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Abstract – The Close-by-One (CbO) algorithm is a well-known algorithm used
in formal concept analysis (FCA). We shed a new light on CbO: First, we pro-
pose and evaluate a novel algorithm for computation of the Duquenne-Guigues
basis which combines CbO and LinClosure algorithms. This combination en-
ables us to reuse attribute counters used in LinClosure and speed up the com-
putation. Second, we describe LCM, an algorithm for enumeration of frequent
closed itemsets in transaction databases, in terms of FCA and show that LCM
is basically the CbO algorithm with multiple speed-up features for processing
sparse data. Third, we show that FCA and Logical Analysis of Data (LAD)
utilize the same basic building blocks, which enable us to develop an interface
between the two methodologies. We provide some preliminary benefits of the
interface; most notably efficient algorithms for computing spanned patterns in
LAD using algorithms of FCA.



Preface

Computation of all closed sets of a closure operator is an important task in
computer science as it is used in many fields: boolean factor analysis [18], data
mining [92] and databases [70], to name just a few.

Closed sets also play a crucial role in formal concept analysis [36], its basic
notions—extents and intents—are also closed sets. Many algorithms for com-
putation of all closed sets have been designed [67]. One of the most efficient is
the Close-By-One (CbO) algorithm [62] from which many variants were devel-
oped, namely, FCbO [73] and the family of In-Close algorithms [5, 6, 7, 8, 9].

This thesis focuses on a new view of the CbO algorithm. We bring our
three important results. Firstly, its variant – LinCbO, our new algorithm for
computation of the Duquenne-Guigues basis, can reuse values of LinClosure’s
attribute counters during a computation, which, dramatically speeds up a com-
putation. Secondly, the well-known algorithm LCM [86, 87] in the data mining
community is basically CbO with some speed-up features. Finally, thanks to
the introduced interface between formal concept analysis and logical analysis
of data [1], the CbO algorithm can be used in the logical analysis of data.

Particular parts of this document are based on our following work:

[50] Radek Janostik, Jan Konecny and Petr Krajča. LinCbO: fast algorithm
for computation of the Duquenne-Guigues basis. CoRR, abs/2011.04928,
2020. (submitted to Information Sciences, currently in review)

[47] Radek Janostik, Jan Konecny and Petr Krajča. LCM is well implemented
CbO: study of LCM from FCA point of view. In CLA, pages 47–58, 2020.

[48] Radek Janostik, Jan Konecny and Petr Krajča. Interface between Logical
Analysis of Data and Formal Concept Analysis. European Journal of
Operational Research, 2020.

We also published the article

[46] Radek Janostik and Jan Konecny. General framework for consistencies
in decision contexts. Information Sciences, 530:180–200, 2020.

the topic of which is quite different from the others. Therefore, it was omitted
from this document.

This paper is organized as follows. In Section 1 we provide preliminaries
which covers basic notions needed for understanding the whole author paper.

In Section 2 we introduce our new algorithm for computing the Duquenne-
Guigues basis called LinCbO. It is based on the CbO algorithm with the Lin-
Closure algorithm as closure operator. It reuses values of counters from the
previous calls of the closure.
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Section 3 provides a description of the LCM algorithm from the FCA point
of view. We show that it is basically the CbO with interesting features which
were hidden in the implementation. We describe them in detail without delving
into implementation details.

In Section 4 we describe the interface between two methodologies: formal
concept analysis and logical analysis of data. Thanks to the interface we can
use algorithms from FCA for solving some problems from LAD.

Finally, in Section 5 we present the conclusions of this document.

Thesis was supported by the grants:

• IGA UP 2020 of Palacký University Olomouc, No. IGA PrF 2020 019,

• JG 2019 of Palacký University Olomouc, No. JG 2019 008.

1 Preliminaries

In this section, we recall notions used in the rest of the author paper. Only
necessary foundations are presented; more details can be found in the cited
sources.

1.1 Closure operators

A closure system in a set Y is any system S of subsets of Y which contains Y
and is closed under arbitrary intersections.

A closure operator on a set Y is a mapping c : 2Y → 2Y satisfying for each
A,A1, A2 ⊆ Y :

A ⊆ c(A) (1)

A1 ⊆ A2 implies c(A1) ⊆ c(A2) (2)

c(A) = c(c(A)). (3)

The closure systems and closure operators are in one-to-one correspondence.
Specifically, for a closure system S in Y , the mapping cS : 2Y → 2Y defined by

cS(A) =
⋂
{B ∈ S | A ⊆ B}

is a closure operator. Conversely, for a closure operator c on Y , the set

Sc = {A ∈ 2Y | c(A) = A}

is a closure system. Furthermore, ScS = S and cSc = c.
For further details please refer to [19].
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1 2 3 4 5
a 1 0 1 1 1
b 1 1 1 0 1
c 1 1 1 0 0
d 0 0 1 0 1

Figure 1: Example of formal context with objects a,b, c,d and attributes
1, 2, 3, 4, 5.

1.2 Formal concept analysis

Formal concept analysis (FCA) [36, 23] is a method of relational data analysis
invented by Rudolf Wille [90]. It is based on a formalization of a certain
philosophical view of conceptual knowledge [53]. FCA identifies interesting
clusters (formal concepts) in a collection of objects and their attributes, and
organizes them into a structure called a concept lattice.

It has been applied, for example, in software engineering [81, 44, 84], web
mining [27, 28], organization of web search results [25, 24], text mining and
linguistics [45], analysis of medical and biological data [15, 52, 51], and crime
data [76, 74]. FCA has also been used in context machine learning. A model
of learning from positive and negative examples called JSM-method has been
described in terms of FCA [34, 59, 63].

1.2.1 One-valued (basic) setting

An input to FCA is a triplet 〈X,Y, I〉, called a formal context, where X,Y
are non-empty sets of objects and attributes respectively, and I is a binary
relation between X and Y . The presence of an object-attribute pair 〈x, y〉 in
the relation I means that the object x has the attribute y.

Finite contexts are usually depicted as tables, in which rows represent ob-
jects in X, columns represent attributes in Y , ones in its entries mean that the
corresponding object-attribute pair is in I; see Fig. 1 for an example.

The formal context 〈X,Y, I〉 induces so-called concept-forming operators:

↑ : 2X → 2Y assigns to a set A of objects the set A↑ of all attributes
shared by all the objects in A.

↓ : 2Y → 2X assigns to a set B of attributes the set B↓ of all objects
which share all the attributes in B.

Formally, for all A ⊆ X,B ⊆ Y we have

A↑ = {y ∈ Y | ∀x ∈ A : 〈x, y〉 ∈ I},
B↓ = {x ∈ X | ∀y ∈ B : 〈x, y〉 ∈ I}.
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For singletons, we use a shortened notation and write x↑, y↓ instead of {x}↑,
{y}↓, respectively.

Fixed points of the concept-forming operators, i.e. pairs 〈A,B〉 ∈ 2X × 2Y

satisfying
A↑ = B and B↓ = A,

are called (one-valued) formal concepts. The sets A and B in a formal concept
〈A,B〉 are called the extent and the intent, respectively.

The set of all formal concepts in 〈X,Y, I〉 is denoted by B↑↓(I). This set
endowed with the order ≤, given by

〈A1, B1〉 ≤ 〈A2, B2〉 iff A1 ⊆ A2

for all 〈A1, B1〉, 〈A2, B2〉 ∈ B↑↓(I),

forms a complete lattice called a (one-valued) concept lattice. We denote by
Ext↑↓(I) and Int↑↓(I) the set of all extents and the set of all intents in B↑↓(I),
respectively; formally:

Ext↑↓(I) = {A | 〈A,B〉 ∈ B↑↓(I)},
Int↑↓(I) = {B | 〈A,B〉 ∈ B↑↓(I)}.

For each A ⊆ X,B ⊆ Y , we have

A ∈ Ext↑↓(I) iff A = A↑↓ and B ∈ Int↑↓(I) iff B = B↓↑.

For a formal context 〈X,Y, I〉, the set Int↑↓(I) of its intents is a closure sys-
tem. The corresponding closure operator, cInt↑↓(I), is equal to the composition
↓↑ of concept-forming operators.

1.2.2 Attribute implications, bases, Duquenne-Guigues basis and
its computation

An attribute implication is an expression of the form L⇒R where L,R ⊆ Y
are sets of attributes.

We say that L⇒R is valid in a set of attributes M ⊆ Y if

L ⊆M implies R ⊆M.

The fact that L⇒R is valid in M is written as ‖L⇒R‖M = 1.
We say that L⇒R is valid in a context 〈X,Y, I〉 if it is valid in every object

intent x↑, i.e.
‖L⇒R‖x↑ = 1 ∀x ∈ X.

A set of attribute implications is called a theory.
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A set of attributes M is called a model of theory T if every attribute im-
plication in T is valid in M . The set of all models of T is denoted Mod(T ),
i.e.

Mod(T ) = {M | ∀L⇒R ∈ T : ‖L⇒R‖M = 1}.

For any theory T , the set Mod(T ) of its models is a closure system. The
corresponding closure operator, cMod(T ), is equal to the following operator cT .
For Z ⊆ Y and theory T , put

1. ZT = Z ∪
⋃
{R | L⇒R ∈ T, L ⊆ Z},

2. ZT0 = Z,

3. ZTn = (ZTn−1)T .

Define operator cT : 2Y → 2Y by

cT (Z) =

∞⋃
n=0

ZTn .

A theory T is called

• complete in 〈X,Y, I〉 if Mod(T ) = Int↑↓(X,Y, I);

• a basis of 〈X,Y, I〉 if no proper subset of T is complete in 〈X,Y, I〉.

A set P ⊆ Y of attributes is called a pseudo-intent if it satisfies the following
conditions:

(i) it is not an intent, i.e. P ↓↑ 6= P ;

(ii) for all smaller pseudo-intents P0 ⊂ P , we have P ↓↑0 ⊂ P .

Theorem 1. Let P be a set of all pseudo-intents of 〈X,Y, I〉. The set

{P⇒P ↓↑ | P ∈ P}

is a basis of 〈X,Y, I〉. Additionally, it is a minimal basis in terms of the number
of attribute implications.

The basis from Theorem 1 is called the Duquenne-Guigues basis (DG basis).
Let P be a set of all pseudo-intents of 〈X,Y, I〉. The union Int↑↓(I) ∪ P is

a closure system on Y .
The corresponding closure operator c̃T is given as follows. For Z ⊆ Y and

theory T , put

1. ZT = Z ∪
⋃
{R | L⇒R ∈ T , L ⊂ Z},
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2. ZT0 = Z,

3. ZTn = (ZTn−1)T .

Define operator c̃T : 2Y → 2Y by

c̃T (Z) =

∞⋃
n=0

ZTn . (4)

Note that the definition of c̃T differs from the previously defined cT only in
the subsethood in item 1 – the operator cT allows equality in this item while
c̃T does not. In what follows, we use the shortcut Z• for c̃T (Z).

