
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ
BRNO UNIVERSITY OF TECHNOLOGY

FAKULTA INFORMAČNÍCH TECHNOLOGIÍ
ÚSTAV INTELIGENTNÍCH SYSTÉMŮ

FACULTY OF INFORMATION TECHNOLOGY
DEPARTMENT OF INTELLIGENT SYSTEMS

A DECISION PROCEDURE FOR THE WSKS LOGIC

DIPLOMOVÁ PRÁCE
MASTER’S THESIS

AUTOR PRÁCE Bc. TOMÁŠ FIEDOR
AUTHOR

BRNO 2014

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ
BRNO UNIVERSITY OF TECHNOLOGY

FAKULTA INFORMAČNÍCH TECHNOLOGIÍ
ÚSTAV INTELIGENTNÍCH SYSTÉMŮ

FACULTY OF INFORMATION TECHNOLOGY
DEPARTMENT OF INTELLIGENT SYSTEMS

ROZHODOVACÍ PROCEDURA PRO LOGIKU WSKS
A DECISION PROCEDURE FOR THE WSKS LOGIC

DIPLOMOVÁ PRÁCE
MASTER’S THESIS

AUTOR PRÁCE Bc. TOMÁŠ FIEDOR
AUTHOR

VEDOUCÍ PRÁCE Ing. ONDŘEJ LENGÁL
SUPERVISOR

BRNO 2014

Abstrakt
Různé typy logik se často používají jako prostředky pro formální specifikaci systémů. Slabá
monadická logika druhého řádu s k následníky (WSkS) je jednou z nich a byť má poměrně
velkou vyjadřovací sílu, stále je rozhodnutelná. Ačkoliv složitost testování splnitelnosti
WSkS formule není ani ve třídě ELEMENTARY, tak existují přístupy založené na de-
terministických automatech, implementované např. v nástroji MONA, které efektně řeší
omezenou třídu praktických příkladů, nicméně nefungují pro jiné. Tato práce rozšiřuje třídu
prakticky řešitelných příkladů, a to tak, že využívá nedávno vyvinutých technik pro efektní
manipulaci s nedeterministickými automaty (jako je například testování universality jazyka
pomocí přístupu založeného na antichainech) a navrhuje novou rozhodovací proceduru pro
WSkS využívající právě nedeterministické automaty. Procedura je implementována a ve
srovnání s nástrojem MONA dosahuje v některých případech řádově lepších výsledků.

Abstract
Various types of logics are often used as a means for formal specification of systems. The
weak monadic second-order logic of k successors (WSkS) is one of these logics with quite
high expressivity, yet still decidable. Although the complexity of checking satisfiability of a
WSkS formula is not even in the ELEMENTARY class, there are approaches to this problem
based on deterministic tree automata that perform well in practice, like the MONA tool
that efficiently solves the class of practical formulae, but fails for some others. This work ex-
tends the class of practically solvable formulae with the use of recently developed techniques
for efficient manipulation of non-deterministic automata (such as the antichains algorithm
for testing universality) and designs a new decision procedure using non-deterministic au-
tomata. The procedure is implemented and is compared with theMONA tool and for some
cases yield better results than MONA.

Klíčová slova
formální verifikace, stromové automaty, WSkS, rozhodovací procedury

Keywords
formal verification, tree automata, WSkS, decision procedures

Citace
Tomáš Fiedor: A Decision Procedure for the WSkS Logic, diplomová práce, Brno, FIT
VUT v Brně, 2014

A Decision Procedure for the WSkS Logic

Prohlášení
Prohlašuji, že jsem tuto diplomovou práci vypracoval samostatně pod vedením pana in-
ženýra Ondřeje Lengála. Uvedl jsem všechny literární prameny a publikace, ze kterých
jsem čerpal.

. .
Tomáš Fiedor

23. května 2014

Poděkování
Děkuji vedoucímu práce, Ing. Ondřeji Lengálovi, za odborné vedení, ochotu konzultovat,
motivaci a především za trpělivost. Dále bych chtěl poděkovat Prof. Ing. Tomáši Voj-
narovi, Ph. D. a Mgr. Lukáši Holíkovi, Ph. D. za poskytnuté konzultace a sezení. Rovněž
bych chtěl poděkovat bratrovi Ing. Janu Fiedorovi za veškeré diskuze a rodině za podporu
ve studiu.

© Tomáš Fiedor, 2014.
Tato práce vznikla jako školní dílo na Vysokém učení technickém v Brně, Fakultě in-
formačních technologií. Práce je chráněna autorským zákonem a její užití bez udělení
oprávnění autorem je nezákonné, s výjimkou zákonem definovaných případů.

Contents

1 Introduction 3

2 Preliminaries 5
2.1 Formal Languages . 5
2.2 Finite Automata . 5

2.2.1 Closure Properties of Regular Languages 7
2.3 Tree Automata . 7

2.3.1 Closure Properties of Regular Tree Languages 8
2.3.2 Relations on Trees . 9

2.4 Binary Decision Diagrams . 10
2.4.1 Usage of MTBDDs with TA . 11

3 The WSkS Logic 13
3.1 Syntax . 13
3.2 Semantics . 14
3.3 Restricting Syntax . 14
3.4 Deciding WSkS . 16

4 MONA 21
4.1 The main issue of the use of deterministic tree automata 21
4.2 The used optimizations . 22

4.2.1 Using BDDs for automata representation 22
4.2.2 Caching . 22
4.2.3 Eager minimization . 22
4.2.4 Guided tree automata . 22
4.2.5 Directed Acyclic Graph representation 22
4.2.6 Three-valued logic and automata . 23
4.2.7 Formula reductions . 23

5 Deciding WSkS with Non-deterministic Automata 24
5.1 Antichain-based universality testing of NFAs 24
5.2 Deciding WS1S with NFAs . 27
5.3 Deciding WSkS . 32

6 Implementation 34
6.1 Manipulation with NTA . 35
6.2 Decision procedure . 35
6.3 Optimizations . 37

1

6.3.1 Extending set of atomic formulae . 37
6.3.2 Cache . 39

7 Evaluation 40
7.1 Parametric Horn formulae . 40
7.2 Comparison with MONA . 41
7.3 The impact of the used optimizations . 44
7.4 Discussion of results . 45

8 Conclusion 46

A Contents of CD 49

B WSkS specification syntax 50

C Usage 52
C.1 Instalation . 52

D List of Atomic Formulae 53
D.1 Atomic formulae for restricted syntax . 53
D.2 Extending restricted syntax . 54

2

Chapter 1

Introduction

The use of logics has always had an important place in various sciences, especially in com-
puter science and, in particular, formal verification. The expressiveness of logics allows us
to specify verified systems in a very natural and intuitive way without the need of deep
knowledge of the used verification procedures. The logic used range from plain proposi-
tional logic through all kinds of first-order logics like Presburger arithmetic [21], separation
logic, and all the way to the more complex monadic second-order logics, like WSkS [5].
However, with great expressiveness comes great complexity of decision procedures of these
logics, ranging from NP-complete for propositional logic, through PSPACE-complete for
quantified Boolean formulae, with some stronger logics not being decidable at all.

