studijní obor: 3906T001 – Mechatronics

Autor práce: Bc. Anna Kamenskaia
Vedoucí práce: Ing. Ondřej Smola

Liberec 2019

Master Thesis Assignment Form

Automatic real-time transcription of
multimedia conference

Name and Surname: Bc. Anna Kamenskaia
Identification Number: M18000224
Study Programme: N2612 Electrical Engineering and Informatics
Specialisation: Mechatronics
Assigning Department: Institute of Information Technology and Electronics
Academic Year: 2018/2019

Rules for Elaboration:
1. Describe the current status of open source technologies and solutions used in multimedia conferences.

2. Describe and discuss possible solutions for capturing live conference audio. Describe the current state
of real-time audio speech transcription software and select at least one platform to be used as a speech
recognition backend.

3. Implement demo conferencing room that will capture every attendee audio and transcribe it using
modular speech recognition backend.

4. Integrate your solution with one chosen open source web conference platform.

5. Discuss scalability and deployment requirements of your solution.

Scope of GraphicWork: Dle potřeby dokumentace

Scope of Report: cca 40-50 stran

Thesis Form: printed/electronic

List of Specialised Literature:
[1] ROY, Radhika Ranjan. Handbook of SDP for multimedia session negotiations: SIP and WebRTC IP

telephony. Boca Raton, FL: CRC Press/Taylor & Francis Group, 2018. ISBN 9781138484498.

[2] JOHNSTON, Alan B. SIP: understanding the Session Initiation Protocol. 3rd ed. Boston: Artech House,
c2009. ISBN 1607839954.

[3] GRIGORIK, Ilya. High-performance browser networking. Sebastopol, CA: O’Reilly, 2013. ISBN
1449344763.

Thesis Supervisor: Ing. Ondřej Smola
Institute of Information Technology and Electronics

Date of Thesis Assignment: 18 October 2018

Date of Thesis Submission: 30 April 2019

L. S.

prof. Ing. Zdeněk Plíva, Ph.D.
Dean

prof. Ing. Ondřej Novák, CSc.
head of institute

Liberec 18 October 2018

Declaration

I hereby certify that I have been informed that Act 121/2000, the
Copyright Act of the Czech Republic, namely Section 60, School-
work, applies to my master thesis in full scope. I acknowledge that
the Technical University of Liberec (TUL) does not infringe my
copyrights by using my master thesis for TUL’s internal purposes.

I am aware of my obligation to inform TUL on having used or
licensed to use my master thesis in which event TUL may require
compensation of costs incurred in creating the work at up to their
actual amount.

I have written my master thesis myself using literature listed therein
and consulting it with my supervisor and my tutor.

I hereby also declare that the hard copy of my master thesis is iden-
tical with its electronic form as saved at the IS STAG portal.

Bc. Anna Kamenskaia

28.04.2019

Abstrakt

Cílem práce je řešení pro přepis multimediální konference založené
na protokolu WebRTC v reálném čase za pomoci kombinace ex-
istujících technologií a řešení v oblasti konferencí, přenosu médií
a rozpoznávání řeči. Aplikace je naprogramována v Javě. Pro
signalizaci se používá protokol WebSocket a pro přenos audio dat
protokol RTP. Součástí řešení je modulární transkripční back-end
využívající rozhraní Google Cloud Speech-to-text API a řešení pro
rozpoznávání řeči vyvinuté v Laboratoři počítačového zpracování
řeči (SpeechLab) [1] na Technické univerzitě v Liberci. Přepisy
jsou zobrazeny v prohlížečích účastníků v reálném čase a zároveň
jsou zapisovány do souboru. Práce obsahuje příklady přepisovaných
konverzací.

Klíčová slova: WebRTC, multimediální konference, rozpoznávání
řeči v reálném čase, přepis řeči.

Abstract

This work focuses on performing real-time transcription of a multi-
media conference based on WebRTC protocol by combining exist-
ing technologies and solutions in conferencing, media transmission
and speech recognition in one application. The result application
is written in Java. It uses WebSocket to communicate with a con-
ferencing application, RTP for receiving audio data and suggests
modular transcription back-ends with Google Cloud Speech-to-text
API and speech recognition engine developed by the Laboratory
of Computer Speech Processing (SpeechLab) [1] in Technical Uni-
versity of Liberec already successfully integrated. Transcripts are
stored in files and also can be displayed in browsers in real-time.
Examples of transcribed conversations are provided.

Key words: WebRTC, multimedia conference, real-time speech
recognition, transcription.

6

Acknowledgements

I would like to thank my supervisor Ing. Ondřej Smola for all his
valuable advices, which helped me to solve the task and overcome
the difficulties I have encountered.

7

Contents

List of abbreviations . 11
List of Figures . 12

1 Introduction 13

2 Technologies used in multimedia conferencing 15
2.1 WebRTC . 15
2.2 STUN, TURN and ICE . 16
2.3 SDP . 16
2.4 SIP . 18

2.4.1 Integration of WebRTC and SIP 18
2.5 RTP . 19
2.6 WebSocket . 19
2.7 Conferencing platforms . 20

2.7.1 Types of WebRTC servers . 21
2.7.2 Janus . 21
2.7.3 Jitsi Videobridge . 21
2.7.4 Kurento Media Server . 21

2.8 Existing solutions for conference transcription 22

3 Solution architecture 23
3.1 Application requirements . 23
3.2 Selecting conferencing platform . 23

3.2.1 Setting up demo conference room 23
3.3 Selecting speech recognition back-end 24

3.3.1 General requirements for speech recognition service 24
3.3.2 Google Cloud Speech-to-text API 25
3.3.3 IBM Watson Speech to Text 26
3.3.4 Microsoft Speech-to-text . 26
3.3.5 Amazon Transcribe . 27
3.3.6 Yandex SpeechKit . 27
3.3.7 Speech recognition software developed in TUL 27
3.3.8 Final selection of transcription back-ends 27

3.4 Solution structure . 28
3.4.1 Communication . 31

8

4 Capturing live audio streams of conference attendees 33
4.1 Possible approaches . 33
4.2 Streaming and receiving with RTP 33

4.2.1 Configuring Kurento to stream RTP 34
4.2.2 Audio format . 34
4.2.3 Depacketizing RTP stream . 34
4.2.4 Discovering different source streams in incoming RTP packets

and processing the data . 35

5 Setting up transcription back-ends 37
5.1 Writing a client for TUL SpeechLab SRE 37

5.1.1 gRPC . 37
5.1.2 Protocol buffers . 37
5.1.3 Compiling service code with protoc 38
5.1.4 Connection and authentication 38
5.1.5 Starting data transmission . 39
5.1.6 Handling server responses . 39
5.1.7 Terminating the session . 39
5.1.8 Timestamps . 40

5.2 Writing a client for Google Cloud Speech-to-text API 40

6 Processing transcripts 42
6.1 Formulation of the problem . 42

6.1.1 Differences in how transcription services return results 42
6.1.2 Problem of synchronization 43
6.1.3 Solution for TUL SpeechLab SRE 43
6.1.4 Solution for Google Cloud Speech-to-text API 44
6.1.5 Input data flow optimisation 46

6.2 Defining a data structure to describe transcripts and their metadata . 47
6.3 Restoring the logical flow of conversation 47

6.3.1 Selecting a data structure to store transcripts before processing 47
6.3.2 Implementation of the algorithm of transcript sorting 48
6.3.3 Synchronizing response observers and transcript processors . . 49

6.4 Persistent storage . 50
6.5 Delivering transcripts back to browser clients 50

7 Using the solution 51
7.1 Deployment . 51
7.2 Example transcripts . 52
7.3 Scaling the solution . 53
7.4 Further enhancements . 53

8 Conclusion 54

References 57

9

Appendix A Enclosed files 58

Appendix B Example transcripts 59
B.1 English . 59
B.2 Czech . 59

10

List of abbreviations
API Application Programming Interface
FIFO First in, first out
IP Internet Protocol
GUI Graphical User Interface
HTML HyperText Markup Language
HTTP HyperText Transfer Protocol
JDK Java Development Kit
JSON JavaScript Object Notation
NAT Network Address Translation
SDK Software Development Kit
SRE Speech Recognition Engine
TCP Transmission Control Protocol
TLS Transport Layer Security
TUL Technical University of Liberec
UDP User Datagram Protocol
VoIP Voice over Internet Protocol
XMPP eXtensible Messaging and Presence Protocol

11

List of Figures

2.1 Distribution architecture for an N-way call [6] 20

3.1 Scheme of the interaction between solution components. 29
3.2 Application classes interaction. 30

4.1 The flow of the packets between source and destination hosts. 34
4.2 RTP payload. 35
4.3 Frames of two RTP streams observed in Wireshark. 35

5.1 An example id and label. 39
5.2 Difference between speaking and receiving time. 40

6.1 Example transcription by TUL SpeechLab SRE API. 42
6.2 Example transcription by Google Speech API 42
6.3 Examples of wrong transcript order. 43
6.4 Example transcript with interimResults option enabled. 45
6.5 An example transcript with singleUtterance 46

B.1 A conversation in English transcribed by Google Speech API. 60
B.2 A conversation in English transcribed by TUL SRE. 60
B.3 A conversation in Czech transcribed by Google Speech API. 60
B.4 A conversation in Czech transcribed by TUL SRE. 61

12

1 Introduction

Multimedia conferencing allows live communication for people residing in different
locations. Widely known solutions such as Skype, Google Hangouts, Zoom, Discord
and others join many people for communication in business, education and enter-
tainment activities. The WebRTC (Web Real-Time Communications) project was
introduced around 2011 and provided technologies and tools for building browser-
based multimedia conferencing solutions, connecting browsers, mobile platforms and
IoT devices with a common set of communication and data transmission protocols
[2]. WebRTC allows participating in multimedia conferences without installing ad-
ditional software except a web browser.

Speech recognition is the ability of computer to convert human spoken speech
into text representation. Speech recognition software involves advanced methods
and technologies of computer science such as big data, deep learning and neural
networks. Speech recognition is widely used in all areas of human society: science,
education, military, business, telephony and daily live. Increasing accuracy and
power of speech recognition software allows more and more advanced applications
[3].

Transcription is the process of representing speech in written form. A transcript
is a written record of spoken language [4]. If an important meeting is held in
a conference room, there can possibly be a special person - transcriber, who would
literally transcribe everything spoken on this meeting by hand or using computer.
Now, if a conference can be held online in the browser, why would not we perform
transcription automatically using various means of web communication and data
transmission together with latest achievements in the speech recognition field?

Offline transcriptions are not a rarity nowadays. An online meeting can be
recorded and then sent to a speech recognition service. Youtube demonstrates a high
accuracy of transcribed speech - one can upload a recording and the service will au-
tomatically generate subtitles. But there is not much information on performing live
multimedia conference transcription. Some commercial solutions offer such function-
ality but technical details are not available. Community lacks open-source solutions.
Skype introduced call transcription last year in December [5]. All these identifies
that this field is relevant. Live multimedia conference transcription is a modern and
demanded task which justifies the relevancy of this diploma thesis.

This work focuses on solving various tasks and issues that may be encountered
while building a solution for real-time web conference transcription. The problem
can be decomposed in three main parts: capturing live stream audio, performing
speech recognition using third-party services and processing the results. All these

13

must be done as close to real-time as possible. A lot of problems may arise while
fulfilling this requirement. The processes of searching for solutions and their imple-
mentations are described in this thesis.

An overview of existing technologies and protocols used for building web appli-
cations with conferencing functionality is performed in chapter 2.

Chapter 3 is dedicated to solution architecture. It is one of the most impor-
tant chapters as it describes selection of conferencing platform, speech recognition
back-end, the rest of necessary technological stack and how all these elements are
connected with each other.

Possible ways to capture live stream audio are described in chapter 4 as well
as the particular implementation used in our solution.

