

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

BRNO UNIVERSITY OF TECHNOLOGY

FAKULTA STAVEBNÍ

FACULTY OF CIVIL ENGINEERING

ÚSTAV STAVEBNÍ MECHANIKY

INSTITUTE OF STRUCTURAL MECHANICS

STATICKÁ ANALÝZA OCELOVÉ KONSTRUKCE

STATIC ANALYSIS OF STEEL STRUCTURE

BAKALÁŘSKÁ PRÁCE BACHELOR'S THESIS

AUTOR PRÁCE AUTHOR

Klára Šintálová

VEDOUCÍ PRÁCE SUPERVISOR

Ing. ZBYNĚK VLK, Ph.D.

BRNO 2020

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STAVEBNÍ

Studijní program	B3607 Stavební inženýrství
Typ studijního programu	Bakalářský studijní program s prezenční formou studia
Studijní obor	3608R001 Pozemní stavby
Pracoviště	Ústav stavební mechaniky

ZADÁNÍ BAKALÁŘSKÉ PRÁCE

Student	Klára Šintálová
Název	Statická analýza ocelové konstrukce
Vedoucí práce	Ing. Zbyněk Vlk, Ph.D.
Datum zadání	30. 11. 2019
Datum odevzdání	22. 5. 2020

V Brně dne 30. 11. 2019

prof. Ing. Drahomír Novák, DrSc. Vedoucí ústavu prof. Ing. Miroslav Bajer, CSc. Děkan Fakulty stavební VUT

PODKLADY A LITERATURA

Norma : ČSN EN 1991-1 - Eurokód 1 ČSN EN 1993-1-1 - Eurokód 3 Bittnar Z., Šejnoha J. - Numerické metody mechaniky 1,2 Kadlčák J., Kytýr J. : Statika stavebních konstrukcí I a II Manuály k systému RFEM

ZÁSADY PRO VYPRACOVÁNÍ

Cílem práce je statická analýza vybrané ocelové rozhledny. Bude proveden prostorový výpočtový model konstrukce, použité zatížení bude odpovídat platným normám. Modelování konstrukce, statická analýza i kontrolní posudek vybraných prvků konstrukce bude proveden v programovém systému RFEM. Získané výsledky budou porovnávány s ručním výpočtem na vhodných zjednodušených modelech jednotlivých části konstrukce.

STRUKTURA BAKALÁŘSKÉ PRÁCE

VŠKP vypracujte a rozčleňte podle dále uvedené struktury:

1. Textová část závěrečné práce zpracovaná podle platné Směrnice VUT "Úprava, odevzdávání a zveřejňování závěrečných prací" a platné Směrnice děkana "Úprava, odevzdávání a zveřejňování závěrečných prací na FAST VUT" (povinná součást závěrečné práce).

2. Přílohy textové části závěrečné práce zpracované podle platné Směrnice VUT "Úprava, odevzdávání, a zveřejňování závěrečných prací" a platné Směrnice děkana "Úprava, odevzdávání a zveřejňování závěrečných prací na FAST VUT" (nepovinná součást závěrečné práce v případě, že přílohy nejsou součástí textové části závěrečné práce, ale textovou část doplňují).

> Ing. Zbyněk Vlk, Ph.D. Vedoucí bakalářské práce

ABSTRAKT

Tato bakalářská práce se zabývá statickou analýzou ocelové konstrukce rozhledny ve tvaru dvou sedmiček, které vzájemně spolupůsobí. Trojrozměrný model konstrukce je vytvořen v programu RFEM od společnosti Dlubal, která využívá k výpočtu metodu konečných prvků. K výpočtu byl také využit program RWIND Simulation pracující s analýzou konstrukce pomocí větrného tunelu. Konstrukce je posuzována dle platných norem. Vybrané prvky konstrukce jsou ručně posouzeny a porovnány s částmi výpočtového modelu.

KLÍČOVÁ SLOVA

Konstrukce Rozhledna Zatížení RFEM Výpočtový model **ABSTRACT**

This bachelor thesis deals with the static analysis of the steel construction of the lookout tower in the shape of a digit seven consisting of two parts which mutually affect each other. The 3D model of the construction was created in the program RFEM by company Dlubal which uses a finite element method for the calculations. Moreover, the program RWIND Simulation was used to arrive at the calculations in the cooperation with analysis of the construction via wind tunnel method. The construction is assessed according to the valid standards. The selected elements of the construction are manually assessed and compared with the parts of the calculation model.

KEYWORDS

Construction Lookout Tower Structural Load RFEM Calculation Model

BIBLIOGRAFICKÁ CITACE

Klára Šintálová *Statická analýza ocelové konstrukce.* Brno, 2020. 97 s., 0 s. příl. Bakalářská práce. Vysoké učení technické v Brně, Fakulta stavební, Ústav stavební mechaniky. Vedoucí práce Ing. Zbyněk Vlk, Ph.D.

PROHLÁŠENÍ O SHODĚ LISTINNÉ A ELEKTRONICKÉ FORMY ZÁVĚREČNÉ PRÁCE

Prohlašuji, že elektronická forma odevzdané bakalářské práce s názvem *Statická analýza ocelové konstrukce* je shodná s odevzdanou listinnou formou.

V Brně dne 22. 5. 2020

Klára Šintálová autor práce

PROHLÁŠENÍ O PŮVODNOSTI ZÁVĚREČNÉ PRÁCE

Prohlašuji, že jsem bakalářskou práci s názvem *Statická analýza ocelové konstrukce* zpracoval(a) samostatně a že jsem uvedl(a) všechny použité informační zdroje.

V Brně dne 22. 5. 2020

Klára Šintálová autor práce

PODĚKOVÁNÍ

Poděkování směřuje především mému vedoucímu práce panu Ing. Zbyňku Vlkovi, Ph.D., který i přes nečekanou situaci vedl mou práci a předával mi cenné rady. Dále bych chtěla touto formou poděkovat firmě CAD Projekt plus s.r.o. Tato firma mi s ochotou poskytla potřebné podklady, které mi usnadnily zpracování určitých aspektů práce. Mé osobní poděkování patří mé rodině a partnerovi, kteří mne v mém studiu podporovali.

OBSAH

1. ÚVOD	10	
2. POPIS KONSTRUKCE	11	
3. VÝPOČTOVÝ MODEL		
4. ZATÍŽENÍ STÁLÉ	16	
4.1. VLASTNÍ TÍHA	16	
4.2. OSTATNÍ STÁLÉ ZATÍŽENÍ	21	
4.2.1 OSTATNÍ STÁLÉ ZATÍŽENÍ NA PLOŠINU	21	
4.2.2 OSTATNÍ STÁLÉ ZATÍŽENÍ OD OPLÁŠTĚNÍ	25	
5. ZATÍŽENÍ UŽITNÉ	28	
6. ZATÍŽENÍ SNĚHEM	29	
7. ZATÍŽENÍ VĚTREM	32	
7.1. VSTUPNÍ ÚDAJE VÝPOČTU VĚTRU	32	
7.1.1. ZÁKLADNÍ RYCHLOST VĚTRU	32	
7.1.2. KATEGORIE TERÉNU	33	
7.2. VÝPOČET POMOCÍ RWIND		
7.3. RUČNÍ VÝPOČET	36	
7.3.1. ŘEŠENÍ VĚTRU BEZ SCHODIŠTĚ – VELKÁ SEDMIČKA	36	
7.3.1.1. VÍTR ZPRAVA A ZLEVA	38	
7.3.1.2. VÍTR HORNÍ	39	
7.3.1.3. VÍTR DOLNÍ	39	
7.3.2. ŘEŠENÍ VĚTRU BEZ SCHODIŠTĚ – MALÁ SEDMIČKA	40	
7.3.2.1. VÍTR ZPRAVA A ZLEVA	43	
7.3.2.2. VÍTR HORNÍ	43	
7.3.2.3. VÍTR DOLNÍ	44	
7.3.3. ŘEŠENÍ VĚTRU NA KONSTRUKCI SCHODIŠTĚ		
8. PŘEHLED ZATĚŽOVACÍCH STAVŮ A JEJICH KOMBINACE	48	
8.1. ZATĚŽOVACÍ STAVY	48	
8.2. KOMBINACE ZS	49	
9. STATICKÁ ANALÝZA	52	

9.1. RUČNÍ VÝPOČET VYBRANÉ ČÁSTI KONSTRUKCE A	52
POROVNÁNÍ VÝPOČTOVÝCH MODELŮ PŘÍHRADOVINY	
9.1.1. RUČNÍ VÝPOČET PŘÍHRADOVÉ KONSTRUKCE	52
9.1.2. POROVNÁNÍ VÝPOČTOVÝCH MODELŮ PŘÍHRADOVINY	61
9.2. POROVNÁNÍ VÝSLEDKŮ Z MODELŮ M1, M2 A M3	62
9.3. POROVNÁNÍ CELKOVÉHO PŮSOBENÍ VĚTRU	67
VYPOČTENÉHO RUČNĚ A GENEROVÁNO POMOCNÝM PROGRA	AMEM
RWIND SIMULATION	
10. POSOUZENÍ MEZNÍHO STAVU ÚNOSNOSTI	70
10.1.VE VELKÉ SEDMIČCE	70
10.2.V MALÉ SEDMIČCE	80
11. ZÁVĚR	90
12. SEZNAM POUŽITÝCH ZDROJŮ	92
13. SEZNAM OBRÁZKŮ	94
14. SEZNAM TABULEK	97

1. ÚVOD

Cílem této bakalářské práce je zpracování statické analýzy ocelové konstrukce. Vybraným objektem pro statickou analýzu se stala reálně stojící konstrukce rozhledny v blízkosti obce Salaš. Rozhlednu tvoří dvě části ve tvaru číslice sedm. Každá s opačnou orientací ovšem vzájemným spolupůsobením. Objekt slouží jako vyhlídková věž pro širokou veřejnost [1].

Důvodem výběru právě této konstrukce byla její ojedinělost ve tvaru i provedení. Dále také prohloubení znalostí ve směru modelování při zatížení větrem a řešením tohoto zatížení pro atypické konstrukce, které nelze v plné míře řešit s využitím Eurokódu. K tomuto řešení byl také využit výpočtový program, který simuluje větrný tunel, do kterého je konstrukci možno vložit a pomocí zadání vstupních údajů analyzovat zatížení větrem [3]. Dále zde bylo ve větší míře řešeno porovnání výpočtu příhradové konstrukce programem a ručním výpočtem.

Po prostudování podkladů a případných metod řešení bylo přikročeno k výpočtům zatížení konstrukce a vytvoření výpočtového modelu. Pro výpočet bylo využito softwaru Rfem 5.21.02 k statickému výpočtu a nástavbového programu RWIND Simulation pro stanovení sil větru, jejímž zprostředkovatelem je firma Dlubal.

Z modelů byly převzaty výsledky o vnitřních silách, deformacích, přetvořeních a jiných výsledcích potřebných pro stanovení výsledků. Veškeré zatížení od jednotlivých zatěžovacích stavů bylo zkontrolováno ručním výpočtem. Výpočtový program vycházel z aktuálně platných norem i národních dodatků platících pro Českou republiku.

2. POPIS KONSTRUKCE

Konstrukce rozhledny, která byla pro analýzu vybrána, je sestavena ze dvou částí ve tvaru čísla 7. Větší sedmička parciálně přenáší zatížení do nižší sedmičky. Při samostatném řešení větší sedmičky je tento částečný roznos nahrazen podporami, které nahrazují konstrukci spodní části. Samostatně je také řešena konstrukce malé sedmičky i s přeneseným zatížením z větší sedmičky, toto působení je porovnáno s modelem obou sedmiček v jednom modelu. Konstrukční systém je tvořen soustavou prutů, které tvoří příhradový 3D objekt. Hlavním nosným prvkem jsou pasy tvořené trubkami kruhového průřezu. Diagonály, svislice a horizontální pruty jsou taktéž navrženy z trubek kruhového průřezu. V úrovni + 20,000 m a 15,000 m nad terénem jsou navrženy pochozí plošiny ze svařovaného pozinkovaného plechu. Po obvodu plošiny je realizované ocelové zábradlí. Celá konstrukce je téměř ze všech vnějších stran opláštěna dřevěným obkladem. Přístup na horní i spodní plošinu je zajištěn vřetenovým schodištěm, které je pro případ práce uvažováno zjednodušeným modelem. Jednotlivé profily byly navrženy dle poskytnutých podkladů a stavu objektu, a tak s maximální snahou přiblížit se reálné konstrukci [1; 2].

Obrázek 1: Reálné zobrazení posuzované konstrukce [12]

3. VÝPOČTOVÝ MODEL

Model tvoří především pruty spojené převážně kloubově. Výskyt kloubových spojů je námětem na odbornou diskuzi a podrobněji není v práci tato problematika řešena. Tento aspekt neovlivní správnost výpočtů jednotlivých modelů

V modelu se vyskytuje celkem 15 druhů průřezů jednotlivých prutů, které byly vnášeny do modelu spojováním jednotlivých uzlů vyskytujících se v konstrukci. Jako materiál prvků byla určena ocel S235 s uvažovanou objemovou tíhou oceli 7850 kg/m³ [2, 13].

Obrázek 2: Model konstrukce sedmiček dohromady

Obrázek 3: Model konstrukce malé sedmičky

Obrázek 4: Model konstrukce velké sedmičky

Tabulka 1: Použité průřezy ve velké sedmičce

Průřez	Mater.	I _T [mm ⁴]	l _y [mm ⁴]	Iz [mm ⁴]	Hlavní osy	Natočení	Celkové rozr	měry [mm]
č.	č.	A [mm ²]	A _y [mm ²]	A _z [mm ²]	α [°]	α' [°]	Šířka b	Výška h
1	RO 219.1	x8 Ferona - EN 1021	9					
	2	59192656.0 5305.5	29596328.0 2632.7	29596328.0 2632.7	0.00	0.00	219.1	219.1
2	RO 219x1 2	0 Ferona - CSN 42 5 71865728.0 6565.9	5715.01 35932864.0 3260.0	35932864.0 3260.0	0.00	0.00	219.0	219.0
3	RO 82.5x	6.3 Ferona - CSN 42	5715.01					
	2	2204214.5 1508.2	1102107.3 751.1	1102107.3 751.1	0.00	0.00	82.5	82.5
4	RO 219x1	6 Ferona - CSN 42 5	5715.01					
	2	105776104.0 10203.9	52888052.0 5079.7	52888052.0 5079.7	0.00	0.00	219.0	219.0
5	RRO 54x3	30x5 (za tepla)		caracterization and a				
	2	190000.0 237.0	739000.0 142.2	39200.0 142.2	0.00	0.00	20.0	54.0
6	RRO 50x3	0x5 (warmgefertigt) 190000.0	187000.0	78900.0	0.00	0.00	30.0	50.0
7	RO 82.5x	5 Ferona - CSN 42 5	715.01					
	2	1835561.4 1217.4	917780.7 605.2	917780.7 605.2	0.00	0.00	82.5	82.5
8	RRO 150	<100x10 (kaltgefertigt)					
	2	14260000.0 4260.0	11620000.0 1366.7	6140000.0 2526.7	0.00	0.00	100.0	150.
9	RO 508x1	0 DIN 2448, DIN 24	58				- 6	
	2	970404928.0 15645.1	485202464.0 7758.0	485202464.0 7758.0	0.00	0.00	508.0	508.
10	RO 54x5	DIN 2448, DIN 2458 466817.1 769.7	233408.5	233408.5 384.2	0.00	0.00	54.0	54.
11	RRO 150	100x5 (warmgefertig	t)					
	2	8070000.0 2370.0	7390000.0 713.0	3920000.0 1304.0	0.00	0.00	100.0	150.
12	RO 21.3x	2.3 (warmgefertigt)						
	2	12600.0 137.0	6290.0 68.7	6290.0 68.7	0.00	0.00	21.3	2000.
13	RO 21.3x	2.6 (warmgefertigt)						
	2	13600.0 153.0	6810.0 76.7	6810.0 76.7	0.00	0.00	2000.0	2000.
14	RO 21.3x	2.3 (warmgefertigt) 12600.0	6290.0	6290.0 68 7	0.00	0.00	2000.0	2000.0

RO 82.5x5

RO 54x5

14

Tabulka 2: Použité průřezy v malé sedmičce

Průřez č. 1 2	Mater. č. RO 219.1 2	H _T [mm ⁴] A [mm ²] x8 Ferona - EN 102	l _y [mm⁴] A _y [mm²]	l _z [mm ⁴] A ₋ [mm ²]	Hlavní osy	Natočení	Celkové rozn	něry [mm]
č. 1	č. RO 219.1 2	A [mm ²] x8 Ferona - EN 102	A _y [mm ²]	A_[mm ²]	103			
2	2	50102656 0	19	7.52 [11111]	α[]	α'[°]	Šiřka b	Výška h
2		53152050.0 5305.5	29596328.0 2632.7	29596328.0 2632.7	0.00	0.00	219.1	219.1
	2	71865728.0 6565.9	35932864.0 3260.0	35932864.0 3260.0	0.00	0.00	219.0	219.0
3	2	2204214.5 1508.2	1102107.3 751.1	1102107.3 751.1	0.00	0.00	82.5	82.5
4	2	105776104.0 10203.9	52888052.0 5079.7	52888052.0 5079.7	0.00	0.00	219.0	219.0
5	2 2	190000.0 237.0	739000.0 142.2	39200.0 142.2	0.00	0.00	20.0	54.0
6	2 2	190000.0 673.0	187000.0 182.8	78900.0 411.5	0.00	0.00	30.0	50.0
/	2 RO 82.5x	5 Ferona - CSN 42 5 1835561.4 1217.4	917780.7 605.2	917780.7 605.2	0.00	0.00	82.5	82.5
8	2 RRO 150	x100x10 (kaltgetertigt 14260000.0 4260.0) 11620000.0 1366.7	6140000.0 2526.7	0.00	0.00	100.0	150.0
9	RO 508x1 2	10 DIN 2448, DIN 24 970404928.0 15645.1	58 485202464.0 7758.0	485202464.0 7758.0	0.00	0.00	508.0	508.0
10	RO 54x5	DIN 2448, DIN 2458 466817.1 769.7	233408.5 384.2	233408.5 384.2	0.00	0.00	54.0	54.0
11	2 RRO 150	x100x5 (warmgefertig 8070000.0 2370.0	t) 7390000.0 713.0	3920000.0 1304.0	0.00	0.00	100.0	150.0
12	RO 21.3x	2.3 (warmgefertigt) 12600.0 137.0	6290.0 68.7	6290.0 68.7	<mark>0.00</mark>	0.00	21.3	2000.0
13	RO 21.3x	2.6 (warmgefertigt) 13600.0 153.0	6810.0 76.7	6810.0 76.7	0.00	0.00	2000.0	2000.0
14	RO 21.3x	2.3 (warmgefertigt) 12600.0 137.0	6290.0 68.7	6290.0 68.7	0.00	0.00	2000.0	2000.0
RO 508	k10	RD 54x5)	R0 825x63	RD 219x			
RRO 1	50x 100x5	5(3 (za te		RRO 50x	(30 x5 (23		
		C						
RO 21.	3x 2.6 (za	iteRO 21.3x2.3	3 (za te					
C Tabulk) xa 3: Po	oužitého průř) fezu pro spoje	ní sedmiček	RO C	508.0x10.0 (za		
24	RO 50	08.0x10.0 (warmgefer	rtigt)					

4. ZATÍŽENÍ STÁLÉ

Jedná se o nosné a nenosné prvky včetně pevných vybavení [13].

4.1.VLASTNÍ TÍHA

Byla zvolena z programu RFEM v závislosti na druhu materiálu, geometrii jednotlivých průřezů, které byly použity v konstrukci. Jednotlivé průřezy byly zvoleny dle poskytnutých podkladů [2]. Výpočet programem byl zjednodušeně ověřen následným ručním výpočtem.

Ruční hrubé ověření vlastní tíhy konstrukce velké sedmičky

1) Hlavní stojiny

průměrná délka * hmotnost průřezu * počet prvků =

(23,066 + 24,335 + 23,149 + 24,490) / 4 * 41,6 kg/m * 8 = 7902,336 kg = 77,496 kN

a) Výplet hlavní stojiny

nejníže

délka veškerých částí * hmotnost průřezu =

(2,151 + 1,919 + 2,16 + 1,96 + 0,605) * 9,6 kg/m = 84,432 kg

nejvýše

(2,072 + 3,456 + 2,049 + 3,461 + 2,608) * 9,6 kg/m = 131,002 kg

Průměrná hmotnost:

(84,492 + 131,002) / 2 = 107,717 kg

Celkem: (prům. hmotnost * počet v noze * počet noh)

107,717 * 11 * 2 = 2369,773 kg = 23,239 kN

b) Vodorovné pruty v hlavní stojině

nejníže

délka veškerých částí * počet * hmotnost průřezu =

$$(0,475 + 0,514) * 2 * 80,1 \text{ kg/m} = 158,44 \text{ kg}$$

nejvýše

(2,187 + 0,95) * 2 * 80,1 kg/m = 502,55 kg

Průměrná hmotnost:

(158,44 + 502,44) / 2 = 330,495 kg

Celkem: (průměrná hmotnost * počet v noze * počet noh)

330,495 * 10 * 2 = 6610 kg = 64,822 kN

2) Plošina:

a) Boky plošiny

nejníže

délka veškerých částí * hmotnost průřezu =

(0,919 + 0,867) * 51,5 kg/m + (0,606 + 0,918) * 11,8 kg/m = 109,96 kg

nejvýše

(1,736 + 1,838) * 51,5 kg/m + (2,801 + 1,497) * 11,8 kg/m = 234,777 kg

Průměrná hmotnost:

(109,96 + 234,777) / 2 = 172,369 kg

Celkem: (průměrná hmotnost * počet v noze * počet noh)

172,369 * 4 * 2 = 1378,948 kg = 13,523 kN

b) Uvnitř plošiny

nejníže

délka veškerých částí * hmotnost průřezu =

(2,351+2,300) * 41,6 kg/m = 199,68 kg

nejvýše

(6,201+6,561) * 41,6 kg/m = 530,899 kg

Průměrná hmotnost:

(199,68 + 530,899) / 2 = 365,289 kg

Celkem: (průměrná hmotnost * počet)

365,289 * 6 = 2191,734 kg = 21,492 kN

c) Ztužidla

zespod

(3,314 * 2 + 4,293 * 2 + 5,268 * 2) * 6 kg/m = 154,5kg = 1,511 kN

shora

(2,112 * 2 + 2,767 * 4 + 3,571 * 2) * 6 + (2,787 + 5,713) / 2 * 4 + (2 * 33,4 + 5,3 * 2) / 4 = 463,566 kg = 4,546 kN

zezadu zbytek + výplet

(2,597 * 4 + 2,835 * 4 + 1,752 * 4 + 4,723) * 41,6 + (3,221 * 2 + 2,303 + 2,559 + 1,659 * 2) = 1564,434 kg = 15,34 kN

Porovnání výsledků generovaných programem a ručním výpočtem ve velké sedmičce.

CELKEM RUČNĚ: 221,969 kN

CELKEM VE RFEMU: 227,548 kN

Ruční výpočet s výpočtem programu je téměř totožný, vzhledem ke zjednodušenému ručnímu výpočtu je rozdíl výsledků zanedbatelný. Výsledkem porovnání je skutečnost, že výpočtový program správně počítá zatížení vlastní tíhou. Vlastní tíha se tedy bude v modelu generovat pomocí programu RFEM.

