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Annotation 

 This work is about the implementation of a control system on a 6-joint industrial robot 

produced by the FESTO company. The control system is developed with the National Instruments 

software LabView. First part of this work deals with the communication between the control unit 

which runs a real-time operating system and the robot via the CAN bus. The CANopen protocol is 

used to implement the communication. Second part of the work deals with forward differential 

kinematic and inverse kinematic models of the robot. This work also discusses the programming of the 

control interface, which allows the user to control the robot under various operating modes. It also 

implements the designed inverse kinematic model and other developed algorithms for reference 

movements of the robot. 
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Annotation 

 Ce stage a eu pour but d'implémenter un système de contrôle sur un robot industriel 6 axes 

fabriqué par FESTO. Ce système de contrôle est développé avec le logiciel LabView de National 

Instruments. La première partie de ce travail a été de mettre en place la communication entre l'unité de 

contrôle qui exécute un système temps réel et le robot via le bus CAN avec le protocole CANopen. 

La seconde partie de ce travail a été de déterminer le modèle géométrique inverse et le modèle 

différentiel direct du robot et de programmer l'interface de contrôle du robot. Cette interface permet à 

l'utilisateur de contrôler le robot dans différents modes. Elle implémente aussi les modèles 

géométrique et différentiel ainsi que d'autres algorithmes pour définir les mouvements de référence du 

robot. 

Mots clés : 

 Robot industriel, robot Cartésien, système de contrôle, modèle géométrique inverse, modèle 

différentiel direct, convention des paramètres de Denavit-Hartenberg modifiés, CANOpen, FESTO, 

LabView, CompactRio   
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Anotace 

 Tato práce se zabývá návrhem a vývojem řídícího systému pro 6-kloubého průmyslového 

robota vyrobeného firmou FESTO. Řídící systém je vyvíjen v programu LABview od společnosti 

National Instruments. První část práce se zabývá komunikací mezi řídícím počítačem CompactRio s 

operačním systémem reálného času a robotem po sběrnici CAN za pomoci protokolu CANopen. 

Druhá část práce se věnuje problematice kinematických modelů v robotice. Jsou zde popsány postupy 

pro výpočet přímého diferenciálního a inverzního kinematického modelu. V této práci se také hovoří o 

programování rozhraní, které umožňuje ovládat robota v různých operačních módech. Vytvořený 

program také implementuje navržený inverzní kinematický model a další algoritmy pro plánování 

pohybu robota.  

Klíčová slova 

 Průmyslový robot, Kartézský robot, řídící systém, přímý diferenciální kinematický model, 

inverzní kinematický model, modifikovaná Denavit-Hartenbergova konvence, vizuální zpětná vazba, 

CANOpen, FESTO, LabView, CompactRio 
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1 Introduction 
 Industrial robots are one of the most essential parts of automation in industry. They offer a 

great precision along with very high speed and repeatability. Thanks to their positive impact on quality 

of final product, volume of production and cost of the whole production process, they spread all over 

the world in all kinds of factories and industry facilities. The sales of industry robots keep increasing 

every year and so does their part in industry. 

 This report deals with the development of a control system for an industry robot. The aim is to 

substitute the existing system which has been found to be incomplete and unreliable. Designing a real-

time control system from scratch for a 6-axis robot is a very complex task with many different 

problems to solve. First of all a combination of suitable hardware and software must be chosen. Both 

of those must cope with real-time constraints in order to get maximum security and performance from 

the robot. For this purpose a commercial solution from National Instruments, was chosen. Between the 

PXI platform and upgrading of the old industry PC, the CompactRio controller and corresponding 

module for communication has been the best choice. To develop software a National Instruments tool 

called LabView is used. Once the suitable hardware and software have been set, the communication 

with the robot must be done. All the fundaments of this communication are described in next chapter. 

When the communication is established and fundamental communication functions have been 

implemented, the robot kinematics and control takes place. To control the robot and define its tasks in 

Cartesian space the inverse kinematic model of robot has to be designed and implemented. To do so 

we have chosen the modified Denavit-Hartenberg convention and an analytical computation method. 

The whole procedure of designing robot kinematics is described further in this work. Once the 

kinematic model has been implemented, the basic reference trajectory generation can be done. 

Because the control system for a robot is a huge system with high complexity, a solid design must be 

prepared before putting everything together. All the links between various parts must be precisely 

defined and all the functions must be accurately described. Doing so, all this the risk of facing 

unexpected errors and troubles is reduced. 

1.1 Robot Control 

 Robot control is a very large field, which covers a lot of different subjects. The main 

underlying topics are: control theory, robot kinematics, trajectory generation, vision based control, 

localization and mapping, robot locomotion and robot navigation, the last three topics being mainly 

related to mobile robotics. In this work, we cover only a subset of control theory, robot kinematics and 

motion planning. 

1.2 The FESTO robot 
 FESTO is a well known German global manufacturer and supplier of pneumatic and 

electromechanical systems, components for process control and factory automation solution. Through 

the new technologies FESTO increase the performance of their robots. The robot from FESTO bought 

by LAAS is a custom Cartesian robot, which  has six electrically powered joints. 

1.2.1 Robot Structure 

 A Cartesian robot is a special type of robot whose three main axes of motion are linear and are 

at right angles to each other. Three prismatic joints simplify the robot control (kinematic model) and 

trajectory generation. In Figure 1 we can see the first three prismatic joints each on perpendicular axis. 

These three joints are designated by black rectangles with numbers 1, 2 and 3. The robot has a wrist 

made with the three revolute joints 4, 5 and 6. 
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Figure 1 Robot schematics 

 

 Figure 2 shows a photo of the FESTO Cartesian robot to be controlled. It has a solid gantry to 

which is fixed the first prismatic joint. On this first joint, the second prismatic joint is mounted. Then, 

the third joint is mounted on an orthogonal axis. On the third vertical joint, the first revolute joint is 

mounted. This joint turns around the axis of the joint onto which it is mounted. Two other revolute 

joints are mounted. The last joint has a little platform enabling to mount an end effector. The gantry of 

the robot is enclosed in a Plexiglas box, which is necessary for safety of persons around. The doors of 

this box have to be closed every time, before the robot is used. Whenever they are opened, the voltage 

to motors is switched off. The robot also has another set of two emergency buttons. Pressing any of 

these buttons has the same effect as the opening the doors.  

 

Figure 2 Cartesian robot developed by FESTO 
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1.2.2 Joints and Actuators 

 Each joint of the robot is related with one motor through which it is put into motion. Each 

joint has different type of motor and gear. All the joints are powered electrically and have different 

working strokes. All the characteristics of the motors can be accessed by the special software 

developed by FESTO. To do so it is necessary to connect the computer with the motor controller by a 

serial cable. The software is called Festo Configuration Tool. Table 1 displays a brief description of all 

the joints. 

Label Joint Type of motor Gear Working 

stroke 

Description 

X Prismatic EMMS-AS-70-S-

RM 

5:1 1180mm Provides linear translation along 

its two toothed belts. 

Y Prismatic EMMS-AS-55-S-

TM 

5:1 1180mm Provides linear translation  

along its toothed belt. 

Z Prismatic EMMS-AS-70-S-

RMB 

3:1 800mm Provides linear translation along 

its Cantilever axis. 

ROTZ Revolute EMMS-55-S 3:1 270° Provides rotation around axis Z. 

ROTY Revolute EMMS-AS-40M - 180° Provides rotation around axis Y. 

ROTX Revolute EMMS-AS-40M - 360° Provides rotation around axis Z. 
Table 1 Robot joint's properties 

After the manual examination of the robot body and wires, an admissible stroke of the revolute joints 

ROTY and ROTZ is deduced which avoids the risk of damaging the hardware. It is done as a software 

protection. It does not allow set the drive target position beyond the safe boundaries. 

1.2.3 The motor controllers 

 Each motor of the robot is connected to one FESTO motor controller. Used type of the motor 

controllers is CMMP. The CMMP is a code of motor controller type. It provides various 

communication interfaces: PROFIBUS, CAN bus, DeviceNet, etc. It also has a seven-segment display 

to indicate the error states of motor controller. Each motor controller keeps the info about the joint it 

controls. It keeps the coefficients of the feedback control law, conversion factors or values of 

encoders. It can deliver information (position, velocity, etc.) on the joints from the associated sensors. 

 

 

Figure 3 The robot motor controllers 

1.3 The National Instruments Software and Hardware 

 National Instruments (NI) is an American producer of automated test equipment and virtual 

instrumentation software. The goal is to provide a software and hardware platform that accelerate the 

design and implementation of measuring and control systems. This is why we have chosen such a 

commercial solution for our control system. A software developed in the LabView framework can run 

in real time on a dedicated computing unit called CompactRio. This can support a module for 
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CANopen communication. NI also offers a special CANopen library, where all elementary APIs of 

CANopen protocol are implemented. 

1.3.1 LabView 

 LabView is a dynamical system design and development environment. It relies on a visual 

programming language called "G", developed by NI. This platform is used by engineers and scientists 

in all kind of manufacturing processes, from design to production in multiple industries, advanced 

research, and academia. LabView offers wide a spectrum of functionalities, which are used to build all 

kind of dynamical systems. Graphical programming enables engineers to quickly learn how to master 

this tool in order to easily build a system while using advanced measuring technologies and control 

hardware, to analyze critical data, and to share their results. 