WSkS stands for weak monadic second-order logic of k successors. Roughly, this means
that it allows to quantify over finite set variables where every element from the universe
of discourse has k successors. This properties open ways for expressing various k-ary tree
structures, e.g. binary trees or heaps, and linear structures, e.g. linked lists, as well. Deci-
sion procedures for WSkS are usually based on the correspondence between WSkS formulae
and languages of finite automata (be it word or tree automata). The atomic subformulae
of an examined WSkS formula φ are translated to finite (word/tree) automata, which are
further connected or manipulated using automata manipulation techniques according to
the structure of φ. The resulting automaton then represents the language encoding all
models of φ. The problem of checking satisfiability (unsatisfiability/validity/invalidity) of
φ is in the NONELEMENTARY complexity class [20]. The main source of this complexity
is the occurence of quantifier alternations in φ. In the automata construction each quan-
tifier alternation yields projection and complementation of the automaton, for which there
is currently no known algorithm other than exponential.

There has been several attempts to implement a decision procedure for WSkS, like [10]
for k = 1. Currently the best one is the toolMONA [11], an implementation of an automata-
based decision procedure which is quite fast and uses deterministic finite word and binary
bottom-up tree automata for deciding WS1S and WS2S formulae respectively. The au-
thors of MONA have developed a number of heuristics, such as the use of binary decision
diagrams for the representation of transition functions of automata or cache-friendly im-
plementation of hash tables that made MONA perform well on many practical examples
in spite of the terrifying worst-case complexity. However, there still remains a large class
of practical examples for which MONA fails.

3

Recently, there has been a major advance in the algorithms manipulating non-deter-
ministic automata (like [18]). Even problems with high worst-case complexity like testing
universality or language inclusion of the automaton can now be solved efficiently in many
practical cases using algorithms that heuristically prune the search space, such as algorithms
based on antichains or on the simulation relation among states of automata.

This text describes the design and implementation of a new decision procedure for WSkS
that uses non-deterministic tree automata while exploiting the techniques for their efficient
manipulation to achieve better performance.

Tha main idea of the decision procedure is to transform a WSkS formula φ into equiv-
alent formula in the form of φ′ = ¬∃Xn¬ . . .¬∃X1 : ψ, where ψ (called the matrix) is
a quantifier free formula constructed over atomic formulae and their negations, using only
propositional connectives ∧ and ∨. The procedure then constructs the automaton Aψ cor-
responding to ψ and checks satisfiability of φ′ while working only with Aψ without explicitly
constructing the automaton for ψ′.

The rest of this thesis is organized as follows. In Chapter 2 all necessary preliminaries
are defined. A short introduction to the theory of formal languages will describe finite
word and tree automata, as well as some properties of their languages. Another structure
that will be defined there will be Binary Decision Diagrams, or BDDs for short, and their
extensions. Chapter 3 defines the syntax and semantics of the WSkS logic and its restricted
forms. A brief description of the correspondence between tree automata and WSkS for-
mulae also appears there. Chapter 4 describes the approach of MONA and all the known
tweaks and secrets that were used during its development. In Chapter 5 our approach to
a decision procedure for the WSkS logic using non-deterministic automata and its antichain-
based principle will be outlined. A short introduction to antichain-based procedures and
universality testing of finite word and tree automata is described there as well. Chapter 6
describes the implementation of the designed algorithm as well as some used optimizations.
The implementation is then evaluated in Chapter 7 and compared with MONA in various
aspects like the speed time or the size of the generated state space. Chapter 8 summarizes
this thesis.

4

Chapter 2

Preliminaries

2.1 Formal Languages

We define an alphabet as a finite non-empty set of elements called symbols. A word over
the alphabet Σ is a finite sequence a1a2 . . . an, such that ai ∈ Σ, for all 1 ≤ i ≤ n. The
empty sequence of symbols, i.e. a sequence which does not contain any symbols, is denoted
as ε.

Let x = a1a2 . . . an and y = b1b2 . . . bm be words over the alphabet Σ, for some n,m ∈ N.
The concatenation of words x and y is defined as the word xy = a1a2 . . . anb1b2 . . . bm. Note
that εx = xε = x.

Let Σ be an alphabet. We denote the set of all words over Σ as Σ∗. The set of all words
except for the empty word is denoted as Σ+ = Σ∗ \ {ε}. We call L ⊆ Σ∗ a language over Σ.

2.2 Finite Automata

A non-deterministic finite (word) automaton (further abbreviated as FA) is a quintuple
A = (Q,Σ, δ, I, F), where

� Q is a finite set of states,

� Σ is the input alphabet,

� δ ⊆ Q × Σ ×Q is the transition relation. We use p
a−→ q, for p, q ∈ Q and a ∈ Σ to

denote that (p, a, q) ∈ δ,

� I ⊆ Q is the set of initial states,

� F ⊆ Q is the set of final states.

Further we call a set of states in A, i.e. a subset of Q, a macro-state and we define the
post-image of a state p as Post(p) = {p′ ∈ Q | ∃a ∈ Σ : (p, a, p′) ∈ δ}.

Let A = (Q,Σ, δ, I, F) be a FA. A run of A over the word w = a1a2 . . . an ∈ Σ∗ from the
state p ∈ Q to the state r ∈ Q is a sequence of states q0q1 . . . qn, such that q0 = p, qn = r
and for all 1 ≤ i ≤ n there is a transition qi−1

ai−→ qi in δ. We write p
w

=⇒ r to denote that
there exists a run from the state p to the state r over the word w.

5

The language accepted by a state q ∈ Q is defined as LA(q) = {w | q w
=⇒ qf , qf ∈ F}.