Ruční hrubé ověření vlastní tíhy konstrukce malé sedmičky

1) Hlavní stojiny

průměrná délka * hmotnost průřezu * počet prvků =

(15,948 + 16,868) / 2 * 80,1 * 4 = 5271,12 kg = 51,55 kN

a) Výplet hlavní stojiny

podélný

průměrná délka * hmotnost průřezu * počet prvků =

$$(1,759 + 0,652) / 2 * 9,6 * 9 * 2 = 208,31 \text{ kg} = 2,04 \text{ kN}$$

pod úhlem

(2,710 + 1,431) / 2 * 9,6 * 9 * 2 = 357,78 kg = 3,51 kN

2) Plošina

a)Boky plošiny

nosná část

průměrná délka * hmotnost průřezu * počet prvků =

(2,267 + 8,731 + 0,324 + 8,033 + 1,898 + 2,375) * 51,5 * 2 = 2433,684 kg = 23,87 kN

výplet

průměrná délka * hmotnost průřezu * počet prvků =

- (0,535 + 1,614) / 2 * 6 * 4 * 2 = 51,576 kg = 0,51 kN
- (3,273 + 0,971) / 2 * 11,8 * 4 * 2 = 200,32 kg = 1,96 kN
 - b) Vrchní část

průměrná délka * hmotnost průřezu * počet prvků =

- (2,455+4,587) / 2 * 33,4 * 7 = 823,21 kg = 8,07 kN
- (1,551 + 2,696) / 2 * 6 * 16 = 203,856 kg = 2,0 kN
 - c) Dolní část

průměrná délka * hmotnost průřezu * počet prvků =

- (2,304 + 4,391) / 2 * 18,6 * 5 = 311,32 kg = 3,053 kN
- (4,549 + 2,647) / 2 * 6 * 8 = 172,704 kg = 1,69 kN
- uvnitř plošiny výplet

průměrná délka * hmotnost průřezu * počet prvků =

(2 * 2,964 + 2 * 2,702 + 2 * 2,165 + 2 * 2,949 + 2 * 2,766 + 2,473 + 2,186 + 1,991 + 1,808) * 11,8 = 419,49 kg = 4,11 kN

3) Zbytek nosné části

(2 * 2,1 + 4,943 + 3,739 + 3,219) * 51,5 = 829,20 kg = 8,13 kN

Porovnání výsledků generovaných programem a ručním výpočtem na malé sedmičce:

CELKEM RUČNĚ: 111,73 kN

CELKEM VE RFEMU: 117,496 kN

V porovnání vlastní tíhy malé sedmičky bylo zjištěno stejného závěru jako u sedmičky velké, tedy vlastní tíhu bude generovat program RFEM.

Obrázek 5: Model konstrukce zatížen vlastní tíhou velké i malé sedmičky

4.2.OSTATNÍ STÁLÉ ZATÍŽENÍ

4.2.1. OSTATNÍ STÁLÉ ZATÍŽENÍ NA PLOŠINU

Za ostatní stálé zatížení konstrukce lze považovat zatížení na horní a dolní plošinu. Tedy zatížení od tíhy ocelového roštu a také tíhy ocelového zábradlí umístěného po celém obvodu plošin [1; 2]. Toto ostatní stálé zatížení je zadáváno jako silové zatížení na jednotlivé uzly vyskytující se na plošině..

	objemová tíha	plocha	celkové zatížení
Ocelový rošt	0,215 kN/m ²	45 m ²	9,675 kN
Ocelové zábradlí	0,04 kN/m	27,4 m	1,2 kN

Rozložení zatížení do jednotlivých uzlů

Tento výpočet bude sloužit k zadání zatížení na jednotlivé uzly a také u větší sedmičky pro určení zatížení sloužícímu k ověření příhradové konstrukce ručním výpočtem (viz kapitola 9.1.).

Posouzení velké sedmičky

Obrázek 6: Půdorysný pohled na horní plošinu velké sedmičky

Obrázek 7: Boční pohled na horní plošinu velké sedmičky

Posouzení malé sedmičky

od roštu od zábradlí

$$F1 = 0,589 * 0,215 + 1,596 * 0,04 = 0,19 \text{ kN}$$

 $F2 = 1,321 * 0,215 + 1,0908 * 0,04 = 0,328 \text{ kN}$
 $F3 = 1,513 * 0,215 + 1,091 * 0,04 = 0,369 \text{ kN}$
 $F4 = 1,705 * 0,215 + 1,092 * 0,04 = 0,410 \text{ kN}$

Obrázek 8: Půdorysný pohled na horní plošinu malé sedmičky

F5 = 1,897 * 0,215 + 1,092 * 0,04 = 0,452 kN F6 = 2,139 * 0,215 + 1,117 * 0,04 = 0,505 kN F7 = 2,283 * 0,215 + 1,091 * 0,04 = 0,534 kN F8 = 2,415 * 0,215 + 1,066 * 0,04 = 0,562 kN F9 = 1,307 * 0,215 + 0,546 * 0,04 = 0,303 kN F10 = 1,269 * 0,215 + 1,134 * 0,04 = 0,318 kN F11 = 1,104 * 0,215 + 2,069 * 0,04 = 0,273 kN F12 = 1,269 * 0,215 + 0 * 0,04 = 0,273 kN F13 = 1,104 * 0,215 + 0,935 * 0,04 = 0,275 kN

Obrázek 9: Boční pohled na horní plošinu malé sedmičky

Obrázek 10: Konstrukce zatížená ostatním stálým zatížením na plošině u malé i velké sedmičky

4.2.2. OSTATNÍ STÁLÉ ZATÍŽENÍ OD OPLÁŠTĚNÍ

Tímto zatížením je míněno zatížení od opláštění, které tvoří dřevěné desky tloušťky 20 mm severské borovice [1; 2]. Zatížení na konstrukci je zadáváno jako spojité zatížení lichoběžníkového tvaru na jednotlivé hlavní pruty modelu. Proto jsou zjištěny velikosti maximálních a minimálních délek, které jsou následně propojeny spojitým zatížením.

	objemová tíha	tloušťka	celkové zatížení
Dřevěné desky	0,67 kN/m³	0,02 m	0,134 kN/m ²

Obrázek 11: Konstrukce rozdělená pro výpočet tíhy od opláštění velké sedmičky

Noha A

	zatížení * polovina šířky + cca 20% navýšení	zatížení
Horní část ozn. 1.	$= 0,134 \text{ kN/m}^2 * 2,635 / 2 = 0,1899$	= 0,3 kN/m
Spodní část ozn. 2.	$= 0.134 \text{ kN/m}^2 * 0.287 / 2 = 0.0192$	= 0,06 kN/m

Posouzení velké sedmičky

<u>Noha B</u>

	zatížemí * polovina šířky + cca 20% navýšení	zatížení
Horní část ozn. 3.	= 0,134 kN/m ² * 1,128 / 2 = 0,0756	= 0,1 kN/m
Spodní část ozn. 4.	= 0,134 kN/m ² * 0,462 / 2 = 0,0310	= 0,04 kN/m
Součet působení pro	místa, kde působí zatížení ze dvou ploch:	
Horní část 1 + 3 =	0,3 + 0,1 = 0,4 kN/m	
Spodní část 2 + 4 =	0,06 + 0,04 = 0,1 kN/m	
Vrchní bok		
Užší část ozn. 5.	$= 0,134 \text{ kN/m}^2 * 0,4282/2 = 0,317$	= 0,04 kN/m
Širší část ozn. 6.	$= 0,134 \text{ kN/m}^2 * 1,855/2 = 0,124$	= 0,2 kN/m
Horní líc		
ozn. 7.	$= 0,134 \text{ kN/m}^2 * 2,369 = 0,317$	= 0,4 kN/m
<u>Horní rub</u>		
Horní část ozn. 8.	$= 0,134 \text{ kN/m}^2 * 1,234 = 0,165$	= 0,2 kN/m
Spodní část ozn. 9.	$= 0,134 \text{ kN/m}^2 * 1,660 = 0,222$	= 0,3 kN/m
Posouzení mal	é sedmičky	
<u>Noha</u>		
Spodní část = 0,134 k	$xN/m^2 * 0,592 / 2 = 0,039$	= 0,05 kN/m
Horní část = 0,134 kľ	$N/m^2 * 2,267 / 2 = 0,15$	= 0,18 kN/m
Vrchní bok		
Nejmenší = 0,134 kN	$1/m^2 * 0,324 / 2 = 0,022$	= 0,025 kN/m
Největší = $0,134 \text{ kN/s}$	$m^2 * 2,010 / 2 = 0,135$	= 0,16 kN/m
Horní líc		
= 0,134 kN/m	$a^2 * 0,319 = 0,043$	= 0,051 kN/m

<u>Horní rub</u>

Nejmenší =
$$0,134 \text{ kN/m}^2 * 1,709 = 0,23$$
= $0,27 \text{ kN/m}$ Největší = $0,134 \text{ kN/m}^2 * 1,870 = 0,25$ = $0,30 \text{ kN/m}$

Procentuální navýšení bylo zvoleno z důvodu neznámosti ukotvení konstrukce opláštění. A to jako přibližně 20procentní rezerva počítáno z tíhy způsobené opláštěním.

Obrázek 12: Výsledné zatížení opláštění na konstrukci velké i malé sedmičky

5. ZATÍŽENÍ UŽITNÉ

Odhadované užitné zatížení

1 osoba – uvažovaná plocha na osobu: cca 0,5 * 0,5 metru při tíze 100 kg

Plocha pro osobu = $0.5 * 0.5 = 0.25 \text{ m}^2$

Počet osob na plochu horní plošiny = 45 / 0,25 = 180 osob

S uvažovanou váhou na plochu = $(180 * 100) / 45 = 400 \text{ kg/m}^2 = 4 \text{ kN/m}^2$

Při výpočtu v programu RFEM bylo uvažováno s užitným zatížením stanoveným normou ČSN EN 1991-1-1 [7] se zvolenou kategorií na plošinu C5 a na schodiště C3. Veškeré užitné zatížení se roznáší do nosné konstrukce pod plošinou.

	Kategorie	qk (kN/m²)
Plošiny	C5	5,00

Do programu je zavedeno jako zatížení na plochu, které je rozneseno nosnými částmi konstrukce. Obě plošiny jsou pochozí, tedy zatížení působí jak na horní, tak i dolní plošinu. Výpočet užitného zatížení schodiště je zanedbán z důvodu zjednodušení modelu.

Obrázek 13: Konstrukce zatížená užitným zatížením malé i velké sedmičky

6. ZATÍŽENÍ SNĚHEM

Toto zatížení bylo uvažováno na horní i dolní plošině, a to rovnoměrně. Tedy nebylo uvažováno s rozdílem navátého a nenavátého sněhu, protože na tomto typu konstrukce nevzniká místo, kde by tento případ nastával. Zatížení je uvažováno na obou plošinách z důvodu možnosti propadání sněhu z horní části na dolní, tedy z bezpečného důvodu uvažuji stejné zatížení na obou plošinách.

Zatížení sněhem je stanoveno dle normy ČSN EN 1991-1-3 [8].

 $s = \mu i \cdot Ce \cdot Ct \cdot sk$

µi – tvarový součinitel zatížení sněhem

Ce - součinitel okolního prostředí (expozice)

Ct – tepelný součinitel

sk – charakteristická hodnota zatížení sněhem na zemi

Ce = 1,0... topografie normální

Normální typ krajiny (Ce = 1,0): plochy, kde nedochází na stavbách k výraznému přemístění sněhu větrem kvůli okolnímu terénu, jiným stavbám nebo stromům [8].

Ct = 1,0... doporučená hodnota

Tepelný součinitel se má použít tam, kde lze vzít v úvahu snížení zatížení sněhem na střeše, která má vysokou tepelnou propustnost (>1 W/m2K), zejména u některých skleněných střech, kde dochází k tání sněhu vlivem prostupu tepla střechou. Pro ostatní případy je Ct = 1,0 [8].

sk = 1,5 kN/m2

Pro uvažovanou sněhovou oblast číslo III. Uvažovanou na Zlínsku v obci Salaš [8].

 $\mu i = 0.8 \dots$ uvažován pro pultovou střechu pro $0 \le \alpha \le 30$

 $s = 0.8 * 1.0 * 1.0 * 1.5 = 1.2 \text{ kN/m}^2$

Tabulka 4: Shrnutí parametrů zatížení větrem

Lokalita stavby	Salaš (Zlínský kraj)
Sklon plošiny	$\alpha = 0^{\circ}$
Zk tíha sněhu	sk = 1,5 kN/m2
Součinitel expozice	Ce = 1,0
Tepelný součinitel	Ct = 1,0
Tvarový součinitel	$\mu i = 0,8$
Zatížení	$s = 1,2 \text{ kN/m}^2$

Obrázek 14: Mapa oblasti zatížení sněhem [11]

Tabulka 5: Tvarové součinitelé [8]

úhel sklonu střechy α	0°≤ α ≤ 30°	30°< α < 60°	$\alpha \ge 60^{\circ}$
μ1	0,8	0,8(60 - a)/30	0,0
μ2	0,8 + 0,8 a/30	1,6	-

Obrázek 15: Konstrukce zatížená sněhem velké i malé sedmičky

7. ZATÍŽENÍ VĚTREM

Stanovení zatížení větru se v souvislosti s řešenou konstrukcí jeví jako nejobtížnější a také nejzásadnější. Dle normy můžeme zatížení a určení dynamických účinků řešit pomocí vyčíslených koeficientů. Tyto koeficienty označené jako cs, cd navyšují či upravují statické zatížení větru.

Zatížení větru je stanoveno s ohledem na normu: ČSN EN 1991-1-4 [9].

7.1. VSTUPNÍ ÚDAJE VÝPOČTU VĚTRU

7.1.1. ZÁKLADNÍ RYCHLOST VĚTRU

 $vb = Cdir \cdot Cseason \cdot vb, 0$

cdir – součinitel směru větru; *c*dir = 1,0 (doporučená hodnota)

cseason – součinitel ročního období; cseason = 1,0 (doporučená hodnota)

vb, 0 – výchozí základní rychlost větru dle mapy větrných oblastí;

 $v_{b,0} = 25 \text{ m/s} (\text{Zlín-Salaš} \Rightarrow \text{Oblast II})$

$$vb = 1,0 \cdot 1,0 \cdot 25 = 25 m/s$$

Obrázek 16: Mapa oblasti zatížení větrem [11]

Kategorie terénu	z ₀ [m]	Zmin [m]
0 Moře nebo pobřežní oblasti vystavené otevřenému moři	0,003	1
I Jezera nebo vodorovné oblasti se zanedbatelnou vegetací a bez překážek	0,01	1
II Oblasti s nizkou vegetaci jako je tráva a s izolovanými překážkami (stromy, budovy), jejichž vzdálenosti jsou větší než 20násobek výšky překážek		2
III Oblasti rovnoměrně pokryté vegetací nebo budovami, nebo s izolovanými překážkami, jejichž vzdálenost je maximálně 20násobek výšky překážek (jako jsou vesnice, předměstský terén, souvislý les)		5
IV Oblasti, ve kterých je nejméně 15 % povrchu pokryto pozemními stavbami, jejichž průměrná výška je větší než 15 m	1,0	10
POZNÁMKA Kategorie terénu jsou zobrazeny v A.1.		

Tabulka 6: Kategorie terénu a jejich parametry [9]

7.1.2. KATEGORIE TERÉNU

Kategorie terénu II: Oblasti s nízkou vegetací jako je tráva s izolovanými překážkami (stromy, budovy) vzdálenými od sebe nejméně 20násobek výšky překážek [9]. Tato kategorie odpovídá krajině vyskytující se poblíž rozhledny, pro další výpočty tedy počítáme s odpovídajícími součiniteli pro kategorii II.

7.2. VÝPOČET POMOCÍ SOFTWARU

Vzhledem ke členitosti konstrukce bylo zatížení od větru zadáváno pomocí programu RWIND Simulation. Tento program pracuje na principu numetrické simulace proudění větru. Které generuje silové zatížení větru na konstrukci rozhledny [3].

Popis fungování daného programu

Pro modelování těles v programu RWIND Simulation je v programech RFEM a RSTAB k dispozici speciální rozhraní. V něm se zadají posuzované směry větru nastavením příslušných úhlů vzhledem ke svislé ose modelu a dále také profil větru v závislosti na výšce s přihlédnutím k příslušné normě. Na základě těchto údajů a globálně uložených parametrů vzdušných proudů, vlastností modelů turbulence a iteračních parametrů se stanoví vlastní zatěžovací stavy pro nastavené úhly. Tyto zatěžovací stavy lze částečně upravovat a rozšiřovat v uživatelském prostředí programu RWIND Simulation o modely terénu nebo okolní krajiny z vektorových grafických souborů STL.

Výpočet:

RWIND Simulation používá numerický model CFD (Computational Fluid Dynamics) pro stanovení proudění vzduchu okolo objektů pomocí digitálního aerodynamického tunelu. Na základě simulace se vygenerují specifická zatížení větrem pro RFEM nebo RSTAB.

Pro simulaci se používá 3D síť konečných objemů. RWIND Simulation vytvoří síť automaticky. Přitom lze velmi snadno nastavením několika parametrů ovlivnit celkovou hustotu sítě i lokální zahuštění na modelu. Pro výpočet vzdušných proudů a plošných tlaků na modelu se používá numerický řešič pro nestlačitelné turbulentní proudění. Výsledky se následně extrapolují na modelu konstrukce. Program RWIND Simulation je navržen tak, aby bylo možné použít různé numerické řešiče. Výstup:

Výstupem aerodynamické analýzy v programu RWIND Simulation jsou kromě daných zatěžovacích stavů v programu RFEM nebo RSTAB další výsledky, které plynou z řešení úlohy proudění jako celku:

- Tlak na povrchu tělesa
- Tlakové pole kolem geometrie tělesa
- Rychlostní pole kolem geometrie tělesa
- Vektory rychlosti kolem geometrie tělesa
- Linie proudění kolem geometrie tělesa
- Síly na tělesech vygenerovaných původně z prutových prvků
- Průběh konvergence
- Směr a velikost odolnosti tělesa proti proudění

Tyto výsledky se zobrazí a graficky vyhodnotí v uživatelském prostředí programu RWIND Simulation. Vzhledem k tomu, že výsledky proudění okolo geometrie tělesa nejsou v celkovém znázornění přehledné, pracuje se při analýze s volně posuvnými rovinami řezu, které umožňují znázornit výsledky tělesa samostatně v určité rovině. Podobně nabízejí 3D výsledky rozvětvené do linií proudění kromě statického znázornění také animované zobrazení v podobě pohyblivých linií nebo částic. Tato volba umožňuje znázornit proudění vzduchu jako dynamický účinek.

Převod do programu RFEM:

Při spuštění analýzy v rozhraní programu se zahájí dávkový proces, při němž se veškeré definované pruty, plochy a tělesa v modelu RFEM nebo RSTAB zohlední se všemi příslušnými součiniteli v zadané poloze v numerickém modelu větrného tunelu v programu RWIND Simulation. Model se analyzuje a výsledné tlaky působící na povrch se převedou jako zatížení v uzlech sítě KP, respektive jako prutová zatížení do příslušných zatěžovacích stavů v programu RFEM nebo RSTAB.

Tyto zatěžovací stavy, které obsahují zatížení z programu RWIND-Simulation, lze počítat a skládat s jinými zatíženími do kombinací zatížení nebo do kombinací výsledků [3].

Pro případ rozhledny bylo ve výpočtu uvažováno s osmi směry možného působení větru, přičemž největší zatížení vykazoval směr označen jako 315°.

Toto zatížení bylo následně ověřeno ručním zjednodušeným výpočtem dle výše uvedené normy [9].

Obrázek 17: Ukázka výpočtu pomocí programu RWIND Simulation

7.3.RUČNÍ VÝPOČET

Pro ruční výpočet byly pro zjednodušení konstrukce rozděleny po výšce do třech oblastí, k nejvyššímu bodu oblasti byl stanoven maximální dynamický tlak větru. Byly jím násobeny jednotlivé plochy, na které působí daný tlak větru, ve výpočtu byly zohledněny součinitelé aerodynamických sil. Pro ruční výpočet bylo vypočteno namáhání větrem pouze ve čtyřech základních směrech označených jako oblast 1 – 4. Dílčí plochy byly pro usnadnění výpočtu odměřeny z programu AutoCAD.

7.3.1. ŘEŠENÍ VĚTRU BEZ SCHODIŠTĚ – VELKÁ SEDMIČKA

Oblast 1:

Součinitel drsnosti terénu cr(z)

$$cr(z) = kr \cdot ln\left(\frac{z}{z_0}\right) \qquad \text{pro } zmin \le z \le zmax$$
$$cr(20) = 0,2232 \cdot ln\left(\frac{20}{0,05}\right) = 1,3373$$

z0 je parametr drsnosti terénu (viz tabulka 5)

zmin je minimální výška (viz tabulka 5)

Součinitel terénu

$$kr = 0.19 \cdot \left(\frac{z0}{z0, II}\right)^{0.07}$$

Kde z0, II = 0.05 dle kategorie terénu II

$$kr = 0.19 \cdot \left(\frac{0.05}{0.005}\right)^{0.07} = 0.2232$$

Střední rychlost větru vm(z)

$$vm(z) = cr(z) \cdot c0(z) \cdot vb$$

$$vm(20,53) = 1,3373 \cdot 1 \cdot 25 = 33,433 m/s$$

z – výška působiště větru

cr(z) je součinitel drsnosti terénu

c0(z) je součinitel orografie (doporučená hodnota pro ČR 1,0)
Turbulence větru lv(z)

$$lv(z) = \frac{kl}{co(z) \cdot \ln\left(\frac{z}{z0}\right)}$$
 pro $zmin \le z \le zmax$

$$lv(20,53) = \frac{1,0}{1,0 \cdot \ln\left(\frac{20,53}{0,05}\right)} = 0,1662$$

kl je součinitel turbulence (doporučená hodnota pro ČR 1,0)

co(z) o je součinitel orografie (doporučená hodnota pro ČR 1,0)

z0 je parametr drsnosti terénu (viz tabulka dle kategorie terénu)

Maximální dynamický tlak qp(z)

$$qp(z) = [1 + 7 \cdot lv(z)] \cdot \frac{1}{2} \cdot \rho \cdot vm^2(z)$$

$$qp(20,53) = [1 + 7 \cdot 0,1662] \cdot \frac{1}{2} \cdot 1,25 \cdot 33,433^2 = 1511,3155 Pa = 1,511 kN/m^2$$

 ρ měrná hmotnost vzduchu; $\rho = 1,25$ kg/m3 (doporučená hodnota)

lv(z) v je intenzita turbulence ve výšce z nad zemí (viz výše)

Oblast 2.

Součinitel drsnosti terénu cr(z)

$$\operatorname{cr}(13,73) = 0,2232 \cdot \ln\left(\frac{13,73}{0,05}\right) = 1,2533$$

Součinitel terénu:

$$kr = 0.19 \cdot \left(\frac{0.05}{0.005}\right)^{0.07} = 0.2232$$

Střední rychlost větru vm(z)

$$vm(13,73) = 1,2533 \cdot 1 \cdot 25 = 31,333 m/s$$

Turbulence větru lv(z)

$$lv(13,73) = \frac{1,0}{1,0 \cdot \ln\left(\frac{13,73}{0,05}\right)} = 0,1781$$

Maximální dynamický tlak qp(z)

$$qp(13,73) = [1 + 7 \cdot 0,1781] \cdot \frac{1}{2} \cdot 1,25 \cdot 31,333^2 = 1378,571 Pa = 1,379 kN/m^2$$

Oblast 3.