 

Figure 4 Example of a simple LabView program 

 A program made in LabView is called a virtual instrument (VI). Every virtual instrument has 

three parts. The first part is called front panel. This panel is used as the interface for anyone who is 

using the program. It can contain all types of input (controls and data references) and output 

(indicator) components. The second part is called back panel. This panel is a block diagram. It defines 

all the logic which connects the components from the front panel. The last part of every program is 

called connector panel. It serves to define input arguments to the program as well as output variables, 

which the program returns. This enables to easily embed any VI as a subroutine of other VIs in order 

to create a larger programs. Figure 4 shows a window with a front panel on the top and a block 

diagram of back panel on the bottom. 
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1.3.2 The CompactRio Computing Unit 

 CompactRio combines a real-time controller, reconfigurable I/O modules, an FPGA module 

and an Ethernet extension chassis. It is an easy-to-extend platform, in that new interfaces can easily be 

added. For our purpose, we use the following configuration of CompactRio in order to control the 

robot via CANopen protocol: 

 cRIO-9024, Real-Time PowerPC Controller for cRIO; 

 cRIO-9113, 4-slot Virtex-5 LX 50 Reconfigurable chassis for cRIO; 

 NI 9881, C series CANopen interface. 

 

Figure 5 A CompactRio platform with several modules 

 The specific "LabView RT" real time operating system is installed on CompactRio. This unit 

is then connected to a desktop PC by an Ethernet cable, so it can be controlled through the NI 

LabView software. Programmed applications can be deployed and executed, and are interfaced with 

the user through the desktop PC. Some cooperating applications can be run simultaneously on the 

user's PC. These can cooperate and share data in order to reduce the load on the side of CompactRio. 

However only the applications that do not require real-time performance can be executed on the side 

of the desktop PC. The communication through the Ethernet cable uses a specific real-time protocol 

developed by NI, where all the real-time data go through the queue with their time order preserved. 

This allows to have a LabView real-time control interface. 
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2 Communication 
 To ensure the communication between the control unit and the robot, the CANopen protocol is 

used. In this chapter all the primitives of the CANopen protocol are described. CANopen is based on 

the Controller Area Network (CAN) bus. The CAN bus was designed by German firm Robert Bosch 

GmbH in late eighties. The main attributes of this bus are a relatively high speed of transmission, high 

reliability, high endurance to extreme conditions and low price of wires. These attributes caused its 

high popularity in control systems.  

 The CAN protocol has been an internationally standardized in ISO 11898-1. It comprises the 

data link layer of the 7-layer ISO/OSI reference model [3]. Two communication services are provided 

by CAN bus: data frame transmission (sending of a message) and remote transmission request 

(requesting of a message). The CAN controller chip automatically performs all the others services like 

error signaling and automatic re-transmission of erroneous frames. 

2.1 The CANopen Protocol 

 The CANopen protocol is internationally standardized (EN 50325-4) protocol for embedded 

control system. It uses the higher layer of the CAN bus. Specification of this protocol ensures that 

CANopen devices can communicate correctly among themselves. Thanks to this, it is used in many 

different application fields. It grants a direct access to the internal data of devices and it allows to 

transfer time critical process data.  

 Each motor of the robot has its own motor controller (see 1.2.3). Each controller is declared as 

a node on the CAN bus. The CompactRio is declared as a master device. It controls the motor 

controllers, which are declared as slaves. 

Motor 
Controller

CMMP
Joint X

nodeID - 2

Motor 
Controller

CMMP
Joint Y

nodeID - 3

Motor 
Controller

CMMP
Joint Z

nodeID - 4

Motor 
Controller

CMMP
Joint Rot Z
nodeID - 5

Motor 
Controller

CMMP
Joint Rot Y
nodeID - 6

Motor 
Controller

CMMP
Joint Rot X
nodeID - 7

Control Unit
CompactRio

NodeID - 1

CANopen bus

 

Figure 6 Devices connected to the CANopen bus 

 Messages are used to transfer data from a control unit, in this case the CompactRio, to any 

motor controller. Figure 7 displays two methods to access motor controller data via the CANopen bus. 

The first method is with access acknowledgement. It uses Service Data Objects (SDOs): both reading 

and writing by the control unit into controller are followed by an acknowledgement. The second 

method is without access acknowledgement. It uses Process Data Objects (PDOs). Two different types 

of PDOs are available: Transmit Process Data Object (TPDO) to read from a controller and Receive 
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Process Data Object (RPDO) to write in a controller. Both access methods are described further in this 

chapter. 

Control Unit
Motor Controller

CMMP 

Control Unit
Motor Controller

CMMP 

Control Unit
Motor Controller

CMMP 

Access

 from control unit

Process data

 from motor controller

Process data

 from control unit

Acknowledgement

 from motor controller

SDO

TPDO

RPDO

 

Figure 7 Object access with and without acknowledgement via CANopen [4] 

 Every type of message has its own unique identifier. The lower the identifier the higher  the 

message priority. Table 2 shows the general form of a CANopen message. 

Specific Identifier Number of data bytes (0-8) Data bytes (0 - 7 bytes) 

Table 2 General form of a CANopen message 

 SDO, PDO and other types of messages such as synchronization, emergency protocol and 

network management, which are defined for special application cases, are described further in this 

chapter. 

2.1.1 Messages, Node Identifiers 

 Data in a CANopen network are transferred by messages. CANopen messages are based on 

CAN bus communication objects. A communication object carries a CANopen message and a 

Communication Object ID (COB-ID)(Table 3). It is composed from a Node Identifier (Node-ID) and a 

4-bit function code. 

 Every device interconnected through the CANopen protocol must have a Node-ID. The Node-

ID can be any number between 1 and 127, provided that every device has an unique Node-ID. Each 

message contains the Node-ID of its recipient. A message sent to Node-ID 0 is broadcasted to all 

present devices but its producer. 

Bit 

number 

10 9 8 7 6 5 4 3 2 1 0 
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Meaning Function Code Node-ID 
Table 3 Communication Object ID 

2.1.2 The CANopen Network Limits 

 Every CANopen network has limitations based on the baud rate used by network's devices. 

The used baud rate influences the maximum length of the bus and the maximum stub length. The bus 

length is the distance between its first and last nodes. The cable stub length is the distance between the 

node and its connection to the bus. The sum of all the stubs in the network is called  accumulated stub 

length. Every CANopen bus must support at least one of the following baud rates. 

Baud Rate Bus length Max. stub length Max. accumulated stub 

length 

1 Mbit/s 25 m 1,5 m 7,5 m 

800 kbit/s 50 m 2,5 m 12,5 m 

500 kbit/s 100 m 5,5 m 27,5 m 

250 kbit/s 250 m 11 m 55 m 

125 kbit/s 500 m 22 m 110 m 

50 kbit/s 1000 m 55 m 275 m 

20 kbit/s 2500 m 137,5 m 687,5 m 

10 kbit/s 5000 m 275 m 1375 m 
Table 4 The CANopen network limitations by chosen baud rate. 

The baud rate value for communication with the robot is 500kbit/s. This value was preset and stored 

by FESTO in the motor controller. 

2.1.3 Object Dictionary 

 Variables in the CANopen devices are called objects. These objects are stored in a structure of 

variables called object dictionary. The object dictionary of any FESTO motor controller contains these 

elements: 

 Index - It is a 2-byte address of the object in the object dictionary. 

 Sub-index - It is a 1-byte address of the object in a sub-array with certain index. 

 Object name - It is a symbolic type of the object. It can be an array, simple variable or a 

structure. 

 Name - It is a string describing the object. 

 Type - It is the data type of the object. 

 Attribute - It is an information on the access rights for the object (read-only, write-only, 

read/write). 

2.1.4 Service Data Object 

 The Service Data Object (SDO) protocol allows the control unit to access any object from the 

object dictionary of the CANopen device. Using the SDO does not require any further setting 

operation. This makes the SDO good for parameterization of the motor controller. The drawback of 

the SDO is its lower speed due to access acknowledgement. This makes the SDO unsuitable for real-

time control. 

 Using the SDO allows the control unit to read or write objects which are in the dictionary of a 

motor controller. The SDO allows to transfer data with any length. Messages with specific structure 

are used. Every message has one or more segments. The first segment of the message contains bits that 

are necessary for communication and for handling of errors of SDO frame. Next three bytes contain 
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index and sub-index of the object. Last four bytes of the first segments carry data. The structure of the 

first segment is shown in Table 5. 

 

Byte 0  Bytes 1 - 2 Byte 3 Bytes 4-7 

600h or 580h + node-ID Object Index Object Sub-Index up to 4 bytes of data 
Table 5 First segment of the SDO message 

 If the transferred data are longer than four bytes, then they are divided into multiple segments. 

The first byte of each next segment contains again bits that are necessary for communication and for 

handling errors in a SDO frame. After the first byte, up to seven bytes of data follow (Table 6). 

Byte 0 Bytes 1-7 

600h or 580h + node-ID up to 7 bytes of data (segment transfer) 
Table 6 Next segments of the SDO message 

 SDO always starts from the control unit.  The consumer of a message signals its reception by 

sending an acknowledgement, in the case of a writing command,  or read-out value, in the case of a 

reading command (Figure 7). Specific identifier for SDO message consists of the base 600h + node-ID 

of the motor controller to which the message is sent. Specific identifier of response message is 580h + 

node-ID. 

