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Abstract 
The aim of this work is to provide a detailed overview of the research regarding spherical 
videos. Specifically, this work focuses on the task of creating a normal field of view video 
from a spherical one for viewing purposes. It provides an implementation of some of the 
available methods as well. So far, there have been three methods introduced by four papers 
tackling this challenge. A l l of them have brought promising results and this work examines 
two of them thoroughly. It also provides a baseline method leveraging well known techniques 
of automatic image cropping. This method serves as a good comparison tool which puts 
the improvements brought by the examined methods into perspective. Based on a thorough 
comparison via a user study this work concludes, that the best method for this task overall 
is a variation of the method by Pavel et al. [14] introduced in this work. 

Abstrakt 
Cieľom tejto práce je priniesť detailný pohľad na doterajší prieskum v oblasti sférických 
videí. Konkrétne sa tá to práca zameriava na problém tvorby videa s normálnym zorným 
poľom zo sférického videa pre potreby zobrazovania. Prináša tiež implementáciu niektorých 
dostupných metód. Doteraz boli predstavené tr i metódy v štyroch článkoch, ktoré riešia 
tento problém. Všetky priniesli zaujímavé výsledky a tá to práca sa dvomi z nich zaoberá 
hlbšie. Táto práca tiež prináša základnú metódu využívajúcu overené metódy automat­
ického orezu obrazu. Táto metóda je využitá na porovnanie so skúmanými metódami, u 
ktorých zvýrazní ich vylepšenia ale aj nedostatky. Na základe porovnania metód pomocou 
užívateľského experimentu tá to práca usudzuje, že najlepšou zo skúmaných metód pre tú to 
úlohu je upravená varianta metódy od Pavel et al. [14], predstavená v tejto práci. 

Keywords 
Automatic 360° cinematography, automatic image cropping, spherical video, 360° video 
retargeting 
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Rozšírený abstrakt 
Cieľom tejto práce je priniesť detailný pohľad na doterajší prieskum v oblasti spracovania 
sférických videí. Konkrétnejšie sa tá to práca zameriava na dostupné metódy orezu sférického 
videa za cieľom zobrazovania takýchto videí na bežnej 2D obrazovke. Dve takéto metódy sú 
následne vybrané a podrobne popísané. Detailne popísaná je aj základná metóda ktorá je 
založená na štandardných technikách v oblasti automatického orezu obrazu. Táto metóda 
slúži ako dobrý nástroj na porovnanie s metódami ktoré sú špeciálne vyvinuté pre účely 
orezu sférického videa. Z porovnania so základnou metódou bude potom jasne vidno v 
ktorých oblastiach priniesli zlepšenie a aké sú ich slabosti 

Základná metóda je predstavená v troch variantách založených na troch rôznych metó­
dach automatického orezu obrazu. Každá z variant pracuje tak, že orezáva video snímku po 
snímke a orezané video je následne transformované z equirektangulárnej na stereografickú 
projekciu, ktorá je š tandardom pre zobrazovanie sférických videí. Detailný postup orezu 
obrazu sa u použitých metód líši, ale u každej z nich sa dá rozdeliť na dve časti - mapovanie 
saliency a hľadanie optimálneho orezového obdĺžnika pre vypočítanú saliency mapu. Tá 
má za cieľ zvýrazniť v obraze oblasti, ktoré priťahujú ľudskú pozornosť. 

Prvá z vybraných metód určených špeciálne pre orez sférického videa je AutoCam od Su 
et dl. [20]. Táto metóda funguje v troch fázach. V prvej fáze sa zo vstupného sférického videa 
vygenerujú takzvané časo-priestorové glimpsy. Sú to krátke videá ktoré sú akoby pohľadmi 
do sférického videa. Existuje preddefinovaná množina sférických súradníc rovnomerne ro­
zložených na povrchu imaginárnej gule obklopujúcej 360° kameru ktorá je v jej strede. Pre 
každú z týchto súradníc sa vygeneruje niekoľko krátkych videí pokrývajúcich celú dĺžku 
videa pomocou transformácie z equirektangulárnej na stereografickú projekciu so stredom 
premietania práve na danej súradnici. Výsledkom je množina krátkych 2D videí ktoré 
dokopy kompletne zachytávajú okolie 360° a dalo by za z nich znovu rekonštruovať pôvodné 
sférické video. V druhej fáze sa glimpsy ohodnotia. Cieľom je priradiť glimpsom skóre na 
základe toho, aký zaujímavý alebo dôležitý je obsah ktorý zachytávajú. Pre naplnenie tohto 
cieľa sa využíva data-driven prístup založený na extrakcii C3D features. Výstupné skóra sa 
potom využijú v tretej fáze, ktorá hľadá najlepšie ohodnotenú sekvenciu glimpsov. Súrad­
nice týchto glimpsov potom tvoria trajektóriu, ktorá sa použije na vygenerovanie finálneho 
videa. Okrem ohodnotenia pomocou C3D features je vysvetlený aj postup založený na 
mapovaní saliency. 

Druhá vybraná metóda je Automatic Importance Detection od Pavel et al. [14]. Táto 
metóda je založená na priamej extrakcii rôznych feature máp zo snímok sférického videa 
uložených v equirektangulárnej projekcii. Kombinujú sa tri druhy feature máp ktoré pokrý­
vajú oblasti z vysokou sémantickou hodnotou až po jednoduché features založené na kon­
traste. Prvá z nich je feature mapa zvýrazňujúca oblasti ktoré obsahujú ľudskú tvár, ktoré 
sú sémanticky veľmi dôležité. Druhá je vytvorená pomocou hodnôt optického toku a teda 
zachytáva temporálny a pohybový aspekt videa. Tretia je vygenerovaná pomocou rýchlej 
metódy saliency mapovania. Tieto mapy sa postupne agregujú do takzvaných shot fea­
tures. V nich potom metóda hľadá výrazné vrcholy ktoré označujú dôležité časti videa. 
Najvýraznejší z vrcholov potom určuje horizontálnu sférickú súradnicu použitú pre daný 
záber vo videu. Týmto spôsobom sa získajú súradnice pre každý záber vo videu. Keďže 
každý nový záber značne zmení obsah vo videu, prípadná veľká zmena vo vybranej súrad­
nici pre po sebe nasledujúce zábery nebude viditeľná. Okrem originálnej metódy je detailne 
popísaná aj varianta s plynulou zmenou súradníc. Tá je založená na lineárnej interpolácii 
trajektorie získaných súradníc z jednotlivých snímkov videa. 



Nedielnou súčasťou tejto práce je aj implementácia všetkých týchto metód, ktorej tech­
nické detaily sú tiež popísané v tomto texte. Pomocou implementovaných metód boli 
následne vygenerované výstupy z datasetu sférických videí. Tieto výstupy boli porovnané 
pomocou užívateľského experimentu metódou 2AFC od David et al. [4]. Tento experiment 
prebiehal prostredníctvom webovej stránky zobrazujúcej náhodnú dvojicu výstupov z dvoch 
rôznych metód z rovnakého vstupného videa. Respondent po zhliadnutí oboch videí vy­
bral to ktoré považoval za zaujímavejšie a subjektívne lepšie. Výsledné dáta boli následne 
prevedené do stupníc z-skóre podľa Law of Comparative Judgements od Thurstone [22]. 

Z 1179 hodnotení 66 respondentov vyplynulo že metódou s najkvalitnejšími výsledkami 
je upravená varianta metódy od Pavel et al. [14] predstavená v tejto práci. Rozdiel medzi 
ňou a základnou metódou založenou na automatickom orezávaní od Fang et al. [6] je však 
štatisticky nevýznamný. Významný však je rozdiel v časovej efektivite - základná metóda je 
skoro 10 krát pomalšia ako originálna i upravená metóda od Pavel et al. [14], ktorá dokáže 
spracovať v priemere 3 snímky za sekundu. Celkovo najlepšou metódou je teda spomínaná 
varianta metódy od Pavel et al. [14], no prekvapivým zistením bolo, že žiadna z metód 
špeciálne navrhnutých pre tú to úlohu nedokázala produkovať stabilne lepšie výsledky ako 
základná metóda založená na modernom automatickom oreže klasického 2D obrazu. Pre 
objavenie metódy ktorá by stabilne produkovala najlepšie výsledky nezávisle na obsahu 
vstupného videa tak bude potrebný další výskum. 
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Chapter 1 

Introduction 

The ability to capture our surroundings not only as static photographs, but moving images 
as well has been around for more than a century. Nowadays, it is considered a basic feature 
of any consumer camera, be it a stand-alone D S L R or an inbuilt camera of a smartphone, 
to be able to capture video. Only in the recent years, however, a new possibility opened up 
in the consumer space to capture our surroundings completely using a 360° cameras. These 
cameras produce spherical video which can then be viewed ideally using a virtual reality 
headset, or, much more commonly, on a standard 2D screen. The user then has a normal 
field of view of the surroundings, with the ability to alter its direction using some kind of 
controls, usually clicking and dragging a computer mouse. This forces the user to interact 
with the video, which can be seen as a positive aspect in some circumstances, however, most 
of the time this is an inconvenience for the user and simply watching the video without 
interaction would be preferable. On top of that, even if the user would be willing to interact 
with the video, it is likely that they would miss an important part of the video, forcing 
them to re-watch it. As these 360° cameras become more and more widespread due to the 
technology becoming cheaper as well as all major social platforms implementing support 
for uploading and viewing spherical videos, this problem is starting to gain traction. 