If it is clear which FA A we are referring to, we can simplify this to L(q). The language
accepted by a set of states S ⊆ Q is further defined as LA(S) =

⋃
q∈S LA(q) and the

language accepted by the automaton A is defined as L(A) = LA(I).
A deterministic finite automaton (DFA) is a FA A where |I| = 1 and ∀q ∈ Q,∀a ∈ Σ :

|{r ∈ Q | q a−→ r}| ≤ 1, i.e. δ is a partial function δ : Q × Σ −→ Q. If δ is total, i.e.
∀q ∈ Q,∀a ∈ Σ : |δ(q, a)| = 1, we call A a complete deterministic finite automaton. It
can be shown that for every deterministic FA there exists a language equivalent complete
deterministic FA, by adding a new non-final sink state.

Lemma 2.1. For every non-deterministic finite automaton A, there exists a deterministic
finite automaton A′ such that L(A) = L(A′).

Proof. Let A = (Q,Σ, δ, I, F) be a FA. We can construct the DFA A′ = (Q′,Σ, δ′, I ′, F ′),
such that L(A) = L(A′), by the following method:

Q′ = 2Q,

δ′ = {S a−→ R | S ∈ 2Q, R = {r | ∃s ∈ S : s
a−→ r}},

I ′ = {I},
F ′ = {S ∈ 2Q | S ∩ F 6= ∅}.

Note that A′ is complete. It can be proved that L(A) = L(A′) by showing that L(A) ⊆
L(A′) and simultaneously L(A′) ⊆ L(A) [19].

Definition 2.1. We define the class of regular languages LR as the class of languages
L ∈ Σ∗ such that there exists a finite automaton A such that L(A) = L.

Example 2.1. Consider the encoding of subsets of {1, . . . , n}, for some n ∈ N, as binary
strings X = a1 . . . an, where ai is 1 if i ∈ X and 0 if i /∈ X. We can construct the automaton
A that accepts the encoding of the set difference X of two sets Y and Z, i.e. X = Y \ Z,
as depicted in Figure 2.1.

q1 q2

X: 0|0|0|1
Y: 0|1|0|1
Z: 0|1|1|0

X: 1|1|0|1
Y: 0|0|1|1
Z: 0|1|0|1

X: X
Y: X
Z: X

Figure 2.1: Automaton A accepting the encoding of the set difference of a pair of sets. Note
that we use the symbol X as don’t-care symbol, i.e. it can stand for any symbol from Σ.

6

2.2.1 Closure Properties of Regular Languages

Theorem 2.1. The class of regular languages is closed under union.

Proof. Let A = (QA,Σ, δA, IA, FA) and B = (QB,Σ, δB, IB, FB) be a pair of finite automata
such that QA∩QB = ∅. We construct an automaton A∪B accepting the union of languages
L(A) and L(B):

A ∪ B = (QA ∪QB,Σ, δA ∪ δB, IA ∪ IB, FA ∪ FB). (2.1)

The proof that L(A ∪ B) = L(A) ∪ L(B) can be found for example in [19].

Theorem 2.2. The class of regular languages is closed under intersection.

Proof. Let A = (QA,Σ, δA, IA, FA) and B = (QB,Σ, δB, IB, FB) be a pair of finite automata.
We construct an automaton A∩B accepting the intersection of languages L(A) and L(B):

A ∩ B = (QA ×QB,Σ, δ, IA × IB, FA × FB) (2.2)

where
δ = {(p1, p2)

a−→ (q1, q2) | p1
a−→ q1 ∈ δA ∧ p2

a−→ q2 ∈ δB}. (2.3)

The proof that L(A ∩ B) = L(A) ∩ L(B) can be found for example in [19].

Theorem 2.3. The class of regular languages is closed under language complementation.

Proof. Let A = (QA,Σ, δA, IA, FA) be a complete deterministic FA. We construct an au-
tomaton accepting the complement of L(A):

A = (QA,Σ, δA, IA, QA \ FA). (2.4)

The proof that L(A) = Σ∗ \ L(A) can be found for example in [19].

2.3 Tree Automata

A ranked alphabet Σ is a finite set of symbols together with a ranking function # : Σ→ N,
we call #a the rank of a. For any n ≥ 0, we denote by Σn the set of all symbols of rank n
from Σ. We denote by ε ∈ N∗ the empty sequence.

Then a tree t over a ranked alphabet Σ is defined as a partial mapping t : N∗ → Σ, that
satisfies the following conditions:

1. dom(t) is a finite prefix-closed subset of N∗,

2. for every v ∈ dom(t), called a node of t, the following holds: (#t(v) = n ≥ 0) =⇒
{i | vi ∈ dom(t)} = {1, . . . , n}.

For a node v, the i-th child of v is the node vi, and the i-th subtree of v is the tree t′

such that for all v′ ∈ N∗, t′(v′) = t(viv′). A node v which does not have any children is
called a leaf of the tree t. The set of all trees over the alphabet Σ is denoted as TΣ.

7

A (finite, non-deterministic) tree automaton (further abbreviated as TA) is a quadruple
A = (Q,Σ, δ, F), where:

� Q is a finite set of states,

� Σ is a ranked alphabet,

� δ is the set of transitions,

� F ⊆ Q is the set of final states.

Each transition is defined as a triple ((q1, . . . , qn), a, q), where q1, . . . , qn, q ∈ Q, a ∈ Σ
and #a = n. We use equivalently (q1, . . . , qn)

a−→ q and q
a−→ (q1, . . . , qn) to denote

that ((q1, . . . , qn), a, q) ∈ δ, for bottom-up and top-down representation respectively. In the
special case where n = 0, we speak about the so-called leaf rules that can be abbreviated
as

a−→ q or q
a−→.

Let A = (Q,Σ, δ, F) be a TA. We define a run of A over a tree t ∈ TΣ as a mapping
ϕ : dom(t)→ Q such that for each node v ∈ dom(t) of rank #t(v) = n, where ϕ(v) = q, if

ϕ(vi) = qi for all 1 ≤ i ≤ n, then (q1, . . . , qn)
t(v)−→ q. We write t

ϕ
=⇒ q to denote that ϕ is

a run of A over t such that ϕ(ε) = q. We write t =⇒ q to denote that there exists a run ϕ

for which t
ϕ

=⇒ q.
The language accepted by a state q is defined as LA(q) = {t | t =⇒ q}. For a set of states

S ⊆ Q we define the language accepted by this set as LA(S) =
⋃
q∈S LA(q). Similarly to

FA, if it is clear which TA A we are referring to, we only write L(q) or L(S). Then language
of A is defined as L(A) = LA(F).