In chapter 5 we would like to describe the details of writing client solutions for
the chosen speech recognition services.

Chapter 6 describes problems that can be encountered while performing live
speech recognition for multiple audio streams and their solution. The matters of
persistent data storage and its live representation are also discussed in this chapter.

Deployment of the solution is explained in chapter 7. There are also example
conversation transcripts provided for different spoken languages as well as sugges-
tions for application scaling and its further development.

14

2 Technologies used in multimedia confer-
encing

2.1 WebRTC
Web Real-Time Communication (WebRTC) is a collection of standards, protocols,
and JavaScript APIs, the combination of which enables peer-to-peer audio, video,
and data sharing between browsers (peers). However, it is not limited to browser
communication and can be integrated with VoIP systems and SIP clients. Instead
of relying on third-party plug-ins or proprietary software, WebRTC turns real-
time communication into a standard feature that any web application can leverage
via a simple JavaScript API [6].

There are three major components of WebRTC API which provide all the com-
plex functionality required for a browser to support peer-to-peer data exchange,
audio and video processing, and required network protocols:

• MediaStream: access to user’s media;

• RTCPeerConnection: exchange of audio and video data;

• RTCDataChannel: transfer of arbitrary data.

WebRTC uses UDP on the transport layer: latency and timeliness are more
critical than reliability. Several transport protocols layered on top of UDP are used
for transport:

• Datagram Transport Layer Security (DTLS) is used for secure transport of
application data;

• Secure Real-Time Transport (SRTP) is used to transport media;

• Stream Control Transport Protocol (SCTP) is used to transport application
data.

Current WebRTC implementations use two default codecs for the media: OPUS for
the audio and VP8 for the video [6]. There are also optional iSAC, iLBC, PCMA,
PCMU audio codecs and VP9 video codec [7].

How to establish a connection between two WebRTC peers if they probably
reside in their own networks and behind NAT? Most likely, neither of peers can

15

be reached directly. Moreover, unlike a server which is expected to be opened for
connections, a WebRTC peer may be unreachable, busy, or unwilling to initiate
connection. As a result, the following problems must solved to succesfully establish
peer-to-peer connection:

1. A remote peer must be notified about opening connection so it would start
listening for the incoming packets;

2. Potential routing paths must be identified on both sides of connection and
shared between peers;

3. Peers must exchange necessary information about media parameters: proto-
cols, encodings [6].

2.2 STUN, TURN and ICE
Session Traversal Utilities for NAT (STUN) allow a host to determine the public
IP address and port allocated to it in presence of a network address translator. To
do so, it must send a request to a STUN server residing in pubic network and it
would reply with a public IP address and the port of the client as they are seen from
the public network. Unfortunately, STUN is not sufficient to deal with all possible
network topologies and in some cases UDP may be blocked by a firewall [6].

Whenever STUN fails, Traversal Using Relays around NAT (TURN) protocol
comes as a fallback. It relies on some public relay which transfers data between
peers, so the connection is not actually peer-to-peer. This approach is reliable but
the cost is high as well - the relay peer must possess enough capacity to serve all
data flows. For this reason it should be used only when direct connection fails to
establish [6].

Interactive Connectivity Establishment (ICE) is a built-in mechanism of We-
bRTC framework which is responsile for discovering routes and check connectivity
between peers. Each RTCPeerConnection has its own ICE agent. ICE agent ob-
tains local IP addresses and port tuples from the operating system, queries a STUN
server and appends a TURN server as a fallback candidate if they are configured.
The application is notified via a callback function. Once this process is complete,
an SDP offer can be generated and delivered to the other peer through signalling
channel. Once the remote session description is set on the RTCPeerConnection ob-
ject, which now contains a list of candidate IP and port tuples for the other peer,
the ICE agent begins connectivity checks. If a STUN binding request is confirmed
by the other peer then the routing path is established [6].

2.3 SDP
When initiating multimedia conferences, VoIP calls, streaming media or other ses-
sions, it is necessary to convey media details, transport addresses and other session

16

description metadata to the participants. Session Description Protocol (SDP) pro-
vides a standard representation for such information, irrespective of how that infor-
mation is transported. SDP does not deliver any media by itself but is used between
endpoints for negotiation of media type, format, and all associated properties. The
set of properties and parameters are often called a session profile [8][9].

SDP include five major components: session metadata, stream, Quality of Ser-
vice (QOS), network and security. Session metadata contains information about
SDP protocol version, originator of the session and its duration. The stream de-
scription contains details about media (audio, video) transported within a session.
The QOS description contains all performance parameters of media streams. The
network parameters describe what kind of transport and network protocol is used.
The security parameters may include encryption key, authentication, authorization,
integrity [10].

SDP provides offer/answer communication model. In this model, one participant
in the session generates an SDP offer - specification of the set of media streams and
codecs the offerer wishes to use, along with the IP addresses and ports the offerer
would like to use to receive the media. The offer is conveyed to the other participant
(answerer) by some means of transport. The answerer generates an SDP answer
responding to the provided offer. The answer has a matching media stream for each
stream in the offer, indicating whether the stream is accepted or not, along with the
codecs that will be used and the IP addresses and ports that the answerer wants to
use to send and/or receive media [10]. Such communication model is used in Session
Initiation Protocol (SIP).

An example session description generated by the application developed within
this diploma thesis:

v=0
o=Transcr ibe r IN IP4 147 . 2 3 0 . 1 6 5 . 3 5
s=WebRTC con f e r ence t r a n s c r i p t i o n
c=IN IP4 147 . 230 . 165 . 35
t=0 0
a=recvon ly
m=audio 49170 RTP/AVP 0
a=rtpmap : 0 PCMU/8000

The ”v=” field defines the version of the Session Description Protocol. The
session is originated by Transcriber at IPv4 address 147.230.165.35. Session name
is ”WebRTC conference transcription”. The connection address is equal to session
origin address in this case. The ”a=recvonly” line tells that this host is instructed
only to receive media. Last two lines tell that host listens for incoming audio streams
at port 49170 and specify the media format – RTP/AVP payload type 0 (defined in
RFC 3551 as PCMU [11]) which is mapped to PCMU (µ-law encoded PCM audio)
sampled at 8000 Hz.

17

2.4 SIP
Session Initiation Protocol (SIP) is an application layer signaling, presence, and
instant messaging protocol which facilitates the creation of multimedia application
services such as video conferencing [12]. SIP employs RTP over UDP for transport
and SDP for session capabilities negotiation. Although SIP is usually mentioned
from telephony perspective, it can be used to establish sessions having little in
common with telephony. SIP infrastructure includes many types of client and server
endpoints, the most important among them are described below:

• SIP user agent (UA) is a SIP-enabled end device which helps to establish
connections with other UAs;

• A back-to-back user agent (B2BUA) is a type of SIP UA that receives a SIP
request, then reformulates the request and sends it out as a new request. Can
be used for organizing an anonymizer service to connect UAs without exposing
any contact information;

• SIP gateway provides interface between a SIP network and another network
utilizing different signalling protocol. Possible applications include topology
hiding, media traffic management, media encryption, access control and more;

• SIP proxy server forwards SIP messages between user agents. Although
UAs can communicate directly if the IP addresses are known but it is not
a common situation. SIP proxy typically has access to user databases and
can determine the route. SIP proxy has no media capabilities, does not gen-
erate requests (only responses to UAs) and relies only on SIP headers without
parsing message bodies;

• SIP registrar server registers SIP user accounts. The user database can be
used by other SIP servers (for example, proxy servers) within the same ad-
ministrative domain [12].

SIP is not the only signalling protocol which can be used with WebRTC, for exam-
ple, Jingle or ISDN User Part can be used as well. Actually, WebRTC standards
defer the choice of signaling transport and protocol to the application, so custom
implementation of signaling is acceptable [6].

2.4.1 Integration of WebRTC and SIP
Telecommunication solutions based on the SIP architecture and WebRTC solutions
have a lot in common so the idea of building conferencing solutions available both for
browser and regular SIP clients is quite natural. It can be achieved if there is some
translation gateway which provides interface between SIP and signalling protocol
implemented in WebRTC part. Another idea is based on RFC 7118 [13] which
describes usage of WebSocket protocol as a transport between SIP infrastructures
and web-oriented solutions. The components responsible for integration would be

18

a WebRTC client with signalling functionalities implemented with WebSocket SIP
API and a SIP proxy with WebSocket interface. As for media plane, some mandatory
WebRTC protocols may not be supported by SIP clients so a media gateway may
also be required [14].

2.5 RTP
The Real-time Transport Protocol provides delivery services for data with real-
time charasteristics, such as audio and video. Those services include payload type
identification, sequence numbering, timestamping and delivery monitoring. RTP
runs over UDP and is usually used together with the RTP Control Protocol (RTCP).
RTCP is used to monitor transmission statistics and quality of service (QoS) and aids
synchronization of multiple streams [11]. RTP is widely used in communication and
media systems that involve streaming media, such as telephony, television services
and conferencing applications including WebRTC.

A complete specification of RTP for a particular application usage requires profile
and payload format specifications. The profile defines the codecs used to encode the
payload data and their mapping to payload format codes in the Payload Type (PT)
field of the RTP header. Each profile is accompanied by several payload format
specifications, each of which describes the transport of a particular encoded data.
For this reason, RTP is accompanied by SDP confidentiality, message authentication,
and replay protection to the RTP traffic [15].

Secure Real-time Transport Protocol (SRTP) is a profile of the RTP, which can
provide confidentiality, message authentication, and replay protection to the RTP
traffic and to the control traffic for RTP, the RTCP [16].

2.6 WebSocket
WebSocket enables bidirectional, message-oriented streaming of text and binary
data between client and server. It is the closest API to a raw network socket in the
browser. WebSocket is one of the most versatile and flexible transports available in
the browser. The simple and minimal API enables us to layer and deliver arbitrary
application protocols between client and server – anything from simple JSON pay-
loads to custom binary message formats – in a streaming fashion, where either side
can send data at any time. WebSocket provides low latency delivery of text and
binary application data in both directions over the same TCP connection. The Web-
Socket resource URL uses its own custom scheme: ws for plain-text communication
and wss when an encrypted channel (TCP+TLS) is required. WebSocket protocol
is a fully functional, standalone protocol than can be used outside the browser. Its
primary application is as a bidirectional transport for browser-based applications
[6].

19

2.7 Conferencing platforms
The main advantage of the WebRTC technology is that it allows peer-to-peer, or,
more precisely, browser-to-browser communication with little intervention of server,
which is usually intended for signaling only. One-to-one connections are easy to
manage and deploy: the peers talk directly to each other and no further optimization
is required. However, this approach is sufficient only for creating very simple web
applications. Features such as group calls, media stream recording and processing,
media broadcasting are hard to implement on top of it. For example, in case of
a group call a peer is required to send his video/audio stream to every other attendee
while receiving a video/audio stream from each of them. This is quite resource-
demanding and potentially leads to poor performance when increasing the number
of participants in a call beyond two. As a result, multiparty applications should
carefully consider the architecture of how the individual streams are aggregated and
distributed between the peers. Possible ways to organize a multiparty architecture
are illustrated on figure 2.1.

Figure 2.1: Distribution architecture for an N-way call [6]
.

While mesh networks are easy to set up, they are often inefficient for multiparty
systems. It would be nice to reduce the number of streams a peer needs to send
or even receive. To address this, an alternative strategy is to use a “star” topol-
ogy instead, where the individual peers connect to a ”supernode”, which is then
responsible for distributing the streams to all connected parties. This way only one
peer has to pay the cost of handling and distributing N-1 streams, and everyone
else talks directly to the super‐node. A supernode can be another peer or it can be
a dedicated service. WebRTC enables peer-to-peer communication but it does not
mean that one should not consider a centralized infrastructure [6]. The concept of
a WebRTC server needs to be introduced here. Basically, a WebRTC server acts

20

as an intermediate node where media traffic goes through while moving between
peers .