The algorithm which follows the above definition is called the näıve algo-
rithm. There are more sophisticated ways to compute closures, like LinClosure
[70] and Wild’s closure [89].

To compute the closure system Int↑↓(I)∪P using the above closure operator,
the intents and pseudo-intents must be enumerated in an order ≤ which extends
the subsethood; i.e.

C1 ⊆ C2 implies C1 ≤ C2 for all C1, C2 ∈ Int↑↓(I) ∪ P. (5)

The lectic order satisfies this condition; that is why NextClosure [36] is most
frequently used for this task.

1.2.3 Two-valued setting

For the explanation of the link between formal concept analysis and logical
analysis of data, we need to recall the particular generalization of FCA, which
is called two-valued FCA, three-way FCA [77, 78] or FCA with positive and
negative attributes [79, 80]. In two-valued FCA, we assume a slightly different
meaning of the input context. Specifically, we assume that the input context
is two-valued. That means that the semantics of the relation I is as follows.

• 〈x, y〉 ∈ I means that the object x has the attribute y (as in the one-
valued setting)

• 〈x, y〉 /∈ I means that the object x does not have the attribute y (which
is not necessary in the case for the one-valued setting).

The concept-forming operators in two-valued setting are defined as map-
pings M : 2X → 2Y × 2Y and O : 2Y × 2Y → 2X given as

AM = 〈A↑, A∩〉 for A ⊆ X,

〈B,B〉O = B↓ ∩B
∪

for B,B ⊆ Y .
(6)

The symbols ∩, ∪ in (6) denote the following operators:
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∩ : 2X → 2Y assigns to a set A of objects the set A∩ of all attributes
which at least one object in A has.

∪ : 2Y → 2X assigns to a set B of attributes the set B∪ of all object which
have no attributes other than those in B.

Formally, for all A ⊆ X,B ⊆ Y , we have

A∩ = {y ∈ Y | ∃x ∈ A : 〈x, y〉 ∈ I},

B∪ = {x ∈ X | ∀y ∈ Y : 〈x, y〉 ∈ I implies y ∈ B}.

We call triples 〈A,B,B〉 ∈ 2X × 2Y × 2Y satisfying

AM = 〈B,B〉 and 〈B,B〉O = A (7)

two-valued concepts. The set A in a concept 〈A,B,B〉 is then called the extent
and the pair of sets 〈B,B〉 is called the intent.

We will utilize the following properties of the two-valued concept-forming
operators.

Lemma 1. For all A ∈ 2X , B,B ∈ 2Y , we have

AMOM = AM and 〈B,B〉OMO = 〈B,B〉O.

We denote the set of all two-valued concepts in 〈X,Y, I〉 by B(I). We denote
by Ext(I) and Int(I) the set of all extents and the set of all intents in B(I),
respectively.

On B(I) we define an order ≤ by

〈A1, B1, B1〉 ≤ 〈A2, B2, B2〉 if A1 ⊆ A2, (8)

equivalently, if B1 ⊇ B2 and B1 ⊆ B2.

The set B(I) endowed with ≤ forms a complete lattice, called a concept lattice,
in which infima and suprema are given by1∧

j∈J
〈Aj , Bj , Bj〉 = 〈

⋂
j∈J

Aj , 〈
⋃
j∈J

Bj ,
⋂
j∈J

Bj〉OM〉, (9)

∨
j∈J
〈Aj , Bj , Bj〉 = 〈(

⋃
j∈J

Aj)
MO,

⋂
j∈J

Bj ,
⋃
j∈J

Bj〉 (10)

respectively, for all Aj ∈ 2X , Bj , Bj ∈ 2Y (J is an index set).

1In (9), we naturally unify triples of the form 〈A,B,B〉 with pairs of the form 〈A, 〈B,B〉〉.
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Remark 1 (Reduction to one-valued setting). Two-valued setting of FCA is
easy to reduce to one-valued setting. Specifically, one can create a one-valued
formal context 〈X,Y ∗, I∗〉 for a two-valued formal context 〈X,Y, I〉 as follows.
We add a negative attribute ŷ for each original attribute y ∈ Y , i.e.

Y ∗ = Y ∪ Ŷ

where
Ŷ = {ŷ | y ∈ Y }.

Furthermore, we extend I to the new attributes by putting

〈x, ŷ〉 ∈ I∗ iff 〈x, y〉 /∈ I for x ∈ X, y ∈ Y .

The concept lattice B↑↓(I∗) of the one-valued context 〈X,Y ∗, I∗〉 is isomorphic
to B(I) of the two-valued formal context 〈X,Y, I〉. Particularly,

Ext↑↓(I) = Ext(I∗)

and the isomorphism i : B↑↓(I∗)→ B(I) is given by

i : 〈A,B〉 7→ 〈A,B ∩ Y, {y ∈ Y | ŷ /∈ B}〉.

In words, having a one-valued formal concept 〈A,B〉, we obtain the correspond-
ing two-valued formal concept 〈A,B,B〉 as follows:

• the extent A remains the same;

• the first set B of the two-valued intent contains original (positive) at-
tributes from the intent B;

• the second set B of the two-valued intent contains those attributes y,
which do not have their negative attribute ŷ in B.

Example 1. Figure 2 shows the one-valued context 〈X,Y ∗, I∗〉 of the two-
valued context 〈X,Y, I〉 from Fig. 1. The pair 〈{b, c,d}, {3, 4̂}〉 is a formal
concept of 〈X,Y ∗, I∗〉. Its corresponding two-valued concept is

〈{b, c,d}, {3}, {1, 2, 3, 5}〉

since
{3, 4̂} ∩ Y = {3} and Y \ {4} = {1, 2, 3, 5}.
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1 1̂ 2 2̂ 3 3̂ 4 4̂ 5 5̂
a 1 0 0 1 1 0 1 0 1 0
b 1 0 1 0 1 0 0 1 1 0
c 1 0 1 0 1 0 0 1 0 1
d 0 1 0 1 1 0 0 1 1 0

Figure 2: One-valued context 〈X,Y ∗, I∗〉 corresponding to two-valued context
〈X,Y, I〉 from Fig. 1.

1.2.4 Intents as intervals

For what follows in the Section 4, it is important to observe that for intents
〈B,B〉 in B(I), we have that B ⊆ B. The only exception is the intent of the
bottom concept when its extent is empty. Thus, we can consider the intents to
be intervals [B,B] in 2Y . The exceptional intent then corresponds to an empty
interval. Additionally, if we have a pair 〈B,B〉 ∈ 2Y × 2Y such that B * B,
we clearly have that 〈B,B〉O = ∅.

In the rest of the paper, we consider the intents of B(I) to be intervals in
2Y . We denote the set of all intervals on Y by IY .

On IY , we consider two operations:

• intersection of intervals
l

j∈J
[Bj , Bj ] = [

⋃
j∈J

Bj ,
⋂
j∈J

Bj ],

• consensus of intervals⊔
j∈J

[Bj , Bj ] = [
⋂
j∈J

Bj ,
⋃
j∈J

Bj ],

for all [Bj , Bj ] ∈ IY (J is an index set).

Remark 2 (Notation). To simplify notation, we denote intervals by boldface
italic capital letters instead of bracketed pairs (e.g. B instead of [B,B]).

Using the above remarks, we can describe infima (9) and suprema (10) in
a two-valued concept lattice as∧

j∈J
〈Aj ,Bj〉 = 〈

⋂
j∈J

Aj , (
l

j∈J
Bj)

OM〉,

∨
j∈J
〈Aj ,Bj〉 = 〈(

⋃
j∈J

Aj)
MO,

⊔
j∈J

Bj〉

respectively, for all 〈Aj ,Bj〉 ∈ B(I) (J is an index set).
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1.3 Selected algorithms used in FCA

In this section we describe two algorithms which are necessary for the rest of
the paper.

1.3.1 Close-by-One

Close-by-One (CbO) is efficient algorithm for computing closure systems de-
signed by Sergei Kuznetsov [62]. Since the set of all intents Int↑↓(I) of formal
context 〈X,Y, I〉 is closure system, we can use CbO for enumerating all intents.
And what is more we can use CbO for computing DG basis of 〈X,Y, I〉 since
intents and pseudo-intents also forms closure system.

Many algorithms for computing closure systems exist [67]. Among the most
efficient algorithms are variants of CbO, namely Outrata & Vychodil’s FCbO
[73] and Andrews’s In-Close family of algorithms [5, 6, 7, 8, 9].

In this section we briefly describe the CbO algorithm.
We assume a closure operator c on set Y = {1, 2, . . . , n}. Whenever we write

about lower attributes or higher attributes, we refer to the natural ordering of
the numbers in Y .

The algorithm is given by a recursive procedure CbOStep, which accepts
two arguments:

• B – the set of attributes, from which new sets will be generated.

• y – the auxiliary argument to remember the highest attribute in B.

One can see the pseudocode of CbO in Algorithm 1. The check of the
condition Di = Bi, where Di = D ∩ {1, . . . , i − 1} is called a canonicity test
(line 4).

Algorithm 1: Close-by-One

def CbOStep(B, y):
input : B – closed set

y – last added attribute

1 print(B)

2 for i ∈ {y + 1, . . . , n} \ B do
3 D ← c(B ∪ {i})
4 if Dy = By then
5 CbOStep(D, i)

CbOStep(∅↓↑, 0)
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We have some remarks for the algorithm:

• The argument B is a closed set, therefore, the procedure CbOStep can
print it directly without testing (line 1).

• In the loop, we skip elements already present in B (line 2).

• The recursive invocation is made only if the the new closed set D passes
the canonicity test (lines 3,4).

1.3.2 LinClosure

LinClosure (Algorithm 2) [13, 70] accepts a set B of attributes for which it
computes the T -closure c̃T (B). The theory T is considered to be a global
variable. It starts with a set D containing all elements of B (line 1). If there
is an attribute implication in T with empty left side, the D is unified with its
right side (lines 2,3). LinClosure associates a counter count[L⇒R] with each
L⇒ R ∈ T initializing it with the size |L| of its left side (lines 4,5). Also,
each attribute y ∈ Y is linked to a list of the attribute implications that have
y in their left sides (lines 6,7).2 Then, the set Z of attributes to be processed
is initialized as a copy of the set D (line 8). While there are attributes in Z,
the algorithm chooses one of them (min in the pseudocode, line 10), removes it
from Z (line 11) and decrements counters of all attribute implication linked to
it (lines 12,13). If the counter of any attribute implication L⇒R is decreased
to 0, new attributes from R are added to D and to Z.