Definition 2.2. A deterministic finite tree automaton (abbreviated as DTA) is a TA such
that there are no two rules with the same left-hand, or right-hand, side in δ for bottom-up
DTA or top-down DTA respectively.

Note that the expressive power of bottom-up and top-down NTA is the same. However,
top-down DTA are strictly less powerful than top-down NTA. See [6] for more details.

Definition 2.3. We define the class of regular tree languages L as the class of languages
L ⊆ TΣ such that there exists a finite tree automaton A such that L(A) = L.

2.3.1 Closure Properties of Regular Tree Languages

Theorem 2.4. The class of regular tree languages is closed under intersection.

Proof. Let A = (QA,Σ, FA, δA) and B = (QB,Σ, FB, δB) be two tree automata. We con-
struct a tree automaton A ∩ B accepting the intersection of languages L(A) and L(B):

A ∩ B = (QA ×QB,Σ, FA × FB, δ) (2.5)

where

δ ={((q1
1, q

2
1), . . . , (q1

n, q
2
n))

f−→ (q1, q2)

| (q1
1, . . . , q

1
n)

f−→ q1 ∈ δA ∧ (q2
1, . . . , q

2
n)

f−→ q2 ∈ δB)}. (2.6)

8

Note that this construction preserves determinism, i.e. if the two given automata are
deterministic, then so is the product automaton.

Theorem 2.5. The class of regular tree languages is closed under union.

Proof. Let A = (QA,Σ, FA, δA) and B = (QB,Σ, FB, δB) be two tree automata. We con-
struct a tree automaton A ∪ B accepting the union of languages L(A) and L(B):

A ∪ B = (QA ∪QB,Σ, FA ∪ FB, δA ∪ δB). (2.7)

Theorem 2.6. The class of regular tree languages is closed under language complementa-
tion.

Proof. Let A = (Q,Σ, F, δ) be a complete bottom-up deterministic TA. We construct a tree
automaton accepting the complement of the language L(A):

A = (Q,Σ, Q \ F, δ). (2.8)

Note that for non-deterministic tree automata there is currently known no comple-
mentation procedure better than first bottom-up determinizing the automaton and then
complementing it using the construction above.

2.3.2 Relations on Trees

Given a ranked alphabet Σ and n ≥ 0, let (TΣ)n be the Cartesian product TΣ × (TΣ)n−1

with the ground case (TΣ)0 = {>}, where {>} is a neutral element w.r.t. Cartesian product.
A subset of (TΣ)n is an n-ary relation on TΣ. Further, let Σn

⊥ be the compound alphabet
Σn
⊥ = (Σ ∪ {⊥})n where ⊥ is a new symbol such that ⊥ /∈ Σ and #⊥ = 0. We write the

symbol (f1, . . . , fn) of Σn
⊥ as f1 . . . fn. Arities of symbols in Σn

⊥ are defined as #(f1 . . . fn) =
max(#f1, . . . ,#fn).

Let [·] be a function that maps n-tuples of trees over TΣ to trees over TΣn
⊥

:

[·] :

(TΣ)n → TΣn

⊥

f1(t11, . . . , t
#f1
1), . . . , fn(t1n, . . . , t

#fn
n) 7→

f1 . . . fn([t11, . . . , t
1
n], . . . , [tm1 , . . . , t

m
n])

(2.9)

where m is the maximal arity of f1, . . . , fn ∈ Σ and tji is, by convention, ⊥ when j > #fi.

Definition 2.4. Rec, for recognizable tree relations, is the class of relations R ⊆ (TΣ)n

such that the language
{[t1, . . . , tn] | (t1, . . . , tn) ∈ R} (2.10)

is accepted by a tree automaton on the alphabet Σn
⊥.

Proposition 2.1. Rec is closed under Boolean operations, i.e. intersection, union and
complementation.

Proof. This is due to closure properties of tree automata (see Section 2.3.1).

9

Definition 2.5. If R ⊆ (TΣ)n where n ≥ 1 and 1 ≤ i ≤ n, then the i-th projection of R is
the relation Ri ⊆ (TΣ)n−1 defined as follows:

Ri(t1, . . . , tn−1)⇔ ∃t ∈ TΣ. R(t1, . . . , ti−1, t, ti, . . . , tn−1). (2.11)

Lemma 2.2. Rec is closed under projection.

Proof. Let us assume that R ∈ Rec. The i-th projection Ri of R is simply its image by the
following tree homomorphism:

hi(f1 . . . fn(t1, . . . , tk))
def
= f1 . . . fi−1fi+1 . . . fn(hi(t1), . . . , hi(tm)) (2.12)

where m is the arity of (f1 . . . fi−1fi+1 . . . fn), which is smaller or equal to k. Because linear
homomorphisms preserve recognizability (Theorem 1.4.3 in [6]), Ri ∈ Rec.

Definition 2.6. If R ⊆ (TΣ)n where n ≥ 0 and 1 ≤ i ≤ n+ 1 then the i-th cylindrification
of R is the relation Ri ⊆ (TΣ)n+1 defined as follows:

Ri(t1, . . . , ti−1, t, ti, . . . , tn)⇔ R(t1, . . . , ti−1, ti, . . . , tn). (2.13)

Lemma 2.3. Rec is closed under cylindrification.

Proof. Similarly to projection, i-th cylindrification is obtained as an inverse homomorphic
image, and thus is recognizable as stated by Theorem 1.4.4. in [6].

2.4 Binary Decision Diagrams

We define a Boolean function of arity k as a function f : {0, 1}k → {0, 1}. A reduced
ordered binary decision diagram (abbreviated as ROBDD or just BDD) r over a set of n
Boolean variables X = {x1, . . . , xn} is a connected directed acyclic graph with a single
source node called root and at least one of two sink nodes 0 and 1. Nodes that are not sink
nodes are called internal nodes. Assignment of Boolean variables to each of the internal
nodes is done by the function var . We assume that X is ordered in the following way:
x1 < x2 < . . . < xn. For every internal node v, there exists two outgoing edges labeled as
low and high, such that var(v) < var(v.low) ∧ var(v) < var(v.high); and v.low 6= v.high
as well (since otherwise it could be further reduced).

Nodes of a BDD represent n-ary Boolean functions that map each assignment to the
Boolean variables in X to a corresponding Boolean value defined as follows, using x as
an abbreviation for x1 . . . xn:

[0] = λx.0

[1] = λx.1

[v] = λx.(¬xi ∧ [v.low](x)) ∨ (xi ∧ [v.high](x))

where var(v) = xi

10

x1

x2

x3x3

0 1

(a) BDD

x1

x2

x3x3

q1 q2⊥

(b) MTBDD

Figure 2.2: Difference between BDD and MTBDD.

