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Chapter I

Introduction

Quantum information is an interdisciplinary field with the goal of utilizing the
quantum properties of various physical systems in order to drive new applica-
tions. The most promising areas of development are quantum communication
[1–4], expanding the tools of secure communication towards real-life applica-
tions, quantum metrology [5–7], practically enhancing the most powerful mea-
surement tools of the modern times, and quantum computation [8–10], already
achieving results that would require unacceptably long time on classical com-
puters. Quantum information is not tied to any particular physical system. It
aims at devising universal protocols, which then can be adapted by any capa-
ble platform. The protocols can be divided into two broad categories. The
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first relies on discrete quantum systems represented by a specific number of
two-level qubits. The second one considers continuous systems described by
infinite-dimensional Hilbert spaces. These can be modes of optical [11–13] or
microwave fields [14, 15], or vibrational modes of mechanical oscillators [16].
Alternatively, they can also be the systems of such a large number of qubits
that their collective behavior is essentially continuous, such as in the case of the
collections of magnetic spins [17, 18].

For universal processing of continuous-variable (CV) systems, one needs the
ability to implement an arbitrary quantum operation [19]. This can be achieved
by having access to the class of the Gaussian operations that linearly transform
the quadrature operators of the system [12], together with at least a single
non-Gaussian operation [19, 20]. The non-Gaussian nature can be imparted by
suitable projective measurements [21, 22], but scalable applications ultimately
demand a deterministic implementation.

For these reasons, this work focuses on both the use of nonlinearities to gen-
erate non-Gaussian states and the evaluation of relevant parameters of these
states. During the experimental realization of the states, it is crucial to assess
the quality of the state we have created and determine whether it meets the ex-
pected properties, such as a given level of squeezing, non-Gaussianity, and other
characteristics. In this dissertation, we focus on the use of Kerr nonlinearity for
the generation of nonlinearly squeezed states [23] (Chapter V); we also focus on
the evaluation of relevant parameters of these states. We study both harmonic
oscillators and other systems (Chapter VI).

Since classical information processing is a physical process [24], the compu-
tational and thermodynamic processes are closely linked [25]. A typical example
is the resetting of a register in a computer, which, in thermodynamic terms, cor-
responds to cooling. If we move from classical information theory to quantum
information theory, quantum information theory still intersects with quantum
thermodynamics [26] in understanding the costs of information processing, stor-
age, and communication [27, 28]. Insights from quantum thermodynamics can
be helpful for the design of more efficient quantum algorithms [28] and error
correction schemes [29, 30], ultimately enhancing the performance of quantum
computers [29, 31]. Quantum thermodynamics paves the way for the develop-
ment of quantum heat engines and refrigerators. These engines could poten-
tially surpass the efficiency limits imposed by classical thermodynamics, leading
to more efficient energy conversion and utilization technologies, leading to more
efficient manipulation of quantum information. In this work, we deal with the
realization of a heat engine designed as a nonlinear interferometer. Its most
significant feature is that it uses the smallest possible heat reservoirs composed
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of only 4 working modes.
An integral part of the dissertation thesis is a theoretical basis for easier

access to the work carried out during the doctoral studies. Therefore, in the
chapter II, we describe the system of collective spins: linear operation, possible
description of states, and basic spin states. We will also focus on more complex
operations that can be used to generate squeezed states. The chapter concludes
with a presentation of the Holstein-Primakoff transformation - an approximation
of a system of collective spins by phase space.

In chapter III, we deal with the basic description of the linear harmonic
oscillator (LHO), the definition of quadrature operators, and their properties.
We continue with possible descriptions of LHO states and quasi-probability
distributions. We finish with the definition of LHO states and their division
according to the property of the quasi-probability distribution of these states.

In chapter IV, we mainly focus on the use of Kerr nonlinearity to gener-
ate a non-Gaussian state for realizing a heat engine with the smallest possible
number of modes. Without using a nonlinear phenomenon, it would not be
possible to realize such a machine. In this project, we use Kerr nonlinearities
to generate non-Gaussian states, allowing us to concentrate energy into one of
the four modes in such a way that the energy of this state exceeds the energy
of each of the individual input states. Additionally, the photon statistics of this
state change from a Bose-Einstein distribution to a distribution that approaches
Poisson distribution.

In chapter V, we focus on connecting the use of nonlinearity for generating
nonlinearly squeezed non-Gaussian states with the use of Kerr nonlinearity,
specifically cubically squeezed and quartically squeezed states. In this context,
the quantification of the states themselves is also necessary. We introduce a
squeezing parameter with which we quantify the resulting states.

In chapter VI, we expand the squeezing parameter used in chapter V so that
it can also be applied to systems other than the linear harmonic oscillator. An
example of this is cubic squeezing in systems of collective spins.

3



Chapter II

Theoretical basis of Collective
spins

In this chapter, we describe the formalism of collective spin systems. We will
define them as sums of individual spins or two n-boson modes. We will focus
on operations that can be implemented in current experiments and divide them
into classes according to the power of the Hamiltonian. We will do the same
with quantum states, divide them into classes, and present the operations by
which these states can be achieved. A necessary part of this chapter for a
better understanding will be the visualization and description of states through
quasi-probability distributions.
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II.1 Definition
Spin is a quantum property of elementary particles, which has no equivalent in
classical physics. It is the internal angular momentum of a particle independent
of its orbital motion. This would describe a single particle with spin 1

2 (using
ℏ = 1) by angular momentum operator

Ŝ =
1

2
σ̂, (II.1)

where σ̂ is Pauli spin operator composed of σ̂x, σ̂y and σ̂z Pauli matrices

σ̂x = |0⟩ ⟨1|+ |1⟩ ⟨0| , (II.2)
σ̂y = −i (|0⟩ ⟨1| − |1⟩ ⟨0|) , (II.3)
σ̂z = |0⟩ ⟨0| − |1⟩ ⟨1| , (II.4)

where
|0⟩ =

(
1
0

)
, |1⟩ =

(
0
1

)
. (II.5)

Pauli operators satisfy commutation relations

[σ̂k, σ̂l] = 2iϵklmσ̂m, (II.6)

where the ϵklm is the Levi-Civita symbol(k, l,m ∈ {x, y, z}), also known as a
permutation symbol

ϵklm = 1 if (k, l,m) is even permutation , (II.7)
ϵklm = −1 if (k, l,m) is odd permutation , (II.8)
ϵklm = 0 if any two indices are equal. (II.9)

II.1.1 Operators Ĵx, Ĵy, Ĵz

We can describe total collective spin by a collective spin operator for systems
composed of more such particles. It is possible to define the collective spin
operator in two different ways.

The first of them is to consider that this operator is formed as a sum of spin
operators of N individual particles

Ĵk =
1

2

N∑
n=1

σ̂
(n)
k , (II.10)
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for k = x, y, z. The dimension of N spins is 2N ; however, if only symmetrical
states are involved, the dimension is reduced to N + 1.

For this purpose, we can use Swinger’s representation [32] equivalent to
two bosonic modes with annihilation operators â1,2 and creation operators â†1,2.
These operators satisfy the bosonic commutation rules[

âk, â
†
l

]
= δkl. (II.11)

The collective spin operators have the form

Ĵx =
1

2

(
â†1â2 + â1â

†
2

)
, (II.12)

Ĵy =
1

2i

(
â†1â2 − â1â

†
2

)
, (II.13)

Ĵz =
1

2

(
â†1â1 − â†2â2

)
, (II.14)

and satisfy commutation relations[
Ĵk, Ĵl

]
= iϵklmĴm, (II.15)

in the same manner as the operators defined in (II.10). The total number of
particles corresponds to

N̂ = â†1â1 + â†2â2. (II.16)

The square of the total angular momentum operator

Ĵ2 = Ĵ2
x + Ĵ2

y + Ĵ2
z , (II.17)

can be expressed as

Ĵ2 =
N̂

2

(
N̂

2
+ 1

)
. (II.18)

That means that the system of N spins 1
2 can be described as one system with

the total angular momentum Ĵ , where N̂ and Ĵ are connected by (II.18).
It is also useful to define the so-called ladder operators Ĵ+ and Ĵ−

Ĵ+ = Ĵx + iĴy,

Ĵ− = Ĵx − iĴy.
(II.19)
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They satisfy the commutation relations[
Ĵ+, Ĵ−

]
= 2Ĵz, (II.20)[

Ĵz, Ĵ±

]
= ±Ĵ±. (II.21)

II.1.2 Dicke states
The states that are the eigenstates of the operator Ĵz and Ĵ2, are called the
Dicke states |J,M⟩ and they are defined by

Ĵ2 |J,M⟩ = J(J + 1) |J,M⟩ , (II.22)
Ĵz |J,M⟩ =M |J,M⟩ , (II.23)

where J = N
2 , M = −J,−J + 1, · · · , J − 1, J and N is the total number of

atoms. These states have a precise number of particles in the two modes and a
completely undefined phase. The lowest state that can be reached, the ground
state |J,−J⟩ of Hamiltonian Ĥ = Ĵz (sometimes called the vacuum state), can
be used to construct higher Dicke states as

Ĵ+ |J,−J⟩ =
√
2J |J,−J + 1⟩ ,

Ĵ+ |J,−J + 1⟩ =
√
2(2J − 1) |J,−J + 2⟩ ,

...
Ĵ+ |J,M − 1⟩ =

√
(J +M)(J −M + 1) |J,M⟩ .

Any Dicke state can be expressed in terms of the ground state as

|J,M⟩ = 1

(J +M)!

√(
2J

J +M

)
ĴM+J
+ |J,−J⟩ . (II.24)

The extreme states |J,±J⟩ satisfy

Ĵ− |J,−J⟩ = 0, (II.25)
Ĵ+ |J, J⟩ = 0. (II.26)

On the opposite side, we also have the highest possible excited state |J, J⟩,
satisfying

Ĵ+ |J, J⟩ = 0. (II.27)
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II.2 Basic operations
One of the most basic operations in the collective spin system is the rotation op-
eration. By the unitary operation of rotation, it is possible to create a coherent
spin state from the vacuum state, and therefore we will describe the operation
of rotation in the definition of the coherent spin state.

II.2.1 Coherent spin state
A coherent spin state pointing in direction n [33–35] can be defined as the ground
state of the Hamiltonian Ĥ = n·Ĵ, where n is rotation axis and Ĵ =

(
Ĵx, Ĵy, Ĵz

)
.

So, we demonstrate an example of rotation, first, we rotate along Jz

Ĵz = Ĵz, (II.28)
Ĵn = Ĵx sinϕ− Ĵy cosϕ, (II.29)
Ĵk = Ĵx cosϕ+ Ĵy sinϕ. (II.30)

Now we have new axes Jz,Jn,Jk. If we perform a rotation along the Jn axis,
then the rotation operator will have the form

R̂(n)(θ, ϕ) = exp
(
−iθĴn

)
(II.31)

= exp
(
−iθ

[
Ĵx sinϕ− Ĵy cosϕ

])
, (II.32)

= exp
(
αĴx − iαĴy − α∗Ĵx − iα∗Ĵy

)
, (II.33)

= exp
(
αĴ+ − α∗Ĵ−

)
, (II.34)

where α = θ
2 exp(−iϕ). A spin coherent state with general rotation has the form

|θ, ϕ⟩ = exp
(
αĴ+ − α∗Ĵ−

)
|J,−J⟩ . (II.35)

Even though it is a rotated ground state, the coherent state is still an eigenstate
of the total angular momentum operator, but no longer of the operator Ĵz,

Ĵ2 |θ, ϕ⟩ = J(J + 1) |θ, ϕ⟩ . (II.36)
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It is also possible to write a coherent state in the basis of Dicke states. It is
necessary to rewrite the rotation operator using the Baker-Hausdorf relation[36]

R̂(θ, ϕ) = exp
(
e−iϕ tan

(
θ

2

)
Ĵ+

)
exp

(
ln
(
1 + |e−iϕ tan

(
θ

2

)
|2
)
Ĵz

)
×

× exp
(
e+iϕ tan

(
θ

2

)
Ĵ−

)
. (II.37)

For simplicity, we use the substitution τ = exp (−iϕ) tan
(
θ
2

)
. Then we express

the coherent state as the rotated ground state

|θ, ϕ⟩ = R̂(θ, ϕ) |J,−J⟩ , (II.38)

=
1

(1 + |τ |2)J
exp

(
τ Ĵ+

)
|J,−J⟩ , (II.39)

=
1

(1 + |τ |2)J
J∑

M=−J

τM+J

(M + J)!
ĴM+J
+ |J,−J⟩ , (II.40)

=
1

(1 + |τ |2)J
J∑

M=−J

(
2J

J +M

)( 1
2 )
τM+J |J,M⟩ . (II.41)

As is obvious, the only thing that the rotation operation causes is a change
in the state’s position on the Bloch sphere (more details in the section below),
so it is a linear operation. The mean values in the individual operators Ĵk
(k ∈ {x, y, z}) are in interval −N

2 to N
2 .

II.3 Visualization
For the visualization of the states of collective spins, we are using the Bloch
sphere. The Bloch sphere [37] (also known as Poincaré sphere in classical optics)
is a geometrical representation of the state space of a two-level quantum system.
The pure state of a two-level system can be described as a superposition of two
ground states

|ψ⟩ = α |0⟩+ β |1⟩ , (II.42)

where α = cos
(
θ
2

)
and β = eiϕ sin

(
θ
2

)
and satisfy |α|2 + |β|2 = 1. Angles θ and

ϕ represent coordinates on the Bloch sphere, analogous to geographical latitude
and longitude.
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The position of a point on the sphere for spin is defined as the mean value
of individual operators:

⟨σ̂x⟩ = r sin (θ) cos (ψ) , (II.43)
⟨σ̂y⟩ = r sin (θ) sin (ψ) , (II.44)
⟨σ̂z⟩ = r cos (θ) , (II.45)

where r is the sphere’s radius.
This was for an one atom system; we will move to an N atom system where

we will not represent a point on the Bloch sphere but a state in the form of a
quasi-probability distribution (we will use the Q-function, but in some cases, it
is also possible to use the Wigner function [38]).

Similarly, as in the previous case, the position of the center of mass of the
state

⟨Ĵx⟩ = r sin (θ) cos (ψ) , (II.46)
⟨Ĵy⟩ = r sin (θ) sin (ψ) , (II.47)
⟨Ĵz⟩ = r cos (θ) , (II.48)

where the radius of the Bloch sphere increases with the size of the system [39]

r = |⟨Ĵ⟩| =

√
N

2

(
N

2
+ 1

)
. (II.49)

Instead of describing quantum systems in terms of the states, we can also
employ description using Husimi Q-function [40]. Q-function is a quasiproba-
bility distribution that is defined by means of the coherent state

Q(θ, ϕ) =
1

π
Tr {ρ̂ |θ, ϕ⟩ ⟨θ, ϕ|} , (II.50)

=
1

π
⟨θ, ϕ| ρ̂ |θ, ϕ⟩ , (II.51)

where |θ, ϕ⟩ is the coherent spin state and ρ̂ = |Γ⟩ ⟨Γ| is the studied state. The
value for specific angles θ and ψ corresponds to the overlap of the coherent spin
state with the state under consideration.

II.4 Quadratic and higher-order operations
When defining a coherent spin state, we introduced a linear operation, rotation,
that changes the mean values in the operators Ĵk (k ∈ {x, y, z}). Now we move

10



Figure II.1: Visualisation of the states on the Bloch sphere: (a) Dicke states on
the Bloche sphere where blue |J,−J⟩ is the ground state and yellow |J, J⟩ is the
highest excited state. (b) The ground state on the Bloch sphere with a view
perpendicular to the Jz axis.(c) Generation of the coherent state |θ, ϕ⟩ through
the rotation of the ground state |J,−J⟩.

to operations that not only rotate the states on the Bloch sphere but also deform
and squeeze them in various ways.

II.4.1 Squeezing in collective spins
In defining squeezing in collective spins, it is suitable to rotate the coordinate
system such that ⟨Ĵk⟩ = ⟨Ĵl⟩ = 0, ⟨Ĵm⟩ ̸= 0.

Coherent states (ground states of Ĵm) are states that minimize uncertainty
relations

var
(
Ĵk

)
var
(
Ĵl

)
≥ 1

4
|⟨Ĵm⟩|2, (II.52)

where var
(
Ĵk

)
= ⟨Ĵ2

k ⟩ − ⟨Ĵk⟩2 (for ⟨Ĵl⟩ = ⟨Ĵm⟩ = 0). The uncertainty they
acquire is J

2 , equally distributed over any two orthogonal components normal
to the (θ, ϕ) direction.

States with an uncertainty smaller than the coherent state (ground state)
in just one of the two directions are called squeezed (in the case of a diagonal
covariance matrix). For these cases, a squeezing parameter is also introduced,

ξ =
var(Ĵk)

var|CSS⟩(Ĵk)
(II.53)
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which is normalized precisely by the uncertainty of the coherent state. If 0 ≤
ξ < 1, we say that the state is squeezed in the variable Ĵk.

II.4.2 Quadratic operations
We can generate squeezing through quadratic operations, and we have two basic
types according to the number of axes along which we twist: one-axis twisting
or two-axis counter-twisting.