Součinitel drsnosti terénu cr(z)

$$\operatorname{cr}(6,86) = 0,2232 \cdot \ln\left(\frac{6,86}{0,05}\right) = 1,099$$

Součinitel terénu:

$$kr = 0.19 \cdot \left(\frac{0.05}{0.005}\right)^{0.07} = 0.2232$$

Střední rychlost větru vm(z)

$$vm(6,86) = 1,0985 \cdot 1 \cdot 25 = 27,463 m/s$$

Turbulence větru lv(z)

$$lv(6,86) = \frac{1,0}{1,0 \cdot \ln\left(\frac{6,86}{0,05}\right)} = 0,203$$

Maximální dynamický tlak qp(z)

$$qp(6,86) = [1 + 7 \cdot 0,203] \cdot \frac{1}{2} \cdot 1,25 \cdot 27,463^2 = 1141,2236 Pa = 1,141 kN/m^2$$

Obecně:

$$Fp * = A * qp(z) * Cpe$$

A plocha oblasti

qp(z) maximální dynamický tlak

Cpe součinitel vnějšího tlaku

7.3.1.1. VÍTR Z PRAVA A LEVA

Oblast 1.

 $A1 = 16,756 \text{ m}^2$

 $A7 = 7,671 \text{ m}^2$

 $Fpv1 = 7,61 * 1,511 * 0,8 = 9,199 \text{ kN} \qquad \alpha = 82^{\circ}$

Fpv2 = 16,756 * 1,511 * 0,75 = 18,989 kN $\alpha = 69^{\circ}$

Oblast 2.

 $A3 = 10,503 \text{ m}^2$

Fpv3 = 10,503 * 1,379 * 0,75 = 10,863 kN

Oblast 3.

 $A4 = 4,8074 \text{ m}^2$

Fpv4 = 4,8074 * 1,141 * 0,75 = 4,1139 kN

7.3.1.2. VÍTR HORNÍ

Oblast 1.

 $A9 = 7,1816 \text{ m}^2$

 $A2 = 7,593 \text{ m}^2$

 $Fpv9 = 7,1816 * 1,511 * 0,7 = 8,267 \text{ kN} \qquad \alpha = 58^{\circ}$

Fpv2 = 7,593 * 1,511 * 0,7 * 2 = 16,062 kN $\alpha = 63^{\circ}$

Oblast 2.

 $A4 = 5,898 \text{ m}^2$

Fpv4 = 5,898 * 1,379 * 0,7 * 2 = 11,386 kN $\alpha = 58^{\circ}$

Oblast 3.

 $A6 = 4,318 \text{ m}^2$

 $Fpv6 = 4,318 * 1,141 * 0,7 * 2 = 6,898 \text{ kN} \qquad \alpha = 58^{\circ}$

7.3.1.3. VÍTR DOLNÍ

Oblast 1.

 $A8 = 0,9887 \text{ m}^2$

$A2 = 7,593 \text{ m}^2$

 $A7 = 7,671 \text{ m}^2$

Fpv8 = 7,671 * 1,511 * 0,7 = 8,114 kN	$\alpha = 60^{\circ}$
Fpv8 = 0,9887 * 1,511 * 0,7 = 1,046 kN	$\alpha = 58^{\circ}$
Fpv2 = 7,593 * 1,511 * 0,7 * 2 = 16,062 kN	$\alpha = 63^{\circ}$
Oblast 2.	
$A4 = 5,898 \text{ m}^2$	
Fpv4 = 5,898 * 1,379 * 0,7 * 2 = 11,387 kN	$\alpha = 58^{\circ}$
Oblast 3.	
$A6 = 4,318 \text{ m}^2$	
Fpv6 = 4,318 * 1,141 * 0,7 * 2 = 6,898 kN	$\alpha = 58^{\circ}$

Porovnání ručního výpočtu s výpočtem pomocí programu RWIND Simulation.

Tabulka 7: Porovnání výsledků zatížení velké sedmičky větru bez schodiště

	Ruční výpočet:	RWIND Simulation
Vítr zprava a zleva	$\sum = 43,165 \text{ kN}$	0° = 35,509 kN
Vítr z horní	$\sum = 43,101 \text{ kN}$	90° = 43,771 kN
Vítr z dolní	$\sum = 43,507 \text{ kN}$	270° = 43,100 kN

7.3.2. ŘEŠENÍ VĚTRU BEZ SCHODIŠTĚ – MALÁ SEDMIČKA

Oblast 1:

Součinitel drsnosti terénu cr(z)

$$cr(z) = kr \cdot ln\left(\frac{z}{z_0}\right) \qquad \text{pro } zmin \le z \le zmax$$
$$cr(13,83) = 0,2232 \cdot ln\left(\frac{13,83}{0,05}\right) = 1,255$$

z0 je parametr drsnosti terénu (viz ta0,2232 * ln(tabulka dle kategorie terénu) zmin je minimální výška (viz tabulka dle kategorie terénu) Součinitel terénu

$$kr = 0.19 \cdot \left(\frac{z0}{z0, II}\right)^{0.07}$$

Kde z0, *II*=0,05 dle kategorie terénu II

$$kr = 0.19 \cdot \left(\frac{0.05}{0.005}\right)^{0.07} = 0.2232$$

Střední rychlost větru vm(z)

$$vm(z) = cr(z) \cdot c0(z) \cdot vb$$

$$vm(13,83) = 1,255 \cdot 1 \cdot 25 = 31,375 m/s$$

z - výška působiště větru

cr(z) je součinitel drsnosti terénu

c0(z) je součinitel orografie (doporučená hodnota pro ČR 1,0)

Turbulence větru lv(z)

$$lv(z) = \frac{kl}{co(z) \cdot \ln\left(\frac{z}{z0}\right)}$$
 pro $zmin \le z \le zmax$

$$lv(13,83) = \frac{1,0}{1,0 \cdot \ln\left(\frac{13,83}{0,05}\right)} = 0,178$$

kl je součinitel turbulence (doporučená hodnota pro ČR 1,0) co(z) o je součinitel orografie (doporučená hodnota pro ČR 1,0) z0 je parametr drsnosti terénu (viz tabulka dle kategorie terénu) Maximální dynamický tlak qp(z)

$$qp(z) = [1 + 7 \cdot lv(z)] \cdot \frac{1}{2} \cdot \rho \cdot vm^2(z)$$

 $qp(13,83) = [1 + 7 \cdot 0,178] \cdot \frac{1}{2} \cdot 1,25 \cdot 31,375^2 = 1381,838 Pa = 1,381 kN/m^2$ ρ měrná hmotnost vzduchu; $\rho = 1,25$ kg/m3 (doporučená hodnota)

lv(z) v je intenzita turbulence ve výšce z nad zemí (viz výše)

Oblast 2.

Součinitel drsnosti terénu cr(z)

$$\operatorname{cr}(9,581) = 0,2232 \cdot \ln\left(\frac{9,581}{0,05}\right) = 1,173$$

Součinitel terénu:

$$kr = 0.19 \cdot \left(\frac{0.05}{0.005}\right)^{0.07} = 0.2232$$

Střední rychlost větru vm(z)

$$vm(9,581) = 1,173 \cdot 1 \cdot 25 = 29,325 m/s$$

Turbulence větru lv(z)

$$lv(9,581) = \frac{1,0}{1,0 \cdot \ln\left(\frac{9,581}{0,05}\right)} = 0,190$$

Maximální dynamický tlak qp(z)

$$qp(9,581) = [1 + 7 \cdot 0,19] \cdot \frac{1}{2} \cdot 1,25 \cdot 29,325^2 = 1252,31 Pa = 1,252 kN/m^2$$

Oblast 3.

Součinitel drsnosti terénu cr(z)

$$\operatorname{cr}(4,378) = 0,2232 \cdot \ln\left(\frac{4,378}{0,05}\right) = 0,998$$

Součinitel terénu:

$$kr = 0.19 \cdot \left(\frac{0.05}{0.005}\right)^{0.07} = 0.2232$$

Střední rychlost větru vm(z)

$$vm(4,378) = 0,998 \cdot 1 \cdot 25 = 24,950 \, m/s$$

Turbulence větru lv(z)

$$lv(4,378) = \frac{1,0}{1,0 \cdot \ln\left(\frac{4,378}{0,05}\right)} = 0,224$$

Maximální dynamický tlak qp(z)

$$qp(4,378) = [1 + 7 \cdot 0,224] \cdot \frac{1}{2} \cdot 1,25 \cdot 24,950^2 = 999,117 Pa = 1,00 kN/m^2$$

Obecně:

Fp * = A * qp(z) * Cpe

A plocha oblasti

qp(z) maximální dynamický tlak

Cpe součinitel vnějšího tlaku

7.3.2.1. VÍTR Z PRAVA A LEVA

Oblast 1.

 $A1 = 9,342 \text{ m}^2$ $\alpha = 82^\circ$

 $A2 = 8,848 \text{ m}^2$

Fpv1 = 18,19 * 1,381 * 0,8 = 16,782 kN

Oblast 2.

 $A3 = 7,677 \text{ m}^2$

Fpv2 = 7,677 * 1,252 * 0,8 = 7,689 kN

Oblast 3.

 $A4 = 3,928 \text{ m}^2$

Fpv3 = 3,928 * 1,00 * 0,8 = 3,142 kN

7.3.2.2. VÍTR HORNÍ

Oblast 1.

$$A5 = 8,5963 \text{ m}^2$$

Fpv4 = 8,5963 * 1,381 * 0,8 = 9,4972 kN

 $A6 = 18,685m^2$

Fpv4 = 18,685 * 1,381 * 0,2 = 5,1608 kN $\alpha = 15^{\circ}$

Oblast 2.

 $A6 = 15,3672 \text{ m}^2$ Fpv5 = 15,3672 * 1,252 * 0,2 = 3,848 kN $\alpha = 15^{\circ}$ **Oblast 3.** $A7 = 7.8574 \text{ m}^2$ Fpv6 = 7,8574 * 1,00 * 0,2 = 1,5715 kN $\alpha = 15^{\circ}$ 7.3.2.3. VÍTR DOLNÍ **Oblast 1.** $A8 = 0.6557 \text{ m}^2$ Fpv7 = 0,6557 * 1,381 * 0,8 = 0,7244 kN $A9 = 8,8603 \text{ m}^2$ Fpv8 = (8,8603 + 5,0252) * 2 * 1,381 * 0,2 = 7,6703 kN $\alpha = 15^{\circ}$ **Oblast 2.** $A10 = 3,157 \text{ m}^2$ Fpv9 = 3,157 * 1,252 * 0,8 = 3,1621 kN $A11 = 12,133 \text{ m}^2$ Fpv10 = 12,133 * 1,252 * 0,2 = 3,0381 kN $\alpha = 15^{\circ}$ **Oblast 3.**

 $A12 = 6,1387 \text{ m}^2$

Fpv11 = 6,1387 * 1,00 * 0,8 = 4,9110 kN

Při porovnání výpočtového modelu a ručního výpočtu jak ve velké, tak i malé konstrukci sedmičky, byly zjištěny pouze malé odchylky. Tyto odchylky jsou přisouzeny nepřesnému ručnímu výpočtu z hlediska různých úhlů především v boku plošiny a také zjednodušení výpočtu pomocí normových součinitelů. Pro výsledný model tedy může být počítáno zatížení větrem pomocí pomocného programu RWIND Simulation. Podrobnější porovnání zatížení větrem probíhá níže (viz kapitola 9.3.).

Tabulka 8.	: Porovnání	výsledků	zatížení	malé	sedmičky	větru	bez schodiště	í
		~			~			

	Ruční výpočet:	RWIND Simulation
Vítr zprava a zleva	$\sum = 27,613 \text{ kN}$	0° = 26,229 kN
Vítr z horní	$\Sigma = 20,078$ kN	90° = 18,015kN
Vítr z dolní	$\sum = 19,481$ kN	270° = 16,845 kN

Obrázek 18: Zatížení konstrukce velké i malé sedmičky větrem v 0°

7.3.3. ŘEŠENÍ VĚTRU NA KONSTRUKCI SCHODIŠTĚ

Jedná se o točité ocelové schodiště, které je ve tvaru válce o průměru 2,1 metru. Pro schodiště je zbudován samostatný základ. Tedy zatížení užitné, a zatížení vlastní tíhou působící na schodiště nenamáhá nosnou konstrukci rozhledny [2]. V této práci předpokládáme kloubové připojení k horní plošině, s tím souvisí přenos sil větru do konstrukce větší sedmičky. Pro kalkulaci je využito zjednodušeného výpočtu, kdy je konstrukce schodiště považována za svislé stěn pozemních staveb s pravoúhlým půdorysem. Z tohoto předpokladu také vychází součinitele vnějšího tlaku. Vítr je rozdělen na tři oblasti a uvažován ve třech výškách s rozdílnou sílou větru. Reakce výsledného větru od schodiště je následně ve čtyřech směrech zavedena do modelu, a to jako vodorovné silové zatížení na uzel v místě uvažovaného kloubového připojení horní části schodiště.

Oblast v1:

 $S1 = a * v1 = 1,4849 * 6,27 = 9,31 m^2$

F1 = 9,31 * 1,511 * (-1,00) = - 14,068 kN

Oblast v2:

 $S2 = a * v2 = 1,48492 * 6,125 = 9,095 m^2$

F2 = 9,095 * 1,379 * (-1,00) = -12,542 kN

Oblast v3:

 $S3 = a * v3 = 1,4849 * 6,86 = 10,186 m^2$

F3 = 10,186 * 1,141 * (-1,00) = - 11,623 kN

Celkem = F1 + F2 + F3 = -14,068 - 12,542 - 11,623 = -38,233 kN

Obrázek 19: Půdorys a řešení schodiště v konstrukci

Obrázek 20: Konstrukce zatížená větrem na schodiště ve směru a) 270° b) 0°

8. PŘEHLED ZATĚŽOVACÍCH STAVŮ A JEJICH KOMBINACE

8.1.ZATĚŽOVACÍ STAVY

Do softwaru byly zavedeny následující zatěžovací stavy. Těmto stavům bylo zadáno adekvátní zatížení dle předchozích výpočtů. Pro větší přehlednost zatěžovacích stavů byly některé stavy seskupeny. Pro další výpočet je potřebný pouze přehled zatěžovacích stavů celé konstrukce, proto nejsou uvedeny pro jednotlivé sedmičky. Pro jednotlivé sedmičky by zatěžovací stavy byly velmi podobné zde uvedeným tabulkám.

Skupina ZS	Typ zatížení	ZS	Obsah
1	Stálé	ZS1	Vlastní tíha konstrukce
2	Ostatní stálé	ZS13, ZS22	Opláštění konstrukce, Ostatní stálé plošina, Ostatní stálé stojiny
3	Užitné	ZS2	Užitné zatížení (kategorie C)
4	Sníh	ZS24	
5	Vítr bez schodiště	ZS29-ZS36	Vítr 0°, Vítr 45°, Vítr 90°, Vítr 135°, Vítr 180°, Vítr 225°, Vítr 270°, Vítr 315°,
6	Vítr na schodiště	ZS37-ZS40	Vítr 0°, Vítr 90°, Vítr 180°, Vítr 270°,

Tabulka 9: Zatěžovací stavy pro model sedmiček dohromady

Tabulka 10: Zatěžovací stavy pro model malé sedmičky s přeneseným zatížením od velké sedmičky

Skupina ZS	Typ zatížení	ZS	Obsah
1	Stálé	ZS1	Vlastní tíha konstrukce
2	Ostatní stálé	ZS13, ZS22	Opláštění konstrukce, Ostatní stálé plošina
3	Užitné	ZS2	Užitné zatížení (kategorie C)
4	Sníh	ZS24	
5	Vítr	ZS25-ZS28	Vítr 0°, Vítr 90°, Vítr 180°, Vítr 270°,

8.2.KOMBINACE ZS

Pro model byly vybrány kombinace vycházející z normy ČSN EN 1990 [6], a to především vycházející z rovnice 6.10a a 6.10b. Kombinační účinky zatížení generoval program RFEM. Pro porovnání modelu sedmiček dohromady (označovaného M1), modelu malé sedmičky s přeneseným zatížením od velké (označovaného M2) a modelu velké sedmičky (označovaného M3) byly použity následné kombinace zatížení zobrazené na obrázcích, které vychází z níže uvedených základních normových rovnic.

6.10a: $\sum j \ge 1 \gamma G, jGk, j + \sum i \ge 1 \gamma Q, i\psi 0, iQk, i$

6.10b: $\sum j \ge 1 \xi \gamma G, jGk, j + \gamma Q, 1Qk, 1 + \sum i > 1 \gamma Q, i \psi 0, iQk, i$

Zatěžovací sta	vy Účinky Kombinační pravidla Komb	pinace účink	tů Kombina	ace zatížení	Kombinace výsledků				
Existující kom	pinace zatižení	KZ č.		Označení	kombinace zatížení		Vypočítat		
STR KZ39	1.35*ZS1 + 1.05*ZS2 + 1.35*ZS2: ^	67		S Ch	ZS1 + ZS2 + ZS13 + ZS22 + Z	2S23 + 0.5*ZS24 + 0.6*ZS29			
STR KZ40	1.35*ZS1 + 1.05*ZS2 + 1.35*ZS2					1			
STR KZ41	1.35*ZS1 + 1.05*ZS2 + 1.35*ZS2	Obecne	Paramet	ry výpočtu					
STR KZ42	1.35*ZS1 + 1.05*ZS2 + 1.35*ZS2;	Zatiža	ua el eterno	, kombinani :	natičnosi V 767				
STR KZ43	1.35*ZS1 + 1.05*ZS2 + 1.35*ZS2	Č.	Součinitel	Kombinders	Zatěžovací stav	Účinek	Hlavni	7	W
STR KZ44	1.35*ZS1 + 1.05*ZS2 + 1.35*ZS1:	1	1.000	G ZS1	- Vlastní tíha konstrukce	G Ú1 - Stálé		1	
STR KZ45	1.35*ZS1 + 1.05*ZS2 + 1.35*ZS1	2	1.000	QIC ZS2	- Užitné zatížení	Die Ú2 - Užitná zatížení	2		
STR KZ46	1.35*ZS1 + 1.05*ZS2 + 1.35*ZS1;	3	1.000	Gg ZS13	3 - Opláštění konstrukce	Ga Ú5 - Stálé/užitné			
STR KZ47	1.35*ZS1 + 1.05*ZS2 + 1.35*ZS1:	4	1.000	G ZS22	2 - Ostatní stálé plošina	G U1 - Stálé			
STR KZ48	1.35*ZS1 + 1.05*ZS2 + 1.35*ZS1:	6	0.500	0: 752	5 - Ostatni stale stojiny 1 - enih	Os 113 - Spile			0.5
STR KZ49	1.35*ZS1 + 1.05*ZS2 + 1.35*ZS1:	7	0.600	Ow ZS2	9 - Vitr 0 *	Qw Ú4 - Vítr	H		0.6
STR KZ50	1.35*ZS1 + 1.35*ZS22 + 1.35*ZS2	8	0.600	Qw ZS3	7 - 0	Qw. Ú4 - Vítr			0.6
Zatěžovací st Existující kom	avy Účinky Kombinační pravidla Kom binace zatížení	binace účinl KZ č.	kā Kombin	ace zatížení Označení	Kombinace výsledků kombinace zatížení		Vypočitat		
STR KZ4	1.35*ZS1 + 1.5*ZS2 + 1.35*ZS22 ^	32	2	S Ch	ZS1 + ZS2 + ZS13 + ZS22 + 2	ZS23 + 0.5*ZS24 + 0.6*ZS28			
STR KZ5	1.35*ZS1 + 1.5*ZS2 + 1.35*ZS22				- X-	71			
STR KZ6	1.35*ZS1 + 1.5*ZS2 + 1.35*ZS13	Obecn	é Paramet	ry výpočtu					
STR KZ7	1.35*ZS1 + 1.5*ZS2 + 1.35*ZS13	Zatěžo	vací stavy	v kombinaci	zatížení KZ32				
STR KZ8	1.35*ZS1 + 1.5*ZS2 + 1.35*ZS22	č.	Součinite	1	Zatěžovací stav	Účinek	Hlavni	7	Ψ
STR KZ9	1.35*ZS1 + 1.5*ZS2 + 1.35*ZS13	1	1.000	G ZS1	- Vlastní tíha konstrukce	G Ú1 - Stálé			
STR KZ10	1.35*ZS1 + 1.5*ZS2 + 1.35*ZS13	2	1.000	OIC ZS2	 Užitné zatížení 	ÚZ - Užitná zatížen	1		
STR KZ11	1.35*ZS1 + 1.35*ZS22 + 1.35*ZS2	3	1.000	Gq ZS1	3 - Opláštění konstrukce	Go U5 - Stálé/užitné	H		
STR KZ12	1.35*ZS1 + 1.05*ZS2 + 1.35*ZS2;	5	1.000	G 752	3 - Ostatní stálé stojiny	G Ú1 - Stálé	H		
STR KZ13	1.35*ZS1 + 1.05*ZS2 + 1.35*ZS2;	6	0.500	Qs ZS2	4 - sníh	Qs Ú3 - Sníh	ă		0.5
STR KZ14	1.35*ZS1 + 1.05*ZS2 + 1.35*ZS13	7	0.600	Qw ZS2	8 - Vitr 0 °	Qw Ú4 - Vítr	ō		0.
) Mala ravit zatěžov itěžovací stav	SEAMIČKA S PřENESE ací stavy a kombinace y Účinky Kombinační pravidla Kombir	eným lace účinků	<i>Zatiže</i> Kombinace	zatižení _K	d velké sedmičk	Ŷ			
xistující kombi	nace zatiženi	KZ č.	1	Označení kor	mbinace zatížení		Vypočitat		
STR KZ55	1.35*ZS1 + 0.75*ZS3 + 1.35*ZS1: ^	67		S Ch	ZS1 + ZS2 + 0.5*ZS3 + ZS13 +	0.6*ZS14 + ZS22 + ZS23 +			
KZ56	1.35*ZS1 + 1.35*ZS13 + 1.5*ZS14								
	1.35*ZS1 + 1.35*ZS13 + 1.5*ZS14	Obecné	Parametry	výpočtu					
TR KZ57	1.35*ZS1 + 1.35*ZS13 + 1.35*ZS2	Zatěžova	ucí stavy v k	omhinaci zat	ížení K767				
TR KZ57 TR KZ58		Č.	Součinitel	201	Zatěžovací stav	Účinek	Hlavní	Y	Ψ
TR KZ57 TR KZ58 Ch KZ59	ZS1 + ZS22 + ZS23		1 000	G 751.V	lasta í tiba konsta kos	G Ú1 - Stálé			
118 KZ57 118 KZ58 Ch KZ59 Ch KZ60	ZS1 + ZS22 + ZS23 ZS1 + ZS13 + ZS22 + ZS23	1	1.000 [201 1	Idau II LIIId KUHSUUKCC	A CONTRACTOR OF CONTRACTOR OF THE OWNER OWNER OF THE OWNER OWNER OF THE OWNER	Print I		
TR K257 TR K258 Ch K259 Ch K260 Ch K261	ZS1 + ZS22 + ZS23 ZS1 + ZS13 + ZS22 + ZS23 ZS1 + ZS2 + ZS22 + ZS23	1 2	1.000	CZS2 - L	lžitné zatížení	DIC Ú2 - Užitná zatížení	2		
 TR KZ57 TR KZ58 Ch KZ59 Ch KZ60 Ch KZ61 Ch KZ62 	ZS1 + ZS22 + ZS23 ZS1 + ZS13 + ZS22 + ZS23 ZS1 + ZS2 + ZS22 + ZS23 ZS1 + ZS2 + ZS22 + ZS23 ZS1 + ZS2 + 0.5*ZS3 + ZS22 + ZS	1 2 3	1.000	0.C ZS2 - L 0.s ZS3 - s	lžitné zatížení nih	QIC Ú2 - Užitná zatížení QS Ú3 - Sníh			0.50
 K257 K258 K259 K260 K261 K262 K263 	ZS1 + ZS22 + ZS23 ZS1 + ZS13 + ZS22 + ZS23 ZS1 + ZS2 + ZS22 + ZS23 ZS1 + ZS2 + ZS22 + ZS23 ZS1 + ZS2 + 0.5*ZS3 + ZS22 + ZS ZS1 + ZS2 + 0.5*ZS3 + 0.6*ZS14	1 2 3 4 5	1.000 1.000 0.500 1.000	252 - L Qs ZS2 - L Qs ZS3 - s S0 ZS13 -	lastin tina konstrukce Ižitné zatížení nih Opláštění konstrukce Vír 0 *	QIC Ú2 - Užtná zatížení Qs Ú3 - Sníh Qg Ú6 - Stálé/užtné Qg Ú5 - Vítr			0.50
 K257 K258 K259 K260 K261 K261 K262 K263 K264 	251 + 2522 + 2523 251 + 2513 + 2522 + 2523 251 + 252 + 2522 + 2523 251 + 252 + 0.5*253 + 2522 + 25 251 + 252 + 0.5*253 + 0.6*2514 251 + 252 + 0.5*253 + 0.6*2514	1 2 3 4 5 6	1.000 1.000 1.000 1.000 0.600 1.000	2 ZS2 - L Qs ZS3 - s Go ZS13 - Qw ZS14 - G ZS22 -	lastin v zatižení hih Opláštění konstrukce Vitr 0 * Ostatní stálé plošina	CIC Ú2 - Užtná zatížení Ca: Ú3 - Snih Ca: Ú6 - Stálé/užtné Ca: Ú5 - Vitr C: Ú1 - Stálé			0.50 0.60
 K257 K258 K258 K259 K260 K261 K262 K263 K264 K265 	$\begin{array}{c} 251+2522+2523\\ 251+252+2522+2523\\ 251+252+2522+2523\\ 251+252+0.5^{*}253+2522+25\\ 251+252+0.5^{*}253+0.5^{*}251\\ 251+252+0.5^{*}253+0.5^{*}2514\\ 251+252+0.5^{*}253+0.5^{*}2514\\ 251+252+0.5^{*}253+2522+25\\ \end{array}$	1 2 3 4 5 6 7	1.000 1.000 1.000 0.600 1.000 1.000	252 - L Qs ZS3 - s G ZS13 - Qw ZS14 - G ZS22 - G ZS23 -	lasun funa konsuluce nih poläštěn i konstrukce Vitro V Ostatní stálé plošina Ostatní stálé stojiny	GTC U2 - Užitná zatižení GTC Ú3 - Snih GTC Ú6 - Stálé/užitné GTU Ú5 - Vitr GTU 1 - Stálé GTU 1 - Stálé			0.50 0.60

c) velká sedmička

Obrázek 21: Charakteristická kombinace 1 pro a) model sedmiček dohromady b) malou sedmičku s přeneseným zatížením od velké sedmičky