2.7.1 Types of WebRTC servers
There are two main types of WebRTC servers. If it only acts as a relay, it is called
SFU (Selective Forwarding Unit), meaning its main purpose is forwarding media
streams between clients [17]. Also, there is a concept of MCU (Multipoint Control
Unit) which does not just forward media streams but operates on them and may
modify them in some way: record, transcode, mix multiple streams into one and
then send to the clients. MCU acts as a central entity every participant is talking
to. It receives media from each participants, mixes into one stream, performs nec-
essary operations and sends it to participants [18]. From browser perspective each
participant is speaking only to one person. Unlike this, in case of using SFU each
participant would have an uplink with his data and as many downlinks as there are
people he is speaking with. There is no generalized opinion of what is better: SFU
or MCU. The best selection depends on task.

2.7.2 Janus
Janus us a general purpose WebRTC server. Its core is designed to provide only the
minimal functionality necessary to set up WebRTC communication. Any specific
feaute needs to be implemented as a plugin. Example of such plugins can be imple-
mentations of applications like echo tests, conference bridges, media recorders, SIP
gateways and the like [19]. Janus is lightweight and limited in basic installation but
highly customizable.

2.7.3 Jitsi Videobridge
Jitsi is an open-source collection of VoIP and web conferencing oriented applications
and libraries. The main projects are Jitsi Videobridge and Jitsi Meet. Jitsi Meet
is a full conferencing application written in JavaScript working with Jitsi Video-
bridge. Jitsi Videobridge is a SFU, implements XMPP for signalling [20].

2.7.4 Kurento Media Server
Unlike Janus and Jitsi, Kurento is a WebRTC capable media server providing both
SFU and MCU functionality. It is written in Java and combines the Mobicents/J-
Boss application server and the GStreamer multimedia stack. Kurento can be con-
trolled via API it exposes with the help of client implementations written for several
programming languages. Kurento API has modular structure and relies on two basic
concepts:

• Media Element - a functional unit performing specific action on a media
stream. There are input/output elements responsible for injecting and tak-

21

ing media streams out of pipeline, filters that are in charge of analyzing and
modifying data and hubs managing multiple media streams in a pipeline;

• Media Pipeline - a graph formed by chains of Media Elements where he output
stream generated by a source element is fed into one or more sink elements.

Kurento can be used in any type application where the signaling is based on SIP
or HTTP and the media is represented and transported in any of the protocols and
formats supported by GStreamer [21]. This makes Kurento a notable candidate for
building advanced multimedia applications.

2.8 Existing solutions for conference transcription
A conference can be recorded and uploaded to Youtube that will generate transcripts
or to some transcription service like Way With Words, but those are not real-time.
Speaking about recently developed solutions, transcription feature was added to
Skype [5]. But what about open-source solutions? There are not many.

The BaBL Project [22] is a simple conferencing application using Javascript Web
Speech API available for Chrome browser for speech recognition. Transcription
is performed and displayed separately for each speaker. Unfortunately, the project
has not been updated since 2014.

Jigasi [23] is a part of Jitsi stack. It is a SIP gateway that allows regular SIP
clients to join Jitsi Meet conferences hosted by Jitsi Videobridge which uses different
signalling protocol (XMPP). Jigasi provides transcription capabilities since 2017
[24]. Jigasi can be invited to a Jitsi Meet conference as a silent attendee. It receives
audio data from conference participants via RTP and uses Google Cloud Speech-
to-text API for transcription. The problem is that one is obliged to use Jitsi stack
as this software works only for Jitsi Meet. Also, there is no adequate documentation
on this solution and only some inexplicit installation instructions so it is hard to
setup and use (actually, attempts to configure Jitsi transcription within this project
have failed.) However, this is the most consistent and relevant open-source solution
for real-time transcription which can be found today.

22

3 Solution architecture

3.1 Application requirements
There are four main requirements to the transcribing application implied in the
assignment. Fulfilling all these requirements was the main goal while designing the
application architecture:

• It must somehow connect to the conference room and capture live stream
audio of every participant in the room separately;

• It must support at least one modular transcription back-end. Modularity
suggests designing the application in such a way that adding support of a new
transcription back-end would not require changing of already existing logic;

• It should not be tied up to any particular conferencing platform so it would
be possible to integrate it into various conferencing applications. In the scope
of this diploma thesis, it must be integrated with one selected open-source
conferencing platform.

• It should be easily deployable and scalable - capable of performing transcrip-
tion for multiple conferences simultaneously.

3.2 Selecting conferencing platform
As development of conferencing application is not the focus of this work, there are
no high or specific requirements to the central unit. It should be easy to deploy
and control. Kurento turned out to be the most comfortable selection as it can be
easily installed, provides good documentation and complete example applications.
Its architecture also allows to easily implement new functionality.

3.2.1 Setting up demo conference room
Kurento provides various examples of how to use the media server for solving differ-
ent tasks written in Java and Node.js. Among them there is a group call application
which is sufficient to organize a demo conferencing room to test the transcription
application. This example application is simple and limited but development of
a production-ready conferencing solution was not an objective of this thesis, so the

23

example application written in Java was used and modified as far as it was necessary
to enable web conference transcription.

The interface allows a user to enter a room name and a nickname to use in the
room. If such room already exists, the client will join to that room, otherwise a new
room would be created. After entering the room and giving the browser permission
to capture his media data, the user can see himself and other participants of the
room if there are any as well as sort of a chat box where the transcripts will be
displayed. The screenshots of the GUI can be found in the appendix.

3.3 Selecting speech recognition back-end

3.3.1 General requirements for speech recognition service
The main requirement towards a speech recognition service for solving the task of
live web conference transcription is support of streaming speech recognition. We will
analyse and select a transcription back-end according to the following criterions:

• Streaming speech recognition support;

• It must provide a comprehensible API to integrate with our application;

• Variety of supported languages, Slavic languages being the focus of our solu-
tion;

• Continuous speech recognition. As web conferences are usually held for a rel-
atively long time (e.g. from 10 minutes to several hours) it is necessary for
transcription back-end to maintain persistent connection with the client. If
there are any limitations on the audio stream duration it should be possible
to quickly reinitialize recognition.

• Accuracy of speech recognition. There is a difference between transcribing
short audio and a long conversation with multiple participants where relatively
low word error rate for each of them may accumulate and result in a nonsense
final conversation log. However, high accuracy usually comes in the cost of
higher latency which is critical for a real-time application so there must be
some trade-off between these qualities.

• It should be available without purchasing subscription for a decent price;

• Java client libraries and detailed documentation are desirable but not obliga-
tory;

There is plenty of commercial speech recognition software, both online and offline
installations. Many of them are oriented towards enterprise usage, do not offer
free trials and not many actually support live speech recognition (record audio and
upload the file instead) and provide an API for developers. There are also open-
source solutions such as CMUSphinx [25], but they are not considered because of

24

significantly lower quality of speech recognition comparing to commercial solutions.
We are not able to analyze all existing speech recognition software and it is not
the purpose of this thesis, so we will look at only the most known and widely used
solutions, applying the defined criterions.

3.3.2 Google Cloud Speech-to-text API
Google Cloud Speech-to-text API [26] is a well-documented API with client libraries
available for many programming languages such as C#, Go, Java, Node.js, PHP,
Python and Ruby. It supports a great variety of languages, actually, most of the
languages spoken in the world. Cloud Speech-to-Text provides the following capa-
bilities of transcribing audio:

• Synchronous speech recognition intended for transcription of short audio files
(less than 1 minute);

• Asynchronous speech recognition allows transcribing audios longer than 1
minute but they have to be uploaded to Google Cloud Storage first. Recog-
nition time depends on the length of the audio and can take minutes if the
audio file is large;

• Streaming speech recognition allows streaming audio to Cloud Speech-to-Text
and receiving results in real time. Unfortunately, the length of the audio
is limited to 1 minute and if it exceeds this limit, an error will be returned.
Reinitializing the recognition every one minute by sending configuration re-
quests again seems to be the only way to overcome this limitation for now.
Streaming speech recognition is available via gRPC (gRPC Remote Procedure
Calls).

There are some features of Google Cloud Speech-to-Text worth mentioning:
separation of different speakers, automatic detection of the spoken language, au-
tomatic punctuation, transcribing audio with multiple channels. It is stable against
side noises in the audio. There are also special recognition training models such
as phone call model (currently available for English only) which might be especially
useful as web conferences are close to phone calls. Obviously, this API is not free.
Actually, one can transcribe up to 60 minutes of audio for free and then it will cost
$0.006 for every 15 seconds. It is important to keep in mind that every request
will be rounded to the nearest increment of 15 seconds so, for example, 3 separate
requests containing 7 seconds of audio will be billed as 45 seconds of audio.

Google Cloud Speech-to-Text recommends providing streaming audio captured
with a sampling rate of 16 kHz or higher, encoded in FLAC or LINEAR16 codec and
split into 100-milliseconds frames as a good trade-off between efficiency and latency
[26].

25

3.3.3 IBM Watson Speech to Text
IBM Watson Speech to Text [27] supports far less languages comparing to Google
Cloud Speech-to-Text: Arabic, English, Spanish, French, Brazilian Portuguese,
Japanese, Korean, German, and Mandarin. There are many available SDKs: An-
droid, Java, Node.js, Python, Ruby, JavaScript library, .NET etc. The service offers
three speech recognition interfaces:

• Synchronous HTTP interface;

• Asynchronous HTTP interface;

• WebSocket interface. According to documentation, it is the preferred mecha-
nism for speech recognition as it has a number of advantages over the HTTP
interface such as full-duplex communication channel, establishing a single au-
thenticated connection indefinitely (HTTP interfaces require to authenticate
each call), reduced latency and network utilization and an event-driven model
of communication;

The WebSocket and synchronous HTTP interfaces accept a maximum of 100
MB of audio data with a single request. Up to 1 GB of audio data can be send with
a single asynchronous request. The WebSocket interface looks like an applicable
option for real-time speech recognition. This recognition service is suitable for high-
noise environments. IBM charge $0.02 per minute based on the actual length of
audio sent.

3.3.4 Microsoft Speech-to-text
Microsoft Speech-to-text [28] is one of the Azure speech services previously available
as Bing Speech API. The Bing Speech API is still functional but will stop working
from 15.10.2019 so it is not considered in this thesis. This API supports more
languages than IBM Watson but still less than Google Speech-to-text. There are
SDKs available for C/C++, C#, Java, JavaScript/Node.js, Objective-C, Python.
There are the following usage cases described in the documentation:

• Transcription of an audio recorded with a microphone;

• Speech recognition from an input file;

• Audio Input Stream API provides a way to recognize audio streams instead
of microphone recordings or input files. The only audio format currently sup-
ported is PCM, single channel, sampled at 16 kHz, 16 bits per sample. How-
ever, the documentation does not provide a clear and detailed code sample of
using this API.

The pricing looks more or less attractive. In case of one concurrent request at
a time Speech-to-text services can be used for 5 hours free per month. Up to 20
concurrent requests will cost $1 per hour. Usage is billed in one-second increments.

26

3.3.5 Amazon Transcribe
Amazon Transcribe [29] is one of the machine learning services provided by Amazon.
It supports transcription of streaming audio in real-time using HTTP/2 streams:
client send a stream of audio and Amazon transcribe returns a stream of JSON
objects containing the transcript. Unfortunately, streaming recognition is supported
only for English and Spanish languages.

3.3.6 Yandex SpeechKit
Yandex SpeechKit [30] supports Russian, English and Turkish languages and pro-
vides streaming speech recognition via gRPC . Acceptable audio formats are LIN-
EAR16 and OPUS. The maximum duration of transmitted audio for a single session
is 5 minutes. To continue recognition, it is necessary to reconnect and send a new
message with speech recognition settings. So, while being the cheapest among men-
tioned services, Yandex SpeechKit is relatively limited.