• One-axis twisting (OAT) operation
The lowest-order nonlinear interaction in collective spins is the one-axis
twisting operation, defined by the unitary operator

ÛOAT(χt) = exp
(
iχt

(
N

2

)− 2
3

Ĵ2
k

)
, (II.54)

where χt is the effective coupling constant and
(
N
2

)− 2
3 is the scaling pa-

rameter depending on the number of particles in the system. The Hamil-
tonian itself has the form

ĤOAT(χ) = χĴ2
k . (II.55)

Let us demonstrate the dynamics for k = z and for the coherent state in
the x-axis: ∣∣∣π

2
, 0
〉
= 2−J

J∑
M=−J

(
2J

J +M

)( 1
2 )

|J,M⟩ . (II.56)

Now apply time-evolution operator (II.54) (for k = z), which results in

|χt⟩ = 2−J
J∑

M=−J

(
2J

J +M

)( 1
2 )

exp(iχtM2) |J,M⟩ . (II.57)

This interaction leads to rotation proportional to Jz, which twists the
quantum fluctuations (state) as shown in FIG II.2 (b),(c). This type of
operation is analogous to self-phase modulation in the photon system [41].
The OAT operation can be used in preparing different states, for example,
squeezed states used for the generation of cubic squeezing [42], i.e., the
emulation of the Ĵ3

z operation. Another application is, for example, the
generation of cat states, when we get a superposition of Dicke states on
the poles and interference fringes between the poles [43].
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• Two axis counter twisting (TACT) operation
OAT squeezing had a side effect in addition to squeezing - rotation of the
state. This effect can be removed if the twisting is performed at the same
time with right-hand helicity and left-hand helicity about two orthogonal
axes in the plane normal to the mean-spin direction [39]. For example,
the initial state is |J,−J⟩, then twisting is about two orthogonal axes in
the θ = π

2 , ϕ = π
4 and θ = π

2 , ϕ = −π
4 directions. Spin operators relevant

to these directions are

Ĵ(π
2 ,

π
4 )

= cos
(π
4

)
Ĵx + sin

(π
4

)
Ĵy =

1√
2

(
Ĵx + Ĵy

)
, (II.58)

Ĵ(π
2 ,−

π
4 )

= cos
(π
4

)
Ĵx − sin

(π
4

)
Ĵy =

1√
2

(
Ĵx − Ĵy

)
. (II.59)

Consequently, the form of the TACT Hamiltonian is

ĤTACT = χ
(
Ĵ2

(π
2 ,

π
4 )

− Ĵ2

(π
2 ,−

π
4 )

)
, (II.60)

= χ
(
ĴxĴy + ĴyĴx

)
, (II.61)

=
χ

2i

(
Ĵ2
+ − Ĵ2

−

)
. (II.62)

The unitary operator has the form

ÛTACT(χ) = exp
(
iχ

(
N

2

)− 2
3

(ĴxĴy + ĴyĴx)

)
, (II.63)

where χ is effective coupling constant,
(
N
2

)− 2
3 is the scaling parameter

depending on the number of particles in the system.
With the help of the TACT operation, achieving a higher level of squeezing
of the state is possible compare to OAT itself [44]. This is one of the
advantages of this operation, and at the same time, the squeezed state is
still in the axes, unlike OAT when the state constantly rotates around the
axis of the input state. The disadvantage is that the dynamics are more
complicated than in the previous case [45]. The visualization of state
squeezed via TACT on the Bloch sphere is in FIG II.2 (d)-(f), when the
initial state is a coherent state in the Jx axis up to a squeezed state with
an effective interaction time χ = 0.3 (N = 60) of time evolution (II.63) in

13



Figure II.2: Visualisation of squeezing on the Bloch sphere. (a) Coherent spin
state as an initial state for OAT operation. (b) Squeezed state after effective
time χt = 0.1 (time evolution via (II.54), N = 60). (c) Squeezed state after
effective time χt = 0.3 (time evolution via (II.54), N = 60) (d) Coherent spin
state as an initial state for TACT operation. (e) Squeezed state after effective
time χt = 0.1 (time evolution via (II.63), N = 60). (f) Squeezed state after
effective time χt = 0.3 (time evolution via (II.63), N = 60)
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y, z axes, and the form of the unitary operator is

ÛTACT(χ) = exp
(
iχ

(
N

2

)− 2
3

(ĴzĴy + ĴyĴz)

)
. (II.64)

These are examples where we have rotated perpendicular axes, we can
consider the simplest case where our twisting axes are directly Jx and Jy,
then the shape of the Hamiltonian

ĤTACT = χ
(
Ĵ2
x + Ĵ2

y

)
. (II.65)

II.4.3 Higher-order operations
A higher order of operation is considered when the Hamiltonian contains a
higher power of operators than the quadratic one, i.e., cubic, quartic, and higher.
Compared to quadratic and linear operations, higher-order operations are much
harder to achieve experimentally.

Although we do not have these operations at our disposal, the effort is
to reach states squeezed in these higher orders, i.e., states that we would get
through evolution, for example, by cubic operation or higher. The motivation
is quantum metrology [42, 46, 47] and the possibility of more precise measure-
ments with states that are squeezed in the sense of higher orders of operations.
There are various procedures to achieve these operations or at least emulate
these operations. We will focus on an example with a cubic operation defined
by a unitary operator

Ûc(χt) = exp
(
i
χt

3

(
N

2

)− 2
3

Ĵ3
x

)
. (II.66)

It is possible to emulate the effect of such an operation by a suitable series
of lower-order operations. Specifically, OAT operation combined with rotation
and time-reversed OAT [42]. In this way, it is possible to create a cubically
squeezed state, similar to the state we would get from the original operation
(II.66).

Another possible procedure is using commutators of operators [19] of lower
orders (quadratic and linear) to implement a cubic operation [48]; in principle,
this method should work subsequently for higher orders of operations. The
formula for obtaining the cubic operator
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Ĵ3
x =

i

4

[(
Ĵ2
z − Ĵ2

y

)
,
(
ĴyĴz + ĴzĴy

)]
=
i

4

[(
ĴxĴz + ĴzĴx

)
,
(
ĴxĴy + ĴyĴx

)]
+

1

4
Ĵx. (II.67)

II.5 Approximation by a plane
In cases of a large number of atoms in the system, when N ≫ 1, it is possible to
select an area near the pole that appears to be a plane, and thus it is possible
to move from a three-dimensional space to a two-dimensional space (also known
as Holstein - Primakoff transformation [49]). The operator Ĵz thus changes to
its mean value

Ĵz ≈
N

2
. (II.68)

Then the commutation relation becomes from (II.15) to the form[
Ĵx, Ĵy

]
= i

N

2
. (II.69)

We have moved from commutation relations with the operator on the right-hand
side to commutation relations with the constant on the right-hand side. The
next step is to move from the collective spins to the phase space, that is, to
establish a relation between Ĵx, Ĵy and observables x̂, p̂. So once we substitute
Ĵx and Ĵy into the commutation relations, they are equal to the commutation
relations for the observables x̂ and p̂:√

2

N
Ĵx = x̂, (II.70)√

2

N
Ĵp = p̂, (II.71)

which leads to the commutation relations of the harmonic oscillator

[x̂, p̂] = i. (II.72)

They are then motivated by comparing the results obtained in the harmonic
oscillator system and the system of collective spins, comparing the properties
of the states. For example, Gaussian states (more details in section III.3.2),
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which are defined in linear harmonic oscillator systems, on the Bloch sphere are
not directly defined, but we can say that Guass-like states are precisely those
states that change to the Gaussian states in the H-P transformation, the same
for non-Gaussian states.
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Chapter III

Theoretical basis of Harmonic
oscillators

In this chapter, we describe one mode of light as a harmonic oscillator. We
mention different classes of states, their definitions, and the ways in which we
can create such states, i.e. the operations by which they can be achieved. An
important aspect is Gaussianity and non-Gaussianity as a property of states
and how it can be defined.
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III.1 Definition
Quantum light is described within the framework of quantum field theory as
a quantized electromagnetic field. We describe one mode of the electromag-
netic field using the linear harmonic oscillator model, which is defined by the
Hamiltonian

Ĥ = h̄ωâ†â. (III.1)

In the next, we consider constant h̄ = 1 and frequency ω = 1. The creation â†

and annihilation â operators satisfying[
â, â†

]
= 1, (III.2)

where 1 is the identity operator. This commutation relation reflects the quan-
tized nature of the electromagnetic field.

The momentum and position operators for quantum light can be expressed
in terms of these creation and annihilation operators. The momentum operator
p̂ and the position operator x̂ are defined as follows

x̂ =
(â† + â)√

2
, (III.3)

p̂ = i
(â† − â)√

2
. (III.4)

The commutation relations for the x̂ and p̂ can be derived from the com-
mutation relations of the creation and annihilation operators. They are given
by

[x̂, p̂] = i. (III.5)

The uncertainty relations for quantum light, based on these momentum and
position operators, can be expressed as

∆x2∆p2 ≥ 1

4
, (III.6)

where ∆x2 and ∆p2 are the variances of the operators in the form

∆x2 = ⟨x̂2⟩ − ⟨x̂⟩2, (III.7)
∆p2 = ⟨p̂2⟩ − ⟨p̂⟩2. (III.8)
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III.2 States and representation of states

III.2.1 Representation of the states
Fock state representation

Fock states |n⟩ are eigenstates of the number operator, which counts the pho-
tons in a given mode of the field. This representation is particularly useful
for analyzing the behavior of quantum light in terms of discrete quanta. The
number operator denoted as

N̂ = â†â, (III.9)
acts on Fock states as follows

N̂ |n⟩ = n |n⟩ (III.10)

This equation expresses the eigenvalue property of Fock states with respect to
the number operator.

The creation and annihilation operators, â† and â, operate on Fock states
as

â |n⟩ =
√
n |n− 1⟩ , (III.11)

â† |n⟩ =
√
n+ 1 |n+ 1⟩ . (III.12)

The Fock states form an orthogonal basis of an infinite dimensional Hilbert
space,

⟨n|m⟩ = δn,m, (III.13)
∞∑
n=0

|n⟩ ⟨n| = 1. (III.14)

A general pure quantum state in the Fock basis is represented as a superposition
of Fock states as

|ψ⟩ =
∞∑
n=0

cn |n⟩ , (III.15)

where cn are complex coefficients satisfying
∑∞
n=0 |cn|2 = 1. A mixed state with

a density operator ρ̂ is given by

ρ̂ =

∞∑
n=0

pn |n⟩ ⟨n| , (III.16)
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where pn are probabilities satisfying
∑∞
n=0 pn = 1.

Fock states are a class of states that have inherently uncertain phases but
well-defined numbers of particles. This relationship is part of the quantum
mechanical principle that states conjugate variables (like particle number and
phase) cannot be simultaneously well-defined. On the opposite side, coherent
states

|α⟩ = exp
(
−1

2
|α|2

) ∞∑
n=0

αn√
n!

|n⟩ , (III.17)

have a well-defined phase and amplitude, resembling classical waves (more de-
tails about coherent states in subsection III.2.2).

Quadrature state representation

The position and momentum operators, x̂ and p̂, have eigenvectors |x⟩ and |p⟩
satisfying

x̂ |x⟩ = x |x⟩ , (III.18)
p̂ |p⟩ = p |p⟩ . (III.19)

These eigenvectors collectively form a complementary pair, constituting a com-
plete orthogonal basis.

⟨x|x′⟩ = δ(x− x)′, (III.20)
⟨p|p′⟩ = δ(p− p)′, (III.21)

⟨x|p⟩ = eixp√
2π
, (III.22)∫ +∞

−∞
|x⟩ ⟨x| dx =

∫ +∞

−∞
|p⟩ ⟨p| dp = 1. (III.23)

In the quadrature representation a pure state |ψ⟩ has the form

|ψ⟩ =
∫ +∞

−∞
ψ(x) |x⟩ dx, (III.24)

where ψ(x) = ⟨x|ψ⟩ is a wave function of the state.
The quadrature representation has a continuous basis in contrast to the

discrete basis of Fock states. In comparing these formalisms, the quadrature
representation is useful for describing continuous degrees of freedom, whereas
the Fock representation is more appropriate for systems characterized by discrete
energy levels.
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Wigner function

The Wigner function W (x, p) associated with a quantum state ρ̂ is defined as
follows

W (x, p) =
1

2π

∫ +∞

−∞
exp (ipx)

〈
x− y

2

∣∣∣ ρ̂ ∣∣∣x+
y

2

〉
dy. (III.25)

Sometimes it is more efficient to overwrite real variables x and p with a complex
variable α

α =
x+ ip√

2
, (III.26)

as in the case of the definition of the Wigner function through the displaced
parity operator

W (α) =
1

2π
⟨D̂†(α∗)(−Π̂)â

†âD̂(α)⟩, (III.27)

where Π̂ is the parity operator and D̂(α) is unitary operator of displacement
(III.39). Π̂ operator is defined as

Π̂ =
∑
n

(−1)n |n⟩ ⟨n| , (III.28)

The Wigner function is normalized as∫ +∞

−∞

∫ +∞

−∞
W (x, p) dxdp = 1. (III.29)

The marginal distributions of the Wigner function provide the probability dis-
tributions in the position and momentum spaces. The position probability dis-
tribution is obtained by integrating the Wigner function overall momentum
values

p(x) =

∫ +∞

−∞
W (x, p) dp. (III.30)

Similarly, the momentum probability distribution is obtained by integrating
overall position values

p(p) =

∫ +∞

−∞
W (x, p) dx. (III.31)

Unlike classical probability distributions, the Wigner function can take negative
values. Negative regions in the Wigner function indicate the presence of non-
classical correlations and inherently quantum features.
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Wigner function can be used for finding expectation values of symmetrically
ordered operators

Tr[ρ̂(x̂mp̂n)sym] =

∫ +∞

−∞
xmpnW (x, p) dxdp, (III.32)

where symmetrical ordering (·)sym, means that the operator is actually an aver-
age of all possible combinations of ordering. For example for m = 1 and n = 1
– (x̂p̂)sym = 1

2 (x̂p̂+ p̂x̂).
Understanding these properties facilitates interpreting the Wigner function

as a versatile tool for characterizing quantum states in quantum optics. Its
unique features provide insights into the non-classical nature of quantum states
and the intricacies of quantum uncertainties.

P - function

The P -function is also known as a Glauber-Sudarshan quasidistribution. P -
function is defined as a Fourier transform of the characteristic function P̄ ,

P (x, p) =
1

(2π)2

∫ +∞

−∞

∫ +∞

−∞
P̄ (x′, p′) exp (−i(xp′ − px′)) dx′dp′, (III.33)

where

P̄ (x′, p′) = Tr
[
ρ̂ exp

(
x′ + ip′√

2
â†
)

exp
(
x′ − ip′√

2
â

)]
. (III.34)

The P -function can be used to express any state by projections on coherent
states

ρ̂ =

∫ +∞

−∞

∫ +∞

−∞
P (α) |α⟩ ⟨α| d2α. (III.35)

Similarly, as the Wigner function, the P-function is normalized∫ +∞

−∞

∫ +∞

−∞
P (x, p) dxdp = 1. (III.36)

In contrast to a regular probability distribution, for some states, this function
can have negative values or display irregularities as the Dirac δ-function and its
derivatives.
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Husimi’s - function

Husimi’s Q-function is a quasiprobability distribution defined as a projection of
the state on coherent state |α⟩, i.e.,

Q(x, p) = Q(α) =
1

2π
Tr [ρ̂ |α⟩ ⟨α|] = 1

2π
⟨α| ρ̂ |α⟩ , (III.37)

where coherent amplitude α = x+ip√
2

. The Q-function is real, regular, non-
negative, and normalized to unity. It can be utilized to derive statistics for
anti-normally ordered operators

Tr
[
ρ̂âmâ†n

]
=

∫ +∞

−∞
αm, α∗nQ(α)d2α. (III.38)

III.2.2 Quantum states of light
In this subsection, we present the definition of coherent, thermal, and squeezed
vacuum states. Then, we classify the states according to their properties, as
classical and non-classical states, and further, we classify non-classical states
into Gaussian and non-Gaussian states.

Coherent state

The coherent state |α⟩ can be defined as displaced vacuum state |0⟩,

|α⟩ = exp
(
αâ† − α∗â

)
|0⟩ , (III.39)

where α is a complex number representing the displacement amplitude. In Fock
notation, a quantum coherent state can be expressed as

|α⟩ = exp
(
−1

2
|α|2

) ∞∑
n=0

αn√
n!

|n⟩ . (III.40)

If follows from (III.40) that a coherent state has Poissonian photon statistics
(an example is shown in the figure III.1(a)),

pn = | ⟨n|α⟩ |2 =
|α|2n

n!
exp

(
−|α|2

)
. (III.41)

Quantum coherent states are eigenstates of the annihilation operator â

â |α⟩ = α |α⟩ . (III.42)
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This results in the minimum uncertainty in position and momentum, so they
saturate the Heisenberg uncertainty principle [50]. The variance in the position
and momentum quadratures of a coherent state is minimized and equal to 1

2 .
The best approximation of coherent state in quantum optics can be generated

using laser light [51].
The Wigner function of the coherent state is

Wα(x, p) =
1

π
exp

(
−(x− x0)

2 − (p− p0)
2
)
, (III.43)

which corresponds to a Gaussian distribution, with mean values x0 and p0.
The P -function of the coherent state is

Pα(α) =
1

π2
e|α|

2−|α0|2
∫ +∞

−∞

∫ +∞

−∞
exp [−β(α∗ − α∗

0) + β∗(α− α0)] d
2β,

= δ(2)(α− α0), (III.44)

i.e., a two-dimensional delta function.
The Q-function of the coherent state is

Qα(α) =
1

π
e−|α−β|2 , (III.45)

which is a Gaussian distribution in α centered on β, of unit variance.