Zatěžovací sta	vy Účinky Kombinační pravidla Kombin	nace účinků	Kombinac	e zatížení	Kombinace výsledků				
Existující koml	binace zatiženi	KZ č.		Označení	kombinace zatížení		Vypočitat		
S Ch KZ78	ZS1 + ZS22 + ZS23 + ZS24	104	-	S Ch	ZS1 + 0.7*ZS2 + ZS13 + ZS22	+ ZS23 + 0.5*ZS24 + ZS29			
S Ch KZ80	ZS1 + 0.7*ZS2 + ZS22 + ZS23 + Z:	Obecné	Parametry	výpočtu					
S Ch KZ81	ZS1 + 0.7*ZS2 + ZS22 + ZS23 + Z:	Zatěžou	acistavy v	kombinaci :	zatížení K7104				
S Ch KZ82	ZS1 + 0.7*ZS2 + ZS22 + ZS23 + Z	Č.	Součinitel	Nonite indicities	Zatěžovací stav	Účinek	Hlavni	7	U
S Ch KZ83	ZS1 + 0.7*ZS2 + ZS13 + ZS22 + Z:	1	1.000	G ZS1	- Vlastní tíha konstrukce	G Ú1 - Stálé			
S Ch KZ84	ZS1 + 0.7*ZS2 + ZS13 + ZS22 + Z	2	0.700	QIC ZS2	-Užitné z <mark>at</mark> ížení	QIC Ú2 - Užitná zatížení	ō		0.
S Ch KZ85	ZS1 + 0.7*ZS2 + ZS13 + ZS22 + Z	3	1.000	Gq ZS13	3 - Opláštění konstrukce	Go Ú5 - Stálé/užitné			
S Ch KZ86	ZS1 + 0.7*ZS2 + ZS13 + ZS22 + Z	4	1.000	G ZS22	2 - Ostatní stálé plošina	G Ú1 - Stálé			
S Ch KZ87	ZS1 + ZS22 + ZS23 + ZS24 + 0.6*	5	1.000	G ZS23	3 - Ostatní stálé stojiny	Ga U1 - Stálé			
S Ch KZ88	ZS1 + ZS22 + ZS23 + ZS24 + 0.6*	6	0.500	US 2524	i-snih	Us U3 - Snih			0.
S CB 1/790	751 + 7522 + 7523 + 7524 + 0.6*	0	1.000	232	7.0	U4 - Vitr			

a) model sedmiček dohromady

latěžovací sta	vy Účinky Kombinační pravidla Kombi	nace účinků	Kombinac	e zatížení	Kombinace výsledků				
Existující komb	inace zatížení	KZ č.	1	Označení	kombinace zatižení		Vypočítat		
STR KZ20	1.35*ZS1 + 1.05*ZS2 + 1.35*ZS2: ^	48		S Ch	ZS1 + 0.7*ZS2 + ZS13 + ZS22	+ ZS23 + 0.5*ZS24 + ZS28			
STR KZ21 STR KZ22	1.35*ZS1 + 1.05*ZS2 + 1.35*ZS2 1.35*ZS1 + 1.05*ZS2 + 1.35*ZS1 1.35*ZS1 + 1.05*ZS2 + 1.35*ZS1 1.35*ZS1 + 1.05*ZS2 + 1.35*ZS1	Obecné	Parametry	výpočtu					
STR KZ24	1.35*ZS1 + 1.35*ZS22 + 1.35*ZS2	Zatěžov č.	ací stavy v l Součinitel	kombinaci :	zatižení KZ48 Zatěžovací stav	Účinek	Hlavní	Y	Ψ
TR KZ25	1.35*ZS1 + 1.35*ZS13 + 1.35*ZS; 1.35*ZS1 + 1.35*ZS13 + 1.35*ZS;	1 2	1.000	G ZS1 QiC ZS2	-Vlastní tíha konstrukce -Užitné zatížení	G Ú1 - Stálé QiG Ú2 - Užitná zat ížen i		-	0.7
Ch KZ27 Ch KZ28	ZS1 + ZS22 + ZS23 ZS1 + ZS13 + ZS22 + ZS23	3 4	1.000 1.000	Gg ZS13 G ZS23	3 - Opláštění konstrukce 2 - Ostatní stálé plošina	Ga Ú5 - Stálé/užitné G Ú1 - Stálé			
Ch KZ29 Ch KZ30	ZS1 + ZS2 + ZS22 + ZS23 ZS1 + ZS2 + ZS22 + ZS23 + 0.5*Z	5 6 7	1.000 0.500 1.000	G ZS23 Qs ZS24 Qw ZS28	3 - Ostatn i stálé stojiny 4 - sníh 3 - Vítr 0 *	G U1 - Stálé Qs Ú3 - Sníh Qw Ú4 - Vitr			0.5
Ch KZ31	ZS1 + ZS2 + ZS22 + ZS23 + 0.5*Z	1.6.0	1.000	202		The second secon	-		

b) malá sedmička s přeneseným zatížením od velké sedmičky

Upravit zatěžovací stavy a kombinace

Existujici komb	inace zatižení	KZ č.		Označeni	kombinace zatížení		Vypočítat		
S Ch KZ105	ZS1 + 0.7*ZS2 + 0.5*ZS3 + ZS13 ^	105		S Ch	ZS1 + 0.7*ZS2 + 0.5*ZS3 + Z	S13 + ZS14 + ZS22 + ZS23 + 🛛 🛛			
S Ch KZ106	ZS1 + 0.7*ZS2 + 0.5*ZS3 + ZS13			10					
S Ch KZ107	ZS1 + 0.7*ZS2 + ZS13 + ZS14 + Z	Obecné	Parametr	y výpočtu					
S Ch KZ108	ZS1 + 0.7*ZS2 + ZS13 + ZS14 + Z	Zatěžov	aci etaur u	kombinaci :	ratižení K7105				
S Ch KZ109	ZS1 + 0.7*ZS2 + ZS13 + ZS22 + Z	Č.	Součinitel	Kombinacia	Zatěžovací stav	Účinek	Hlavní	y I	W
Ch KZ110	ZS1 + 0.5*ZS3 + ZS14 + ZS22 + Z	1	1.000	G ZS1	- Vlastní tíha konstrukce	G Ú1 - Stálé			
Ch KZ111	ZS1 + 0.5*ZS3 + ZS14 + ZS22 + Z	2	0.700	QIC ZS2	- Užitné zatížení	QCC Ú2 - Užitná zatížení	ō		0.1
Ch KZ112	ZS1 + 0.5*ZS3 + ZS22 + ZS23 + Z	3	0.500	Qs ZS3	- sn ih	Qs Ú3 - Sníh			0.9
Ch KZ113	ZS1 + 0.5*ZS3 + ZS13 + ZS14 + Z	4	1.000	Gq ZS13	 Opláštění konstrukce 	Ga Ú6 - Stálé/užitné			
5 Ch KZ114	ZS1 + 0.5*ZS3 + ZS13 + ZS14 + Z	5	1.000	Qw ZS14	- Vitr 0 *	Qw U5 - Vitr	2		
Ch KZ115	ZS1 + 0.5*ZS3 + ZS13 + ZS22 + Z	5	1.000	G 792	: - Ostatni stale piosina L. Ostatni stalė stolinu	G ÚI - Stále	H		
Ch KZ116	ZS1 + ZS13 + ZS14 + ZS22 + ZS23	8	1.000	Qw ZS24	- Vítr 0 °od schodiště	Ow U5 - Vitr			
Ch KZ117	ZS1 + ZS13 + ZS14 + ZS22 + ZS23	1000							
Ch KZ118	ZS1 + ZS13 + ZS22 + ZS23 + ZS24								
S Fr K7119	751 + 7522 + 7523								

>

Obrázek 22: Charakteristická kombinace 2 pro a) model sedmiček dohromady b) malou sedmičku s přeneseným zatížením od velké sedmičky

těžovací sta	vy Účinky Kombinační pravidla Kombi	nace účinků	Kombina	ce zatížení Kombinace výsledků					
xistuiící kom	binace zatížení	KZ č.		Označení kombinace zatížení			Vvpočítat		
Fr KZ124	ZS1 + 0.6*ZS2 + ZS13 + ZS22 + Z: A	150		STR 1.35*751 + 1.05*752 + 1	.35*7513 + 1.35*7522 + 1.35*	7: 4			
Fr KZ125	ZS1 + ZS13 + ZS22 + ZS23 + 0.2*.								
Fr KZ126	ZS1 + ZS22 + ZS23 + 0.2*ZS29	Obecné	Parametr	γ νýροčtu					
Fr KZ127	ZS1 + ZS22 + ZS23 + 0.2*ZS29 + 1	-		1 1					
Fr KZ128	ZS1 + ZS22 + ZS23 + 0.2*ZS37	Zatezov	Součinitel	Zatěžovací stav	Ličinek	Hlavni			11/
Fr KZ129	ZS1 + 0.6*ZS2 + ZS22 + ZS23 + 0	1	1.350	S 7S1 - Mastni tiha konstnikce	G Ú1 - Stálé			1.35	Ψ
Fr KZ130	ZS1 + 0.6*ZS2 + ZS22 + ZS23 + 0	2	1.050	OC ZS2 - Užitné zatížení	OLCI Ú2 - Užitná zat ížení	H		1.50	0.7
Fr KZ131	ZS1 + 0.6*ZS2 + ZS22 + ZS23 + 0	3	1.350	Gg ZS13 - Opláštěn i konstrukce	Gg Ú5 - Stálé/užitné			1.35	
Fr KZ132	ZS1 + 0.6*ZS2 + ZS13 + ZS22 + Z	4	1.350	CS ZS22 - Ostatní stálé plošina	G Ú1 - Stálé			1.35	
Fr KZ133	ZS1 + 0.6*ZS2 + ZS13 + ZS22 + Z!	5	1.350	G ZS23 - Ostatní stálé stojiny	G U1 - Stálé			1.35	
Fr KZ134	ZS1 + 0.6*ZS2 + ZS13 + ZS22 + Z	6	0.750	Us 2524 - snih	Qs U3 - Snih	H		1.50	0.5
Fr KZ135	ZS1 + ZS13 + ZS22 + ZS23 + 0.2*	8	0.900	0w ZS37-0	Ow Ú4 - Vitr	H		1.50	0.0
Fr K7136	701 + 7013 + 7037 + 7033 + 0 3*		0.000	2007 0		-		1.00	
ezovaci sta istujici komb	vy ouriky kombinacni pravidia Kombin Ninace zatiženi	KZ č.	Kombilde	Označení kombinace zatížení			Vypočitat		
Fr KZ58	ZS1 + 0.6*ZS2 + ZS22 + 0.2*ZS24 ^	74		1.35*ZS1 + 1.05*ZS2 + 1.	35*ZS13 + 1.35*ZS22 + 0.75*Z	4			
Fr KZ59	ZS1 + 0.6*ZS2 + ZS13 + ZS22 + 0					-			-
Fr KZ60	ZS1 + ZS13 + ZS22 + 0.2*ZS24	Obecné	Parametry	výpočtu					
Fr KZ61	ZS1 + ZS22 + 0.2*ZS28	Zatěžova	cí stavy v	combinaci zatížení KZ74					
Fr KZ62	ZS1 + 0.6*ZS2 + ZS22 + 0.2*ZS28	č.	Součinitel	Zatěžovací stav	Účinek	Hlavní	ξ	7	Ψ
Fr KZ63	ZS1 + 0.6*ZS2 + ZS13 + ZS22 + 0	1	1.350	G ZS1 - Vlastní tíha konstrukce	G Ú1 - Stálé			1.35	
Fr KZ64	ZS1 + ZS13 + ZS22 + 0.2*ZS28	2	1.050	OIC ZS2 - Užitné zatížení	OC Ú2 - Užitná zatížení			1.50	0.70
Op KZ65	ZS1 + ZS22	3	1.350	GE 2513 - Oplasteni konstrukce	Go U5 - Stale/uzitne	H		1.35	
Op KZ66	ZS1 + ZS13 + ZS22	5	0.750	Os 7524 - sníh	Os U3 - Snih	H		1.50	0.50
Qp KZ67	ZS1 + 0.6*ZS2 + ZS22	6	0.900	Qw ZS28 - Vítr 0 *	Qw Ú4 - Vítr			1.50	0.6
Qp KZ68	ZS1 + 0.6*ZS2 + ZS13 + ZS22								
) malá	······································								
) <i>malá</i> pravit zatěží atěžovací st Existující kon	ovací stavy a kombinace avy Účinky Kombinační pravidla Komb nbinace zalížení	nace účinků KZ č.	i Kombina	ce zatížení Kombinace výsledků Označení kombinace zatížení			Vypočítat		
) <i>malá</i> oravit zatěžu atěžovací st Existující kon S Fr. KZ136	ovací stavy a kombinace avy Účnky Kombinační pravidla Komb nbinace zatížení ZS1 + ZS13 + 0.2*ZS14 + ZS22 + : ^	nace účinků KZ č. 151	Kombina	ce zatížení Kombinace výsledků Označení kombinace zatížení I.35*ZS1 + 1.05*ZS2 + 0	.75*ZS3 + 1.35*ZS13 + 0.9*ZS1	4	Vypočítat		
) malá oravit zatěžu atěžovací st Existující kon S Fr KZ136 S Fr KZ137	ovací stavy a kombinace avy Účinky Kombinační pravidla Komb hbinace zatížení ZS1 + ZS13 + 0.2*ZS14 + ZS22 + : * ZS1 + ZS13 + 0.2*ZS14 + ZS22 + :	nace účinků KZ č. 151	Kombina	ce zatižení Kombinace výsledků Označení kombinace zatižení I.35*ZS1 + 1.05*ZS2 + 0	.75*ZS3 + 1.35*ZS13 + 0.9*ZS1	4	Vypočítat		
malá oravit zatěžo atěžovací st Existující kon S Fri K2136 S Fri K2137 S Fri K2138	ovací stavy a kombinace avy Účinky Kombinační pravidla Komb binace zatížení ZS1 + ZS13 + 0.2*ZS14 + ZS22 + ZS1 + ZS13 + 0.2*ZS14 + ZS22 + ZS1 + ZS13 + ZS22 + ZS23 + 0.2*	nace účinkč KZ č. 151 Obecné	Kombina	ce zatížení Kombinace výsledků Označení kombinace zatížení IIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	.75*ZS3 + 1.35*ZS13 + 0.9*ZS1		Vypočítat		
malá oravit zatěžo atěžovací st Existující kon S Fr. K2136 S Fr. K2137 S Fr. K2138 S Op K2139	ovací stavy a kombinace avy Účinky Kombinační pravidla Komb hbinace zatižení ZS1 + ZS13 + 0.2*ZS14 + ZS22 + : * ZS1 + ZS13 + 0.2*ZS14 + ZS22 + : ZS1 + ZS13 + 0.2*ZS14 + ZS22 + : ZS1 + ZS22 + ZS23	nace účinků KZ č. 151 Obecné Zatěžov	Kombina Parametr ací stavy v	ce zatižení Kombinace výsledků Označení kombinace zatižení IIII III5*ZS1 + 1.05*ZS2 + 0 v výpočtu kombinaci zatižení KZ151	.75*ZS3 + 1.35*ZS13 + 0.9*ZS1	4	Vypočitat		
) malá oravit zatěží atěžovací st Existující kon S Fr K2136 S Fr K2137 S Fr K2138 S Op K2139 S Op K2140	ovací stavy a kombinace avy Účinky Kombinační pravidla Komb tibinace zatížení ZS1 + ZS13 + 0.2*ZS14 + ZS22 + : ^ ZS1 + ZS13 + 0.2*ZS14 + ZS22 + : ZS1 + ZS13 + ZS22 + ZS23 + 0.2* ZS1 + ZS13 + ZS22 + ZS23 ZS1 + ZS13 + ZS22 + ZS23	nace účinků KZ č. 151 Obecné Zatěžov č.	Kombina Parametr ací stavy v Součinitel	ce zatižení Kombinace výsledků Označení kombinace zatižení STR 1.35*ZS1 + 1.05*ZS2 + 0 v výpočtu kombinaci zatižení KZ151 Zatěžovací stav	.75*ZS3 + 1.35*ZS13 + 0.9*ZS1	Hlavní	Vypočítat	Ÿ	V
malá oravit zatěži atěžovací st Existující kon S Fr. K2136 S Fr. K2137 S Fr. K2138 S OD K2140 S OD K2140	Zisi + Zisi + 0.2*Zi + Zisi + 2Si + Zisi + 0.2*Zi + Zisi + 2Si + Zisi + 2Si + Zisi	nace účinků KZ č. 151 Obecné Zatěžov č. 1	Parametr aci stavy v Součinitel 1.350	ce zatižení Kombinace výsledků Označení kombinace zatižení IIII 1.35*ZS1 + 1.05*ZS2 + 0 v výpočtu kombinaci zatižení KZ151 Zatěžovací stav III Zotatí ka konstrukce	.75*ZS3 + 1.35*ZS13 + 0.9*ZS1 Účinek ⊈ Ú1 - Stálé	Hlavní	Vypočitat	γ 1.35	Ψ
malá atěžovad st ixistující kon S Fr. K2136 S Fr. K2137 S Fr. K2138 S On K2139 S On K2149 S On K2141 S On K2142	ZS1 + ZS13 + 0.2"ZS14 + ZS22 + : Kombinace ZS1 + ZS13 + 0.2"ZS14 + ZS22 + : ZS1 + ZS13 + 0.2"ZS14 + ZS22 + : ZS1 + ZS13 + 0.2"ZS14 + ZS22 + : ZS1 + ZS13 + ZS22 + ZS23 + 0.2" ZS1 + ZS13 + ZS22 + ZS23 ZS1 + ZS22 + ZS23 ZS1 + ZS12 + ZS12 + ZS12 + ZS12 ZS1 + ZS12 +	KZ č. 151 Obecné Zatěžov č. 1 2	Kombina Parametr ací stavy v Součinitel 1.350 1.050	ce zatižení Kombinace výsledků Označení kombinace zatižení STR 1.35*ZS1 + 1.05*ZS2 + 0 v výpočtu kombinaci zatižení KZ151 Zatěžovací stav G ZS1 - Vlastní tíha konstrukce SZ2 - Užitné zatižení	.75*ZS3 + 1.35*ZS13 + 0.9*ZS1 Účinek G Ú1 - Stálé Old Ú2 - Užtná zatížení	Hlavní	Vypočítat	γ 1.35 1.50	V 0.7
malá atěžovací st ixistující kon S Fr. K2136 S Fr. K2137 S Fr. K2138 S Ob. K2139 S Ob. K2140 S Ob. K2141 S Ob. K2142 S TR. K2143	ZS1 + ZS13 + 0.2*ZS14 + ZS22 + 1 ZS1 + ZS13 + 0.2*ZS14 + ZS22 + 1 ZS1 + ZS13 + 0.2*ZS14 + ZS22 + 1 ZS1 + ZS13 + 0.2*ZS14 + ZS22 + 1 ZS1 + ZS13 + ZS22 + ZS23 ZS1 + ZS13 + ZS22 + ZS23 ZS1 + ZS12 + ZS23 + ZS22 + ZS23 ZS1 + 0.6*ZS2 + ZS23 + ZS22 + ZS23 ZS1 + 0.6*ZS2 + ZS13 + ZS22 + ZS23 ZS1 + 0.6*ZS2 + ZS13 + ZS22 + ZS13 ZS1 + 0.6*ZS2 + ZS13 + ZS22 + ZS13 ZS1 + 1.35*ZS1 + 1.35*ZS2 + 1.35*ZS5	nace účinků KZ č. 151 Obecné Zatěžov č. 1 2 3	Parametr aci stavy v Součinitel 1.350 1.050 0.750	ce zatižení Kombinace výsledků Označení kombinace zatižení STR 1.35*251 + 1.05*252 + 0 v výpočtu kombinaci zatižení K2151 Zatěžovací stav G ZS1 - Vlastní tíha konstrukce GG ZS2 - Dolišti z datižení GS ZS3-smíh	.75*2S3 + 1.35*2S13 + 0.9*2S1 Učinek G Ú1 - Stálé QC Ú2 - Užtná zatížení Q3 Ú3 - Sníh C U2 - Užtná zatížení	Hlavní	Vypočítat	γ 1.35 1.50 1.50	V 0.7 0.5
) malá oravit zatěže atěžovací st Existující kon S Fri K2136 S Fri K2137 S Fri K2138 S Col K2149 S Col K2141 S Col K2142 S Tři K2143 S Tři K2143	zvy cí stavy a kombinace avy Účnky Kombinační pravida Kombinační zstal 2511 ZS1 + ZS13 + 0.2*ZS14 + ZS22 + : ZS1 + ZS13 + 0.2*ZS14 + ZS22 + : ZS1 + ZS13 + 0.2*ZS14 + ZS22 + : ZS1 + ZS13 + ZS22 + ZS23 ZS1 + ZS13 + ZS22 + ZS23 ZS1 + CS22 + ZS23 ZS1 + 0.6*ZS2 + ZS23 ZS1 + 1.35*ZS1 + 1.35*ZS2 + 1.35*ZS2	inace účinkť KZ č. 151 Obecné Zatěžov č. 1 2 3 4 5	Parametr aci stavy v Součinitel 1.350 0.750 0.9750 1.350	ce zatižení Kombinace výsledků Označení kombinace zatižení STR 1.35*ZS1 + 1.05*ZS2 + 0 y výpočtu kombinaci zatižení KZ151 Zatěžovací stav G ZS1 - Vlastní tíha konstrukce GIG ZS2 - Užíné zatižení Qa ZS3 - sníh GR ZS13 - Oplášění konstrukce GR ZS14 - Vát 0.*	.75*ZS3 + 1.35*ZS13 + 0.9*ZS1 Üčinek G Ú1 - Stálé GIG Ú2 - Užiná zatižení G Ú3 - Sníh G Ú6 - Stálé/užiné G U6 - Stálé/užiné	Hlavní	Vypočitat	γ 1.35 1.50 1.35 1.50 1.35 1.50	V 0.7 0.5
) malá pravit zatéžu atéžovací st stistující kom S Fri K2136 S Fri K2137 S Fri K2138 S COF K2139 S COF K2140 S COF K2140 S COF K2141 S COF K2143 S COF K2143 S COF K2143 S COF K2143 S COF K2143 S COF K2143	Zisi + Zisi + O.2*Zisi + O.2*Zisi + Cisi	nace účinků KZ č. 151 Obecné Zatěžov č. 1 2 3 4 5 6	Parametr aci stavy v Součinitel 1.350 0.750 1.350 0.300 1.350	ce zatižení Kombinace výsledků Označení kombinace zatižení STG 1.35*ZS1 + 1.05*ZS2 + 0 y výpočtu kombinaci zatižení KZ151 Zatěžovací stav G 2S1 - Vlastní tíha konstrukce GZS2 - Užitné zatížení GZ 2S13 - Opláštění konstrukce GZ 2S13 - Opláštění konstrukce GZ 2S13 - Opláštění konstrukce GZ 2S14 - Vitr 0' G 2S22 - oztatní stálé plošina	.75*2S3 + 1.35*2S13 + 0.9*2S1 Účinek G Ú1 - Stálé QC Ú2 - Užtná zatížení QC Ú2 - Snih G Ú6 - Stálé/užtné QW Ú5 - Vitr G Ú1 - Stálé	Hlavní	Vypočitat	γ 1.35 1.50 1.50 1.50 1.50 1.50 1.35	v 0.7 0.5
) malá oravit zatěž atěžovací st ixistující kon S Fri (<2136 S Fri (<2137 S Fri (<2138 S Co (<2140 S Co (<2140 S Co (<2140 S Co (<2141 S Co (<2144 S Co (<2144 S Co (<2144 S Co (<2144 S Co (<2145 S Co (<2145) S Co	avy Účnky kombinace avy Účnky Kombinační pravida Komb binace zatižení ZS1 + ZS13 + 0.2*ZS14 + ZS22 + : ∧ ZS1 + ZS13 + 0.2*ZS14 + ZS22 + : ZS1 + ZS13 + 2S22 + ZS23 ZS1 + ZS13 + ZS22 + ZS23 ZS1 + 2S13 + ZS22 + ZS23 ZS1 + 0.6*ZS2 + ZS23 + ZS22 + ZS23 ZS1 + 0.6*ZS2 + ZS13 + ZS22 + Z 1.35*ZS1 + 1.35*ZS13 + 1.35*ZS1 1.35*ZS1 + 1.05*ZS2 + 1.35*ZS2 1.35*ZS1 + 1.05*ZS2 + 0.75*ZS3	nace úðinkt KZ č. 151 Obecné Zatěžov č. 1 2 3 4 5 6 7	Parametr aci stavy v Součintel 1.350 0.750 1.350 0.900 1.350 1.350	ce zatižení Kombinace výsledků Označení kombinace zaližení STR 1.35*ZS1 + 1.05*ZS2 + 0 y výpočtu Kombinaci zatižení KZ151 Zatěžovací stav G ZS1 - Vlastní tiha konstukce GZ ZS2 - Užitné zatižení GZ ZS1 - Joláštění konstrukce GV ZS13 - Opláštění konstrukce GV ZS14 - Vítr 0 * G ZS23 - Opláštění konstrukce GV ZS14 - Vítr 0 *	Účinek G Ú1 - Stálé Q Ú2 - Stálé Q Ú3 - Stálé Q Ú3 - Stálé Q Ú1 - Stálé Q Ú1 - Stálé	Hlavní	Vypočitat	γ 1.35 1.50 1.50 1.35 1.35 1.35 1.35	v 0.7/ 0.5/ 0.6/