3.3.7 Speech recognition software developed in TUL
In the scope of this diploma thesis there also was an opportunity to try out cloud
transcription platform based on the speech recognition engine developed by Speech-
Lab in the walls of Technical University of Liberec [1] which will be later referred
to as TUL SpeechLab SRE (Speech Recognition Engine). It supports 18 languages
(most of them are Slavic languages), provides streaming speech recognition capa-
bilities using gRPC, event-driven model of client-server communication model and
timestamps which is extremely useful not only for indexing but also for time syn-
chronization between multiple audio streams being recognized simultaneouosly like
in case of transcribing a web conference. The platform provides three APIs:

• HTTP File API to transcribe pre-recorded audio files;

• WebSocket API for browser based applications;

• gRPC API for non-web applications with fast response time requirements.

All three APIs support real-time speech recognition, which is important as it
means that this platform was designed specially for real-time solutions.

3.3.8 Final selection of transcription back-ends
The solution from SpeechLab was selected as primary recognition back-end for its
real-time intended features. As we can see, other suitable speech recognition ser-
vices are provided mainly by huge IT companies as part of their various machine
learning cloud solutions for business and development. They use different commu-
nication technologies to provide live speech recognition functionality: gRPC, Web-
Sockets, HTTP/2 streams. According to some benchmarks and comparisons Google
Speech-to-text tends to perform with a generally lower WER (word error rate). IBM

27

Watson, Yandex SpeechKit and Amazon Transcribe support a narrow variety of
languages comparing to Microsoft Speech-to-text and Google Cloud Speech-to-text.
The main disadvantage of Google Cloud Speech-to-text is the short accepted length
of the audio stream which can probably be tricked and Microsoft Speech-to-text
Audio Input Stream API is limited to a particular audio format which may intro-
duce additional complications and provides relatively scant documentation. Any of
the services can be better or worse depending on different conditions so modularity
of the transcription back-end in our application is required for it to be flexible and
adjustable for slightly different usage cases. For this reason within this diploma
thesis several transcription back-ends were selected to compare results.

An important note must be made. There are no examples of streaming speech
recognition performed for multiple audio streams simultaneously with synchroniza-
tion of results provided in documentation of any of the mentioned transcription
services. It means that unexpected difficulties may be encountered while using any
speech recognition back-end. To find out whether selected speech recognition back-
end is truly suitable for real-time web conference transcription and define general
requirements is one of practical goals of this thesis.

Google Cloud Speech-to-text API has been chosen as the second possible tran-
scription back-end for the application developed within this diploma thesis as the
most widely-used and well-proven service. It supports a vast amount of languages
and audio formats which makes it flexible, offers high accuracy of recognition, auto-
matic punctuation and other potentionally useful features. Although there is a sig-
nificant limitation to the audio stream duration, we will search for a solution of
this problem which must definitely exist as many applications use this API – the
mentioned solution from Jitsi foundation is not an exception.

3.4 Solution structure
The whole system consists of three main elements, as it is shown on figure 3.1: the
conferencing application, the media server and the transcribing application.

Conferencing and transcribing applications use WebSocket connection to ex-
change information about ongoing conferences and transfer transcripts. Conferenc-
ing application uses Kurento Client library to control Kurento Media Server which
handles the flow of media in a conference and streams each participant’s audio data
to the transcribing application which extracts encoded audio data from RTP packets
and sends it to a selected speech recognition service. Results are returned to the
conferencing application to be displayed in browser clients and also saved to a file.

Figure 3.2 represents main transcribing application components and their inter-
action.

The following set of classes is responsible for primary application logic:

• Main - the application starts in this class. It is responsible for WebSocket con-
nection, message handling and controlling the active transcribed conferences;

28

Figure 3.1: Scheme of the interaction between solution components.

• Configuration - a service class written as Singleton, stores configuration pa-
rameters loaded from a properties file provided on application start;

• Conference - all information about a conference is stored in an instance of this
class. It stores data about participants, RTP receivers, transcribers and tran-
script processors working for a conference and controls creation and deletion
of these objects;

• RTPReceiver - this class handles incoming RTP streams, discovering different
participants in the incoming flow of RTP packets, extracting raw audio data
and passing it to transcribers, starting new transcribers for each new source
stream found. There is one RTPReceiver for every conference and it is running
in a separate thread;

• Transcriber is an abstract class which must be inherited when adding tran-
scription back-ends. Any transcriber has an id, a link to the conference it
belongs to, a source stream and start/stop flags. Inherited classes must im-
plement abstract methods initialize(), startTranscription(), transribe() and
stopTranscription. Also, they must implement method run() from the inter-
face Runnable as they are designed to run in a separate thread. Initialization
suggests setting up connection and authentication parameters. Starting tran-
scription is sending the start message to the transcription back-end. Method
transcribe() should be called to send a chunk of data read from the source
stream. Stopping transcription suggest closing connection to the speech recog-
nition API;

29

Figure 3.2: Application classes interaction.

• Response observers represented by GoogleResponseObserver and NanotrixRe-
sponseObserver handle responses from SREs, passing transcripts to transcript
processing logic and control transcribers if necessary;

• TranscriptProcessor - transcripts received from the speech recognition back-
end are processed here: sorted in correct order, serialized to JSON to be
delivered back to conferencing application and saved to file for persistent stor-
age. There is one TranscriptProcessor for a conference, running in a separate
thread;

• Transcript - objects of this class contain pieces of transcribed speech and all
necessary metadata: conference name, participant name, timestamp;

• ObjectFactory - a factory class providing static methods to create different
instances of Transcriber and TranscriptProcessor depending on transcription
back-end used in current instance of application.

30

3.4.1 Communication
The transcribing application uses WebSocket to communicate with conferencing
application. As browser clients usually speak to conferencing back-end via Web-
Socket as well, it is relatively easy to integrate transcribing solution which acts
like a client. Communication is performed by mutual exchange of JSON messages
containing information about new and leaving participants, RTP session parame-
ters and transcriptions of speech. Message type is specified in id field of a JSON
message.

Types of messages sent by transcribing application:

• transcriberRegister - this message helps conferencing application to identify
transcriber among other clients connecting to it via WebSocket. It is up to
developer to implement acceptance/rejection logic but this message must be
replied with transcriberRegisterResponse;

• transcriberSdpOffer - generated SDP offer. Such message also contains confer-
enceId and participantId fields identifying room and participant whose audio
stream the transcription application wishes to obtain. The SDP offer must be
processed by the part of conferencing application responsible for RTP stream-
ing;

• transcriptionStarted - this message is used to notify the conferencing appli-
cation that transcription has started for a particular user as it contains con-
ferenceId and participantId fields. The conferencing application may then
broadcast such message to the conference participants to let them know that
transcription is active;

• transcript - such message contains a transcript of a piece of speech spoken by
a person identified by conferenceId and participantId fields;

• transcriptUrl - contains a link to transcript served by HTTP server.

Types of messages handled by transcribing application:

• transcriberRegisterResponse - a response to transcriberRegister request. It
must contain response field the value of which is rejected in case the confer-
encing application can not accept the transcriber for some reason (e.g. there
is already registered transcribing application and only one is supposed by
application logic). The rejection response must also containg message field
specifying the reason of rejection;

• newParticipant - should be sent by conferencing application whenever a new
conference is created or there is a new participant in an existing conference. It
must contain conferenceId, participantId and languageCode fields referring to
the room and participant for which this event has occured. If it is a new con-
ference, the transcribing application will create new Conference, RTPReceiver,
TranscriptProcessor objects and then generate an SDP offer. If it is a new

31

participant in an existing conference, only SDP negotiation will be performed
to acquire new participant’s RTP stream;

• transcriberSdpAnswer - an answer to the SDP offer sent by transcribing ap-
plication. It must contain conferenceId and participantId fields. Participants
are added to the conference description of the transcribing application only if
SDP negotiation was successful;

• quitParticipant - contents are the same as in newParticipant message but
should be sent if a user leaves conference room. The entities responsible for
transcription for this user will be removed. If it was the last user in the con-
ference (the call is finished) then RTP receiving and transcript processing will
be stopped and the conference will be closed.

The following chapters provide detailed description of all stages of performing
real-time conference transcription.

32

4 Capturing live audio streams of conference
attendees

4.1 Possible approaches
The simplest way to capture audio is doing it on client side by getting direct access
to the user’s media device. It would limit the selection of transcription back-end
as streaming speech recognition is not always available with JavaScript. Also, it
would oblige to use this particular WebRTC client for someone who would like to
use the solution.

Transcription must be performed by some external application to be flexible.
This application can act as a silent participant. Such approach is used in Jigasi,
where transcriber is a participant which can be invited to the conference by pressing
special button. Transcriber is a SIP client.

The idea implemented is this work is generally similar but evades usage of SIP
and necessary SIP servers and gateways, so there is no need to integrate SIP with
WebRTC specially for transcription application. RTP streams are forwarded to
the transcribing application by the media server and signalling is done in a custom
way over WebSocket using SDP for session negotiation. From the perspective of the
conferencing application clients, the transcription is performed by back-end, so there
is no physical presence of some transcriber in the conference as a participant.

4.2 Streaming and receiving with RTP
There are not many implementations of RTP stack available for Java. libjitsi devel-
oped by Jitsi for their conferencing stack is the most advanced and relevant according
to its description but unfortunately no success was achieved in attempts to use it
in this project. Java Media Framework (JMF) [31] was used for quite a long time
but it is extremely outdated (no updates since 2003) and therefore does not support
modern audio formats and SRTP (secure version of RTP). Finally, the project was
reconfigured for jlibrtp - a simple open-source library. It it is not tied up to any
audio format like JMF which is definitely an advantage and is simple to integrate.
However, it does not support SRTP.

33

4.2.1 Configuring Kurento to stream RTP
Kurento’s pipeline concept and media server capabilities give an advantage in con-
figuration of RTP streaming. Every participant registered in the application has
an outgoing WebRTCEndpoint and a number of incoming endpoints equal to the
number of participants in the conference, which is varying as users join and leave
conference rooms. All outgoing media can be duplicated in a RTP stream by cre-
ating a RTPEndpoint and connecting it to the outgoing WebRTCEndpoint when
initializing user session. Kurento will start RTP stream when it receives session de-
scription parameters. Kurento implements SDP offer/answer negotiation model for
its RTPEndpoint. The stream starts as soon as the conferencing application receives
an SDP offer from the transcribing application via WebSocket and passes it to the
RTPEndpoint to process.

4.2.2 Audio format
WebRTC uses OPUS as default audio codec. Unfortunately, TUL SRE does not sup-
port this codec and Google Speech API supports only Ogg [32] containerized OPUS
audio so it would be better to use another codec supported by both speech recog-
nition back-ends. G.711, also known as Pulse Code Modulation (PCM), is a very
commonly used waveform codec, primarily in telephony. There are two slightly dif-
ferent versions: µ-law, which is used primarily in North America and Japan, and
A-law, which is in use in most other countries outside North America [33]. µ-law
encoded PCM was selected for this diploma thesis, as it is the only codec supported
by both engines.

4.2.3 Depacketizing RTP stream
Before extracting raw audio data from the RTP frames we should analyze the in-
coming stream to make sure it works correctly and to figure out the correct way of
extracting audio data. Wireshark is a widely used network protocol analyzer and
it suits for this task just fine. At first the RTP packets can be seen coming from
Kurento Media server to the transcription application listening for incoming RTP
stream on port 8080 which is illustrated on figure 4.1 However, these packets are

Figure 4.1: The flow of the packets between source and destination hosts.

considered as simple UDP frames. This is not a problem as Wireshark can be forced
to decode those frames as RTP packets. The audio data is expected to be encoded
with µ-law algorithm, sampled at 8000 Hz, 8 bits in each sample, mono. Now it can

34

be clearly seen on figure 4.2 that RTP payload contains 160 bytes of PCMU audio,
exactly 20 8-bit samples.

