
BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

FACULTY OF INFORMATION TECHNOLOGY
FAKULTA INFORMAČNÍCH TECHNOLOGIÍ

DEPARTMENT OF COMPUTER GRAPHICS AND MULTIMEDIA
ÚSTAV POČÍTAČOVÉ GRAFIKY A MULTIMÉDIÍ

PHYSICAL SIMULATION IN VR
FYZIKÁLNÍ SIMULACE VE VR

BACHELOR'S THESIS
BAKALÁŘSKÁ PRÁCE

AUTHOR
AUTOR PRÁCE

SUPERVISOR
VEDOUCÍ PRÁCE

GABRIELA PACÁKOVÁ

Ing. JOZEF KOBRTEK

BRNO 2018

Zadáni bakalářské práce/21242/2017/xpacak01

Vysoké učení technické v Brně - F a k u l t a informačních technologi í

Ústav počítačové g ra f i ky a multimédií Akademický rok 2 0 1 7 / 2 0 1 8

Zadání bakalářské práce
Řešitel: P a c á ková G a b r i e l a

Obo r : Informační t e chno l og i e

Téma: Fyz iká ln í s i m u l a c e v e v i r tuá ln í rea l i tě

P h y s i c a l S i m u l a t i o n i n V R

Ka tego r i e : Počítačová g ra f i ka

P o kyny :

1. S e z n a m t e se s rozhraním O p e n G L pro t v o r bu 3D grafických aplikací a kn i h ovnou
O p e n V R pro práci s brýlemi virtuální rea l i ty ,

2. V y b e r t e v h o d n o u kn i h ovnu pro modelování zvoleného fyzikálního problému.
3. Navrhněte ap l i kac i pro v i zua l i z ac i zvolené s imu l a c e s využitím virtuální rea l i t y .

4. Ap l i k a c i n a i m p l e m e n t u j t e
5. Sezbírejte zpětnou v a z b u od uživatelů.
6. Vyhodnoťte dosažené výsledky i zpětnou v a z b u .

L i t e r a tu ra :
• d le doporučení vedoucího

Pro udělení zápočtu za první s e m e s t r j e požadováno:

• Body 1 až 3.

Podrobné závazné p o k y n y pro vypracování bakalářské práce na l e zne te na ad r e se

h t t p : / /www. f i t . vu tb r . c z / i n f o / s z z /

Technická zpráva bakalářské práce musí o b s a h o v a t f o rmu l a c i cíle, c h a r a k t e r i s t i k u současného s t a v u ,

teoretická a odborná východiska řešených problémů a spec i f i ka c i e tap (20 až 3 0 % celkového r o z s a h u

technické zprávy).

S t u d e n t odevzdá v j e d n o m výtisku t e c h n i c k o u zprávu a v elektronické podobě zdrojový t ex t technické
zprávy, úplnou p r o g r a m o v o u d o k u m e n t a c i a zdrojové t e x t y programů. I n f o r m a c e v elektronické podobě budou
uloženy na standardním nepřepisovatelném paměťovém médiu (CD -R , D V D - R , apod .) , které bude vloženo do
písemné zprávy tak, aby n e m o h l o dojít k j e h o ztrátě při běžné m a n i p u l a c i .

Vedoucí: K o b r t e k J o z e f , I n g . , UPGM FIT V U T

D a t u m zadání: 1. l i s topadu 2 0 1 7

D a t u m odevzdání: 16. května 2 0 1 8
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

Fakulta informačních technologii
Ústav počítačové grafiky a multimédií
L.S.612 66 Brno, Božetěchova 2

/ y

doc . Dr. I ng . Jan Černocký

vedoucí ústavu

http://www.fit.vutbr.cz/info/szz/

Abstract
The main aim of this thesis is to introduce the reader to the theory and the implementation
of a virtual reality application which uses H T C Vive headset and BulletPhysics engine. It
describes the integration of BulletPhysics and OpenVR S D K with OpenGL. The result of
this integration is a simple bowling game in V R that uses all the aforementioned resources
and provides the user with an entertaining V R experience as well as a deeper understanding
of computer graphics and V R principles.

Abstrakt
Hlavním cílem této práce je seznámit čtenáře s teorií a implementací aplikace pro virtuální
realitu, která využívá headset H T C Vive a knihovnu BulletPhysics. Popisuje integraci
nástrojů BulletPhysics a OpenVR S D K s OpenGL. Výsledkem této integrace je jednoduchá
bowlingová hra ve V R , která využívá všechny výše uvedené zdroje a poskytuje uživateli
zábavný zážitek z V R , stejně jako hlubší pochopení počítačové grafiky a principů V R .

Keywords
Virtual reality, Physical simulation, OpenGL, Head-mounted display, H T C Vive, OpenVR
SDK, BulletPhysics, C++, SDL2, Assimp

Klíčová slova
Virtuální realita, Fyzikální simulace, OpenGL, Headset pro virtuální realitu, H T C Vive,
OpenVR SDK, BulletPhysics, C++, SDL2, Assimp

Reference
P A C A K O V A , Gabriela. Physical Simulation in VR. Brno, 2018. Bachelor's thesis. Brno
University of Technology, Faculty of Information Technology. Supervisor Ing. Jozef Ko-
brtek

Rozšířený abstrakt
Tato práce se zabývá návrhem a implementací jednoduché grafické aplikace, která vizua-
lizuje fyzikální simulaci knihovny BulletPhysics ve virtuální realitě za použití OpenGL
jako grafického A P I . Díky integraci systému virtuální reality H T C Vive dovoluje aplikace
uživateli interaktivním a zábavným způsobem ovlivňovat chod simulace. Aplikace modeluje
simulaci jako jednoduchou bowlingovou hru, ve které může uživatel vidět a ovlivnit chod
simulace při hodu bowlingové koule do kuželek na dráze. Aplikace je implementována
v jazyce C ++ na operačním systému Windows, protože z hlediska virtuální reality je
pro tento systém poskytnuta zatím nej stabilnější podpora, co se týká knihovny OpenVR
a grafických ovladačů.

Aplikace je primárně určena pro používání ve virtuální realitě. Její návrh řeší ne­
jen problémy správné vizualizace fyzikálního světa, modelů a světla, ale i problémy, které
vznikají při nesprávném návrhu vizualizace pro virtuální realitu. Práce objasňuje nejčastější
problémy spojené s používáním virtuální reality, jako nevolnost, bolest očí a hlavy, a ap­
likuje popsané postupy správného návrhu vizualizace v implementaci pro eliminování výše
zmíněných nežádoucích efektů.

Aplikace používá svůj vlastní jednoduchý game engine. Základní návrh aplikace zahrnuje
propojení tří důležitých součástí, a to knihovny BulletPhysics, knihovny OpenVR pro
možnost integrace systému H T C Vive a OpenGL, díky kterému je zajištěno vykreslování
výsledné scény. Scéna je navržena tak, aby obsahovala základní komponenty pro možnost in­
terakce uživatele, jako kuželky, bowlingové koule a dráhu. Pro zpříjemnění zážitku uživatele
z vizualizace jsou v aplikací použity populární efekty počítačové grafiky, jako mapování stínů
(angl. Shadow mapping) nebo multisampling pro zaoblení zubatých hran. Práce popisuje
principy fungování jednotlivých efektů a popisuje jejich vhodnou implementaci.

Základní okno pro vykreslování je vytvořeno za použití knihovny SDL2. Modely bowlin-
gového sálu, kuželek a koulí vytvořené v programu na modelování Blender jsou za pomoci
knihovny Assimp importovány do aplikace, kde jsou následně jejich data vhodně zpraco­
vány a předány OpenGL na vykreslení. Výše zmíněné efekty, jako mapování stínů, jsou
vytvořeny za pomoci OpenGL zřetězeného zpracování při vykreslování, které je programo­
vatelné pomocí shaderů (angl. Programmable pipeline).

Velkou část implementace tvoří integrování systému H T C Vive. Tento systém funguje
pomocí technologie Lighthouse pro sledování pohybu v prostoru. Tato technologie využívá
stanice pro sledování pohybu, které pomocí infra-červeného laseru zaměřují headset a ruční
ovladače, a vypočítávají pozici zaměřených bodů v prostoru. Tyto pozice jsou následné
vyžádaný od systému a zpracovány v aplikaci tak, aby mohly být předány OpenGL pro
vykreslení virtuální scény. Tímto způsobem je přenesen reálný pohyb hlavy a rukou uži­
vatele do vykreslené scény v aplikaci. Virtuální realita je známá tím, že využívá binokulární
vidění lidských očí, aby vhodným způsobem vizualizovala hloubku vykreslené scény pro
uživatele. Tento fakt je následně použit při vizualizaci v OpenGL, kde je obraz vykreslen
dvakrát každou sekundu s rozdílným úhlem pohledu pro každé oko.

Interakce s objekty ve virtuální realitě je uskutečněna pomocí použití ovladačů sys­
tému H T C Vive do rukou a propojením jejich vlastností s knihovnou BulletPhysics. Na
zaměřování objektů s ovladačem ve scéně je využita metoda ray test. Tato metoda spočívá
v projekci neviditelného paprsku z grafické reprezentace ovladače směrem do scény. Paprsek
má omezenou délku. Při protnutí nějakého objektu tímto paprskem se vrátí výsledek testu
s informací o objektu a dále se dá tímto objektem manipulovat za pomoci BulletPhysics
constraints, které nastavitelným způsobem omezují a kontrolují pohyb simulovaného ob­
jektu.

Pro shrnutí dosažených výsledků bylo provedeno testování na dvanácti uživatelích, které
odhalilo nedostatky a zároveň potvrdilo správně použité principy při vývoji pro virtuální
realitu. Možnost interakce se simulací uživatelům umožnila mnohem lepší vcítění se do vir­
tuálního světa. Zároveň většina uživatelů odhalila, že během testování aplikace se u nich
neprojevily žádné nežádoucí efekty při používání virtuální reality. Náročnost uživatelů se
projevila na faktu, že poukazovali na absenci základních herních mechanik pro bowling, jako
hodnocení hodu a počítání bodů, což však nebylo hlavním cílem této práce. Grafická vizua-
lizace byla vzhledem k použité technologii hodnocena pozitivně. Základním nedostatkem
bylo však podle poloviny uživatelů náročné ovládání interakce s koulí. Druhá polovina
uživatelů tvrdila, že náročnost byla přiměřená.

Aplikace v konečném důsledku splňuje základní funkce stanovené zadáním a rozšiřuje
vizualizaci o již zmíněné grafické efekty. Implementace však nabízí velký prostor pro zlepšení
a budoucí vývoj, například zahrnutí uživatelského rozhraní s využitím principů návrhu pro
virtuální realitu, implementaci herní mechaniky bowlingu, nebo možnost několika levelů
a modifikace vzhledu některých prvků. Tímto způsobem by se z aplikace mohla stát plno­
hodnotná hra ve virtuální realitě s vlastním enginem pro virtuální realitu, který by také
mohl být jednoduše rozšiřován díky objektově orientovanému návrhu implementace.