All the data types supported by the motor controller CMMP are described in Table 7.  

Data type Meaning Min. value Max. value 

UINT8 8 bit value without algebraic sign 0 255 

INT8 8 bit value with algebraic sign -128 127 

UINT16 16 bit value without algebraic sign 0 65535 

INT16 16 bit value with algebraic sign -32768 32767 

UINT32 32 bit value without algebraic sign 0 (2
32 

- 1) 

INT32 32 bit value with algebraic sign -(2
32

) (2
31

 - 1) 
Table 7 Supported data types for SDO by motor controller CMMP [4] 

2.1.5 Process Data Object  

 A Process Data Object (PDO) is basically a short message with high priority with a pre-

defined data structure. The PDO is the best way to transfer data in real time: status and control data, 

sensor values and other I/O devices information. Unlike SDO, there is no acknowledgement that the 

message was received by any specific node. 

 There are two types of PDOs, the Transmit PDO (TPDO) and the Receive PDO (RPDO). The 

TPDO is used to transfer information from the motor controller to the control unit. In contrast the 

RPDO is used to transfer from the control unit to the motor controller. Every device which sends or 

receives any PDO must have properly set information how the data in PDO are structured and when 

they should be sent or received. The PDO can be sent or received periodically, or only when a 

synchronization message arrives. Table 8 shows an example of PDO message, with three mapped 

objects. A total length of the three objects is 8 bytes. 

 The configuration process of PDO parameters is called PDO linking. This linking must be 

done while the controller is in pre-operational state (more about states of device can be found in 

chapter 2.1.7). All changes of parameters must be done in a specific way. 



 

24 

 

 

 

 

181h 8 Byte 0 Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6 Byte 7 

Specific 

Identifier 

Number 

of data 

bytes 

First mapped object Second mapped object Third 

mapped 

object 
Table 8 Structure of PDO message  

 The motor controller CMMP allows only PDO, which carries from one to four objects with a 

maximum total length of 64 bits. The controller can link four RPDO and four TPDO. 

 Every PDO must be properly set before it is used. Once a PDO message is set, the 

communication is very fast, because there is no access acknowledgement. This makes PDO messages 

suitable for real-time control. In this case, TPDOs are set so that the motor controller receives and 

processes data (controlword, position to go, etc.) sent by the control unit. RPDOs are set to send 

important data (statusword, current position, current velocity, etc.) to the control unit. 

2.1.6 SYNC Message 

 SYNC messages is used when several devices have to be synchronized with each other. A 

SYNC message is cyclically sent by the control unit. All nodes which are connected to the bus receive 

these SYNC messages and use them to start application-specific behavior. The SYNC messages are 

usually used to signal other devices, that they should receive or send out certain PDO.  

 Specific identifier of SYNC message is always 80h. As can be seen in Table 9, this message 

doesn't carry any data. 

80h 0 - - - - - - - - 
Table 9 SYNC message 

2.1.7 Network Management 

 Every CANopen device implements the Network Management (NMT) state machine. The 

state machine has different states and transitions between them. To modify the device state, the control 

unit must send a NMT message (Table 11). Only the control unit can modify the states of other 

devices. 
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Figure 8 Network management state machine of a CANopen device [4] 

 The NMT state machine of a CANopen device can be seen in Figure 8. States of the device are 

represented by rounded rectangles. The transitions between the states are shown as numbered arrows. 

Each transition is coded in a message in Command Specifier (CS) byte. CS bytes are described in 

Table 10. The three states Reset Application, Reset Communication and Initializing, are in the 

Initialization block. The transition between those states (numbers 15, 16 and 2) are done 

automatically.  
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 Meaning CS byte Target State  

2 Boot Up -- Pre-Operational 7Fh 

3 Start Remote Node 01h Operational 05h 

4 Entre Pre-Operational 80h Pre-Operational 7Fh 

5 Stop Remote Node 02h Stopped 04h 

6 Start Remote Node 01h Operational 05h 

7 Entre Pre-Operational 80h Pre-Operational 7Fh 

8 Stop Remote Node 02h Stopped 04h 

9 Reset Communication 82h Reset Communication
* 

-- 

10 Reset Communication 82h Reset Communication
* 

-- 

11 Reset Communication 82h Reset Communication
*
 -- 

12 Reset Application 81h Reset Application
*
 -- 

13 Reset Application 81h Reset Application
*
 -- 

14 Reset Application 81h Reset Application
*
 -- 

Table 10 Transitions in Network Management state machine (* Final target state is pre-operational) [4] 

 To modify state, a NMT message is sent. The specific identifier of a NMT message is 000h. 

This means it has the highest priority among all messages. Each NMT message consists of two bytes. 

The first byte contains the command specifier of certain transition and the second byte contains the 

target device node-ID. If the second byte equals zero, then all nodes in the network are addressed. No 

acknowledgement is generated in response to the NMT message. 

000h 2 CS byte node-ID - - - - - - 
Table 11 NMT message 

 Some of the messages cannot be used if the device is in a specific state. The state must be 

changed if the application requires messages that are not currently available.  In Table 12 the 

availability of the PDO, SDO and NMT messages is mentioned. Available communication is marked 

with 'X'. 

Name  Meaning SDO PDO NMT 

Reset 

Application 

No communication. All CAN object are reset to 

their rest values (application parameters set) 
- - - 

Reset 

Communication 

No communication. The CAN controlled is newly 

initialized. 
- - - 

Initializing Condition after hardware reset. Resetting of the 

CAN node, sending of the boot-up message. 
- - - 

Pre-Operational Communication via SDOs possible. All PDOs are 

not active (no sending / evaluation). 
X - X 

Operational Communication via SDOs possible. All PDOs are 

active (sending / evaluation). 
X X X 

Stopped No communication except for NMT and heartbeat 

messages. 
- - X 

Table 12 Accessibility of messages in different states  

2.1.8 Emergency Message 

 When an internal error of the CANopen device occurs, a emergency message is sent. It 

contains eight data bytes. The first two bytes contain an error code. The third byte contains an 

additional error code. The last five bytes contain zeros. Specific identifier for an emergency message is 

80h + node-ID (see Table 13). [4] 
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COB-ID Data Length Byte 0-1 Byte 2 Byte 3-7 

80h + Node ID 8 Emergency Error 

Code 

Error Register 0  

Table 13 Emergency message 

2.1.9 Heartbeat Message 

 Heartbeat is an error control message, which is used to monitor the communication between a 

slave and master devices. The slave device periodically sends a heartbeat message to the master 

device. If the master device does not receive such message on a regular basis, then it can take 

appropriate measures.  

 The identifier of a heartbeat message is 700h + nodeID. A heartbeat message contains one 

reference data byte (see Table 14). It is a byte which indicates in which state the device is found. The 

byte values for possible states can be seen in the last column of Table 10. 

700h + nodeID 1 State - - - - - - - 
Table 14 Heartbeat message 

2.1.10 Bootup Message 

 A bootup message is sent during the booting of any CANopen device. It has the same structure 

as a heartbeat message, which is described further. A reference data byte is set to zero (see Table 15). 

700h + nodeID 1 0 - - - - - - - 
Table 15 Bootup message 

 

2.1.11 Nodeguarding Message 

 Nodeguarding is also an error control message, which is used to monitor the communication 

between a slave and a master. In this case the master and slave nodes monitor each other. The master 

cyclically asks (sends a requests) the slave about its NMT status. If such requests are not received by 

the slave within a certain period, then the slave triggers a related error message. On the other hand, the 

master checks if the slave responds within a certain period. 

 The  master device has to send a request in the form of a remote frame. It is a simple message 

with a specific identifier and one bit set. The specific identifier of a the remote frame is 700h + 

nodeID. This remote frame carries no data (Table 16). 

700h + nodeID Remote bit - - - - - - - 
Table 16 Nodeguarding request - remote frame 

 The slave node (e.g. motor controller) responds with a message, which is almost identical to 

the heartbeat message. The message contains one byte of reference data. This byte is composed of one 

toggle bit and the NMT status of the motor controller. The toggle bit is the 8th bit of reference data 

byte. Its value is inverted with each NMT message so the control unit can verify there is no message 

lost (Table 17). 

700h + nodeID 1 Toggle bit / NMT status - - - - - - - - 
Table 17 Nodeguarding message 

The structure of the reference data byte is described in Table 18.  

 



 

28 

 

Bit Value Name Meaning 

7 80h toggle bit Change with each message 

0 - 6 7Fh NMT status 04h Stopped 

05h Operational 

7Fh Pre-Operational 
Table 18 Nodeguarding - structure of reference data byte 

A nodeguarding message shares the specific identifier with a heartbeat message. Thanks to that, only 

one type of messages can be used to detect errors on the controllers at one time. 

2.1.12 Specific Identifiers 

 In Table 19 are all the specific identifiers of possible messages. All the identifiers of PDOs can 

be changed. The table reposts their standard values, which are usually used. 