Figure 4.2: RTP payload.

In the RTPReceiver class of our Java application receiving thread calls method
receive() passing RTP packet as a parameter and the raw audio data can be accessed
by calling method getPayload() which returns a byte array.

4.2.4 Discovering different source streams in incoming RTP
packets and processing the data

When where are two or more participants in the conference we should expect Kurento
to start multiple RTP streams. They can be distinguished by different values of
SSRC field. An example is provided on figure 4.3

Figure 4.3: Frames of two RTP streams observed in Wireshark.

Each participant’s data needs to be processed individually by an instance of
Transcriber. An intermediate buffer is required to store raw data - RTPReceiver will
be writing to this buffer and Transcriber will be reading. Queues are data structures
used for such purposes in this solution. If received frame belongs to a participant
with previously unknown SSRC, a new queue is created and a transcriber is started.
The wait-notify mechanism is used for synchronization. The queue acts as a monitor.
When a new frame is received, RTPReceiver enters the monitor, adds chunk of data
to queue and notifies transcriber about new data:

35

pub l i c void rece iveData (RtpPkt frame , Par t i c i pan t p a r t i c i p a n t) {
long s s r c = p a r t i c i p a n t . getSSRC () ;
byte [] data = frame . getPayload () ;
i f (sourceStreams . containsKey (s s r c)) {

LinkedLis t sourceStream = sourceStreams . get (s s r c) ;
synchron ized (sourceStream) {

sourceStream . add (data) ;
sourceStream . n o t i f y () ;

}
}
e l s e {

f i n a l LinkedList<byte [] > part i c ipantStream = new LinkedList
<>() ;

sourceStreams . put (s s r c , par t i c ipantStream) ;
s t a r t T r a n s c r i b e r (part ic ipantStream , s s r c) ;
l o g g e r . i n f o (”New p a r t i c i p a n t : {}” , s s r c) ;

}
}

On the other side, Transcriber is waiting, being blocked on the same monitor. Tran-
scriber thread wakes when RTPReceiver calls notify on the monitor and sends data
to the speech recognition backend:

whi le (! i s F i n i s h e d ()) {
synchron ized (sourceStream) {

try {
sourceStream . wait () ;
data = sourceStream . p o l l () ;

}
catch (Inter ruptedExcept ion e) {

l o g g e r . debug (”Thread in t e r rup t ed ”) ;
}

}
i f (data == n u l l) cont inue ;
System . arraycopy (data , 0 , audio , o f f s e t , data . l ength) ;
t r a n s c r i b e (audio) ;

}

36

5 Setting up transcription back-ends

The process of writing the client logic for both selected transcription services is de-
scribed in this chapter. It ends with both services configured with default streaming
speech recognition settings.

5.1 Writing a client for TUL SpeechLab SRE

5.1.1 gRPC
gRPC (gRPC Remote Procedure Calls) [34] is an open source remote procedure
call (RPC) system initially developed at Google. In gRPC a client application
can directly call methods on a server application which is deployed on a different
machine just like local methods. Like it is usually done in RPC systems, gRPC
uses service definition, specifying the methods that can be colled remotely. These
methods must be implemented on the server side. Client has a stub that provides
the same methods as the server. The interfaces are generated by a special compiler
from service description for chosen programming languages. The main features of
this RPC system are:

• Authentication;

• Bidirectional streaming with flow control;

• Synchronous and asynchronous method execution.

gRPC uses protocol buffers for service descriptions. gRPC services can be com-
piled and run in various environments. All these makes them extremely useful for
building microservice style infrastructures.

Google Cloud Speech-to-text provides client SDK for Java built on top of gRPC
so we will need to generate classes and interfaces only for TUL SpeechLab SRE.

5.1.2 Protocol buffers
Protocol buffers are a mechanism of serializing structured data. Google developed
protocol buffers to use internally. They are platform and language independent -
Google provides a code generator for multiple languages under open-source license.
Developers define their services and data structures (called messages) in a special
protocol buffer definition file (.proto) and compile them with code compiler provided

37

by Google. Generated code is used to implement both server and client logic [35].
An example data structure description is provided as followed:

message Dog {
requ i r ed s t r i n g name = 1 ;
r equ i r ed in t32 age = 2 ;
r equ i r ed s t r i n g owner = 3 ;

}

Creating an object of this type in Java can be done with the following lines of code
Dog dog = Dog . newBuilder ()

. setName (”Rex”)

. setAge (5)

. setOwner (”Bob”)

. bu i ld () ;

5.1.3 Compiling service code with protoc
protoc is a comliler for protocol buffers definition files. For Java, the compiler
does not generate the interfaces for communication with the server by default. To
compile them, protoc-gen-java plugin must be installed first. The pre-compiled
plugins available in the repositories may not work (like in our case). The best
way to avoid both manual compilation of plugin and manual running protoc is to
configure Maven to compile the code from .proto file by installing Protobuf Maven
plugin and configuring it to use protoc with protoc-gen-java. After that the code
can be easily generated by running mvn compile target.

5.1.4 Connection and authentication
Connection to the speech recognition engine is performed in several steps:

1. First, a Managed Channel is built to connect to the server. A custom thread
executor with fixed thread pool is provided to handle responses. Replac-
ing default executor is strictly recommended by gRPC documentation as it
uses cached thread pool which behaves badly under heavy load spawning new
threads while the rest are busy;

2. After that an asynchronous client stub can be created on the channel;

3. Next, an access token is obtained by performing HTTP POST request to the
API with credentials provided;

4. Using the access token another request is sent to obtain task specific token.
Each task is identified by unique label and id.
As it can be seen in the figure 5.1, an example task definition configures
transcription and text post-processing will be performed for Czech language.

38

Figure 5.1: An example id and label.

5. Task token is put into metadata together with additional no-flow-control flag
set to true as disabling flow control is recommended for environments with
varying level of latency and throughput.

6. Finally, a Response Observer and created and we use the stub to call the
only available streamingRecognize() method on Response Observer to obtain
Request Observer.

The Voice-to-text API for TUL SpeechLab SRE is implemented as bidirectional
flow of EngineStream messages. The process starts by sending and receiving start
message followed by bidirectional data transfer. The data transmitting session is ter-
minated by sending and receiving end message [36]. Request Observer will be used
to send control messages and audio data to the server and Response Observer will
handle receiving of server responses.

5.1.5 Starting data transmission
The first message sent within a session must define EngineContext containing recog-
nition settings (whether to apply post-proccesing, automatic punctuation, etc), spec-
ifications of audio format (codec, sampling frequency, channel layout). The server
responds with a start message as well and browser clients are notified that tran-
scription has started.

5.1.6 Handling server responses
Basically, there are two types of event contents being pushed by the server, that need
to be taken care of: labels and timestamps. Details on timestamps are provided in
section 5.1.8. Useful labels can be either items or pluses, the former being the
words recognized by the engine and the latter are delimiters (e.g. whitespaces).
Whenever a useful label is received, an instance of Transcript is created and passed
to TranscriptProcessor.

5.1.7 Terminating the session
When transcriber’s isFinished flag is set to true meaning participant has left and
there is no more audio data coming, a special end message is sent and the client
stream must be closed. However, the server still might be pushing some data followed
by an end message. After an end message is received, server will not be pushing any
more events.

39

5.1.8 Timestamps
TUL SRE provide speech recognition results along with timestamps measured in
100ns ticks. This is default behavior. These timestamps represent relative amount
of time passed since the beginning of audio. In our case, it would the time when
the first RTP packet is received for a participant. Knowing this absolute moment
of time we can use timestamps to determine the moment of time when a piece of
speech was spoken. This time will obviously be different from the moment when the
transcript is received. An example extraction from application logs illustrating this
difference is provided in figure 5.2:

Figure 5.2: Difference between speaking and receiving time.

For every word the time when it was spoken is computed as a sum of the
start time and the timestamp a transcript belongs to. System.currentTimeMillis()
method is called when the first RTP packet is received to acquire the most accu-
rate time elapsed in milliseconds since the epoch. There is also System.nanoTime()
method but it can be used only to acquire precise time relative to some arbitrary
point. Thus, timestamps returned by SRE must be cast to milliseconds and it is done
by division by 10000L.

5.2 Writing a client for Google Cloud Speech-to-text
API

Generally, communication with Google Speech API performed in the same way
as with TUL SRE. The Java client library allows to configure everything a little
simpler. Also, this process is described well in the API documentation [26] so only
brief description is mentioned here. To use API, one must first set up a project
in Google Cloud Panel, enable Speech-to-text API for it, create a service account
and, finally, download a JSON file containing the private key. After that speech
recognition can be set up in the following steps:

1. Load the previously downloaded credentials;

2. Create a SpeechClient using provided settings;

3. Create a response observer. A custom response observer class was written for
this speech recognition service as well.

4. Obtain the ClientStream by calling splitCall() on the response observer;

5. Send the start message. After that the application may start sending audio
data.

40

Google Speech API returns results as a list of alternatives. Unlike TUL SRE,
there are usually complete sentences instead of individual words. The first alterna-
tive should be selected as it is likely the most accurate. GoogleResponseObserver
is handling results and also controls GoogleTranscriber reinitialization when it is re-
quired.

41

6 Processing transcripts

6.1 Formulation of the problem

6.1.1 Differences in how transcription services return results
While TUL SpeechLab SRE API always uses real-time model of communication
returning recognized text little by little as incoming audio data is processed, Google
Cloud Speech-to-text API relies on detecting the silence in speech to determine when
the speaker stops talking and sending optional intermediate results. The difference
of these approaches is demonstrated on figures 6.1 and 6.2.

Figure 6.1: Example transcription by TUL SpeechLab SRE API.

Figure 6.2: Example transcription by Google Speech API

Google Speech API works in such way that if you speak continuously you will
probably receive results only after making a long pause. It is not recommended
to speak continuously for a long time before a solution for 1-minute audio length
restriction is found.

42

6.1.2 Problem of synchronization
Those differences do not affect anything as long as there is only one participant
in a conference room. But when there is an ongoing conversation between several
attendees the order of words in the transcribed text might be different from how
they were actually spoken. For example, if one person asks ”Hello, how are you?”
and another replies ”I’m fine”, it may result in the responses illustrated on figures
6.3a and 6.3b.

(a) Responses from TUL SRE. (b) Responses from Google Speech API.

Figure 6.3: Examples of wrong transcript order.

The reasons for such behaviour may vary: network latency, delays on client side
and peculiar properties of behaviour of the speech recognition engines, the latter
being the primary one. Another unpleasant fact was discovered when performing
transcription for languages other than English - Czech and Russian, to be precise:
even if a speaker remained silent for a long time after speaking a short phrase, the
service could respond in more that 30 seconds, usually closer to the duration limit.
This identifies that default streaming speech recognition settings are not applicable
for actual real-time recognition.

6.1.3 Solution for TUL SpeechLab SRE
Timestamps are the key to solving the problem of transcript synchronization for this
engine as they help to determine the moment of time when a piece of speech was
spoken independently of when the recognition result was actually received. Tran-
scripts can then be sorted by time. Three methods of restoring the correct order of
transcripts were suggested for this SRE:

1. Buffer all transcripts for a conference, sort them when it ends and then write
to a file.
Pros:

• Easy to implement;
• The order of transcripts will always be correct.

Cons:

43

• Some conversations may take a very long time. Therefore, storing many
transcripts for such conversations in memory and sorting large amounts
of data may turn out resource-demanding;

• This method does not allow to deliver transcripts back to browser clients
in correct order in real-time.