Physical Simulation in V R

Declaration
Hereby I declare that this bachelor's thesis was prepared as an original author's work under
the supervision of Ing. Jozef Kobrtek. A l l the relevant information sources, which were used
during preparation of this thesis, are properly cited and included in the list of references.

Gabriela Pacakova
May 14, 2018

Acknowledgements
I would like to thank my supervisor Ing. Jozef Kobrtek for his help and guidance.

Contents

1 Introduction 2

2 Theory 4
2.1 Virtual Reality 4
2.2 The History Of Virtual Reality 4
2.3 Virtual Reality In The 21st Century 6
2.4 Types Of Virtual Reality Applications 7
2.5 Best Practices In V R 9
2.6 H T C Vive 11

3 Application Concept 13
3.1 OpenGL 13
3.2 BulletPhysics 13
3.3 OpenVR 14
3.4 Other Libraries 15
3.5 Scene Concept 17
3.6 Post-processing Effects 17

4 Implementation 22
4.1 Application Core 22
4.2 Models 23
4.3 Physics 24
4.4 Light 27
4.5 Post-processing 28
4.6 H T C Vive Integration 30

5 Testing 37
5.1 Testing Questionnaire 37

5.2 The Results Of Testing 38

6 Conclusion 40

Bibliography 41

A D V D Content 42

1

Chapter 1

Introduction

The popularity of the term virtual reality has risen by a solid amount among computer
scientists and technology fans in the recent years. The main cause of this virtual reality
trend is the new technologies brought to the market by companies such as Oculus and H T C .
These companies developed the first next generation head mounted displays for virtual
reality, namely Oculus Rift and H T C Vive, and set the industrial standard among virtual
reality hardware. The virtual reality segment of this thesis particularly focuses on the H T C
Vive headset.

Having its beginnings at around 1960s, virtual reality has been used in military and
astronaut training, robotics, and some forms of entertainment. However back then the
developers were widely disadvantaged when it came to computing power and the general
lack of appropriate technology, which was not yet developed. There was also a lack of
software support. A l l this lead to a reason why virtual reality did not hit the general public
the same way as it did a couple of years back.

As the technology progressed a great deal over the years, developers nowadays do
not need to concern themselves with the current state of technology development. Head
mounted displays offer low latency and reasonably high resolution which improves every
year, stereo sound and some provide motion tracking both for the user's head and for
the hands. The bigger concern today is the motion sickness from the experience, although
developers and headset manufacturers work very hard to make this issue go away. Another
concern might be the still unknown health risks virtual reality carries when used in long-
term periods. Due to a still quite high price range, it is possible that it will take a few years
to find out.

The aim of this thesis is to guide the reader along the concept and the implementation
of an application that supports not just a scene one can look at through the V R lens,
but also interact with. It will describe what exactly is necessary to integrate to make
an application capable of simulating rigid body movement according to physical laws from
the real world, as well as handling user input through motion-tracked H T C Vive controllers
and headset. A l l this will be integrated using C++ as the programming language and
OpenGL as the graphical A P I .

Virtual reality history, concepts and best practices will be discussed in chapter 2. This
chapter will be followed by the application concept in chapter 3. The application con­
cept will describe the libraries that are needed for the game to work properly, as well as
the concept of the scene that the user will be interacting with (Section 3.5). To make the ap­
plication more pleasing to the eye of the user, some of the most popular post-processing
effects in today's games used in this application will be discussed (Section 3.6).

2

The implementation description will follow up in chapter 4. The reader will be in­
formed how all the components of the scene, like models and lights, are brought together
(Section 4.1) and how post processing is applied to the scene (Section 4.5). Nearing the end
of the chapter, it will be described how H T C Vive headset is integrated (section 4.6) and
what difference it holds to render a virtual-reality scene in comparison to rendering to a 2D
screen. Chapter 5 will describe the testing of the application. Chapter 6 will summarise
what was achieved during the realisation of this thesis and what could be done in a poten­
tial future development to make the implemented application an interactive game with all
the features.

3

Chapter 2

Theory

This chapter will describe what virtual reality is and it will introduce the reader to the
principles of virtual reality design. It will also cover the H T C Vive headset in more detail
and describe how it works. In addition to virtual reality, this chapter will cover the basic
physic principles of rigid body dynamics and simulation.

2.1 Virtual Reality

In technical terms, virtual reality is the term used to describe a three - dimensional, com­
puter generated environment which can be explored and interacted with by a person [2].
The person inside is immersed into the world on a higher level, their movement and body
becoming a full part of the game world [1] [6]. This is accomplished through hardware, specif­
ically the head mounted display (abbr. H M D) , and the appropriate software. The H M D
and the software are set up just the way for them to form the correct amount of sensory
stimulation, so the human brain achieves a sense of presence in the virtual world.

2.2 The History Of Virtual Reality

Figure 2.1: Panoramic view of London. Aquatint by Henry Aston Barker, after Robert
Barker, 1792

The first indications of virtual reality principles come from late 18th and early 19th
century, when panoramic paintings of historical events became very popular (Figure 2.1) 1.
These paintings allowed viewers to see a scene captured by an artist in a full three hun­
dred and sixty degree field of view.

In 1838 the first stereoscope was invented by Sir Charles Wheatstone. It united the two
representations of objects in space that are seen by human eyes with a slightly different

x h t t p s : //commons.wikimedia.org/wiki/File: Panorama_of_London_Barker.jpg

4

http://commons.wikimedia.org/wiki/File

(a) A stereoscopic photograph from 1901.

(b) A screenshot of a virtual reality headset pro­
jection.

Figure 2.2: A comparison of stereoscopic images.

viewpoint from each eye [3]. This invention essentially lets the user view two photographs
with the same content taken with a slightly different angle and allows for them to be
presented to each eye with a natural depth perception that human eyes possess. That way
a person using the stereoscope felt like they were looking at a real scenery rather than
a photograph. Principally, it is the same thing that is used nowadays in virtual reality
headsets (Figure 2.2).

The invention of computers and new technology allowed to make attempts at bringing
virtual reality closer to where it is now. The first virtual reality system is considered to be
The Sensorama by Morton Heilig in 1957 (Figure 2.3a). The Sensorama featured not just
the stereo sound and the stereoscopic display, but also a vibration chair, a smell generator
and fans. This was followed by another of his inventions in 1960 called The Telesphere Mask,
which was the first true head-mounted display (Figure 2.3b). It provided stereo sound and
stereoscopic display, but was not capable of motion tracking. The biggest breakthrough
yet came with the invention of The Sword of Damocles in 1968 [6]. This virtual reality
system was the first one to provide an input from a computer rather than a camera. The
graphics consisted of simple wireframe objects and the headset provided motion tracking
in addition to stereoscopic display. It was very heavy and thus it needed to be suspended
from the ceiling using a mechanical arm (Figure 2.3c).

For the next two decades virtual reality provided mainly simulations for flight and
military training and in medical industry. In the 1990s it was brought into the entertainment
industry. It was now possible to publicly use virtual reality machines in arcades, even
though the technology was still unavailable for private ownership in households. These
virtual reality systems provided an immerse experience with displays that had a latency

5

(a) The Sensorama. (b) The Telesphere Mask. (c) The Sword of Damocles.

Figure 2.3

of less than 50 milliseconds and some of them were also connected together for multi -
player gaming. At that time, two headsets made an appearance. One was the Sega VR,
which was announced in 1993 but never released due to testers developing headaches and
motion sickness. The other one was The Nintendo Virtual Boy released in 1995. Due to
its negative reception from public, it was discontinued a year after. Since then, virtual
reality has not seen a proper comeback until the second decade of the 21st century, mainly
because the systems were still lacking the lightweight technology that would keep the pace
with the creative vision.

Wi th the sudden development of lightweight mobile systems and smartphones with high
density displays that are capable of projecting 3D graphics to their screens, virtual reality
hardware became a lot easier to develop too. The lightness of these systems allowed to
overcome many obstacles such as the weight of the head-mounted displays. In 2010 the first
prototype of the next generation virtual reality headset, the Oculus Rift (Figure 2.4b)
was announced by the company named Oculus V R . It featured a rotational head tracking

2.3 Virtual Reality In The 21st Century

(a) Google Cardboard. (b) Oculus Rift. (c) HTC Vive.

Figure 2.4

(i

and ninety degree field of view, which was never seen before. Wi th the price range of
the HMD's that was, and still is, quite high, to make the virtual reality more public,
companies like Google released lenses in headsets made from cardboard 2 (Figure 2.4a)
with the possibility to plug in a smartphone with the appropriate software to experience
the depth of the stereoscopic computer generated scenes. In 2015 Valve Corporation and
H T C released the H T C Vive headset (Figure 2.4c) running on the Steam V R platform. It
was the first headset that featured positional motion tracking for the head and the hands
of the user in a defined area in addition to I K displays for both eyes and fresnel lenses. As
of now virtual reality is becoming a large part of the industry with companies dedicating
more and more teams towards V R software development. The hardware is being actively
improved with H T C and PlaystationVR announcing wireless headsets in the near future.

2.4 Types Of Virtual Reality Applications

The market for virtual reality software is growing and it can already be observed that there
are various types of applications from which some provide the option for user input and
some do not.

Non-interactive, or passive V R applications include 360 degree movies or computer
generated scenes, very often used for educational purposes [1]. When using a non interactive
application, the user does not have control over the scene and is unable to provide any
input or influence the application flow. It can prove to be a good source of entertainment
nevertheless, but the impossibility of interaction breaks the sense of presence of the user in
the virtual reality world.

On the other hand, interactive applications provide enough distractions for the user's
sense of presence and, as a study suggests, even the pain intensity is lowered while inter­
acting with the V R world [7]. It is therefore entirely possible that virtual reality will have
a positive effect during therapies and it might be used more frequently in medicine. Virtual
reality systems these days provide many possibilities on how to interact with a scene.

2.4.1 Interaction In Vir tua l Reality

With the first new generation HMDs interaction in a V R application was established still
using mouse and keyboard or a non-tracked hand held controller. Another interaction could
be achieved by firing an invisible horizontal ray from the user's viewpoint, letting the user
choose an item by looking at it. This is also known as ray casting. However the true
breakthrough and more complete immersion came only with the hand held controllers
tracked in 3D space in addition to the headset. H T C Vive and later Oculus developed their
own controller that the user would hold in hand. The controller would track the real hand's
position and provide tracking data to project the tracked hand into the V R scene, allowing
to interact with the objects and the scene itself. Companies like Cyberglove Systems3

developed a hand worn tracking device that can track each finger separately, and a fully
featured A P I .