The definition of the problem this work tackles is therefore quite simple - create a 
normal field of view video by cropping an input spherical video in a way that would keep 
the most important or interesting parts in the field of view. The solution to this problem, 
however, is not as simple and so far, no definitive method that would work in every possible 
scenario has been found. 

This work aims to research, implement and compare some of the notable methods of 
solving this problem, that were introduced in recent years in several scientific articles. It 
first explains the basic principles and advances in related areas of research. These play a 
major role in understanding the underlying techniques used in the actual existing solutions. 
It then introduces a baseline method which is builds upon the techniques from related fields. 
This method serves as a good comparison tool to put the improvements brought by the 
methods focused on this specific problem into perspective. Two of these methods are then 
discussed in detail, with several possible modifications and ideas for improvement provided 
as well. Chapter 4 lays out the details of implementation of these methods. Finally, these 
methods are thoroughly compared in a user experiment. This paper ends with a summary 
of the obtained results and possible directions for future research. 
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Chapter 2 

Related Work 

To fully understand all of the principles utilized in the chosen methods, it is useful to have 
an overview of the related areas of research. This chapter shortly introduces each one, from 
automatic image cropping through video retargeting to the recent advancements in the task 
of automatic 360°video cinematography, which is the focus of this work. 

Automatic image cropping 

The task of automatic image cropping is to find an optimal crop of an image based on 
contrast, saliency (explained in detail in the next section), visual composition or other 
measures automatically. The crop can be constrained to have a certain aspect ratio, cover 
a given portion of the image or have a certain specific dimensions. This topic has been 
researched thoroughly and it's use is quite widespread, from cropping photos to make a 
photographers editing job easier to automation of creating representative thumbnails. 

One of the first papers to tackle this topic is one by Suh et al. [21]. They explore the 
usage of visual saliency mapping and face detection to find important objects in an image 
and crop the image tightly around it for a good thumbnail. Since then, automatic image 
cropping has advanced rapidly. One of the more recent papers on this topic is by Yan et 
al. [28], and it takes a popular, machine learning driven approach to this problem. In it, 
they train a neural network on a large training set of photos before and after cropping by 
a professional photographer. This work delivers promising results, however an even more 
recent work by Fang et al. [6] shows that machine learning might not be the right choice for 
this task. This paper combines three models (visual composition, boundary simplicity and 
content preservation) to achieve much higher quality results when compared to previous 
attempts and in a user study it easily beats the method by Yan et al. 

While automatic image cropping is already a highly researched topic, when it comes 
to video, the task becomes much more complicated as the temporal aspect of it brings 
new data as well as new constraints to the equation. This task is, however, also quite 
thoroughly researched and the current state of the art methods are explained in a further 
section. Although image cropping is quite different and easier task than the one tackled 
by this work, it still remains a good baseline for evaluating new approaches to automatic 
video cropping. I will therefore be using methods described in works by Suh et al. [21], 
Stentiford [17] and Fang et al. [6], implemented by Ambroz V . in his recent work [1]. 
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Figure 2.1: The image on the right is a saliency map of the image on the left. The 
method used for creating this saliency map is the one by Itti and Koch [10], and I used the 
implementation by Ambrož [1]. 

Saliency mapping 

Visual saliency is a quality of an object, or, in terms of images and video, an area on an 
image, that makes it stand out from its surroundings. The most salient objects or areas are 
the ones that grab the most attention of a human eye. Naturally, this is a highly volatile 
quality, as it differs from person to person. However, there are trends that can be observed 
when tracking the focus of the eyes of a larger group of people, that show that some objects 
or areas of an image tend to get more attention than others. Saliency mapping or modeling 
is the process of creating a map (or model) of the saliency values across an image. A n 
example of this can be seen in Figure 2.1. This is a highly researched topic and there are 
many approaches to creating such a map. I am going to mention 3 of them. 

Itti and Koch's [10] saliency mapping algorithm is one of the most famous baselines 
for saliency mapping as it is based on low level features and provides acceptable results 
with quite low computational cost. This algorithm is also used in the automatic image 
cropping algorithm by Suh et al. [21]. There are many other models for saliency mapping 
for images, however, as mentioned before, when it comes to video, there is much more data 
to work with. One of the more recent papers by K i m W . and K i m C. [11] takes advantage 
of the temporal aspect of video to create saliency maps with a lot more detail than those 
provided by Itti and Koch's algorithm. The saliency detection technique in this paper is 
based on textural contrast rather than being biased towards edges and corners as most 
other methods are. When it comes to 360° video though, the problem becomes even more 
complicated as the equirectangular projection heavily used for storing them introduces a 
significant amount of distortion near the upper and lower edges of the frames. A recent 
work by Zhang et al. [30] tries to solve this problem by creating a saliency mapping method 
specifically for 360° videos. The method is based on a convolutional neural network scheme 
with kernels defined as spherical crowns that are rotated around the sphere. This method 
brings promising results and is also more thoroughly researched and used in this work. 

As mentioned before, saliency is a highly volatile measure and therefore it may prove 
unstable and unreliable for detecting important parts of frames. However, it is a topic 
that has had a lot of research already done on it and it is definitely one of the most used 
techniques for these kinds of tasks. Therefore, it is also a strong baseline to compare 
with other methods, especially when it comes to the more recent techniques, like the one 
discovered by Zhang et al. [30]. 
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Figure 2.2: Example of video retargeting using different techniques, including seam-
carving [27]. The column on the left shows original frames and the other columns are 
retargeted for 60% of original width. 

Video summarization 

Summarizing a video is the process of finding interesting parts of a long clip to create a new, 
shorter video, that should ideally communicate the same general story and information, 
with removed redundancy and uninteresting parts. This topic has been researched quite 
thoroughly, for example in the recent work by Lee et al. [12], which directly focuses on 360° 
video for video summarization. While this task might seem similar to the one researched in 
this paper, it focuses on finding the interesting parts in the temporal aspect of the video, 
while the task of this paper is to find interesting parts in the spherical domain of a 360° 
video. While video summarization, especially when used on 360° video, like in the work by 
Lee et al., might also involve some kind of automatic video cropping to output a normal 
field of view video, it is not the primary focus of this task. 

Video retargeting 

Video retargeting is in it's principle the closest to the goal of this work. It tries to find a 
cropping window inside a video for the purpose of viewing it on a device it wasn't made 
for. A good example would be viewing a cinema movie on a small screen like for example 
on a smartphone. There are two problems that occur in this situation. The first one is 
the change in the aspect ratio. Cinema cameras usually shoot in a 1.85:1 or even 2.39:1 
aspect ratio while smartphones usually have a screen with standard 16:9 ratio. The movie 
is then presented with black bars on top and bottom of the video effectively reducing the 
already small display size even more. The second problem is that the creators sometimes 
rely on the big size and resolution of a cinema screen to show the viewers small details that 
could be missed on a small, low resolution display. Video retargeting tackles this problem 
by finding interesting parts of each frame and cropping them accordingly, as can be seen 
in the examples on Figure 2.2. The techniques used for this task are similar to the ones 
used in automatic image cropping, however, they must ensure continuity between frames 
and they usually take advantage of the temporal aspect of videos to gain more data. 

5 



This topic has been researched quite thoroughly in the past years and there are many 
existing methods achieving this goal. One of the first works that researched this topic is 
one by Wolf et al. [26]. They proposed an efficient algorithm that cropped and scaled the 
video according to local saliency and motion and object detectors in a way that preserved 
the important parts of each frame as much as possible. A more recent work by Yan et 
al. [27] introduces a method that not only crops and scales the frames of the video but 
also cuts unimportant parts from the frame and creates „seams" to cover discontinuity 
between pixels. This work also tries to find cropping windows of videos for the purpose 
of viewing them on a device it wasn't made for, however, when it comes to 360° videos, 
finding a warped cropping window on a warped frame poses a more difficult task than just 
finding a rectangular crop on a rectilinear video. Although some of the techniques used in 
video retargeting are also used in automatic 360° video cinematography, many of them fail 
completely or need to be adapted for the warped image. 

Vir tua l cinematography 

Virtual cinematography tackles the problem of positioning and orientating the camera in 
a virtual 3D environment. It has been researched before in several works, for example one 
by Elson and Riedl [5]. In comparison with automatic 360° video cinematography, virtual 
cinematography doesn't need to tackle the problem of finding and selecting important 
objects in a scene, since those are known and fully under control. The camera can also be 
freely moved in the space, while automatic 360° video cinematography deals with a locked 
camera path in the space and needs to find the optimal trajectory of camera rotations on 
the given path. This is quite a different task and therefore it doesn't share much techniques 
with virtual cinematography although the tasks are similar in essence. 