Thermal state

A general quantum thermal state is a type of quantum state that represents a
system in thermal equilibrium with a heat bath. Since they are mixed states,
thermal states are described by a density operator. The density operator for a
quantum thermal state is given by the Gibbs canonical ensemble

ρ̂Th =
exp

(
−βĤ

)
Tr
(

exp
(
−βĤ

)) . (III.46)

Here Ĥ is the Hamiltonian of the system, β = 1
kBT

, where kB is the Boltzmann
constant, and T is the temperature of the system. In the Fock representation,
the state can be expressed as

ρ̂Th =

∞∑
n=0

pn(n) |n⟩ ⟨n| , (III.47)
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where pn(n) is the probability of finding n photons in a certain mode of the
thermal state and can be expressed for a single mode as

pn(n) =
⟨n̂⟩n

(1 + ⟨n̂⟩)n+1 . (III.48)

pn(n) has the form of a Bose-Einstein distribution (see the figure III.1(b)) and
⟨n̂⟩ = 1

eβ−1
. The state with the highest probability is always the vacuum state.

As the temperature increases, more energy levels are populated with higher
probability, leading to a broader distribution. Consequently, the variance in
observables, reflecting the spread of possible outcomes, tends to increase with
temperature

∆x2 = ∆p2 = ⟨n̂⟩+ 1

2
, (III.49)

and variance of photon number operator n̂

∆n2 = ⟨n̂⟩(1 + ⟨n̂⟩). (III.50)

The Wigner function of the thermal state is

WT (x, p) =
1

π(2n̄+ 1)
exp

(
−x

2 + p2

2n̄+ 1

)
, (III.51)

where n̄ is average photon number.
The P -function of the thermal state is

PT (x, p) =
1

2πn̄
exp

(
−x

2 + p2

2n̄

)
. (III.52)

The Q-function of the thermal state is

QT (x, p) =
1

π(2n̄+ 2)
exp

(
−x

2 + p2

2n̄+ 2

)
. (III.53)

Quantum thermal states are associated with maximum entropy for a given
average energy. This is a manifestation of the principle of maximum entropy
in statistical mechanics. They find applications in various fields, including con-
densed matter physics, quantum information theory, and quantum optics. Ex-
perimental realization and manipulation of quantum thermal states are essen-
tial for studying the thermal properties of quantum systems in different physical
platforms.
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Squeezed state

Quantum squeezed states are nonclassical states of light that exhibit reduced
uncertainty in one of the complementary observables, such as position and mo-
mentum. If the variance in at least one of the quadratures (ˆ̃x(ϕ), ˆ̃p(ϕ)) is smaller
than the vacuum variance, it is a squeezed state. ˆ̃x(ϕ) and ˆ̃p(ϕ) are generally
rotated quadratures

ˆ̃x(ϕ) = cos(ϕ)x̂+ sin(ϕ)p̂, (III.54)
ˆ̃p(ϕ) = − sin(ϕ)x̂+ cos(ϕ)p̂. (III.55)

The squeezed states play a crucial role in quantum optics and quantum
information processing due to their unique properties, which can be quantified
using the concept of squeezing.

A typical squeezed state |ψ⟩ is created by applying a squeezing operator Ŝ(ζ)
to the vacuum state |0⟩

|ψ(ζ)⟩ = Ŝ(ζ) |0⟩ ,

= exp
(
ζ

2
(â2 − â†2)

)
|0⟩ , (III.56)

where ζ is the squeezing parameter. From this definition of the squeezing pa-
rameter, we can see this operation preserves state parity. Thus, the photon
statistics after squeezing look as follows: for even states, the photon statistics
have only even contributions, and for odd states, again, odd contributions. For
example, the squeezed vacuum in the Fock representation reads

|ψ(ζ)⟩|0⟩ =
1√

cosh(ζ)

∞∑
n=0

√
(2n)!

n!2n
(tanh(ζ))n |2n⟩ , (III.57)

where 1√
cosh(ζ)

∑∞
n=0

√
(2n)!

n!2n (tanh(ζ))n is photon distribution (see the figure
III.1(c)).

The variance of the squeezed quadrature is given by

∆x2 =
1

2
exp(−2ζ), (III.58)

∆p2 =
1

2
exp(2ζ). (III.59)
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Figure III.1: Photon statistics of (a) the coherent state (α = 3), (b) the thermal
state (⟨n̂⟩ = 1) and (c) squeezed vacuum state (III.56) (ζ = 1).

The Wigner function of the squeezed vacuum state is

WS(x, p) =
1

π
exp

(
−e2ζx2 − e−2ζp2

)
, (III.60)

where ζ is the squeezing parameter.
The P -function of the squeezed vacuum state is

PS(α) = exp
[
− (Vx − Vp)

8

]{
∂2

∂α2
+

∂2

∂α∗2 − 2

[
Vx + Vp − 2

Vx − Vp

]
∂

∂α

∂

∂α∗

}
, (III.61)

where Vx and Vp are variances of quadratures.
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The Q-function of the squeezed vacuum state is

QS(α) =
sech(ζ)
π

exp[−|α|2 + (α∗ + α)sech(ζ)

− tanh(ζ)
2

(
eiθα∗2 + e−iθα2

)
]. (III.62)

Experimental generation of quantum squeezed states often involves nonlinear
optical processes [52]. One common method is the parametric down-conversion
in a nonlinear crystal [53–55], where a pump photon is split into two photons,
creating a squeezed state. Another technique involves using an optical cavity
with a nonlinear medium, where the Kerr nonlinearity induces squeezing [23].

These experimental setups are designed to manipulate the quantum state
of light and achieve the desired squeezing. Measurement of the resulting state
typically involves homodyne or double-homodyne detection to characterize the
squeezing in the relevant quadratures [12, 53].

Quantum squeezed states find applications in quantum communication [1–
4], quantum metrology [7], and quantum information processing [8, 56], where
the reduction of uncertainty in specific observables can enhance precision and
sensitivity in measurements beyond classical limits.

III.3 Distinguishing “classical” and “non-classical”
quantum states

In this section, we deal with the division of quantum light states into two large
classes, namely classical and non-classical quantum states, in relation to the
values of the P -function.

III.3.1 Classical states

As classical states, we denote states with non-negative P -functions, i.e., states
that are either coherent or can be expressed as mixtures of coherent states.

A typical example of a mixed classical state is the thermal state, which
can be constructed as a mixture of coherent states with Gaussian distribution
centered at the origin.
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III.3.2 Non-classical states
The second class of states is the class of non-classical states [57–60]. If we start
from the properties associated with the P-function, they are states with a neg-
ative P-function in some region in the phase space, or their P-function is more
singular than the delta function. We will further divide this class into subclasses
according to the shape of the quasi-probability distribution into quantum Gaus-
sian [12, 61] and non-Gaussian states [60, 62].

Gaussian states

Gaussian states are described by the Wigner function in the form of a Gaussian
function (this property is based on the characteristic function). At the same
time, it is possible to fully describe these states with only the first two moments

µ =

(
⟨x̂⟩
⟨p̂⟩

)
, (III.63)

Σ =

(
⟨ˆ̃x2⟩ 1

2 ⟨ˆ̃x ˆ̃p+ ˆ̃pˆ̃x⟩
1
2 ⟨ˆ̃x ˆ̃p+ ˆ̃pˆ̃x⟩ ⟨ ˆ̃p2⟩

)
; ˆ̃x = x̂− x̄, ˆ̃p = p̂− p̄. (III.64)

Higher moments are composed of a combination of only the first two moments.
We start with a vacuum state, that is a classical Gaussian state, and then we
can create any Gaussian state, even a non-classical one, just by using Gaussian
operations. Gaussian operations are operations preserving the Gaussianity of
the state:

• Displacement . . . D̂(α) = exp
(
αâ† − α∗â

)
• Linear squeezing . . . Ŝ(ζ) = exp

(
ζ
2 (â

2 − â†2)
)

• Phase shift . . . R̂(ϕ) = exp (iϕn̂)

In general, the Wigner function of any Gaussian state can be written in this
form (for one mode)

WX,Σ(Y ) =
1

(2π)
exp

(
1

2
(Y −X)

T
Σ−1 (Y −X)

)
, (III.65)

where Σ is the covariance matrix and X = (⟨x̂⟩, ⟨p̂⟩)T (vector of mean values).
By squeezing operation, it is possible to generate non-classical states from

classical ones; other Gaussian operations do not have this property. A squeezed
state cannot be written as a mixture of coherent states.
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Non-Gaussian states

While Gaussian distributions dominate classical statistics, quantum non-Gaussian
states are much more diverse. Wigner functions of these states deviate from the
Gaussian form and can read negative values. Non-Gaussianity, as such, is a
witness of higher-order nonlinearities. There are many ways to achieve non-
Gaussian states from Gaussian states, such as conditional measurement and
nonlinear optical processes. In the following chapters, we use a non-linear opti-
cal process called Kerr nonlinearity to generate Non-gaussian states.

The Kerr nonlinearity is an operation that can be used in several different
ways to generate different states, such as cat states, cubically squeezed states,
and or quartic squeezed states. It is a non-linear process where the phase of the
state evolves proportionally to the intensity. We further divide this nonlinear
phenomenon into two specific cases, namely the case where the mode itself
affects the phase change in the nonlinear system - self-Kerr

ĤKerrs = χn̂2, (III.66)

or the case where two modes influence each other, and this case is called cross-
Kerr

ĤKerrc = χn̂1n̂2. (III.67)

In both cases, the χ parameter symbolizes the strength of the nonlinear inter-
action.

Kerr nonlinearity is, of course, one of the non-Gaussian operations that can
be realized experimentally across many platforms, such as in electromagnetically
induced transparency [63–65], Bose-Einstein condensates of interacting atoms
[66], cold atoms [67], Josephson junctions [68, 69], and even light in resonators
[70, 71],
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Chapter IV

Heat machine based on Kerr
nonlinearities

This chapter is based on results published in the article [72]. All images found
in this chapter are taken from the article [72]. A more detailed description and
derivation of formulas are in Appendix A.
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IV.1 Motivation
A heat engine may be viewed as a device that concentrates energy from several
degrees of freedom (modes) into a single one in a selected degree of freedom
called the working mode. For example, a combustion engine concentrates the
energy of ∼ 1030 motional modes of individual molecules into the single mode
of moving piston. This happens within the limits given by the laws of thermo-
dynamics:

• The first law — whereby the working-mode energy cannot exceed the total
energy of all the input modes.

• The second law — whereby the input energy cannot be entirely concen-
trated in the working mode: part of it must spill over to initially colder
modes that contain, on average, less energy than the thermal mean.

The enormous (∼ 1030) number of hot and cold modes involved in heat ma-
chines (HM) justifies the adoption of their thermodynamic (TD) description:
HM are open systems wherein hot and cold baths couple to a working medium
(WM) or heat-controlling device [73–75]. Accordingly, HM must be dissipa-
tive (a thermodynamically open system operating out of, and often far from,
thermodynamic equilibrium in an environment with which it exchanges energy
and matter). This paradigm underlies HM also in the quantum domain [76–
78], notwithstanding the effects of quantum coherence or entanglement on their
operation [79–86]. The “smallest” (or minimal) heat engines in the quantum do-
main have thus far been defined as those having the fewest degrees of freedom in
the working medium (WM): a single qubit [86–88] or two coupled qubits [89], a
single atom or molecule [82, 90, 91], but their hot and cold baths have been in-
variably comprised of mode continua that give rise to destruction of coherences
in the WM (unless external control prevents this destruction [80, 92]).

In our work, we introduce the concept of a purely coherent, autonomous,
closed-system HE, using nonlinear coupling of thermal, continuous-variable,
bosonic field modes. This makes these devices fundamentally different from ex-
isting HE that is energized by macroscopic baths composed of linearly coupled
oscillator modes [75, 76, 87, 93–95]. The Kerr nonlinearities are non-Gaussian
operations (NGOs) that have been conceived in quantum optical and quantum
information schemes [96, 97] but are mostly least used in the context of HE,
with few exceptions [98, 99].

The envisaged NGO can achieve both HE functionalities:

33



1. Concentrate the energy of a heat bath in a selected degree of freedom
called the working mode, within limits dictated by the first and second
laws of thermodynamics.

2. The concentrated heat must be partly converted into work output, which
requires the state of the working mode to store energy in a nonpassive
form1.

Thanks to their nonlinearity, they can cause output field modes to constructively
or destructively interfere despite the randomness of the input phase. These
NGOs cause information flow among the modes, resulting in autonomous feed-
forward of the information instead of externally controlled HE [76, 93, 94, 101, 102].
In contrast, linear Gaussian operations (LIGOs) cannot perform this feat. In
quantum optics, LIGOs encompass all energy-conserving linear interference op-
erations caused by beam splitters (BSs) and phase shifters. In contrast, squeez-
ing is neither linear nor energy conserving, but it is a Gaussian operation whose
effect on HEs has been studied in [85, 103, 104].

The proposed machines are dubbed here as nonlinear interferometric heat
machines (NIHM). NIHMs lie beyond the present scope of the resource theory
of quantum thermodynamics [105–108] based on LIGO, which relies on energy-
preserving joint unitaries performed on quantum systems and their thermal bath
ancillae.

IV.2 NIHM principle
Consider a multiport linear interferometer with m input modes and m output
modes that contain only (energy-conserving and therefore passive) linear mode
couplers or beam splitters (figure IV.1(a)). If the input is a multimode factorized
coherent state |β1⟩ |β2⟩ . . . |βm⟩ one can find parameters of the interferometer
such that there is a coherent state |α⟩ in one output mode, all the remaining
output modes are empty. Such an idealized scenario would achieve full energy
concentration.

If, however, the input is thermal noise, which can be treated as a mixture of
coherent states |β1⟩ |β2⟩ . . . |βm⟩ with random amplitudes of β1, β2, . . .,βm that
have Gaussian distributions with zero mean, then neither of the heat engine

1A quantum state is nonpassive [100] if there exists at least one unitary operation that can
extract work from it. Nonpassive states are essential in quantum thermodynamics because
they represent resources from which work can be extracted, similar to how a charged battery
can do work in classical thermodynamics.
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Figure IV.1: (a) (i)A fraction of the energy of the hot modes is split off by
BSs (in the bottom blue box) to carry information about the remaining hot
modes(in the right red box). (ii) Nonlinear interactions correlate these two
boxes and autonomously feedforward the information such that (iii) the output
fields can be steered to interfere constructively in one preselected mode. (b)
A four-mode NIHM in which the input modes (1 and 4, hot; 2 and 3, cold)
undergo the aforesaid stages. For optimal parameter choice, the interference is
predominantly constructive in mode 1f and destructive in mode 4f .

functionalities is then achievable via linear interferometric network [109, 110],
as the thermal randomness prevents selected-mode amplification or heat-to-work
conversion [111, 112].

However, if we could estimate the magnitudes and phases of |β1⟩ |β2⟩ . . . |βm⟩
and feedforward the results for each realization of the random input, we would
be able to choose the interferometer parameters such that the energy is mostly
concentrated in nonpassive form in one mode (a quantum state is nonpassive
if there exists at least one unitary operation that can extract work from it,
nonpassive states have populations that are not ordered in a way that maximizes
entropy, meaning they are not in thermal equilibrium). Instead of conventional
measurements that can provide this information nearly perfectly [95], we show
that it is possible to partially estimate and forward them autonomously by
nonlinear intermode coupling, which is inevitably NGO. Note that, according
to the Second law of thermodynamics, this feat cannot be achieved at all if all
the input modes are in the same thermal state. Some of the inputs have to be
colder than others, forming distinct cold and hot few-mode baths.
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The general m-mode NIHM protocol consists of two major stages (figure
IV.1(a)):

1. Sampling: A fraction of each hot input field mode is split off and mixed
with a corresponding cold field mode by imbalanced BS. The cold-mode
states then become weak copies of the respective hot-mode states. These
m/2 weak copies are pairwise mixed by a 50/50 merger. These LIGOs
“sample” the random distribution of the input modes: The “sampled”
phase differences are encoded by the intensity mixing ratio of the weak-
copy outputs.

2. Nonlinear feedforward: Subsequently, these weak-copy outputs are nonlin-
early cross-correlated by NGO (here, nonlinear cross-Kerr coupling) with
the dominant hot-mode fractions. Since the cross-Kerr Hamiltonian com-
mutes with the bare Hamiltonian of the hot and cold modes, it does not
require energy investment, nor does it require external control, so that
NIHM is a self-contained (autonomous) heat-to-work converter. An addi-
tional m-mode basis rotation and phase shifting exploit this autonomous
nonlinear feedforward of the sampling to steer the energy mainly to the de-
sired mode. The output distributions become nonthermal (non-Gaussian).