There are two main views that can be used or combined when designing user interaction
with hand tracking, namely the egocentric and the exocentric view [6].

2 h t t p s : //vr.google.com/cardboard/
3 h t t p : //www.cyberglovesystems.com/

7

http://www.cyberglovesystems.com/

Figure 2.5: A n example of exocentric interaction in an egocentric view.

Egocentric view is very closely related to proprioception . This view is a first person view
of the world, which provides egocentric interactions within this particular environment, for
example standing inside a room in virtual reality filled with objects and interacting with
the objects.

Exocentric view is a view where a person manipulates a model of an environment outside
of it. For example being situated above the V R world and interacting with objects inside
it like in strategy games.

In V R these two views are often combined and the user can apply exocentric interactions
while in egocentric view (Figure 2.5) and vice versa.

2.4.2 Health Concerns

Many negative health effects were reported for some users while using V R including nausea,
headaches, eye strain or physical injury. The causes of these side-effects can be an incorrect
calibration, high latency or incorrectly placed objects in space that is motion captured.

The Importance Of Low Latency

Latency is the time the system takes to respond to the user's request. In V R terms, latency
is the time it takes for the motion tracking system to process user tracking data to the time
the display in the headset responds with the correct projection of user's pose []. It is
very important to make this time as short as possible, so that the user does not notice
the scene lagging behind. Same applies when tracked controllers are used. If they lag
behind in the virtual world, it causes conflict with user's senses and the experience can
quickly become nauseous and headaches can occur.

Incorrect latency is the biggest cause of V R motion sickness and when developing V R
systems it needs to be profoundly understood. Many headset manufacturers therefore rec­
ommend a minimum of 90 frames per second when rendering a V R scene, as it lowers input

4The physical sense of the body, its pose and motion.

8

lag greatly. However there can be times when the fps drops bellow 90, and the manufac­
turers thought of that. Oculus possesses a technology called Asynchronous SpaceWarp5

(Asynchronous Reprojection in H T C headsets), which interpolates additional frames when
the application performance drops.

2.5 Best Practices In V R

When designing a V R application there exist some recommended concepts that one should
follow to make the best possible V R experience. It is important to realise that many of
these concepts exist for a reason and that usually is to get rid of motion sickness inducing
effects that the user would not mind when projected to the 2D flat screen.

2.5.1 Camera Views

As stereoscopy is used in virtual reality headsets to apply realistic depth to an image it is
important to realise that the cameras rendering an image must posses the same field of view
as the user's eyes and the viewpoints for both cameras have to be located at appropriate
distance from each other. In other words, the inter-camera distance needs to be the same
as the interpupillary distance. Fortunately, the SDKs for the headsets usually take care of
the projection and view matrices and they can be requested from the device.

It is very common in non-VR applications, especially ones with a first-person view
to occasionally take control of the user's view and point it in some direction grabbing
the user's attention and pointing it towards some commotion in the scene. In V R however
this principle will not have a very pleasant effect. On the contrary, it can induce motion
sickness quickly, because controlling the view of the user for them in V R causes sensory
input to become asynchronous. The user's head would be still, not turning around in any
direction but the projection in the headset would be suggesting otherwise. Same principle
applies to cinematic cameras. It is also important to avoid effects such as depth of field or
motion blur, as they can heavily affect what the user can actually see while wearing a headset
and blurring image intensely while moving the head around can also be nauseous [].

2.5.2 User Interface

Graphical user interface, also known as GUI or a H U D (from Heads Up Display) is very
common in 3D applications and games. It consists of information that is important for
the user, such as a minimap, remaining health or an aiming crosshair. When projected on
a flat screen, the H U D is implemented usually as a 2D overlay over the 3D scene. However
when incorporating user interface into virtual reality, this concept becomes unusable. As
the image is rendered twice from different viewpoints, it would be difficult to unite the 2D
overlay in such a way that it would not appear distorted due to binocular disparity. In
addition it is inefficient to place such elements in user's peripheral vision. That would force
the user to constantly switch focus on the edges of the image which would cause eye strain
and possible headaches.

The solution to this is to place the user interface and visual clues inside the V R envi­
ronment [4] [6] [8], as it is depicted in figure 2.6. In the figure it is visible that the previously
2D user interface projected on top of the 3D scene is now a part of the scene. If the user
turns their head around, the interface stays in place as any other 3D object in the scene

5https://developer, oculus.com/blog/asynchronous-spacewarp/

9

https://developer
http://oculus.com/blog/asynchronous-spacewarp/

Figure 2.6: A comparison of non-VR (left) and V R (right) interface in The Elder
Scrolls V : Skyrim.

and does not follow user's view with zero latency. This helps to keep user's sense of depth
and immersion and prevents all sorts of aforementioned problems.

2.5.3 V R Environment

Drawing the environment in V R also consists of some recommended practices. The V R
world should be scaled 1:1 to the real world, especially with games motion tracking the player
while standing up. A l l the movement while the headset is used is supposed to be as close to
the real movement as possible. For example if a user turns their head 90 degrees, the world
should also rotate by 90 degrees. In traditional 3D applications, going up or down the stairs
is not a problem at all. However it is impossible to just walk up the stairs or heightened
terrain in V R and teleporting the player up the terrain could be really sickness inducing.
This should therefore be avoided and replaced by using lifts or other means if possible.

Drawing a user avatar can also increase immersion []. A n avatar is the representation
of the user's body in V R world. It makes a big difference when the user looks down and sees
their own legs or when the motion tracked hand controllers help to estimate the position
of user's shoulders and elbows.

2.5.4 Anti-aliasing

Anti-aliasing, discussed in detail in sub-section 3.6.4 is an important effect that should
always be employed in virtual reality scenes. Anti-aliasing artefacts also called staircases or
jagged edges are even more visible in virtual reality due to constantly moving viewpoint [6].
It will never be possible to fully eliminate them, but sampling techniques help to reduce
these artefacts. The downside to this is that some techniques require a lot of performance
and thus the latency might be increased when the framerate drops.

10

2.6 H T C Vive

Figure 2.7: A drawing depicting Lighthouse tracking technology.

H T C Vive is a virtual reality headset developed by H T C and Valve that will be used
to access the virtual reality element of this project. It is powered by SteamVR, a Valve
platform for V R content. It uses a room motion tracking technology called Lighthouse
to communicate with the H M D and its controllers in 3D space by emitting infra-red laser
pulses (Figure 2.7). Vive is able to gather motion tracking data in an area of 4 x 4 meters
which can be expanded adding more base stations. The whole Vive system consists of
the following components and technologies:

• Vive headset: It communicates with the base stations to transfer tracking data of
user's head position and rotation. In addition, the headset features a front faced
camera that can capture the scene's depth and warn the user of any obstacles by
projecting the camera output to the headset's screen with the help of Vive Chaperone
technology which will be mentioned later.

• Vive Controllers: They enable the user to interact with the V R scene, including
the GUI and objects in it. The controllers provide tracking data about their position,
which is basically the position of user's hands. This adds a great deal of immersion
as the user needs to move around the room to reach objects or adjust the view.

• Vive Base Stations: They send requests and receive responses with tracking data
to tracked devices allowing the application to process the data accordingly. The
base station consists of two laser emitters that spin at a speed of sixty times per
second, and a laser beacon. The laser beacon emits a synchronisation pulse and
one of the two emitters sweep a laser beam across the room. The tracked devices
posses receptors with photo sensors that can recognise the sync pulse and the beam.
When the receptor catches the sync pulse, it counts until a photo sensor is hit by
the laser beam. Lighthouse calculates where and when that photo sensor was hit to

6 h t t p s : //www.vive.com/

11

http://www.vive.com/

find the exact position of that receptor in relation to the base station. When there are
multiple receptors a 3D pose in space is formed relative to the base station. Adding
more base stations improves tracking range.

(a) (b)

• Vive Chaperone System: This is a system that draws boundaries around the user's
tracked space inside the running application (Figure 2.8a). This way the user is
aware if they approach the end of the tracked area without crossing a boundary. As
mentioned earlier, the headset consists of a front facing camera that can be used for
different purposes. It can be turned on while still wearing headset, and the user can
view the real surroundings in addition to the V R scene, but it can also be configured
so that when the user exits the tracking area it will project the depth of the real
surrounding to the V R application (Figure 2.8b).

12

Chapter 3

Application Concept

This chapter will inform the reader about the details of the libraries that are used in the final
solution. In addition, it will describe how the scene will look like and what exactly will be
needed to render it. It will also offer a closer look to how the post - processing works and
details towards some of the most popular effects.

3.1 OpenGL

OpenGL1 (Open Graphics Library) is a cross platform and language independent graphical
A P I and an industrial standard used in many graphical applications. It provides access
to the graphics processing unit (GPU) and allows the programmer to render scenes with
hardware acceleration. This A P I was first released in 1992 by SGI and has been main­
tained by Khronos Group since 2006. For it to remain cross platform, it has been made
a purely rendering A P I not responsible for handling sound or application windows events.
Other libraries must be incorporated to the application to do so. From version 2.0 onward,
OpenGL consists of a programmable rendering pipeline which uses shaders that allow to
customise many rendering effects like lights, shadows or post-processing. This way colour,
textures, position and other properties of a pixel in the final rendering can be altered by
the programmer with ease. Due to the fact that this application integrates virtual real­
ity, only OpenGL 4.5 onward is supported. As an addition, GLEW (OpenGL Extension
Wrangler Library) is used in this application. It determines, which OpenGL extensions
are supported and loads OpenGL function pointers from the graphic driver on the target
platform.

3.2 BulletPhysics

BulletPhysics 2 is an open source physics engine written in C++ and available for personal
and commercial use under the z L i b 3 license. It is used in many popular 3D applications
such as Blender, in games and in movies for visual effects simulation. Bullet provides
the simulation of the dynamics for the rigid bodies and collision detection in the applica­
tion. The core of the library is divided to sub-modules, like collision detection, rigid body
dynamics, soft body dynamics etc. This allows the programmer to integrate only the mod-

x h t t p s : //www.khronos.org/opengl/
2 h t t p s : //github.com/bulletphysics/bullet3
3 h t t p s : //www.zlib.net/zlib_license.html

13

http://www.khronos.org/opengl/
http://www.zlib.net/zlib_license.html

Soft Body
Dynamics

Bullet
Multi Threaded

Extras:
Maya Plugin
rikx2dae
bsp. _obj,

other tools
Rigid Body

a Dynamics

Extras:
Maya Plugin
rikx2dae
bsp. _obj,

other tools

Collision
Detection

•
Linear Math

Memory, Containers •
Figure 3.1: BulletPhysics modules. The ones used in this application are marked with a
red dot.

ules they need in the current application (Figure 3.1). The engine is written in C++ and
contains a module implementing mathematical structures like matrices and vectors that
deal with position and rotation of the rigid bodies in the world space. This way Bullet is
very easy to integrate. The engine itself does not have a renderer, but it can be integrated
with any rendering A P I . Each rigid body simulates collision and acts on the physical forces.
The rigid bodies have a world transform that can be obtained by the programmer and con­
nected to the rendered shape on the side of the graphics A P I . The transform is a matrix
providing information about the position, rotation and scaling of the rigid body. It can be
easily converted to a matrix supported by OpenGL. Another great advantage of Bullet is
that the default coordinate system it uses is the same as in OpenGL, a right handed system
with X to the right, Y up and -Z forward. This way complicated transformations do not
need to be applied to synchronise the positions of the objects in the invisible physical world
with the ones in the visible rendered world.