Object type Identifier Object type Identifier 

SDO (Master to slave) 600h + nodeID RPDO3 401h 

SDO (Slave to master) 580h + nodeID RPDO4 501h 

TPDO1 181h SYNC 080h 

TPDO2 281h EMCY 080h + nodeID 

TPDO3 381h HEARTBEAT 700h + nodeID 

TPDO4 481h NODEGUARDING 700h + nodeID 

RPDO1 201h BOOTUP 700h + nodeID 

RPDO2 301h NMT 000h 
Table 19 Specific identifiers of all messages [4] 

 

2.2 Device Control via CANopen 

 The CANopen communication allows the host (e.g. control unit) to dialog with the motor 

controller via two special objects - statusword and controlword. These two objects are essential for a 

real-time motor control. The statusword provides the basic information about the current operation and 

the motor controller state. To read out the statusword from the motor controller the TPDO is used. The 

controlword is used to send commands to the controller. It can be used to modify the motor controller 

state, or to control the drive within the current operating mode  (2.3). The controlword is linked into 

the RPDO, so the motor controller can receive commands in real time. Both of these objects are 

described further in this chapter.  

 Figure 9 shows the state diagram of the FESTO motor controller. The diagram is divided into 

three general areas: Power disabled, Power enabled and Fault. The first area, Power disabled, includes 

all states, where the final stage is off.  The second area, Power enabled, includes all states, where the 

final stage is on. The last area, Fault, includes all the states, where the handling of errors is needed. 

States of the motor controller are represented by rectangles with state names written inside and circles 

with numbers represent transitions.  

 When the final stage is on,  so is the voltage to the motor. Only then it is possible to move the 

drive. The final stage should be on only for the time necessary to perform any task. When the task is 

done, the final stage should be switched off to prevent damage of the motor. 

 All the possible states are described in Table 20. A transition can be trigged through a 

command sent by the host or internally through the motor controller, when an error occurs. The host 

can send a command through a controlword with a specific bit combination (Table 21). 
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 When the motor controller is switched on, it administers the self-test. When the self-test is 

successfully finished, the motor controller is in the Switch On Disabled state. At this point the CAN 

communication is available and the parameters of motor controller can be set (PDO linking, etc.). At 

this point the power supply is off and the shaft is thus free. When all the parameters are properly set, 

the power supply can be switched on. Switching on is done by the transitions 2, 3 and 4. After those 

transitions the motor controller reaches the Operation Enabled state. The voltage to the motor is on. 

Also the PDO, which are essential for motor command, are now available. The motor is now 

controlled according to the current operation mode. When the robot work is finished, the final stage 

should be switched off through the transitions 5, 6 and 7. The transition 9 has to be used with caution: 

if this transition is trigged while the motor is still running, then the motor fizzles out unregulated. This 

can lead to a damage of hardware.  

Name Meaning 

NOT READY TO SWITCH ON Self-test of motor controller is done. The CAN 

communication is not activated. The final stage is off. 

SWITCH ON DISABLED Self-test was completed. The CAN communication is 

activated. The final stage is off. 

READY TO SWITCH ON Digital inputs "final stage" and "controller enable" are 

monitored. The motor controller waits until they are at 24V. 

The final stage is off. 

SWITCHED ON The final stage is switched on. 

OPERATION ENABLE Voltage to the motor is on. The motor is controlled according 

to the currently chosen operation mode. The final stage is 

switched on. 

QUICKSTOP ACTIVE The quick stop function was initiated. The voltage to the 

motor is still on and the motor is controlled according to the 

setting of quick stop function. 

FAULT REACTION ACTIVE An error has occurred. If the error is critical, the systems 

immediately switches into fault state. Otherwise, voltage to 

the motor is still on and the motor is controlled according to 

the fault reaction function. 

FAULT An error has occurred. Voltage to the motor is off. 
Table 20 States of the motor controller [4] 

 If any error occurs, the motor controller is instantly branched into Fault state. In this case 

certain actions, as emergency breaking, can be still performed. This depends on the severity of the 

error. 
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Figure 9 The state diagram of the FESTO motor controller [4] 

 All the non-internal transitions can be trigged by certain commands. The commands are run by 

setting the transition code accordingly into the controlword. The lowest four bits are jointly evaluated 

in order to trigger a state transition. All the different bit combinations can be seen in Table 21, in the 

third column ('X' means that the value of the bit is not important). Every command has its name 

enclosed in quotation marks. For example if the motor controller is in the state Switched On, then 

value 000Fh (command "Enable Operation") can be set in the controlword in order to trigger a 
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transition. After this command, the motor controller is set into the state Operation Enable. This 

example assumes that no other bits are set in the controlword.  

  

 Transition    

performed if  

Bit 

Combination 

Bit 

combination of 

commands 

Action 

3 2 1 0 

0 Switched on or reset 

occurred 

Internal transition Execute self-test 

1 Self-test is successful Internal transition Activation of CAN 

communication 

2 Final stage and regulator 

activated + command 

"Shutdown" 

"Shutdown" X 1 1 0 - 

3 Command "Switch On" "Switch on" X 1 1 1 Switching on the final stage 

4 Command "Enable 

Operation" 

"Enable 

Operation" 

1 1 1 1 Control according to the set 

operation mode 

5 Command "Disable 

Operation" 

"Disable 

Operation" 

0 1 1 1 Final stage is blocked, motor 

rotates freely 

6 Command "Shutdown" "Shutdown" X 1 1 0 Final stage is blocked, motor 

rotates freely 

7 Command "Quickstop" "Quickstop" X 0 1 X - 

8 Command "Shutdown" "Shutdown" X 1 1 0 Final stage is blocked, motor 

rotates freely 

9 Command "Disable 

Voltage" 

"Disable 

Voltage" 

X X 0 X Final stage is blocked, motor 

rotates freely 

10 Command "Disable 

Voltage" 

"Disable 

Voltage" 

X X 0 X Final stage is blocked, motor 

rotates freely 

11 Command "Quickstop" "Quickstop" X 0 1 X Motor breaks according to the 

quick stop function 

12 Breaking has ended or 

command "Disabled 

Voltage" 

"Disable 

Voltage" 

X X 0 X Final stage is blocked, motor 

rotates freely 

13 Error occurred Internal transition If error is critical, transition 14 

occurs, else the fault reaction 

function is activated 

14 Error resolution is 

ended. 

internal transition Final stage is blocked, motor 

rotates freely 

15 Error resolved + 

command "Fault Reset" 

"Fault Reset" Raising edge on 

bit 7 

Acknowledge error (with 

rising edge) 
Table 21 Transitions of the FESTO motor controller [4] 

 

2.2.1 Statusword 

 A statusword is a 16-bit unsigned integer object that displays several information about the 

motor controller. The statusword has the read-only access rights. The meaning of all statusword bits is 

described in Table 22. 
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Bit No. Name Description 

0 State of the motor 

controller 

Coding of state of the motor controller in bits 0, 1, 2, 3, 5 and 

6 is described in Table 23. 1 

2 

3 

4 Voltage enabled This bit is set when the final stage transistors are switched on. 

5 State of the motor 

controller 

Coding of state of the motor controller in bits 0, 1, 2, 3, 5 and 

6 is described in Table 23. 6 

7 Warning This bit shows that a direction of rotation is blocked because 

one of the limit switches has been trigged. 

8 Drive is moving This bit is set when the actual velocity is outside the related 

tolerance window. 

9 Remote This bit is set when the final stage of motor controller can be 

switched on via CANopen. 

10 Target reached Depends on the operational mode:  

 Profile Position Mode - The bit is set when the target 

position is reached. That means that the current 

position is in the parameterized position window. 

 Profile Velocity Mode - The bit is set when the 

current velocity of the drive is within the 

parameterized velocity tolerance window. 

11 Internal limit active This bit is set when the internal limitation is active. 

12 Operation mode specific 

bit 

Depends on the operation mode:  

 Profile Position Mode - The bit is set when new target 

position was recognized. It is deleted by setting New 

set point bit in controlword. 

 Profile Velocity Mode - The bit is set when the 

current velocity of the drive is within the 

parameterized velocity tolerance window. 

 Homing Mode - The bit is set when the home position 

is reached with no error. 

13 Error Depends on the operation mode:  

 Profile Position Mode - The bit is set when the current 

position is lying outside the parameterized position 

window while the drive run is finished. 

 Homing Mode - This bit is set when the reference 

travel is interrupted. 

14 Manufacturer status bit The meaning of this bit is configurable.  

15 Drive referenced The meaning of this bit is configurable. 
Table 22 Statusword [4] 

 Through the statusword it is possible to read out the current state of the motor controller. The 

states are coded in bits 0, 1, 2, 3, 5 and 6. In Table 23 the possible states of the state diagram are listed 

along with the corresponding bit combinations. 

 The seventh and  the eighth bit of the statusword are so called manufacturer-specific. They 

must be configured in a specific way. For our application these bits are not important. The 

configuration details of those two bits can be found in the manufacturer documentation [4]. 
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State Bit 6 Bit 5 Bit 3 Bit 2 Bit 1 Bit 0 

Not Ready To Switch On 0 X 0 0 0 0 

Switched On Disabled 1 X 0 0 0 0 

Ready To Switched On 0 1 0 0 0 1 

Switched On 0 1 0 0 1 1 

Operation Enable 0 1 0 1 1 1 

Quick Stop Active 0 0 0 1 1 1 

Fault Reaction Active 0 X 1 1 1 1 

Fault 0 X 1 1 1 1 

FAULT (in accordance with DS402) 0 X 1 0 0 0 
Table 23 States of the FESTO motor controller representation in the statusword 

2.2.2 Controlword 

 A controlword is a 16-bit unsigned integer. It is used to trigger the transition or to perform 

some other actions. The actions depend on the current operation mode. 