The minimal version of NIHM (figure IV.1(b)) contains two hot and two
cold input modes, for simplicity, at the same frequency (nondegenerate mode
analysis is laborious and does not reveal essentially new insights). The coherence
length of this interferometer should be much longer than its spatial size so that
temporal evolution can be replaced by discrete steps, each described by a unitary
evolution operator. We analyze the autonomous feedforward of the a priori
unknown amplitudes of the hot modes 1 and 4 and their steering that maximize
the energy and work capacity (ergotropy or nonpassivity) [83, 85, 100, 113] of
mode 1 at the output:

1. At the sampling stage, the first BS, with low transmissivity s = sin(θ) ≪ 1
(high reflectivity c = cos(θ) ≲ 1), causes small fractions of the hot input
modes 1 and 4 to split off and merge, respectively, with the empty modes 2
and 3, so that we have weak copies 2′ and 3′ of 1 and 4, respectively. For
each coherent-state realization, these weak copies have the same phase
difference ϕ as the input modes 1 and 4 and mean intensity difference
proportional to the mean quanta number difference n−. The weak copies
then merge on a 50/50 BS whose output modes are 2′′ and 3′′. The
correlations generated between n− and ψ are quantified by the mutual
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information [114]. At the output of the 50/50 merger, modes 2′′ and 3′′
become correlated. Their correlation encodes (samples) n− of modes 1
and 4. Consequently, in the weak copies, the n− distribution broadens
(increases its entropy), while the ϕ distribution is still uniform.

2. At the nonlinear feedforward stage, two cross-Kerr couplers cause, in the
classical approximation [115], the phase difference of the hot modes 1′′
and 4′′ to be shifted proportionally to the intensity difference of modes
2′′ and 3′′, respectively, so that ϕ → ϕ + χn′′

−, where χ is the nonlinear
phase shift. For each set of coherent-state amplitudes in the thermal input
distribution, |α1⟩, |02⟩, |03⟩, |α4e

iϕ⟩, the coherent states in the strong-
fraction hot modes 1′′′ and 4′′′ then become, after the cross-Kerr couplers
(for more details of the calculation see Appendix A, section A.2)

|α′′′
1 ⟩ =

∣∣∣∣cα1 exp
(
iχ
s2

2
|α1 + α4e

iϕ|2
)〉

(IV.1)

|α′′′
4 ⟩ =

∣∣∣∣cα4 exp
(
iχ
s2

2
|α1 − α4e

iϕ|2 + ϕ

)〉
(IV.2)

3. At the steering stage, the final 50/50 BS, preceded by a π
2 shift of mode

4′′′, yields at the two outputs the coherent-state amplitudes

αf1,4 =
1√
2
(α′′′

1 ± α′′′
4 ) , (IV.3)

which determines the output intensities

|αf1,4|2 =
c2

2

[
α2
1 + α2

4 ± 2α1α4 sin
(
2s2α1α4χ cos(ϕ)− ϕ

)]
. (IV.4)

This nonsinusoidal dependence of the interference term on the phase dif-
ference ϕ of the input fields stems from the nonlinear coupling.
The mean intensities at the output of the final 50/50 BS in the strong-
fraction hot modes are found to be, after averaging over the coherent
inputs we get,

n̄f1,4 = c2n̄

[
1± s2χn̄

(1 + s4χ2n̄2)2

]
, (IV.5)

where n̄ (for thermal states) is equals temperature in the hot modes 1
and 4.
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IV.3 Full density matrix description
It should be noted that the analytical approach includes the computation of
the entire scheme with coherent states, and the final step is averaging over a
Gaussian distribution of coherent states with a random phase (at the input) to
obtain a result for the thermal states. It is more difficult to calculate the higher
moments, and the calculation of the first two moments, i.e., the mean value of
the number of photons and the variance, was carried out (see Appendix A for
more details).

A full quantum description is obtained by applying unitary operators to the
input quantum state. Full photon statistics can be obtained in this way. Of
course, this procedure also has its pitfalls; it is a numerical procedure, and thus,
we run into computational complexity since it is a four-mode scheme.

We start with a density matrix

ρ̂0 = ρ̂(T ) ⊗ ρ̂(0) ⊗ ρ̂(0) ⊗ ρ̂(T ), (IV.6)

where ρ̂(T ) is a single-mode thermal state of temperature T , and ρ̂(0) is single-
mode vacuum state (empty mode). The output state is ρ̂f = Û ρ̂0Û

†, where

Û = Û5

(π
2

)
Û4(χ)Û3

(π
2

)
Û2

(π
2

)
Û1(θ). (IV.7)

The unitary operator

Û1(θ) = exp
(
iĴ (1,2)
x θ

)
⊗ exp

(
iĴ (3,4)
x θ

)
(IV.8)

is the first BS operation coupling mode 1 with 2 and 3 with 4, where

Ĵ (k,l)
x =

(
1

2

[
â†kâl + âkâ

†
l

])
. (IV.9)

Û2(
π
2 ) = exp

(
iĴ

(2,3)
x

π
2

)
describes the first 50-50 BS operator coupling modes 2

and 4. Û3(
π
2 ) = exp

(
iπ2 n̂4

)
is the π/2 phase shifter in mode 4,

Û4(χ) = exp(iχn̂1n̂2)⊗ exp(iχn̂3n̂4) (IV.10)

describes the cross-Kerr couplers between modes 1 and 2 and modes 3 and 4,
and Û5(

π
2 ) = exp

(
iπ2 Ĵ

(1,4)
x

)
is the last 50-50 BS operator coupling modes 1

and 4.
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Figure IV.2: Results of numerical calculations with the full entangled density
matrix, input thermal state with n̄ = 5. The Hilbert space is truncated at n = 80
for the hot modes and n = 8 for the cold modes. The total dimensionality is
thus 81× 81× 9× 9 = 531, 441. The figures show photon number distributions
in individual modes. (a) Red - input hot mode (1 and 4 in the figure IV.1(b));
yellow - input vacuum mode (2 and 3 in the figure IV.1(b)); (b) red - “waste”
output modes 2f and 3f (originally input vacuum mode); yellow - the difference
between photon number distribution of the “waste” output mode 2f and a
thermal state with the same mean photon number; (c) Red - “working” output
mode 1f ; yellow - the difference between photon number distribution of the
“working” output 1f mode and a thermal state with the same mean photon
number; (d) red - “waste” output mode 4f (originally input thermal mode);
yellow - difference between photon number distribution of the “waste” output
mode 4f and a thermal state with the same mean photon number.

Independently of the analytical calculations, the optimization task of the
entire scheme was performed so that the energy was concentrated in the first
output mode. The free parameters in the optimization were θ in equation (IV.8)
and the strength of nonlinear interaction χ in equation (IV.10). Sequential
quadratic programming was used as the optimization method. First, however,
the parameter θ in equation (IV.8) was divided into θ1 and θ2 – Û1(θ1, θ2) =
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exp
(
iĴ

(1,2)
x θ1

)
⊗exp

(
iĴ

(3,4)
x θ2

)
, but due to the use of a symmetrical input, i.e.,

all warm modes have the same mean energy, and similarly for the cold modes,
so there is no reason to have a different dividing ratio at of these BSs; therefore
the parameters were subsequently unified into one.

Due to the numerical complexity, it was necessary to write a library of
functions that stored as little data as possible and only the really necessary
information, due to the occupancy of the RAM memory and also by reducing
the amount of data with which the optimizations had to be performed. For this
reason, it was not possible to use the qutip library in Python fully, but only
with a limited number of functions. A library of functions written for a 4-mode
heat engine (power) is included on GitHub [116].

Since the Hilbert space of a four-mode state is rather large, the numerical
calculation of NIHM unitary operation was truncated at n = 80 for the hot
modes and n = 8 for the cold modes, the total Hilbert space dimension being
81×81×9×9 = 531, 441 (the probability distributions of the output modes are
shown in figure IV.2, where it can be seen that the 1f output mode no longer
has the photon statistics of a thermal state), consequently, individual density
matrices or unitary operators have dimension 531, 441 × 531, 441. therefore, it
was necessary to use sparse matrices. However, we can only use this for weak
thermal states; if we wanted to perform numerical simulations for thermal states
where n̄ corresponds to 10 or more, the dimensions would have to be beyond
the capacity of the computational resources available to us.

IV.4 Cascading
One can concentrate the energy to higher values by cascading the scheme as in
shown figure IV.3. In a sense, it can be viewed as an analogy to the cycles of a
heat engine. In each stage, the mean energy is higher, and the relative fluctu-
ation is smaller than in the preceding one. We explored whether this can lead
to a non-monotonous photodistribution indicating a (single-mode) non-passive
state [113, 117]. Since we have analytical formulas only for the first two mo-
ments of the photodistribution and the full density matrix calculation would
be impossible due to the large Hilbert space, the following approximation has
been used. Knowing the first two moments, one takes the most conservative
approach and, according to the Jaynes principle [118], chooses the photodistri-
bution of the highest entropy that corresponds to these moments. This leads
to a quadratically exponential distribution pn ≈ exp(λ1n+ λ2n

2) with λ1,2 La-
grange multiplicators that follow from the two known moments. One then finds
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numerically the Glauber-Sudarshan distribution corresponding to this photodis-
tribution and uses it to calculate the first two moments in the next stage. In this
way, the photodistribution of eight cascades has been calculated in figure IV.3.
As can be seen, starting from about the fourth cascade, the photodistribution
is nonmonotonous. Notice, however, that the interferometer parameters χ and
s are optimized to maximize n̄−∆n (i.e., the nonmonotonicity) and not just n̄.

Figure IV.3: Photodistribution in the highest energy outputs in eight subsequent
cascades. Cascading the scheme: the highest temperature outputs of each stage
are used as the hot inputs of the next stage, thus gradually increasing the mean
energy of a preselected mode to arbitrarily high values.

IV.5 Conclusion
Nonlinear interferometric networks have been proposed in our work as heat
engines via nonlinear interferometry−NIHM. Conceptually, they allow us to
treat baths as dynamical systems, in contrast to existing classical and quantum
heat engines, for which the working-medium-bath exchange has not yet been
described as a coherent process. Such a description is indeed unfeasible for
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infinite/macroscopic baths, but we consider only a few-mode “baths”. Notwith-
standing its coherent-nonlinear nature, NIHM adheres to the second law and
acts as a genuine heat machine cycle, albeit only a few modes are involved in
the operation.

The minimal version of the NIHM−4-mode cross-Kerr coupled network has
been analyzed to illustrate the operation principles. These nonlinearly coupled
modes replace both the working medium and the piston (working mode), so
NIHM is conceptually much simpler than a traditional heat engine.

On the applied side, (a) NIHM practical value is their ability to interfere and
thereby concentrate energy from independent heat channels. This feat is impos-
sible in conventional heat devices whose heat channels do not interfere. (b) The
cascading process depicted here (figure IV.3) may pave the way to manipulating
and enhancing the information hidden in noisy input via controllable nonlinear
operations. This perspective is based on the fact that NIHM bears an analogy
to a quantum computer with continuous variables [19], if inter-mode quantum
correlations are accounted for, or to a semiclassical optical computer if they are
neglected. (c) The feasibility of NIHM for few-photon or few-phonon input may
add impetus to the creation of quantum nonlinear interference devices [19, 119–
123].
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Chapter V

Generation of Non-Gaussian states

In this chapter, we show how the Kerr nonlinearity can be straightforwardly used
for generating quantum states with the cubic and quartic nonlinear squeezing
[23]. Such states are the required resource for the deterministic implementation
of the quadrature phase gates and the quantum nonlinear measurements. All
images found in this chapter are taken from the article [23].
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V.1 Motivation
The unitary operation with the lowest order of nonlinearity sufficient for the
universal quantum information processing is the cubic phase gate [11, 124]. In
some systems, the gate can be implemented by direct dynamical control of the
system’s parameters [15, 18, 125], but it can be universally realized through
a measurement-induced scheme [126–129] with the help of suitably prepared
ancillary states.

The key property of the required ancillary states is the reduction of noise
in the nonlinear quadrature corresponding to the cubic operation. The quan-
tum states exhibiting such nonlinear squeezing are nonclassical and must be
prepared by specifically tailored techniques. This can be accomplished for the
continuous-variables (CV) traveling light by preparing specific superpositions
of photon number states using suitable projections by single photon detectors
[130, 131]. Other physical systems, such as the optomechanical systems [132],
the microwave resonators [15], or the trapped ion systems [125, 133], can take
advantage of the ability to dynamically control the coupling between the CV
system and the ancillary mode. It is also possible to take advantage of the
high-order nonlinearity that already exists in the physical system, such as suit-
ably transforming quantum states produced by the three-photon downconver-
sion [134]. Another prominent kind of nonlinearity intensively pursued on a
broad range of physical platforms is the Kerr nonlinearity, which shifts the
phase of the state proportionally to the energy. It is a non-Gaussian opera-
tion with broad applications in quantum logic [135–138], quantum teleporta-
tion [139–141], or quantum non-demolition measurements [142, 143]. The Kerr
operation was already considered for a preparation of highly nonclassical super-
posed coherent states [144] and, together with the Gaussian operations, they can
be employed for an incremental realization of the nonlinear operations of the
third order [19]. It is, therefore, no surprise that it is being intensively studied
across many scenarios, such as in electromagnetically induced transparency [63–
65, 145], Bose-Einstein condensates [146], cold atoms [67], Josephson junctions
[68, 69, 147], even light in resonators [70, 71].

V.2 Nonlinear squeezing parameter
The main questions are how to identify state squeezing and how to measure its
quality. In many cases, fidelity is used as an indicator of the quality of state
preparation. For metrology, quantum computing, or quantum cryptography,
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fidelity does not make that much sense since this indicator of the quality of
preparation will only tell us how well our state overlaps with the target state,
but it will not tell us anything about the squeezing of the state. The point is
that even if we have a lower fidelity, our state may be squeezed as much as the
target state and the fidelity may be low, for example, due to the misalignment.
Or, on the contrary, in the opposite case, when we can get high fidelity (e.g.
around 90%), while the state is not sufficiently squeezed.

For these reasons, we introduce a nonlinear squeezing parameter

ξn =
Tr
[
ρ̂Ô2

n

]
− Tr

[
ρ̂Ôn

]2
minρ̂G

(
Tr
[
ρ̂GÔ2

n

]
− Tr

[
ρ̂GÔn

]2) , (V.1)

where Ôn is the operator in which the states1 (represented by ρ̂) are squeezed.
The minimization is taken over the set of all Gaussian states (represented by
ρ̂G). Operator Ôn is normally defined through the unitary operators and the
quadrature operator, but in the case of cubic and quartic squeezing in the har-
monic oscillator system, it is possible to analytically express the operator Ôn in
the form (for x-axis)

Ôn = x̂− p̂n−1, (V.2)

and (for p-axis)
Ôn = p̂− x̂n−1. (V.3)

When ξ < 1 (from (V.1)) we can say the quantum state ρ̂ has genuine nonlinear
squeezing of the n-th order (for n ≥ 3, because n = 1 and n = 2 is Gaussian
squeezing (III.56), n = 3 for cubic squeezing and n = 4 for quartic squeezing).

V.3 Nonlinear squeezing by Kerr operation
We use the Kerr operation as the only source of nonlinear squeezing in our
procedures; the other operations are Gaussian. We will specifically focus on the
cases Ĥ = p̂3 and Ĥ = p̂4 .

First, we begin by presenting the procedure for the deterministic generation
of cubic squeezed states. Such states can be, in the idealized scenario, generated
by applying a unitary cubic nonlinear operation given by Hamiltonian Ĥ = p̂3

1with cubic and quartic nonlinear squeezing

45



Figure V.1: A schematic depiction of using the Kerr operation together with
Gaussian gates for preparation of quantum states with (a) nonlinear cubic
squeezing, (b) nonlinear quartic squeezing. For better illustration, the gates
are supplemented by schematic depictions of the Wigner functions of the states
along different steps of the procedures, starting as the Wigner functions of
vacuum states on the left and ending as the Wigner functions of the respec-
tive squeezed states on the right. The boxes represent the unitary operations
displacement (D̂(α), D̂(β)), phase shift (R̂(ϕ),R̂(ϕ1),R̂(ϕ2)), Kerr nonlinearity
(K̂(χ)), and squeezing (Ŝ(r), Ŝ(ω)).

onto a Gaussian squeezed state. We can generate them by applying Kerr non-
linearity to an initial coherent state, unitary operation of the Kerr nonlinearity
has the shape

K̂(χ) = exp
[
iχ(x̂2 + p̂2)2

]
. (V.4)

In the generation itself, we also use other Gaussian operations, namely squeez-
ing, displacement, and phase shift, which can be used to adjust the state after
the Kerr operation. The resulting shape of the state on which the nonlinear
squeezing calculation is performed has the form

|ψ3(α, χ, ϕ, β, r)⟩ = Ŝ(r)D̂(β)R̂(ϕ)K̂(χ)D̂(α) |0⟩ , (V.5)

where Ŝ(r) represents squeezing (defined in (III.56)), D̂(α) = exp (−iαp̂) rep-
resents displacement in x̂ quadrature, K̂(χ) represents Kerr operation (defined
in (V.4)) and R̂(ϕ) = exp

[
− i

2ϕ
(
x̂2 + p̂2

)]
represent phase shift (the whole pro-

cess is illustrated in figure V.1(a)). The nonlinear squeezing parameter (V.1)
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takes the form ξ3(α, χ, ϕ, β, r), is then a five-parameter function that can be
numerically optimized to achieve the largest possible nonlinear squeezing.