3.3 OpenVR

OpenVR 1 A P I is a library, which supports access to the V R hardware without the need
to rely on specific vendor drivers. This library will be used in the application to access
the tracking information for the H T C Vive headset and controllers and to render the final
scene to the headset's screen. The only requirement is that SteamVR 0 needs to be installed
to use OpenVR code, otherwise the head mounted display will not initialise in the ap­
plication. OpenVR also provides „hello vr world" examples for rendering APIs including
OpenGL and Direct3D which makes it easy to integrate into an existing project. OpenVR
is written in C++ and developed by Valve Corporation.

This A P I can be broken into six interfaces, each providing access to different parts of
the headset functionality:

• IVRSystem: This is the main interface of OpenVR. It provides access to tracking
data, distortion functions, system events and controller states. The pointer to this
system can be retrieved using the VR_Init() function.

• IVRChaperone: This interface provides access to Vive Chaperone system.

4 h t t p s : //github.com/ValveSof tware/openvr
5 h t t p s : //steamcommunity.com/steamvr

14

http://steamcommunity.com/

VR_Compo3 i t o r ()

Figure 3.2: Essential V R calls to access the H M D system data.

• IVRCompositor: Provides access to the V R compositor sub-system. The compos­
itor takes care of projecting the final distorted image to the headset's screen. It also
calculates poses needed to render the images for both eyes.

• IVROverlay: Manages the 2D overlay rendered over the 3D scene. Overlays usually
serve as a user interface for V R applications. The most common overlay is the V R
dashboard.

• IVRRenderModels: Provides access to 3D models for tracked devices such as
the H T C Vive controllers. The model of a controller can then reflect the position
of the physical controller inside the V R world.

• IVRScreenshots: Provides a way to take and share screenshots across the dashboard
or Steam platform.

It is very easy to request projection, view or pose matrices for the tracked hardware and
supply it to the rendering part of the application. The V R compositor, which the rendered
scene needs to be supplied to takes care of the appropriate distortion and the headset
can even recommend at what resolution to render the scene for both eyes. On the other
hand everything from system event polling, tracked device detection and initialisation of
V R scene components to cleanup and shutdown is up to the programmer. Figure 3.2
displays the connection between components of OpenVR A P I that are needed for basic
event processing and accessing motion tracking data.

3.4 Other Libraries

SDLS^ (Simple DirectMedia Layer 2) is a cross platform library that provides OpenGL or
Direct3D applications low level access to keyboard, mouse, audio and a lot more. In this
application, the library handles window creation, OpenGL context 7 creation and registra­
tion of keyboard and mouse events when using the application. SDL is written in C and
therefore it provides native integration into C++. OpenGL itself is not capable of loading

6 h t t p s : //www.libsdl.org/
7 h t t p s : //www.khronos.org/opengl/wiki/OpenGL_Context

15

http://www.libsdl.org/
http://www.khronos.org/opengl/wiki/OpenGL_Context

images that serve as textures, but SDL can handle image loading as well. Plain SDL can
load .bmp images only, but there is an extension named SDL2_image. This extension al­
lows to load other image formats such as .png, .jpg, etc. This application uses the extension
to load .png textures and supply the loaded data to OpenGL.

Assimp (Open Asset Import Library) is a portable library written in C++ that can load
3D model files into one bigger structure, the aiScene, which contains smaller structures for
model meshes. The aiScene consists of a node tree starting with a root node. It can be
recursively processed allowing an easy access to vertices, indices, texture coordinates and
other properties that need to be supplied to OpenGL pipeline to render objects. Assimp is
well documented and thus not difficult to integrate into an application. It supports many
3D model formats including .obj + .mtl, .3ds and .dae. Detailed integration is discussed in
chapter 4, section 4.2.

GLM (OpenGL Mathematics) is a cross platform header library written in C++ that
handles all sorts of mathematical operations when it comes to 3D transformations in
OpenGL. It is based on the G L S L language8 specifications, therefore fully compatible with
the OpenGL rendering pipeline. G L M offers functions dealing with matrix rotations and
translations, scaling, vector and matrix multiplications as well as quaternion operations.

'https://www.khronos.org/opengl/wiki/OpenGL_Shading_Language

16

https://www.khronos.org/opengl/wiki/OpenGL_Shading_Language

•
•-~r. . a

• i — -r-v

Figure 3.3: Four iterations of the scene. The top one is how the final application looks like.

3.5 Scene Concept

The application demonstrates the physical simulation interactively during a simple bowling
game. This means that it needs to be designed in a manner so that the user can interact
with a bowling ball using a H T C Vive controller and then throw it towards the bowling
pins. This action demonstrates the rigid body collision and movement according to physical
forces applied to the ball and to the pins if they are hit.

The scene therefore needs to contain a bowling alley with a bowling ball stand filled with
balls, and ten bowling pins ready to be knocked over. That is just for the model part. Lights
are very essential, as the user needs to see the simulation properly. It is also important
to make the scene look pleasing to the user's eyes, so different textures need to be created
and applied to the models, the models need to be adjusted to contain interesting elements
and some post processing effects such as shadows and anti-aliasing are essential during
the final rendering. The final scene went inevitably through a few iterations depending on
which components of the application core were currently implemented. Figure 3.3 shows
the progress of the scene concept.

3.6 Post-processing Effects

Post-processing is very commonly used in 3D rendering and graphics. Every new game
on the market supports a variety of post-processing effects. These effects can add addi­
tional depth and smoothness to the image, more realistic lighting or shadow projection.
Some effects, not only those used in this application, require multiple render passes. This
means that the image is first rendered into an off-screen framebuffer object, an F B O 9 ,
post-processing shaders are applied and then it is rendered either to the screen or to an-

9https://www.khronos.org/opengl/wiki/Framebuffer_Object

17

https://www.khronos.org/opengl/wiki/Framebuffer_Object

other F B O . It is common for the post-processing to be implemented in OpenGL fragment
shader (for Direct3D A P I it is pixel shader), but some effects can also be implemented
using vertex shader and geometry shader. Following sections will discuss the principles of
post-processing effects used in this solution.

3.6.1 Shadow Mapping

(a) A sketch of the point light in the ap- (b) The principles of shadow test,
plication with the depth cube around it.

Figure 3.4

Shadows are created when there is an absence of light due to the light source being
occluded by some object. They are an important part of any lit scene as they add a great
sense of realism. If the application is supposed to work in V R , where scene realism holds
a great value, it is recommended to implement shadows. There are a few rendering tech­
niques that can produce shadows, but this subsection is dedicated especially to the shadow
mapping technique.

The idea behind shadow mapping is to render the scene's depth from the light's point of
view [10] [11]. The depth map, which holds values of the distance of a surface from a certain
viewpoint, in this case the light's viewpoint, will be stored in an off screen F B O . It needs
to be noted, that the shape of the depth map depends on the type of the light that is used
in the scene. In this application, point light is used to lighten the scene. As the point light
is a light that shines in six directions, the depth map will contain the scene rendered from
six directions as well, and thus it is going to create a cube (Figure 3.4a). This technique is
also called omni-directional shadow mapping. After the depth map is rendered, a shadow
test is performed in the fragment shader to decide which fragments are in light and which
are in shadow.

Figure 3.4b depicts how shadow testing works. Let us assume one wants to know if a
fragment at point P is in shadow. To work it out, one must transform P using T into light
space coordinates. The point P's z coordinate holds the depth value, which corresponds to
0.9 in the figure. During the depth map indexing however, it was found that the closest
depth on the trajectory from the light to P is at point C. This means, that there is no way
for point P to be lit as it is occluded by C, therefore P must be in shadow.

18

3.6.2 High Dynamic Range Rendering

When it comes to rendering lit areas, the contrast of the darkness and the lightness of
the scene is captured in a certain range, which is called a dynamic range. In a usual
scenario, the range of the colour values of the pixels is clamped between zero and one. This
however has a negative impact on the final look of the scene. When it comes to human eyes,
the luminance and radiance could be captured in values ranging from zero to thousands,
whereas the same scene when rendered, would have the values only from 0 to 1.

To overcome this undesired effect, high dynamic range (HDR)[10\ rendering was de­
veloped (Figure 3.5). In low dynamic range (LDR), the colour values in the buffers are
expressed as 8 bit integers. In H D R the colours are expressed in floating point numbers,
either 16, or 32 bit, which allocates a lot more memory for storing the values and a high
range of luminosity and radiance per pixel can be stored [11]. A l l the operations when
rendering an H D R image are performed using floating point arithmetic.

Not many display devices are capable of showing images in H D R . This is why after ren­
dering an H D R scene, tone-mapping needs to be performed. Tone-mapping is a non-linear
process where the pixels are mapped to values from 0 to 1, but the range of the luminance
is not lost. There are many tone-mapping algorithms available, such as the exposure tone-
mapping 1 0 [10]. It can be seen in algorithm 3.1, where c is the clamped colour value, h
is the H D R colour value, and exposure is a parameter that can be adjusted according to
what type of scene is rendered. According to the graph curve, it can be seen that the lu­
minance range will be preserved enough for the darker colours whereas lighter colours will
be gradually limited.

Figure 3.5: A comparison of H D R and L D R scene.

—h-exposure (3.1)

1

0
0 2 4 6 8 10

h • exposure

10 'https: //learnopengl.com/Advanced-Lighting/HDR

19

3.6.3 Bloom

Bloom, sometimes also referred to as glow, is a very efficient post-processing shader effect
when it comes to bright areas of a scene. In a rendered scene the light from light sources or
from emissive materials 1 1 doesn't „bleed" around its natural borders. In real world scenes
however, this bleeding light effect happens quite often, as the lens that the image is captured
by can never focus perfectly, especially with intensely lit scenes.

lt.VIU

! u BLOOM ^

Figure 3.6: In the application, bloom is making the „throw here" sign glow.

This effect is especially effective in combination with H D R and the terms bloom and
H D R are sometimes misused or used interchangeably, even though these are very different
effects for very different purposes. In many scenes it is very hard to demonstrate the H D R
effect to a viewer without applying bloom. The basis of bloom effect lies in extracting
the bright areas of the scene using a threshold filter, blurring these bright areas and ap­
plying them over the non-blurred scene. The result can be seen in figure 3.6. One of
the efficient ways to blur these bright areas is to use Gaussian blur [10]. The reason bloom
benefits from H D R so much is that in H D R the brightness threshold can exceed the value
of 1.0 thus offering a much bigger range for adjusting the threshold filter. The details of
the implementation will be discussed in chapter 4.