2. Buffer transcripts for some time, restore the correct order, then write to file
and send to browsers. Basically, it would work like a jitter buffer.
Pros:

• Browser clients can view conversation log close to real-time;
• Sorted collections may be used to sort the data as it arrives.

Cons:

• Additional delay;
• There is no warranty that more late transcripts will not arrive after the

contents of the buffer are processed, so we will still experience incorrect
order at the border between two buffers.

3. Write messages for each participant in a separate collection, process transcripts
only when where is at least one element in each collection. Even if there are
no transcripts (the person is not speaking), timestamps are still coming. On
each step we would take one element from each collection, compare them and
process the oldest element if it is a transcript.
Pros:

• The order of transcripts will always be correct;
• Real-time processing. Delays are possible but only for a few seconds.

Cons:

• Slightly more complicated logic then in other variants.

The third method was chosen as it allows real-time processing and does not carry
disadvantages present in other methods.

6.1.4 Solution for Google Cloud Speech-to-text API
First problem that must be solved is a relatively long time gap between last spoken
word and server response. Actually, Google Speech API responds fast but not
all responses have isFinal flag set to true. Sending of intermediate results can be
enabled to receive hypothesises. These are engine’s current guesses on what was said
and final result might be different. An example transcript with intermediate results
enabled is provided on figure 6.4. Although nothing new was said after 17:11:04,
the server did not respond with final result until 17:11:48. The intermediate results

44

Figure 6.4: Example transcript with interimResults option enabled.

are provided for displaying them to the user while he or she is still speaking. This
might be good enough in some cases, but we do not want the conference room to be
over flooded with sometimes nonsense messages. Also, intermediate results can not
be written to file which means that even if we choose to display intermediate results
in browsers writing only final ones to a file at the same time, transcripts would still
probably be in the wrong order.

Google Speech API response contains a confidence field in range between 0 and
1.0. Intermediate results could be used if their confidence is above some threshold
value but, unfortunately, the server sets confidence of all non-final results to 0.

Google Cloud Speech-to-text can include word-level timestamps in response.
Time offset values show the beginning and end in each spoken word in a recording.
They represent time elapsed from the beginning of audio in increments of 100ms
which is close to what is provided by TUL SRE but there is no way to force the
server to send data in portions accompanied with time offsets. These timestamps are
provided for analyzing long audio recordings where there may be a need to search
for a particular word in the recognized text and locate it in the original audio.

Another important problem is the audio duration limit. A solution must be
found, otherwise, even a logically correct transcription will hardly be of any use
since it can not be used for conversations held longer than one minute.

When audio duration limit is violated, the onError method is called in the
response observer and an exception with corresponding message is thrown. The
simplest solution would be introducing a special flag to notify transcriber that recog-
nition has failed and needs to be reinitialized. This is extremely simple but equally
ineffective as significant losses of speech are inevitable.

Two overlapping communication sessions can be used to improve this idea. An
initial session is opened when a person joins conference room and keeps opened for

45

almost a minute. Then an additional session is opened, overlapping with the old one
for a few seconds to capture speech if the user is in a middle of a sentence. Later,
the new session becomes the old one and everything is repeated again. This might
work, but causes double transcript and heavy impacts on accuracy.

There is singleUtterance configuration option that might solve the delay problem
and partially solves the duration problem or, better to say, tricks it. An utterance
is the smallest unit of speech. It is a continuous piece of speech beginning and
ending with a clear pause. In the case of oral languages, it is generally but not
always bounded by silence[37]. If enabled, the recognizer detects a single spoken
utterance. If a user pauses for longer than a second or stops speaking, a special
event indicating the end of utterance is returned and then server ceases recognition,
half-closing the connection. After that a result of recognition may be returned.
If nothing is spoken, a single utterance lasts for approximately 7 seconds. Again,
we will use a flag to notify the transcriber about end of single utterance and it
will reinitialize recognition by reopening client stream and sending initial message
with configuration parameters. An example transcription process with such logic
implemented is demonstrated on figure 6.5:

Figure 6.5: An example transcript with singleUtterance
option enabled.

It takes around 5-50ms to reinitialize recognition and response for an utterance
is returned later than next session is initialized. For this reason the same response
observer is used for all sessions opened for one participant. However, this solution
is far from perfect as practical experiments showed that occasional loss of some parts
of the speech happens. Also, this does not procure synchronized flow of transcripts
according to what actually spoken - we can only rely on fast service response time
which, however, is usually enough. All these leads us towards a conclusion that
Google Speech API is not an ideal choice for continuous speech recognition in media
conferences.

6.1.5 Input data flow optimisation
RTP packets are 20ms length and arrive every 20ms. They can be locally buffered
for some time before sending to the speech recognition service. Buffering too many
data for Google Speech API may result in worse speech recognition and occasional
loss of the words, so buffering for 200 ms was kept as a trade-off solution. To the

46

opposite, TUL SpeechLab SRE performance degrades with large input data chunks
size so no local buffering is done for this SRE.

6.2 Defining a data structure to describe transcripts
and their metadata

A special class was defined to store all data related to a single transcript. For every
message containing transcribed data an object of this class is created. It is filled
with all necessary data to process transcript:

• id - this field is a constant, required for serialization and processing messages
by the conferencing application;

• conferenceId - name of the conference a transcript belongs to;

• participantId - name of the participant a transcript belongs to;

• transcript - transcribed piece of speech, usually a single word, delimiter or
a punctuation mark; Can be null as some Transcript objects carry only times-
tamp data;

• timestamp - a timestamp representing absolute moment of time when the
piece of speech was spoken;

• isLast - a boolean flag which is set to true if response observer received end
message from the server. Used for synchronization of threads.

Every Transcript object containing transcript string is serialized to JSON for
being delivered back to conferencing application. Therefore, some fields are declared
as transient and not serialized.

Transcript class also implements interface Comparable. Transcripts are com-
pared to each other by the value of timestamp in such way that transcript with
older timestamp will always be before another transcript with newer timestamp.
This logic is required for easy sorting of transcripts to natural order.

6.3 Restoring the logical flow of conversation

6.3.1 Selecting a data structure to store transcripts before pro-
cessing

First, an appropriate data structure must be selected to store transcripts of each
participant’s speech. There are three main requirements listed below:

• It must implement FIFO method of processing elements, so the oldest tran-
scripts will be processed first. The order of transcripts within an object of this
structure will always be correct as it is impossible to speak to the past;

47

• The data structure must also be easily accessible both from the beginning and
from end: transcripts will be inserted by transcribers to the end and retrieved
for processing from the beginning;

• Native concurrency is highly desirable as the data will be accessed and mod-
ified by at least two threads: transcriber thread and transcript processing
thread.

A double ended queue usually referred to as Deque would be the most appro-
priate collection satisfying these requirements. Java interface Deque is implemented
by four collections: ArrayDeque, ConcurrentLinkedDeque, LinkedBlockingDeque and
LinkedList[38]. ArrayDeque and LinkedList are not concurrent. LinkedBlock-
ingDeque is likely the most befitting collection as it natively implements the logic
suggested for our solution - if a thread attempts to retrieve an element from an
empty queue it will be blocked until an element becomes available. It comes with
a capacity bound which defines restrictions for writing to queue - an element can be
inserted only if capacity restrictions are not violated. We do not actually want such
restrictions and will set maximum capacity to maximum integer value which is very
unlikely to be reached by this application.

Queues will be stored in a HashMap and retrieved with participant’s name pro-
vided as a key.

6.3.2 Implementation of the algorithm of transcript sorting
The algorithm loops until there are no more transcripts coming to any queue mean-
ing that the last participant has left the conference, receiving and transcribing audio
is ceased and the SRE has returned all possible results. On the first step, it goes
through all transcriber queues, retrieves one message from each of them, waiting for
messages to come if necessary and stores them in a temporary array. There can
actually be none as transcript processing thread may start before any transcriber
was created. If there is only one participant in the conference, no sorting is required
and the transcript can be immediately processed unless is has isLast flag set to true
meaning no more transcripts are about to come or it is a service message carrying
only time related data.

If there are more than one participant in the conference, transcripts are sorted.
The oldest transcript will be the first element of the result array. If it is a last
transcript, related transcriber queue is removed.

The remaining transcripts are returned back to their queues by inserting them
to the beginning. The temporary array is cleared and next iteration starts. The full
algorithm is listed below:

whi le (t rue) {
i f (t ransc r ibe rQueues . isEmpty ()) cont inue ;
f o r (Map. Entry<Str ing , LinkedBlockingDeque<Transcr ipt>> entry

: t ransc r ibe rQueues . entrySet ()) {
LinkedBlockingDeque<Transcr ipt > transcr iberQueue = entry .

getValue () ;
t ry {

48

t r a n s c r i p t i o n s . add (t ranscr iberQueue . t a k e F i r s t ()) ;
}
catch (Inter ruptedExcept ion e) {

l o g g e r . debug (” ’ { } ’ : Thread in t e r rup t ed ”) ;
}

}
i f (t r a n s c r i p t i o n s . s i z e () == 0) cont inue ;
i f (t r a n s c r i p t i o n s . s i z e () == 1) {

Transcr ipt t r a n s c r i p t = t r a n s c r i p t i o n s . get (0) ;
i f (t r a n s c r i p t . i s L a s t ()) {

// i f l a s t t r a n s c r i p t i o n was r e c e i v e d be f o r e e x i t i n g loop
t ransc r ibe rQueues . get (t r a n s c r i p t . g e tP a r t i c i pa n t Id ()) .

addFirs t (t r a n s c r i p t) ;
break ;

}
i f (t r a n s c r i p t . hasTranscr ipt ()) {

p ro c e s sTran s c r i p t i on (t r a n s c r i p t) ;
}

}
e l s e {

// Search f o r the o l d e s t t r a n s c r i p t i o n
C o l l e c t i o n s . s o r t (t r a n s c r i p t i o n s) ;
Transcr ipt o l d e s t T r a n s c r i p t i o n = t r a n s c r i p t i o n s . get (0) ;
// I f t h i s i s the l a s t message from the response observer ,

j u s t remove the queue
i f (o l d e s t T r a n s c r i p t i o n . i s L a s t ()) {

t ransc r ibe rQueues . remove (o l d e s t T r a n s c r i p t i o n .
g e t Pa r t i c i pan t I d ()) ;

}
// I f the re i s a t r a n s c r i p t i o n in the message (may not have

i f i t i s a timestamp message) , p roc e s s i t
e l s e i f (o l d e s t T r a n s c r i p t i o n . hasTranscr ipt ()) {

p ro c e s sTran s c r i p t i on (o l d e s t T r a n s c r i p t i o n) ;
}
t r a n s c r i p t i o n s . remove (0) ;
// Return other t r a n s c r i p t i o n s back to r e l a t e d queues
f o r (Transcr ipt t r a n s c r i p t i o n : t r a n s c r i p t i o n s) {

t ransc r ibe rQueues . get (t r a n s c r i p t i o n . g e tP a r t i c i pa n t Id ()) .
addFirs t (t r a n s c r i p t i o n) ;

}
}
t r a n s c r i p t i o n s . c l e a r () ;

}

6.3.3 Synchronizing response observers and transcript processors
Even if data transmission to the server is terminated there may still be final responses
coming. transcript processing thread must process this data before terminating
itself. The isLast flag was introduced to synchronize response observing and data
processing threads. TranscriptProcessor will not terminate until the end message
is retrieved from every participant’s queue.

49

6.4 Persistent storage
A complete conversation log of a conference in .txt format is available in a unique
directory within the root application data directory defined in configuration file.
A simple logic was implemented to join separate words into sentences. For the
first message we write timestamp and the name of the participant. If next message
belongs to the same speaker, it is just appended to the current line. If it belongs
to a different speaker, it will be written to a new line along with timestamp and
the new speaker’s name. For Google Cloud Speech-to-text all messages are written
starting with a new line as they usually represent complete sentences. Transcripts
are also sent back to the conference room unless the isFinished flag is set meaning
that the conference room has already been closed and there is no need to deliver
transcripts to browsers.