In the case of quartic nonlinear squeezing, we start with a different input
state than in the cubic case, namely with a linearly squeezed state. The reason
is the different symmetry of the operation. Ideal cubic squeezed states are
symmetric with respect to the change p̂ → −p̂, which geometrically represents
symmetry with respect to one axis in phase space. Meanwhile, ideal states
with quartic nonlinear squeezing have symmetry with respect to simultaneous
exchange x̂ → −x̂ and p̂ → −p̂, which geometrically represent symmetry with
respect to the point of origin. For this reason, a coherent state displaced in x̂
quadrature cannot be used, but this type of symmetry is satisfied precisely by
a Gaussian squeezed vacuum state. Subsequently, the form of notation of the
approximate quartic squeezed state

|ψ4(r, χ, ϕ1, ω, ϕ2)⟩ = R̂(ϕ2)Ŝ(ω)R̂(ϕ1)K̂(χ)Ŝ(r) |0⟩ . (V.6)

The main nonlinear properties of the state are represented by the squeezing pa-
rameter r and the Kerr parameter χ. The other three parameters, phase ϕ1 and
ϕ2, and the second squeezing parameter ω represent the Gaussuan processing
with the purpose of adjusting the geometry of the quantum state (as can be
seen in the figure V.1(b)).

V.4 Numerical results and error analysis
In our numerical simulations, we optimized all relevant parameters and thus
found the maximum squeezing achievable with our procedures. We then ana-
lyzed the robustness of our method against imprecise parameter settings.

In preparing the cubically squeezed state (V.5), the Kerr nonlinearity is an
operation applied after the displacement. This means that the whole process
is dependent on the choice of the input coherent state. For this reason, we
scanned a relatively wide interval of the real parameter α of the input coherent
state and plotted the strength of the Kerr nonlinearity (to achieve maximum
cubic squeezing) in this dependence. As we can see from the figure V.2(a), with
a larger value of α, a weaker Kerr nonlinearity is needed. This follows from the
fact that the higher the intensity of the state, the stronger the effect of the Kerr
nonlinearity. The result is then the possibility of experimental realization since
a really weak Kerr nonlinearity is needed only at the price of a strong coherent
state (which is experimentally feasible). Details of numerical simulations and
optimization for cubic squeezing can be found in Appendix B in the section
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(a) (b)

Figure V.2: (a) The minimized cubic squeezing parameter ξ3 (left y-axis, blue)
and χ coefficient of the Kerr nonlinearity required (right y-axis, red) relative
to the displacement α of the initial state. (b) The minimized quartic squeezing
parameter ξ4 (left y-axis, blue) and the χ coefficient of the Kerr nonlinearity
required (right y-axis, red) relative to the squeezing parameter r of the initial
state.

B.2. Also, the minimum variance of the Gaussian state for cubic squeezing was
calculated analytically and is attached in the Appendix B, in the section B.1.

In the case of the quartic squeezed state approximation (V.6), the initial state
before applying the Kerr operation is the Gaussian squeezed state. Therefore,
as in the case of cubic squeezing, we performed a simulation for a range of
Gaussian squeezed states (expressed by the squeezing parameter r - the strength
of the unitary operator). It is clear from the figure V.2(b) that it is much more
difficult to carry out experimentally because, with increasing squeezing of the
input state, the maximum achievable nonlinear squeezing also increases, but
the necessary strength of the Kerr nonlinearity also increases. However, this
does not change the fact that it is achievable only with Kerr nonlinearity and
Gaussian operations. As in the case for cubic squeezing as well as for quartic,
details about the simulations and variance calculation for Gaussian states are
in Appendix B in the section B.2.

To analyze the robustness of the methods, we have studied the error devia-
tions of the resulting state from the target for different input states. With both
cases of squeezing (cubic and quartic), we performed two scenarios of inaccurate
settings:

1. inaccurate settings of all parameters, i.e., the parameter describes the
input state;

2. ideal input state but errors in the other parameters.
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In both scenarios, we let the parameters fluctuate with Gaussian distributions
with mean values µ1, . . . , µ5 and standard deviations σ1, . . . , σ5.

Figures V.3(a) and V.3(b) refer to cubic squeezing; we can see the blue-
dotted ideal case showing the optimal choice of parameters, while the blue area
indicates an error rate of 1% and therefore σj = 0.01µj , and a brown area
where the error rate is 5%. 10,000 iterations of parameter randomization were
performed for each α of these areas. In the case of a one percent error rate
(blue area), the output nonlinear squeezing differs very little from the ideal
case. However, with an increase to 5% error, the rate becomes a significant
difference. In the case of the precisely prepared input state V.3(b), most of the
brown area is under the red curve. We still achieve nonlinear squeezing, but not
the maximum one. For case V.3(a), i.e., even with an inaccurate input state,
we get above the red limit, but even so, in 77.4% of cases, we achieve nonlinear
squeezing.

Next, we analyzed the method’s robustness for quartic squeezing. In the
case of the perfectly prepared input state V.3(d), we see that even if the other
parameters have an error rate of 1% (blue region) or 5% (green region), we will
always be below the red limit. That means that we always achieve a nonlinear
squeezing not very different from the optimally chosen parameters (blue dotted
curve). In case of a random selection of all parameters, in figure V.3(c), we can
see that the quartic squeezing is significantly more vulnerable to the imperfec-
tions as even for the errors with σj = 0.01µj , the quartic squeezing does not
surpass ξ4 ≈ 0.7, that can be achieved only by considering superposition of the
Fock states |0⟩ and |2⟩. While 61% of all the data points lie under the mean
value for σj = 0.05µj , and 67% of all data points lie under the mean value for
σj = 0.01µj , the outliers show the values large enough to practically prevent
the generation of the quartic nonlinear squeezing in this fashion.

V.5 Conclusion
In principle, quantum states exhibiting nonlinear squeezing can be generated
with the help of an arbitrary high-order nonlinearity through the geometry of
the phase space. However, such an approach is incremental and requires a large
number of individual nonlinear operations to achieve the desired result. We
have shown that states exhibiting the nonlinear squeezing of the third and the
fourth order can be generated with the help of only a single Kerr gate with a
constant interaction strength and a set of suitably chosen Gaussian operations.
In both cases, the key step is applying the Kerr gate onto a Gaussian quantum
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Figure V.3: (a) Cubic nonlinear squeezing ξ3 (V.1) for quantum state (V.5) with
parameters α, χ, ϕ, β, and r fluctuating with Gaussian distribution with the
respective mean values µ1, · · · , µ5 and with the standard deviations σ1, · · · , σ5.
(b) Same as (a), but the initial displacements α are set to the optimal theoretical
values. The red lines mark ξ3 = 1, and the areas below correspond to quantum
states with cubic nonlinear squeezing. The blue dots represent the ideal scenario
without the fluctuations. The dashed lines show the mean value of ξ3 in the
simulated sample, while the color-filled areas mark the interval between the
upper and the lower standard deviation (see Appendix B, section B.3 for more
details). The red and the blue areas then mark the simulations with σj = 0.05µj
and σj = 0.01µj for all j, respectively. (c) Quartic nonlinear squeezing ξ4 (V.1)
for a quantum state (V.6) with parameters r, χ, ϕ1, w, and ϕ2 fluctuating
with Gaussian distribution with the respective mean values µ1, · · · , µ5 and with
the standard deviations σ1, · · · , σ5. (d) Same as (c), but the Kerr interaction
strengths χ are set to the optimal theoretical values. The red lines mark ξ4 = 1
and the areas below correspond to states with the quartic nonlinear squeezing.
The blue dots represent the ideal scenario without the fluctuations. The dashed
lines show the mean value ξ4 in the simulated sample, while the color-filled areas
mark span between the upper and the lower standard deviation (see Appendix
B, section B.3 for more details). The green and the blue areas then mark the
simulations with σj = 0.05µj and σj = 0.01µj for all j, respectively.
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state - a coherent state for the cubic operation and a squeezed state for the
quartic operation, the particular choice being determined by the symmetry of
the required nonlinear squeezing. In both cases, some nonlinear effect can be
already obtained by considering the first three nonzero terms in the Fock state
representation of the quantum states. However, this can explain only part of
the nonlinear effect, and taking advantage of the full Hilbert space is always
beneficial.

Successfully preparing the desired quantum states requires a precise align-
ment of all parameters of both the Gaussian and the non-Gaussian constituent
operations. To test the experimental viability of the proposed operations, we
have to analyze their performance under the fluctuations of these parameters nu-
merically. Gaussian fluctuations in all parameters with the standard deviations
on the order of 5% of the means for the cubic states and 1% of the means for the
quartic states can be roughly tolerated (the selected percentage corresponds to
the error rate of parameter selection in the experiment). We, therefore, expect
that this technique could be experimentally tested on the platforms on which is
the Kerr gate currently available [64–71, 147].
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Chapter VI

General squeezing parameter as a
witness

This chapter discusses a general squeezing parameter that can be used as a
witness. The reason why we don’t write witness of what in the title is that the
choice of what is witnessed is up to the user, as it depends on the choice of the
operator that is selected in the squeezing parameter (an example is witnesses of
nonlinear squeezing, non-Gaussianity, entanglement, and others).
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VI.1 Motivation

Many applications of quantum physics are built upon specific quantum states
and their properties. The main examples of this are quantum computing em-
ploying quantum states that have both the computational capacity and potential
for fault tolerance [124, 148], and quantum metrology with probes sensitive to
some particular form of disturbance. Such protocols are often designed for spe-
cific quantum states [124], but it is often practical to consider a specific feature
of quantum states instead [23, 60, 149]. For example, in the metrology applica-
tion of squeezed light [7, 150], it is the squeezing that is important and not the
exact form of the specific squeezed vacuum state. Along the same line, it can
be argued that moments of specific operators are also determining factors for
the quality of the quintessential quantum protocol — deterministic unity gain
teleportation, but also deterministic implementation of cubic phase gate [124]
and preparation of fault-tolerant bosonic qubits [124, 149, 151].

This approach is not completely separated from the concept of ideal quan-
tum states proposed by the theory — the optimal states are often defined as
eigenstates of the chosen operators [23, 124, 149, 152]. The variance of the
operators, the generalized squeezing, then serves as a way to quantify the per-
formance of certain protocols by exploiting the difference between the optimal
and the realistic state [23, 128, 129, 149, 152]. The squeezing can also be used
to benchmark the performance of a certain class of quantum states, such as
separable or Gaussian, and thus can serve as a witness of important quantum
properties, such as entanglement [153] or quantum non-Gaussianity [62].

This is nicely demonstrated in the case of cubic nonlinearity. This deter-
ministic non-Gaussian nonlinear operation is sufficient for quantum computa-
tion [124] and can be deterministically implemented with the help of Gaussian
operations and a single non-Gaussian ancillary state [124–126, 154]. The ideal
state is the eigenstate of the cubic operator but is unphysical. Still, it can be
approximately prepared looking either for fidelity with some specific states [155]
or for states minimizing the variance of the cubic operator and thus maximizing
the nonlinear squeezing [23, 152].

The cubic operation can also be relevant in systems of collective spins. A
useful application is to create highly non-Gaussian states of collective spins that
can serve as a resource for quantum metrological protocols [156–158]. It was
also proposed to use this kind of operation for counter-diabatic driving for fast
preparation of Dicke states [159]. Moreover, one can use collective spins as
the basis for quasi-continuous variable quantum computation for which higher
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nonlinearities in the dynamics are essential.
In this chapter, we present the general concept of nonlinear squeezing and

discuss its ramifications in the areas of preparing quantum states and verifying
their quantum properties. We then demonstrate the concept of cubic squeezing
for systems of collective spins.

VI.2 Squeezing parameter
The concept of squeezing originally comes from continuous variable quantum
optics, where it describes a state of harmonic oscillator for which fluctuations
in a single quadrature are reduced below the ground state level at the cost of
increasing fluctuations in the complementary quadrature [160]. Such squeezed
states are an approximation of the quadrature eigenstates, and the strength of
squeezing, represented by the number of fluctuations, is a way to character-
ize the distance between the approximation and the ideal state. As a metric,
squeezing in quantum harmonic oscillators is much more practical than, for
example, fidelity or distance [161, 162], which cannot be effectively evaluated
because the target state is not normalized.

In more detail, for the harmonic oscillator with quadrature operators com-
muting to [x̂, p̂] = i, squeezing in quadrature operator x̂ is defined as

ξ̃x =
varρ̂x̂

var|0⟩⟨0|x̂
, (VI.1)

where varρ̂[Ô] = Tr[ρ̂Ô2] − (Tr[ρ̂Ô])2 and |0⟩ denotes the ground state of the
harmonic oscillator. The denominator represents the baseline - the classical
limit to the approximation that needs to be surpassed. This parameter directly
quantifies the squeezing in x̂ and can be used to assess the quality of specific
quantum states with respect to their performance in quantum protocols. It is
also possible to extend this definition to take into account a set of Gaussian
operations that cannot increase the squeezing of the state:

ξx =
minÛF

varρ̂Û†
F x̂ÛF

var|0⟩⟨0|x̂
. (VI.2)

These operations, represented by unitary operator ÛF and also called the free
operations in quantum resource theories [163–166], transform the state and can-
not create squeezing. However, they can increase the value of ξx by hiding the
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squeezing to an unobserved operator, specifically, in the case of quadrature
squeezing, to a quadrature operator that has been rotated (R̂(ϕ) = exp(iϕn̂))
and displaced (III.39). So, while (VI.1) represents squeezing of a specific oper-
ator, (VI.2) quantifies the amount of any quadrature squeezing present in the
state that can be extracted by non-squeezing operations. The quantity (VI.2)
also cannot increase under such operations and is, therefore, better suited for
the description of squeezing as a quantum resource.

We can extend the concept of squeezing to evaluate approximations of eigen-
states of other operators. In analogy with quadrature squeezing, we will, for any
quantum state ρ̂, define squeezing with respect to a specific operator Ô,

ξ̃O(ρ̂) =

[
varρ̂

(
Ô
)]

minρ̂F
[
varρ̂F

(
ÛF ÔÛ†

F

)] , (VI.3)

and also squeezing as a resource

ξO(ρ̂) =
minÛF

[
varρ̂

(
ÛF ÔÛ†

F

)]
minÛF

minρ̂F
[
varρ̂F

(
ÛF ÔÛ†

F

)] . (VI.4)

In both definitions, ρ̂F describes a class of free states and ÛF a class of free
operations. The free states provide us with a normalization baseline for the
squeezing. These are states that either do not possess the properties required
by applications or states that are experimentally feasible and can be considered
readily available. Similarly, free operations are those that cannot create the
desired property - applying them to a free state only results in another free
state. Such states and operations could be chosen arbitrarily, but the squeezing
parameters (VI.3) and (VI.4) have the highest practical impact when the choice
of free states and operations is driven by some experimental reality. In the
case of regular squeezing (VI.1) and (VI.2), the free states are coherent states,
and the free operations are phase-shift and displacement. For squeezing in a
nonlinear combination of quadrature operators of quantum harmonic oscillator
[163–166], the desired non-Gaussianity, the free states are Gaussian states, and
the free operations are Gaussian operations.

Each of the two definitions has its application. The direct squeezing (VI.3)
is best used in state preparation tasks, in which the goal is to obtain quantum
states best approximating the desired eigenstate of Ô to be used as a resource
[149, 166]. In this case, the preparation procedure is optimized to minimize
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over the set of preparable states to obtain ξ̃min = minρ̂ξ̃O(ρ̂). On the other
hand, squeezing as a resource (VI.4) can be used as a general quantifier for the
chosen property. For example, it can be applied to an experimentally generated
state with the goal of determining whether it possesses the required property,
either directly or in an extractable form. In all cases, value ξ = 0 confirms the
investigated state as the perfect eigenstate of the target operator, best suited
for any application. On the other hand, ξ ≥ 1 implies the state is no better
than a free state and is therefore unsuitable for further applications. For any
quantum state, the intermediate value 0 < ξ < 1 can then serve as a quantifier
for the given resource, which can be expressed either directly or in the dB scale,
ξ[dB] = 10 log10 ξ.

VI.3 Example of cubic squeezing in collective
spin systems

We already demonstrated an example of cubic squeezing in chapter V. There, we
focused on generating a cubically squeezed state realized by Gaussian operations
and Kerr nonlinearity, so we completed an example of cubic squeezing in a linear
harmonic oscillator. In this chapter, we apply the concept to a different system,
namely the system of collective spins, and compare how it works across the two
systems.

Under the term cubic operation, we consider the unitary operator, defined

Ûc(χ) = exp
(
i
χ

3

(
N

2

)− 3
2

Ĵ3
z

)
. (VI.5)

The term
(
N
2

)− 3
2 represents the scaling parameter of the cubic nonlinearity.

Interaction strength depends on the size of the system, where N is the number
of particles in the system.

Still, since this is a system where the commutator of collective spin operators
is not equal to a constant, as in the case of linear harmonic oscillators, we cannot
use the same procedure. We have to introduce the definition through the unitary
evolution of the operator Ĵk. For cubic squeezing, the Ô operator takes this form

Ôc(χ) = Ûc(χ)ĴkÛ
†
c (χ), (VI.6)

for k ∈ (x, y, z).
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Suppose we substitute the operator Ôc(χ) from equation (VI.6) into equation
(VI.3), we get the nonlinear squeezing parameter for cubic squeezing. When
choosing the operator Ô, it is necessary to choose a benchmark class of states
against which we want to define ourselves. In this case, these are the ground
states of the Hamiltonian defined as

Ĥ(β) =

(
g2

1 + g2

)
Ĵ2
z +

(
1

1 + g2

)
Ĵ2
y +

(
g

1 + g2

)
Ĵx. (VI.7)

This Hamiltonian, based on the general twist and turn Hamiltonian [167], rep-
resents two types of operations depending on the choice of the g parameter

• if g belongs to the interval (0,∞) \ {1}, then it is a two-axis counter-
twisting (TACT) operation,

• in the second case, when g ∈ {0, 1}, it is a one-axis twisting (OAT) oper-
ation.