3.6.4 Multisampling

Multisampling, also abbreviated MSAA as in multisampled anti-aliasing is just one of many
methods to achieve anti-aliasing in a rendered scene [11]. Anti-aliasing is a technique that
helps to smooth out jagged edges of curved surfaces in an image. When the OpenGL
rasterizer takes vertices and transforms them into fragments, it has to determine the screen
coordinates of every fragment since it all depends on the resolution of the rendered scene.
In figure 3.7a 1 2 a grid of screen pixels is displayed with a sample point in the centre. The
pixels that have their sample point covered by the inside of the shape will be rasterized
and the others will be left out. Hence the aliasing artefacts visible in figure 3.7b, where
the shape is already rasterized.

1 1Emissive material is a type of material which emits light, but does not contribute to scene's lighting.
Source: https: //learnopengl.com/Advanced-OpenGL/Anti-Aliasing

20

(a) A grid of screen pixels each with a (b) A rasterized edge showing aliasing
sample point. artefacts.

(c) Multiple samples per pixel. (d) Multisampled edges filled with aver­
age colour.

Figure 3.7

Multisampling takes care of this issue by adding multiple sample points in each pixel
(Figure 3.7c). The more samples added, the more precise the rasterization. It would seem
at first that the fragment shader needs to be run more than once per each rasterized pixel,
but the opposite is true. When the shader is run, all sub-samples of the pixel will have
stored a certain colour. At the edges where some samples belong to the rasterized shape and
some do not, an average colour is computed from the sub-samples and applied to the pixel
(Figure 3.7d). This way some colours at the edges might seem to be blending with the rest
of environment when viewed from a distance. Nowadays graphic processing units (GPU's)
usually support a sub-sample count of 2, 4, 8 and 16.

21

Chapter 4

Implementation

This chapter will describe how the core features of the application are implemented. It will
contain a detailed view of the integration of various libraries such as BulletPhysics and
OpenVR as well as a description of some of the most important principles used in the ren­
dering of the final scene, encountered problems and their solutions.

4.1 Application Core
Every application that renders in real time including this one can be divided into two large
sub-parts, that is the initialisation of the scene and then the rendering loop. In addition,
these kinds of applications can have various rendering states, for example the starting menu,
the pause menu, the level scene, and these states can differ when it comes to initialisation
and rendering. A person with object oriented programming skills could already figure out
that each state will have its own class, but every state class will inherit from a common
interface for all states.

Ga m e s t a t e

+ application: Application

- GameStatel Application): « e o n s t r u c l o r »

"A"

M a i n S c e n e

"A"
O-

GameStatelnterlaee

t- Init (): virtual bool
+• Update (): virtual tool
+ Destroy f}: virtual bool

M a m S c e n e V R

"A"

<-•

Application
+• active: bool

+ state: Gam estate Interface

- SetState(GarneStatelfiterface): void

- Run(): bool

A
•« injects ??

Injector

« creates »

Figure 4.1: A class diagram of the application core showing dependency injection.

This is why GameStatelnterf ace was implemented. It consists of virtual functions for
initialisation, per-frame update and cleanup. The interface is implemented by the GameState
class and MainScene, the parent class of MainSceneVR, inherits from it. Figure 4.1 depicts
the relationship between the most essential components of the application. It can also be

22

noticed that dependency injection design pattern is used in the solution. The particular
example as to why it was used is that the Application class can be dependent on different
game states with different implementations without the need to change any code in this
class. These states can also then be injected during runtime.

MainScene, obvious from its name, is a class container for all the objects needed while
initialising and rendering the scene. It houses shaders, models, references to physics world
and data needed for post-processing. Calling Init () causes to build the scene by creating
all the objects needed during per-frame rendering. Afterwards Update () is called in a loop
in the application core. This method manages the rendering of the objects per frame and
steps the physical simulation. It also calculates the time needed to render one frame, as it
needs to be supplied to the physical world to properly synchronise to the frame rate.

MainSceneVR is an extension of the MainScene from which it inherits. The purpose of
this class is to handle the virtual reality side of the application, from OpenVR initialisation
through event polling and rendering the V R scene. It consists of methods both for the initial
setup and those called on a per-frame basis. More about these is mentioned in section 4.6.

4.2 Models

Ball Pin Alley Box

2
Model

i . 1

Mesh

+• meshes: vectors Mesh >

+• rigidBody: blRigidBody

•i- model Matrix: glm::mal4

i . 1

•i-vertices: vector<Vertex>

t- indices; veclor<unsigned int>

+• meshes: vectors Mesh >

+• rigidBody: blRigidBody

•i- model Matrix: glm::mal4

•i-vertices: vector<Vertex>

t- indices; veclor<unsigned int>

+• meshes: vectors Mesh >

+• rigidBody: blRigidBody

•i- model Matrix: glm::mal4
+- setupMeshf): void

t- Render{): void +• LoadModel{ string); void

-i- Render{): void

+- setupMeshf): void

t- Render{): void +• LoadModel{ string); void

-i- Render{): void

Figure 4.2: A diagram showing a relationship between Model and Mesh class.

Game models were created in Blender and exported as .obj model files. A n .obj file
unfortunately cannot be supplied to OpenGL directly. Vertices, indices and other elements
need to be extracted from the .obj file and supplied to the A P I to render the model. Model
and Mesh class integrate the Assimp library and process all the data and upload them to
OpenGL buffer objects.

Mesh is a certain part of a model. Some models only have one mesh, some can have
more than one. Each mesh processes the corresponding Assimp aiMesh on construction.
It extracts vertices, indices, texture coordinates, normals and material colours and saves
it into appropriate vectors of data structures. It also prepares the OpenGL buffer ob­
jects for rendering in the setupMeshO method and loads the textures of the mesh calling

x h t t p s : //msdn.microsof t.com/en-us/library/hh323705(v=vs.l00) .aspx

23

loadMaterialTextures(). Mesh essentially processes and stores everything needed to
render a model in OpenGL.

Model consists of one or more meshes. It imports the scene using Assimp: : Importer
object and recursively processes the nodes. In figure 4.2 it is displayed that a few classes
inherit from model. Model serves as a storage for meshes during initialisation of the game.
The reference to the rigid body for physical simulation is assigned only if a class that inherits
properties from Model is realised. Each entity that can be found in the scene has its own
class. This is because the objects have different collision shapes and different properties
are needed for their rigid bodies in physical simulation. As an example, there are ten pins
in the scene. Each pin looks the same, thus rendering data such as vertices and material
colour can be stored in one place in the memory and shared amongst all pins, but each
pin needs its own reference to a rigid body for the physical simulation. That is because
the world position of each pin is dependent on the position of their own rigid body.

4.3 Physics

As it was stated earlier in section 3.2, Bullet does not have nor require a rendering A P I to
simulate the physics. Therefore the task at hand when integrating physics into a game or
application is to visualise the simulation. To make a connection between OpenGL rendered
models and BulletPhysics simulated objects, it is important to understand how rigid bodies
work. In the previous section it was mentioned that each model contains a reference to
a rigid body, the btRigidBody.

A btRigidBody object is used to simulate rigid bodies with six degrees of freedom2 in
the game. Each rigid body object is created supplying a btRigidBodyConstructionlnf o
structure. It contains mass, inertia tensor, motion state and collision shape.

Figure 4.3: The approximation of a pin collision shape is a cone.

The collision shape supplies the shape of the rigid body. As an example, a rigid body
of the bowling ball will have a collision shape of a sphere. When the rigid body of the ball
is initialised, it will act on physical forces just like a sphere in reality. This might lead
to a question of whether more complex models will also have complex collision shapes.
It depends entirely on the model and the scene. However the more complex the collision
shape, the more resources it takes to render a frame. It is not that important when there
are only several objects in a scene but with increased amount the simulation can struck

2 h t t p s : //en. wikipedia.org/wiki/Six_degrees_of_freedom

24

http://wikipedia.org/wiki/Six_degrees_of_freedom

down performance. In this application for example, the collision shape of the bowling pin
is a simple cone (Figure 4.3). It is an entirely sufficient approximation of the shape.

Figure 4.4: The convex collision shape (left) and the concave collision shape (right).

Sometimes however, it is needed for the collision shape to be exactly the shape of
the exported model. Bullet provides creating custom collision shapes, or combining simple
shapes to generate a compound shape [5].

The basic collision shapes such as sphere, cone, cylinder or box are convex shapes3, as
none of their interior angles are bigger than 180 degrees. Bullet also provides the construc­
tion of a convex hull shape that creates the convex approximation of a collision shape. Such
approximation can be seen in figure 4.4 on the left. It is quite efficient and does not take
up a lot of resources, but the collision would not be as precise as in the real world.

The other type of 2D and 3D shape is the concave shape4 as seen in figure 4.4 on
the right. The bowling lane edges and the gutters have a concave collision shape, so that
the ball falls into them when it approaches the edge of the lane. A concave shape is
constructed using the btBvhTriangleMeshShape, where the programmer needs to supply
the vertices of the meshes that OpenGL uses to Bullet to generate a triangle mesh collision
shape. Such shapes are recommended to be used only with non-moving (static) rigid bod­
ies, otherwise they can negatively affect the performance of the simulation. In the game,
the Alley class uses the btBvhTriangleMeshShape. The rigid bodies are initialised with
each entity in Entities.h calling the p ln i tO method.

4.3.1 Rigid Bodies In Bullet

There are three types of rigid bodies in BulletPhysics, namely dynamic, static and kinematic
rigid bodies. A l l of them serve different purposes and it is important to choose the right
type for the simulation. During the construction of the rigid body, the already mentioned
btRigidBodyConstructionlnf o structure is passed to the btRigidBody constructor. One
of the properties, the inertia tensor can be calculated from a collision shape with a non zero
mass by calling calculateLocallnertiaO.

Dynamic rigid body is a rigid body that can collide with other objects and acts on
the forces applied to it. If a force is applied on this kind of rigid body, it will simulate
the movement according to that force. The behaviour of the body depends on several pa­
rameters, one of which is mass that has to be a positive non-zero value. In this particular

3 h t t p s : //www.mathopenref. com/polygonconvex.html
4 h t t p s : //www.mathopenref.com/polygonconcave.html

25

http://www.mathopenref
http://www.mathopenref.com/polygonconcave.html

implementation dynamic bodies are used to simulate bowling balls and bowling pins. Bullet
allows to set different parameters for these during initialisation, such as the aforementioned
mass, friction, damping and restitution. Some of these properties can be changed dynami­
cally during simulation as well.