We are going to use the algorithm LinClosure in CbO. CbO drops the result-
ing closed set if it fails the canonicity test (Algorithm 1, lines 4,5). Therefore,
we can introduce a feature which stops the computation whenever an attribute
which would cause the fail is added into the set. To do that, we add a new
input argument, y, having the same role as in CbO; i.e. the last attribute added
into the set. Then, whenever new attributes are added to the set, we check
whether any of them is lower than y. If so, we stop the procedure and return
information that the canonicity test would fail (lines 16–18).3

1.4 Logical analysis of data

Logical analysis of data (LAD) [1, 26, 29] is a method of binary data analysis,
developed at Rutgers University by Peter L. Hammer and his colleagues. It
produces accurate, reproducible, and robust classification models with high
explanatory power; the accuracy of LAD models compares favorably with that
of other machine learning and statistical models [20, 4, 2]. LAD has been

2This needs to be done just once and it is usually done outside the LinClosure procedure.
3This feature is also utilized in [12].
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Algorithm 2: LinClosure with an early stop

def LinClosureES(B, y):
input : B – set of attributes

y – last attribute added to B

1 D ← B

2 if ∃∅⇒R ∈ T for some R then
3 D ← D ∪R

4 for all L⇒R ∈ T do
5 count[L⇒R]← |L|
6 for all a ∈ L do
7 add L⇒R to list[a]

8 Z ← D

9 while Z 6= ∅ do
10 m← min(Z)
11 Z ← Z \ {m}
12 for all L⇒R ∈ list[m] do
13 count[L⇒R]← count[L⇒R]− 1
14 if count[L⇒R] = 0 then
15 add← R \D
16 if min(add) < y then
17 return fail
18 else
19 D ← D ∪ add
20 Z ← Z ∪ add

21 return D

12



1 2 3 4 5
a 1 0 1 1 1
b 1 1 1 0 1

Ω+ c 1 1 1 0 0
d 0 0 1 0 1
e 1 0 1 0 0

Ω− f 1 0 0 0 0
g 0 0 1 0 0

Figure 3: A binary dataset 〈Ω+,Ω−〉.

applied to numerous disciplines, e.g. credit risk ratings [41, 42], show rate
prediction in the airline industry [33], fault detection and diagnosis for condition
based maintenance [91], screening for growth hormone deficiency [69], labor
productivity estimation [40], and probabilistic discrete choice models [21], to
name just a few. Recent achievements of LAD are summarized by Miguel
Lejeune et al. in their review paper [68].

Original versions of LAD were designed for the analysis of binary data. Bi-
nary data appear in the form of vertices of n-dimensional unit cube 2n (i.e.
n-dimensional binary vectors) called observations. Components of the obser-
vations are called attributes (or features, or sometimes variables). Each obser-
vation is labeled as positive or negative. The set of all positive observations is
denoted by Ω+ and the set of all negative observations is denoted by Ω− (see
Fig. 3 for an example).

Remark 3. As observations are n-dimensional binary vectors, we unify them
with (characteristic vectors of) sets in the universe Y = {1, 2, . . . , n}.

For an interval B in the n-dimensional unit cube, we define a coverage
Cov(B) as a set of observations contained in B; that is

Cov(B) = B ∩ Ω.

Analogously, we define positive and negative coverage respectively as

Cov+(B) = B ∩ Ω+ and Cov−(B) = B ∩ Ω−.

A basic notion in LAD is that of a pattern. An interval B in the n-
dimensional unit cube is called a positive pattern if

BO+ 6= ∅ and BO− = ∅.4

4For understanding this notation, please see Idea 1 in Section 4.
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In words, the interval contains at least one positive observation and no negative
observations. A negative pattern has an analogous definition.

In the rest of the paper, when we write just ‘pattern’ we mean either a
positive or negative pattern.

A pattern P is prime if there is no pattern P ′ such that P ⊂ P ′, i.e. if any
enlargement of P results in an interval which is not a pattern. A pattern P is
strong if there is no pattern P ′ such that PO ⊂ P ′

O
.

Let T be a subset of observations. An interval spanned by T , denoted by
Span(T ), is the smallest interval containing all observations in T . That is,

Span(T ) =
[⋂

T,
⋃

T
]
. (11)

If a pattern is spanned by a subset T , we call it a spanned pattern. The set
of all spanned patterns in Ω is denoted by SPAN(Ω), the set of all positive
patterns and the set of all negative patterns are denoted by SPAN+(Ω) and
SPAN−(Ω), respectively.

2 LinCbO: fast algorithm for computation of
the Duquenne-Guigues basis

In this section, we describe the LinCbO algorithm. Its foundation is CbO
(Algorithm 1) with LinClosure (Algorithm 2). When considering systems of
attribute implications, pseudo-intents play an important role, since they derive
the minimal basis, called the Duquenne-Guigues basis or canonical basis [39].
The pseudo-intents, together with the intents of formal concepts, form a closure
system. Enumerating all pseudo-intents (together with intents) is more chal-
lenging as it requires a particular restriction of the order of the computation
and the results on complexity are all but promising [64]. There are basically
two main approaches for this task: NextClosure by Ganter [35, 36], and the
incremental approach by Obiedkov and Duquenne [72].

We show that in our approach, LinClosure is able to reuse attribute coun-
ters.5 from previous computations. This makes it work very fast, as our ex-
periments show.

We explain changes in the CbO algorithm: a change of sweep order makes
the algorithms work, and the rest of the changes improve efficiency of the
algorithms.

5LinClosure uses so-called attribute counters to avoid set comparisons and reach a linear
time complexity. We recall this in Section 1.3.2.
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Figure 4: Tree of all subsets of {1, 2, 3, 4}. Each node represents a unique
set containing all elements in the path from the node to the root. The dotted
arrows and small numbers represent the sweep performed by the CbO algorithm
with right depth-first sweep.

2.1 Sweep order

In the previous section, we presented CbO as the left first sweep through the
tree of all subsets. This is how it is usually described. In ordinary settings,
there is no need to follow a particular order of sweep. However, our purpose is
to compute intents and pseudo-intents using the closure operator c̃T (4). For
this, we need to utilize an order which extends the subsethood, i.e. (5). The
right depth-first sweep through the tree of all subsets satisfies this condition
(see Fig. 4). Observe that with the right depth-first sweep, we obtain exactly
the lectic order, i.e. the same order in which NextClosure explores the search
space.

2.2 NextClosure’s improvements

The following improvements were introduced to NextClosure [12] and the in-
cremental approach [72] for computation of pseudo-intents. We incorporated
them to the CbO algorithm.

After the algorithm computes B•, the implication B• → B↓↑ is added to
T , provided B• is a pseudo-intent, i.e. B• 6= B↓↑.

Note that there exists the smallest c̃T -closed set larger than B• and it is
the intent B•↓↑ (= B↓↑). Consider the following two cases:

(o1) This intent satisfies the canonicity test, i.e. B↓↑y = B•y , where y is the
last added attribute to A. Then we can jump to this intent.
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(o2) This intent does not satisfy the canonicity test. Thus, we can leave the
present subtree.

Now, let us describe the first version of LinCbO (Algorithm 3), which in-
cludes the above discussed improvements.

The procedure LinCbO1Step works with the following global variables: an
initially empty theory T , and an initially empty list of attribute implication
for each attribute. LinCbO1Step accepts two arguments: a set B of attributes
and the last attribute y added to B. The set B is not generally closed (which
was the case in Algorithm 1).

The procedure first applies LinClosure with an early stop (Algorithm 2) to
compute B• (line 1).

If B• fails the canonicity test (recall that the canonicity test is incorporated
in LinClosure with an early stop), the procedure stops (lines 2,3). Then, the
procedure computes B•↓↑ to check whether B• is an intent or pseudo-intent
(line 4). If it is a pseudo-intent, a new attribute implication B• ⇒ B•↓↑ is
added to the initially empty theory T (line 5). For each attribute in B•, we
update its list by adding the new attribute implication (lines 6 and 7).

Now, as we computed the intent B•↓↑, we can apply (o1) or (o2) based on
the result of the canonicity test B•↓↑y = B•y (line 8) – either we call LinCbO1Step

for B•↓↑ (line 9) or end the procedure. If B• is an intent, we recursively call
LinCbO1Step for all sets B•∪{i} where i is higher than the last added attribute
y and is not already present in B•. To have lectic order, we make the recursive
calls in the descending order of is.

The procedure LinCbO1Step is initially called with empty set of attributes
and zero representing an invalid last added attribute.

2.3 LinClosure with reused counters

Consider theory T ′ and theory T which emerges by adding new attribute im-
plications to T ′, i.e. T ′ ⊆ T . When we compute T ′-closure B′, we can store
values of the attribute counters at the end of the LinClosure procedure. Later,
when we compute T -closure of a superset B of B′, we can initialize the at-
tribute counters of implications from T ′ to the stored values instead of the
antecedent sizes. Attribute counters for new implications, i.e. those in T ′ \ T ,
are initialized the usual way. Then, we handle only the new attributes, that is
those in B \B′.

We can improve the LinClosure accordingly (Algorithm 4). We describe
only the differences from LinClosure with an early stop (Algorithm 2). It
accepts two additional arguments: Z – the set of new attributes, i.e, those
which were not in the T -closed subset from which we reuse the counters; and
prevCount – the previous counters to be reused. We copy the previous counters
(line 4) and add new attribute implications (lines 5,6).
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Algorithm 3: LinCbO1 (CbO for the Duquenne-Guigues basis, first
version)

T ← ∅
list[i]← ∅ for each i ∈ Y

def LinCbO1Step(B, y):
input : B – set of attributes

y – last attribute added to B

1 B• ← LinClosureES(B, y)
2 if B• is fail then
3 return

4 if B• 6= B•↓↑ then
5 T ← T ∪ {B•⇒B•↓↑}
6 for i ∈ B• do
7 list[i]← list[i] ∪ {B•⇒B•↓↑}
8 if B•↓↑y = B•y then
9 LinCbO1Step(B•↓↑, y)

10 else
11 for i from n down to y + 1, i /∈ B• do
12 LinCbO1Step(B• ∪ {i}, i)

LinCbO1Step(∅, 0)

Note, that in CbO we always make the recursive invocations for super-
sets of the current set (see Algorithm 3, lines 9 and 12). Therefore, we can
easily utilize the LinClosure with reused counters in LinCbO (Algorithm 5).
The only difference from the first version (Algorithm 3) is that the procedure
LinCbOStep accepts two additional arguments, which are passed to procedure
LinClosureRC (line 1). The two arguments are: the set of new attributes and
the previous attribute counters (both initially empty). Recall that the attribute
counters are modified by LinClosure. The corresponding arguments are also
passed to the recursive invocations of LinCbOStep (lines 9 and 12).