We can further extend the notion of these functions to an arbitrary nonempty codomain
S, f : {0, 1}k −→ S. The notion of ROBDDs can then be further generalized to multi-
terminal binary decision diagrams (abbreviated as MTBDDs), which is essentially the same
data structure as a BDD, with the only difference being the fact that the set of sink nodes
is not restricted to only two nodes but to any number of sink nodes labelled by elements of
S. All standard notions for ROBDDs can be naturally extended to MTBDDs.

A shared MTBDD s is a MTBDD with multiple source nodes (or roots) that represent
a mapping of every element of the set of roots R to a function induced by the MTBDD
corresponding to the given root. We can see the difference between MTBDDs and BDDs
in the Figure 2.2.

For manipulation with BDDs f , g we define the Apply1 function for some unary leaf
operator op1 and the Apply2 function for some binary leaf operator op2 as follows:

Apply1(f, op1) = λx . op1([f(x)]), (2.14)

Apply2(f, g, op2) = λx . op2([f(x)], [g(x)]). (2.15)

2.4.1 Using Shared MTBDDs for Encoding Transition Function of Tree
Automata

Let A = (Q,Σ, δ, F) be a tree automaton, such that Σ = {0, 1}n, for some n. Each position
1 ≤ i ≤ n is then assigned a Boolean variable from the set X = {x1, . . . , xn}. We use Q#

to denote the set of all tuples of states from Q with up to the maximum arity that some
symbol in Σ has.

The bottom-up representation of the transition function δ of the TA A uses a shared
MTBDD δbu over Σ, where the set of roots R = Q#, and the domain set of values of sink
nodes is 2Q that is, the MTBDD δbu represents the function [δbu]: Q# → (Σ→ 2Q) where

[δbu] = λ(q1, . . . , qp) a.{q | (q1, . . . , qp)
a−→ q}. (2.16)

The top-down representation of the transition function δ of the TA A uses a shared
MTBDD δtd over Σ, where the set of roots R = Q and the domain of labels of sink nodes
is 2Q

#
. The MTBDD δtd then represents the function [δtd]: Q→ (Σ→ 2Q

#
) where

[δtd] = λq a.{(q1, . . . , qp) | q a−→ (q1, . . . , qp)}. (2.17)

11

Example 2.2. Consider the word automaton A from Example 2.1 accepting the encoding
of set difference of two sets with the following transitions:

q1
00X−→ q1

q1
011−→ q1

q1
110−→ q1

q1
10X−→ q2

q1
010−→ q2

q1
111−→ q2

q2
XXX−→ q2

Note that we use the symbol X to substitute either 0 or 1 in its place. The MTBDD
encoding the transition function of this automaton is depicted in Figure 2.3.

q1 q2

q1 q2

Y

X

Y

Z Z

Figure 2.3: The MTBDD encoding the transition function corresponding to A from Exam-
ple 2.1

12

Chapter 3

The WSkS Logic

The abbreviation WSkS stands for weak second-order monadic logic of k successors. This
means that it is a logic that allows quantification over set variables (second-order), which can
only represent finite sets (weak) of elements and not functions (monadic), over a universe
of discourse where every element has k successors, and can therefore express linear (for
k = 1) as well as tree (for k ≥ 2) structures.

3.1 Syntax

A WSkS term is an empty constant ε, a first-order variable symbol written in lower-case
letters (e.g. x, y, z, . . .) or an unary symbol from {1, . . . , k} written in postfix notation.
For example, x1123 or ε2111 are terms, where the latter can be shortened to 2111.

The atomic formulae are defined as follows:

1. For terms s and t, the equality s = t is an atomic formula.

2. For terms s and t, inequalities s ≤ t and s ≥ t are atomic formulae.

3. For a term t and a second-order variable X, the membership constraint t ∈ X is
an atomic formula.

A WSkS formula is then built out of atomic formulae using the classical logical connec-
tives ∧,∨,¬,⇐,⇒,⇔ and quantifiers ∃x,∀x and ∃X,∀X for quantification over first-order
variables and second-order variables respectively.

The syntax can be further restricted to only a subset of logical connectives and atomic
formulae without harm to the expressive power of the logic. This will be further explained
in Section 3.3. The set of free variables of a formula freeVars(ψ) is defined as usual.

Example 3.1. The following example WSkS formula ϕ denotes that the set X contains
exactly one element from the universe of discourse:

ϕ(X)
def
= ∃p : p ∈ X ∧ ∀r : p 6= r ⇒ r 6∈ X (3.1)

13

3.2 Semantics

We will interpret terms as strings belonging to {1, . . . , k}∗, = as the equality of strings,
and ≤ as the prefix ordering. Second order variables will be interpreted as finite subsets of
{1, . . . , k}∗ with ∈ as the membership predicate.

Let t1, . . . , tn ∈ {1, . . . , k}∗ and S1, . . . , Sn be finite subsets of {1, . . . , k}∗. Given a for-
mula ψ(x1, . . . , xn, X1, . . . , Xm) with free variables x1, . . . , xn, Xn, . . . , Xm, the assignment
δ = {x1 7→ t1, . . . , xn 7→ tn, X1 7→ S1, . . . , Xm 7→ Sm} satisfies ψ written as δ |= ψ (or also
t1, . . . , tn, S1, . . . , Sm |= ψ) if replacing the variables with their corresponding values, the
formula holds in the above model.

3.3 Restricting Syntax

We are going to restrict the WSkS syntax to use only second-order variables. This can
be done by considering every first-order variable as a singleton set and transforming every
formula to an equivalent one which does not contain any first-order variables. We will
consider only the following atomic formulae, where X and Y are second-order variables,
and build formulae over them:

� X ⊆ Y ,

� Sing(X) — holds true iff X is a singleton set,

� X = Y i— holds true iff X and Y are singleton sets {s} and {t} respectively and
s = ti,

� X = ε.

We can also further simplify the syntax of WSkS formulae by restricting logical con-
nectives used to build the formulae to only ∃, ∨, ∧ and ¬. This syntax will be called the
restricted syntax and its satisfaction relation will be denoted as |=2.