Obrázek 23: Kombinace mezního stavu únosnosti pro a) model sedmiček dohromady b) malou sedmičku s přeneseným zatížením od velké sedmičky

Pro další výpočty a porovnání je používána především kombinace mezního stavu únosnosti (STR/GEO). Tato kombinace se nejvíce podobá normové kombinaci a zároveň odpovídá jednomu z nejnáročnějšímu namáhání konstrukce. Tedy by měla vykazovat dostatečnou rezervu při posouzení mezního stavu únosnosti. Okrajově je níže počítáno a posuzováno dle charakteristické kombinace jedna, která by měla sloužit pro posuzování mezního stavu použitelnosti. Ovšem posouzení tohoto stavu není předmětem bakalářské práce.

9. STATICKÁ ANALÝZA

9.1.RUČNÍ VÝPOČET VYBRANÉ ČÁSTI KONSTRUKCE A POROVNÁNÍ VÝPOČTOVÝCH MODELŮ PŘÍHRADOVINY

Jako hlavní část pro ruční výpočet byla vybrána vrchní příhradová část konstrukce. Pro tuto část jsou ručně zjišťovány vnitřní normálové síly na jednotlivých prutech. Ty jsou porovnány s vytvořeným dvojrozměrným modelem. Tento model je následně srovnán s příhradovou částí vyskytující se přímo v celkovém výpočtovém modelu. Toto porovnání je podrobněji zpracováno v kapitole 9.1.

9.1.1. RUČNÍ VÝPOČET PŘÍHRADOVÉ KONSTRUKCE

Pro ruční výpočet je konstrukce zatížena ostatním stálým zatížením od ocelového roštu a zábradlí umístěném na plošině (viz kapitola 4.2.1.). V průběhu výpočtu bylo zjištěno, že vybraná konstrukce ve dvojrozměrném pohledu způsobuje takzvaný mechanismus. Aby se dala konstrukce ručně vyřešit alespoň částečně, byl přidán prut s číslem N15, po tomto kroku je možné konstrukci vypočítat.

Výpočet byl proveden pomocí průsečné metody s oporou styčníkové metody, která nevykazuje pro tento případ dostatečnou přesnost z důvodu zvětšování se chyb v důsledku návaznosti jednotlivých výpočtů. Nepřesnosti v průsečné metodě vznikly zaokrouhlováním a menší přesností zadávání úhlů mezi jednotlivými pruty. Všechny porovnání normálových sil jsou však v přijatelných odchylkách. Pro ověření byl vytvořen zjednodušený model v souřadnicích XZ, který má téměř totožné výsledky normálových sil s ručním výpočtem. Ruční výpočty byly provedeny pomocí literatury [14].

Průsečná metoda:

Obrázek 24: Schéma příhradové konstrukce

1.

$$a = 23,03^{\circ}$$

 \checkmark M4. - 0
- N1 * 1,37 + F6 * 2,443 + 1,37 * Vb + 2,443 * N6y - 1,37 * N6x = 0
- 2,866 * 1,37 + 0,607 * 2,443 + 4,984 * 1,37 = - 2,443 * 0,92 * N6 + 1,37 * 0,39 * N6
N6 = - 2,559 kN
2.
 \checkmark M4. = 0
Vb * 1,37 - N1 * 1,37 + F6 * 2,443 - Vay * 1,703 + Vax * 0,330 = 0
4,984 * 1,37 + 0,607 * 2,443 - 3,54 * 1,703 + 4,984 * 0,33 = 1,37N4
N1 = 2,866 kN
 \checkmark M1. = 0
A = 29,28°
F6 * 0,741 + Vb * 1,7 - N1 * 1,7 - N7x * 1,7 + N7y * 0,741 = 0
0,607 * 0,741 + 4,984 * 1,7 - 2,866 * 1,7 - 0,872 * N7 * 1,7 + 0,489 * 0,741 * N7 = 0
N7 = 3,616 kN
 \checkmark M2. = 0
1,7 * Vax + 0,741 * Vay + 1,7 * N17x + 0,741 * N17y - 0
1,7 * 4,984 + 0,741 * 3,54 + 1,7 * 0,98 * N17 + 0,741 * 0,19 * N17 = 0
N17 = -6,141 kN
3.
 \checkmark M4. - 0
- 1,37 * N2 + F5 * 0,6048 + F6 * 2,443 + Vb * 1,37 + Vax * 0,33 - Vay * 1,703 = 0
1,074 * 0,6048 + 0,607 * 2,443 + 4,984 * 1,37 + 4,984 * 0,33 - 3,54 * 1,703 = 1,37 *

N2

N2 = 3,34 kN

 $\int M5. = 0$

 $\alpha = 10,99^{\circ}$

F5 * 1,869 + F6 *3,675 - Vay * 2,935 + Vax * 1,699 - N18 * 0,19 * 1,232 + N18 * 0,98 * 1,37 = 0

1,074 * 1,837 + 0,607 * 3,675 - 3,54 * 2,935 + 4,984 * 1,7 - N18 * 0,19 * 1,232 + N18 * 0,98 * 1,37 = 0

N18 = -2,062 kN

M5. = 0

F5 * 2,306 + F6 * 4,144 + Vb * 1,0392 - N2 * 1,039 + Vax * 0,6608 - Vay * 3,404 -N9 * 0,7437 * 1,701 + N9 * 0,6685 * 0,3304 = 0 1,074 * 2,306 + 0,607 * 4,1436 + 4,984 * 1,039 - 3,34 * 1,039 + 4,984 * 0,6608 - 3,54 *

3,404 = 1,0442 * N9

N9 = -1,97 kN

4.

M6. = 0

1,837 * F5 + 3,675 * F6 + 1,7 * Vax - 2,935 * Vay + N19y * 0,469 + N19x * 1,038 = 0 1,074 * 1,837 + 0,607 * 3,675 + 4,984 * 1,7 - 3,54 * 2,935 + N19 * 0,4688 * 0,19 + N19 * 1,0383 * 0,98 = 0

N19 = - 2,066 kN

 $\mathbf{M8.}=0$

- N3 * 0,718 + F4 * 2,126 + F5 * 3,963 + F6 * 5,801 + Vb * 0,718 + Vax * 0,982 - Vay * 5,061 = 0 2,126 * 0,891 + 3,963 * 1,074 + 0,607 * 5,801 + 4,984 * 0,718 + 4,984 * 0,982 - 3,54 * 5,061 = 0,718 * N3 N3 = 0,318 kN

 $\alpha = 10,99^{\circ}$

 $\int M10. = 0$

+ F3 * 0,919 + F4 * 2,756 + F5 * 4,593 + F6 * 6,431 - Vay * 5,691 + Vax * 1,6998 + N20x * 0,19 * 0,7174 - N20y * 0,98 * 0,630 = 0

0,541 * 0,919 + 0,891 * 2,756 + 1,074 * 4,593 + 0,607 * 6,431 - 3,54 * 5,691 + 4,984 * 1,7 = N20x * 0,98 * 0,717 + N20y * 0,19 * 0,630 = 0

N20 = -0,199 kN

M8. = 0

F4 * 2,128 + F5 * 3,963 + F6 * 5,801 - Vay * 5,061 + Vax * 0,9824 + 0,718Vb + F3 * 0,288 - N4 * 0,718 = 0

0,891 * 2,128 + 1,074 * 3,963 + 0,607 * 5,801 - 3,54 * 5,061 + 4,984 * 0,9824 + 0,718 * 4,984 + 0,541 * 0,288 - N4 * 0,718 = 0

N4 = 0,541 kN

M9. = 0

 $\alpha = 50,55^{\circ}$

1,187 * F3 + 3,023 * F4 + 4,860 * F5 + 6,699 * F6 + 1,1567 * Vax - 5,959 * Vay - 0,543 * N4 + 0,174 * N13x * 0,635 - N13y * 0,772 * 0,898 = 0

1,187 * 0,541 + 3,023 * 0,891 + 4,860 * 1,074 + 6,699 * 0,607 + 1,1567 * 4,984 - 5,959 * 3,54 - 0,543 * 0,541 + 0,543 * 4,984 + 0,174 * N13x * 0,635 - N13y * 0,772 * 0,898 = 0

N13 = -0,507 kN

6.

 $\int M9. = 0$

 $\alpha = 66^{\circ}$

N8y * 1,837 + F5 * 1,837 = 0

N8 * 0.914 * 1.837 + 1.074 * 1.837 = 0

N8 = -1,176 kN

7. $\alpha = 18.07^{\circ}$ $\alpha = 48,06^{\circ}$ $\alpha = 65,63^{\circ}$ M7. = 0F4 + N10y + N11y + N9y = 00,891 + N10 * 0,91 + 2,187 * 0,31 - 2,089 * 0,744 = 0N10 = 0,016 kN 8. $\int M10. = 0$ $\alpha = 64,66^{\circ}$ F3 + N12y = 0N12 * 0.9038 = -0.541N12 = -0,599 kN9. $\alpha = 65,29^{\circ}$ M8. = 0+ 0,7174 * N5 + N15 * 0,6301 * 0,3198 + N15 * 0,9475 * 0,7174 - F1 + N14 * 0,4182 * 0.174 + N14 * 0.908 * 0.898 = 0+0,7174*(-0,07)+0,29*0,6301*0,3198+0,29*0,9475*0,7174-0,126*1,5482+ N14 * 0,4182 * 0,174 + N14 * 0,908 * 0,898 = 0 N14 = -0,00210. $\int M10. = 0$ F3 * 0,919 + F4 * 2,756 + F5 * 4,593 + F6 * 6,431 + Vax * 1,7 - Vay * 5,691 + N21x * 0,5432 + N21y * 0,2675 = 0

0,541 * 0,919 + 0,891 * 2,756 + 1,074 * 4,593 + 0,607 * 6,431 + 4,984 * 1,7 - 3,54 * 5,691 + N21 * 0,98 * 0,5432 + N21 * 0,19 * 0,2675 = 0

N21 = -0,199 kN

11.

 $\int M10. = 0$

1,133 * N16 * 0,8824 - 0,3668 * N16 * 0,4705 - 1,133 * N21 * 0,19 - 0,3668 * N21 * 0,98 = 0 1,133 * N16 * 0,8824 - 0,3658 * N16 * 0,4705 - 1,133 * (-0,2) * 0,19 - 0,3668 * (-0,2) * 0,98 = 0 N16 = 0,139 kN 13. (M12. = 0

N5 * 0,367 + F1 * 0,215 = 0

N5 * 0,367 = - 0,126 * 0,215

N5 = - 0,074 kN

13.

M7. = 0

- 0,32 * N15 - 0,911 * N14 - 0,772 * N13 - F2 = 0

0,32 * N15 = - 0,911 * 0 - 0,772 * (- 0,51) - 0,301 = 0

N15 = 0,29

 $\int M9. = 0$

- N11 * 0,4945 - N12 * 0,9818 - N13 * 0,6118 = 0

- (- 0,6) * 0,9818 - (- 0,51) * 0,6118 = N11 * 0,4945

N11 = 1,822

Pro styčníkovou metodu bylo využito programu excel. Pro ukázku byly vybrány dvě místa pro zobrazení výpočtu touto metodou.

Styčníková metoda:

Posudek v uzlu číslo 4.

$$q = 48,05^{\circ} \qquad \beta 2 = 29,28^{\circ} \qquad \beta = 10,99^{\circ} \\ \gamma = 10,99^{\circ} \qquad r = 23,85^{\circ} \\ \Sigma Fx = 0 \\ + N9 * \cos q + N18 * \cos \gamma - N17 * \cos \beta - N7 * \cos \beta 2 - N8 * \sin r = 0 \\ + N9 * 0,668 + N18 * 0,982 - N17 * 0,982 - N7 * 0,872 - N8 * 0,404 = 0 \\ + N9 * 0,668 + N18 * 0,982 - (-6,11) * 0,982 - 3,62 * 0,872 - (-1,17) * 0,404 = 0 \\ + N9 * 0,668 + N18 * 0,982 = -3,316 \\ \Sigma Fy = 0 \\ - N9 * \sin q - N18 * \sin \gamma + N17 * \sin \beta - N7 * \sin \beta 2 - N8 * \cos r = 0 \\ - N9 * 0,744 - N18 * 0,191 + N17 * 0,191 - N7 * 0,489 - N8 * 0,915 = 0 \\ - N9 * 0,744 - N18 * 0,191 + (-6,11) * 0,191 - 3,62 * 0,489 - (-1,17) * 0,915 = 0 \\ - N9 * 0,744 - N18 * 0,191 = 1,867 \\ Soustava dvou rovnic o dvou neznámých: \\ + N9 * 0,668 + N18 * 0,731 = -2,467 /* 0,744 \\ - N9 * 0,497 + N18 * 0,128 = 1,247 /* 0,668 \\ \hline 0,603 * N18 = -1,22 \\ N18 = -2,023 kN \qquad dosazení N18 \\ - N9 * 0,744 - N18 * 0,191 = 1,86 \\ - N9 * 0,744 - (-2,023) * 0,191 = 1,86 \end{cases}$$

- N9 * 0,744 = 1,474

$$N9 = -1,981 \text{ kN}$$

Posudek v uzlu číslo 7.

γ7 = 64,66

$$\sum Fx = 0$$

- N3 + N4 + N12 * cos (β 5 + γ 6) = 0
- 0,21 + N4 + (- 0,60) * cos (65, 63) = 0N4 = 0,458 kN
$$\sum Fy = 0$$

+ F3 + N12 * sin (64,66) = 0
N12 * sin (64,66) = - 0,541

$$N12 = -0,599$$

Uzel 7. Uzel 4.

Obrázek 25: Pomocné schéma pro výpočet styčníkovou metodou

Obrázek 26: Model příhradové konstrukce se zobrazením vnitřních sil

Označení	Metoda	Metoda	Pomocí	Odchylka průs.
prutu	styčníková	průsečná	RREMu- 2D	metody a RFEMu
N1	2.84	2.87	20	0
111	2,04	2,07	2,07	U
N2	3,31	3,34	3,34	0
N3	0,21	0,32	0,32	0
N4	0,46	0,54	0,54	0
N5	- 0,16	- 0,07	- 0,07	0
N6	- 2,58	- 2,58	- 2,59	0,01
N7	3,62	3,62	3,61	0,01
N8	- 1,17	- 1,18	- 1,17	0,01
N9	- 1,98	- 1,97	- 1,97	0
N10	0	0,02	0	0,02
N11	1,87	1,82	1,80	0,02
N12	- 0,60	- 0,60	- 0,58	0,02
N13	- 0,52	- 0,51	- 0,52	0,01
N14	0	0	0	0
N15	0,31	0,29	0,28	0,01
N16	- 0,14	- 0,14	- 0,15	0,01
N17	- 6,11	- 6,14	- 6,13	0,01
N18	- 2,03	- 2,06	- 2,06	0
N19	- 2,03	- 2,07	- 2,06	0,01
N20	- 0,14	- 0,2	- 0,2	0
N21	- 0,23	- 0,2	- 0,2	0

9.1. POROVNÁNÍ VÝPOČTOVÝCH MODELŮ PŘÍHRADOVINY

Pro porovnání vnitřních sil v příhradové konstrukci byl vybrán zatěžovací stav číslo 2, což je užitné zatížení. V tomto stavu se srovnávají vnitřní normálové síly na zjednodušené konstrukci, která je dvojrozměrná, a je zde přidán prut z důvodu uskutečnění výpočtu. Druhou konstrukcí k porovnání je příhradovina z výpočtového modelu. Následuje porovnání jednotlivých prutů. Horní pás vykazuje dostatečnou podobnost výsledků. Dolní pás příhradoviny lze také považovat za srovnatelný. Porovnávat se bohužel nedají pruty na volném konci, kde došlo k přidání prutu. Nejvíce odlišné se jeví vnitřní síly na diagonálách. Lze se domnívat, že k těmto odlišnostem dochází z důvodu zanedbání sklonu u dvojrozměrné konstrukce. Také zde dochází k největšímu projevu účinku svislých sil, které se částečně v trojrozměrném modelu přenáší do prutu spojujících konstrukci v prostoru. Výsledné porovnání se tedy jeví v hlavních prutech jako srovnatelné a v diagonálách porovnatelné z hlediska tahů a tlaků.

Obrázek 27: Zjednodušený dvojrozměrný model příhradoviny – vnitřní síly

Obrázek 28: Příhradová konstrukce v celkovém modelu – vnitřní síly

9.2.POROVNÁNÍ VÝSLEDKŮ Z MODELŮ M1, M2 A M3

K porovnání byly vytvořeny tři modely v programu RFEM. Jedním z nich je konstrukce obou sedmiček (ozn. M1) připojených vzájemně osmi ocelovými profily, které mohou simulovat pevné spojení. Spojení je realizováno ve čtyřech místech konstrukce. Tímto spojením se horní zatížení z velké sedmičky přenáší na sedmičku menší. Zatížení vychází z předchozích výpočtů a je zadáno na každou dílčí sedmičku. Druhou konstrukci k porovnání tvoří konstrukce malé sedmičky (onz. M2), na kterou je zadáno zatížení ze samostatné velké sedmičky. Toto zatížení je zadáno bodovými silami v místě přenosu zatížení. Posledním modelem pro porovnání je model samostatné velké sedmičky (ozn. M3). Pro modely byly vybrány kombinace vhodné k porovnání účinků v konstrukci.