Bit No. Name Description 

0 Command bits Control of the state transitions (see Table 21, column 

bit combination of commands). 1 

2 

3 

4 Start motion Depends on the operation mode: 

 Profile Position Mode - The drive starts the 

motion on raising edge of this bit. 

 Homing Mode - The drive starts the 

parameterized reference travel on raising edge 

and interrupts this travel on falling edge. 

5 Change set immediately When this bit is set, any new positioning task will be 

executed immediately by interrupting any previous 

ongoing task. When this bit is not set the new task will 

not be executed before the old one is finished (This bit 

is evaluated only if the profile position mode is set). 

6 Relative When this bit is set, the motor controller refers target 

position of current position task to the nominal 

position of the position controller (This bit is evaluated 

only if the profile position mode is set). 

7 Reset Fault On the raising edge of this bit, the controller tries to 

acknowledge the existing errors. It is successful only if 

the causes of the errors were resolved. 

8 Halt/Stop Depends on the operation mode: 

 Profile Position Mode - When this bit is set the 

ongoing positioning task is interrupted and 

deceleration of the drive is initiated. 

 Profile Velocity Mode - When this bit is set 

the velocity is reduced to zero. Deleting the bit 

afterwards cause the drive the accelerate again. 

 Homing Mode - When this bit is set the 

parameterized reference run is interrupted. 

9 Reserved This bit is always zero. 

10 

11 

12 

13 
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14 

15 
Table 24 Controlword description [4] 

 As Table 24 shows, bits 0, 1, 2 and 3 are used to cause the command to trigger some state 

transition (Table 21). Also the bit 7 is used to trigger the transition "Fault Reset". The bit 4 is basically 

used to start the reference travel related to the some operation modes. The bit 8 is used to stop the 

travel. The second byte of this object is reserved and it always equals to zero. 

 The controlword is used to switch on the motor controller final stage, start the reference travel, 

interrupt the travel if it is necessary and switch off the final stage when the task is done. 

 

2.3 Operation Modes 

 Several operation modes are available. For each of them, the bits of controlword and 

statusword can be interpreted differently. Only the modes in bold are compatible with a control 

through the CANopen. All operation modes are listed below: 

 profile torque mode  

 profile velocity mode 

 homing mode 

 profile position mode 

 interpolated position mode 

 torque-controlled mode 

 velocity-controlled mode 

 reference run (homing) 

 position mode 

 synchronous position specification 

 

 The developed control system uses only three of these modes: homing mode, profile position 

mode and profile velocity mode. These three operating modes are described further in this chapter.  

 Each mode has its own set of parameters, which must be set. All the parameters related with a 

position, velocity and acceleration can be converted from internal units in the motor controller to a real 

units. This conversion is done by the conversion factors and it is also influenced by the current setting 

of encoders. Both the conversion factors and the values of encoders must be set correctly in order to 

get the right values. Currently the values of the conversion factors are set so that the real units for 

position, velocity and acceleration are millimeters, millimeters per seconds and millimeters per square 

seconds in the case of prismatic joint, and degrees, degrees per second and degrees per square second 

in the case of revolute joint. 

2.3.1 Homing Mode 

 The homing mode is the basic mode used to drive the robot to an initial position. The few 

following parameters must be set before the homing mode is initiated: homing speed, homing 

acceleration and homing offset. When everything is set, the homing function can be activated by the 

corresponding command through controlword. Figure 10 shows on the left side all the input objects to 

homing mode, on the right side all the output objects which are influenced by homing profile. In the 

statusword, the 13th bit is set once the drive has reached its home position with no error. 
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Figure 10 Simple homing profile representation 

 In Figure 11, is shown the displacement of the zero position from the home position. The 

home position is determined by the physical properties of each joint. 
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Figure 11 Homing mode - displacement of zero position [4] 

 There are several methods of homing. Homing methods use four different signals to drive the 

robot: a positive and negative limit switch, homing switch and zero pulse of angle encoder. Every 

method has a specific direction of reference travel and a specific type of evaluation of zero pulse.  

 In our case for the three prismatic joints, the method with reference travel to the negative limit 

switch is selected. This means that each joint moves quickly toward its negative limit switch, then 

moves back slowly when this switch has been reached. While it is going back, it searches for the exact 

home position. For the three revolute joints the method with use of a homing switch is chosen. These 

joints can move quickly in positive or negative direction. So, when the homing switch is passed, the 

direction is inverted and speed is reduced, in order to search for the exact position of the homing 

switch. 

2.3.2 Profile Position Mode 

 This mode is used to move a joint to any desired position. A velocity trapezoid profile is 

defined. The parameters of the profile position mode such as maximum velocity, acceleration, 

deceleration and quick stop deceleration can be set through the corresponding objects. The trajectory 

generator generates the position demand value from the target position. Then the position demand 

value goes to the position control function (i.e. to a low-level position servo) where all the limits of the 

profile are applied. Finally, the motor controller moves the drive accordingly to the control effort 

which is generated by the curve generator (Figure 12). Both functions must be properly parameterized 

before the profile position mode is used. Position control function is a closed loop control function.  
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Figure 12 The curve generator 

 Figure 12 displays the schematics of the Position Control Function. It is a function that checks 

whether the joint has reached the desired position, or whether an error has occurred. The target 

position is reached whenever the current position of the drive remains within a specified range for a 

specific time. If so, the bit 10 in the statusword is set to 1. Difference between the position feedback 

value and the position demand value constitute the tracking error. If the value of the tracking error 

exceeds a specified value for a specific time, then the motion of the drive is considered as incorrect 

and the drive is stopped. The bit 13 in the statusword is set to 1 in order to indicate the error state of 

the drive. 

 The position profile is represented in Figure 13. The joint starts at time T1 with a given 

acceleration. It accelerates until it reaches its maximum velocity V1. The drive then moves at constant 

velocity until it starts to decelerate. So as to stop at the target position at time T2. All the profile 

parameters must be set before the run is initiated. The second profile which starts at time T3 and ends 

at the time T4, displays other reference travel with a different maximum velocity V2. Naturally the 

acceleration and deceleration profiles are faster than the profiles of the first profile. 

Velocity

Time

V2

V1

T1 T2 T3 T4

 

Figure 13 The position profile  

 The parameters of the profile position mode can be modified during the run of the drive. To do 

so, the bit 5 of the controlword must be set to 1. With the new profile parameters, the new trajectory is 

generated and the drive immediately initiates the new positioning task. Figure 14 shows the case when 

at time T2 new parameters were processed and new a trajectory was generated. The profile parameters 

can be modified after they are stored in the motor controller buffer. They are stored automatically, 
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shortly after the beginning of the reference travel. Once they are stored this is indicated in the 

statusword. 
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Figure 14 Positioning profile with change of parameters 

 More information about all of the objects which can be parameterized, in order to set the 

position profile mode, can be found in the manufacturer documentation [4]. 

2.3.3 Profile Velocity Mode 

 The profile velocity mode is based on a low-level velocity servo of the motor. In this mode the 

target velocity that the drive should reach is set. A limiting function is applied in order to get a smooth 

velocity demand value, which is safe for the motor.  This velocity goes to the velocity controller along 

with the current velocity of the drive and velocity control parameter set. The velocity controller then 

generates the control effort used to move the drive.  
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Figure 15 Simplified structure of  the profile velocity mode 

 Figure 16 displays the position and velocity on an experiment run. Both the position and 

velocity are in an internal units. The bottom chart shows, how the drive accelerates until it reaches the 

target velocity. It remains at the constant speed until it has to decelerate so as to stop smoothly. The 

top chart shows how the position is changing over time.  
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Figure 16 The position and velocity feedback when using the profile velocity mode 

 As can be seen on the bottom chart, there is a noise interfering in the velocity feedback. The 

unfiltered value of the velocity is drawn with white color. The red line represents the filtered current 

velocity. However the filtered value is not used for the control, but only for the turn-through protection 

of the motor. The current velocity value is computed as a differential of the current position value. It 

means that the noise comes from the position sensor. 

 With the profile velocity mode, two other sub-functions are activated. These two functions 

check if the drive is either going by its target velocity or if it is standing still. Both functions work with 

parameterized windows and time periods. If the current velocity stays within a threshold window for a 

specific time, then the drive is considered as standing still and the bit 12 of the statusword is set to 0. If 

the current velocity stays within a velocity window for a specific time, then the target velocity of the 

drive is considered as reached. 

 In order to reach a target position with profile velocity mode, it is necessary to compute the 

exact time when the drive must start deceleration (4.1.7). 
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3 Robot Kinematics 
Every robot can be represented as a kinematic chain. The chain is composed from the links and 

the joints. The links represent the rigid elements of the robot. The joints either revolute or prismatic 

are connected to the actuators and endow robot with mobility. The revolute joint permits a relative 

rotation around a single axis and the prismatic joint allows a  linear motion along a single axis. The 

current configuration of each joint can be expressed with a single real number: an angle of rotation or 

distance of translation.  