Static rigid bodies on the other hand do not act on any kind of force applied to them.
They still simulate collision and possess properties as dynamic bodies, such as friction, but
they do not move at all during simulation. Static bodies are created when the mass of
the rigid body is set to zero. In the implementation they are used to simulate the environ­
ment of the level, such as walls and bowling lanes. Basically anything that other objects
could collide with.

Kinematic rigid bodies are usually used to control a player character body. This kind of
body can move and collide with other dynamic bodies, but does not simulate impact when
other bodies hit it. It is a special case of a rigid body and it is not necessarily needed in
current implementation, as it could cause unwanted collisions if the player wanted to reach
for an object using H T C controllers.

4.3.2 Visualisation with O p e n G L

It is important to understand that the rendering A P I such as OpenGL is just a tool for visu­
alisation of the physical world that can exist on its own without the user's knowledge. Each
rigid body has its position in world space. Whether the body currently moves or not, during
each render call, a position of this rigid body can be saved from its world btTransform
by calling getWorldTransf orm. The bt Transform is essentially a 4x4 matrix that can be
easily converted to a glm: :mat4 matrix used in the rendering core of the application.
A conversion function, among other utility functions, is implemented in the BulletUtils
static class.

Once the transform of a rigid body is converted and saved as a glm: :mat4 matrix, it
can be passed to the OpenGL shader as the model matrix. The rendered representation of
the rigid body is therefore synchronised with the physical world.

4.3.3 Stepping The Simulation

Another important aspect of visualising Bullet with OpenGL is stepping the simulation 5

with correct parameters. The stepSimulation(timeStep) method needs to be called every
frame. Let it be said that the application needs to run at 60 frames per second (fps). From
the simulation point of view one would assume that the timeStep should be then set at
1 / 60. This will work, but if and only if the machine running the simulation is powerful
enough to render at 60 fps no matter how many operations it needs to perform during one
render call. In majority of scenarios this however will not work. The framerate is likely to
drop if post-processing is applied or if there are many objects in the game and shaders and
the simulation become really busy. It might also become problematic, when the application
is run on another machine which is less powerful. The problem can be spotted by the user
easily. The simulation would start running extremely slow, but if the fps was measured, it
would show the correct values.

The solution to this problem is fairly simple. At the beginning of each render call, in
this case in the Update () method of the MainScene class, a timer logic is set up to calculate
the delta time between each frame (Algorithm 1). The SDL2 library handling the applica-

5 h t t p : //www.bulletphysics.org/mediawiki-1.5.8/index.php/Stepping_The_World

26

http://www.bulletphysics.org/mediawiki-1.5.8/index.php/Stepping_The_World

tion window has a function SDL_GetTicks () that counts milliseconds since initialisation.
This way a time difference, the delta time, between each frame can be calculated and passed
to Bullet as the timeStep.

Algorithm 1 Calculation of the delta time for simulation steps.

1
2
3
4
5
6
7
8
9

10
11
12
13
14

deltaThen = 0 ; / / during ini t ia l i sat ion
bool Update()
{

deltaNow = SDL_GetTicks(); / / milliseconds
/ / calculate deltaTime and convert to seconds
deltaTime = (deltaNow - deltaThen) / 1000.0;

//steps the simulation with deltaTime and max 5 sub-steps
dynamicWorld->stepSimulation(deltaTime, 5);
/ / perform frame rendering
/ / . . .
deltaThen = deltaNow;
return true;

}

timeStep < maxSubSteps • fixedTimeStep (4.1)

Bullet also performs movement interpolation (i. e. estimation) if the maximum number
of sub-steps passed to the simulation is greater than one. During the simulation it is
important to satisfy inequality 4.1, where the fixedTimeStep is set by Bullet to 1 / 60. If
the inequality is not satisfied the simulation is losing time from the mathematical point
of view. In this implementation, the simulation needs to run at least at 90 fps, optimally
at 120 fps because of the virtual reality element. That is why the maximum number of
sub-steps of the simulation has been set to five, which proves to be enough during runtime.

There are three types of light that approximate the lighting in real world, the point, direc­
tional and spot light. These lights can also be implemented using various reflection models
that can add intensity, reflection and other properties, such as Phong or Blinn-Phong [10].
Which type of light should be used always depends on the scene and which parts the light
should illuminate.

Directional light is usually used to simulate sunlight, as it has an infinite distance from
the scene and infinite size. The illumination of the objects depends entirely on its direction.
As the bowling lane is a closed area, this type of light is not suitable to be used in the project.

Spot light is a light that can illuminate a certain area in the scene. It has a fixed distance
and origin, and the light spreads from it forming a cone over the illuminated area.

Last type of light is the point light. It is a light that has an origin in one point and
shines in all directions. This is the primary type of light that illuminates the bowling lane
in the application.

4.4 Light

27

X
LO

Kc + Kl-d + Ka-d2
(4.2)

The Light class is implemented to hold all the required information about the light source
later passed to the shader, such as its colour and position. This implementation uses
the Phong reflection modeZ[9][10] and the light therefore takes advantage of the ambient,
diffuse and specular colours of the materials and their shininess factor. The light im­
plementation also employs attenuation, otherwise referred to as the intensity of the light.
The attenuation is responsible for the scattering of the light across space. It is implemented
using equation 4.2, which is very common in computer graphics. Parameter d is the dis­
tance from the light to the pixel and constant, linear and quadratic parameters (Kc, Ki,Kq

respectively) are chosen according to the type of scene.

4.5 Post-processing

« r e n d e t pass 1 »
Depth Map Shader

« render pass 2 »
Modal Shader Ping-pong h o r i z o n t a l - v e r t i c a l b l u r

Shadow Map
Texture

Multisampled
Scene

HDR
ATTACHMENT0

HDR Shader

BLUR
TEXTURE0

Intermediate
Conversion
from MSAA

HDR
ATTACHMENT1
(threshold)

KDRShader
B l u r Shader

BLUR
TEXTURE1

Bloom Shader

BLOOM
TEXTURE

Screen

Figure 4.5: A diagram showing how the final post-processed scene is created.

The implementation of post-processing effects relies heavily on OpenGL framebuffer
objects. The scene needs two rendering passes and additional shader processing of the ren­
dered scene to get the final result. Figure 4.5 depicts the order of post-processing effects
application. It also shows which shader is used in which phase to produce the final scene.

First rendering pass is realised when the scene is rendered from the light's perspective
to construct the depth map cube for shadow mapping. To make this rendering pass faster,
no textures, materials or colours are applied to the models, because to find out the depth
of the scene, these elements are not needed. The depth map is saved into the dedicated
off-screen framebuffer with a cube map texture attachment. This texture is later going to
be applied over the scene.

The second render pass renders the models and the light with all the textures and ma­
terials into a framebuffer with multisampled texture attachment with a number of samples
of choice. This causes the OpenGL rasterizer to perform multisampling while rendering
the scene. However it is not possible to process the image from a multisampled texture

28

directly without converting it to a 2D texture. This is done by copying the multisam-
pled framebuffer contents to an intermediate framebuffer with a 2D texture attachment.
It is achieved by binding the multisampled framebuffer for reading, then binding the in­
termediate framebuffer for drawing and calling glBlitFramebuffer(). The intermediate
framebuffer will contain the multisampled frame of the scene in a 2D texture attachment.
The shadow test is performed at this stage and the depth map is applied to the scene as
well.

Afterwards, the shader for H D R is used to convert the scene to an H D R scene. Tone-
mapping and gamma correction6 is applied and the result is rendered to a quad situated in
the normalised device space coordinates . This quad is rendered by calling RenderQuad ()
whenever it is needed to save the post-processed image to another framebuffer. The H D R
framebuffer contains two attached textures. This is because the shader for H D R post­
processing contains two outputs. This technique is also referred to as multiple render targets.
The first output of the shader is a fully rendered scene in H D R colours. The second output
however performs thresholding. It only renders the pixels that have a certain brightness
over some numerical threshold value that can be adjusted. The pixels bellow the limit are
discarded. Algorithm 2 shows how threshold brightness is calculated. It is a dot product
of the current fragment with the R G B values of 0.2125, 0.7154 and 0.0721 respectively.

Algorithm 2 Threshold filter in G L S L shading language used in this implementation.
float brightness = dot(FragColor.rgb, vec3(0.2125, 0.7154, 0.0721));
if(brightness > THRESH0LD_VALUE)

ThresholdOutput = vec4(FragColor.rgb, 1.0);

The bright parts of the scene are needed to apply bloom to the final image. The thresh-
olded scene needs to be blurred to create a glowing effect and then applied over the first
render target of the H D R shader, the fully rendered scene. There are different ways of blur­
ring the scene. In this implementation, the Gaussian blur was used in a combination with
two framebuffers for „ping-pong" switching between blur iterations. The image is blurred
in ten iterations, five horizontally and five vertically. In the first iteration, a horizontal blur
is applied and the image is stored to one of the blurring framebuffers. Then a vertical blur
is applied to the image and the image is stored to another framebuffer for blurring. These
framebuffers switch the image and blur it according to the number of iterations. The final
image is applied over the previously rendered scene creating a bloom effect.

The blur shader contains pre-defined Gaussian weights according to which the blur is
applied in each iteration. Algorithm 3 shows how the resulting colour is achieved. The
texel from the image that is being blurred is retrieved with a slight offset in the texture
coordinates and is multiplied by the corresponding Gaussian weight.

The Postprocessing.h file contains classes implementing various framebuffers with
texture and depth attachments according to what type of texture attachments were needed.
A l l the shaders are stored inside the C++ code in the ShaderStrings .h file.

6 h t t p s : //learnopengl.com/Advanced-Lighting/Gamma-Correction
7The coordinates of the virtual display device, lower left corner corresponds to (0,0) and upper right

to (1,1)

29

Algorithm 3 A part of the G L S L blur shader.

uniform bool horizonal;
// pre-defined Gaussian weights
uniform f l o a t weight[5] =

fl o a t [] (0.227027, 0.1945946, 0.1216216, 0.054054, 0.016216);
// size of single texel
vec2 tex_offset = 1.0 / textureSize(image, 0);
// current fragment
vec3 r e s u l t = texture(image, TexCoords).rgb * weight [0];
i f (h o r i z o n t a l)
{

f o r (i n t i = 1; i < 5; ++i)
{

resu l t +=
texture(image, TexCoords + vec2(tex_offset.x * i , 0.0)).rgb *

weight[i];
re s u l t +=

texture(image, TexCoords - vec2(tex_offset.x * i , 0.0)).rgb *
weight[i];

}
}
else // . . . v e r t i c a l blur

4.6 H T C Vive Integration

Integrating a virtual reality system into an application brings its own challenges and com­
plications. The hellovr_opengl8 example in the OpenVR library provides the basics on
how to access tracking data and how to draw a scene including the Vive controller models
to the headset's screen. The example is very basic and does not provide any clues on how to
initiate interaction with objects. Object picking will be discussed in section 4.6.3. However
it is two thousand lines long in a single . cpp file, so to actually understand how the V R
system works, it is better to analyse the code and draw a diagram of how to incorporate
the system into this application and note down which functions to call at what time during
runtime.