Proposition 3.1. There is a translation T from WSkS formulae to the restricted syntax
such that

s1, . . . , sn, S1, . . . , Sm |= ψ(x1, . . . , xn, X1, . . . , Xm) (3.2)

if and only if

{s1}, . . . , {sn}, S1, . . . , Sm |=2 T (ψ)(Xx1 , . . . , Xxn , X1, . . . , Xm). (3.3)

Conversely, there is a translation T ′ from the restricted syntax to WSkS such that

S1, . . . , Sm |= T ′(ψ)(X1, . . . , Xm) (3.4)

if and only if
S1, . . . , Sm |=2 ψ(X1, . . . , Xm). (3.5)

Proof. We will only present a short sketch of the proof for this proposition. For further
details see [6].

14

We can suppose that formulae will be built only upon the atomic formulae t ∈ X and
s = t and so flatten the rest of the atomic formulae. Every first-order variable y will be
mapped to a second-order variable Xy as follows:

T (y ∈ X)
def
= Xy ⊆ X (3.6)

T (y = xi)
def
= Xy = Xxi (3.7)

T (x = ε)
def
= Xx = ε (3.8)

T (x = y)
def
= Xx = Xy (3.9)

T (ψ ∨ φ)
def
= T (ψ) ∨ T (φ) (3.10)

T (ψ ∧ φ)
def
= T (ψ) ∧ T (φ) (3.11)

T (¬φ)
def
= ¬T (φ) (3.12)

T (∃X.φ)
def
= ∃X.T (φ) (3.13)

T (∃y.φ)
def
= ∃Xy : Sing(Xy) ∧ T (φ) (3.14)

Moreover, for each free variable x we add a Sing(Xx) formula. The converse translation
T ′ can be defined similarly as written in [6].

Example 3.2. The following example WSkS formula φ is in the restricted syntax and is
equivalent to the formula from Example 3.1:

φ
def
= ∃P : Sing(P) ∧ P ⊆ X ∧ ∀R : Sing(R) ∧ (P = R ∨R 6⊆ X) (3.15)

We will further restrict the syntax of WSkS. A WSkS formula φ is in the prenex normal
form (abbreviated as PNF) if and only if it is of the form

φ = QnXn . . . Q2X2Q1X1 : ψ(X) (3.16)

where Qi ∈ {∃,∀}, Xi ∈ X, ∀1 ≤ i ≤ n, and ψ is a quantifier-free formula in the restricted
syntax as defined above with the additional requirement that negation occurs only on atomic
formulae. We denote QnXn . . . Q2X2Q1X1 as the prefix of φ and ψ(X) as the matrix of φ.

A WSkS formula ρ is in the existentially-quantified prenex normal form (abbreviated as
∃PNF), if and only if its form is

ρ = ∃Xm+1¬∃Xm . . .¬∃X2¬∃X1 : ψ(X) (3.17)

where ∃Xi, for Xi ⊆ X, is a (possibly empty) sequence ∃Xa . . . ∃Xb of consecutive existential
quantifications and ψ is again a quantifier-free formula in the restricted syntax over X.

15

Proposition 3.2. There is a translation from WSkS formulae in the restricted syntax to
equivalent formulae in ∃PNF.

Proof. Let us consider only ∧, ∨ and ¬ used in formulae as logical operators. This can be
achieved by applying the rules ψ ⇔ φ 7→ (¬ψ ∨ φ) ∧ (ψ ∨ ¬φ) and ψ ⇒ φ 7→ ¬ψ ∨ φ, which
preservers logical equivalence.

The formula is first translated to the PNF, moving all quantifiers to the left of the
formula, renaming variables if needed. Quantifications with unused variables are removed.
We are using the following transformations, where Q ∈ {∃,∀} and ◦ ∈ {∨,∧}:

¬(∃xφ) ≡ ∀x¬φ (3.18)

¬(∀xφ) ≡ ∃x¬φ (3.19)

Qxφ ◦ ψ ≡ Qx(φ ◦ ψ) (3.20)

φ ◦Qxψ ≡ Qx(φ ◦ ψ) (3.21)

Note that there can be no free occurrences of a quantified variable x in ψ and φ in formulae
3.20 and 3.21 respectively.

All universal quantifiers are transformed to existential quantifiers according to the equiv-
alence ∀x. φ ≡ ¬∃x. ¬φ. Lastly, all negations in the matrix are shifted to the atoms
according to the following laws:

¬¬φ ≡ φ (3.22)

¬(φ ∨ ψ) ≡ ¬φ ∧ ¬ψ (3.23)

¬(φ ∧ ψ) ≡ ¬φ ∨ ¬ψ (3.24)

The resulting formula is in the existentially-quantified prenex normal form.

Example 3.3. The following example WSkS formula ψ is in the existentially-quantified
prenex normal form and is equivalent to the formula from Example 3.1:

ψ
def
= ∃P : ∀R : Sing(P) ∧ P ⊆ X ∧ Sing(R) ∧ (P = R ∨R 6⊆ X) (3.25)

3.4 Deciding WSkS

A decision procedure is an algorithm that given a formula φ returns VALID iff φ is valid,
SAT iff φ is invalid but satisfiable (additionally yielding two assignmentsMtrue andMfalse

such that Mtrue |= φ and Mfalse 6|= φ) and UNSAT iff φ is unsatisfiable.
Some properties of verified systems can be checked by being modeled by a set of WSkS

formulae and then deciding if the given formulae hold for all variable assignments, therefore
the checked system being valid, or either look for a non-satisfying assignment which leads
to a violation of the specified properties. .

The presented decision procedure for WSkS makes use of the close link between WSkS
formulae and automata, i.e. a given formula is transformed to a corresponding finite tree
automaton and its language is further examined.

The contents of this section is based on the exposition in [6].

16

Definition 3.1. A set L of tuples of finite sets of words is definable in WSkS if there is
a formula ψ of WSkS with free variables X1, . . . , Xn such that

(S1, . . . , Sn) ∈ L if and only if S1, . . . , Sn |= ψ. (3.26)

Each tuple of finite sets of words S1, . . . , Sn ⊆ {1, . . . , k}∗ is then identified to a tree
(S1, . . . , Sn)∼ over the alphabet {0, 1,⊥}n where any string containing 0 or 1 is k-ary and
⊥n is a constant symbol, such that

dom((S1, . . . , Sn)∼)
def
= {ε} ∪

pi
∣∣∣∣∣ ∃p′ ∈

n⋃
j=1

Sj .p ≤ p′, 1 ≤ i ≤ k

 . (3.27)

The symbol at the position p:

(S1, . . . , Sn)∼(p) = α1 . . . αn (3.28)

is defined as follows:

� αi = 1 iff p ∈ Si,

� αi = 0 iff p /∈ Si ∧ ∃p′ : p · p′ ∈ Si,

� αi = ⊥ otherwise.