2.4 Experimental comparison

We compare LinCbO with other algorithms, namely:

• NextClosure with näıve closure (NC1), LinClosure (NC2), and Wild’s
closure (NC3).
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Algorithm 4: LinClosure with reused counters

def LinClosureRC(B, y, Z, prevCount):
input : B – set of attributes to be closed

y – last attribute added to B
Z – set of new attributes
prevCount – previous attribute counters from

computation B \ Z

1 D ← B
2 if ∃∅⇒R ∈ T then
3 D ← D ∪R

4 count ← copy of prevCount
5 for L⇒R ∈ T not counted in prevCount do
6 count[L⇒R]← |L \B|

7 while Z 6= ∅ do
8 m← min(Z)
9 Z ← Z \ {m}

10 for L⇒R ∈ list[m] do
11 count [L⇒R]← count [L⇒R]− 1
12 if count [L⇒R] = 0 then
13 add ← R \D
14 if min(add) < y then
15 return fail

16 D ← D ∪ add
17 Z ← Z ∪ add

18 return 〈D, count〉

• NextClosure+, which is NextClosure with the improvements described in
Section 2.2, with the same closures (NC+1, NC+2, NC+3)6;

• attribute incremental approach [72].

To achieve maximal fairness, we implemented LinCbO into the framework made
by Bazhanov & Obiedkov [12]7. It contains implementations of all the listed
algorithms. In Section 2.4.1, we also use the same datasets as used by Bazhanov
and Obiedkov [12].

All experiments have been performed on a computer with 64 GB RAM, two

6NextClosure and NextClosure+ are called Ganter and Ganter+ in [12].
7Available at https://github.com/yazevnul/fcai
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Algorithm 5: LinCbO (CbO for the Duquenne-Guigues basis, final
version)

T ← ∅
list[i]← 0 for each y ∈ Y

def LinCbOStep(B, y, Z, prevCount):
input : B – set of attributes

y – last attribute added to B
Z – set of new attributes
prevCount – attribute counters

1 〈B•, count〉 ← LinClosureRC(B, y, Z, prevCount)
2 if B• is fail then
3 return

4 if B• 6= B•↓↑ then
5 T ← T ∪ {B•⇒B•↓↑}
6 for i ∈ B• do
7 list[i]← list[i] ∪ {B•⇒B•↓↑}
8 if B•↓↑y = B•y then
9 LinCbOStep(B•↓↑, y, B•↓↑ \B•, count)

10 else
11 for i from n down to y + 1, i /∈ B• do
12 LinCbOStep(B• ∪ {i}, i, {i}, count)

LinCbOStep(∅, 0, ∅, ∅)

Intel Xeon CPU E5-2680 v2 (at 2.80 GHz), Debian Linux 10, and GNU GCC
8.3.0. All measurements have been taken ten times and the mean value is
presented.

2.4.1 Batch 1: datasets used in [12]

Bazhanov and Obiedkov [12] use artificial datasets and datasets from UC Irvine
Machine Learning Repository [32].

The artificial datasets are named as |X|x|Y |-d, where d is the number of
attributes of each object; i.e. |x↑| = d for each x ∈ X. The attributes are as-
signed to objects randomly, with exception 18x18-17, where each object misses
a different attribute (more exactly, the incidence relation is the inequality).

The datasets from UC Irvine Machine Learning Repository are:
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Table 1: Runtimes in seconds of algorithms generating Duquenne-Guigues basis
in batch 1.

Dataset AttInc NC1 NC2 NC3 NC+1 NC+2 NC+3 LinCbO

100x30-4 0.008 0.007 0.007 0.010 0.004 0.003 0.005 0.002
100x50-4 0.028 0.037 0.024 0.050 0.013 0.008 0.016 0.005
10x100-25 0.015 0.015 0.023 0.033 0.007 0.010 0.014 0.004
10x100-50 0.037 0.052 0.087 0.112 0.038 0.063 0.081 0.015
18x18-17 0.337 0.096 0.143 0.134 0.111 0.157 0.151 0.148
20x100-25 0.099 0.281 0.165 0.484 0.094 0.061 0.172 0.026
20x100-50 0.940 5.457 3.047 8.898 3.809 2.310 6.481 0.675
50x100-5 0.454 0.778 0.253 1.064 0.126 0.047 0.164 0.029
900x100-4 2.061 3.315 0.910 3.936 1.150 0.317 1.333 0.172
Breast-cancer 0.121 0.295 0.236 0.325 0.231 0.184 0.251 0.055
Breast-w 2.856 4.674 3.128 9.610 2.526 1.670 5.155 0.516
dbdata0 0.109 0.254 0.312 0.430 0.158 0.208 0.263 0.049
flare 0.622 1.006 1.865 1.813 0.920 1.661 1.624 0.265
Post-operative 0.014 0.015 0.023 0.021 0.013 0.018 0.018 0.009
spect 0.142 0.407 0.584 0.397 0.388 0.556 0.377 0.097
vote 0.054 0.062 0.078 0.068 0.059 0.075 0.064 0.024
zoo 0.004 0.003 0.005 0.005 0.002 0.004 0.004 0.002

Breast-cancer, Breast-w, dbdata0, flare, Post-operative, spect, vote,
and zoo.

In batch 1, LinCbO computes the basis faster than the rest of algorithms;
however in most cases the runtimes are very small and differences between them
are negligible (see Table 1).

2.4.2 Batch 2: our collection of datasets

As the runtimes in batch 1 often differ only in a few milliseconds, we tested the
algorithm on larger datasets. We used the following datasets from UC Irvine
Machine Learning Repository [32]:

• crx – Credit Approval (37 rows containing a missing value were removed),

• shuttle – Shuttle Landing Control,

• magic – MAGIC Gamma Telescope,

• bikesharing (day|hour) – Bike Sharing Dataset,

• kegg – KEGG Metabolic Reaction Network – Undirected.

We binarized the datasets using nominal (nom), ordinal (ord), and interor-
dinal (inter) scaling, where each numerical feature was scaled to k attributes
with k − 1 equidistant cutpoints. Categorical features were scaled nominally
to a number of attributes corresponding to the number of categories. After the
binarization, we removed full columns. Properties of the resulting datasets are
shown in Table 2. The naming convention used in Table 2 (and Table 3) is the
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following: (scaling)k(dataset). For example, inter10shuttle is the dataset
‘Shuttle Landing Control’ interordinally scaled to 10, using 9 equidistant cut-
points.

Table 2: Properties of the datasets in batch 2
dataset |X| |Y | |I| # intents # ps.intents

inter10crx 653 139 40,170 10,199,818 20,108
inter10shuttle 43,500 178 3,567,907 38,199,148 936
inter3magic 19,020 52 399,432 1,006,553 4181
inter4magic 19,020 72 589,638 24,826,749 21,058
inter5bike day 731 93 24,650 3023,326 20,425
inter5crx 653 79 20,543 348,428 3427
inter5shuttle 43,500 88 1,609,510 333,783 346
inter6shuttle 43,500 106 2,002,790 381,636 566
nom10bike day 731 100 9293 52,697 29,773
nom10crx 653 85 8774 51,078 6240
nom10magic 19,020 102 209,220 583,386 154,090
nom10shuttle 43,500 97 435,000 2931 810
nom15magic 19,020 152 209,220 1,149,717 397,224
nom20magic 19,020 202 209,220 1,376,212 654,028
nom5bike day 731 65 9293 61,853 16,296
nom5bike hour 17,379 90 238,292 1,868,205 320,679
nom5crx 653 55 8774 29,697 2162
nom5keg 65,554 144 1,834,566 13,262,627 42,992
nom5shuttle 43,500 52 435,000 1461 319
ord10bike day 731 93 28,333 664,713 11,795
ord10crx 653 79 37,005 1,547,971 2906
ord10shuttle 43,500 88 1,849,216 97,357 279
ord5bike day 731 58 14,929 81,277 5202
ord5bike hour 17,379 83 457,578 2,174,964 99,691
ord5crx 653 49 19,440 139,752 973
ord5magic 19,020 42 535,090 821,796 1267
ord5shuttle 43,500 43 868,894 4068 119
ord6magic 19,020 52 662,177 2,745,877 2735

For this batch, we included LinCbO1 (Algorithm 3) to show how the reuse
of attribute counters influences the performance.

For most datasets, LinCbO works faster than the other algorithms. For the
remaining datasets, LinCbO is the second best after the attribute incremental
approach (see Table 3). However, we encountered limits of the attribute incre-
mental approach as it runs out of available memory in four cases (denoted by
the symbol ∗ in Table 3).

2.4.3 Evaluation

Based on the experimental evaluation in Section 2.4, we conclude that LinCbO
is the fastest algorithm for computation of the Duquenne-Guigues basis. In
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some cases, it is outperformed by the attribute incremental approach. How-
ever, the attribute incremental approach seems to have enormous memory re-
quirements as it run out of memory for several datasets.

Originally, we believed that CbO itself can make the computation faster.
This motivation came from the paper by Outrata & Vychodil [73], where CbO
is shown to be significantly faster than NextClosure when computing intents.

The main reason for the speed-up is the fact that CbO uses set intersection
to efficiently obtain extents during the tree descent. This feature cannot be ex-
ploited for computation of the Duquenne-Guigues basis. The CbO itself rarely
seems to have a significant effect on the runtime – this was the case for datasets
nom10shutle and nom5shutle. Sometimes, it lead to worse performance, for
example for datasets inter10crx, inter10shuttle, and nom20magic.

However, the introduction of the reuse of attribute counters significantly
improves the runtime for most datasets (see Table 3).

2.5 Pruning in pseudointent computation

CbO received a few improvements in the last two decades, like parallel and
distributed computation [55, 56], partial closures [5], or execution using the
map-reduce framework [58, 54]. Arguably the most efficient improvement of
CbO is a use of monotony property of closure operators to avoid some unnec-
essary computation of closures. This is utilized in FCbO [73], InClose-4 [8],
InClose-5 [9], and LCM [86, 85, 87, 88, 49] (Section 3). We call these methods
pruning techniques.