The transcribing application can be configured to start simple HTTP server to
serve complete conversation logs. A link would be sent to the conferencing applica-
tion and can be displayed in the browser clients. However, it is recommended for
usage only in test and development environments. It is better to use complete web
servers like Nginx or Apache2 in production.

6.5 Delivering transcripts back to browser clients
Every response message containing a transcript string is serialized to JSON and sent
back to conferencing application via WebSocket. It is up to developers to decide how
to handle them. In this solution a simple delivery model is implemented: transcripts
are broadcast across all participants of a conference. A simple JavaScript function
handles displaying transcripts on the client side:

l e t speaker = '' ;
l e t speakerMessage = '' ;
l e t div ;
function showTranscr ipt (message) {

i f (speaker !== message . p a r t i c i p a n t I d) {
div = document . createElement ('div') ;
d iv . className = 'transcript' ;
document . getElementById ('transcriptWindow') . appendChild (div) ;
speakerMessage = message . t r a n s c r i p t ;
speaker = message . p a r t i c i p a n t I d ;
div . innerText =‘${ speaker } : ${ speakerMessage } ‘ ;
return ;
} ;
speakerMessage += message . t r a n s c r i p t ;
div . innerText =‘${ speaker } : ${ speakerMessage } ‘ ;

}

Transcript strings are put into div HTML elements and appended as child ele-
ments of a parent div element representing sort of a chat box.

50

7 Using the solution

7.1 Deployment
Environment requirements:

• Java (JDK) version 8 or higher;

• Latest version of Maven;

• Latest version of Docker (optional).

The whole solution can be deployed in three steps:

1. Install Kurento Media Server either from package manager or in a Docker
container[39]. It is a good practice to run services in Docker containers. Docker
is a container-based operating-system-level virtualization system which allows
to run processes in isolated environments[40]. Benchmarks ran on Kurento
in Docker and on a virtual machines showed that Docker containers have less
overhead and demonstrate better performance than virtual machines[41].

2. Lauch demo conferencing room by downloading the source code and executing
the following command in directory kurento-group-call:

$ mvn c l ean spr ing−boot : run −Dkms . u r l=ws : //<kurento−host >:<
kurento−port >/kurento

3. Transcribing application. After downloading the source code, install the jrtplib
which is not present in central Maven repository to a local repository and
compile the application by running

$ mvn i n s t a l l : i n s t a l l − f i l e −D f i l e =./ l i b / j r t p l i b −0 . 2 . 2 . j a r
$ mvn c l ean compi le

Next, create configuration file. Configuration file contains key-value pair spec-
ifying application behaviour. The following configuration options are sup-
ported:

• websocket.url - WebSocket endpoint of the conferencing application;
• ssl.certificate.nocheck - if secure WebSocket is used but certificate

is self-signed or expired, set to true. Usage in production environment
is strictly not recommended;

51

• transcription.backend - speech recognition service for transcriptions.
Currently supported values are google and ntx;

• transcription.directory - path to the directory where transcripts will
be stored;

• ip - the IP address provided here will be used in SDP offer, to bind
RTP session and to provide link for transcript download. Usually it
is the external IP address of the server but can be different depending
on if Kurento is in a Docker container or is on the same machine with
transcribing application. HTTP server binds to all available interfaces
by default. It is not possible to use localhost if Kurento is in a Docker
container.;

• http.server.enabled - whether to start simple HTTP server. Not rec-
ommended in production environment;

• http.server.port - port for HTTP server to bind;
• ntx.host - hostname of the machine with TUL SpeechLab SRE installed;
• ntx.port - port TUL SpeechLab SRE API listens on;
• ntx.ssl - whether to use SSL when connecting to the API;
• ntx.login and ntx.password - credentials for TUL SpeechLab SRE.
• google.creds - JSON file with credentials to Google Speech API. If not

specified, application will search for ”google.json” file in the class path.

If no configuration file is specified, the application will use target/classes/ap-
plication.properties. Start the application from its root directory by executing
the following command:

$ mvn exec : java −Dconfig=”path−to−con f i g− f i l e ” −Dexec .
mainClass=”com . webcon f e r enc e t ran s c r i b e r . Main”

The conferencing application will be accessible at https://localhost:8443

7.2 Example transcripts
Example transcripts performed by both SREs for a conversation with two partici-
pants are provided in the appendix. Generally, Google Speech API performs faster
and shows better accuracy, but TUL SRE is more reliable as there is no need to
constantly reinitialize the connection risking to lose some data. Also, its accuracy
is good for some languages, for example, Czech, but not for English. Speech recogni-
tion is very sensitive to the environment (noise), the quality of the microphone used
by a speaker and accent. Examples were recorded in a pretty noisy environment
using standard laptop microphones.

52

7.3 Scaling the solution
The application is designed to transcribe multiple conference rooms simultaneously.
As the application is designed like a client application, horizontal scaling is possible
by connecting multiple instances of the application to the conferencing applica-
tion. The necessary logic of distributing conferences among transcribers can be
implemented in many ways: round-robin, weight coefficients or custom rules. For
example, the transcribing applications can be launched with different transcriptions
back-ends. Conferences may be transcribed by one or another instance of application
depending on the language spoken.

7.4 Further enhancements
There are some features that were not implemented in the scope of this diploma
thesis but adding them would increase the variety of use cases and security:

• Adding SRTP support. In this project, all parts of the system were within the
same local network or even on one host machine, so pure RTP was acceptable.
Even in production environment it would be better to keep the media server
and transcribing solution in a local network to reduce latency and possible
packet loss. If it is not possible, security standards highly recommend to use
secure version of RTP. Leaving RTP traffic unencrypted allows an attacker to
sniff it;

• Continuing with the security measures, some kind of authorization in con-
ferencing application must be implemented for transcribing application, for
example, with JWT (JSON Web Token)[42].

• Translation. Transcribed text can be translated into desired language using
some third-party services. This would allow people who speak different lan-
guages communicate and understand each over;

• It is also possible to save transcripts to JSON and store them not in files but in
a document-oriented database such as MongoDB, CouchDB or ElasticSearch,
the latter being a full-text search engine which can be very useful for indexing
and searching transcripts.

53

8 Conclusion

An analysis on technologies used in modern multimedia conferencing and existing
solutions for real-time conference transcription showed that solution of such task
is actual and demanded. Community lacks descriptions of experience in solving this
task, articles and source codes, so the task was decomposed into smaller parts which
were solved step by step within this diploma thesis and joined together.

As a result of conducted research and programming work there was developed an
application capable of capturing audio streams, transcribing them using third-party
speech recognition services and returning back to browser clients in real-time or close
to real-time as well as saving for long-time storage. Application uses WebSocket for
communication which allows relatively simple integration with conferencing applica-
tions which usually employ the same technology for client-server application. Appli-
cation architecture procures possibility to add more transcription back-ends without
extensive intervention into existing classes. The audio capturing logic is not limited
to any particular audio format. Also, custom transcript processing can be imple-
mented on top of already existing classes. The solution is relatively simple to build
and launch and does not require any additional software or servers to run except
Java environment. It is not bound to Kurento media server used as a conferenc-
ing platform in this diploma thesis - to integrate with this transcription solution
the conferencing application is only required to be capable of RTP streaming and
handling SDP messages.

Speech recognition services can be adapted for real-time web conference tran-
scription either if they provide a very fast response time (faster than it would take
a person to say a few words) or if they send data in portions accompanied by times-
tamps for synchronization of multiple audio streams which are transcribed indepen-
dently and simultaneously. Unfortunately, none of the existing speech recognition
APIs can guarantee 100% accuracy of recognition but such technologies are develop-
ing rapidly as they are demanded in many areas of human society, so the efficiency
of their usage should be expected to grow more and more soon.

54

References

1. SPEECHLAB. SpeechLab - Laboratory of Computer Speech Processing [on-
line] [visited on 2019-04-25]. Available from: https:// www.ite .tul.cz /
speechlabe/.

2. WEBRTC.ORG. WebRTC [online] [visited on 2019-03-20]. Available from:
https://webrtc.org/.

3. WIKIPEDIA. Speech recognition [online] [visited on 2019-03-20]. Available
from: https://en.wikipedia.org/wiki/Speech_recognition.

4. WIKIPEDIA. Transcript(law) [online] [visited on 2019-03-20]. Available from:
https://en.wikipedia.org/wiki/Transcript_(law).

5. TEAM, Skype. Introducing live captions subtitles in Skype [online] [visited on
2019-03-27]. Available from: https://blogs.skype.com/news/2018/12/03/
introducing-live-captions-and-subtitles-in-skype/.

6. GRIGORIK, Ilya. High-performance browser networking. Sebastopol, CA:
O’Reilly, 2013. ISBN 1449344763.

7. WEBRTC.ORG. Frequent questions | WebRTC [online] [visited on 2019-04-16].
Available from: https://webrtc.org/faq/.

8. M. HANDLEY V. Jacobson, C. Perkins. SDP: Session Description Protocol.
RFC Editor, 2006. Available from DOI: 10.17487/RFC4566. RFC. RFC Editor.

9. WIKIPEDIA. Session Description Protocol [online] [visited on 2019-04-16].
Available from: https://en.wikipedia.org/wiki/Session_Description_
Protocol.

10. ROY, Radhika Ranjan. Handbook of SDP for multimedia session negotiations:
SIP and WeRTC IP telephony. Boca Raton, FL: CRC Press/Taylor Francis
Group, 2018. ISBN 9781138484498.

11. H. SCHULZRINNE, S. Casner. RTP Profile for Audio and Video Conferences
with Minimal Control. RFC Editor, 2003. Available from DOI: 10.17487/
RFC3551. RFC. RFC Editor.

12. JOHNSTON, Alan B. SIP: understanding the Session Initiation Protocol.
3rd ed. Boston: Artech House, 2009. ISBN 1607839954.

13. I. BAZ CASTILLO J. Millan Villegas, V. Pascual. The WebSocket Protocol
as a Transport for the Session Initiation Protocol (SIP). RFC Editor, 2014.
Available from DOI: 10.17487/RFC7118. RFC. RFC Editor.

55

https://www.ite.tul.cz/speechlabe/
https://www.ite.tul.cz/speechlabe/
https://webrtc.org/
https://en.wikipedia.org/wiki/Speech_recognition
https://en.wikipedia.org/wiki/Transcript_(law)
https://blogs.skype.com/news/2018/12/03/introducing-live-captions-and-subtitles-in-skype/
https://blogs.skype.com/news/2018/12/03/introducing-live-captions-and-subtitles-in-skype/
https://webrtc.org/faq/
http://dx.doi.org/10.17487/RFC4566
https://en.wikipedia.org/wiki/Session_Description_Protocol
https://en.wikipedia.org/wiki/Session_Description_Protocol
http://dx.doi.org/10.17487/RFC3551
http://dx.doi.org/10.17487/RFC3551
http://dx.doi.org/10.17487/RFC7118

14. SEGEČ, P.; PALÚCH, P.; PAPÁN, J.; KUBINA, M. The integration of We-
bRTC and SIP: Way of enhancing real-time, interactive multimedia commu-
nication. In: 2014 IEEE 12th IEEE International Conference on Emerging
eLearning Technologies and Applications (ICETA). 2014, pp. 437–442. Avail-
able from DOI: 10.1109/ICETA.2014.7107624.

15. WIKIPEDIA. Real-time Transport Protocol [online] [visited on 2019-04-01].
Available from: https://en.wikipedia.org/wiki/Real-time_Transport_
Protocol.