Lemma 3.1. If a set of tuples of finite subsets of {1, . . . , k}∗ is definable in WSkS, then
∼
L

def
= {(S1, . . . , Sn)∼ | (S1, . . . , Sn) ∈ L} is in Rec.

Proof. We have shown in Section 3.3 that every formula in WSkS can be translated into
an equivalent formula in the restricted syntax. We can now prove the lemma by induction
on the structure of the formula ψ which defines the language L.

Let us assume that all variables in ψ are bound at most once in the formula and also
that there is a fixed total ordering < on the variables.

If φ is a subformula of ψ with free variables, w.r.t. some ordering, Y1 < · · · < Yn, we
construct the automaton Aφ over the alphabet {0, 1,⊥}n such that (S1, . . . , Sn) |=2 φ if
and only if (S1, . . . , Sn)∼ ∈ L(Aφ).

In the following we limit ourselves to the case when k = 2; an extension to an arbitrary
k is straightforward. As the induction base, for each atomic subformula of ψ we construct
the automaton Aψ according to the following rules:

- The automaton ASing(X) = ({q, q′}, {0, 1,⊥}, δ, {q′}) where δ is defined as follows:

⊥−→ q

(q, q)
1−→ q′

(q, q′)
0−→ q′

(q′, q)
0−→ q′

17

- The automaton AX⊆Y = ({q}, {0, 1,⊥}2, δ, {q}), with X < Y , where δ is defined as
follows:

⊥⊥−→ q

(q, q)
00−→ q

(q, q)
⊥0−→ q

(q, q)
01−→ q

(q, q)
11−→ q

(q, q)
⊥1−→ q

- The automaton AX=Y 1 = ({q, q′, q′′}, {0, 1,⊥}2, δ, {q′′}), where δ is defined as follows:

⊥⊥−→ q

(q, q)
1⊥−→ q′

(q, q′′)
00−→ q′′

(q′, q)
01−→ q′′

(q′′, q)
00−→ q′′

Note that the automaton for X = Y 2 is obtained similarly by changing (q′, q)
01−→ q′′

to (q, q′)
01−→ q′′.

- The automaton AX=ε = ({q, q′}, {0, 1,⊥}, {q′}, δ), where δ is defined as follows:

⊥−→ q

(q, q)
1−→ q′

Now as the induction step, we will consider only logical operations ∨, ∧, ¬ and ∃ (as
defined in the restricted syntax):

ψ = ψ1 ∨ ψ2 — let Xi be the set of free variables of ψi respectively, and X1 ∪ X2 =
{Y1, . . . , Yn} with some ordering Y1 < . . . < Yn. Then we successively apply the i-th
cylindrification to the automaton of ψ1 (resp. ψ2) for the variables Yi which are not
free in ψ1 (resp. ψ2), so the automata for ψ1 and ψ2 can recognize the solutions of
ψ1 and ψ2, with free variables X1 ∪X2. Then the automaton Aψ is obtained as the
union of these automata.

ψ = ψ1∧ψ2 — is obtained similarly as the automaton for the connective ∨ by performing
the intersection of automata.

ψ = ¬ψ1 — then Aψ is the automaton accepting the complement of L(Aψ1).

ψ = ∃X.ψ1 — assuming that X corresponds to the i-th component, then Aψ is the i-th
projection of Aψ1 .

18

Example 3.4. Consider the following WSkS formula:

ρ
def
= ∃P : Sing(P) ∧ P 6⊆ X. (3.29)

Deciding validity of ρ consists of constructing the automaton Aρ corresponding to the for-
mula ρ and then checking the language L(Aρ) for universality, i.e. if any non-accepting
state is reachable. As depicted in Figure 3.1 we first construct automata ASing(P) and
AP 6⊆X for subformulae Sing(P) and P 6⊆ X respectively. Then we construct the product
automaton of ASing(P) and AP 6⊆X yielding the automaton ASing(P)∧P 6⊆X . Finally we make
a projection of the automaton by erasing the track corresponding to the quantified variable
P and obtain the resulting automaton Aρ.

1 2 ⊥

3 ⊥

P: 0

P: 1

P: 0

P: 1

P: 0|1

P: 0|0|1
X: 0|1|1

P: 1
X: 0

P: X
X: X

b) AP 6⊆X

a) ASing(P)

(1, 3) (2, 3) (⊥, 3)

(2,⊥) (⊥,⊥)

P: 1
X: 1

P: 0|0
X: 0|1

P: 1
X: 0

P: 1
X: 1

P: 0|0
X: 0|1

P: 1
X: 0

P: 0|0|1
X: 0|1|1

P: 1
X: 0

P: 1|1
X: 0|1

P: 0|0
X: 0|1

P: X
X: X

c) ASing(P)∧P 6⊆X

1 2 3

4 5

X: 1

X: 0|1

X: 0

X: 1

X: 0|1

X: 0

X: 0|1

X: 0

X: 0|1

X: 0|1 X: 0|1

d) A∃P :Sing(P)∧¬P⊆X

Figure 3.1: Finite automata corresponding to all the subformulae of the given formula

ρ
def
= ∃P : Sing(P) ∧ P 6⊆ X

In implementation terms existential quantification is therefore equivalent to the op-
eration of a projection on the automaton. This raises an issue with final states of the
constructed automaton A, since the projection erases some of the transition tracks of the
automaton and thus may introduce non-determinism. Such an automaton has to be deter-
minised, yielding DTA A′.

However, the automaton A′ is not enough, since searched witness of some model can
be longer after the operation of projection. A′ needs to be further modified to correctly
represent encodings of all models of formula. Consider e.g. the assigment X 7→ {111}, Y 7→
{11}, encoded as (X:001

Y :010), as being a model of formula ψ. When we perform projection
on X over the model, the resulting encoding (Y : 010) is not a valid encoding of the model
Y 7→ {11}, which would be (Y : 01).