The operator c̃T (4) is a closure operator; therefore it satisfies the monotony
property, i.e. for any B,D ⊆ 2Y we have

B ⊆ D implies c̃T (B) ⊆ c̃T (D). (12)

Furthermore, for any two theories T and S with T ⊆ S, we have Mod(S) ⊆
Mod(T ) and, consequently, for all B ⊆ 2Y

T ⊆ S implies c̃T (B) ⊆ c̃S(B). (13)

Putting (12) and (13) together, we get that for any sets B,D ⊆ 2Y attributes
and theories T and S we have

B ⊆ D and T ⊆ S imply c̃T (B) ⊆ c̃S(D). (14)

From (14), we have that for any i ∈ Y :

B ⊆ D, T ⊆ S imply [ if i ∈ c̃T (B ∪ {y}) then i ∈ c̃S(D ∪ {y})]. (15)

Now, consider B ∪ {y} being a set to which y is added as the last attribute.
Let i be an attribute with i < y and i /∈ B and the theories S and T be
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Figure 5: Idea of pruning

the partially computed Duquenne-Guigues basis in different times. Obviously,
i ∈ c̃T (B∪{y}) means that the closure of c̃T (B∪{y}) fails the canonicity test.
In words, (15) says that if the canonicity fails for c̃T (B ∪ {y}) then it will also
fail for c̃S(D ∪ {y}).

We can store the information about failed canonicity test for c̃T (B ∪ {y})
and use it later to avoid the computation of c̃S(D ∪ {y}). This is what we call
a pruning, as we effectively prune branches of the search tree.

Specifically, in our case, we store a rule of form “y adds i”. This means
that when we add the attribute y to the set B, the attribute i occurred in the
closure c̃T (B∪{y}) and caused the canonicity test to fail. We use the rule only
in subtrees of B, as they contain only supersets of B.

Example 2. In Figure 5 we illustrate a case, when B = ∅, y = d and i = a.
In the right-most branch, we observe that the canonicity test fails for ∅ ∪ {d},
because a < d occurs in the closure c̃T (∅ ∪ {d}). We store the rule “d adds a”
and use it in subtrees of ∅ whenever we add d to a set. This enables us to avoid
computation of c̃T ({c, d}), c̃T ({b, d}), and c̃T ({b, c, d}).

2.5.1 Utilization of the pruning in LinCbO

We use a global array (rules) to store the rules for pruning. A rule “y adds i”
is stored as rules[y] = i. Absence of such rule is represented by rules[y] = 0.
Note that it means that a new rule can overwrite old rule if it has the attribute
on the left side.
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We need to modify LinClosure (recall that the canonicity test is incor-
porated in LinClosure) to provide us information for pruning. The modified
LinClosure returns a triplet 〈B•, fail, count〉 where:

• B• is the closed set if it passes the canonicity test.

• fail the least attribute which violates the prefix if the canonicity test
failed; otherwise it is 0.

• count are values of attribute counters.

In Algorithm 4, we only need to accordingly modify lines 15 and 18.

We also modify LinCbO as follows (refer to Algorithm 6):

(p0) Whenever the canonicity test fails LinCboStep returns the attribute fail,
which LinClosure detected to violate the prefix (line 4). If an invocation
of LinCboStep returns non-zero value fail, it stores the rule “y adds
fail” in the array rules (lines 14-16).

(p1) At the beginning of LinCboStep, i.e. when descending to a subtree, all
rules having the last added attribute (argument y) on the right side are
removed from the stored rules. In the pseudocode, this is realized by a
subroutine called RemoveRulesByRightSide (line 1).

(p2) At the end of LinCboStep, i.e. when backtracking from the current sub-
tree, all rules from this call are removed. In the pseudocode, this is real-
ized by a subroutine called RemoveAllRulesAddedThisCall (line 17).

(p3) Before computing a closure c̃T (B• ∪ {i}) in a subtree of B, we check the
stored rules to find whether adding i does not add an attribute which
causes the canonicity test to fail (line 13).

We use two versions of the pruning:

(lcm): does exactly what is described above. Notice that in (p3) it
needs only to check existence of a rule with i on the left side; it needs
not to check whether the attribute on its right side is in B (the part
rules[i] ∈ B• of the condition in line 13 of Algorithm 6 can be skipped).

(lcmx): does what is described above but skips the step (p1) (line 1 of
Algorithm 6 is skipped).

Remark 4. Due to the early stop utilized in LinClosure, the information for
pruning is not as complete as in the case for intents. We do not actually obtain
c̃T (B• ∪ {y}) used in (15) when the canonicity is violated. Instead we obtain
an intermediate set. Still it is usable to form the pruning rules as at least one
attribute causing the canonicity test to fail is present in the set.

25



Algorithm 6: LinCbO, final version with pruning)

T ← ∅
list[i]← 0 for each y ∈ Y

def LinCbOStep(B, y, Z, prevCount):
input : B – set of attributes

y – last attribute added to B
Z – set of new attributes
prevCount – attribute counters

1 RemoveRulesByRightSide(i)
2 〈B•, fail, count〉 ← LinClosureRC(B, y, Z, prevCount)
3 if fail > 0 then
4 return fail

5 if B• 6= B•↓↑ then
6 T ← T ∪ {B•⇒B•↓↑}
7 for i ∈ B• do
8 list[i]← list[i] ∪ {B•⇒B•↓↑}
9 if B•↓↑y = Dy then

10 LinCbOStep(B•↓↑, y, B•↓↑ \B•, count)

11 else
12 for i from n down to y + 1, i /∈ B• do
13 if rules[i] = 0 or rules[i] ∈ B• then
14 fail←LinCbOStep(B• ∪ {i}, i, {i}, count)
15 if fail > 0 then
16 rules[i]← fail

17 RemoveAllRulesStoredThisCall()

18 return 0

LinCbOStep(∅, 0, ∅, ∅)
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2.5.2 Experimental comparison

We experimentally compare three version LinCbO: without pruning and with
the two pruning techniques described above. Additionally, we compare them
with algorithms available in the framework made by Bazhanov & Obiedkov
[12], namely Ganter, Ganter+ – each with näıve closure, LinClosure [70], and
Wild’s closure [89] — and the attribute incremental approach.

All experiments have been performed on the same computer as in Section
2.4 with the datasets from batch 2 (Section 2.4.2).

Table 4: Runtimes in seconds of algorithms generating Duquenne-Guigues basis

Dataset LinCBO LinCBO(lcm) LinCBO(lcmx) best of the rest

inter10crx 508.551 223.38 199.115 400.292 AttInc

inter10shuttle 15,852.9 14,967.7 14,825.4 17,664.5 Ganter+

inter3magic 26.156 24.289 24.192 106.341 Ganter

inter4magic 965.353 771.084 835.315 4027.48 Ganter

inter5bike day 85.591 44.012 40.349 72.952 AttInc

inter5crx 3.176 1.855 1.802 5.863 AttInc

inter5shuttle 120.003 112.034 112.638 137.211 Ganter

inter6shuttle 133.288 126.91 126.946 164.355 Ganter

nom10bike day 7.099 1.682 1.545 4.515 AttInc

nom10crx 0.944 0.332 0.328 1.227 AttInc

nom10magic 206.797 96.377 96.662 486.926 AttInc

nom10shuttle 0.425 0.382 0.396 1.102 Ganter+

nom15magic 1509.86 557.051 544.459 3358.44 AttInc

nom20magic 4437.05 1211.66 1210.46 7882.15 AttInc

nom5bike day 2.219 0.833 0.804 2.580 AttInc

nom5bike hour 1410.11 476.592 481.241 1893.33 AttInc

nom5crx 0.193 0.114 0.106 0.406 AttInc

nom5keg 1936.7 1116.51 1139.87 7564.710 Ganter+

nom5shuttle 0.309 0.297 0.292 0.481 Ganter+

ord10bike day 24.997 15.947 15.108 21.884 AttInc

ord10crx 11.653 10.5153 10.147 28.367 AttInc

ord10shuttle 34.293 36.2858 36.2079 40.338 Ganter

ord5bike day 0.936 0.713 0.669 2.080 AttInc

ord5bike hour 321.147 273.862 258.072 1107.570 AttInc

ord5crx 0.610 0.559 0.551 1.468 AttInc

ord5magic 46.982 48.429 48.4259 93.845 Ganter

ord5shuttle 1.319 1.345 1.349 1.380 Ganter+

ord6magic 158.227 158.466 162.65 335.947 Ganter

We made the following observations from our experimental evaluation (Ta-
ble 4).

Comparison of LinCbO with and without pruning

The pruning techniques seem to have different effect for various types of formal
contexts:
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• For interordinally scaled data, LinCbO with pruning performed better
than without pruning. However, the improvement is significant only for
the crx datasets (inter10crx and inter5crx). For other dasasets, the
improvement seems insignificant.

• For nominally scaled data, LinCbO with pruning performed signifi-
cantly better with exception of shuttle dataset (nom5shuttle and
nom10shuttle).

• For ordinally scaled data, LinCbO without pruning performed slightly
better than with pruning – namely, for the magic and shuttle datasets
(ord5magic, ord6magic, ord10shuttle, and ord5shuttle). LinCbO
with pruning performed better in the rest. With exception for ord10crx,
the improvement was significant.

The speed-up factor runtime of LinCbO with pruning
runtime of LinCbO without pruning · 100% of the pruning

methods is shown in Table 5.

Comparison of the two variants of pruning in LinCbO

The (lcmx) does not remove pruning rules in (p1) and enables them to be used
until rewritten by another rule or removed in (p2). That way it can avoid more
closure computation than (lcm) at cost of an inexpensive check of attribute
presence (Algorithm 6, line 13).

Indeed, our experimental comparison shows that LinCbO with (lcmx) per-
forms slightly better than (lcm) in most cases (Table 4) and avoids more
closure computation (Table 5). However, the difference in the performance is
not significant.