There are two main approaches to characterize robot kinematics: forward kinematics and inverse 

kinematics. Forward kinematics maps of the joint configuration variables to the end-effector position 

and orientation in Cartesian space. The inverse kinematics does the exact opposite. With the inverse 

kinematics it is possible to derive the set of configurations of all the joints leading to given end-

effector position and orientation in Cartesian space. This is used for example to program pick and 

place operation, where we know the coordinates of the object and coordinates of the place where it 

should be put. 

3.1 Modified Denavit-Hartenberg Convention 

In order to compute both kinematic models, it is necessary to attach a frame to each link and 

then compute transformation matrices between the frames. To make the choice of the frames more 

systematic, the modified Denavit-Hartenberg convention is used. Each frame associated with one i-th 

link can be designated as                 , where the    stands for its origin. The rules below 

describe how to assign frames with          to each link. 

      is the base of the common perpendicular of the axis of the joints      and    and it 

is situated on axis     . If those axis are parallel, the perpendicular has to be chosen 

arbitrarily. 

      is the unit vector of the common perpendicular of the axis of the joints      and    

in the direction from      toward   . If these axis are convergent the orientation of  this 

unit vector is chosen arbitrarily. 

      is the unit vector of the axis      with arbitrary orientation. 

      is chosen so the frame represented by axis     ,      and      is orthogonal.  

The axes of    can be chosen arbitrarily. It must be rigidly linked to the robot. Essentially it is chosen 

in a way to make further computations as easy as possible. 

 By applying these rules on the FESTO robot, the frames can be easily assigned to the robot 

links. The result is displayed on Figure 17. The frames are drawn with red lines. As can be seen, the 

origins of the frames   ,   ,    and    are the same. [1] 
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Figure 17 Robot schematics with assigned frames 

 

The parameters     ,     ,    and   , with             , where n is the number of joints of robot are 

called modified Denavit-Hartenberg parameters. These parameters can be derived by following rules 

[1]: 

    = 1 if the joint type is prismatic; 0 if the joint type is revolute. 

      = algebraic angle between axis      and   , measured around axis      . 

      = arithmetic distance between the joint axis      and  , measured along axis     . 

      = algebraic angle between axes      and   , measured around axis   . 

    = arithmetic distance from the point      to the point   , measured along axis   . 

By applying these listed rules to Figure 17, the modified Denavit-Hartenberg parameters can be 

derived. They are displayed in Table 25. 
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 1 2 3 4 5 6 

σi 1 1 1 0 0 0 

ai-1 0 0 0 0 0 0 

αi-1 π/2 π/2 π/2 0 - π/2 π/2 

ri          0 0 0 

θi π/2 π/2 0          

Table 25 Modified Denavit-Hartenberg's parameters of the robot 

 

3.1.1 Set of Transformation Matrices 

The general form of an homogenous transformation matrix between two frames based on the 

modified Denavit-Hartenberg parameters is as follows: 

 

        

                
                                             
                                           

    

  

 

(1)  

This matrix can be also represented in this simple form: 

         
            
  

  (2)  

 

In (2) pi-1,1 and Ri-1,i  represent terms the translation vector and the rotation matrix between frames Ri-1 

and Ri.  

The values from Table 25 can be substituted into the general form of transformation matrices 

(1). The result is the set of transformation matrices between the frames. These matrices are used for 

computing both direct and inverse kinematic models. They are as follows: 

  

      

     
       
    
    

        

     
       
    
    

  

      

    
       
    
    

        

             
            
    
    

  

      

             
    

              
    

        

             
     

            
    

  

 

(3)  

 

3.2 Inverse Kinematic Model 

 The inverse kinematic model is used to derive the configuration parameters for given end-

effector position and orientation. To solve this problem there are two possible solutions: analytical and 
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numerical. The analytical solution is chosen, because it is suitable for Cartesian robots as well as for 

real-time control. 

3.2.1 Computation of IKM 

 First step is to identify the transformation from the 6th frame to the 0th frame in Cartesian and 

joints space. When we do so, we finally get the system to solve (4).  

                                                                       (4)  

 

The complexity of the system is reduced by expressing the right site of (4) as a function of    ,    and 

  .  

                                                               (5)  

 

The matrix         represents the end-effector position and orientation in Cartesian coordinates. The 

matrix         is known. 
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To solve the system it is better to first compute the right-hand side. The matrix products are computed 

in order to get the transformation matrix from the 6th frame to the 4th frame (9). 
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Once the right-hand-side has been processed, the computation of the left-hand side follows. The 

direction of the transformation can be inverted as done in (10). 

 
        

            
     

          
      
        

        
     

  

      

     
       
    
    

        

    
     
       
    

  

      

     
       
    
    

        

    
     
       
    

  

      

    
       
    
    

        

    
    
       
    

  

 

(10)  

 The goal is to find the relation between the joint space parameters and end-effector position 

and orientation in Cartesian space. Because the second column of a rotation matrix is redundant once 

its first and third columns are given it does not need to be developed.  

In order to get the final expression of                 following products are computed: 
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Finally the final expression is derived: 

               

  

                                                 
                                                

                         
    

  
(14)  

 

From (14), the system of equations to be solved can be deduced. It is shown in Table 26. 
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      =                               

      =             

     =                               

     =             

     =              

     =       

         =   

        =   

        =   
Table 26 Relation between the joint configurations and the end-effector parameters. 

 From the above system, it is possible to compute the relation between the joints configuration 

and end-effector position and orientation parameters. All lines from Table 26 must be used to get this 

relation. Because the end-effector can reach one position with different joint configuration more than 

one solution can be found. 

Solution for the first three joints is simple. To express   ,    and   , the last three lines of the table are 

used. 

          

        

        

(15)  

 

From the 6th line, equation (16) can be derived. 

            

                         
  

(16)  

 

From (16) the value of    can be derived by using function                      . There are two 

solutions: 

 
                   

       , with       (17)  

 

The 2nd and the 4th lines are necessary to express   : 

                   

                 
(18)  

 

From (18) it is possible to derive values for       and      : 
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It is again possible to use function                       in order to express the solution of   . This 

solution is possible if and only if the        . 

 
         

    

          
 

 
     

          
 

  
(20)  

 

To express    the 1st and 3rd lines are used. The 1st line is multiplied by          and the 3rd line 

by      : 

                                                  

                                                

 

(21)  

By using classical trigonometric properties it is possible to derive the value for      : 

 
                            

         

          
 

 
         

          
 

 
(22)  

 

Then from the 5th line it is possible to express      . The result is in (24). 
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(24)  

 

It is finally possible to derive value for   . By using the function                      . 

 
         

         

          
 

 
         

          
 

  
    

          
 

   
(25)  

The solution (25) is possible only if        . There is an another solution to be computed for 

       . 

If         then         . In such a case there is an infinite connected set of values for    and 

   (Figure 18). 
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Figure 18 The configuration of the robot if       , with k = {0, 1}  

In order to simplify the expression of    and   , the substitution         
  is used: 

        
                          

       
                          

 

(26)  

  
  has two possible values:   

    if       or   
     if      . 

The development of the 1st line: 

        
                

             
       

                  
                  

         
 

(27)  

The development of the 3rd line: 

        
                         

       
                  

                  
         

(28)  

 

Finally from (27) and (28) can be derived that:  

   
                          

   (29)  

 

 Based on the value of   
  this equation has two general solutions. The second solution with 

  
     is only theoretical, because the fifth robot joint cannot reach position      due to its 

physical constrains. There is only one admissible solution: 

                        (30)  

 

This solution corresponds to an infinite number of (  ,   ) pairs.  

This close the computation of the IKM 
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Figure 19 The configuration of the robot if    
 

 
 

 

 

 

To sum up, if         then the IKM has two different solutions for      . 
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Figure 20 The IKM solution for         

 Two solutions for one given end-effector configuration can be seen in Figure 21. The second 

solution is drawn in red. The first solution is:     °,    
 

 
 and    

 

 
 . The second solution for 

this case is:   
   ,   

   
 

 
 and   
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Figure 21 The configuration of last three joints with two possible solutions 

If the first solution for     . can be expressed as a function of six joint values: 

                     and the second solution for        as a function:      
    

    
    

    
    

  . 

The relation between the solutions is as follows:  

       
  

     
  

     
  

 

     
    

     
    

     
    

 

3.3 Direct Differential Kinematic Model 

The direct differential kinematic model is used to compute the change of position and 

orientation of the robot in time in respect to the change of configuration of the joint set (        ). It 

is differential version of a basic method of forward kinematics. 

3.3.1 Jacobian Matrix 

 One of the most important quantities used for the analysis and control of robot motion is so 

called Jacobain Matrix. This matrix is commonly use for many tasks in robot engineering from motion 

planning, through determination of singular configurations to torque and forces transformation from 

end-effector to the manipulator joints. In our case the Jacobian matrix is used to derive the direct 

differential kinematic model of the robot. It is better to use the matrix      , instead of the general      . 

It means that the frame i  is considered as a body and that the projection is made into the frame j 

instead of frame 0. This reduces the complexity of DDKM computation. 