16. M. BAUGHER D. McGrew, M. Naslund. The Secure Real-time Transport Pro-
tocol (SRTP). RFC Editor, 2004. Available from DOI: 10.17487/RFC3711.
RFC. RFC Editor.

17. SFU(Selective Forwarding Unit [online] [visited on 2019-04-15]. Available from:
https://webrtcglossary.com/sfu/.

18. RODRIGUEZ, Pedro; CERVIÑO ARRIBA, Javier; TRAJKOVSKA, Irena;
SALVACHUA, Joaquin. Advanced Videoconferencing Services Based on We-
bRTC [online] [visited on 2019-04-28]. Available from: https : / / www .
academia.edu/28680258/Advanced_Videoconferencing_Services_Based_
on_WebRTC.

19. MEETECHO. Janus - General purpose WebRTC server [online] [visited on
2019-04-23]. Available from: https://janus.conf.meetecho.com/docs/.

20. Jitsi projects - free and open source video conferencing communications [online]
[visited on 2019-04-23]. Available from: https://jitsi.org/projects/.

21. Kurento 6.10.0 documentation [online] [visited on 2019-04-23]. Available from:
https://doc-kurento.readthedocs.io/en/6.10.0/.

22. MUNOZ, Luis Villasenor. The BaBL Project [online] [visited on 2019-04-
23]. Available from: https : / / appliedtech . iit . edu / real - time -
communications - lab - information - technology - and - management /
projects/babl-project.

23. JITSI.ORG. Jigasi [online] [visited on 2019-04-23]. Available from: https :
//github.com/jitsi/jigasi.

24. JITSI.ORG. A speech-to-text prototype - Jitsi [online] [visited on 2019-04-23].
Available from: https://jitsi.org/news/a-speech-to-text-prototype/.

25. CMUSphinx Open Source Speech Recognition [online] [visited on 2019-03-27].
Available from: https://cmusphinx.github.io/.

26. GOOGLE.COM. Google Cloud Speech-to-Text documentation [online] [visited
on 2019-04-16]. Available from: https://cloud.google.com/speech-to-
text/docs/.

27. IBM. IBM Cloud Speech to text documentation [online] [visited on 2019-04-16].
Available from: https://console.bluemix.net/docs/services/speech-
to-text/getting-started.html#gettingStarted.

56

http://dx.doi.org/10.1109/ICETA.2014.7107624
https://en.wikipedia.org/wiki/Real-time_Transport_Protocol
https://en.wikipedia.org/wiki/Real-time_Transport_Protocol
http://dx.doi.org/10.17487/RFC3711
https://webrtcglossary.com/sfu/
https://www.academia.edu/28680258/Advanced_Videoconferencing_Services_Based_on_WebRTC
https://www.academia.edu/28680258/Advanced_Videoconferencing_Services_Based_on_WebRTC
https://www.academia.edu/28680258/Advanced_Videoconferencing_Services_Based_on_WebRTC
https://janus.conf.meetecho.com/docs/
https://jitsi.org/projects/
https://doc-kurento.readthedocs.io/en/6.10.0/
https://appliedtech.iit.edu/real-time-communications-lab-information-technology-and-management/projects/babl-project
https://appliedtech.iit.edu/real-time-communications-lab-information-technology-and-management/projects/babl-project
https://appliedtech.iit.edu/real-time-communications-lab-information-technology-and-management/projects/babl-project
https://github.com/jitsi/jigasi
https://github.com/jitsi/jigasi
https://jitsi.org/news/a-speech-to-text-prototype/
https://cmusphinx.github.io/
https://cloud.google.com/speech-to-text/docs/
https://cloud.google.com/speech-to-text/docs/
https://console.bluemix.net/docs/services/speech-to-text/getting-started.html#gettingStarted
https://console.bluemix.net/docs/services/speech-to-text/getting-started.html#gettingStarted

28. MICROSOFT.COM. Speech to text API | Microsoft Azure [online] [visited
on 2019-04-21]. Available from: https://azure.microsoft.com/en- us/
services/cognitive-services/speech-to-text/.

29. AMAZON. Amazon Transcribe Documentation [online] [visited on 2019-04-23].
Available from: https://docs.aws.amazon.com/transcribe/index.html.

30. YANDEX.RU. Yandex SpeechKit documentation [online] [visited on 2019-04-
21]. Available from: https://cloud.yandex.com/docs/speechkit/.

31. ORACLE. JMF 2.1.1 Software Documentation [online] [visited on 2019-03-12].
Available from: https://www.oracle.com/technetwork/java/javase/
documentation-138769.html.

32. WIIPEDIA. Ogg [online] [visited on 2019-04-15]. Available from: https://en.
wikipedia.org/wiki/Ogg.

33. WIKIPEDIA. G.711 [online] [visited on 2019-04-15]. Available from: https:
//en.wikipedia.org/wiki/Ogg.

34. GOOGLE. gRPC [online] [visited on 2019-04-12]. Available from: https://
grpc.io/.

35. WIIPEDIA. Protocol Buffers [online] [visited on 2019-04-14]. Available from:
https://en.wikipedia.org/wiki/Protocol_Buffers.

36. NANOTRIX. Nanotrix Documentation [online] [visited on 2019-04-22]. Avail-
able from: https://docs.nanotrix.cloud/.

37. WIKIPEDIA. Utterance [online] [visited on 2019-03-27]. Available from: https:
//en.wikipedia.org/wiki/Utterance.

38. ORACLE. Deque (Java Platform SE 8) [online] [visited on 2019-04-05]. Avail-
able from: https://docs.oracle.com/javase/8/docs/api/index.html?
java/util/Deque.html.

39. KURENTO.ORG. Installation Guide - Kurento 6.10.0 documentation [online]
[visited on 2019-04-10]. Available from: https://doc-kurento.readthedocs.
io/en/latest/user/installation.html.

40. WIKIPEDIA. Docker(software) [online] [visited on 2019-04-10]. Available from:
https://en.wikipedia.org/wiki/Docker_(software).

41. SPOIALA, Cristian; CALINCIUC, Alin; TURCU, Cornel; FILOTE, Con-
stantin. Performance comparison of a WebRTC server on Docker versus Virtual
Machine. 13th International Conference on DEVELOPMENT AND APPLI-
CATION SYSTEMS, Suceava, Romania, May 19-21, 2016 [online]. 2016, pp.
295–298 [visited on 2019-04-10]. Available from: https://www.researchgate.
net/publication/303659645_Performance_comparison_of_a_WebRTC_
server_on_Docker_versus_Virtual_Machine.

42. JWT.IO. JSON Web Token Introduction [online] [visited on 2019-04-10]. Avail-
able from: https://jwt.io/introduction/.

57

https://azure.microsoft.com/en-us/services/cognitive-services/speech-to-text/
https://azure.microsoft.com/en-us/services/cognitive-services/speech-to-text/
https://docs.aws.amazon.com/transcribe/index.html
https://cloud.yandex.com/docs/speechkit/
https://www.oracle.com/technetwork/java/javase/documentation-138769.html
https://www.oracle.com/technetwork/java/javase/documentation-138769.html
https://en.wikipedia.org/wiki/Ogg
https://en.wikipedia.org/wiki/Ogg
https://en.wikipedia.org/wiki/Ogg
https://en.wikipedia.org/wiki/Ogg
https://grpc.io/
https://grpc.io/
https://en.wikipedia.org/wiki/Protocol_Buffers
https://docs.nanotrix.cloud/
https://en.wikipedia.org/wiki/Utterance
https://en.wikipedia.org/wiki/Utterance
https://docs.oracle.com/javase/8/docs/api/index.html?java/util/Deque.html
https://docs.oracle.com/javase/8/docs/api/index.html?java/util/Deque.html
https://doc-kurento.readthedocs.io/en/latest/user/installation.html
https://doc-kurento.readthedocs.io/en/latest/user/installation.html
https://en.wikipedia.org/wiki/Docker_(software)
https://www.researchgate.net/publication/303659645_Performance_comparison_of_a_WebRTC_server_on_Docker_versus_Virtual_Machine
https://www.researchgate.net/publication/303659645_Performance_comparison_of_a_WebRTC_server_on_Docker_versus_Virtual_Machine
https://www.researchgate.net/publication/303659645_Performance_comparison_of_a_WebRTC_server_on_Docker_versus_Virtual_Machine
https://jwt.io/introduction/

A Enclosed files

• Source code of the demo conferencing application;

• Source code of the transcribing application.

58

B Example transcripts

B.1 English
Spoken text:

Anna: Hello, I have not seen you for a while, how are you doing?
Katja: I’m doing just fine, planning a vacation.
Anna: Great, where are you planning to go?
Katja: Italy. I always wanted to go there for the architecture and cuisine.
Anna: Sounds perfect. By the way, how is your cat? I remeber it was a little

sick.
Katja: Nothing to worry about, it is absolutely healthy now, running and playing

like crazy!
Anna: Glad to hear that. I must go now. Bye!
Katja: Bye!

B.2 Czech
Spoken text:

Katja: Čau, Moniko, jak se máš?
Anna: Čau, ujde to. A co ty?
Katja: Jo, mám se docela fajn, ale mám moc práce.
Anna: Tak máš taky peníze, ne?
Katja: To jo, ale taky nemám vůbec čas. Ale ty ses nejaká smutná. Máš špatnou

náladu?
Anna: Ne, jsem v pohode. Mám jen trochu rymu.
Katja: A nechces jít na kafe?
Anna: Ne, diky, nechci. Mám rande. Čau!
Katja: Ach jo, mám dneska fakt smůlu.

59

Figure B.1: A conversation in English transcribed by Google Speech API.

Figure B.2: A conversation in English transcribed by TUL SRE.

Figure B.3: A conversation in Czech transcribed by Google Speech API.

60

Figure B.4: A conversation in Czech transcribed by TUL SRE.

61

	List of abbreviations
	List of Figures
	Introduction
	Technologies used in multimedia conferencing
	WebRTC
	STUN, TURN and ICE
	SDP
	SIP
	Integration of WebRTC and SIP

	RTP
	WebSocket
	Conferencing platforms
	Types of WebRTC servers
	Janus
	Jitsi Videobridge
	Kurento Media Server

	Existing solutions for conference transcription

	Solution architecture
	Application requirements
	Selecting conferencing platform
	Setting up demo conference room

	Selecting speech recognition back-end
	General requirements for speech recognition service
	Google Cloud Speech-to-text API
	IBM Watson Speech to Text
	Microsoft Speech-to-text
	Amazon Transcribe
	Yandex SpeechKit
	Speech recognition software developed in TUL
	Final selection of transcription back-ends

	Solution structure
	Communication

	Capturing live audio streams of conference attendees
	Possible approaches
	Streaming and receiving with RTP
	Configuring Kurento to stream RTP
	Audio format
	Depacketizing RTP stream
	Discovering different source streams in incoming RTP packets and processing the data

	Setting up transcription back-ends
	Writing a client for TUL SpeechLab SRE
	gRPC
	Protocol buffers
	Compiling service code with protoc
	Connection and authentication
	Starting data transmission
	Handling server responses
	Terminating the session
	Timestamps

	Writing a client for Google Cloud Speech-to-text API

	Processing transcripts
	Formulation of the problem
	Differences in how transcription services return results
	Problem of synchronization
	Solution for TUL SpeechLab SRE
	Solution for Google Cloud Speech-to-text API
	Input data flow optimisation

	Defining a data structure to describe transcripts and their metadata
	Restoring the logical flow of conversation
	Selecting a data structure to store transcripts before processing
	Implementation of the algorithm of transcript sorting
	Synchronizing response observers and transcript processors

	Persistent storage
	Delivering transcripts back to browser clients

	Using the solution
	Deployment
	Example transcripts
	Scaling the solution
	Further enhancements

	Conclusion
	References
	Appendix Enclosed files
	Appendix Example transcripts
	English
	Czech