Automatic 360° video cinematography 

As mentioned in the previous sections, a lot of research has been done on many of the 
related tasks to automatic 360° video cinematography, however, this task in itself is quite 
new and not as thoroughly researched yet. To my best knowledge, so far there have been 
only four papers tackling this exact task. The first one by Su et al. [20] proposes a method 
that solves this problem by creating so called spatio-temporal „glimpses" - short five-second 
clips sampled from the 360° video with normal field of view at different angles and times. 
These glimpses are then evaluated using a data-driven approach - they use a data-set of 
normal field of view web videos from similar environments as those appearing in the 360° 
ones to learn which views are considered interesting by human videographers. According to 
the scoring of the glimpses, they evaluate an ideal trajectory of angles in the 360° video that 
ensures continuity as well as keeping the interesting parts visible. They also experiment 
with different methods and baselines to evaluate the effectiveness of their method. This 
approach brings quite satisfying results that look like they could be captured by a human, 
however, it does so with a relatively high computation cost - generating all the glimpses 
even for a short video and evaluating all of them is a demanding task for commonly available 
computers. The method is also quite limited in the sense that, to evaluate a video, one 
needs to have a dataset of other spherical and normal field of view videos from the same 
environment. 
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Figure 2.3: Example of a frame from spherical video in equirectangular projection (described 
in detail in section 3.1) on the left and a corresponding frame from one of the glimpses on 
the right. 

In the follow-up work by Su and Grauman [19], they address two of the main drawbacks 
their last work had. Firstly, they add the capability of the system to generate glimpses at 
different fields of views, as most of the regular normal field of view cameras have the ability 
to change it and the videographers often use it to focus on a smaller object in detail, or 
on the on the other hand, capture a wider scene in its entirety. This capability, however, 
brings even more computational overhead for generating each glimpse for multiple fields 
of views as well as evaluating all of the new glimpses. The computational cost has been a 
problem even in the first work and they solve it in this one by dividing the approach into 
two parts - in the first one they sample the 360° video more sparsely with just one wide 
field of view and evaluate them. They then find the best trajectory in this sparsely sampled 
grid of evaluated glimpses and only in the second part do they create the glimpses at all of 
the angles and fields of views. However, they only generate and evaluate glimpses that are 
close to the trajectory computed by the first, sparsely sampled part of the method. This 
eliminates a lot of computational cost as they don't need to generate nor evaluate all of the 
glimpses, while barely affecting the quality of the output. Figure 2.3 illustrates the task of 
automatic 360° cinematography using example frame from an original spherical video and 
a potential corresponding selected view. 

The work by Pavel et al. [14] is focusing on the experience of viewing 360° video in 
general and techniques on how to make it better. In the process, however, they also intro­
duce a highly valuable method of automatic detection of important parts of the spherical 
video. Although this method was designed for choosing only the horizontal angle containing 
the most important details of the video, 360° videos are generally shot in a way that the 
interesting content is centered around the equator and rarely contain important details in 
the upper or lower regions. Thanks to that, this method is a worthy candidate for the task 
of automatic 360° video as well. This method is also much less computationally expensive 
than the one introduced by Su et al. [20], even when considering the optimized approach 
introduced in the follow up work. It also works on a wide range of different spherical videos 
by combining low-level and high-level features, such as visual saliency and face detection, 
without the need for a dataset of videos from similar environment. 

The most recent work by Hu et al. [9] brings a new approach to this problem by using 
deep learning to select viewing angles with just the current 360° frame and the knowledge 
of previously selected viewing angles. They use a state-of-the-art object detector to find 
interesting parts of each frame, select the main focus and then shift the view in its direc­
tion while keeping the smoothness of the video. They compare this method to the one 
proposed by Su et al. [20] and find their method to achieve much better performance both 
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on quantitative benchmarks as well as user study. However, this method is domain-specific 
- it focuses on sports videos where there is usually one main object of interest and it might 
suffer on 360° videos where there are multiple equally important objects in the scene. 

The approaches introduced by Su et al. [20] and Pavel et al. [14] will be thoroughly 
researched in this work. Initially, I wanted to include the method by Hu et al. [9], however, 
neither the published code, nor the paper itself detail the process of preparing data for the 
deep neural network, nor was I able to contact the authors. Experiments will therefore 
be carried out to compare the first two methods between themselves, as well as to other 
baselines and adapted methods detailed in the following chapter. 
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Chapter 3 

Methods of Spherical Video 
Cropping 

This chapter provides a thorough explanation of three methods of automatic spherical video 
cropping and their various modifications. The first one is a saliency baseline. It uses basic 
saliency mapping to find interesting objects in an equirectangular projection of the spherical 
video and then applies regular automatic cropping methods to find the crop. Although both 
the saliency mapping as well as the automatic cropping techniques are designed for regular 
2D images or videos, and therefore are not expected to perform as well as the other methods 
that were designed specifically for spherical video cropping, they serve as a good baseline 
for comparison. Evaluation of saliency map using special 360° saliency detection designed 
for spherical images or video is also considered and explained in detail. 

The second method is based on paper by Su and Grauman [19]. It splits the spherical 
video into spatio-temporal glimpses which it then scores using a data-driven approach. 
According to the scores it computes the best camera angle trajectory and based on which 
it can render a cropped video. This approach was the first to tackle this task specifically 
and brought promising results. 

The third method is based on paper by Pavel et al. [14] and it uses a combination of 
face detection, optical flow and saliency to compute feature maps for each shot of the video. 
This method chooses the best possible direction in the space to target to crop to, while the 
field of view is static. It works best on edited videos, where there is less movement and 
multiple shots. 

3.1 Saliency Baseline 

As mentioned before, this method serves as a baseline for the other methods specifically 
designed for spherical video cropping and uses techniques that can be applied in quite a 
wide area of use cases. From a high level, this method can be divided into three steps. 
The first step is saliency mapping. In this step, saliency detection methods are applied to 
an equirectangular projection of the spherical frame of a 360° video to create a map of the 
frame which highlights the salient (interesting for a human eye) parts on it. Standard 2D 
saliency detection methods are considered as well as a special 360° method designed to be 
applied on spherical images in equirectangular projection. 

The saliency map is used in the second step which is automatic cropping. The goal of 
this step is to find a cropping window for the original frame which contains the important 
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objects of the frame while leaving out details that are not interesting for the viewer. It tries 
to accomplish this by finding a cropping window that would contain most of the salient 
parts of the image, leaving out the non-salient ones. Some of them also search for other 
properties of the cropping window that further refine the final crop. 

In a 2D scenario, a simple crop of the frame would finish the pipeline. In a 360° one, 
however, there is one last step that needs to be done and that is projection. The automatic 
cropping methods finds a cropping rectangle for the frame in standard equirectangular pro­
jection. This projection, while highly useful for storage purposes, also introduces distortions 
that are unnatural for human eye and is therefore not suitable for viewing. In this step, 
the central longitude and latitude as well as the angle of view for a stereographic projection 
are calculated from the cropping rectangle and then the equirectangular frame is projected 
into the stereographic projection which is much more suitable for viewing. 

These three steps are executed on each frame of the spherical video to create a 2D 
cropped version. In the following subsections, each of them is thoroughly explained. 

Saliency mapping 

Saliency mapping uses a variety of different indicators and properties of an area or a point 
on an image to compute how salient it is - how strongly does it attract human eye. Since 
saliency mapping is not a new field of study, there has been many papers on this topic which 
brought a multitude of different methods. The monitored features evolved from naturally 
significant such as edges or other high contrast areas to much more complex and specific 
ones such as faces or various shapes. Saliency mapping has a wide scope of use cases, 
however, since early days of its research it has been used for cropping purposes - thanks to 
its ability to find areas of image that attract human eye and can be therefore considered 
important, interesting or at least containing a lot of visual information. This work employs 
three methods of saliency mapping which will now be shortly introduced. 

Saliency mapping method introduced by Itti et al. [10] is a well known baseline method 
for saliency mapping which was inspired by the behavior and neural structure of the visual 
system of young primates. It is therefore independent from semantic information while it 
attains a relatively strong performance in many different scenarios. From a high level view, 
this method creates a number of scaled versions of the input image from which it then 
extracts feature maps which are then combined and normalized to create the final saliency 
map. Figure 3.1 shows an example of such saliency map as well as the saliency maps of the 
other two methods from the same input image. 

Stentiford [17] introduces a different approach to saliency mapping. In his method the 
most salient regions are considered as the ones that are unique in the image. This method 
therefore compares small regions with others within the image. A region that does not 
match any, or just a few other regions is considered unique and will stand out from the 
background. This process can therefore assign high saliency score even to areas that do 
not have high contrast or sharp edges, but appear rarely in the image. It can also suppress 
the effect of backgrounds with high contrast, e.g. a wall with a stripe pattern, since the 
pattern is repeated many times in the image. This is usually a welcome behaviour in image 
cropping since the foreground is usually the point of interest, even when it is not the region 
with the highest contrast. This method however, also introduces a lot of computational 
overhead when compared to Itti's method. 

Saliency mapping method introduced by Margolin et al. [13] brings a simple yet powerful 
principle of combining color and pattern distinctiveness. According to this method, salient 
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Figure 3.1: Comparison of saliency mapping methods used in this work. Top left is the 
original image. Top right is saliency map created using method by Itti et al. [10]. Bottom 
left is created using method by Stentiford [17]. Bottom right is created using method by 
Margolin [13]. A l l of these maps were generated using implementation by Ambrož [1]. 

regions are the ones that consist of pixels whose local neighborhood is distinct in both color 
and pattern. For pattern distinctiveness evaluation, this method uses a novel approach 
which only compares each small region to a single small region which is computed as an 
average of all in the image. This brings significant improvement in efficiency over comparing 
each small region to every other region. The color distinctiveness is evaluated by segmenting 
the image into regions and determining which of them are distinct in color. A normalized 
product of the pattern and color distinctiveness is considered the final saliency map - the 
product ensures that only the regions distinct in both pattern and color are considered 
salient. This method is more efficient than the one introduced by Stentiford but isn't as 
fast as the one by Itti. 