4.6.1 Initialisation process

The application needs to be fully initialised before it can start rendering. Figure 4.6 de­
scribes the order of functions that need to be called to initialise every component that is
needed. The detailed description of these functions is listed bellow:

1. Obtaining the V R system pointer. When initialising the V R system by calling
VR_Init(), the V R system pointer is returned. This pointer is needed to access
tracking data, events and other parts of the initialised V R system.

2. Initialising components. The function InitializeComponents() takes care of
the initialisation of render models and the Vive Compositor. Render model initialisa­
tion requests the appropriate interface from the V R system and the Vive Compositor
is initialised by calling VRCompositorO.

8 h t t p s : //github.com/ValveSof tware/openvr/tree/master/samples/hellovr_opengl

30

MamSticauVR Setup

A p p l i c a t i o n : :Setup () :
1 , v r : :VR_Init() ;

2. i n i t i a l i s e SDL and
ether components

+-1. applieation->getVRPointer()

2. I n i t i alizecomponent s()

3. VP. shades compilation
2.1

IrsitHenderModela (J 4. Mamseene ::i j n i t (> ;

2.2., I n i tvncorapoai tot(}
•!vr: :VH_Conpo=iL„or{) •

5. setupc&inef as <) ; Ready To Run
Mai/i Loop

G. SetupStereoR&riderrargeta () ;

7. SetupCompanienWindow();

8.1 s etupRe rtde cMode1For
TraekedDeviee (TraekedDevieemdaic)

* 3. setupRenderBodels <1 ;

1 9. create o b j e c t p i c t & r

3.1.1 FindotLoadRendsrMod«l(RenderModelNaine}

Figure 4.6: The initialisation order of the application.

3. V R shader compilation. There are three shaders needed to draw the V R scene
properly in addition to other shaders that handle the rendering of the main scene. The
shader for render models takes care of rendering the models of tracked devices, such
as controllers, in the scene at their current position. Another shader is the companion
window shader that is responsible for rendering the output to the companion window
on the screen. The last shader is the controller shader that can be used to draw
the axes of the controllers.

4. Main Scene initialisation. Model loading and scene setup is situated in the parent
MainScene class. Therefore to load the shaders, lights, post-processing and the models
for the scene, the Init() method of the MainScene has to be called.

5. Setting up cameras. When rendering in V R , two cameras need to be set up instead
of one, because the scene needs to be rendered from both eyes, which have a slightly
different viewpoint. When rendering the scene, it also has to be rendered twice per
frame. Setting up the cameras consists of requesting the projection and the eye pose
matrix of both eyes supplying the appropriate eye index. These matrices will be
needed during rendering when the view and the projection matrix will need to be
supplied to OpenGL.

6. Setting up render targets. Since the application needs to render two images per
frame, one for each eye, it needs to have two render targets to store these images and
then supply them to the V R Compositor for distortion. This is done by setting up four
framebuffers. Two for each eye, one of them with a multisampled texture attachment
and one with a 2D texture to convert the multisampled texture to. The need to
convert from a multisampled texture to a normal 2D texture is described in section
4.5. As to why multisampling, or anti-aliasing in general, is important in a V R scene
is mentioned in section 2.5.

7. Setting up companion window. The companion window is a window on the com­
puter's screen projecting the images of both eyes next to each other. This way for

31

example an observer can look at what the user wearing the headset is doing in the V R
world. The companion window can also serve as a quick debugging tool so the pro­
grammer does not need to wear the headset every time they need to test a small
change in code. The window is set up by initialising OpenGL buffers for the position
and the texture coordinates of a quad rendered in normalised device space. The im­
ages of the scene from both eyes are bound to the quad just before each rendered
frame.

8. Setting up render models. The application needs to detect which devices of
the Vive system are connected and active during initialisation. Then it has to load
a model for that device from the SteamVR platform and prepare it to be ready to ren­
der into the scene during the main loop. The bVRRenderModel class was implemented
to hold information for each new render model, such as its vertices and textures and
to initialise OpenGL buffers so these models can be rendered. Each unique render
model is saved into an array of render models. When FindOrLoadRenderModelO is
called, it then searches the array of loaded models and loads a new one only if it
has not been already loaded. The function SetupRenderModelForTrackedDevice ()
is called during the application initialisation, but also afterwards per-frame, when
the application is detecting whether the VREvent_TrackedDeviceActivated event
happened in the system.

9. Creating Object Picker. ObjectPickerVR is a class handling the interaction with
the objects using H T C Vive controllers. It is closely tied to Bullet, as the object
picking with a V R controller requires to perform ray casting9. It will be mentioned in
depth in a later section.

4.6.2 Rendering process

MainSceneVR per-frame o p e r a t i o n s

1.1 P o l l N e x t E v e n t () ;
1.2 G e t C o n t r o l l e r S t a t a (J ;
1.3 Fro ceasEuttortE vent () ,- 2. s t e p S i m u l a t i o n (t i m e S t e p)

1. PollVREvent f) ;

3. Render 1 oDeptfiMap () ;
4.1 RanderroTVO

4.2 RenderScene(eyelndex) R e n d e r S t e r e o T a r g e t s () ;

5. RenderCompanionWindow();

6. Stibmit scene to VR Compositor

7 . UpdateHMDMatriMPoaa () ,-

Figure 4.7: The initialisation order of the application.

9 'http: //bulletphy s i cs.org/mediawiki-1.5.8/index.php/Us ing_Ray Test

32

http://cs.org/mediawiki-

The rendering process takes care of drawing every frame to the screen and to the H T C
Vive H M D display applying transformations from the V R Compositor. Figure 4.7 describes
the order of rendering operations. The detailed description of these methods is written
bellow:

1. Processing V R System Events. The PollVREvent () method checks for events
that happened in the V R system, like new device activation or deactivation. Af­
terwards, the vrSystemPointer->GetControllerState () is called to get the state
of attached controllers. Button events are processed in the ProcessButtonEvent (),
that checks which button was pressed and what action should the application take.
Trigger button controls object picking.

2. Stepping the simulation. This method is called through the btDynamicsWorld
pointer that holds the data about the physics world. Detailed description about this
method is in sub-section 4.3.3.

3. Rendering the scene's depth. This method is responsible for rendering the depth
of the scene needed for the shadow test. As it takes its own render pass to render
from light's point of view, it is separated from the rest of the scene rendering.

4. Rendering stereo targets. The RenderStereoTargets () method first takes an ad­
ditional render pass with a camera that is being situated close to the bowling pins
to render the zoomed view to the T V screen above the bowling lane. This kind of
an effect would be a part of the 2D GUI overlay in non-VR applications. The reason
for this is just to inform the user how many pins they hit, as the long bowling lane
prevents from seeing it properly.

Afterwards the appropriate framebuffers are bound and the scene is rendered two
more times. Once from the left eye and once from the right eye into multisampled
texture attachments. These are then converted to 2D textures, ready to be submitted
to the V R compositor.

5. Rendering the companion window. Just before the images are submitted to
the V R Compositor, they are projected to the companion window as two textures
bound next to each other on a quad rendered in normalised device coordinates.

Figure 4.8: The distortion the image goes through (barrel and pincushion distortion re­
spectively) before the user's eyes process it.

33

6. Submitting to the V R Compositor. This is not a difficult task once the scene is
rendered. The vr: : Texture_t is constructed with appropriate parameters for both
eyes. The first required parameter is the void pointer of the uintptr_t (unsigned int
pointer) of the OpenGL texture ID. Additional two parameters are pre-defined values
of the openvr.h file, the vr: :TextureType_OpenGL and the vr: : ColorSpace_Gamma.
Once the texture is in a V R system format, it is ready to be submitted to the Com­
positor by calling vr: : VRCompositor()->Submit (vr: :Texture_t). The Compositor
applies appropriate distortion to the image, so when the user views it through the Vive
lens it fills the user's field of view (Figure 4.8).

7. Updating H M D pose matrices. It is a general knowledge in computer graph­
ics that the projection, view and model matrix needs to be supplied when rendering
a scene. However in V R , usually the algorithm 4 applies. The eye matrix is the matrix
that provides stereo disparity as both eyes have a slightly different view. It can be ob­
tained from the system by calling GetEyeToHeadTransform(). This method returns
a matrix, whose inverse is the matrix needed in the algorithm 4. The application
already possesses the appropriate eye projection and eye pose matrices, as they were
saved during camera setup.

Algorithm 4 The model-view-projection matrix in V R .
1 f

2
/ / matrix = projection * eye * view * model
mvpMatrix = eye_projection * eye_pose * HMD_pose * model;

Calling vr: : VRCompositor () ->WaitGetPoses () with appropriate parameters updates
the H M D poses. This will save poses in an array of tracked device poses data struc­
tures, the vr: :TrackedDevicePose_t structures. Looping over the pose data struc­
tures, the H M D pose of the device will be saved in the mDeviceToAbsoluteTracking
property. The matrix needs to be inverted before it can be treated as the view matrix
in the application.

4.6.3 Interacting W i t h The Scene

(a) The ball-socket constraint. (b) The hinge constraint.

The basic principle behind the object interaction is the appropriate use of BulletPhysics
constraints10. When a constraint is applied to a rigid body, it makes the rigid body behave
according to certain rules, limiting its range of motion relative to some point[5]. There
are different types of constraints, some of them allow the body to move in all six degrees

1 0 h t t p : //bulletphy s i cs.org/mediawiki-1.5.8/index.php/Constraints

34

http://cs.org/mediawiki-

of freedom, and some limit their movement only along a certain axis like the hinge con­
straint depicted in figure 4.9b. Properties of every constraint can be adjusted so it behaves
according to need.

When picking up the object, the point-to-point, btPoint2Point constraint is used. It
is also alternatively named the ball-socket constraint (Figure 4.9a). When the bowling ball
is picked up, it is attached to the Vive controller with a point-to-point constraint, allowing
it to be moved around when moving the controller in user's hand.

The rigid body needs to be targeted appropriately by the user and Bullet needs to
recognise it in order to pick it up. This is achieved by performing a ray test. Ray test is
a method where an invisible ray is cast from an origin in a certain direction. The ray's
distance can be adjusted. Whenever the ray hits a body, it returns it as the result of the ray
test. Then it becomes possible to perform further actions using the body that has been hit.
This method can be easily incorporated to the V R scene.