3.3.2 Computation steps of DDKM 

1. Determination of the preferential Jacobian matrix 

a) Compute p, i, j and express       

b) Determine       

c) Determine        

d) Compute the cross products              

2. Determination of the skew anti-symmetric matrix         associated to vector        

3. Determination of       and       

a) Multiply the matrices from right to left 
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b) Introduce a variable    whenever an element includes more than one 

arithmetical operation 

4. Determination of dx  

3.3.3 Computation of DDKM 

 The first step of computation of direct differential kinematic model is to compute the Jacobian 

matrix      . To choose suitable i and j the basic relation            and       , where n is equal 

to the number of robot joints is used. In this case it is necessary to compute the Jacobian matrix      : 

 
       

                                                   
                  

  (31)  

 

The rotational matrices     ,      and      are computed from transformation matrices (3).  
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The values      ,       and      can be represented by unit matrix of size 3x3 and values of       

      ,              and              equal to         . Values      ,       and       are vectors in 

bold of product matrices (32), (33) and (34). Their values can be seen in (35): 

                

                       
  

                                      
  

(35)  

 

The resulting Jacobian matrix      is: 
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 (36)  

 

Because our Jacobian matrix projects from the body 3 into the frame 4, it is necessary to compute the 

final projection from the  3
rd

 frame to the 0
th
 frame. 
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In (37) the              
 
    and it can be represented as product of three matrices (38). 
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To simplify the whole operation we start computation from right to left. The first two components 

from the left side of (38)  can be taken in order to compute their product designated as    

 

            

 

 
 
 

   
   
   

                          
                         

              

 
 
 

 (39)  

 

It is convenient moment to substation (40) on result (39). 

                               

                              

                 
 

(40)  

The computation continues with the same step. By that    is computed. It is the product of next 

component of (39) and    (41). 
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Computation continues in the same way in order to get final projection. 
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 (42)  

The final projection (43) is computed when all the components are multiplied into one product. The 

final transformation expresses the dependency of the joint configuration change on the change of the 

end-effector position and orientation. 

 

 
   
   

   
        
        

     

 

 
 
 

   
    
   
  
   
   

 
 
 
 

 

 
 
 

   
    
   

                         
                         

              

 
 
 

 (43)  
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4 Control Program 
 The main aim is to develop a control program which substitutes the existing one. The program 

must allow the user to control the robot with a user-friendly interface. It must support several modes of 

operation. Also it is necessary to build a platform which is easy to extend and prepared for future 

work.  

The main objectives which should the program implement:  

 Homing  Mode 

 Profile Position Mode 

 Profile Velocity Mode 

 Feedback Control 

 Vision-Based Navigation 

 

 

4.1 Design 

 A development under the LabView requires a specific approach. All the programming done by 

block diagrams is directly connected with the interface on a front panel. Therefore the conception 

cannot be compared to any common pattern.  

 The application can be seen as a hierarchy of many VIs. On the top of this hierarchy are the 

VIs which are used by users to control the program. They are the most complex ones and they 

envelope all the other VIs. On the other side of the hierarchy are the most simple VIs. Each of them 

represents a single fundamental function. 

4.1.1 VI Hierarchy 

 The control program is built from 102 different VIs. They are divided in several groups with 

regard to their complexity and purpose. There are 7 different groups: Main, Advanced, Fundamental, 

Sub, PDO and Computation. To distinguish VIs from different groups, a name prefix of each VI refers 

to the group in which the IV belongs. 
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Figure 22 The hierarchy of used VIs. Numbers of VIs in each group are in the parenthesis. 

 Figure 22 shows the hierarchy of the VIs used to build the control program. The top VI belong 

to the Main group. There is only one main VI. This VI is used to execute the program. The second 

group is Advanced. This group contains the VIs which are seen and controlled by the user. They have 

user-friendly interviews, various buttons, charts and indicators. The Advanced group VIs are mainly 

composed from the Fundamental and Sub group VIs. The Fundamental group VIs are simple functions 

and subroutines. The VIs from the Sub group are mainly used to display information about the motor 

controllers. Handling of PDOs is done by the VIs in PDO group. Other support computations are done 

by VIs from the last group. 

4.1.2 Program Workflow 

 The main program is composed from several interfaces which are used by user. Figure 23 

displays the basic workflow of the application. 
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Figure 23 Program Workflow 

 When the program is executed the initiation phase starts. It is an automatic phase, where 

instances of CANopen interface and PDOs are created. When everything is prepared the program sets 

all the controllers in the operational state.  Then the application shows the main menu (Figure 28) 

where the user takes the initiative.  

 The user can either access the setting menu, single program menu or advance program menu. 

The advance menu will enable user to program robot to do more difficult tasks. For now no advance 

program is implemented. Within the setting menu it is possible to review all the parameters of each 

motor controller and modify them by SDO messages. The setting menu also offers to user possibility 

of the simple PDO control, the heartbeat protocol and the tool for mapping PDOs. This menu can be 

easily extended with other functions. Last option leads user to the single program menu (Figure 29). 

From there user can choose between different operating modes of the motor controllers. A first thing 

to do when the user choose one of the operating modes is switching on the voltage. Then the user can 

choose the operating mode. The voltage is switched off automatically whenever the user goes back to 

the single program menu. Particular options of the single program menu are discussed further in this 

chapter. 
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4.1.3 Used PDOs 

 In order to control the robot in real-time, some of the objects must be read and modified by 

PDO to avoid having a any delay. In total five PDOs are used: two TPDOs and three RPDOs. Both 

TPDOs are set, so the controller sends them periodically every 40ms. The motor controllers are set so 

they processed all three RPDOs whenever they arrive. Table 27 show what objects are mapped to each 

PDO. All the motor controllers have mapped the same objects. 

PDO Mapped Objects 

TPDO1 Status word, actual position value 

TPDO2 Velocity actual value, velocity actual value filtered 

RPDO1 Control word 

RPDO2 Target Position, End Velocity 

RPDO3 Target Velocity 
Table 27 Used PDOs in the program  

4.1.4 Setting Menu 

 The setting menu is a very important part of the program, because it allows the user to see all 

the parameters of each motor controller. The setting menu is displayed in Figure 24. In the left side of 

the menu are the node selector and the schema of the robot. A cluster menu with many buttons is in 

the middle and a heartbeat protocol interface is on the right side of the window. This interface gives 

the user an overview about the current NMT states of the controllers.  

 From the menu, the user can negotiate all the different parameters of the controllers and 

modify them with SDO write function. Such actions require deeper knowledge of the system. 

Therefore any change of the parameters must be done only with the FESTO documentation. It is also 

possible to modify the mapped objects of any PDO. The user can also modify the NMT state of any 

controller or modify the current operating mode. This is useful especially with the PDO simple control 

while testing new functions.  

  Some important facts must be mentioned. For example it is not possible to set a device into 

pre-operational state and then run the PDO simple control, because PDO is not available in pre-

operational state. On the other hand it is not possible to link PDOs while the controller is in the 

operational state. For this task the controllers have to be set in pre-operational state. If any error occurs 

it is displayed in the error boxes. These error boxes shows only non-critical errors, which does not 

relate with the robot. Such errors mostly occur when a data type is misplaced. The object indexes, sub-

indexes and data types can be found in FESTO documentation along with the explanation of all the 

parameters. 
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Figure 24 The setting menu of the control program 

4.1.5 Homing Mode Control 

 The homing mode is a simple but very frequently used function. It is necessary to set the robot 

joints to their home positions after each reboot. The homing mode control allows the user to switch on 

the final stage and then choose homing of one or all the joints. The first RPDO and TPDO is used in 

this VI. 

  There are four buttons which allow the user to: switch on the final stage, activate homing for 

only one selected joint, activate homing for all joints and go back to previous menu. In total four led-

diodes indicate if the homing mode was set properly, if the final stage was activated, if any drive is 

moving and if any error occurred while executing the homing function. If the user switches on the 

voltage then it is switched off again while the user goes back to the previous menu. 
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Figure 25 The homing mode control interface 

4.1.6 Profile Position Mode Control 

 The functionality of the profile position mode was described in the chapter concerning the 

operating modes. This mode allows to move the drive to the desired position. All the positions of the 

controllers are given in the real units. For the prismatic joints, position is given in millimeters and for 

revolute joints in degrees. Again the user can choose if only one joint or all joints will be driven to the 

target position. 

 

Figure 26 The position profile control interface of the control program 

 As can be seen in Figure 26, the position profile control interface is divided into two parts. 

The left part provides the control of the robot. It contains six input fields for entering the target 

position for each joint. There are three buttons for executing the reference travel of one or all joints 
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and one button for going back to the previous menu. Then there are two led diodes to signal if the 

robot is moving or if an error has occurred. The right part displays the position feedback of each joint 

in real-time with 100ms period.  

 Another interface will be implemented to position the end-effector in the task space (Cartesian 

coordinates). 

4.1.7 Profile Velocity Mode Control 

 The last single program control deals with the profile velocity mode. So far it is the most 

advanced control. From the velocity profile menu it is possible to control only one joint or all the 

joints together. Using of this mode is very important for future work, where the close loop control will 

be implemented. It is required for more complex tasks which will the robot do. 

 In order to move each drive with a smooth velocity trapezoid profile it is necessary to compute 

the time when the drive must start deceleration. If the user wants to move all the joints at once, then it 

is necessary to compute a separate target speed for each joint, so all the joints start and stop the motion 

together. 