Figure 3.1 shows a comparison of these three methods. Their implementation was 
adopted from a preceding work by Ambrož [1]. 

Automatic cropping 

Automatic cropping uses the computed saliency map to find an optimal cropping rectangle 
for the original image that would contain most of the important (salient) areas while leaving 
out the non-salient ones. It does this using various algorithms, from which the ones used 
in this work are briefly explained below. Generally, a brute force or greedy algorithm is 
used for finding the optimal rectangle. Automatic cropping methods, including the ones 
explained here were developed for standard 2D image cropping, which means they may 
suffer on spherical images in equirectangular projection. However, as mentioned before, 
they can serve as a good baseline. 

Suh et al. [21] introduced two methods of automatic cropping, from which the first one 
that is based on saliency map generated by Itti's saliency mapping method is used in this 
work. Suh's method tries to find an optimal balance between two conflicting conditions -
that the cropping rectangle should contain as much salient parts of the image as possible 
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Figure 3.2: Comparison of automatic cropping methods used in this work. Top left is the 
original image. Top right is a crop created using method by Suh et al. [21]. Bottom left is 
created using method by Stentiford [17]. Bottom right is created using method by Fang et 
al. [6]. A l l of these crops were generated using implementation by Ambrož [1]. 

and that it should be as small as possible. It does this using three different algorithms 
(brute force and greedy with fixed threshold, dynamic threshold) of which the brute force 
is used in this work since it works reliably and even though it is slower than the greedy 
or dynamic one, it is still faster than both of the other methods mentioned below. As 
the name suggests, the brute force algorithm searches through all the possible cropping 
rectangles that satisfy a fixed threshold of salient pixels inside it and finds the one that has 
the smallest 

Automatic cropping method used in the work by Stentiford [17] is similar to the method 
used by Suh et al. [21], however, it computes an average of the saliency values of the pixels 
inside each cropping rectangle. The saliency map is obtained using a method introduced in 
the same paper. 

Fang et al. [6] introduced a more complex cropping method which combines three dif­
ferent factors - content preservation, boundary simplicity and visual composition, to deter­
mine the ideal cropping rectangle. It uses Margolin's saliency mapping method to create 
the saliency map according to which it selects a set of cropping rectangles that contain 
most of the salient parts of the image - hence content preservation model. It then ranks 
these candidate cropping rectangles according to boundary simplicity model (which creates 
an image gradient map that highlights edges and gives higher ranking to rectangles that 
crop through simpler regions with less edges) and visual composition model (which uses 
the saliency map to check whether the salient objects are placed in a visually pleasing po­
sition in the photo) and finds one with the best combined rank. Although this obviously 
introduces a lot more computational overhead than the other two methods, it also brings 
much better results. 

Figure 3.2 shows a comparison of these three methods. Their implementation was 
adopted from a preceding work by Ambrož [1]. 
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Figure 3.3: Comparison of equirectangular and stereographic projection. The equirectan-
gular projection (top row) simply projects each meridian to a straight vertical line on a 
tightly wrapped cylinder which is tangent to the meridian at equator. This result in a 
projection that heavily distorts the top and bottom of the image as can be seen on the top 
right. Stereographic projection projects each point P on the sphere to the point P' on the 
plane which is given by the intersection of the plane and a line given by points P and S 
where S is a point on the sphere exactly opposite to point C which is the center of pro­
jection (0i , An). As the image on bottom right shows, stereographic projection introduces 
the distortion gradually from the center, equally in every direction. Map projections taken 
from Wolfram Web Resources [24] [25]. 

Stereographic projection 

The last step that completes the saliency baseline method is the projection from equirectan­
gular to stereographic projection [16]. Equirectangular projection is often used for storing 
spherical images and videos since the spherical image is projected onto a plane which is 
much easier to store and index than the curved surface of a sphere. The projection itself is 
also quite simple: 

where R is the radius of the sphere that is projected on the plane (as illustrated in Figure 
3.3) and can be calculated from the horizontal width of the plane (image) w as R = 
This produces an image with a 2:1 aspect ratio, which is usually scaled to a 16:9 ratio which 
is standard for video. 

Stereographic projection projects points of the sphere on a plane as well, however, it does 
it in a way that creates a much more natural image for viewing purposes. Equirectangular 

x = R(X — An) cos (pi 

V = R4>, 

(3.1) 
(3.2) 
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projection, while undistorted at the horizontal center row of the image or the equator of 
the plane, gradually stretches the image more and more towards the top and bottom of 
the image. Stereographic projection distributes the inevitable distortion in a much more 
natural way for a human eye . It is also the projection of fish eye lenses, which are common 
for action sports cameras, which is an area where 360° cameras are often used as well. 

In order to project from equirectangular to stereographic projection, a center point of 
the projection (fa, Ao) needs to be set. It is possible to calculate it using these equations: 

fa = ^ (3.3) 
w 

Ao = ^ , (3.4) 
h 

where (xc,yc) is the center of the cropping rectangle and w and h are the width and height 
of the projection plane (as illustrated in Figure 3.3), respectively. Another variable that 
needs to be set is the radius of the sphere R which can be calculated using a given horizontal 
angle of view a: 

R = W . ( l + coSa) 
4 • sin a 

Using R, fa and Ao, a point (x, y) from the projection plane can be mapped on a point 
(4>, A) on the sphere using: 

A • ( • A - L (ysinccos^iAA 
<p = arcsm I coscsmipi + I I I (3.6) 

A 0 + arctan (-^j , if fa = 90° 

A 0 + arctan (A , if 0 i = - 9 0 ° , (3.7) 

Ao + arctan ( pcos0i cJc%c

sin 01 sinc ) , otherwise 

where: 

p = Vx2 + y2 (3.8) 

c = 2 arctan . (3.9) 

If p = 0, equations 3.6 and 3.7 are indeterminate, but (0, A) is simply equal to the center 
of projection (fa,\o). 

The computed point (0, A) can than be mapped onto the equirectangular projection 
using the the equations 3.1 and 3.2 to find the position of the point on the original image. 
Since stereographic projection distorts the image in quite a different way than equirectan­
gular does, the final projected image will not contain the exact pixels that the cropping 
rectangle selected. However, the position as well as the angle of view will stay the same. 

3.2 AutoCam: Glimpse-Based Trajectory Selection 

As mentioned in Chapter 2, the first work to tackle the task of cropping a spherical video 
specifically is Pano2Vid by Su et al. [20]. This work defines the problem of creating a normal 
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field of view video from a 360° one in a way that would preserve the important regions in 
frame while cropping out the unimportant ones and goes on to propose a solution to this 
problem. From a high level view, the pipeline of the proposed method is as follows. First, 
the 360° video is sampled to create so called spatio-temporal glimpses. These are short clips 
of the 360° video with normal field of view, sampled at equally spaced out angle distances. 
The glimpses represent potential views used in the output normal field of view video. Each 
glimpse is evaluated for its capture-worthiness which is a classifier that is learned using 
a data-driven approach. According to the acquired capture-worthiness scores, an ideal 
trajectory of the angles is selected and the output video can then be rendered. The follow-
up work by Su and Grauman [19] introduced several new features and optimizations for this 
method. In the following subsections, each of the phases of this method will be explained in 
detail. This section also explains a modification of this method that uses standard saliency 
methods for evaluation of the capture-worthiness of the glimpses. 

Glimpse generation 

The first step of this method generates spatio-temporal glimpses which are short 5 second 
clips sampled from the original 360° video at multiple angles to get a set of normal field 
of view videos that cover the whole spherical view. To do this, glimpses are sampled 
quite densely at latitudes (j) G $ = {0, ±10, ±20, ±30, ±45, ±75} and longitudes A G A = 
{ — 180, —160,140,160}. To get even more versatile results, at each of these coordinates, 
3 glimpses with different focal lengths are generated. The focal lengths are simulated as 
angles of views a £ A = {46.4°, 65.5°, 104.3°}. Each glimpse can therefore be identified as: 

where T is representing set of 5 second time splits of the original video - for example a 30 
second video would have 6 splits. Figure 3.4 illustrates the range of glimpses sampled. The 
sampling is done using stereographic projection explained in detail in section 3.1. 

Due to the fact that this process generates a lot of glimpses which introduces a high 
amount of computational overhead, an optimization technique introduced in the follow-up 
work by Su and Grauman [19] is used. This technique first generates only the glimpses 
with wide angle of view (a = 104.3°) and only at latitudes 4> G $ ' = {±75, ±30, ±10} 
and longitudes A G A ' = { — 160, —120,120,160}. Longer, 10 second time splits are also 
used to further speed up the process. Using these coarsely sampled glimpses, the best 
trajectory is found (explained in detail in later subsection) and only after that are the 
glimpses sampled densely as explained before. However, only glimpses within a certain 
spherical distance from the best trajectory are sampled. The maximum distance is given 
by e = 30° - for each densely sampled glimpse Qt,<pg,\g,a it must hold that: 

where <pt and \ are coordinates of the trajectory at time t. This way, the densely sampled 
glimpses can be used to refine the trajectory to get the same results while reducing the 
computational time significantly. The e is used in the trajectory selection described in a 
later subsection as well. 

ttt,<t>,\,a ->• (t, </>, A, a) G T x $ x A x A, (3.10) 

\4>g ~ 4>t\ < e, |A f l - A t | < e, (3.11) 
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Figure 3.4: Sampling of glimpses by Su and Grauman [19] (edited). The sphere's surface 
is representing the 360° video. It shows the different angles at which the glimpses are 
sampled as well as the different angles of view at each position. Each view is projected into 
stereographic projection, which translates to the curved shape of the views on the sphere. 