Ray casting is performed with the origin at the Vive controller axes origin and the ray is
shot in the direction of -Z ctXIS 5 ctS that is the forward direction in this application. Looking
at figure 4.10 it is relatively easy to extract the coordinates of the origin and the direction
for the ray test from the Vive controller pose matrix. When creating the direction vector
for the ray casting, the Z coordinates have to be saved with a negative sign.

mi »v-, mg mi3
rn-2 »f(, mm mi4

^ni;) in- in | [ui] r,J

Figure 4.10: The visualisation of controller axes needed for ray testing with the description
of the controller's pose matrix indices.

Once the origin and the direction is established the ray-test needs to be called at an ap­
propriate time. That means mapping the function to a certain button event. The button
scheme for Vive controllers is depicted in figure 4.11. Objects can be picked up holding
down the controller trigger button. Whenever the trigger is pressed down, the PickBodyO
method is called from the ObjectPickingVR class. This method performs the ray test by
calling the rayTestO method from the BulletPhysics world pointer. It saves the result in
the supplied ClosestRayResultCallback.

If the ray has hit, the body that was hit will be stored in the callback structure. Another
small step before applying constraint to it is figuring out whether it is a dynamic rigid body.

35

System Menu
(k_EButton_5ystem) I

Trigger
{ k_EBu t ton_S teainVR_Tr i gger)

Grip
(k_EBut ton_Gz; ip)

Touchpad
(k_EBu t ton_S teamVR_Tou chpad)

Application Merm
(k__EBut to n_Applic a t i o nMenu)

Figure 4.11: H T C Vive controller scheme.

Any other type of rigid body has to be ignored. If this is true, the point-to-point constraint
can finally be created and applied to the rigid body as seen in algorithm 5.

Algorithm 5 Creation of the picking constraint.

// the coordinates where the ray had h i t
btVector3 pickPos = RayCallback.m_hitPointWorld;
// upcast the object that was h i t to a r i g i d body
btRigidBody *body =

(btRigidBody*)btRigidBody::upcast(RayCallback.m_collisionObject);
// calculate anchor point of the constraint
btVector3 localPivot = body->getCenterOfMassTransform().inverseO * pickPos;
btPoint2PointConstraint* p2p = new btPoint2PointConstraint(*body, l o c a l P i v o t) ;
dynamicWorld->addConstraint(p2p, true);

If the controller trigger is being held down, the movePickedBodyO method is called
every frame. This method needs the updated origin and direction of the Vive controller to
move the body with the controller around in the scene by manipulating the constraint.

When the controller trigger is released, the rigid body constraint is removed. The rigid
body acts on physical forces normally even when the constraint is applied to it. If the user
mimics throwing the ball and releases the controller trigger at the right moment, the ball
will simulate the throw and roll on the bowling lane towards the pins.

36

Chapter 5

Testing

The most famous testing questionnaire about virtual reality applications in context with
simulation sickness is the Kennedy Simulation Sickness Questionaire (SSQ) []. This ques­
tionnaire results in four scores, the total score and the disorientation, oculomotor and nausea
scores. However, as this application does not include all the aspects needed to perform such
an advanced test, a small questionnaire was prepared for the participants. Questions ranged
from asking about the most common V R side-effects to the opinion about the appearance
of the application.

5.1 Testing Questionnaire

V R Bowling is an implementation of a bachelor's thesis that was created using C++,
OpenGL, physics simulation library called BulletPhysics and OpenVR A P I to integrate
the H T C Vive V R system. After testing the application, please answer the following ques­
tions:

1. Was this the first interactive application in V R that you have tested?

2. Have you detected any unpleasant feelings during or straight after the testing, such
as nausea, feeling lightheaded, eye strain or other?

3. From a scale of one to ten, rate the visual aspect (appearance) of the application.
(1 - worst, 10 - best)

4. From a scale of one to ten, rate how much were you immersed into the V R scene.
(1 - not at all, 10 - totally)

5. Did the fact that you were able to interact with the objects help you to immerse into
the virtual reality scene more?

6. Was there any noticeable application latency or any framerate drops? Did the scene
reflect your movements immediately?

7. How would you rate the difficulty of grabbing and throwing the ball?
(suitable, too difficult, too easy)

8. Did you find the heads up T V screen with the zoom to the pins incorporated into
the V R environment helpful when you wanted to find out how many pins have you
hit?

37

9. Optional: Is there anything else that you would suggest for a better V R experience?

5.2 The Results Of Testing

The application was tested by twelve users in total. Some of the questions were only
informative, others were asked to provide room for the opinion of the user. The results prove
that the application is designed appropriately following some of the best V R practices, as
none of the participants, whether it was their first time using virtual reality or not, expressed
any type of negative side-effects.

Visual aspect rating

5 (41,7 %)

•
3

(25 %)

1 (8,3 %) 1 (8,3 %) 1 (8,3%) 1 (S.3 %)

0 (0 %) 0 (0 %) 0 (0 %) 0 (0 %) • •
2 3 4 5 6 7 3 9 10

Figure 5.1: The results of question 3.

In question 3 users were asked about the visual aspect of the application, such as
adequate lighting or pleasant level design. The results can be seen in figure 5.1, with
an average value of 7.5 out of 10.

VR Immersion rating

5 (41,7 %)

2 3 4 5 6 7 3 9 10

Figure 5.2: The results of question 4.

The results of question 4 in figure 5.2 show that most of the participants were truly
immersed. During the testing however it was revealed by some that they were experiencing
a little discomfort, because they feared they would hit a real life object or trip over the H T C
Vive chord that leads to the headset. Question 5 was answered with a 100 % yes by all
the users, meaning that the interaction using motion tracked controllers truly helps to
immerse into the V R scene even more.

38

How would you rate the difficulty of grabbing and throwing the ball?

9 Too difficult 0 Other # Adequate 0 A little difficult, but bowling isn't easy in reai life either

Figure 5.3: The results of question 7.

The application did not show any signs of lower latency or lag, as none of the participants
noticed anything out of order. Question 7 however shows that the interaction mechanism of
grabbing the objects with a controller could use some improvements. Looking at figure 5.3,
it is apparent that almost half of the participants regarded throwing the ball to hit the pins
as too difficult. Some participants responded with a custom answer saying that grabbing
the ball with the controller is a little immersion breaking, as when compared to real life,
the bowling ball has to be held differently than a controller.

The bowling alley is quite long and it is difficult to see what is happening on the other
end. The heads up zoom of the pins incorporated into the V R environment as a T V screen
was proved to be a good idea, as it helped all of the participants to see how many pins they
hit, if any. The last question, which was optional was merely informative. The answers
showed that the participants would welcome some additions, such as the bowling game
mechanics, like score counting or various different levels, and audio.

39

Chapter 6

Conclusion

The aim of this thesis was to appropriately demonstrate an interactive physical simulation
in virtual reality. This was achieved by creating a very simple virtual reality bowling game.
To visualise the simulation of rigid bodies it was important to integrate OpenGL and
BulletPhysics and create a visually pleasant representation of an environment for the user.
To help achieve this, some of the most popular post-processing effects were used during
the visualisation. Another important step was to integrate the H T C Vive virtual reality
system using OpenVR, and use BulletPhysics in such a way that the user interaction with
simulated rigid bodies is possible using Vive hand-held controllers.

At the beginning of this thesis the reader was informed about the basic methodology in
connection with virtual reality also regarding virtual reality application design principles
and unwanted side-effects when using virtual reality. Afterwards the application concept
chapter followed. It was about the basic scene concept, integrated libraries and the workings
of some of the post-processing effects that were used in the application. That was followed
by the explanation of the implementation from window creation to multiple render passes
and by how the H T C Vive system and BulletPhysics were integrated into the application.

The last part consisted of the user feedback questionnaire and its results. The user
feedback proved that this implementation was quite successful when it comes to common
virtual reality problems, and no participant experienced any serious negative side effect
during testing. However the results also show what the application is lacking and thus
provide a lot of room for improvement.

During a future development, this application could become a full scale virtual reality
game incorporating bowling game mechanics such as score counting, virtual reality graphical
user interface and audio. Due to the object oriented design, it is relatively easy to build upon
the project and add additional features, potentially making this implementation a small
custom made virtual reality game engine.

40

Bibliography

[1] Unreal Engine V R Best Practices. [Online; visited on 29.04.2018].
Retrieved from:
h t tps : / / docs.unrealengine.com/en-us/Platf orms/VR/ContentSetup

[2] What is Virtual Reality. Virtual Reality Society. [Online; visited on 10.04.2018].
Retrieved from:
h t tps : / / w w w . v r s . o r g . u k / v i r t u a l - r e a l i t y / w h . a t - i s - v i r t u a l - r e a l i t y . h t m l

[3] Brewster, D.: The Stereoscope; its History, Theory, and Construction, with its
Application to the fine and useful Arts and to Education: With fifty wood Engravings.
John Murray. 1856.

[4] Craig, A . ; Sherman, W.; W i l l , J . : Developing Virtual Reality Applications:
Foundations of Effective Design. Foundations of Effective Design Series. Elsevier
Science. 2009. ISBN 9780080959085.

[5] Dickinson, C : Learning Game Physics with Bullet Physics and OpenGL. Packt
Publishing. 2013. ISBN 9781783281886.

[6] Jerald, J.: The VR Book: Human-Centered Design for Virtual Reality. New York,
N Y , USA: Association for Computing Machinery and Morgan & Claypool. 2016.
ISBN 978-1-97000-112-9.

[7] Jose, G . - M . ; Olga, G . - M . ; Katia, C . -H. : Interactive and Passive Virtual Reality
Distraction: Effects on Presence and Pain Intensity. Studies in Health Technology and
Informatics, vol. 167, no. Annual Review of Cybertherapy and Telemedicine 2011.
2011: page 69-73. ISSN 0926-9630. doi:10.3233/978-1-60750-766-6-69.

[8] Linowes, J.: Unity Virtual Reality Projects. Packt Publishing. 2015. ISBN
9781785286803.

[9] Phong, B . T.: Illumination for Computer Generated Pictures. Commun. ACM.
vol. 18, no. 6. June 1975: pp. 311-317. ISSN 0001-0782. doi:10.1145/360825.360839.

[10] Sellers, G.; Wright, R. S.; Haemel, N . : OpenGL Superbible: Comprehensive Tutorial
and Reference. Addison-Wesley Professional. 7 edition. 2015. ISBN 0672337479,
9780672337475.

[11] Shreiner, D.; Sellers, G.; Kessenich, J . M . ; et al.: OpenGL Programming Guide: The
Official Guide to Learning OpenGL, Version 4-3. Addison-Wesley Professional. 8
edition. 2013. ISBN 0321773039, 9780321773036.

41

http://docs.unrealengine.com/
http://www.vrs.org.uk/virtual-reality/wh.at-is-virtual-reality.html

Appendix A

D V D Content

• The I$Tfj]X source code of the bachelor's thesis text

• The bachelor's thesis .pdf file

• The source code of the application including all dependencies

• The compiled .exe binary file of the application

• Video showing interaction with the V R scene

12