The ground states (together with rotations) of the Hamiltonian defined in
this way cover the entire class of squeezed Gaussian-like states, including the
coherent state.1 Gaussian-like states are states in the Holstein-Primakoff ap-
proximation (subsection II.5) that belong to the class of Gaussian states in
harmonic oscillator phase space. From now on, we will use the term Gaussian
and non-Gaussian states to mean Gaussian-like and non-Gaussian-like states.

In the case of cubic squeezing, we can demonstrate the squeezing parameter
in two ways: (i) we get a specific state as the output state of the experiment,
and we need to evaluate the state and find out if it is nonlinearly squeezed. (ii)
we prepare the state (optimization of the state preparation) corresponding to a
specific nonlinear squeezing.

(i) Evaluation of the state. For the case of state quantification, a mod-
ification of the equation for the nonlinear squeezing parameter (VI.4) is
needed. By searching for which squeezing force the variance of the tested
state is minimal, we minimize the entire fraction over the possible nonlin-
ear interaction strength χ. The resulting relation has the form

ξ = minχ
minÛF

[
varρ̂

(
ÛF Ôc(χ)Û

†
F

)]
minÛF

minρ̂F
[
varρ̂F

(
ÛF Ôc(χ)Û

†
F

)] , (VI.8)

1It is with the parameter g that we determine the orientation of squeezing of the ground
state, i.e. if it is in a horizontal or vertical direction, and squeezing ratio of the ground state
of the Hamiltonian. The linear term in the Hamiltonian (VI.7) takes the degeneracy, so the
eigenstates are only on one hemisphere of the Bloch sphere.
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(ii) State preparation. It is necessary to change the form of the expression
for nonlinear squeezing from equation (VI.4)

ξÔχ
=

minρ̂minÛF

[
varρ̂

(
ÛF ÔχÛ

†
F

)]
minÛF

minρ̂F
[
varρ̂F

(
ÛF ÔχÛ

†
F

)] , (VI.9)

when we want to achieve the maximal squeezing using a series of operations
(Ôχ corresponds to the Ôc(χ) with specific parameter χ). Minimization
over the density matrix ρ̂ symbolizes only the free parameters of the ex-
periment, which can be optimized (so as to get as close as possible to a
given nonlinear squeezing with a given value of χ).

In case (i) and (ii), the formula contains unitary operations ÛF through
which we minimize. We always solve this step by centering the tested state in
one preselected axis (in the given axis we rotate the state so that its variance
matrix is diagonal), in which we calculate the given variance. Details of this
´´calibration” are contained in Appendix C, section C.2.

VI.3.1 Elementary scenario with numerical simulation
As an illustrative example, we chose to test a state that is defined as a super-
position of two Dicke states with a free parameter γ

|ψ⟩ = √
γ |0⟩+

√
(1− γ) |1⟩ . (VI.10)

We could have chosen other states, but we chose this state, which is used as
an approximation of a cubically squeezed state [128, 130, 152]. There are two
reasons for the choice — the first is that this state is defined the same way in the
systems with a small number of atoms as in the systems with a large number
of atoms (it is not truncated by the available dimension of Dicke states). The
second reason is that this state is defined in exactly the same way in the linear
harmonic oscillator system, which we will later demonstrate (as the functionality
of the nonlinear squeezing parameter across different types of systems).

• Evaluation of the squeezing of the state.
For this case, we performed a numerical simulation where we chose the
balanced case of (VI.10)(γ = 1/2) in the system corresponding to N = 80.
We minimize the squeezing parameter (VI.8) over the possible nonlinear
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interaction strength χ. We found that the tested state is non-Gaussian, cu-
bically squeezed, and its maximum squeezing corresponds to χ

3

(
N
2

)− 3
2 =

7.959 × 10−4. For this χ, the squeezing parameter is minimal (this can
be seen in figure VI.1(a)), and its value is equal to ξc = 0.748. When we
convert the squeezing parameter value to the squeezing in decibels, we get
−1.262dB. The value of the selected χ corresponds to the maximal cubi-
cal squeezing of the tested state; for all other χ values, where the value of
the squeezing parameter ξc < 1, the state is also cubically squeezed and
non-Gaussian, just not maximally.

• State preparation.
It is necessary to slightly change the form of the expression for nonlin-
ear squeezing from equation (VI.9) when we want to achieve the maximal
squeezing using a series of operations. We chose the already used super-
position (VI.10) for consistency. We are looking for the optimal ratio in
the superposition (the parameter γ) to achieve maximal squeezing, cor-
responding to minimization via state preparation, i.e., minimization via
ρ̂. As can already be seen from figure VI.1(b), it is not difficult to find
the value of γ for which the maximal cubic squeezing is achieved, and as
we can see, even in the previous case, the used γ = 1

2 is not optimal.
The optimum is γ = 0.551, and we achieve squeezing ξc = 0.715, which
corresponds to −1.459dB. χ parameter was set χ

3

(
N
2

)− 3
2 = 7.959 × 10−4

to match the previously used optimal value.

If we compare the two different simulations that we performed, in figure VI.1(a)
and in figure VI.1(b), we can see that with the selected input state, we found the
maximal squeezing. Still, when we have a possible choice of state preparation
(we can choose the parameter γ), we can achieve even greater squeezing in
the case of γ = 0.551. The system of collective spins depends on the number
of atoms in the system, and the dimensions in which we solve problems also
change accordingly. For this reason, it is necessary to analyze the behavior of
the squeezing parameter across cases of systems of different sizes. Numerical
simulations, already presented in figures VI.1(a) and (b), were performed with
the number of atomsN = 80. However, we now show smaller and larger numbers
of atoms to clarify the behavior of the squeezing parameter. We divided the
simulation into two segments; the first was purely in the interval N = [4, 100],
and then we expanded the system by simulating the interval N = [100,∞).
The first interval starts with N = 4 because the system size for the m-th order
operation is at least N = m + 1, so for the cubic operation, we start with a
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Figure VI.1: (a) Results of numerical simulation - finding the minimum value
of the squeezing parameter with the help of (VI.8). The yellow dashed curve
corresponds to the variance of the benchmark state; the yellow full line corre-
sponds to the variance of our analyzed state (the yellow curves are connected
to the left y-axis, which is also yellow). The blue curve describes the resulting
parameter of equation (VI.8) (the values of the blue curve correspond to the
right y-axis, which is also blue, and the red curve also belongs to this axis), the
red curve is the limit corresponding to ξc = 1, i.e. when we are below this limit,
the state is non-linearly cubically squeezed, when above the limit, we achieve
better values with the benchmark states (thus the test case is not nonlinearly
squeezed in Ô). (b) Results of numerical simulation - finding of state for corre-
sponding cubic squeezing operation (VI.8). Finding γ for the state described by
equation (VI.10). The red curve is the limit corresponding to ξc = 1, i.e. when
we are below this limit, the state is non-linearly cubically squeezed, when above
the limit, we achieve better values with the benchmark states (thus, the test
case is not nonlinearly squeezed in Ô). The size of the system for simulations
is N = 80 atoms, for both figures.
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Figure VI.2: Results of numerical simulation of minimizing nonlinear squeezing
parameter with testing state (VI.10)(with γ = 1/2) in the interval of N , where
the grey area corresponds to the N ∈ [4, 100], ∞ point in the x-axis corre-
sponds to the transition to the phase space approximation - Holstein-Primakoff
transformation.

system of size N = 4. Cubic squeezing cannot be observed in systems with
fewer atoms than N = 4. The second interval (N = [100,∞)) does not have
such a fine sampling due to computational complexity. The case N = ∞ is the
case when we use the Holstein - Primakoff approximation (for more details, see
section II.5) and calculate the values in the phase space with LHO quadrature
operators.

In figure VI.2, we can see different regions, namely the gray zone in the
interval N ∈ [4, 100], then N ∈ [100, 800], and then the point for N = ∞.

The gray area indicates the largest changes in the values of the nonlinear pa-
rameter for cubic squeezing. These changes are based on the very properties of
the system in which we observe it. By changing the number of atoms in the sys-
tem, we also change the number of Dicke states in the system. Let’s focus on the
lowest parameter value for N = 4. For our tested state, we observe the small-
est value of the nonlinear squeezing parameter (from the entire range of tested
systems with different numbers of N atoms) in this system.This is because in
the N = 4 system there are only the following Dicke states: |0⟩ , |1⟩ , |2⟩ , |3⟩ , |4⟩.
Thus, the eigenstate of the operator Ô (VI.6) can be described by the super-
position of these five Dicke states, and our tested state describes 40% of this
space of Dicke states. For this reason, the value of the nonlinear squeezing pa-
rameter subsequently increases as N increases (and the squeezing diminishes).
This is because the space of Dicke states gets larger, and the number of Dicke
states that describe the ground state of the operator Ô increases. However, our
test state is described by the superposition of only two Dicke states. It thus
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describes a gradually smaller part of the total space of Dicke states depending
on the increasing number of atoms in the system. An example of comparing

Figure VI.3: Bloch spheres in Hammers projection. The left column corre-
sponds to the tested state (VI.10), i.e. the superposition of |0⟩ and |1⟩ for
different numbers of atoms in the systems (where γ = 1/2). The right column
shows the ground states of the operator Ô (VI.6) for systems with different
numbers of atoms. (a) N = 4 (b) N = 10 (c) N = 50.

the tested state with the ground state of the operator Ô is shown in figure VI.3.
There, we can see how the similarity of the tested state with the ground state
changes with the increasing number of atoms in the system.

From N = 100 we see that we asymptotically approach the nonlinear squeez-
ing value for LHO (N = ∞). The value is no longer very different and differs
by only 0.015 from the LHO case (which corresponds to 1.95% of the value of
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non-linear squeezing in LHO).
The last part of the graph corresponds to a point in ∞. This is the case when

using the Holstein-Primakoff approximation, we move into the dynamics of a
linear harmonic oscillator system. In this case, too, we use the superposition of
|0⟩ and |1⟩ as a test state, only in this case they are Fock states.

As can be seen, the nonlinear squeezing parameter (VI.8) defined for higher
numbers of atoms converges to the same squeezing value as in LHO. Then, we
have a region of the number of atoms in the system where we achieve a higher
squeezing for the same test state, but only because of the limited number of
Dicke states in the system.

All points of this simulation were calculated with the normalized cubic
squeezing parameter in the unitary operator with respect to the system size
(VI.5). The evaluated state was the same for all cases; it was a superposition of
the vacuum |0⟩ and the Dicke state |1⟩ in the equation (VI.10) with the setting
γ = 1

2 .

VI.4 Conclusion
We have shown that it is possible to take the general concept of squeezing
and relate it to a specific operator Ô. With this operator, we define the type
of squeezing or the property we want to assess. We introduced the squeezing
parameter as the ratio of the variance of the tested state with respect to the
specific operator Ô and the variance of the boundary state due to the same
specific operator Ô.

The squeezing parameter, as defined in this way, can act as a witness and tell
whether the tested state is outside the class of boundary states or not, just in
case the value of the squeezing parameter is less than 1, in other cases, we know
nothing. Cubically squeezed states of collective spin states (ξ < 1) are non-
Gaussian and also entangled between the individual spins [153]. When ξ > 1
we have no information about either property.

Subsequently, we demonstrated this method for cubic squeezing in systems
of collective spins, using the example of the superposition of vacuum state |0⟩
and Dicke state |1⟩. The example was the state evaluation and how to use the
squeezing parameter in the preparation of the state.

In conclusion, we can say that the superposition of vacuum state |0⟩ and
Dicke state |1⟩ can be cubically squeezed, both in collective spin systems and
in the case of a linear harmonic oscillator, and even for spin systems N ≥
100 we achieve not too different squeezing as in phase space. In the case of
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the N = 800 atoms system, the value is then identical to the value in LHO.
This points to the possibility of using the same defined parameter of nonlinear
squeezing in two different systems, namely in the system of collective spins and
the linear harmonic oscillator. At the same time, with a large number of atoms
in the system, it is possible to compare the squeezing obtained in both systems
directly.
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Chapter VII

Summary

This thesis includes the results obtained during my studies. Chapters IV, V,
and VI contains work that has been published in articles or is ready for publi-
cation. In these chapters, we present the motivation of individual topics, their
methodology, results, and conclusions. The title of this work also shows its path
— Utilization and quantification of quantum nonlinearity.

Chapter IV is based on the results obtained in our article ´´Nonlinear co-
herent heat machines”. My main task was complete numerics and design of
the cascading scheme. We dealt with using the Kerr operation as a source of
nonlinearity in the interferometer to obtain the smallest possible heat machine.
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We have shown that it is possible to realize a four-mode thermal machine in
which two input modes are hot (thermal or coherent states of the same tem-
perature/energy), and the remaining 2 input modes are cold (empty modes —
vacuum states). It is, therefore, possible to concentrate energy into one output
mode without violating the first or second law of thermodynamics. This non-
linear interferometer scheme can be made more efficient by cascading. In this
way, a nonmonotonous photodistribution can be gradually obtained.

The following chapter V of the thesis uses nonlinearity to realize cubic and
quartic squeezed states and then quantify the state squeezing. We deal with this
issue in the article ´´Generation of quantum states with nonlinear squeezing
by Kerr nonlinearity”. I am the main author of this article, and I therefore
took part in the majority of the writing itself, as well as in all numerical and
analytical work. We have shown that it is possible to create a deterministically
cubically and quartically squeezed state using Kerr nonlinearity and Gaussian
operations. The cubically squeezed state can be realized experimentally due to
the attainable Kerr nonlinearity interaction strength values.

The last thematic chapter from the work done during my doctoral studies is
chapter VI. We introduced the concept of nonlinear squeezing and generalized
it. This article is being finalized for submission. Here, I will also be the main
author and, therefore, have a majority share in all the work. We have shown
how, depending on the choice of the state property, it is possible to modify the
nonlinear squeezing parameter so that we can describe it ourselves. We have
demonstrated an example of cubic squeezing on two different systems, namely
the collective spin systems and the LHO. We also presented how this parameter
can be used (and what needs to be minimized) — use in state evaluation and
use in state preparation.

66



Appendix A - Heat machine
based on Kerr nonlinearities

A.1 Mean output photon numbers

Assume that the input field can be constructed as a mixture of coherent states,
and let us first study the evolution of each coherent state (figure IV.1(b)). As-
sume first that the four input modes have amplitudes a1, 0, 0, a4eiϕ, where a1
and a4 are real (note that only the phase difference between them matters so
that one can set the phase of the first mode equal to zero). We assume that the
first beam splitters have reflectivity c and transmissivity s given as

c = cosα, (A.1)
s = sinα, (A.2)

so that the coherent amplitudes transform to

a′1 = ca1, (A.3)
a′2 = sa1, (A.4)
a′3 = sa4e

iϕ, (A.5)
a′4 = ca4e

iϕ. (A.6)
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After the 50/50 beam splitter between modes 2 and 3 the field amplitudes are

a′′1 = ca1, (A.7)
a′′2 =

s√
2

(
a1 + a4e

iϕ
)
, (A.8)

a′′3 =
s√
2

(
a1 − a4e

iϕ
)
, (A.9)

a′′4 = ca4e
iϕ. (A.10)

The cross-Kerr effect entangles modes 1 with 2 and 3 with 4. However, to find
photon number statistics at the output, we can use the reduced density matrices
of modes 1 and 4 as described in A.4. Assume that the annihilation operators of
modes 1 and 2 after the cross-Kerr coupling are â′′′1 and â′′′4 . Their mean values
are, according to (A.81)

⟨â′′′1 ⟩ = ca1 exp
{
s2

2

[∣∣a1 + a4e
iϕ
∣∣2 (eiχ − 1

)]}
, (A.11)

⟨â′′′4 ⟩ = ca4 exp
{
s2

2

[∣∣a1 − a4e
iϕ
∣∣2 (eiχ − 1

)]
+ iϕ

}
, (A.12)

and for the mean photon numbers (using (A.82))

⟨â†′′′1 â′′′1 ⟩ = c2a21, (A.13)
⟨â†′′′4 â′′′4 ⟩ = c2a24. (A.14)

Before the last beam splitter, the phase of mode 4 is shifted by π/2 (this
can also be contained in the parameters of the beam splitter). The output fields
coming from the last beam splitter have annihilation operators given by

â1,f =
1√
2

(
â′′′1 + â′′′4 e

iπ2
)
, (A.15)

â4,f =
1√
2

(
â′′′1 − â′′′4 e

iπ2
)
. (A.16)
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Thus, one finds the mean output photon numbers

⟨n̂1,f ⟩ =
c2

2
{a21 + a24 + a1a4e

i(ϕ+π
2 )

×e
s2

2

[
|a1+a4eiϕ|2(e−iχ−1)+|a1−a4eiϕ|2(eiχ−1)

]
+ c.c.} (A.17)

⟨n̂4,f ⟩ =
c2

2
{a21 + a24 − a1a4e

i(ϕ+π
2 )

×e
s2

2

[
|a1+a4eiϕ|2(e−iχ−1)+|a1−a4eiϕ|2(eiχ−1)

]
+ c.c.}. (A.18)