Glimpse evaluation using C3D features and capture-worthiness 

As mentioned before, the glimpses represent potential views of the final normal field of view 
video. To find the ones that should be chosen to appear in it, it is necessary to find a way to 
evaluate them. Su et al. [20] chose to use a data-driven approach - they collected a dataset 
of normal field of view videos captured in the same type of environment or with the same 
topic as the input spherical video to learn a classifier that would score each glimpse based 
on how similar it is to the normal field of view videos and therefore how likely it is that 
such a view would be chosen and captured by a human. The underlying assumption is that 
the normal field of view videos were shot by people who chose to capture interesting parts 
of their surroundings. 

To learn such a classifier, it is useful to create a more compact representation of the 
glimpses. To do this, C3D features by Tran et al. [23] are utilized. C3D features are 
generic spatio-temporal features obtained using 3-dimensional convolution. They capture 
the motion and appearance of the glimpses in a simple vector representation which makes 
them much easier to work with. Thanks to their high accuracy on multiple benchmarks 
and relatively fast extraction times they are known to be useful in tasks like this which is 
why they were chosen for this task as well. 

After extracting the C3D features of each of the glimpses, a capture-worthiness classifier 
is trained separately for each 360° video. Normal field of view videos from a similar envi­
ronment serve as positive examples of how the final video should look like while glimpses 
from other 360° videos serve as negative ones. A logistic regression classifier is trained on 
a set that contains twice the number of negatives as it does positives. The input spherical 
video is left out from the training process. Finally, the positive class probability scores of 
the glimpses sampled from the input 360° video are evaluated and treated as the capture-
worthiness of each of them respectively. 

The learning process requires quite a few examples of normal field of view videos as 
well as 360° ones, which need to be collected. Su et al. [20] use YouTube as the source of 
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both the spherical as well as the corresponding 2D videos. They use four keywords (Soccer, 
Mountain Climbing, Parade and Hiking) to search YouTube and download to top 100 360° 
and top 2000 normal field of view videos for each of them. Then they hand-pick the ones 
that have good quality, lighting and generally correspond to the category searched. This 
yields a relatively large dataset to test this approach on, which they kindly provided me 
with. 

Evaluation using standard saliency mapping 

Although C3D features are known for their good performance in the field of recognition 
and data driven methods nowadays usually outperform algorithmic ones, it is still useful 
to have a standard method to compare them to. That is why Su et al. [20] also used 
saliency mapping to evaluate the capture-worthiness of the spatio-temporal glimpses. In 
their approach, a method by Harel et al. [7] is used to evaluate the saliency of each glimpse. 

The saliency map shows salient regions on the image but it doesn't directly tell how 
salient, or how interesting the image is overall. There are many approaches that could be 
used to calculate the overall saliency from the map. The first and most obvious one would 
be averaging the pixel values across the image, and then across all of the frames of each 
glimpse. Although this approach might seem logical at first, a very high or very small 
saliency value of just a small area of pixels can shift the average of the entire image and 
therefore will not provide a representative value of how salient the image is. Much more 
suitable for this purpose is the median function, since it filters out any noise and therefore 
usually provides a much better representative of the saliency values present in the image. 
Another thing that helps the accuracy of this method is disabling normalization - saliency 
mapping methods usually normalize the values present in the image to clearly highlight 
the areas that are more salient than others. This, however, is not desirable in the case of 
evaluating overall saliency since normalization evens out any big value differences between 
images. Using the raw values provided by the saliency methods, it is possible to get much 
bigger differences between the glimpse values which highlights the ones that are the most 
salient. 

This work uses three methods of saliency mentioned in section 3.1 to evaluate the 
saliency mapping of the glimpses and to evaluate their capture-worthiness from them. This 
provides a good range of saliency methods to compare to the data driven approach using 
C3D features. They are also different from the one used by Su et al. [20], some older, 
some newer, and that way this work provides quite a comprehensive look at this capture-
worthiness evaluation strategy and makes it a worthy opponent to the data-driven approach. 

Trajectory selection 

In order to find the trajectory of angles that best fits the score space of the evaluated 
glimpses, it is necessary to define an algorithm that will search for it. Besides finding the 
path with best score, the algorithm must ensure that the steps taken will not drastically 
change the direction the camera is oriented towards, nor the size of the angle of view. This 
way the final video will be smooth and resemble one that was shot by a human. 

In its essence, the algorithm is simply solving a shortest path problem, with a restriction 
on the range of different steps that can be taken every iteration. The limit of change in 
both latitude and longitude every step as chosen by Su et al. [20] is e = 30°: 
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Figure 3.5: Trajectory selection by Su and Grauman [19] (edited). In the first pass, glimpses 
are sampled only densely at wide angle of view, so that the algorithm can find a rough best 
path. After that, glimpses are sampled more densely around the selected rough path and 
with multiple angles of view so that the algorithm can refine the path. 

\(f>t ~ (f>t-i\ <e, |A t — A t _ i | <e. (3.12) 

The limit of change in the angle of view as chosen by Su and Grauman [19] in their 
follow-up work is constrained to changing from at-i = 46.4° to at = 65.5° and from 
at-i = 65.5° to at = 104.3° or vice versa. In this work they also introduce the optimization 
method mentioned before. Since only sparsely sampled glimpses with only a single angle 
of view are available after the first pass, the algorithm allows a bigger change of 2e in both 
latitude and longitude at each step. After finding the best path in this sparsely sampled 
score space, the best path is searched for again using the newly obtained densely sampled 
one, which is restricted to the glimpses around the previous best path, as explained in a 
previous subsection. The whole process is illustrated on Figure 3.5. 

After finding the refined path, it is a sequence of discrete coordinates fi^^a which 
denote the optimal direction and angle of view to show from the spherical video at 5 second 
intervals. These are then linearly interpolated at every frame to get the final continuous 
trajectory that is used to render the output normal field of view video. 

3.3 Automatic Importance Detection 

The Automatic Importance Detection algorithm was designed as a part of the work by 
Pavel et al. [14], in which they focused mainly on the experience of watching 360° videos 
and introduced two novel techniques of playback for spherical videos. Both of these tech­
niques offer reorientation. If the user starts exploring other parts of the video, either via a 
virtual reality headset, or via clicking and dragging a mouse, it is easy for them to become 
disoriented, particularly after a new shot appears, which causes them to miss the most im­
portant parts. Reorientation tries to solve this problem by reorienting the spherical video 
so that the important content lies in the viewers field of view based on certain triggers -
these differentiate the two techniques. The first technique, viewpoint-oriented cuts, reori­
ents the video automatically every time a new shot appears. The second technique, active 
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Figure 3.6: Automatic Importance Detection by Pavel et al. [14] (edited). The method 
works by extracting feature maps (b) from each frame (a) of the input video. Each feature 
map is then summed along its columns to get a feature vector. The acquired vectors are 
stacked vertically to form a shot feature maps (c). These maps are then averaged along 
columns to get shot feature vectors (d), on which value peaks are detected - the position 
of the clearest peak then determines the chosen longitude. 

reorientation, allows the user to press a button at any time to automatically reorient the 
shot. In the paper, Pavel et al. go on to test and compare these techniques and find out 
interesting results. However, they also introduce a method capable of automatically finding 
important parts of the spherical video, so that they do not need to be defined manually. 
This method, as it turns out, proves to be useful for the similar task of automatic 360° 
cinematography as well. 

The method processes the frames of the video sequentially, generating three different 
feature maps for each frame. Each feature map is then summed along the columns to 
create a feature vector which is then appended to a corresponding shot feature map. Each 
shot of the video therefore ends up with three feature maps, each of them composed of 
corresponding feature vectors of the frames from the shot stacked vertically. Each shot 
feature map therefore has a height equal to the number of frames in the shot. Every shot 
feature map then gets averaged along the columns to get a shot feature vector. Finally, the 
method finds value peaks in each feature vector and selects the important points accordingly. 
This process is illustrated in Figure 3.6, and each stage is explained in detail in the following 
subsections. 

Automatic Importance Detection is limited by the fact that it only selects the longitude 
of the important point in the video - the horizontal coordinate. The latitude (vertical 
coordinate) is left at zero - the presumption being that 360° videos generally contain the 
important content around the equator, while areas around poles usually contain sky and 
ground or ceiling and floor. In the context of the original paper, the viewer can adjust 
the latitude quite easily and quickly as well. For automatic 360° cinematography, this is 
not possible, however, the first presumption still holds. Another parameter that Automatic 
Importance Detection does not set is the field of view - in the context of the original paper 
this variable is given by the viewing device. In this paper, the field of view is set to be 
constant at a = 104.3°, the same as the wide view of AutoCam. 
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Feature map extraction 
As previously mentioned, Automatic Importance Detection generates feature maps from 
each frame of the input video. These feature maps are chosen to account for low-level as 
well as high-level features in the frame. The first feature map is generated using Minimum 
Barrier Salient Object Detection method by Zhang et al. [29], which is a highly efficient 
and powerful method of saliency mapping based on an approximation of Minimum Barrier 
Distance Transform by Strand et al. [18]. When compared to many state of the art methods, 
Minimum Barrier Salient Object Detection is much more efficient, yet its performance is 
the same or better. This makes it a good candidate for low-level feature extraction. 