 Assume that   
  is the target position,   

  is the current position,   is the total time of travel,   

is the time in which the drive accelerates from rest to maximum velocity     , or decelerate from 

maximum velocity      to zero velocity. 

   
    

             (44)  

 

If the drive accelerates with a linear acceleration and decelerates with a linear then the deceleration 

value of   can be easily computed: 

   
    

 
 (45)  

 

From equations (44) and (45) it is possible to express the value of the total time of travel  . 

 

   
  
    

  
    
 

 
    

 
(46)  

 

The time when the drive has to start deceleration is evident: 

            (47)  

  

 In order to plan the motion of all the joints, so they all travel within the same time, the 

maximum velocity of the travel for each joint must be adjusted. First it is necessary to compute the 

time of travel for each joint (47). Then the maximum velocity is computed for all the joints but the one 

with the maximum time (48). By doing this it is possible to achieve that all the joints start and finish 

their motion in the same time. 
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 (48)  

  

 In Figure 27 the control interface for one joint under the profile velocity mode is displayed. 

This interface can be divided into two parts. The left part deals with control while in the right part the 

velocity and position feedback are plotted in real-time.  

 In this interface there are in total three buttons. One button is used to process the input target 

position and compute the time to stop and total time of travel. Second is used to start the motion and 

the third allow user to go back to the previous menu. There are several different values displayed and 

two led diodes indicating if the drive is moving and the direction of the motion. On the right side of 

the window there are two charts. The top chart provides the actual position feedback. The second chart 

provides the actual velocity feedback. 

 

Figure 27 Profile velocity mode control interface for one joint 

 The control menu for positioning all the joints is only in a working version. It has six input 

fields in order to entre target position of all the joints. Once the position is set, it computes the adjusted 

velocities for all the joints but the slowest. 

 There is also an interface prepared for feedback proportional control. It samples the trajectory 

of the drive and it should compute the errors between the demand position values and the current 

position values. However this module is not ready and it is prepared the future work.  
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4.2 Control Program Use 

 To give an idea how to work with the program, the three general use cases are described.

  Each use case regards one operating mode. The first step is the same for all three cases. 

 

Figure 28 Control program main menu 

 When the control program starts the main menu appears (Figure 28). The program establishes 

the communication and the led diode "System ready" signals that system is ready. Only then it is 

possible to continue by clicking on the button "Single Program". 

 

Figure 29 Single program menu 

 From the single program menu (Figure 29) it is possible to access the control menus of all the 

three operation modes. Use cases of each mode are described further. 

4.2.1 Use of Homing Control 

 Set the robot to its home position is a very common task. It must be done after each reboot of 

the robot. This use case describes how to set the joint "X" to its home position. 

 When the single program menu appears (Figure 29) the homing mode menu is accessed by 

clicking on the button "Homing Mode". 
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Figure 30 Homing mode control - voltage switched off 

 When the homing mode menu (Figure 30) appears, the program signals that the homing mode 

was successfully set by lighting up the led diode "Homing Mode Set". The first thing to do, before the 

homing function can be executed, is to switch on the voltage in the motors. This is done by clicking on 

the button "SWITCH ON". 

 

Figure 31 Homing mode control - voltage switched on 

 When the voltage is on the led diode "Final Stage Activated" is switched on. The joint "X" is 

chosen on the right side of the control window (Figure 31). Then the button "HOMING SINGLE" is 

pressed in order to set the joint to its home position. While the drive is moving toward its home 

position the led diode "Homing in Progress" is switched on. It is switched off when the drive arrives 

home. If any error occurs the led diode "Homing error" is lighted up and the program switches off the 

voltage. 
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4.2.2 Use of Profile Position Control 

 The profile position mode is a basic way how to set a drive to the target position. This use case 

describes how to set the joint "X" to the position 400 millimeters by using the position profile menu. 

 When the single program menu appears (Figure 29) the user position profile menu is accessed 

by clicking on the button "Position Profile Mode". 

 

Figure 32 Position profile menu - voltage switched off 

 When the position profile menu (Figure 32) is opened, the profile position mode is set. It is 

indicated by lighting up the led diode "Position Profile Mode Set". The next step is to switch on the 

voltage in motors. It is done by clicking on the button "SWITCH ON". 

 

Figure 33 Position profile menu - voltage switched on 

 When the final stage is switched on the led diode "Final Stage Activated" is also switched on. 

Then it is possible to click on the button "JOINT SPACE" (Figure 33). 



 

63 

 

 

Figure 34 Position profile control - before travel 

 When the position profile menu appears (Figure 34) it is possible to set the target position for 

each joint. The target position of the joint "X" is set to 400 millimeters. After setting the target 

position and the joint "X" it is possible to start the motion by clicking on the button "ONE JOINT". 

 

 Figure 35 Position profile control - after travel 

 During the reference travel of the drive, the led diode "Robot in Motion" is switched on. It is 

again switched off once the travel is finished. On the right side of the window there is a position 

feedback of each joint. The chart of the joint "X" position displays the trajectory of the joint. 

4.2.3 Use of Velocity Control 

 There are a lot of different application, where the profile velocity mode can be used. This use 

case describes how to use the velocity profile menu to set the joint "X" to the position 250 millimeters.  

 When the single program menu appears (Figure 29) the user clicks on the button "Velocity 

Profile Mode". 
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Figure 36 Velocity profile menu - voltage switched off 

 When the velocity profile menu (Figure 36) is opened, the profile velocity mode is set. It is 

indicated by lighting up the led diode " Profile Velocity Mode Set". The next step is to switch on the 

voltage in motors. It is done by clicking on the button "SWITCH ON". 

 

Figure 37 Velocity profile menu - voltage switched on 

 When the final stage is switched on the led diode "Final Stage Activated" is also switched on 

(Figure 37). Then it is possible to click on the button "ONE JOINT". 
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Figure 38 Velocity profile control - before travel 

 When the velocity profile control appears (Figure 38) it is possible to select the joint and set 

the target position. It this case joint "X" is selected and target position is set to 250 millimeters. The 

parameters of the reference travel must be computed. This is done by pressing the button "Set 

Position". When the button is pressed the time to stop and the predicted time of the travel are 

computed. Also the direction of the travel is indicated by the led diode "Direction". Everything is 

prepared for the reference travel. The travel is launched by clicking on the button "Start Motion". 

 

Figure 39 Velocity profile control - during travel 
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 When the reference travel starts the led diode "Drive is moving" is switched on. The drive 

accelerates to its maximum velocity. Then it keeps going  with the constant velocity until the time of 

the travel is equal to the time to decelerate. On the position feedback chart on the right side of the 

window (Figure 39), is the target position drawn by the red line and the current position by the white 

line. 

 

Figure 40 Velocity profile control - after travel 

 After the reference drive is finished the led diode "Drive is moving" is switched back off. It is 

possible to see the trapezoid profile on the velocity feedback chart and the trajectory made on the 

position feedback chart. It is also possible to see that there is a 4,102 millimeters error. 
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Conclusion 
 All the work was done during the six month long internship. The implementation of the 

control system on a 6-joint robot is a very complex task with many different problems to solve. It 

requires a lot of preparations. First of all it was necessary to decide which hardware and software will 

be used for the development. It was decided to use commercial solution from company National 

Instruments. The controller Compact Rio with the corresponding module was bought. The software is 

developed in the National Instruments environment LabView. This choice of National Instruments as a 

supplier can be considered as very good. The development in LabView is easy-to-learn and the 

community around NI products is very strong. The NI CANopen library is also very good. The first 

communication fundaments were established shortly after delivery of all the purchased articles. 

 Before the delivery the direct differential and inverse kinematic models were designed. The 

direct differential model is good for the future work with a mounted camera on the end-effector of the 

robot. The inverse kinematic model was made in order to allow the user of the system to program 

basic robot tasks in Cartesian space. Both models were computed by using modified Denavit-

Hartenberg parameters and analytical computation methods. 

 In order to have safe and reliable program it was necessary to examine all of the motor 

controller parameters. The right values for each parameters were found and stored. After a long 

process, which required a lot of testing and consultations with the manufacturer of the robot, the right 

parameters were found. After the tuning of the parameters it was possible to start with the safe testing 

of all three used modes of operation. It was also possible to start work on the control program for each 

mode. 

 When everything was ready to build a control application, the architecture was designed and 

all the necessary functions for the application were prepared. The program enveloped all the prepared 

functions using both fundamental and advanced functions.  

 First version of the control program is made and prepared for further expansion. The program 

allows the user to control the robot in real-time. Currently the three different modes are available: 

homing, profile position and profile velocity. The module with control of profile velocity mode is 

made so the feedback control  can be implement.  

Future Work 

 There are many different things to implement in the future. The program must be developed 

further along with the implementation of the other parts.  

  The first part to implement is the position feedback control. It will use first the proportional 

controller, later the proportional-integral-derivative controller. The next part to implement is the 

inverse kinematic model. This will allow the user to give the tasks to the robot in the Cartesian space. 

Another part to implement is an interface which will allow the user to program more complex robot 

trajectory.  

 In the future a camera will be mounted on the end-effector. When there is a module for image 

processing and the camera is mounted, the vision-based navigation can be implemented. It will be 

another large part of the system.  
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