On expanding the exponentials, one finds

⟨n̂1,f ⟩ =
c2

2

{
a21 + a24 + 2a1a4 exp

[
−2s2(a21 + a24) sin2 χ

2

]
× sin

(
2s2a1a4 sinχ cosϕ− ϕ

)}
, (A.19)

⟨n̂4,f ⟩ =
c2

2

{
a21 + a24 − 2a1a4 exp

[
−2s2(a21 + a24) sin2 χ

2

]
× sin

(
2s2a1a4 sinχ cosϕ− ϕ

)}
. (A.20)

So far, these results are valid for coherent input states. If the input states are
mixtures of coherent states described by regular Glauber Sudarshan distribu-
tion P , one gets the resulting mean photon numbers by averaging over this
distribution. Note that a single-mode state can be expressed as

ρ̂ =

∫ ∫
P (α, ϕ)|αeiϕ⟩⟨αeiϕ| dα dϕ (A.21)

with α ≥ 0 real and ϕ ∈ (0, 2π). If the input state is described by the Glauber
Sudarshan distribution P (a1, ψ, a4, ψ + ϕ) describing a mixture of two-mode
coherent states |a1eiψ⟩|a4ei(ψ+ϕ)⟩, the mean photon numbers are

⟨⟨n̂1,f ⟩⟩ =
∫ ∞

0

∫ ∞

0

∫ 2π

0

∫ 2π

0

⟨n̂1,f ⟩P (a1, ψ, a4, ψ + ϕ) dϕ dψ da1 da4, (A.22)

⟨⟨n̂4,f ⟩⟩ =
∫ ∞

0

∫ ∞

0

∫ 2π

0

∫ 2π

0

⟨n̂4,f ⟩P (a1, ψ, a4, ψ + ϕ) dϕ dψ da1 da4. (A.23)
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A.1.1 Coherent states with random phases
As a special case, consider two coherent states with equal amplitudes but ran-
dom phases, i.e.,

P (a1, ψ, a4, ψ + ϕ) =
1

(2π)2
δ(a1 −

√
n̄)δ(a4 −

√
n̄). (A.24)

Using the property of Bessel functions∫ 2π

0

sin(a cosϕ− ϕ)dϕ = 2πJ1(a), (A.25)

the integrals in (A.22) and (A.23) can be evaluated as
⟨⟨n̂1,f ⟩⟩ = c2n̄+G, (A.26)
⟨⟨n̂4,f ⟩⟩ = c2n̄−G (A.27)

with
G = c2n̄ exp

(
−4s2n̄ sin2 χ

2

)
J1
(
2s2n̄ sinχ

)
. (A.28)

A.1.2 Thermal inputs of equal temperature
For a thermal state with mean photon number n̄, the single mode probability
distribution is

P (α, ϕ) =
1

πn̄
αe−

α2

n̄ . (A.29)

Assuming that both the hot modes are at the same temperature with mean
photon number n̄, the integrals (A.22) and (A.23) lead to

⟨⟨n̂1,f ⟩⟩ = c2n̄+G, (A.30)
⟨⟨n̂4,f ⟩⟩ = c2n̄−G, (A.31)

where

G = c2
∫ ∞

0

∫ ∞

0

∫ 2π

0

∫ 2π

0

a1a4e
−2s2(a21+a

2
4) sin2 χ

2

× sin
(
2s2a1a4 sinχ cosϕ− ϕ

) 1

(πn̄)
2 a1a4e

− a2
1+a2

4
n̄ dϕdψda1da4

=
4c2

n̄2

∫ ∞

0

∫ ∞

0

x2y2 exp
[
−
(
1

n̄
+ 2s2 sin2 χ

2

)(
x2 + y2

)]
× J1

(
2s2 sinχxy

)
dxdy. (A.32)
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The integrals can be evaluated as follows. Substituting

a ≡ 1

n̄
+ 2s2 sin2 χ

2
, (A.33)

b ≡ 2s2 sinχ, (A.34)
x = r cos ξ, (A.35)
y = r sin ξ, (A.36)

dx dy = rdr dξ, (A.37)

we get

G =
4c2

n̄2

∫ π/2

0

cos2 ξ sin2 ξ

×
∫ ∞

0

r5 exp
(
−ar2

)
J1
(
b sin ξ cos ξ r2

)
dr dξ (A.38)

=
2c2

n̄2

∫ π/2

0

cos2 ξ sin2 ξ

×
∫ ∞

0

u2 exp (−au) J1 (b sin ξ cos ξ u) du dξ. (A.39)

Integral over u can be evaluated using (A.84) getting

G =
6c2ab

n̄2

∫ π/2

0

sin3 ξ cos3 ξ(
a2 + b2 sin2 ξ cos2 ξ

)5/2 dξ, (A.40)

and using (A.88) we arrive at

G =
8c2b

n̄2(4a2 + b2)2
=

c2s2 sinχ

n̄2
[(

1
n̄ + 2s2 sin2 χ

2

)2
+ s4 sin2 χ

]2 . (A.41)

Using this result in (A.30), one finds

n̄f+ ≡ ⟨⟨n̂1,f ⟩⟩ = c2n̄+
c2s2 sinχ

n̄2
[(

1
n̄ + 2s2 sin2 χ

2

)2
+ s4 sin2 χ

]2 , (A.42)

in which one can optimize the values χ and α to get maximum energy in the
selected mode.
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A.2 Classical approximation
Approximate results can be obtained by assuming that the cross-Kerr coupler
mutually changes the phases of coherent states as

|α⟩|β⟩ → |αeiχ|β|
2

⟩|βeiχ|α|
2

⟩ (A.43)

that would neglect the correlation of quantum fluctuations. This would modify
Eqs. (A.11) and (A.12) for the coherent state amplitudes after the Kerr-couplers
to

a′′′1 = ca1 exp
{
iχ
s2

2

∣∣a1 + a4e
iϕ
∣∣2} , (A.44)

a′′′4 = ca1 exp
{
i

[
χ
s2

2

∣∣a1 + a4e
iϕ
∣∣2 + ϕ

]}
, (A.45)

and the output intensities of the coherent states after the terminal beam splitter
would be

⟨n1,f ⟩ =
c2

2

[
a21 + a24 + 2a1a4 sin

(
2s2a1a4χ cosϕ− ϕ

)]
, (A.46)

⟨n4,f ⟩ =
c2

2

[
a21 + a24 − 2a1a4 sin

(
2s2a1a4χ cosϕ− ϕ

)]
. (A.47)

These results differ from Eqs. (A.19) and (A.20) by the missing factor
exp

[
−2s2(a21 + a24) sin2 χ

2

]
that decreases the interference visibility and by hav-

ing factor χ rather than sinχ in the argument of the interference term. Similarly,
as in the fully quantum situation, we can study the special cases of two coherent
states of equal intensity and two thermal states of equal temperature.

A.2.1 Coherent states with random phases
The results of (A.26) and (A.27) are modified such that the interference term is

G = c2n̄J1
(
2s2n̄χ

)
. (A.48)

A.2.2 Thermal inputs of equal temperature
The resulting intensity of (A.30) and (A.31) is modified with G being now

G =
c2s2χ

n̄2
(

1
n̄2 + s4χ2

)2 (A.49)
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so that the output energy in mode 1 is

⟨⟨n̂1,f ⟩⟩ = c2n̄+
c2s2χ

n̄2
(

1
n̄2 + s4χ2

)2 . (A.50)

This formula allows for analytical optimization. Searching for the optimum
value of χ one finds

χopt =
1√
3n̄s2

(A.51)

which inserted to (A.50) yields

⟨⟨n̂1,f ⟩⟩ = c2n̄

(
1 +

9

16
√
3

)
≈ 1.325c2n̄. (A.52)

This result shows that classically, it would be the best strategy to split off as
small part of the incoming energy as possible (s2 small, c2 → 1) and allow for a
correspondingly large Kerr nonlinearity. Fully quantized results show that the
strong Kerr nonlinearity would lead to smearing the interference, so one has to
find the nontrivial optimum.

A.3 Photon number dispersion

The photon number dispersion is calculated as ∆n2 = ⟨n2⟩− ⟨n⟩2 = ⟨â†â†ââ⟩+
⟨â†â⟩ − ⟨â†â⟩2, where the operators are in the final output. The quartic term is
thus

⟨â†â†ââ⟩ = 1

4

〈(
â†′′′1 + â†′′′4

)(
â†′′′1 + â†′′′4

)
(â′′′1 + â′′′4 ) (â′′′1 + â′′′4 )

〉
. (A.53)

Expressing this for a coherent state with real amplitudes a1 and a4 and phase
difference ϕ one gets

⟨â†â†ââ⟩ =
c4

4
{a41 + a44 + 4a21a

2
4 + 4a1a4(a

2
1 + a24) exp

[
−2s2(a21 + a24) sin2 χ

2

]
× sin

(
2s2a1a4 sinχ cosϕ− ϕ

)
− 2a21a

2
4 exp

[
−2s2(a21 + a24) sin2 χ

]
× cos

(
2s2a1a4 sin 2χ cosϕ− 2ϕ

)
}. (A.54)
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A.3.1 Coherent inputs

Using the coherent state Glauber Sudarshan distribution (A.24) we find

⟨⟨â†â†ââ⟩⟩ = c2n̄2
{
3

2
+ 2 exp

(
−4s2n̄ sin2 χ

2

) 1

2π

×
∫ 2π

0

sin
(
2s2n̄ sinχ cosϕ− ϕ

)
dϕ

−1

2
exp

(
−4s2n̄ sin2 χ

) 1

2π

×
∫ 2π

0

cos
[
2s2n̄ sin(2χ) cosϕ− 2ϕ

]
dϕ.

}
(A.55)

Using (A.25) and

∫ 2π

0

cos(a cosϕ− 2ϕ)dϕ = −2πJ2(a), (A.56)

we get

⟨⟨â†â†ââ⟩⟩ = c4n̄2
{
3

2
+ 2 exp

(
−4s2n̄ sin2 χ

2

)
J1
(
2s2n̄ sinχ

)
+

1

2
exp

(
−4s2n̄ sin2 χ

)
J2
[
2s2n̄ sin(2χ)

]}
. (A.57)

Thus we find

∆n2 = c4n̄2
{
1

2
+ 2 exp

(
−4s2n̄ sin2 χ

2

)
J1
(
2s2n̄ sinχ

)
+
1

2
exp

(
−4s2n̄ sin2 χ

)
J2
[
2s2n̄ sin(2χ)

]}
+c2n̄(1− 2G) +G(1−G) (A.58)

with G from (A.28).
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A.3.2 Thermal inputs

To find the mean value over a thermal state, one averages these values as

⟨⟨f(a1, a4, ϕ, ψ)⟩⟩ =
1

(πn̄)2

∫ ∞

0

∫ ∞

0

∫ 2π

0

∫ 2π

0

f(a1, a4, ϕ, ψ)

× exp
(
−a

2
1 + a24
n̄

)
a1a4dϕ dψ da1 da4. (A.59)

One thus finds

⟨⟨a41⟩⟩ = ⟨⟨a44⟩⟩ = 2n̄2, (A.60)
⟨⟨a21a24⟩⟩ = n̄2. (A.61)

The other terms can be evaluated as follows.

A ≡ ⟨⟨a1a4(a21 + a24) exp
[
−2s2(a21 + a24) sin2 χ

2

]
sin
(
2s2a1a4 sinχ cosϕ− ϕ

)
⟩⟩

=
1

(πn̄)2

∫ ∞

0

∫ ∞

0

∫ 2π

0

∫ 2π

0

x2y2(x2 + y2) exp
[
−
(
1

n̄
+ 2s2 sin2 χ

2

)
×(x2 + y2)

]
sin
(
2s2xy sinχ cosϕ− ϕ

)
dϕ dψ dx dy

=
4

n̄2

∫ ∞

0

∫ ∞

0

x2y2(x2 + y2)

× exp
[
−
(
1

n̄
+ 2s2 sin2 χ

2

)
(x2 + y2)

]
J1
(
2s2 sinχxy

)
dx dy. (A.62)

Using the substitution as in (A.33)–(A.37) we have

A =
4

n̄2

∫ π/2

0

cos2 ξ sin2 ξ

∫ ∞

0

r7e−ar
2

J1
(
b cos ξ sin ξr2

)
dr dξ (A.63)

=
2

n̄2

∫ π/2

0

cos2 ξ sin2 ξ

∫ ∞

0

u3e−auJ1 (b cos ξ sin ξu) du dξ. (A.64)
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Using (A.85) we get

A =
2

n̄2

∫ π/2

0

cos2 ξ sin2 ξ
3b sin ξ cos ξ

(
4a2 − b2 sin2 ξ cos2 ξ

)(
a2 + b2 sin2 ξ cos2 ξ

)7/2 dξ

=
24a2b

n̄2

∫ π/2

0

sin3 ξ cos3 ξ(
a2 + b2 sin2 ξ cos2 ξ

)7/2 dξ

−6b3

n̄2

∫ π/2

0

sin5 ξ cos5 ξ(
a2 + b2 sin2 ξ cos2 ξ

)7/2 dξ. (A.65)

These integrals are evaluated as (A.89) and (A.90) finding

A =
32b(20a2 + b2)

5an̄2 (4a2 + b2)
3 − 32b3

5an̄2 (4a2 + b2)
3

=
128ab

n̄2 (4a2 + b2)
3 =

4s2 sinχ
(
1
n̄ + 2s2 sin2 χ

2

)
n̄2
[(

1
n̄ + 2s2 sin2 χ

2

)2
+ s4 sin2 χ

]3 . (A.66)

The average of the last term in (A.54) can be evaluated as follows.

B ≡ ⟨⟨a21a24 exp
[
−2s2(a21 + a24) sin2 χ

]
cos
(
2s2a1a4 sin 2χ cosϕ− 2ϕ

)
⟩⟩

=
1

(πn̄)2

∫ ∞

0

∫ ∞

0

∫ 2π

0

∫ 2π

0

x3y3 exp
[
−
(
1

n̄
+ 2s2 sin2 χ

)
(x2 + y2)

]
× cos

(
2s2xy sin 2χ cosϕ− 2ϕ

)
dϕ dψ dx dy

=
1

(πn̄)2

∫ ∞

0

∫ ∞

0

∫ 2π

0

∫ 2π

0

x3y3 exp
[
−a(x2 + y2)

]
× cos (bxy cosϕ− 2ϕ) dϕ dψ dx dy (A.67)

with the substitution (note that this is a different substitution than in the
preceding cases)

a ≡ 1

n̄
+ 2s2 sin2 χ, (A.68)

b ≡ 2s2 sin 2χ (A.69)
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we can write

B = − 4

n̄2

∫ ∞

0

∫ ∞

0

x3y3 exp
[
−a(x2 + y2)

]
J2(bxy) dx dy

= − 4

n̄2

∫ π/2

0

sin3 ξ cos3 ξ
∫ ∞

0

r7e−ar
2

J2
(
b sin ξ cos ξr2

)
dr dξ

= − 2

n̄2

∫ π/2

0

sin3 ξ cos3 ξ
∫ ∞

0

u3e−auJ2 (b sin ξ cos ξu) du dξ. (A.70)

Using (A.87) we have

B = −30ab2

n̄2

∫ π/2

0

sin5 ξ cos5 ξ(
a2 + b2 sin2 ξ cos2 ξ

)7/2 dξ (A.71)

= − 32b2

n̄2 (4a2 + b2)
3

= − 2s4 sin2(2χ)

n̄2
[(

1
n̄ + 2s2 sin2 χ

)2
+ s4 sin2(2χ)

]3 , (A.72)

where (A.90) was used.
Thus we find

⟨⟨â†â†ââ⟩⟩ = c4
(
2n̄2 +A− 1

2
B
)

= c4

2n̄2 +
4s2 sinχ

(
1
n̄ + 2s2 sin2 χ

2

)
n̄2
[(

1
n̄ + 2s2 sin2 χ

2

)2
+ s4 sin2 χ

]3
+

s4 sin2(2χ)

n̄2
[(

1
n̄ + 2s2 sin2 χ

)2
+ s4 sin2(2χ)

]3
 (A.73)

= c4n̄2

2 +
4
(
1 + 2n̄1 sin2 χ

2

)
n̄1 sinχ[(

1 + 2n̄1 sin2 χ
2

)2
+ n̄21 sin2 χ

]3
+

n̄21 sin2(2χ)[(
1 + 2n̄1 sin2 χ

)2
+ n̄21 sin2(2χ)

]3
 , (A.74)
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where

n̄1 ≡ s2n̄ (A.75)

is the mean photon number split off from the hot beam.
Therefore, the photon number dispersion is

∆n2 = c4n̄2 + c2n̄+
c2s2

(
1− 2c2n̄

)
sinχ

n̄2
[(

1
n̄ + 2s2 sin2 χ

2

)2
+ s4 sin2 χ

]2
− c4s4 sin2 χ

n̄4
[(

1
n̄ + 2s2 sin2 χ

2

)2
+ s4 sin2 χ

]4
+

4c4s2 sinχ
(
1
n̄ + 2s2 sin2 χ

2

)
n̄2
[(

1
n̄ + 2s2 sin2 χ

2

)2
+ s4 sin2 χ

]3
+

c4s4 sin2(2χ)

n̄2
[(

1
n̄ + 2s2 sin2 χ

)2
+ s4 sin2(2χ)

]3 . (A.76)

The magnitude of the fluctuations in the output mode is similar to that of
thermal light but somewhat smaller.