Since the method is dealing with videos, the temporal aspect should be leveraged as 
well. Moving objects in videos are usually of high interest to the viewer, and that is 
why the second feature map is generated using Lucas-Kanade optical flow by Baker and 
Matthews [2]. To track objects across the frames, we first need to choose which points 
should be tracked. Good points to track are ones that are visually significant so that they 
can be reliably identified on the subsequent frames of the video. To find such points, the 
Harris Corner Detector [8] is utilized. The resulting set of points to track is recalculated 
every 0.3 seconds, as optical flow will lose tracked points as they go past the boundaries 
of the frame (note that in the context of spherical videos, the point simply appears on 
the opposite side of the frame, however, this is not something that optical flow methods 
account for). The feature map is then generated by setting the value of pixels at positions 
given by the tracked points to the distance travelled by that point since the last frame. The 
surrounding area of that pixel (within 5 pixels) is set to that value as well, to account for 
minor inaccuracy of the tracking as well as making the point more prominent. 

To account for higher-level, more semantic features as well, face detection is used to 
generate the third feature map. First, faces in the frame are detected using the OpenFace 
toolkit by Baltrusaitis et al. [3]. A feature map is generated by setting values in the area 
given by the bounding box of each detected face to the confidence score assigned to that 
face. Finally, each one of the mentioned feature maps is normalized after being summed 
along columns to create feature vectors which are then appended to the shot feature maps 
as explained in the previous subsection. 

Shot detection 

While optical flow is useful to detect moving objects in the video, they can also be used 
to detect shot boundaries. Movement between subsequent frames within a shot is usually 
small, however, optical flow calculation on boundary frames of two different shots results in 
improbably large movement of points (> 50% of frame diagonal) or many lost points (more 
than half). This is a strong evidence, that a new shot has occurred and if the movement of 
points exceeds this threshold, the new frame is considered as the start of a new shot. The 
shot feature maps accumulated so far are processed as explained in the following subsection 
before the algorithm continues in processing subsequent frames. 

Longitude selection 

To select the resulting longitude, shot feature maps are first averaged along the columns to 
get shot feature vectors which are then normalized and smoothed using a Gaussian kernel. 
The feature vector is then searched for local maximums (peaks) and the horizontal location 
of the clearest peak determines the selected longitude (the range of longitudes is mapped 
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Figure 3.7: In order to prevent shaky output video, the trajectory found by the continuous 
approach must be smoothed by averaging groups of coordinates spanning 5 seconds and 
linearly interpolating between these averaged coordinates. 

on the width of the frame which is in standard equirectangular projection). The clarity of 
a peak is computed as | £ where Sp is the area under the peak (boundaries are determined 
by the surrounding local minimums) and Sc is the area under the entire curve - in the 
context of the feature vector this means sum of all its values. If the clarity of the clearest 
peaks from the feature vectors is similar, the peak from a feature with higher semantic value 
is selected, e.g. peaks from face detection have higher priority than peaks from saliency 
mapping. If none of the peaks have at least a clarity of 0.2, the origin (middle of the frame) 
is selected. 

Continuous approach 

While the original method works very well for edited spherical videos with multiple shots, 
it suffers when it comes to long unedited recording from a 360° camera since there is only 
a single shot and the method only selects a single view for the entire video. For this 
use case, this work introduces a slight modification of the original approach that creates 
a continuous trajectory, adjusting the longitude for each frame. The approach works by 
eliminating the phase of creating shot features from the process - instead of summing the 
frame feature maps to create feature vectors that would be appended to shot feature maps, 
they are averaged along the columns and directly searched for peaks as if they were the 
complete shot feature maps. In other words, each frame is considered its own shot, with the 
exception of not resetting the optical flow - points to track are still recalculated every 0.3 
seconds, however, since every frame is essentially a new shot, shot detection as explained 
in a previous subsection is not performed. 

Evaluating the longitude for each frame, however, may result in shaky output video, as 
the selected longitude can change from frame to frame. This can be solved by smoothing 
the resulting trajectory before using it to render the output video. First, the trajectory 
is divided into sections spanning 5 seconds of the output video and coordinates from each 
section are averaged together to get a single coordinate for that portion of the video. Then, 
similarly to the technique used for creating a smooth trajectory from discrete points in the 
AutoCam method by Su et al. [20], linear interpolation is used to get smooth transition from 
one coordinate to another. Figure 3.7 illustrates the process of smoothing the trajectory. 
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Chapter 4 

Implementation Details 

This chapter discusses the details of implementation of the methods explained in the pre­
vious chapter. First, a high-level overview of the design of the implemented application 
is provided. Next, details about a notable optimization technique used to speed up the 
rendering of glimpses is discussed. Finally, this chapter concludes with an overview of the 
utilized technologies and libraries. 

4.1 Design of Applicat ion for Spherical Video Cropping 

The application is structured into multiple classes, each responsible for a specific part of 
one of the methods, with several classes handling shared functionality. Figure 4.1 shows a 
diagram illustrating the data flow between them. When the application launches, it creates 
an instance of the L o g g e r class which handles logging and printing to standard output. 
A reference for this instance is passed to almost every other class as an argument. This 
way, all text output can be done by calling the appropriate method of the Logger instance, 
while simultaneously being logged to a backup log file, which can be later used to debug 
any errors that might arise. Next, the application creates an instance of the A r g P a r s e class 
which parses arguments and makes them easily available to any other class. It also searches 
through the input folder and finds all of the supported spherical videos. 

Video processing and output tasks are handled by the R e n d e r e r class, instance of which 
is also shared throughout the run time of the application (note that if OpenMP parallel 
processing is available and the user does not override it using the - t parameter, an instance 
of R e n d e r e r is created for each thread separately). For easy accessibility, information about 
videos are held inside V i d e o l n f o structures, which serve as a kind of internal representation 
of any video and practically every video the application deals with has a corresponding 
instance. The common task of all of the methods is to find a trajectory of view coordinates 
according to which the spherical video should be cropped. The last instance that needs 
to be created before launching any of the three methods is one of the T r a j e c t o r y class 
which holds a sequence of coordinates specifying longitude, latitude and field of view at 
each frame of the output video. After the trajectory is evaluated using any of the methods, 
the output video can be created using the Renderer . 

The Saliency Baseline (using automatic cropping by Suh et al. [21], Stentiford [17] and 
Fang et al. [6]) method and Automatic Importance Detection by method by Pavel et al. [14] 
described in Sections 3.1 and 3.3 are each handled in a single class - A u t o C r o p and AID, 
respectively. They both expose a f i n d T r a j e c t o r y () method which, as the name suggests, 
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Figure 4.1: Diagram of data flow between the main classes of the application. The Logger 
class is omitted since it is used in all parts of the application. The input and output as well 
as any video is represented in the application by a V i d e o l n f o structure (colored blue in the 
diagram). Note that only one of the methods is used to evaluate the video - this choice is 
handled by the main function using information provided by an A r g P a r s e instance. Classes 
corresponding to different methods are distinguished by color. 

finds the cropping trajectory using the corresponding method. The trajectory can then 
be optionally smoothed for both of these methods, as well as for the AutoCam method 
by Su and Grauman [19], for which the evaluation is slightly more complex. Firstly, the 
spatio-temporal glimpses are handled and organized using an instance of the G l i m p s e s 
class, which provides functionality to render coarsely or densely sampled glimpses. Note 
that the rendering itself is handled in the R e n d e r e r class, G l i m p s e s class only organizes 
the glimpses and provides a layer of abstraction above the rendering. The glimpses are 
then evaluated using either the C3D class, which evaluates them using the original approach 
of extracting C3D features and then using logistic regression to score the glimpses, or the 
S a l i e n c y class, which uses the saliency mapping evaluation, all of which has been detailed 
in Section 3.2. The scores are stored in an instance of the ScoreSpace class, which then 
provides functionality to find the trajectory corresponding to the highest score path in the 
space. 

4.2 Optimization of Rendering Using Displacement Maps 

A crucial part of all three of the implemented methods is stereographic projection as ex­
plained in Section 3.1. The mapping from equirectangular to stereographic projection is 
quite computationally expensive and this is has a significant impact especially on the per­
formance of the AutoCam method by Su and Grauman [19] since it needs to generate a 
substantial amount of stereographically projected spatio-temporal glimpses. Each glimpse, 
however, has a given spherical coordinate and field of view, which stays constant throughout 
its duration - this means that the mapping from one projection to another stays the same 
as well and therefore it only needs to be computed once and then reused for all remaining 
frames of the glimpse. 