Comparison with other algorithms

The column ‘best of the rest’ represents the best algorithm from the Bazhanov
& Obiedkov’s framework. We tested all seven algorithms listed above, however
only Ganter, Ganter+ (both with näıve closure implementation) and the at-
tribute incremental approach appear in the column, as these performed best in
our evaluation. Among these algorithms, the attribute incremental approach
was ofthen the fastest one. In some cases, it was even faster than LinCbO
without pruning. However, we encountered limits of this algorithm as it runs
out of available memory in three cases: inter10shuttle, inter4magic, and
nom5keg.
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Table 5: Number of skipped recursive calls and speed-up factor by pruning
techniques

Dataset (lcm)
speed-up

factor (%)
(lcmx)

speed-up

factor (%)

inter10crx 120,851,019 227.66 126,403,951 255.41
inter10shuttle 1,321,766,518 105.91 1,326,688,040 106.93
inter3magic 1,538,199 107.69 1,637,367 108.12
inter4magic 48,536,834 125.19 52,180,055 115.57
inter5bike day 18,193,052 194.47 19,432,953 212.13
inter5crx 2,345,689 171.21 2,429,752 176.25
inter5shuttle 7,536,887 107.11 7,603,108 106.54
inter6shuttle 9,922,755 105.03 10,029,964 105
nom10bike day 1,195,268 422.08 1,229,644 459.46
nom10crx 635,844 284.38 641,138 287.87
nom10magic 2,974,506 214.57 2,995,995 213.94
nom10shuttle 39,864 111.05 40,288 107.34
nom15magic 10,129,231 271.05 10,185,502 277.31
nom20magic 19,659,598 366.2 19,756,910 366.56
nom5bike day 502,879 266.27 533,577 276.04
nom5bike hour 16,430,989 295.87 17,011,991 293.02
nom5crx 169,499 169.24 171,668 181.19
nom5keg 226,578,200 173.46 227,020,735 169.91
nom5shuttle 12,983 103.91 13,338 105.71
ord10bike day 2,468,278 156.75 2,848,811 165.45
ord10crx 1,621,895 110.82 2,169,367 114.85
ord10shuttle 1,144,851 94.51 1,181,005 94.71
ord5bike day 121,968 131.32 156,400 139.91
ord5bike hour 1,122,408 117.27 1,677,745 124.44
ord5crx 137,169 109.12 161,173 110.74
ord5magic 491,174 97.01 493,737 97.02
ord5shuttle 38,877 98.02 40,987 97.75
ord6magic 1,856,194 99.85 1,867,038 97.28
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3 LCM is well implemented CbO

LCM (Linear time Closed itemset Miner) is an algorithm for the enumeration
of frequent closed itemsets developed by Takeaki Uno [86, 85, 87, 88] in 2003–
2005. It is considered to be one of the most efficient algorithms for this task.
Its implementations with source codes are available at http://research.nii.
ac.jp/~uno/codes.htm. Frequent closed itemsets in transaction databases
are exactly intents in formal concept analysis (FCA) with sufficient support—
cardinality of the corresponding extents. If the minimum required support is
zero (i.e. any attribute set is considered frequent), one can easily unify these
two notions.

In this section, we describe LCM in terms of FCA and reveal that LCM
is basically the Close-by-One algorithm with multiple speed-up features for
processing sparse data.

We have thoroughly studied Uno’s papers and source codes and, in this
section, we deliver a complete description of LCM from the point of view of
FCA. Despite the source codes being among the main sources for this study,
we stay at a very comprehensible level in our description and avoid delving
into implementation details. We explain that the basis of LCM is Kuznetsov’s
Close-by-One (CbO) [62].8 We describe its additional speed-up features and
compare them with those of state-of-art CbO-based algorithms, like FCbO [73]
and In-Close2+ [6, 7, 8, 9].9

There are three versions of the LCM algorithm:

LCM1 is CbO with arraylist representation of data and computing of all ex-
tents at once (described in Section 3.2), data preprocessing (described in
Section 3.1), and using of diffsets [93] to represent extents for dense data
(this is not present in later versions).

LCM2 is LCM1 (without diffsets) with conditional databases (described in
Section 3.3)

LCM3 is LCM2 which uses a hybrid data structure to represent a context.
The data structure uses a combination of FP-trees and bitarrays, called
a complete FP-tree, to handle the most dense attributes. Arraylists are
used for the rest, the same way as in the previous versions.

In this paper, we describe all features present in LCM2.

8Although LCM was most likely developed independently.
9In the rest of this section, whenever we write ‘CbO-based algorithms’ we mean CbO,

FCbO and In-Close family of algorithms. By version number 2+, we mean the version 2 and
higher.
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3.1 Initialization

To speed the computation up, LCM initializes the input data as follows:

• removes empty rows and columns,

• merges identical rows,

• sorts attributes by cardinality (|y↓|) in the descending order,

• sorts objects by cardinality (|x↑|) in the descending order.

In the pseudocode in Algorithm 7, the initialization is not shown and
it is supposed that it is run before the first invocation of the procedure
GenerateFrom.

FCA aspect: The attribute sorting is well known to most likely cause a
smaller number of computations of closures in CbO-based algorithms [55, 6, 7].
This feature is included in publicly available implementations of In-Close4 and
FCbO.

The object sorting is a different story. Andrews [6] tested the performance of
In-Close2 and concluded that lexicographic order tends to significantly reduce
L1 data cache misses. However, the test were made for bitarray representation
of contexts.

The reason for object sorting in LCM is probably that a lesser amount of
inverses occurs in a computation of a union of rows (shown later (16)), which
is consequently easier to sort. Our testing with Uno’s implementation of LCM
did not show any difference in runtime for unsorted and sorted objects when
attributes are sorted. In the implementation of LCM3, the object sorting is
not present.

Remark 5. In examples in this paper, we do not use sorted data, in order to
keep the examples small.

3.2 Ordered arraylists and occurrence deliver

LCM uses arraylists10 as data representation of the rows of the context. It is
directly bound to one of the LCM’s main features – occurrence deliver:

LCM computes extents A ∩ i↓ (line 3 in Algorithm 1) all at once using a
single traversal through the data. Specifically, it sequentially traverses through
all rows x↑ of the context and whenever it encounters an attribute i, it adds x
to an initially empty arraylist – bucket – for i (see Fig. 6). As LCM works with
conditional datasets (see Section 3.3), attribute extents correspond to extents
A ∩ i↓ (see Algorithm 1, line 3). This is also known as vertical format in DM
algorithms; the buckets are also known as tidlists.

10Whenever we write arraylist, we mean ordered arraylists.
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Figure 6: Occurrence deliver in LCM.
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LCM generates children of each node from right to left. That way, it can
reuse the memory for extents (buckets). For example, when computing extents
in the node {2}, that is {2, 3}↓ and {2, 4}↓, the algorithm can reuse the memory
used by extents {3}↓ and {4}↓, because {3} and {4} (and their subtrees) are
already finalized.

FCA aspect: In FCA, the CbO-based algorithms do not specify data rep-
resentation used for handling contexts, sets of objects, and sets of attributes.
This is mostly considered a matter of specific implementations (see Remark 6).
Generally, the data representation issues are almost neglected in literature on
FCA. The well-known comparison study [67] of FCA algorithms mentioned the
need to study the influence of data structures on practical performances of
FCA algorithms but it does not pay attention to that particular issue. The
comparison study [57] provided the first steps to an answer for this need.11

The latter paper concludes that binary search trees or linked lists are good
choices for large or sparse datasets, while bitarray is an appropriate structure
for small or dense datasets. Arraylists did not perform particularly well in any
setting. However, this comparison did not assume other features helpful for
this data representation, like conditional databases (see Section 3.3) and com-
putation of all required attribute extents in one sweep by occurrence deliver.
More importantly, the minimal tested density is 5 %, which is still very dense
in the context of transactional data.

Remark 6. Available implementations of FCbO12 and In-Close13 utilize bitar-
rays for rows of contexts, and sets of attributes, and arraylists for sets of objects.

3.3 Conditional database and interior intersections

LCM reduces the database for the recursive invocations of GenerateFrom.
Let K = 〈X,Y, I〉 be a formal context, D ⊆ Y be an attribute set which

occurred as D = (B ∪ {i})↓↑.
The conditional context KB,i w.r.t. 〈B, i〉 is created from K as follows:

(a) First remove from K objects which are not in the corresponding extent
A = B↓ (Fig. 7 (a)).

(b) Remove attributes which are full or empty (Fig. 7 (b)).

(c) Remove attributes lesser than i (Fig. 7 (c))14

11Paper [57] compares bitarrays, sorted linked lists, arraylists, binary search trees, and
hash tables.

12Available at http://fcalgs.sourceforge.net/.
13Available at https://sourceforge.net/projects/inclose/.
14In the implementation, when the database is already too small (less than 6 objects, and

less than 2 attributes), steps (c)–(d) are not performed.
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(d) Merge identical objects together (Fig. 7 (d))

(e) Put back attributes removed in step (d), incidences are intersections of
the corresponding merged rows (Fig. 7 (e)). The part of context added in
this step is called an interior intersection.

Alternatively, we can describe conditional databases with interior intersections
as:

• Restricting the context K to objects in A and attributes in N where

N =

(⋃
x∈A

x↑

)
\ A↑. (16)

This covers the steps (a)–(c).

• Subsequent merging/intersecting those objects which have the same inci-
dences with attributes in {1, 2, . . . , y − 1}. This covers the steps (d)–(e).

In the pseudocode in Algorithm 7, the creation of the conditional
databases with interior intersections is represented by procedure named
CreateConditionalDB(K, A,N, y).

FCA aspect: CbO-based algorithms do not utilize conditional databases.
However, we can see partial similarities with features of CbO-based algorithms.

First, all the algorithms skip attributes work only with part of the formal
context given by B↓ and Y \ B. That corresponds to the step (a) and the first
part of step (b) (full attributes).

Second, the removal of empty attributes in step (b) utilizes basically the
same idea as in In-Close4 [8]: if the present extent A and an attribute intent
i↓ have no common object, we can skip the attribute i in the present subtree.
In FCbO and In-Close3, such attribute would be skipped due to pruning (see
Section 3.4).

Steps (c)–(e) have no analogy in CbO algorithms.

Description of LCM without pruning

At this moment, we present pseudocode of LCM (Algorithm 7) with above-
described features. For now, we will ignore pruning feature. As in the case
for CbO, the algorithm is given by recursive procedure GenerateFrom. The
procedure takes four arguments: an extent A, a set of attributes B, the last
attribute y added to B, and a (conditional) database K). The procedure
performs the following steps:
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1 2 3 4 5 6 7 8

a ˆ ˆ ˆ ˆ ˆ
b ˆ ˆ ˆ ˆ ˆ ˆ
c ˆ ˆ ˆ ˆ
d ˆ ˆ ˆ
e ˆ ˆ ˆ ˆ ˆ
f ˆ ˆ ˆ ˆ ˆ ˆ
g ˆ ˆ
h ˆ ˆ ˆ ˆ
i ˆ ˆ

1 2 3 4 5 6 7 8

a ˆ ˆ ˆ ˆ ˆ
b ˆ ˆ ˆ ˆ ˆ ˆ
c ˆ ˆ ˆ ˆ
e ˆ ˆ ˆ ˆ ˆ
f ˆ ˆ ˆ ˆ ˆ
h ˆ ˆ ˆ ˆ

1 2 4 5 6

a ˆ ˆ ˆ
b ˆ ˆ ˆ ˆ
c ˆ ˆ
e ˆ ˆ ˆ
f ˆ ˆ ˆ
h ˆ ˆ

4 5 6

a ˆ ˆ
b ˆ ˆ
c ˆ
e ˆ ˆ
f ˆ ˆ
h ˆ ˆ

4 5 6

a,b ˆ ˆ
c ˆ
e,f,h ˆ ˆ

1 2 4 5 6

a,b ˆ ˆ ˆ
c ˆ ˆ
e,f,h ˆ ˆ

(a) Remove objects not in t3, 7uÓ:
Objects d,g, and i are removed.