	A	B	C	D	E	F
Uzel	Podp	orové síly [kN]		Podporo	vé momenty [kN	m]
č.	Px	Py	Pz	Mx	MY	Mz
47	3.247	11.038	-19.933	0.000	0.000	-1.002
48	12.134	44.667	-87.149	0.000	0.000	-1.200
49	11.578	53.893	-84.277	0.000	0.000	-1.721
50	4.080	17.375	-22.896	0.000	0.000	-1.506
51	-2.850	17.706	-35.158	0.000	0.000	2.697
52	1.075	-0.815	14.551	0.000	0.000	1.907
53	-12.818	69.495	-127.906	0.000	0.000	2.952
54	-10.703	46.465	-85.785	0.000	0.000	2.128
222	-1.271	16.616	-55.827	0.000	0.000	0.684
223	11.844	-53.138	-153.947	0.000	0.000	-2.387
224	38.949	-87.108	-143.525	0.000	0.000	-4.682
225	-39.639	-137.013	-232.799	0.000	0.000	0.570
Σsily	15.626	-0.818	-1034.650			
Σzatíž.	15.626	-0.818	-1034.650			

Porovnání výsledných podporových sil

a) model sedmiček dohromady

	A	B	C	D	E	F
Uzel	Podp	orové síly [kN]		Podpore	vé momenty [kN	m]
č.	Px	Pr	Pz	Mx	Mr	Mz
31	-42.774	12.554	-201.057	0.000	0.000	9.237
201	-17.471	-48.409	-268.502	0.000	0.000	-0.612
202	-16.162	131.804	-186.714	0.000	0.000	10.822
204	6.997	-26.485	-247.332	0.000	0.000	0.016
222	-9.055	-28.363	-23.117	0.000	0.000	5.011
223	1.626	-17.818	-107.071	0.000	0.000	3.677
224	0.674	-10.979	-43.706	0.000	0.000	3.192
225	-13.803	-12.304	10.588	0.000	0.000	5.316
Σsily	-89.968	0.000	-1066.910			
Σzatíž.	-89.968	0.000	-1066.910			

b) malá sedmička s přeneseným zatížením od velké sedmičky

Obrázek 29: Podporové síly porovnatelné kombinace (mezního stavu únosnosti) pro a) model sedmiček dohromady b) malou sedmičku s přeneseným zatížením od velké sedmičky

man eres	A	B	C	D	E	F
Uzel	Podp	orové síly [kN]		Podporo	vé momenty [kN	m]
č.	Px	Pγ	Pz	Mx	My	Mz
47	2.583	8.992	-16.797	0.000	0.000	-0.892
48	10.154	37.725	-74.674	0.000	0.000	-1.068
49	9.548	45.213	-68.965	0.000	0.000	-1.521
50	3.184	14.066	-16.230	0.000	0.000	-1.333
51	-2.554	14.834	-26.394	0.000	0.000	2.114
52	0.212	1.274	6.134	0.000	0.000	1.483
53	-10.340	55.338	-98.201	0.000	0.000	2.328
54	-9.034	38.168	-71.698	0.000	0.000	1.674
222	-1.390	13.483	-42.977	0.000	0.000	0.728
223	9.990	-43.267	-127.673	0.000	0.000	-1.806
224	31.586	-71.937	-120.887	0.000	0.000	-3.482
225	-33.520	-114.435	-192.596	0.000	0.000	0.785
Σsily	10.418	-0.545	-850.960		100-000 (100-00-1)	
Σzatíž.	10,418	-0.545	-850.960			

a) model sedmiček dohromady

	A	B	C	D	E	F
Uzel	Podp	oorové sily [kN]	1	Podpore	vé momenty [kN	lm]
Č.	Px	Pr	Pz	Mx	Mr	Mz
31	-30.494	20.147	-166.639	0.000	0.000	6.132
201	-14.174	-40.626	-222.140	0.000	0.000	-0.439
202	-8.442	101.432	-153.231	0.000	0.000	7.230
204	6.726	-24.200	-205.216	0.000	0.000	0.011
222	-6.683	-22.021	-22.748	0.000	0.000	3.403
223	1.879	-15.505	-79.571	0.000	0.000	2.397
224	1.298	-8.951	-31.818	0.000	0.000	2.034
225	-10.090	-10.276	3.752	0.000	0.000	3.635
Σsily	-59.979	0.000	-877.611			
E zatíž.	-59.979	0.000	-877.611			

b) malá sedmička s přeneseným zatížením od velké sedmičky

Obrázek 30: Podporové síly porovnatelné kombinace (charakteristické) pro a) model sedmiček dohromady b) malou sedmičku s přeneseným zatížením od velké sedmičky

Toto porovnání lze provést mezi modelem sedmiček dohromady (M1) a modelem malé sedmičky s přeneseným zatížením (M2). Vyskytují se zde téměř adekvátní zatížení. Porovnání je provedeno, jak v mezním stavu použitelnosti jako charakteristické kombinaci, tak i v mezním stavu únosnosti jako trvalé kombinaci. Nejlépe lze porovnat svislou sílu, označenou jako Pz, v této reakci se srovná konstrukce M1 a M2. V charakteristické se vyskytuje rozdíl 26,651 kN a v trvalé je rozdíl 32,26 kN, což jsou přípustné rozdíly vzhledem k tomu, že je výsledek ve stovkách a tisících. Srovnávat lze taky podporovou sílu Py, která vykazuje rozdíl 0,545 kN v charakteristické a 0,818 v trvalé kombinaci. Vodorovné síly jsou odlišné především z důvodu větší stability při spolupůsobení sedmiček navzájem, tedy toto působení nelze dostatečně porovnat. K velkému rozdílu ve směru X také přispívá zjednodušené zadávání větru z velké sedmičky na malou v modelu M2.

Porovnání výsledných normálových sil

Toto srovnání může proběhnout mezi konstrukcí samostatné velké sedmičky (M3) a vybrané části sedmiček dohromady (M1) a taktéž u malé sedmičky(ozn. M4) a vybrané části sedmiček dohromady (M1). Normálové síly se v některých místech značně liší a v některých místech lze naopak nalézt dobrou shodu. Ukázka a zdůvodnění tohoto jevu bude probrána na příkladech v následujících obrázcích. K tomuto porovnání byly modely zatíženy kombinací mezního stavu únosnosti.

Horní část velké sedmičky lze ve většině případů dobře porovnat a odlišnosti jsou v přípustné mezi. Horní částí je zde myšlena jako část od vzájemného propojení sedmiček směrem nahoru. Na nohách sedmičky jsou normálové síly k porovnání vyznačeny žlutě. Rozdíly činní v jednom případě 5,098 a ve druhém 6,210 což jsou zanedbatelné hodnoty. Pro další srovnání sloužily normálové síly na plošině označeny zeleně. V jednom případě se vyskytuje rozdíl pouze 1,208 a ve druhém o něco větší 6,255 avšak stále považován za srovnatelný. Výsledkem posouzení je, že tuto horní část se dá považovat v rámci velikosti výsledných hodnot za porovnatelnou.

Obrázek 32: Porovnání normálových sil na dolní části velké sedmičce v modelu a) sedmičky dohromady b) velké sedmičky

Na rozdíl od předchozího vyobrazení srovnávání modelů je toto porovnání ukázkou toho, že normálové síly v modelech se v dolní části ve většině prutů liší. Fialově označené srovnání vykazuje rozdíl 25,768, žluté 25,432 a hnědé 9,407. Síly se tedy liší až dvojnásobně tedy jsou považovány za nesrovnatelné.

Tato odlišnost se zde vyskytuje z důvodu jiného přenesení sil při vzájemném spojení sedmiček prutem a při nahrazení spoje sedmiček podporou. K přiblížení se podobných výsledků by jistě bylo více možností. Jedním z řešením by mohlo být využití pružných podpor, což ovšem není součástí této bakalářské práce.

V porovnání malé sedmičky lze porovnat taktéž pouze část před spojením sedmiček dohromady. V těchto místech se nachází zanedbatelné rozdíly. Pro porovnání slouží fialové zvýraznění, kde je rozdíl 0,964 a také žluté s rozdílem 0,268. Část pod připojením sedmiček nelze srovnávat, protože jsou zde velké rozdíly. Například na zeleném zvýrazněním je rozdíl 305,727, což je trojnásobek hodnoty. K těmto odlišnost dochází ze stejného důvodu jako u velké sedmičky, tedy jde o jiný druh podepření malé sedmičky velkou sedmičkou.

9.3.POROVNÁNÍ CELKOVÉHO PŮSOBENÍ VĚTRU VYPOČTENÉHO RUČNĚ A GENEROVANÉHO POMOCNÝM PROGRAMEM RWIND SIMULATION

Jedním z nejdůležitějších porovnání této práce je analýza působení větru na konstrukci. Tato kapitola se věnuje porovnání celkového působení větru na celou konstrukci, ovšem bez zavedení vlivu větru na schodiště. Ten je pro všechny druhy výpočtů stejný a pouze by zvyšoval všechny účinky o stejnou hodnotu. K vzájemnému srovnání slouží tři druhy výpočtu. Jako první součet ručního výpočtu malé a velké sedmičky (viz kapitola 7.3.), který vychází z platné normy [9]. Druhý je generován z programu RWIND, a to zvlášť na konstrukci malé sedmičky a velké sedmičky. Posledním je celkové působení na spojenou konstrukci, která navzájem spolupůsobí (obě sedmičky tvoří jeden výpočtový model).

	Ruční výpočet:	RWIND Simulation	RWIND Simulation na
		Zviast sedimeky	Konstruker domoniady
Vítr zprava a zleva	$\Sigma = 70,778 \text{ Kn}$	0° = 61,738 kN	0° = 55,171 kN
Vítr z horní	$\sum = 63,179 \text{ kN}$	90° = 61,786 kN	90° = 62,343 kN
Vítr z dolní	$\Sigma = 62,988 \text{ kN}$	270° = 59,945 kN	270° = 59,239 kN

Tabulka 12: Součet výpočtů větru malé a velké sedmičky ve čtyřech směrech

Odchylky mezi ručním výpočtem a výpočtem sedmiček zvlášť jsou způsobeny větší přesností výpočtu programu se zavedením veškerých úhlů a koeficientů. Největší rozdíl mezi druhým a třetím výpočtem v tabulce nalezneme u směru zprava a zleva, tedy v RFEMu označeno jako 0°. Tento rozdíl je možné vysvětlit tím, že se část sedmiček vzájemně překrývá, tedy vítr působí ve výsledku na menší plochu. K překrytí dochází ve dvou místech u velké sedmičky, obě místa se nachází v noze sedmičky. U malé sedmičky je první překrytí v noze, druhé v boku horní plošiny.

Obrázek 34: Model sedmiček dohromady zobrazující vzájemné překrytí

Obrázek 35: Model sedmiček dohromady v programu RWIND se směrem větru 270° se zobrazením tlaků na konstrukci

10. POSOUZENÍ MEZNÍHO STAVU ÚNOSNOSTI

V této práci byly vybrány pouze některé z průřezu pro posouzení mezního stavu únosnosti, a to především z důvodu zjednodušení práce. Jelikož se jedná o příhradovou konstrukci, hlavní nosné prvky jsou namáhány převážně tahem a tlakem. Pro počítané průřezy je zvolena kombinace označená jako KZ150 na modelu konstrukce dohromady (M1). Zbytek průřezu je posouzeno v programu Rfem a v práci se podrobněji neřeší. Veškeré výpočty byly provedeny dle platných norem ČSN EN 1993-1-8, Eurokód 1 [10].

10.1. VE VELKÉ SEDMIČCE

			Momenty [kNm]			Sily [kN]		Misto	el
		M±	My	Мт	Vz	Vy	N	x [m]	č.
x8 ; Ferona - EN 10219	250 15 - RO 219	-4.250	0.364	-0.963	1.046	3.575	-196.197	0.000	8
	117	-3.417	0.599	-0.962	0.983	-3.603	-196.080	0.232	
	117	-3.417	0.599	-0.962	0.991	3.468	-196.080	0.232	
	797	-1.793	1.029	-0.961	0.861	-3.507	-195.847	0.696	
	797	-1.793	1.029	-0.961	0.827	3.382	-195.847	0.696	
	222	-0.222	1.382	-0.959	0.691	-3.397	-195.614	1.160	
	222	-0.222	1.382	-0.959	0.524	3.218	-195.614	1.160	
	271	1.27	1.593	-0.958	0.384	-3.211	-195.382	1.623	
	271	1.27	1.593	-0.958	0.342	-3.046	-195.382	1.623	
	977	1.977	1.664	-0.957	0.271	-3.035	-195.266	1.855	21
	77	1.97	1.664	-0.957	0.271	-3.035	-195.266	1.855	Max N
	250	-4.250	0.364	-0.963	1.046	3.575	-196.197	0.000	Min N
	977	1.97	1.664	-0.957	0.271	-3.035	-195.266	1.855	Max V _y
101125-1012-102	117	-3.417	0.599	-0.962	0.983	-3.603	-196.080	0.232	Ain Vy
RO 219.1x8	250	-4.250	0.364	-0.963	1.046	-3.575	-196.197	0.000	lax Vz
	977	1.977	1.664	-0.957	0.271	-3.035	-195.266	1.855	lin Vz
	977	1.977	1.664	-0.957	0.271	-3.035	-195.266	1.855	ах Мт
	250	-4.250	0.364	-0.963	1.046	-3.575	-196.197	0.000	lin MT
	977	1.977	1.664	-0.957	0.271	-3.035	-195.266	1.855	хМу
	250	-4.250	0.364	-0.963	1.046	3.575	-196.197	0.000	n My
	77	1.97	1.664	-0.957	0.271	-3.035	-195.266	1.855	x Mz
	50	-4.20	0.364	-0.963	1.046	13.375	-196,197	0.000	II IVIZ
	islo 720	rutu čis V	eristik	o poso Irakt	i sily pro vé cha	a vnitrn růřezo	Prúřez vé a p	ek 38: riálo	raz ate

fu = 360 MPa G = 81 GPa

E = 210 GPa

fy = 235 MPa

$$A = \pi * t * (d - t) = \pi * 8 * (219, 1 - 8) = 5305.5 \ mm^2 = 0,53 * 10^{-2} \ m^2$$

$$Iy = Iz = \frac{\pi}{64} * (d^4 - (d - 2t)^4) = \frac{\pi}{64} * (219, 1^4 - (219, 1 - 2 * 8)^4)$$

= 29596328 mm⁴ = 0,29596328 * 10⁻⁴ m⁴
$$Wpl, y = \frac{1}{6} * (d^3 - (d - 2t)^3) = \frac{1}{6} * (219, 1^3 - (219, 1 - 2 * 8)^3) = 356676 mm^3$$

= 0,356676 * 10⁻³ m³

Klasifikace průřezu

$$\varepsilon = \sqrt{\frac{235}{fy}} = \sqrt{\frac{235}{235}} = 1,0$$

$$\frac{c}{t} = \frac{219,1}{8} = 27,388 \le 50 * \varepsilon^2 = 50 * 1^2 = 50 \text{ průřez třídy 1}$$

Vnitřní síly

Kombinace

Ned = -196,197 kN	Vz, Ed = 1,046 kN	My, $Ed = 0,364 \text{ kNm}$
Vy, Ed = - 3,575 kN	Mz, Ed = - 4,250 kNm	Ted = -0,963 kN

Posudek na tlak

$$\frac{NEd}{NC, Rd} \le 1,00$$

$$Nc, Rd = \frac{Ax * fy}{\gamma Mo} = \frac{5,3055 * 10^{-3} * 235 * 10^{3}}{1} = 1246,793 \, kN$$

$$\frac{NEd}{Nc, Rd} = \frac{-196,197}{1246,793} = 0,157kN \le 1,00 \, \text{>VYHOVUJE}$$

Posudek ohybového momentu

$$\frac{MEd}{MC, Rd} \le 1,00$$

$$Mc, Rd = Mpl, Rd = \frac{Wpl * fy}{\lambda Mo} = \frac{0,356676 * 10 * 235 * 10^{3}}{1,0} = 83,819 \, kNm$$

$$\frac{MyEd}{MC, Rd} = \frac{0,364}{83,819} = 0,004 \le 1,00 \approx VYHOVUJE$$

$$\frac{MzEd}{MC, Rd} = \frac{-4,250}{83,819} = -0,051 \le 1,00 \approx VYHOVUJE$$

Posudek rovinného vzpěru

$$\frac{NEd}{Nb, Rd} \le 1,00$$

Vzpěrná délka:

$$Lcr, y = Lcr, z = 1.855 m$$

Kritická síla:

$$Ncr, z = \frac{\pi^2 * E * Iz}{Lcr, z^2} = \frac{\pi^2 * 210 * 10^6 * 0,29596328 * 10^{-4}}{1,855^2} = 17826,6215 \, kN$$

Poměrná štíhlost:

$$\lambda z = \sqrt{\frac{A * fy}{Ncr, z}} = \sqrt{\frac{5,305 * 10^{-3} * 235 * 10^{3}}{17826,6215}} = 0,264$$

Součinitel vzpěrnosti:

$$\chi z = \frac{1}{\Phi_z + \sqrt{\Phi_z^2 - \lambda_z^2}} = \frac{1}{0,5505 + \sqrt{0,5505^2 - 0,264^2}} = 0,9675 \le 1,0$$

$$\Phi z = 0,5 * [1 + \alpha * (\lambda z - 0,2) + \lambda z^2]$$

$$= 0,5 * [1 + 0,49 * (0,264 - 0,2) + 0,264^2] = 0,5505$$

$$Nb, Rd = \frac{\chi z * Ax * fy}{\gamma Mo} = \frac{0,9675 * 5,305 * 10^{-3} * 235 * 10^3}{1,0} = 1206,158 \, kN$$

$$\frac{NEd}{Nb, Rd} = \frac{-196,197}{1206,158} = -0,1627 \le 1,00$$

<u>Prut číslo 225, průřez 219x 16 - v 0,000m</u>

Uzel	Místo		Sily [kN]		M	omenty [kNm]			
č.	x [m]	N	Vy	Vz	Мт	My	Mz		P
126	0.000	-2.147	0.006	0.130	-0.038	0.000	0.000	20 - RO 82.5x5 ; Ferona - ČSN 42 5715.0	1
	0.239	-2124	0.006	0.109	-0.038	0.028	-0.001		
	0.239	-2.124	0.012	0.103	-0.038	0.028	-0.001		
	0.716	-2.079	0.012	0.062	-0.038	0.068	-0.007		
	0.716	-2.079	0.007	0.069	-0.038	0.068	-0.007		
	1.193	-2.034	0.007	0.027	-0.038	0.091	-0.010		
	1.193	-2.034	0.004	0.026	-0.038	0.091	-0.010		
	1.670	-1,988	0.004	-0.016	-0.038	0.093	-0.012		
	1.670	-1,988	+0.003	-0.019	-0.038	0.093	-0.012		
	2.147	-1,943	-0.003	-0.061	-0.038	0.074	-0.010		
	2.147	-1,943	-0.012	-0.071	-0.038	0.074	-0.010		
	2.624	-1,897	-0.012	-0.113	-0.038	0.030	-0.005		
	2.624	-1,897	+0.020	-0.115	-0.038	0.030	-0.005		
43	2.863	-1,874	-0.020	-0.136	-0.038	0.000	0.000		
Max N	2.863	-1.874	+0.020	-0.136	-0.038	0.000	0.000		
Min N	0.000	-2.147	0.006	0.130	-0.038	0.000	0.000		
flax V _y	0.239	-2.124	0.012	0.103	-0.038	0.028	-0.001	RO 219x16	
vlin Vy	2.863	-1,874	-0.020	-0.136	-0.038	0.000	0.000	110 210/10	
lax Vz	0.000	-2.147	0.006	0.130	-0.038	0.000	0.000		1
Min Vz	2.863	-1,874	-0.020	-0.136	-0.038	0.000	0.000		0
Мах Мт	0.000	-2.147	0.006	0.130	-0.038	0.000	0.000		22
Min M⊤	2.863	-1,874	-0.020	-0.136	-0.038	0.000	0.000		
Max My	1.431	-2.011	0.004	0.005	-0.038	0.094	-0.011		
Min My	2.863	-1,874	-0.020	-0.136	-0.038	0.000	0.000		
Max M _z	0.000	-2.147	0.006	0.130	-0.038	0.000	0.000		

Materiálové a průřezové charakteristiky
Ocel: S235

fy = 235 MPa
E = 210 GPa
fu = 360 MPa
G = 81 GPa
A =
$$\pi * t * (d - t) = \pi * 16 * (219 - 16) = 10203,893 mm^2 = 0,0102 m^2$$

 $ly = lz = \frac{\pi}{64} * (d^4 - (d - 2t)^4) = \frac{\pi}{64} * (219^4 - (219 - 2 * 16)^4)$
= 52888052,59 mm⁴ = 0,52888052 * 10⁻⁴ m⁴
 $Wpl, y = \frac{1}{6} * (d^3 - (d - 2t)^3) = \frac{1}{6} * (219^3 - (219 - 2 * 16)^3) = 660709,33 mm^3$
= 0,660709 * 10⁻³ m³

Klasifikace průřezu

$$\varepsilon = \sqrt{\frac{235}{fy}} = \sqrt{\frac{235}{235}} = 1,0$$

$$\frac{c}{t} = \frac{219}{16} = 13,6875 \le 50 * \varepsilon^2 = 50 * 1^2 = 50 \text{ průřez třídy 1}$$

Vnitřní síly

Kombinace

Ned = -186,853kN	Vz, Ed = 1,486 kN	My, $Ed = -3,170 \text{ kNm}$
Vy, Ed = - 0,831 kN	Mz, Ed = - 0,811 kNm	Ted = 0,610 kN

Posudek na tlak

$$\frac{NEd}{NC, Rd} \le 1,00$$

$$Nc, Rd = \frac{Ax * fy}{\gamma Mo} = \frac{0.0102 * 235 * 10^{3}}{1} = 2397 \ kN$$

$$\frac{NEd}{Nc, Rd} = \frac{-186,853}{2397} = 0,0779kN \le 1,00 \text{ wVYHOVUJE}$$

Posudek ohybového momentu

$$\frac{MEd}{MC, Rd} \le 1,00$$

$$Mc, Rd = Mpl, Rd = \frac{Wpl * fy}{\lambda Mo} = \frac{0,660709 * 10^{-3} * 235 * 10^{3}}{1,0} = 155,266kNm$$
$$\frac{MyEd}{Mc, Rd} = \frac{-3,170}{155,266} = 0,020 \le 1,00 \text{>VYHOVUJE}$$
$$\frac{MzEd}{MC, Rd} = \frac{-0,811}{155,266} = -0,0052 \le 1,00 \text{>VYHOVUJE}$$

Posudek rovinného vzpěru

$$\frac{NEd}{Nb, Rd} \le 1,00$$

Vzpěrná délka:

$$Lcr, y = Lcr, z = 2,385 m$$

Kritická síla:

$$Ncr, z = \frac{\pi^2 * E * Iz}{Lcr, z^2} = \frac{\pi^2 * 210 * 10^6 * 0.52888052 * 10^{-4}}{2.385^2} = 19270,804 \, kN$$

Poměrná štíhlost:

$$\lambda z = \sqrt{\frac{A * fy}{Ncr, z}} = \sqrt{\frac{0,0102 * 235 * 10^3}{19270,804}} = 0,35268$$

$$\chi z = \frac{1}{\Phi z + \sqrt{\Phi z^2 - \lambda z^2}} = \frac{1}{0,5996 + \sqrt{0,5996^2 - 0,35268^2}} = 0,9221 \le 1,0$$

$$\Phi z = 0,5 * [1 + \alpha * (\lambda z - 0,2) + \lambda z^2]$$

$$= 0,5 * [1 + 0,49 * (0,35268 - 0,2) + 0,35268^2] = 0,5996$$

$$Nb, Rd = \frac{\chi z * Ax * fy}{\gamma Mo} = \frac{0,9221 * 0,0102 * 235 * 10^3}{1,0} = 2210,2737 \ kN$$

$$\frac{NEd}{Nb, Rd} = \frac{-186,853}{2210,2737} = -0,08454 \le 1,00$$

<u>Prut číslo 234, průřez 219x 10 - v 0,000m</u>

Uzel	Misto		Sily [kN]		M	omenty [kNm]		
č.	x [m]	N	Vy	Vz	Мт	My	Mz	Pi
122	0.000	-225.299	1.224	-16.546	1.107	7.939	0.376	16 - RO 219x10 ; Ferona - ČSN 42 5715.01
	0.000	-225.299	1.224	-16.546	1.107	7.939	0.376	
	0.217	-225,333	1.225	-16.781	1.109	4.320	0.111	
	0.217	-225,333	1.370	-16.953	1.109	4.320	0.111	
	0.651	-225,407	1.366	-17.356	1.113	-3.133	-0.483	
	0.651	-225,408	1.536	-17.492	1.113	-3.134	-0.483	
	1.085	-225.490	1.524	-17.802	1.117	-10.801	-1.148	
	1.085	-225,491	1.655	-17.853	1.117	-10.801	-1.148	
	1.519	-225.583	1.634	-18.069	1.121	-18.605	-1.863	
	1.519	-225,583	1.754	-18.005	1.121	-18.605	-1.863	
	1.736	-225.633	1.740	-18.077	1.123	-22.523	-2.243	
18	1.736	-225.633	1.740	-18.077	1.123	-22.523	-2.243	
Max N	0.000	-225.299	1.224	-16.546	1.107	7.939	0.376	
Min N	1.736	-225.633	1.740	-18.077	1.123	-22.523	-2.243	
Max Vy	1.519	-225.583	1.754	-18.005	1.121	-18.605	-1.863	
Min Vy	0.000	-225.299	1.224	-16.546	1.107	7.939	0.376	RO 219v10
Max Vz	0.000	-225.299	1.224	-16.546	1.107	7.939	0.376	10 210/10
Min Vz	1.736	-225.633	1.740	-18.077	1.123	-22.523	-2.243	and the second se
Max MT	1.736	-225,633	1.740	-18.077	1.123	-22.523	-2.243	- Contraction
Min MT	0.000	-225.299	1.224	-16.546	1.107	7.939	0.376	
Max My	0.000	-225.299	1.224	-16.546	1.107	7.939	0.376	
Min My	1.736	-225,633	1.740	-18.077	1.123	-22.523	-2.243	
Max Mz	0.000	-225.299	1.224	-16.546	1.107	7.939	0.376	N