To do this, the mapping, instead of being directly applied to the frame, is instead 
computed into two displacement maps - arrays of size equal to the size of input frames, 
which contain the x and y positions in the input frame that correspond to the output at the 
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given pixel. In other words, the displacement maps define the output image using positions 
in the input image. From the nature of the mapping it is clear that the computed positions 
will not be integers most of the time, and therefore the output values need to be computed 
using bilinear interpolation between the closest pixels in the input frame. Computational 
inaccuracies can also result in positions out of bounds of the input frame, which is solved 
by wrapping the positions around using a modulo operator. The displacement maps can 
then be used to compute all of the frames of the corresponding glimpse. 

Moreover, the AutoCam method in the coarse search phase generates the same set of 
glimpses for each split, which means that the displacement maps can be reused for all 
glimpses at the corresponding coordinates throughout all of the splits of the input video. 
This optimization technique significantly computation complexity of the AutoCam method, 
making it perform as fast as the variant of the saliency baseline method using automatic 
cropping method by Suh et al. [21], which is the fastest variant. 

4.3 Uti l ized Technologies 

The application was written in the C++ language using the C++17 standard. This lan­
guage was chosen because of its high speed compared to other popular languages like Java 
or Python, while still offering object-oriented programming and therefore a good level of 
abstraction. Most of the application utilizes the OpenCV library 1 , which provides interfaces 
for reading and writing video, accessing individual frames and processing them either using 
high-level functions like image remapping or via direct access to individual pixel values for 
custom filtering. The application requires OpenCV of at least version 4.0 - most of the 
code is compatible even with older versions since 3.0, however version 4.0 is required by 
another dependency this application has, which is the OpenFace toolkit. 

The OpenFace toolkit version 2.02 by Baltrusaitis et al. [3] was briefly mentioned in 
Section 3.3 and in this application, only its landmark detection library is utilized to detect 
faces in the frame. Although this toolkit offers state-of-the-art face detection, it also has 
quite a few dependencies - besides the previously mentioned OpenCV library of at least 
version 4.0, it also needs OpenBLAS library^ and dlib library 1 . A l l of these dependencies 
are, however, usually quite easy to install thanks to package managers. At the time of the 
writing this thesis, however, the OpenFace toolkit relied on a few recently added functions 
of the dlib library which were not yet available in the pre-built binaries available via the 
package managers. For this reason, a recent version of the dlib library source code is 
included in the application. The implementation of Minimum Barrier Saliency'' by Zhang 
et al. [29] directly from the authors of the corresponding paper is included in the source 
code as well, and the Lucas-Kanade optical flow method by Baker and Matthews [2] as well 
as Harris Corner Detector [8] are both implemented in the OpenCV library. This completes 
the dependencies of the Automatic Importance Detection method by Pavel et al. [14]. 

The AutoCam method by Su et al. [20] has the most tedious dependencies to configure 
since it relies C3D features by Tran et al. [23] which are built on top of an outdated version 

x h t t p s : //opencv.org/ 
2 h t t p s : //github.com/TadasBaltrusaitis/OpenFace 
3 h t t p s : //www.openblas.net/  
4 h t t p : / / d l i b . n e t /  
5https://github.com/jimmie33/MBS 
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of the Caffe framework6. The implementation of C3D features is available on Gi tHub 7 and 
a successful building of version 1.0 is a requirement for the AutoCam method to work. 
This is hard if not impossible to make automatic for a majority of platforms, since it relies 
heavily on the available G P U and libraries on the system. Therefore, the C3D source code 
is not included in the application, instead, it is necessary to build it separately and then 
place the binary in a specific location. This is explained in more detail in the README.md 
file included in the source code. Everything else in this method, like for example glimpse 
generation as well as logistic regression is handled by the application itself, while utilizing 
the OpenCV library. 

The Saliency Baseline method explained in Section 3.1 utilizes the implementation of 
various saliency mapping and automatic cropping methods implemented by Ambrož [1]. 
This implementation is included in the source code. Besides OpenCV library, it relies on 
the VLFeat library 8 , which is also included in the source code. 

To build the entire application, CMake 9 of at least version 3.0 is necessary. This makes 
the build process much more organized and adaptable to multiple platforms and library 
install locations. As mentioned previously, the application uses features of the C++17 
standard and therefore a compiler with support for C++17 is required as well. 

http: / / caffe.berkeleyvision.org/  
7 h t t p s : //github.com/f acebookarchive /C3D 
8 h t t p s : //www.vlfeat.org/  
9 h t t p s: // cmake. org/ 
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Chapter 5 

Experimentation 

This chapter describes the process of comparing the implemented methods and discusses 
the obtained results. The method chosen for experimentation is based on the Perceptual 
Evaluation of Color-to-Grayscale Image Conversions by Cadik [31], which utilizes the two-
alternative forced choice (2AFC) method by David [4]. This method measures the subjective 
experience of a person through the patter of their choices. The subject is presented with 
two options at the same time, of which it selects the better one according to their subjective 
opinion. Wi th enough different test subjects the results can be considered objective. To 
evaluate this experiment, the data is converted into z-score scales according to the Law of 
Comparative Judgements, Case V by Thurstone [22]. This does not assign absolute ratings 
to the methods, the assigned values are relative to each other. This is, however, all that is 
needed to evaluate how the methods stack up to each other. The results are compared on 
multiple categories and the results are discussed in detail. 

5.1 Experimental Setup 

To prepare for the experiment, results of the methods to be compared first needed to be 
generated. The Pano2Vid dataset by Su et al. [20] (mentioned in Section 3.2) was chosen 
as the input for the methods, because it contains a wide range of different 360° videos and 
it provides the categories needed for their AutoCam method. Some of the videos in this 
dataset were too long for a subject to watch without losing concentration. These videos 
were split into multiple parts no longer than 6 minutes. As most of the longer videos were 
also highly repetitive throughout their runtime (i.e. soccer match), some of the parts they 
were split into were removed from the dataset. After these alterations the dataset yielded 
a total of 96 videos in 4 categories. 

As there were 9 variations of the three main methods in total described in Chapter 
3, comparing all of them using the 2AFC method by David [4] (detailed below) on this 
relatively big dataset would require (g) -96 = 3456 comparisons to have at least one result for 
each match. Since this was beyond the available possibilities, 5 variations were chosen based 
on a subjective view of their performance on a few testing videos. The saliency mapping 
evaluation variations of the AutoCam method by Su et al. [20] did not perform well and they 
were therefore cut from the comparison. Out of the baseline method variations, the one 
based on automatic cropping by Stentiford [17] performed the worst and it was not included 
in the comparison either. This yielded 5 variations of the three main methods that were 
chosen for the comparison - the baseline method using the variations based on automatic 
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cropping by Suh et al. [21] and Fang et al. [6], the improved data-driven AutoCam method 
by Su and Grauman [19] and the original shot-based Automatic Importance Detection 
method by Pavel et al. [14] as well as its continuous variation. 

To compare the 5 chosen methods for spherical video cropping, the 2AFC comparison 
method by David [4] was chosen. This method is widely used for measuring subjective 
experiences - it is therefore ideal for the use-case of selecting the „better" crop of the 
spherical video since this quality is purely subjective. In the context of this experiment, 
the test subject is presented with two videos - outputs of two different cropping methods 
from the same input video. The subject views the videos, either one after another or 
simultaneously, and selects the one they consider to be better by clicking a button below it. 
When the amount of different test subjects is high enough, their subjective opinions blend 
together to form an objective view. A n important thing to note is that the subjects are 
not presented with the input video, since the way it is viewed (2D screen or a V R headset, 
equirectangular or stereographic projection) might affect their decision. 

In practice, the experiment was performed online via a website that displayed a pair 
of output videos (as explained in the previous paragraph) and two buttons to choose the 
better one. A list of all possible pairs ((2) • 96 = 960 items long) was first generated and 
randomly shuffled. The website then always showed a pair at the current index in the list, 
which was incremented every time a test subject compared a pair of videos. This ensured 
that each pair was rated at most once more or once less than any other pair while keeping 
the succession of displayed videos pseudo-random. The test subjects compared the videos 
at their time of convenience and they were free to compare more or less videos. 

The resulting data was then converted into 5 x 5 frequency matrices in which the value 
in row i and column j is equal to the number of comparisons where the output of method 
i was chosen over the output of method j. A frequency matrix accounting for all of the 
comparisons as well as matrices comprised only of comparison results of videos from specific 
category were generated. This is due to the fact that the content of the videos varies widely 
between the categories and the preferable cropping method might be completely different. 
These frequency matrices were then converted into z-score scales according to the Law of 
Comparative Judgements, Case V by Thurstone [22]. This was done using a framework 
by Perez-Ortiz and Mantiuk [15], which also accounts for the fact that some pairs can be 
evaluated more often than others and weighs the scores accordingly. The resulting scales 
put the performance of the methods into perspective. While it does not rate the methods 
absolutely, it does assign them a relative score. Wi th this, the methods can be ordered from 
best to worst and compare how much better or worse each method is in terms of relative 
improvement when compared to other methods. 