(b) Remove empty and full attributes:
Attributes 3, 7, and 8 are removed.

(c) Remove attributes lesser than 3:
Attributes 1 and 2 are removed.

(d) Merge identical objects together.

(e) Add interior intersections.

Figure 7: Obtaining contitional context KB,y for attribute set B = {3, 7} and
attribute y = 3.
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(line 1) The set N (16) of non-trivial attributes is computed.
(line 2) The frequencies of all attributes in N are computed, this is

made by a single traversal through K similar to the occurence
deliver (described in Section 3.2).

(lines 4–6) The loop checks whether any attribute in N lesser than y
has frequency equal to |A|. If so, the attribute causes the
canonicity test to fail, therefore we end the procedure.

(lines 7–10) The loop closes B (and updates N) based on the computed
frequencies.

(line 11) As the canonicity is checked and B is closed, the pair 〈A,B〉
is printed out.

(line 12) The conditional database KB,y (described in Sec. 3.3) is cre-
ated.

(line 13) Attribute extents from KB,y are computed using occurence
deliver (described in Section 3.2).

(lines 14, 16) The procedure GenerateFrom is recursively called for at-
tributes in N with the conditional database KB,y and the
corresponding attribute extent.

3.4 Bonus feature: pruning

The jumps using closures in CbO significantly reduce the number of visited
nodes in comparison with the näıve algorithm. The closure, however, becomes
the most time consuming operation in the algorithm. The pruning technique in
LCM15 avoids computations of some closures based on the monotony property:
for any set of attributes B,D ⊆ Y satisfying B ⊆ D, we have

j ∈ (B ∪ {i})↓↑ implies j ∈ (D ∪ {i})↓↑. (17)

When i, j /∈ D and j < i, the implication (17) says that if j causes (B∪{i})↓↑ to
fail the canonicity test then it also causes (D∪{i})↓↑ to fail the canonicity test.
That is, if we store that (B ∪ {i})↓↑ failed, we can use it to skip computation
of the closure (D ∪ {i})↓↑ for any D ⊃ B with j /∈ D. We demonstrate this in
the following example.

Example 3. Consider the following formal-context.

1 2 3 4
a × × ×
b × × ×
c × ×
d ×

15Pruning is not described in papers on LCM, however, it is present in the implementation
of LCM2.
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43 4
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1) canonicity test fails;

store: 4 adds 1

2) stored information

reused for {2}, {3}, {2, 3}

× ×

×

Figure 8: Reuse of a failed canonicity test information

Consider the tree of all subsets in Fig. 4. The rightmost branch of the tree
represents adding the attribute 4 into an empty set. We can easily see, that

{4}↓↑ = {1, 4}, (18)

and, therefore, the canonicity test Bi = Di fails. In this case, we have Bi =
∅4 = ∅ while Di = {1, 4}4 = {1}.

Notice, that (18) gives us information for the actual set (an empty set in
this case): adding attribute 4 causes that attribute 1 is in the closed set. Due
to (17) this holds true for any superset of the actual set. This information is
then reused for the supersets. Specifically, for sets {2}, {3}, or {2, 3}, adding
attribute 4 causes that attribute 1 is present in the closed set and, consequently,
causes failing the canonicity test. Figure 8 shows the described situation.

LCM utilizes the above idea in the following way:

(p0) Whenever the canonicity test fails for (B ∪ {i})↓↑ and j is the smallest
attribute in (B∪{i})↓↑\B, we store the rule “i adds j”. In the pseudocode
(Algorithm 7) this is realized through the return value of the procedure
GenerateFrom. The procedure returns the least attribute which caused
the canonicity to fail (line 6) or 0 if it passed the canonicity test (line
20). The returned value is used to form a pruning rule to be stored (lines
17,18).
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(p1) At the beginning of GenerateFrom, i.e. when descending to a subtree,
all rules having the last added attribute (argument y) on the right side
are removed from the stored rules. In the pseudocode, this is realized by
a subroutine called RemoveRulesByRightSide (line 3).

(p2) At the end of GenerateFrom, i.e. when backtracking from the current
subtree, all rules from this call are removed. In the pseudocode, this is
realized by a subroutine called RemoveAllRulesAddedThisCall (line 19).

(p3) Before computing a closure (D ∪ {i})↓↑ in a subtree of B, we check the
stored rules to find whether adding i does not add any attribute which
causes the canonicity test to fail. Due to the way how the rules are
handled in the previous items, (p0)–(p2), it is sufficient to check whether
there is any rule having i on the left side. In the pseudocode, this is
realized by a subroutine called CheckRulesByLeftSide (line 15).

FCA aspect: Similar pruning techniques are also present in FCbO and In-
Close3 and higher:

• FCbO, In-Close3: stores rules of the form “i gives set A”.

• In-Close4: stores rules of the form “i gives empty extent”.

• In-Close5: stores rules of the form “i adds an attribute which makes the
canonicity test fail” and rules of In-Close4.

All the FCA algorithms utilize only steps (p0), (p2), and (p3); none of them
performs (p1).

LCM’s pruning is weaker than the pruning in FCbO and In-Close3, stronger
than the pruning in In-Close4 and In-Close5:

In-Close4 < In-Close5 < LCM < FCbO = In-Close3.

4 Interface between logical analysis of data and
formal concept analysis

While logical analysis of data (LAD) and formal concept analysis (FCA) stands
on different mathematical foundations (boolean functions and combinatorics in
the case for LAD, lattice theory and closure structures in the case for FCA),
there is a link between formal concepts of FCA and patterns of LAD based on
the equivalence of their basic building blocks. We see this equivalence to be
an interface between FCA and LAD as it enables us to transfer theorems and
algorithms from one methodology to the other.
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Algorithm 7: LCM

def GenerateFrom(A, B, y, K):
input : A – extent

B – set of attributes
y – last added attribute
K – conditional database

1 N ←
(⋃

x∈A x↑
)
\B

2 {ni | i ∈ N} ←Frequencies(K, N)

3 RemoveRulesByRightSide(y)

4 for i ∈ N, i < y do
5 if ni = |A| then
6 return i

7 for i ∈ N, i > y do
8 if ni = |A| then
9 B ← B ∪ {i}

10 N ← N \ {i}

11 print(〈A,B〉)

12 K′ ← CreateConditionalDB(K, A, N , y)
13 {Ci | i ∈ N} ← OccurenceDeliver(K′)

14 for i ∈ N, i > y, (in descending order) do
15 if CheckRulesByLeftSide(i) then
16 j ← GenerateFrom(Ci, B ∪ {i}, i, K′)
17 if j > 0 then
18 AddRule (“i adds j”)

19 RemoveAllRulesAddedThisCall()

20 return 0

GenerateFrom(X, X↑, 0, 〈X,Y, I〉)
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In this section we describe the link between the methodologies, its main
benefits, and areas to be subsequently studied in our future research. The link
is based on the three following ideas:

Idea 1: We can consider Ω+ and Ω− to be two two-valued formal contexts. We
denote by Y = {1, . . . , n} the LAD’s set of attributes, by Ω = Ω+∪Ω− the set of
all observations, and by IΩ ⊆ Ω×Y the relation describing incidences between
the observations in Ω and the attributes in Y . That is, for ω ∈ Ω, y ∈ Y (note,
that ω is technically a set; see Remark 3), we have

〈ω, y〉 ∈ IΩ iff y ∈ ω. (19)

In what follows, we consider the formal context 〈Ω, Y, IΩ〉 and its restrictions
〈Ω+, Y, I+

Ω 〉, 〈Ω−, Y, I
−
Ω 〉 to positive and negative observations. We call the two

restrictions positive and negative context, respectively. The concept-forming
operators induced by 〈Ω, Y, IΩ〉, 〈Ω+, Y, I+

Ω 〉, and 〈Ω−, Y, I−Ω 〉 are respectively
denoted by 〈M, O〉, 〈M+ , O+〉, and 〈M− , O−〉.
Idea 2: Considering 〈Ω+,Ω−〉 a two-valued context, we have

Cov(B) = BO.

That is, the coverage corresponds to the concept-forming operator O.

Idea 3: We have
TM = Span(T ).

where M is the concept-forming operator induced by 〈Ω, Y, IΩ〉 (see Idea 1).

4.1 Spanned patterns

First, we can straightforwardly declare a relationship between spanned intervals
and formal concepts.

Theorem 2.

(a) Spanned intervals are exactly intents in Int(IΩ).

(b) Intervals spanned by subsets of Ω+ are exactly intents in Int(I+
Ω ).

(c) Intervals spanned by subsets of Ω− are exactly intents in Int(I−Ω ).

Now we only need to filter out those intervals B which are not patterns,
that is those which satisfy

B ∩ Ω− 6= ∅ (20)
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in the case for positive patterns, and

B ∩ Ω+ 6= ∅ (21)

in the case for negative patterns.
Let us denote the set of formal concepts in B(I) whose intents are also

positive patterns by B+(I). The corresponding set of intents is denoted by
Int+(I). Analogously, for negative patterns, we use the notations B−(I) and
Int−(I).

Theorem 3. We have

SPAN+(Ω) = Int+(I+
Ω ),

SPAN−(Ω) = Int−(I−Ω ).

Using the above remarks, we can compute spanned patterns using an algo-
rithm for enumeration of formal concepts (or just intents), filtering out those
which are not patterns.

4.2 Prime and strong patterns

In this section, we characterize prime and strong patterns in terms of FCA.
First, we need to recall the notion of a generator.

Definition 1. A generator of an intent B ∈ Int(I) is an interval C ∈ IY such
that

COM = B.

Clearly, it must hold that B ⊆ C. If there is no generator D of B such that

B ⊆ C ⊂D,

we call C a maximal generator of B.

Now we can provide the following characterizations of prime and strong
patterns.

Theorem 4. Strong positive patterns are exactly generators of maximal ele-
ments of Int+(I+

Ω ). Strong negative patterns are exactly generators of maximal
elements of Int−(I−Ω ).