Materiálové a průřezové charakteristiky

Ocel: S235

 $fy = 235 \text{ MPa} \qquad \qquad E = 210 \text{ GPa}$

fu = 360 MPa G = 81 GPa

 $A = \pi * t * (d - t) = \pi * 10 * (219 - 10) = 6565,92865 \ mm^2 = 0,00657 \ m^2$

$$Iy = Iz = \frac{\pi}{64} * (d^4 - (d - 2t)^4) = \frac{\pi}{64} * (219^4 - (219 - 2 * 10)^4)$$
$$= 35932865,26 \ mm^4 = 0.35932865 * 10^{-4} \ m^4$$

$$Wpl, y = \frac{1}{6} * (d^3 - (d - 2t)^3) = \frac{1}{6} * (219^3 - (219 - 2 * 10)^3) = 437143,33 mm^3$$
$$= 0,437143 * 10^{-3} m^3$$

Klasifikace průřezu

$$\varepsilon = \sqrt{\frac{235}{fy}} = \sqrt{\frac{235}{235}} = 1,0$$

$$\frac{c}{t} = \frac{219}{10} = 21,9 \le 50 * \varepsilon^2 = 50 * 1^2 = 50 \text{ průřez třídy 1}$$

Vnitřní síly

Kombinace

Ned = -225,299 kN	Vz, Ed = -16,546 kN	My, Ed = 7,939 kNm
Vy, Ed = 1,224 kN	Mz, Ed = 0,376 kNm	Ted = 1,107 kN

Posudek na tlak

$$\frac{NEd}{NC, Rd} \le 1,00$$

$$Nc, Rd = \frac{Ax * fy}{\gamma Mo} = \frac{0,00657 * 235 * 10^3}{1} = 1543,95 \, kN$$

$$\frac{NEd}{Nc, Rd} = \frac{-225,299}{1543,95} = 0,14592 \, kN \le 1,00 \, \text{>VYHOVUJE}$$

Posudek ohybového momentu

$$\frac{MEd}{MC, Rd} \le 1,00$$

$$Mc, Rd = Mpl, Rd = \frac{Wpl * fy}{\lambda Mo} = \frac{0,437143 * 10^{-3} * 235 * 10^{3}}{1,0} = 102,7286 \ kNm$$

$$\frac{MyEd}{Mc, Rd} = \frac{7,939}{102,7286} = 0,0773 \le 1,00 \ \text{wVHOVUJE}$$

$$\frac{MzEd}{MC, Rd} = \frac{0,376}{102,7286} = 0,0037 \le 1,00 \ \text{wVHOVUJE}$$

Posudek rovinného vzpěru

$$\frac{NEd}{Nb, Rd} \le 1,00$$

Vzpěrná délka:

$$Lcr, y = Lcr, z = 1,736 m$$

Kritická síla:

$$Ncr, z = \frac{\pi^2 * E * Iz}{Lcr, z^2} = \frac{\pi^2 * 210 * 10^6 * 0,35932865 * 10^{-4}}{1,736^2} = 24712,2019 \, kN$$

Poměrná štíhlost:

$$\lambda z = \sqrt{\frac{A * fy}{Ncr, z}} = \sqrt{\frac{0,00657 * 235 * 10^3}{24712,2019}} = 0,24995$$

$$\chi z = \frac{1}{\phi_z + \sqrt{\phi_z^2 - \lambda z^2}} = \frac{1}{0.54348 + \sqrt{0.54348^2 - 0.24995^2}} = 0.9746 \le 1.0$$

$$\phi_z = 0.5 * [1 + \alpha * (\lambda z - 0.2) + \lambda z^2]$$

$$= 0.5 * [1 + 0.49 * (0.24995 - 0.2) + 0.24995^2] = 0.54348$$

$$Nb, Rd = \frac{\chi z * Ax * fy}{\gamma Mo} = \frac{0.9746 * 0.00657 * 235 * 10^3}{1.0} = 1504.7337 \, kN$$

$$\frac{NEd}{Nb, Rd} = \frac{-225.299}{1504.7337} = -0.14973 \le 1.00$$

Prut číslo 247, průřez 82,5 x 6,3 - v 0,000m

Uzel	Misto		Sily [kN]		Mo	omenty [kNm]		
č.	x [m]	N	Vy	Vz	Мт	Mγ	Mz	Průřez
122	0.000	86.449	-0.118	0.179	0.017	0.000	0.000	17 - RO 82.5x6.3 ; Ferona - ČSN 42 5715.01
	0.233	86.467	-0.119	0.148	0.017	0.038	0.028	·····
	0.233	86,467	-0.091	0.141	0.017	0.038	0.028	
	0.700	86.502	-0.100	0.087	0.017	0.091	0.072	
	0.700	86,502	-0.023	0.072	0.017	0.091	0.072	
	1.167	86.538	-0.037	0.025	0.017	0.113	0.086	
	1.167	86.538	0.012	0.023	0.017	0.113	0.086	
	1.634	86.573	-0.002	-0.023	0.017	0.113	0.083	
	1.634	86.573	0.044	-0.025	0.017	0.113	0.083	
	2.101	86.609	0.031	-0.073	0.017	0.091	0.066	
	2.101	86.609	0.092	-0.089	0.017	0.091	0.066	
	2.568	86.644	0.085	-0.143	0.017	0.037	0.025	
	2.568	86.644	0.108	-0.143	0.017	0.037	0.025	
21	2.801	86,662	0.107	-0.174	0.017	0.000	0.000	
Max N	2.801	86.662	0.107	-0.174	0.017	0.000	0.000	
Min N	0.000	86.449	-0.118	0.179	0.017	0.000	0.000	
Max Vy	2.568	86.644	0.108	-0.143	0.017	0.037	0.025	
Min Vy	0.233	86.467	-0.119	0.148	0.017	0.038	0.028	
Max Vz	0.000	86.449	-0.118	0.179	0.017	0.000	0.000	
Min Vz	2.801	86.662	0.107	-0.174	0.017	0.000	0.000	
Мах М т	2.241	86.619	0.089	-0.104	0.017	0.077	0.053	
Min Мт	0.000	86,449	-0.118	0.179	0.017	0.000	0.000	RO 82 5x6 3
Max My	1.401	86.555	0.005	0.000	0.017	0.116	0.084	
Min My	2.801	86.662	0.107	-0.174	0.017	0.000	0.000	
Max Mz	1.167	86.538	0.012	0.023	0.017	0.113	0.086	Change and a second sec
Min Mz	0.000	86,449	-0.118	0.179	0.017	0.000	0.000	

Materiálové a průřezové charakteristiky

Ocel: S235

fy = 235 MPa E = 210 GPa

 $fu = 360 \text{ MPa} \qquad \qquad G = 81 \text{ GPa}$

 $A = \pi * t * (d - t) = \pi * 6,3 * (82,5 - 6,3) = 1508,15297 \ mm^2 = 0,001508 \ m^2$

$$Iy = Iz = \frac{\pi}{64} * (d^4 - (d - 2t)^4) = \frac{\pi}{64} * (82,5^4 - (82,5 - 2 * 6,3)^4)$$
$$= 1102107,29 \ mm^4 = 0,01102107 * 10^{-4} \ m^4$$

$$Wpl, y = \frac{1}{6} * (d^3 - (d - 2t)^3) = \frac{1}{6} * (82,5^3 - (82,5 - 2 * 6,3)^3)$$
$$= 36663,921 \ mm^3 = 0,36663 * 10^{-3} \ m^3$$

Klasifikace průřezu

$$\varepsilon = \sqrt{\frac{235}{fy}} = \sqrt{\frac{235}{235}} = 1,0$$

$$\frac{c}{t} = \frac{82,5}{6,3} = 13,0952 \le 50 * \varepsilon^2 = 50 * 1^2 = 50 \text{ průřez třídy 1}$$

Vnitřní síly

Kombinace

Ned = 86,449 kN	Vz, Ed = 0,179 kN	My, $Ed = 0,000 \text{ kNm}$
Vy, Ed = -0,118 kN	Mz, Ed = 0,000 kNm	Ted = 0,017 kN

Posudek na tlak

$$\frac{NEd}{NC, Rd} \le 1,00$$

$$Nc, Rd = \frac{Ax * fy}{\gamma Mo} = \frac{0,001508 * 235 * 10^3}{1} = 354,38 \ kN$$

$$\frac{NEd}{Nc, Rd} = \frac{86,449}{354,38} = 0,24394 \ kN \le 1,00 \ \text{>VYHOVUJE}$$

Posudek ohybového momentu

$$\frac{MEd}{MC, Rd} \le 1,00$$

$$Mc, Rd = Mpl, Rd = \frac{Wpl * fy}{\lambda Mo} = \frac{0,36663 * 10^{-3} * 235 * 10^{3}}{1,0} = 86,1581 \ kNm$$

$$\frac{MyEd}{Mc, Rd} = \frac{0,000}{86,1581} = 0,000 \le 1,00 \approx VYHOVUJE$$

$$\frac{MzEd}{MC, Rd} = \frac{0,000}{86,1581} = 0,000 \le 1,00 \approx VYHOVUJE$$

Posudek rovinného vzpěru

 $\frac{NEd}{Nb,Rd} \le 1,00$

Vzpěrná délka:

Lcr, y = Lcr, z = 2,801 m

Kritická síla:

$$Ncr, z = \frac{\pi^2 * E * Iz}{Lcr, z^2} = \frac{\pi^2 * 210 * 10^6 * 0,01102107 * 10^{-4}}{2,801^2} = 291,1499 \, kN$$

Poměrná štíhlost:

$$\lambda z = \sqrt{\frac{A * fy}{Ncr, z}} = \sqrt{\frac{0,001508 * 235 * 10^3}{291,1499}} = 1,103256$$

Součinitel vzpěrnosti:

$$\chi z = \frac{1}{\Phi z + \sqrt{\Phi z^2 - \lambda z^2}} = \frac{1}{1,329885 + \sqrt{1,329885^2 - 1,103256^2}} = 0,482518$$
$$\leq 1,0$$

$$\Phi z = 0.5 * [1 + \alpha * (\lambda z - 0.2) + \lambda z^{2}]$$

= 0.5 * [1 + 0.49 * (1.103256 - 0.2) + 1.103256^{2}] = 1.329885
Nb, Rd = $\frac{\chi z * Ax * fy}{\gamma Mo} = \frac{0.482518 * 0.001508 * 235 * 10^{3}}{1.0} = 170.99473 \, kN$

$$\frac{NEd}{Nb, Rd} = \frac{86,449}{170,99473} = 0,50557 \le 1,00$$

Obrázek 42: Zobrazení posuzovaných prutů ve velké sedmičce

10.2. V MALÉ SEDMIČCE

Prut číslo 97, průřez 219 x 16 - v 0,000m

Uzel	Místo		Síly [kN]		Mo	menty [kNm]			
č.	x [m]	N	Vy	Vz	Mτ	My	Mz	Průřez	
1	0.000	-258.754	0.908	4.387	0.238	0.133	2.085	4 - RO 219x16 ; Ferona - ČSN 42 5715.01	
	0.201	-258.565	0.917	4.277	0.238	1.005	1.902		
	0.201	-258.566	0.830	4.378	0.238	1.005	1.902		
	0.251	-258.518	0.832	4.349	0.238	1.224	1.860		
	0.251	-258.518	0.832	4.349	0.238	1.224	1.860		
	0.603	-258.188	0.847	4.145	0.238	2.720	1.564		
	0.603	-258.188	0.740	4.204	0.238	2.720	1.564		
	0.754	-258.047	0.745	4.112	0.238	3.347	1.452		
	0.754	-258.047	0.745	4.112	0.238	3.347	1.452		
	1.005	-257.811	0.753	3.955	0.238	4.362	1.263		
	1.005	-257.811	0.605	3.991	0.238	4.362	1.263		
	1.256	-257.576	0.612	3.828	0.238	5.345	1.110		
	1.256	-257.576	0.612	3.828	0.238	5.345	1.110		
	1.407	-257.434	0.616	3.727	0.238	5.914	1.018		
	1.407	-257.434	0.497	3.774	0.238	5.914	1.018		
	1.759	-257,104	0.505	3.532	0.237	7.200	0.841		
	1.759	-257,104	0.505	3.532	0.237	7.200	0.841		
	1.809	-257.057	0.506	3.497	0.237	7.377	0.816		
	1.809	-257.057	0.411	3.538	0.237	7.377	0.816		
14	2.010	-256.869	0.415	3.394	0.237	8.074	0.733		
Max N	2.010	-256.869	0.415	3.394	0.237	8.074	0.733		
Min N	0.000	-258.754	0.908	4.387	0.238	0.133	2.085	BO 219x16	
Max V _y	0.201	-258.565	0.917	4.277	0.238	1.005	1.902	110 210/10	
Min V _y	1.809	-257.057	0.411	3.538	0.237	7.377	0.816		
Max Vz	0.000	-258.754	0.908	4.387	0.238	0.133	2.085		S
Min Vz	2.010	-256.869	0.415	3.394	0.237	8.074	0.733		1
Мах Мт	0.000	-258.754	0.908	4.387	0.238	0.133	2.085		13
Min M T	2.010	-256.869	0.415	3.394	0.237	8.074	0.733		1
Max M _y	2.010	-256.869	0.415	3.394	0.237	8.074	0.733		1
Min My	0.000	-258.754	0.908	4.387	0.238	0.133	2.085	· · · · · ·	
Max M _z	0.000	-258.754	0.908	4.387	0.238	0.133	2.085		

Obrázek 43: Průřez a vnitřní síly pro posouzení prutu číslo 97

Materiálové a průřezové charakteristiky

Ocel: S235

$$fy = 235 \text{ MPa} \qquad E = 210 \text{ GPa}$$

 $fu = 360 \text{ MPa} \qquad \qquad G = 81 \text{ GPa}$

$$A = \pi * t * (d - t) = \pi * 16 * (219 - 16) = 10203,893 mm^{2} = 0,0102 m^{2}$$

$$Iy = Iz = \frac{\pi}{64} * (d^4 - (d - 2t)^4) = \frac{\pi}{64} * (219^4 - (219 - 2 * 16)^4)$$
$$= 52888052,59 \ mm^4 = 0,52888052 * 10^{-4} \ m^4$$

$$Wpl, y = \frac{1}{6} * (d^3 - (d - 2t)^3) = \frac{1}{6} * (219^3 - (219 - 2 * 16)^3) = 660709,33 mm^3$$
$$= 0,660709 * 10^{-3} m^3$$

Klasifikace průřezu

$$\varepsilon = \sqrt{\frac{235}{fy}} = \sqrt{\frac{235}{235}} = 1,0$$

$$\frac{c}{t} = \frac{219}{16} = 13,6875 \le 50 * \varepsilon^2 = 50 * 1^2 = 50 \text{ průřez třídy } 1$$

Vnitřní síly

Kombinace

Ned = -258,754 kN	Vz, Ed = 4,387 kN	My, Ed = 0,133 kNm
Vy, Ed = 0,908 kN	Mz, Ed = 2,085 kNm	Ted = 0,238 kN

Posudek na tlak

$$\frac{NEd}{NC, Rd} \le 1,00$$

$$Nc, Rd = \frac{Ax * fy}{\gamma Mo} = \frac{0,0102 * 235 * 10^{3}}{1} = 2397 \ kN$$
$$\frac{NEd}{Nc, Rd} = \frac{-258,754}{2397} = 0,10795 \ kN \le 1,00 \ \text{>VYHOVUJE}$$

Posudek ohybového momentu

$$\frac{MEd}{MC, Rd} \le 1,00$$

$$Mc, Rd = Mpl, Rd = \frac{Wpl * fy}{\lambda Mo} = \frac{0,660709 * 10^{-3} * 235 * 10^{3}}{1,0} = 155,2666 \ kNm$$

$$\frac{MyEd}{Mc, Rd} = \frac{0,133}{155,2666} = 0,0009 \le 1,00 \ \text{wVHOVUJE}$$

$$\frac{MzEd}{MC, Rd} = \frac{2,085}{155,2666} = 0,01343 \le 1,00 \ \text{wVHOVUJE}$$

Posudek rovinného vzpěru

$$\frac{NEd}{Nb, Rd} \le 1,00$$

Vzpěrná délka:

$$Lcr, y = Lcr, z = 2,010 m$$

Kritická síla:

$$Ncr, z = \frac{\pi^2 * E * Iz}{Lcr, z^2} = \frac{\pi^2 * 210 * 10^6 * 0,52888052 * 10^{-4}}{2,010^2} = 27132,1679kN$$

Poměrná štíhlost:

$$\lambda z = \sqrt{\frac{A * fy}{Ncr, z}} = \sqrt{\frac{0,0102 * 235 * 10^3}{27132,1679}} = 0,29723$$

Součinitel vzpěrnosti:

$$\chi z = \frac{1}{\phi_z + \sqrt{\phi_z^2 - \lambda z^2}} = \frac{1}{0,56799 + \sqrt{0,56799^2 - 0,29723^2}} = 0,95057 \le 1,0$$

$$\phi_z = 0,5 * [1 + \alpha * (\lambda z - 0,2) + \lambda z^2]$$

$$= 0,5 * [1 + 0,49 * (0,29723 - 0,2) + 0,29723^2] = 0,56799$$

$$Nb, Rd = \frac{\chi z * Ax * fy}{\gamma Mo} = \frac{0,95057 * 0,0102 * 235 * 10^3}{1,0} = 2278,5163 \, kN$$

$$NEd = -258,754 = 0.11256 = 1.00$$

$$\frac{NEa}{Nb, Rd} = \frac{-258,754}{2278,5163} = 0,11356 \le 1,00$$

<u>Prut číslo 92, průřez 219 x 10 - v 0,000m</u>

1	0.000	-111.248	3.219	3.411	0.332	-2.643	3.539	2 - RO 219x10 ; Ferona - ČSN 42 5715.01
	0.237	-111.275	3.230	3.256	0.333	-1.851	2.773	
	0.237	-111.275	3.146	3.249	0.333	-1.851	2.773	
	0.712	-111.328	3.160	2.931	0.336	-0.384	1.276	
	0.712	-111.328	3.065	2.969	0.336	-0.384	1.276	
	1.186	-111.382	3.069	2.641	0.339	0.948	-0.180	
	1.186	-111.382	2.938	2.779	0.339	0.948	-0.180	
	1.661	-111.436	2.932	2.443	0.342	2.188	-1.574	
	1.661	-111.436	2.838	2.496	0.342	2.188	-1.574	
106	1.898	-111.464	2.831	2.325	0.343	2.760	-2.247	
Max N	0.000	-111.248	3.219	3.411	0.332	-2.643	3.539	RO 210×10
Min N	1.898	-111.464	2.831	2.325	0.343	2.760	-2.247	10 213/10
Max Vy	0.237	-111.275	3.230	3.256	0.333	-1.851	2.773	
Min Vy	1.898	-111.464	2.831	2.325	0.343	2.760	-2.247	and the second se
Max Vz	0.000	-111.248	3.219	3.411	0.332	-2.643	3.539	
Min Vz	1.898	-111.464	2.831	2.325	0.343	2.760	-2.247	
Мах Мт	1.898	-111.464	2.831	2.325	0.343	2.760	-2.247	a di seconda di s
Min MT	0.000	-111.248	3.219	3.411	0.332	-2.643	3.539	
Max M _y	1.898	-111.464	2.831	2.325	0.343	2.760	-2.247	8
Min My	0.000	-111.248	3.219	3.411	0.332	-2.643	3.539	
Max Mz	0.000	-111.248	3.219	3.411	0.332	-2.643	3.539	
Min Mz	1.898	-111.464	2.831	2.325	0.343	2.760	-2.247	

Materiálové a průřezové charakteristiky

Ocel: S235

$$fy = 235 MPa$$
 $E = 210 GPa$

fu = 360 MPa G = 81 GPa

$$A = \pi * t * (d - t) = \pi * 10 * (219 - 10) = 6565,92865 \ mm^2 = 0,00657 \ m^2$$

$$Iy = Iz = \frac{\pi}{64} * (d^4 - (d - 2t)^4) = \frac{\pi}{64} * (219^4 - (219 - 2 * 10)^4)$$
$$= 35932865,26 \ mm^4 = 0,35932865 * 10^{-4} \ m^4$$

$$Wpl, y = \frac{1}{6} * (d^3 - (d - 2t)^3) = \frac{1}{6} * (219^3 - (219 - 2 * 10)^3) = 437143,33 mm^3$$
$$= 0,437143 * 10^{-3} m^3$$

Klasifikace průřezu

$$\varepsilon = \sqrt{\frac{235}{fy}} = \sqrt{\frac{235}{235}} = 1,0$$

$$\frac{c}{t} = \frac{219}{10} = 21,9 \le 50 * \varepsilon^2 = 50 * 1^2 = 50 \text{ průřez třídy 1}$$

Vnitřní síly

Kombinace

Ned = -111,248 kN	Vz, Ed = 3,411 kN	My, $Ed = -2,643 \text{ kNm}$
Vy, Ed = 3,219 kN	Mz, Ed = 3,539 kNm	Ted = 0,332 kN

Posudek na tlak

$$\frac{NEd}{NC, Rd} \le 1,00$$

$$Nc, Rd = \frac{Ax * fy}{\gamma Mo} = \frac{0,00657 * 235 * 10^3}{1} = 1543,95 \, kN$$

$$\frac{NEd}{Nc, Rd} = \frac{111,248}{1542.05} = 0,07205 \, kN \le 1,00 \, \text{>VYHOVUJE}$$

$$\frac{1}{Nc, Rd} = \frac{1}{1543,95} = 0,07205 \ kN \le 1,00 \ \text{``NYHOV}$$

Posudek ohybového momentu

$$\frac{MEd}{MC, Rd} \le 1,00$$

$$Mc, Rd = Mpl, Rd = \frac{Wpl * fy}{\lambda Mo} = \frac{0,437143 * 10^{-3} * 235 * 10^{3}}{1,0} = 102,7286 \ kNm$$

$$\frac{MyEd}{Mc, Rd} = \frac{-2,643}{102,7286} = 0,02573 \le 1,00 \ \text{wyHovuJE}$$

$$\frac{MzEd}{MC, Rd} = \frac{3,539}{102,7286} = 0,03445 \le 1,00 \ \text{wyHovuJE}$$
Posudek rovinného vzněru