5.2 Results 

After two weeks of testing, 66 different subjects performed a total of 1179 comparisons. 
This means that each possible pair has been evaluated at least once. Using the techniques 
mentioned before, the data was converted into z-score scales for each category of videos. 
The results are shown on Figure 5.1. The first thing that becomes obvious from the graph is 
that the AutoCam method by Su and Grauman [19] performed quite poorly when compared 
to all of the other methods. This is most probably caused by the fact that this method 
tends to crop the input spherical videos quite heavily. If the method fails to identify the 
most important subject or area in the video, even if the error in coordinates is small, the 
cropped video might completely miss the interesting content. This shortcoming is most 
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Figure 5.1: Obtained z-scores for individual categories of the videos for each of the methods. 
Error bars show intervals of 95% confidence. 

prominent in the hiking and mountain climbing categories. These videos are usually filmed 
hand-held, with some of the objects of interest quite close to the camera and therefore 
covering a large portion of the frame. Even if the method correctly identifies the point of 
interest, the viewer can often get disoriented since only a small part of it is visible while 
the surroundings that often give invaluable context in these scenarios get cropped out. 

The hiking and especially mountain climbing categories coincidentally perform best with 
the Saliency Baseline methods utilizing automatic cropping by Suh et al. [21] and Fang et 
al. [6]. This is due to the tendency of these methods to choose an extremely wide crop 
(more than 180°). Since these methods were originally designed for general 2D photos, 
which usually have a clear subject or a small number of them, this is understandable. A 
frame of a 360° video usually contains many salient objects and these methods therefore 
tend to try to keep most of them in the crop. This results in extremely warped output 
videos, as they get transformed to the stereographic projection. While keeping most of the 
content from the input spherical video inside the crop might be considered a good property, 
the warp it introduces can be quite unnatural to watch for some viewers. Moreover, the 
wide crop can become a disadvantage when the interesting objects are far from the camera 
and cover only a small portion of the frame. This is most prominent in the parade and 
soccer categories. While a wide crop can ensure that almost the entire soccer field or street 
on which the parade is held is visible, it would be preferable to have a tighter crop on the 
area of the soccer field where the players are or the currently passing car on the parade. 
This would allow the viewer to see the details that are currently important much more 
clearly. 
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Suh Fang AutoCam AID (shot) AID (cont) 

Figure 5.2: Overall z-scores obtained by each method. Error bars show intervals of 95% 
confidence. 

This is where the Automatic Importance Detection method by Pavel et al. [14] and 
the continuous variation introduced in Section 3.3 strike a balance between the wide and 
narrow crop, since the crop is fixed at 104.3°. The utilization of high level features like 
face detection seems to also be a step in the right direction for most videos, however, it 
also brings with it a problematic case when the person filming the video is either holding 
the camera or standing very close to the tripod it stands on. In these cases the method 
identifies the face of that person as the most important object in the video and the crop 
is focused on them. This might be a welcome feature in some cases, like for example if 
the person is talking to the camera, however, in other scenarios the person might just be 
standing next to the camera and the crop should be facing a completely different direction. 

When comparing the methods on the entire set of comparisons, the continuous variation 
of the Automatic Importance Detection method by Pavel et al. [14] scored the highest, with 
a minor, statistically insignificant advantage over the Saliency Baseline method using the 
automatic cropping method by Fang et al. [6]. This method had a slight advantage over 
the one by Suh et al. [21], most probably thanks to its more modern and versatile saliency 
mapping and cropping algorithms. The original Automatic Importance Detection method 
by Pavel et al. [14] performed notably worse than both of the tested Saliency Baseline 
method variants. This is most probably due to the nature of the tested videos. Most 
of them are not edited and therefore they contain only a single shot spanning the entire 
video. This is something the original method was not designed for - it only selects a single 
direction the crop is facing the entire video which means many important objects in the 
video might move out of the frame for a significant time span of the video. The technique of 
detecting the important areas in the frame, however, seems to be highly effective, since the 
continuous variation of this method performed significantly better. The AutoCam method 
by Su and Grauman [19] performed much worse than all of the other methods in all of 
the categories due to the reasons discussed earlier in this section and the overall score is 
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Figure 5.3: Obtained z-scores of each of the methods for individual videos. Each point 
represents a video, its color denotes the category it belongs to and its position to the 
respective method and obtained z-score. 

Method Suh Fang AutoCam AID (shot) AID (cont) 
FPS 0.38633 0.32962 0.80518 3.15657 3.02745 

Table 5.1: Average speed of evaluation for each of the tested methods. 

therefore the lowest as well. Figure 5.2 shows a comparison of the obtained overall scores 
of each of the methods. 

As discussed earlier in this section, the content of the video matters greatly when it 
comes to the performance of each of the methods - the scores of the methods vary widely 
between the categories. Figure 5.3 shows a visualization of the obtained scores for each 
of the individual test videos separately. The graph confirms that the differences between 
the top 2 methods is indeed minimal, while the other methods are separated more visibly 
with the AutoCam method by Su and Grauman [19] trailing behind the other methods 
by a significant amount. It also shows that none of the methods was able to steadily 
outperform all of the other methods in any of the categories. This supports the notion that 
the performance of each of these methods is highly dependent on the specific video they 
are applied to. 

Another thing to consider when comparing these methods is speed of evaluation. Ta­
ble 5.1 shows a comparison of average performance of these methods in terms of speed. The 
Automatic Importance Detection method by Pavel et al. [14] and the continuous variant 
clearly lead in this regard with both of them achieving comparable results of around 3 
frames per second. The AutoCam method by Su and Grauman [19] comes in at third place 
with around 0.8 frames per second, mainly thanks to the optimization of the glimpse ren­
dering process. The Saliency Baseline method variants achieved the slowest performance of 
around a 3 seconds per frame due to their relatively slow saliency mapping techniques. The 
variant based on automatic cropping by Suh et al. [21] achieved slightly faster performance 
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than the one based on the work by Fang et al. [6], however, that is balanced out by a 
slightly worse quality of its results (as shown in Figure 5.2). 

A l l in all, the continuous variant of the Automatic Importance Detection method by 
Pavel et al. [14] introduced in Section 3.3 offers the best balance of quality, speed and crop 
width of all of the tested methods. While there were a number of cases where the subjects 
preferred the results from the Saliency Baseline method variants, their performance in terms 
of speed was almost 10 times slower than the Automatic Importance Detection variants. 
The AutoCam method by Su and Grauman [19] offered a balanced performance in terms 
of speed, however, preference of its outputs among the viewers was significantly lower than 
any of the other methods. The obtained results signify that the approach taken by Pavel 
et al. [14] is a step in the right direction, however, more research needs to be done in this 
area in order to widen the gap between the traditional automatic cropping methods and 
methods specially designed for the task of cropping spherical videos. For several image 
results from the researched algorithms, see Appendix A . 
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Chapter 6 

Conclusion 

This work has provided a research of the recent advancements in the area of automatic 
spherical video cropping and detailed 3 methods for solving this task. The first one is a 
Saliency Baseline method that utilizes algorithms from the well-researched area of automatic 
image cropping by Suh et al. [21], Stentiford [17] and Fang et al. [6]. The second one is 
AutoCam by Su et al. [20, 19], which is a novel method that uses a data-driven approach to 
this problem. The third method is based on Automatic Importance Detection by Pavel et 
al. [14]. While the original algorithm was designed for a slightly different task, it proved to 
be useful for automatic 360°cinematography as well. A variation of the AutoCam method 
using saliency mapping and a variation of the Automatic Importance Detection method 
with continuous movement of the camera were also introduced. 

The methods were then implemented in the C++ language using multiple libraries, 
most notably the OpenCV library (see Section 4.3). A selection of the method variants 
then underwent a thorough experimentation using a pairwise comparison test that was 
held online. In the experiment, the respondent was presented with a pair of output 2D 
videos from two randomly chosen methods, which were generated from the same spherical 
input video. The task of the respondents was to watch the two videos and choose the better 
one based on their subjective experience. 

The experimentation brought several interesting and unexpected results. While the 
continuous variant of the Automatic Importance Detection method by Pavel et al. [14] 
scored the highest overall, the difference when compared to the Saliency Baseline method 
utilizing automatic cropping by Fang et al. [6] was statistically insignificant. Even when 
using the older automatic cropping algorithm by Suh et al. [21], the Saliency Baseline 
method did really good in the testing. The AutoCam method by Su et al. [20, 19] performed 
significantly worse than any of the other methods. A full analysis of the results on different 
categories and the possible reasons for these results are discussed in detail in Section 5.2. 

The results show that the current methods designed specifically for spherical video 
cropping are not able to steadily outperform the traditional automatic image cropping 
methods yet and more research in this field is still needed. A possible improvement of 
the Automatic Importance Detection could be augmenting it to choose a vertical spherical 
coordinate and field of view besides the horizontal coordinate. This could improve the 
variability of the output and it could also adapt to a wider range of videos. 

There are many variables to consider when designing an algorithm for automatic spheri­
cal video cropping and one of the toughest to address is the broad range of possible content 
of the videos. This makes it exceptionally challenging to design a method that would 
work in all circumstances. This work researched two major approaches to this problem - a 
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data-driven approach and a traditional algorithmic approach. From what the results of the 
experiments have shown, the algorithmic approach seems to be the more promising one. 

While working on this thesis, I have broadened my knowledge in the field of spherical 
video cropping as well as many underlying areas that were required to be studied before 
researching this specific topic. While implementing the chosen methods, I have faced many 
challenges, overcoming of which has further improved my skills in the C + + language. The 
process of experimentation performed on the implemented methods has taught me many 
good practices to use for user testing as well as the methods that can be used for evaluating 
algorithms of this kind. 
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