A.4 Reduced density matrix of a coherent state
coupled by a cross-Kerr coupler

The Fock representation of a two-mode coherent state is

|α⟩|β⟩ = e−
|α|2
2 e−

|β|2
2

∑
m,n

αn√
n!

βm√
m!

|n⟩|m⟩. (A.77)

The cross-Kerr interaction changes Focks states as |n⟩|m⟩ → eiχnm|n⟩|m⟩, so
that the input coherent state changes to

UKerr|α⟩|β⟩ = e−
|α|2
2 e−

|β|2
2

∑
m,n

αn√
n!

βm√
m!
eiχnm|n⟩|m⟩. (A.78)

The density matrix corresponding to this state is

ρ = e−|α|2e−|β|2
∑

n,m,n′,m′

αnα∗n′
βmβ∗m′

√
n!n′!m!m′!

eiχ(nm−n′m′)|n,m⟩⟨n′,m′|. (A.79)
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The reduced density matrix related to mode α is then

Tr [ρ]β = e−|α|2e−|β|2
∑
n,m,n′

αnα∗n′ |β|2m√
n!n′! m!

eiχ(n−n
′)m|n⟩⟨n′|

= e−|α|2
∑
n,n′

αnα∗n′

√
n!n′!

exp
{
|β|2

[
eiχ(n−n

′) − 1
]}

|n⟩⟨n′|. (A.80)

This result enables us to find moments of the creation and annihilation operators
acting on mode α:

⟨â⟩ = Tr[âρα] = e−|α|2Tr
∑
n,n′

αnα∗n′

√
n!n′!

exp
{
|β|2

[
eiχ(n−n

′) − 1
]}√

n|n− 1⟩⟨n′|

= e−|α|2Tr
∑
k,n′

αk+1α∗n′√
(k + 1)!n′!

exp
{
|β|2

[
eiχ(k+1−n′) − 1

]}√
k + 1|k⟩⟨n′|

= e−|α|2
∑
k

αk+1α∗k

k!
exp

[
|β|2

(
eiχ − 1

)]
= α exp

[
|β|2

(
eiχ − 1

)]
. (A.81)

In the same way one can find mean values of normally ordered operators as

⟨â†qâr⟩ = α∗qαr exp
[
|β|2

(
eiχ(r−q) − 1

)]
. (A.82)

A.5 Bessel function formulas

From the general expression [168] (p. 97)

∫ ∞

0

eauuµ−1Jν(bu)du = (a2 + b2)−µ/2Γ(ν + µ)P−ν
µ−1

(
a√

a2 + b2

)
(A.83)
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we get the special cases used in the text∫ ∞

0

e−auu2J1(bu)du =
3ab

(a2 + b2)5/2
, (A.84)∫ ∞

0

e−auu3J1(bu)du =
3b(4a2 − b2)

(a2 + b2)7/2
, (A.85)∫ ∞

0

e−auu2J2(bu)du =
3b2

(a2 + b2)5/2
, (A.86)∫ ∞

0

e−auu3J2(bu)du =
15ab2

(a2 + b2)7/2
, (A.87)

Eqs. (A.84) and (A.87) also follow from 66, chapt. 25 in [169], Eq. (A.86)
follows from 60 in [169].

A.6 Auxiliary integrals

∫ π/2

0

sin3 ξ cos3 ξ(
a2 + b2 sin2 ξ cos2 ξ

)5/2 dξ =
4

3a(4a2 + b2)2
, (A.88)

∫ π/2

0

sin3 ξ cos3 ξ(
a2 + b2 sin2 ξ cos2 ξ

)7/2 dξ =
4(20a2 + b2)

15a3(4a2 + b2)3
, (A.89)

∫ π/2

0

sin5 ξ cos5 ξ(
a2 + b2 sin2 ξ cos2 ξ

)7/2 dξ =
16

15a(4a2 + b2)3
. (A.90)
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Appendix B - Generation of
Non-Gaussian states

B.1 Optimal Gaussian states for evaluating non-
linear squeezing.

To properly evaluate the nonlinear squeezing of quantum states given by ξ3,4, we
require the knowledge of the optimal variance of the ideal Gaussian state that
is used in the denominator. Due to the symmetry of the operator Ô3, the ideal
Gaussian state for the cubic nonlinearity is the vacuum state squeezed along
the x̂ axis. For this state, the optimal squeezing parameter and the minimal
variance can be analytically calculated in Heisenberg’s picture, in which the
operators x̂ and p̂ evolve as

x̂→gx̂, (B.1)

p̂→1

g
p̂. (B.2)
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We can then substitute the new x̂ and p̂ into the variance

var
(
Ô3

)
=⟨Ô2

3⟩ − ⟨Ô3⟩2; Ô3 = x̂− p̂2, (B.3)

⟨Ô3⟩ =g ⟨0| x̂ |0⟩ −
1

g2
⟨0| p̂2 |0⟩ , (B.4)

⟨Ô2
3⟩ =g2 ⟨0| x̂2 |0⟩ −

1

g
⟨0| x̂p̂2 + p̂2x̂ |0⟩+

+
1

g4
⟨0| p̂4 |0⟩ , (B.5)

var
(
Ô3

)
=
g2

2
+

1

g4
3

4
− 1

g4
1

4
=
g2

2
+

1

2g4
. (B.6)

The next step is to perform a derivative and to set it equal to the zero value for
finding the value of the minimum:

∂var
(
Ô3

)
∂g

=0, (B.7)

g − 2

g5
= 0 →g =

6
√
2, (B.8)

varmin
(
Ô3

)
=3× 2−

5
3 . (B.9)

For the case of quartic squeezing, the optimal state is a squeezed vacuum
state; this time, however, it is squeezed in an arbitrary direction. By applying
the same approach as in the previous case, the quadrature operators of the
squeezed and rotated vacuum state can be expressed as:

x̂→g cos(ϕ)x̂+
sin(ϕ)
g

p̂, (B.10)

p̂→cos(ϕ)
g

p̂− g sin(ϕ)x̂. (B.11)
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Subsequently, we substitute them into the nonlinear variance and obtain

var
(
Ô4

)
=⟨Ô2

4⟩ − ⟨Ô4⟩2; Ô4 = x̂− p̂3, (B.12)

var
(
Ô4

)
=
g2 cos2(ϕ)

2
+

sin2(ϕ)

2g2
+

+
3

2
g2 sin3(ϕ) cos(ϕ) + 3

2
sin(ϕ) cos3(ϕ)−

−3

2
sin3(ϕ) cos(ϕ)− 3

2

cos3(ϕ) sin(ϕ)
g4

+

+
15

8

cos6(ϕ)
g6

+
45

8

sin2(ϕ) cos4(ϕ)
g2

+

+
45

8
g2 sin4(ϕ) cos2(ϕ) + 15

8
g6 sin6(ϕ). (B.13)

The optimal parameters for the Gaussian state minimizing this formula can be
numerically found to be

g =− 0.637, (B.14)
ϕ =− 1.949, (B.15)

and the minimal variance of the Gaussian state is varmin
(
Ô4

)
= 0.971.

B.2 Optimization of the state preparation
In the following, we describe the numerical optimization tools employed to
achieve the results. The optimized parameter is always the relative squeez-
ing parameter ξ3,4. Still, since the denominator of (V.1) is always fixed, it
is sufficient to minimize the variance of the quantum operators Ô3 and Ô4

with Ôn = x̂ − p̂n−1. These variances, which we denote V3(α;χ, ϕ, β, r) and
V4(r;χ, ϕ1, ω, ϕ2), respectively, are the functions of the input parameters of the
preparation circuit.

The variances for each combination of parameters were calculated in two
steps. In the first step, we numerically applied the Kerr nonlinearity by ex-
pressing the input state in the Fock basis of the dimension N and by multi-
plying it by the matrix form of the unitary operator for the Kerr operation to
produce the approximate representation of the states |ζ3⟩ = K̂(χ)D̂(α)|0⟩ and

83



|ζ4⟩ = K̂(χ)Ŝ(r)|0⟩ for the preparation of the cubic and the quartic squeezing,
respectively.

The application of the Kerr operator could be done perfectly because the op-
erator is diagonal in the Fock basis. In our simulations, we have used dimension
N = 300, which was sufficient to represent the selected input states faithfully.
We then used these quantum states to evaluate the moments of the quadrature
operators.

For generation of the cubic squeezing, the relevant moments can be obtained
by the Gaussian transformation of the quadrature operators. That leads to the
polynomial formula for the variance

V3 = ⟨ζ3| (Ô′
3)

2 |ζ3⟩ − ⟨ζ3| Ô′
3 |ζ3⟩

2
, (B.16)

where

x̂′ =g (cos(ϕ)x+ sin(ϕ)p) , (B.17)

p̂′ =
1

g
((− sin(ϕ)x+ cos(ϕ)p) + β) , (B.18)

Ô′
3 =x̂′ − p̂′3. (B.19)

Similarly, for the quartic squeezing, we obtain

V4 = ⟨ζ4| (Ô′
4)

2 |ζ4⟩ − ⟨ζ4| Ô′
4 |ζ4⟩

2
, (B.20)

where

x̂1 =ω sin(ϕ2) (sin(ϕ1)x̂+ cos(ϕ1)p̂) , (B.21)

x̂2 =
1

ω
cos(ϕ2) (− cos(ϕ1)x̂+ sin(ϕ1)p̂) , (B.22)

p̂1 =
1

ω
sin(ϕ2) (− cos(ϕ1)x̂+ sin(ϕ1)p̂) , (B.23)

p̂2 =ω cos(ϕ2) (sin(ϕ1)x̂+ cos(ϕ1)p̂) , (B.24)
x̂′′ =x̂1 + x̂2, (B.25)
p̂′′ =p̂1 − p̂2, (B.26)
Ô4 =x̂′′ − p̂′′3. (B.27)

The numerical optimization of the functions was performed in Python, with
help of the scipy.optimize.minimize library and the L-BFGS-B function. This is
a quasi-Newtonian optimization method that allows the setting of the intervals
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(a)

(b)

(c)

(d)

Figure B.1: Left column - the optimal parameters of obtained by the numerical
optimization for the given input displacement for the case of the Cubic nonlinear
squeezing. (a) The parameters of Kerr nonlinearity χ and phase shift parameter
ϕ. (b) The displacement parameter β, and the squeezing parameter g. Right
column - the optimal parameters obtained by the numerical optimization for a
given input displacement for the case of the Quartic nonlinear squeezing. (c)
The parameters of Kerr nonlinearity χ, and rotation ϕ1. (d) The phase shift
parameter ϕ2, and the squeezing parameter (ω).
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of parameters in which the optimization will take place and thus reduces the
computational time. This method uses the Broyden-Fletcher-Goldfarb-Shanno
algorithm. The optimization searches for the local minima and always starts
from the pre-selected entry points. In our analysis, in which we searched for the
minimal values for the different fixed values of α (for the cubic squeezing) and
r (for the quartic squeezing), we always chose one of the sets of the parameters
as those that were optimal for the previously calculated value of α or r, and the
other 299 sets were chosen randomly. There were 300 different starting sets of
the parameters for each instance of the numerical optimization.

The parameters for which the optimal nonlinear squeezing was found are
plotted for the cubic squeezing in Fig. B.1(a),(b) and for the quartic squeezing
in Fig. B.1(c),(d).

B.3 Statistical evaluation of errors
In the following, we would like to describe, in detail, the error analysis employed
to obtain the results presented. When simulating the errors, we started from
the optimal set of the parameters and then simulated the random deviations.
This was done by running the Monte Carlo simulation, in which Nruns = 10000
runs of the quantum state preparation were simulated with parameters that
were randomly chosen from Gaussian distributions with mean values µ, that
were corresponding to the parameters’ optimal value, and standard deviations
σ = γµ, that was considered to be a certain fraction of the mean value. The
obtained nonlinear variances from each run were then statistically evaluated.

In each simulated run of the experiment, the obtained nonlinear variance
can be expressed as ξ3,4(k), where k = 1, · · · , Nruns denotes the particular run.
The fundamental information is provided by the statistical moments. The most
important one is the mean value, ξ3,4 = 1

Nruns

∑
k ξ3,4(k), but important insight

is also given by the upper and the lower standard deviations

σ2
+ =

1

N+

∑
k

(max[ξ3,4(k)− ξ3,4, 0])
2, (B.28)

σ2
− =

1

N−

∑
k

(min[ξ3,4(k)− ξ3,4, 0])
2, (B.29)

where N+ and N− represent the number of runs in which the measured nonlinear
variance ξ3,4(k) is larger or lower, respectively, than the mean-variance ξ3,4.
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B.4 Numerical representation of quantum states
and operations

To implement the numerical simulation of the quantum states and operations,
we chose the dimension of the Hilbert space to be N = 300 to avoid nonphysical
results by ensuring the states we work with are faithfully represented. On this
dimension, we can represent the truncated annihilation operator by matrix A
with elements

Am,n = δm,n+1

√
m ∀ m = 1, 2, . . . , N − 1, .

The quadrature operators x̂ and p̂ can then be represented by matrices

X =

(
A† +A

)
√
2

,

P =
i
(
A† −A

)
√
2

.

Subsequently, we use these matrices to define transformation matrices of dis-
placement D(α), squeezing S(r), phase rotation R(ϕ) and Kerr nonlinearity
K(χ),

D(α) = exp [−iαX] ,

S(r) = exp
[
ir

2
(XP + PX)

]
,

R(ϕ) = exp
[
iϕ

2

(
X2 + P 2

)]
,

K(χ) = exp
[
−iχ

(
X2 + P 2

)2]
,

and use them to calculate the vector representation of the quantum state ob-
tained by applying the Kerr operation to a coherent state for the case of prepa-
ration of the cubic squeezing,

|ζ3⟩ = K̂(χ)D̂(α) |0⟩ ,

or to a squeezed state for the case of preparation of the quartic squeezing,

|ζ4⟩ = K̂(χ)Ŝ(r) |0⟩ .
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In both cases, the initial vacuum state is represented by a numerical vector

|0⟩ =



1
0
0
0
...
0


.
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Appendix C - General squeez-
ing parameter as a witness

C.1 Maximal variance value

In this section, we want to present the highest possible value of the variance of
the operator Ô in equation (VI.3). Consider the eigenstates with minimal and
maximal energy of the operator Ô such that

Ô |λmin⟩ = λmin |λmin⟩ ,
Ô |λmax⟩ = λmax |λmax⟩ .

(C.1)

Then consider the state as a superposition of the highest and lowest energy
eigenstates

|ψ⟩ = α |λmin⟩+ β |λmax⟩ . (C.2)
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The variance calculation corresponds to

var
(
Ô
)
= ⟨ψ| Ô2 |ψ⟩ − ⟨ψ| Ô |ψ⟩2

= (α∗ ⟨λmin|+ β∗ ⟨λmax|)Ô2(α |λmin⟩+ β |λmax⟩)

−
(
(α∗ ⟨λmin|+ β∗ ⟨λmax|)Ô(α |λmin⟩+ β |λmax⟩)

)2
= |α|2λ2min + |β|2λ2max −

(
|α|2λmin + |β|2λmax

)2
= |α|2|β|2

(
λ2min + λ2max

)
− 2|α|2|β|2λminλmax

= |α|2|β|2 (λmin − λmax)
2
.

(C.3)

We want the case where the variance value is the highest, then α = β = 1√
2

and λmax = −λmin. In the case of collective spins is λmax = N
2 , where N is the

number of atoms in the system. That means the maximum value of variance is
dependent on the size of the system and equals to

(
N
2

)2. If we were to increase
the system until N would limitly close to infinity, then the maximum value of
the nonlinear variance would be infinity, as it is in the case of a linear harmonic
oscillator.

C.2 Rotation calibration, minimization of vari-
ance over the general rotation

In the case of cubic squeezing in collective spins, the minimization through the
general free operation consists in the fact that we need to rotate the state to the
axis perpendicular to the linear operator Ĵy from equation (VI.6). The given
axis will be the Jx axis since we are studying the cubic squeezing Ĵ3

z , and the
linear component is Ĵy. Subsequently, orient the state so that the covariance
matrix is diagonal.

First, we have to calculate the rotation angles so that the state is centered,
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and we calculate this using the mean values of the individual operators:

γ = arccos

 ⟨Ĵz⟩√
⟨Ĵx⟩2 + ⟨Ĵy⟩2 + ⟨Ĵz⟩2


ω = arcsin


√

⟨Ĵx⟩2 + ⟨Ĵy⟩2√
⟨Ĵx⟩2 + ⟨Ĵy⟩2 + ⟨Ĵz⟩2

 .

(C.4)

Next, let’s apply the rotation operators to the given state

ρ̂′ = exp
(
iγĴy

)
exp

(
iωĴz

)
ρ̂ exp

(
−iωĴz

)
exp

(
−iγĴy

)
. (C.5)

The next step is to calculate the second moment for the given operators Ĵy,
Ĵz and their combination. Thus, we get the rotation angle of the state, and
then we get the diagonal covariance matrix for the operators Ĵy and Ĵz.

β =
1

2
arctan

(
⟨ĴzĴy + ĴyĴz⟩
⟨Ĵ2
z ⟩ − ⟨Ĵ2

y ⟩

)
. (C.6)

Then, centered and correctly rotated state

ρ̂′′ = exp
(
iβĴx

)
ρ̂′ exp

(
−iβĴx

)
. (C.7)
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