Posudek rovinného vzpěru

 $\frac{NEd}{Nb, Rd} \le 1,00$

Vzpěrná délka:

Lcr, y = Lcr, z = 1,898 m

Kritická síla:

$$Ncr, z = \frac{\pi^2 * E * Iz}{Lcr, z^2} = \frac{\pi^2 * 210 * 10^6 * 0,35932865 * 10^{-4}}{1,898^2} = 20673,7124 \text{ kN}$$

Poměrná štíhlost:

$$\lambda z = \sqrt{\frac{A * fy}{Ncr, z}} = \sqrt{\frac{0,00657 * 235 * 10^3}{20673,7124}} = 0,27328$$

$$\chi z = \frac{1}{\Phi z + \sqrt{\Phi z^2 - \lambda z^2}} = \frac{1}{0,555295 + \sqrt{0,555295^2 - 0,27328^2}} = 0,9628 \le 1,0$$

$$\Phi z = 0,5 * [1 + \alpha * (\lambda z - 0,2) + \lambda z^2]$$

$$= 0,5 * [1 + 0,49 * (0,27328 - 0,2) + 0,27328^2] = 0,555295$$

$$Nb, Rd = \frac{\chi z * Ax * fy}{\gamma Mo} = \frac{0,9628 * 0,00657 * 235 * 10^3}{1,0} = 1486,5151 kN$$

$$\frac{NEd}{Nb, Rd} = \frac{-111,248}{1486,5151} = 0,07484 \le 1,00$$
Prut číslo 19, průřez 82,5 x 6,3 - v 0,000m

$$\frac{\sqrt{24}}{12} = \frac{\sqrt{24}}{1486} = \frac{\sqrt{24}}{1686} = \frac$$

$$\frac{NEa}{Nb, Rd} = \frac{-111,248}{1486,5151} = 0,07484 \le 1,00$$

Materiálové a průřezové charakteristiky

Ocel: S235 fy = 235 MPa E = 210 GPa fu = 360 MPa G = 81 GPa $A = \pi * t * (d - t) = \pi * 6,3 * (82,5 - 6,3) = 1508,15297 mm^2 = 0,001508 m^2$ $Iy = Iz = \frac{\pi}{64} * (d^4 - (d - 2t)^4) = \frac{\pi}{64} * (82,5^4 - (82,5 - 2 * 6,3)^4)$ $= 1102107,29 mm^4 = 0,01102107 * 10^{-4} m^4$ $Wpl, y = \frac{1}{6} * (d^3 - (d - 2t)^3) = \frac{1}{6} * (82,5^3 - (82,5 - 2 * 6,3)^3)$ $= 36663,921 mm^3 = 0,36663 * 10^{-3} m^3$

Klasifikace průřezu

$$\varepsilon = \sqrt{\frac{235}{fy}} = \sqrt{\frac{235}{235}} = 1,0$$

$$\frac{c}{t} = \frac{82,5}{6,3} = 13,0952 \le 50 * \varepsilon^2 = 50 * 1^2 = 50 \text{ průřez třídy 1}$$

Klasifikace průřezu

$$\varepsilon = \sqrt{\frac{235}{fy}} = \sqrt{\frac{235}{235}} = 1,0$$

$$\frac{c}{t} = \frac{82,5}{6,3} = 13,095 \le 50 * \varepsilon^2 = 50 * 1^2 = 50 \text{ průřez třídy 1}$$

Vnitřní síly

Kombinace

Ned = 66,280 kN	Vz, Ed = 0,182 kN	My, $Ed = 0,000 \text{ kNm}$
Vy, $Ed = 0,084 kN$	Mz, Ed = 0,000 kNm	Ted = 0,018 kN

Posudek na tlak

$$\frac{NEd}{NC, Rd} \le 1,00$$
$$Nc, Rd = \frac{Ax * fy}{\gamma Mo} = \frac{0,001508 * 235 * 10^3}{1} = 354,38 \ kN$$

 $\frac{NEd}{Nc, Rd} = \frac{66,280}{354,38} = 0,18703 \ kN \le 1,00 \ \text{$\sc{wyhovuje}$}$

Posudek ohybového momentu

$$\frac{MEd}{MC, Rd} \le 1,00$$

$$Mc, Rd = Mpl, Rd = \frac{Wpl * fy}{\lambda Mo} = \frac{0,36663 * 10^{-3} * 235 * 10^{3}}{1,0} = 86,15805 \ kNm$$

$$\frac{MyEd}{Mc, Rd} = \frac{0,000}{86,15805} = 0,000 \le 1,00 \approx VYHOVUJE$$

$$\frac{MzEd}{MC, Rd} = \frac{0,000}{86,15805} = 0,000 \le 1,00 \approx VYHOVUJE$$

Posudek rovinného vzpěru

$$\frac{NEd}{Nb, Rd} \le 1,00$$

Vzpěrná délka:

Lcr, y = Lcr, z = 3,273 m

Kritická síla:

$$Ncr, z = \frac{\pi^2 * E * Iz}{Lcr, z^2} = \frac{\pi^2 * 210 * 10^6 * 0,01102107 * 10^{-4}}{3,273^2} = 213,23122 \ kN$$

Poměrná štíhlost:

$$\lambda z = \sqrt{\frac{A * fy}{Ncr, z}} = \sqrt{\frac{0,001508 * 235 * 10^3}{213,23122}} = 1,2892$$

$$\chi z = \frac{1}{\phi_z + \sqrt{\phi_z^2 - \lambda z^2}} = \frac{1}{0.555295 + \sqrt{0.555295^2 - 1.2892^2}} = 0.9628 \le 1.0$$

$$\phi_z = 0.5 * [1 + \alpha * (\lambda z - 0.2) + \lambda z^2]$$

$$= 0.5 * [1 + 0.49 * (1.2892 - 0.2) + 1.2892^2] = 1.59787$$

$$Nb, Rd = \frac{\chi z * Ax * fy}{\gamma Mo} = \frac{0.9628 * 0.001508 * 235 * 10^3}{1.0} = 341.19706 \, kN$$

 $\frac{NEd}{Nb, Rd} = \frac{66,280}{341,19706} = 0,19426 \le 1,00$

<u>Prut číslo 168, průřez 82,5 x 5 - v 0,000m</u>

Uzel	Misto		Síly [kN]		Mo	omenty [kNm]	
č.	x [m]	N	Vy	Vz	Мт	My	Mz
huřez č. 7	: RO 82.5x5 ; F	erona - ČSN	42 5715.01				
91	0.000	-49.352	0.115	0.184	0.098	0.000	0.000
	0.226	-49.341	0.114	0.156	0.098	0.038	-0.026
	0.226	-49.341	0.098	0.155	0.098	0.038	-0.026
	0.678	-49.320	0.092	0.093	0.098	0.095	-0.069
	0.678	-49.320	0.055	0.102	0.098	0.095	-0.069
	1.129	-49.298	0.046	0.035	0.098	0.126	-0.092
	1.129	-49.298	0.011	0.034	0.098	0.126	-0.092
	1.581	-49.277	0.000	-0.035	0.098	0.125	-0.095
	1.581	-49.277	-0.042	-0.035	0.098	0.125	-0.095
	2.033	-49.256	-0.052	-0.103	0.098	0.094	-0.073
	2.033	-49.256	-0.103	-0.092	0.098	0.094	-0.073
	2.484	-49.234	-0.108	-0.154	0.098	0.038	-0.025
	2.484	-49.234	-0.113	-0.155	0.098	0.038	-0.025
106	2.710	-49.224	-0.114	-0.183	0.098	0.000	0.000
						100000000000000000000000000000000000000	Second Se

Obrázek 46: Průřez a vnitřní síly pro posouzení prutu číslo 168 RO 82.5x5

Materiálové a průřezové charakteristiky

Ocel: S235

fy = 235 MPa E = 210 GPa

$$fu = 360 \text{ MPa}$$
 $G = 81 \text{ GPa}$

 $A = \pi * t * (d - t) = \pi * 5 * (82,5 - 5) = 1217,36715 \ mm^2 = 0,0012174 \ m^2$

$$Iy = Iz = \frac{\pi}{64} * (d^4 - (d - 2t)^4) = \frac{\pi}{64} * (82,5^4 - (82,5 - 2 * 5)^4)$$
$$= 917780,7054 \ mm^4 = 0,00917780 * 10^{-4} \ m^4$$

 $Wpl, y = \frac{1}{6} * (d^3 - (d - 2t)^3) = \frac{1}{6} * (82,5^3 - (82,5 - 2 * 5)^3) = 30072,9167 mm^3$ $= 0,030072 * 10^{-3} m^3$

Klasifikace průřezu

$$\varepsilon = \sqrt{\frac{235}{fy}} = \sqrt{\frac{235}{235}} = 1,0$$

 $\frac{c}{t} = \frac{82,5}{5} = 16,5 \le 50 * \varepsilon^2 = 50 * 1^2 = 50$ » průřez třídy 1

Klasifikace průřezu

Vnitřní síly

Kombinace

Ned = -49,352 kN	Vz, Ed = 0,184 kN	My, Ed = 0,000 kNm
Vy, Ed = 0,115kN	Mz, Ed = 0,000 kNm	Ted = 0,098 kN

Posudek na tlak

$$\frac{NEd}{NC, Rd} \le 1,00$$

$$Nc, Rd = \frac{Ax * fy}{\gamma Mo} = \frac{0,0012174 * 235 * 10^3}{1} = 286,089 \ kN$$

$$\frac{NEd}{Nc, Rd} = \frac{49,352}{286,089} = 0,172506 \ kN \le 1,00 \ \text{>VYHOVUJE}$$

Posudek ohybového momentu

$$\frac{MEd}{MC, Rd} \le 1,00$$

$$Mc, Rd = Mpl, Rd = \frac{Wpl * fy}{\lambda Mo} = \frac{0,030072 * 10^{-3} * 235 * 10^{3}}{1,0} = 7,06692 \ kNm$$

$$\frac{MyEd}{Mc, Rd} = \frac{0,000}{7,06692} = 0,000 \le 1,00 \approx VYHOVUJE$$

$$\frac{MzEd}{MC, Rd} = \frac{0,000}{7,06692} = 0,000 \le 1,00 \approx VYHOVUJE$$

Posudek rovinného vzpěru

$$\frac{NEd}{Nb, Rd} \le 1,00$$

Vzpěrná délka:

$$Lcr, y = Lcr, z = 2,710 m$$

Kritická síla:

$$Ncr, z = \frac{\pi^2 * E * Iz}{Lcr, z^2} = \frac{\pi^2 * 210 * 10^6 * 0,00917780 * 10^{-4}}{2,710^2} = 259,0115 \ kN$$

Poměrná štíhlost:

$$\lambda z = \sqrt{\frac{A * fy}{Ncr, z}} = \sqrt{\frac{0,0012174 * 235 * 10^3}{259,0115}} = 1,05097$$

$$\chi z = \frac{1}{\Phi z + \sqrt{\Phi z^2 - \lambda z^2}} = \frac{1}{1,26076 + \sqrt{1,26076^2 - 1,05097^2}} = 0,510944 \le 1,0$$

$$\Phi z = 0,5 * [1 + \alpha * (\lambda z - 0,2) + \lambda z^2]$$

$$= 0,5 * [1 + 0,49 * (1,05097 - 0,2) + 1,05097^2] = 1,26076$$

$$Nb, Rd = \frac{\chi z * Ax * fy}{\gamma Mo} = \frac{0,510944 * 0,0012174 * 235 * 10^3}{1,0} = 146,1755 \, kN$$

$$\frac{NEd}{Nb, Rd} = \frac{-49,352}{146,1755} = 0,33762 \le 1,00$$

Obrázek 47: Zobrazení posuzovaných prutů v malé sedmičce

11. ZÁVĚR

Cílem bakalářské práce bylo posouzení rozhledny ve tvaru dvou sedmiček statickou analýzou. Jako podklad především pro určení geometrie modelu, druhu a velikosti průřezu sloužila výkresová dokumentace této rozhledny nacházející se v obci Salaš.

Pro tvorbu výpočtového modelu byl použit program Dlubal RFEM 5.22, který pracuje pomocí metody konečných prvků. V tomto programu bylo vytvořeno v trojrozměrném prostoru několik modelů jako například model malé sedmičky, model velké sedmičky, model sedmiček dohromady. Také byl vytvořen model ve 2D pro ověření vnitřních sil příhradové konstrukce.

Výpočtové modely ve 3D byly zatíženy adekvátním zatížením vycházející především z normy ČSN EN 1991-1-1 [7]. Tato zatížení byla ověřena ručními výpočty, a to z důvodu dostatečné kontroly zadávaných zatížení a přesnosti počítání programu. Jako nejnáročnější stav zatížení se jevil vítr, který byl posuzován dle norem ČSN EN 1991-1-4 [9]. Byly vytvořeny dva způsoby namáhání větrem. Prvním z nich byl ruční výpočet, který počítal pomocí normových součinitelů. V druhém způsobu byl model vložen do programu simulujícího namáhání větru. Výsledkem bylo, že se výpočet programem jeví jako přesný, výpočtově nenáročný a časově jednoduchý.

Po zavedení jednotlivých zatěžovacích stavů do modelů byly nalezeny vhodné kombinace, které by mohly sloužit k porovnání malé sedmičky s přeneseným zatížením (M2) a sedmiček spolupůsobících (M1). V těchto modelech byly porovnány výsledné podporové síly. Srovnatelné jsou ve směru Z a Y ovšem směr X vykazuje značné odlišnosti. Pro statickou analýzu bylo také vybráno porovnání normálových sil mezi modely M1 a M2, M3. Podrobnější srovnání se vyskytuje v odpovídající kapitole.

Hlavním ručním výpočtem je příhradová konstrukce horní boční části velké sedmičky. Tato část je řešena více metodami a následně posuzována s výpočtovými modely jak ve 2D, tak i reálným modelem ve 3D. Z důvodu vzniku mechanismu ve 2D konstrukci lze porovnávat jednotlivé modely s uspokojujícími odchylkami jen v hlavních prutech. Ovšem i toho porovnání slouží k částečnému ověření návrhu příhradoviny.

Mezní stav únosnosti byl ověřen pouze na vybraných průřezech. Vyhotoveny byly jednoduché posudky na tlak, ohyb a vzpěr. Všechny ověřované průřezy vyhoví na veškeré uvedené posudky, a tedy mohou být použity pro konstrukci rozhledny. Zbytek neposuzovaných průřezů lze považovat za vyhovující, a to především z důvodu, že konstrukce již funguje.

Důležitým poznatkem na závěr je důraz na spolupůsobnost konstrukcí sedmiček navzájem. Z modelu je zřejmé, že při samostatném působení jednotlivých sedmiček, aniž by nebylo modelováno vzájemné podepření, budou jednotlivé konstrukce nestabilní. Malá sedmička například stoji pouze na jednom místě, takže se jedná téměř o mechanismus. Tedy nejvýhodnějším modelem se jeví model sedmiček dohromady (M1). Lze se domnívat, že právě tento model se nejvíce přibližuje skutečnému provedení a působení konstrukce.

12. SEZNAM POUŽITÝCH ZDROJŮ

[1] Rozhledna Salaš. [online]. Salaš: [cit. 2020-05-02] Dostupné z: https://www.rozhlednasalas.cz/

[2] CAD Projekt plus s.r.o. Rozhledna v obci Salaš: Dokumentace pro společné ÚŘ a SP.

[3] RWIND Simulation. Dlubal [online]. Brno: [cit. 2020-05-02] Dostupné z: https://www.dlubal.com/cs/produkty/samostatne-programy/rwind-simulation

[4] RFEM podpora. Dlubal [online]. Brno: [cit. 2020-05-02] Dostupné na: https://www.dlubal.com/cs/podpora-a-skoleni/podpora/faq

[5] RFEM manuály k programům. Dlubal [online]. Brno: [cit. 2020-05-02] Dostupné na: https://www.dlubal.com/cs/stahovani-a-informace/dokumenty/manualy

[6] ČSN EN 1990 ED.2, Eurokód: Zásady navrhování konstrukcí. Praha: Český normalizační institut, 2015

[7] ČSN EN 1991-1-1, Eurokód 1: Zatížení konstrukcí – Část 1-1: Obecná zatížení – Objemové tíhy, vlastní tíha a užitná zatížení pozemních staveb. Praha: Český normalizační institut, 2004

[8] ČSN EN 1991-1-3, Eurokód 1: Zatížení konstrukcí – Část 1-3: Obecná zatížení – Zatížení sněhem. Praha: Český normalizační institut, 2013

[9] ČSN EN 1991-1-4 ED.2, Eurokód 1: Zatížení konstrukcí – Část 1-4: Obecná zatížení
 – Zatížení větrem. Praha: Český normalizační institut, 2013

[10] ČSN EN 1993-1-8, Eurokód 1: Navrhování ocelových konstrukcí-Část 1-8: Navrhování styčníků. Praha: Český normalizační institut, 2013

[11] Oblasti-zatizeni-snehem-vetrem-a-zemetresenim. Dlubal [online]. Brno: [cit. 2020-05-02] Dostupné na: https://www.dlubal.com/cs/reseni/online-sluzby/oblasti-zatizenisnehem-vetrem-a-zemetresenim

[12] Galerie. Rozhledna Salaš. [online]. Salaš: [cit. 2020-05-02] Dostupné z: https://www.rozhlednasalas.cz/galerie

[13] Bc. Jan Uherek Statická a dynamická analýza ocelové konstrukce. Brno, 2019. 122 s., 40 s. příl. Diplomová práce. Vysoké učení technické v Brně, Fakulta stavební, Ústav stavební mechaniky. Vedoucí práce Ing. Zbyněk Vlk, Ph.D.

[14] Ing. Jiří Kytýr, CSc., Ing. Zbyněk Kerner, CSc., Ing. Rostislav Zídek, Ing. Zbyněk Vlk, Základy stavební mechaniky, modul BD01-MO4, Staticky určité prutové konstrukce- část 2 vyd. Brno 2004: VUT fakulta stavební

13. SEZNAM OBRÁZKŮ

Obrázek 1: Reálné zobrazení posuzované konstrukce	11
Obrázek 2: Model konstrukce sedmiček dohromady	12
Obrázek 3: Model konstrukce malé sedmičky	13
Obrázek 4: Model konstrukce velké sedmičky	13
Obrázek 5: Model konstrukce zatížen vlastní tíhou velké i malé sedmičky	20
Obrázek 6: Půdorysný pohled na horní plošinu velké sedmičky	21
Obrázek 7: Boční pohled na horní plošinu velké sedmičky	22
Obrázek 8: Půdorysný pohled na horní plošinu malé sedmičky	23
Obrázek 9: Boční pohled na horní plošinu malé sedmičky	23
Obrázek 10: Konstrukce zatížená ostatním stálým zatížení na plošině u malé i velké sedmičky	24
Obrázek 11: Konstrukce rozdělená pro výpočet tíhy od opláštění velké sedmičky	25
Obrázek 12: Výsledné zatížení opláštění na konstrukci velké i malé sedmičky	27
Obrázek 13: Konstrukce zatížená užitným zatížením malé i velké sedmičky	28
Obrázek 14: Mapa oblasti zatížení sněhem	30
Obrázek 15: Konstrukce zatížená sněhem velké i malé sedmičky	31
Obrázek 16: Mapa oblasti zatížení větrem	32
Obrázek 17: Ukázka výpočtu pomocí programu RWIND Simulation	35
Obrázek 18: Zatížení konstrukce velké i malé sedmičky větrem v 0°	45
Obrázek 19: Půdorys a řešení schodiště v konstrukci	46
Obrázek 20: Konstrukce zatížená větrem na schodiště ve směru 0° a 270°	47
Obrázek 21: Charakteristická kombinace 1 pro a) model sedmiček	49
dohromady b) malou sedmičku s přeneseným zatížením od velké sedmičky	
Obrázek 22: Charakteristická kombinace 2 pro a) model sedmiček	50
dohromady b) malou sedmičku s přeneseným zatížením od velké sedmičky	
Obrázek 23: Kombinace mezního stavu únosnosti 1 pro a) model	51
sedmiček dohromady b) malou sedmičku s přeneseným zatížením od velké sedmičky	
Obrázek 24: Schéma příhradové konstrukce	52

Obrázek 25: Pomocné schéma pro výpočet styčníkovou metodou	59
Obrázek 26: Model příhradové konstrukce se zobrazením vnitřních sil	59
Obrázek 27: Zjednodušený dvojrozměrný model příhradoviny-vnitřní síly	61
Obrázek 28: Příhradová konstrukce v celkovém modelu-vnitřní síly	61
Obrázek 29: Podporové síly porovnatelné kombinace (mezního stavu únosnosti) pro	62
a) model sedmiček dohromady b) malou sedmičku s přeneseným zatížením od velké sedmičky	
Obrázek 30: Podporové síly porovnatelné kombinace (charakteristické) pro	63
a) model sedmiček dohromady b) malou sedmičku s přeneseným zatížením od velké sedmičky	
Obrázek 31: Porovnání normálových sil na horní části velké sedmičce v modelu	64
a) sedmičky dohromady b) velké sedmičky	
Obrázek 32: Porovnání normálových sil na dolní části velké sedmičce v modelu	65
a) sedmičky dohromady b) velké sedmičky	
Obrázek 33: Porovnání normálových sil na malé sedmičce v modelu	66
a) sedmičky dohromady b) malé sedmičky	
Obrázek 34: Model sedmiček dohromady zobrazující vzájemné překrytí	68
Obrázek 35: Model sedmiček dohromady v programu RWIND se	68
směrem větru 270° se zobrazením tlaků na konstrukci	
Obrázek 36: Model sedmiček dohromady v programu RWIND se	69
směrem větru 0° se zobrazením tlaků na konstrukci	
Obrázek 37: Model sedmiček dohromady v programu RWIND se	69
směrem větru 90° se zobrazením tlaků na konstrukci	
Obrázek 38: Průřez a vnitřní síly pro posouzení prutu číslo 720	70
Obrázek 39: Průřez a vnitřní síly pro posouzení prutu číslo 225	72
Obrázek 40: Průřez a vnitřní síly pro posouzení prutu číslo 234	75
Obrázek 41: Průřez a vnitřní síly pro posouzení prutu číslo 247	77
Obrázek 42: Zobrazení posuzovaných prutů ve velké sedmičce	79
Obrázek 43: Průřez a vnitřní síly pro posouzení prutu číslo 97	80
Obrázek 44: Průřez a vnitřní síly pro posouzení prutu číslo 92	82
Obrázek 45: Průřez a vnitřní síly pro posouzení prutu číslo 19	84

Obrázek 46: Průřez a vnitřní síly pro posouzení prutu číslo 168	87
Obrázek 47: Zobrazení posuzovaných prutů v malé sedmičce	89

14. SEZNAM TABULEK

Tabulka 1: Použité průřezy ve velké sedmičce	14
Tabulka 2: Použité průřezy v malé sedmičce	15
Tabulka 3: Použitého průřezu pro spojení sedmiček	15
Tabulka 4: Shrnutí parametrů zatížení větrem	30
Tabulka 5: Tvarové součinitelé	30
Tabulka 6: Kategorie terénu a jejich parametry	32
Tabulka 7: Porovnání výsledků zatížení velké sedmičky větru bez schodiště	40
Tabulka 8: Porovnání výsledků zatížení malé sedmičky větru bez schodiště	45
Tabulka 9: Zatěžovací stavy pro model sedmiček dohromady	48
Tabulka 10: Zatěžovací stavy pro model malé sedmičky s přeneseným zatížením od velké sedmičky	48
Tabulka 11: Porovnání metod výpočtu příhradové konstrukce	60
Tabulka 12: Součet výpočtů větru malé a velké sedmičky ve čtyřech směrech	66