Proof. Take any maximal concept 〈A,B〉 of B+(I+
Ω ). Consider x ∈ Ω+ such

that x /∈ A. Note that there is no interval C such that

CO+ ⊇ {x} ∪A.
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Indeed, if there is such C, then 〈CO+ ,CO+M+〉 is a formal concept in B+(I+
Ω )

and 〈A,B〉 is not maximal. Therefore, there is no interval C ≥ B such that
CO+ ⊃ A. Any C ≥ B satisfying CO+ = A is a strong positive pattern.

Let C be a strong positive pattern. Clearly, 〈CO+ ,CO+M+〉 ∈ B+(I+
Ω ) and

C is a generator of CO+M+ . By definition of a positive pattern, there is no
interval D such that DO+ ⊃ CO+ . That means that CO+ is an extent of a
maximal concept in B+(I+

Ω ).
Analogously for negative patterns.

Theorem 5. Prime positive patterns are exactly maximal generators of maxi-
mal elements of Int+(I+

Ω ). Prime negative patterns are exactly maximal gener-
ators of maximal elements of Int−(I−Ω ).

Proof. Directly from Theorem 4.

Considerable research on minimal generators has been done in FCA [82, 83,
71]; see also related sections in surveys [75, 76].

4.3 Selected benefits of the interface

The proposed interface between the two methodologies has a potential to bring
fruitful results. In this section, we describe the three most obvious and present
results of our preliminary experiments.

4.3.1 Efficient algorithms of FCA applicable in LAD

Algorithms for computing spanned patterns

Literature on LAD [3, 1, 26] describes two algorithms to generate spanned pat-
terns called SPAN and SPIC. To describe them, we need to introduce the notion
of consensus. Let B1 = [B1, B1], B2 = [B2, B2] be two spanned patterns. If
the interval

B1 tB2 = [B1 ∩B2, B1 ∪B2]

is a pattern, we call it the consensus of the two patterns.
The algorithm SPAN corresponds to what Ganter and Wille [36] call a näıve

approach in FCA. It starts with observations in Ω+ and generates new spanned
patterns as consensus of already found patterns pairwise. The algorithm ter-
minates when no two spanned patterns produce a new spanned pattern as their
consensus.

Algorithm SPIC is a variant of SPAN which avoids some computations
which lead to duplicated patterns. Specifically, one of the two patterns to make
a consensus has to be an observation from Ω+. In FCA, this corresponds to
the algorithm Object Intersections described in [23]. For a detailed description,
see Appendix B in [48].
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When we write that SPIC and SPAN correspond to particular algorithms in
FCA in the above paragraphs, we mean that we can generate spanned positive
patterns as elements of Int+(I+

Ω ) with the algorithms modified to the two-valued
setting (analogously for negative patterns).

Experiments

To support our claims on the efficiency of FCA algorithms used for computa-
tion of LAD’s patterns, we performed some preliminary experiments. Using
algorithms CbO, FCbO and SPIC, we computed the first 1000, 5000, 10000,
15000, and 20000 positive spanned patterns with 5% prevalence (percentage of
covered observations) in four datasets from the UC Irvine Machine Learning
Repository [32], namely Breast Cancer Wisconsin (bcw), Mushrooms, Tic-Tac-
Toe, and Congressional Voting Records (votes).

All three algorithms were implemented in C++, sharing a common code
base and data structures. Namely, bit-vectors were used to represent patterns
and intents. Note that this representation allows for efficient implementation
of the intersection operation which is essential for all discussed algorithms.

Our experiments were performed on a computer equipped with 64 GB RAM,
two Intel Xeon E5-2680 CPUs, 2.80 GHz, and Debian Linux 9.6 with GNU GCC
6.3.0.

We measured the runtime required to finish the task. All measurements
were taken three times and an average value was used. In all cases, the time
required by the FCA algorithms was several orders of magnitude less than the
time required by SPIC; see Table 6.

Remark 7 (Space complexity). We did not compare the memory used by the
algorithms. We only comment on asymptotic space complexity of the algo-
rithms. SPIC needs to keep generated patterns in the memory to check for
duplicates. This leads to an exponential space complexity as, in the worst case,
O(2|Y |) patterns are stored in the memory. In contrast, FCA algorithms as-
sure uniqueness of each enumerated pattern and their space complexity is in
O(|Y |2).

Remark 8. It is important to note that the SPIC algorithm and the two FCA
algorithms enumerate spanned patterns in a different order. Therefore, the first
1000 spanned patterns computed by SPIC and the first 1000 spanned patterns
computed by CbO or FCbO are different sets of patterns. Due to this difference,
we cannot simply conclude superiority of the FCA algorithms. This is why we
call the experiments preliminary. Further study in this area is needed and is
planned for our future research.
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dataset alg. 1000 5000 10000 15000 20000
bcw CbO 11 49 87.91 122 153

FCbO 10 40 72.50 101 129
SPIC 184 667 1124.63 1299 1594

mushrooms CbO 231 800 1336.74 2033 2596
FCbO 64 165 273.55 389 486
SPIC 3181330 6023211 12094900 19057156 24869203

tic-tac-toe CbO 599 1412 2207.90 3287 3811
FCbO 210 447 720.49 978 1122
SPIC 3002 5653 10803 18505 32427

votes CbO 11 51 92.80 126 162
FCbO 5 16 28.67 47 60
SPIC 208 928 1269.10 1631 1912

Table 6: Comparison of running time (in milliseconds) required for computation
of the first one thousand, five thousand, . . . , twenty thousand spanned patterns
with prevalence 5 % using CbO, FCbO and SPIC.

4.3.2 Concept rankings and reductions of concept lattices

One of the most recognized problems in both LAD and FCA is that a very large
amount of patterns/formal concepts can be generated from the input data.
Despite the understandability of the patterns and formal concepts, the large
quantity becomes ungraspable and unreadable by a human user. Additionally,
the large quantity is unfeasible for further processing. In LAD, we need to
select a model, a representative subset of patterns for classification. The main
emphasis is on covering all observations and, additionally, on handling outliers
[43]. The selection of the model is part of a process called theory formation.

In FCA, many studies are devoted to the reduction of the size of a con-
cept lattice; see survey studies [30, 31]. Furthermore, multiple studies in FCA
considered various measures of relevancy of formal concepts. For instance, sta-
bility [61, 65, 60] and basic level [16, 17]. The comparative study [66] provides
a comparison of relevancy measures of formal concepts with respect to vari-
ous aspects. We plan to perform an experimental evaluation of reductions and
relevancy measures with respect to the goals of LAD.

4.3.3 Generalization to graded setting

In the real world, incidences between observations and attributes are rarely a
matter of absolute truth and absolute falsity. Rather, it is a matter of degrees
of truth (like ‘almost true’, ‘more or less false’, etc.) Formal concept analysis
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was generalized to handle these degrees of truth in the 90s independently by
Belohlavek [14] and Burusco [22]. This generalization is based on the framework
of L-fuzzy sets [37, 38] known as Formal Fuzzy Concept Analysis (FFCA).

FFCA was further generalized to enable us to process positive and negative
attributes [10, 11]. The interface described in the present paper can be almost
directly used to design a generalization of LAD for handling degrees of truth.
We see this as a key part of our future research.

5 Conclusions

In this paper we brought three following results:

• We introduced the new algorithm called LinCbO for computation of the
Duquenne-Guigues basis. It uses natural behavior of the Close-by-One
algorithm for speed-up of a computation. We can use values of the at-
tribute counters from previous calls of LinClosure, so subsequent calls of
LinClosure are faster. We also equipped LinCbO with pruning techniques
to avoid some unnecessary recursive calls.

We demonstrated this speed-up feature on experiments with real and
artificial datasets. We showed that the LinCbO algorithm is very fast
and has great potential for further research and improvements.

• We described the LCM algorithm from the FCA point of view. Formerly,
we used it as a black box. Now we know that it shares basic ideas with
the CbO. In the available implementation of LCM we also discovered the
pruning technique, which was not described in original papers. We im-
plemented its pruning technique into LinCbO; detailed comparison with
the other pruning techniques will be a subject of our future research.

• We stated the interface between formal concept analysis and logical anal-
ysis of data and we showed that it could bring some benefits. Namely,
we can use efficient algorithms from FCA for enumerating all patterns.
In future work, we will investigate the benefits of this interface. We hope
that the two methodologies can enrich each other.

We wanted to show the Close-by-One algorithm in a new light. We showed
that this well-known algorithm still has potential for improvements and can be
used in new fields.

Shrnut́ı v českém jazyce

V této práci jsme přinesli následuj́ıćı výsledky:
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• Představili náš nový algoritmus LinCbO pro výpočet Duquenne-Guigues
báze. Pro zrychleńı výpočtu využ́ıvá přirozených vlastnost́ı algo-
ritmu Close-by-One, d́ıky kterým můžeme znovu využ́ıt hodnoty atrib-
utových č́ıtač̊u v algoritmu LinClosure. To vede k výraznému urychleńı
daľśıch voláńı LinClosure. Dále jsme LinCbO vylepšili pomoćı technik
prořezáváńı, d́ıky kterým je možné vynechat některá rekurzivńı voláńı.

Provedli jsme experimenty s reálnými i uměle generovanými datasety, na
kterých jsme demonstrovali dopad našich vylepšeńı. Na experimentech
jsme ukázali, že LinCbO je velmi rychlý a má velký potenciál k budoućımu
zkoumáńı.

• Ukázali jsme, jak funguje algoritmus LCM z pohledu formálńı kon-
ceptuálńı analýzy. Tento algoritmus jsme dř́ıve použ́ıvali jako černou
skř́ıňku, dnes v́ıme, že sd́ıĺı základńı myšlenky s algoritmem CbO. V dos-
tupné implementaci LCM jsme objevili, že je také použito preřetáváńı,
které nebylo popsáno v p̊uvodńıch článćıch. Stejnou metodu prořezáváńı
jsme implementovali i do LinCbO. Detailńı srovnáńı s ostatńımi tech-
nikami prořezáváńı bude předmětem našeho daľśıho zkoumáńı.

• V posledńı části jsme popsali rozhrańı mezi formálńı konceptuálńı
analýzou a logickou analýzou dat a ukázali jsme, že může přinést mnoho
výhod. Např́ıklad, můžeme použ́ıt efektivńı algoritmy z FCA pro výpočet
všech vzor̊u(patterns). V budoucnu chceme podrobněji prozkoumat
všechny výhody tohoto rozhrańı. Věř́ıme, že se tyto metodiky mohou
navzájem obohatit.

V této práci jsme chtěli ukázat nový pohled na algoritmus Close-by-
One. Ukázali jsme, že tento známý algoritmus má stále potenciál pro
vylepšováńı a může být použit v nových oblastech.
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