Definition 3.2. We define the right-quotient of a language L with a language L′ as:

L/L′ = {w | ∃u ∈ L′ : w · u ∈ L}. (3.30)

Now we define the language Li as

Li = {w ∈ {{0, 1}k}∗ | the j-th track of word w is of the form 0∗ for j 6= i}. (3.31)

19

The language of the automaton A′ after projection γi on the i-th track is then defined
as

L(A′) = γi(L(A)/Li). (3.32)

In MONA [1] this is done in O(n) time by using the breadth-first search by backwards
exploration of the automaton from final states followed by the subset construction of the
determinised automaton yielding only reachable states.

Proposition 3.3. Since there is a one-to-one correspondence between models of φ and trees
accepted by Aφ, φ is satisfiable iff L(Aφ) is non-empty and valid iff L(Aφ) is universal.

The computational complexity of WSkS is in the NONELEMENTARY class [20], so
given a Turing machineM deciding a satisfiability of WSkS formulae, for any u ≥ 0, there
are infinitely many n for which a computation ofM for some sentence of length n requires
at least

22. .
.
2n

︸ ︷︷ ︸
u

steps.

20

Chapter 4

MONA

MONA [1] is one of the early implementations of a decision procedure for the WSkS
logic, namely for k = 1 and k = 2 (note that it can be shown that an arbitrary k can be
transformed into formula in WS2S). WS1S can be used for a description of linear structures
like linked lists or chains, while WS2S is mainly used for binary tree structures like a binary
tree or a binary heap. After many years it is still the best and fastest approach for deciding
WSkS formulae with the use of deterministic automata. It is an implementation of the
decision procedure from Chapter 3.4 with a few tweaks that we describe in this chapter.

The development of MONA started in 1984 and in the following years numerous ap-
proaches were tried out and a number of fine optimizations were discovered. In this chapter
we review some of the design choices and implementation tricks that stand behind its suc-
cess.

4.1 The main issue of the use of deterministic tree automata

Considering a WSkS formula with a fixed number of quantifier alternations N , the decision
method outlined in the previous section works in the time which is a tower of exponentials
with the height being O(N).

This is mainly because every time we encounter a sequence of quantifiers, we have to do
a projection, which yields a non-deterministic automaton, even if the input automaton was
deterministic. When we encounter a negation of a formula, we have to use determinization
in order to complement the automaton, which requires in general an exponential time and
the space w.r.t the number of states of the automaton.

Therefore every time non-determinism is introduced to the automaton, the automaton
is determinised and the information about the original states is forgotten. So the MONA
approach has issues with extensive the use of an automaton complementation and since
there is no known tree automaton complementation technique better than bottom-up de-
terminization of the automaton followed by swapping final and non-final states, MONA
had to come up with heavy optimizations and heuristics to achieve good results.

21

4.2 The used optimizations

4.2.1 Using BDDs for automata representation

BDDs were introduced to solve problems of large input alphabets, which also allowed nu-
merous specialized algorithms to be used.

BDDs were described in Section 2.4; they are useful for its compactness, canonicity and
efficient manipulation. MONA uses shared MTBDDs with roots and leaves representing
states of an automaton. The use of BDDs for representation of transition relation proved
to have the highest effect on the formulae that could not be decided in a fixed limit of time
that was set up during benchmarks.

4.2.2 Caching

The implementation of the BDDs, as stated in Section 4.2.1, is optimized to minimize the
number of cache misses that occur, since it was discovered that cache misses dominate
the running time for both the unary and binary BDD apply operations on a 296 MHz
UltraSPARC CPU with 1 GB RAM.

Nodes are thus stored directly under the hash address to minimize the number of cache
misses, as opposed to the traditional approach that stores nodes separately from the hash
table containing pointers to them, which roughly doubles the time to access a node.

4.2.3 Eager minimization

Whenever MONA performs the product or projection operation during the translation
from a formula to an automaton, the Myhill-Nerode minimization takes place, since it is
preferable to operate with as small automata as possible. However, this approach was shown
to be excessive, since the minimization procedure often exceeds half of the total running
time.

Alternatives were introduced — using one final minimization, minimizing only after pro-
jection or minimizing only after product, which had different effects and were dependent
on particular benchmarks.

4.2.4 Guided tree automata

The set of states is partitioned in order to split a large tree automaton into several smaller
ones to address expensive computations caused by three-dimensional transition tables. This
however requires for user to specify the guide which is a top-down deterministic tree au-
tomaton that assigns state spaces to the nodes of a tree.

4.2.5 Directed Acyclic Graph representation

The frontend of the MONA tool is parsing the input files with specification of WSkS
formulae. This file is converted to the inner representation of automata-theoretic operations,
that are further translated to the resulting automaton.

There are, however, many common subformulae with a similar structure, especially if
we talk about signature equivalence, which holds for two formulae φ and ψ if there is an
order-preserving renaming of the variables in formulae such that the representations of φ
and ψ become identical.

22

It holds for the BDD representation that automata for signature-equivalent trees are
isomorphic in the sense that only node labels differ, which means these representations can
be reused simply by renaming variable nodes. Thus MONA represents input formulae in
the form of directed acyclic graph and not a tree.

4.2.6 Three-valued logic and automata

Since formulae are translated to the restricted syntax that uses only second-order variables,
first-order variables are encoded as singletons. This however raises the issue of restrictions,
i.e. a formula φ holds only when some external associated restrictions hold. Since a re-
striction is also a formula, the main issue is that φ is now undefined outside the restriction.
Note that for a first-order variable, the restriction is that it is a singleton set.

The nature of these problems are solved by using a three-valued logic. So for a restricted
subformula φ we associate a restriction φR. And if for some valuation φR does not hold,
then the formulae containing φ are assigned the third value don’t-care.

A special operation converts the rejecting states to don’t-cares for the restriction for-
mulae and other automaton operations are modified so these nonacceptance of restrictions
are propagated properly.

4.2.7 Formula reductions

Various optimizations of formulae takes place in the DAG specified in Section 4.2.5 before
the final translation to the automaton. Reductions are based on the syntactic analysis that
tries to identify valid subformulae and equivalences among them.

MONA performs few kinds of reductions:

1. Simple equality and Boolean reductions that can be described by simple rewrite rules
like φ ∧ φ 7→ φ, etc. These rewrite steps guarantee a reduction of complexity, but
will not cause significant improvements in the running time, since they rarely apply
in realistic situations. However, they are cheap and may yield small improvements.

2. Special quantifier reductions. The basic idea is to apply a rewrite step which removes
quantifiers where they are not useful, as following:

∃X.φ 7→ φ[T/X] (4.1)

provided that φ ⇒ X = T is valid formula and the term T is satisfying that
freeVars(T) ⊆ freeVars(φ), where freeVars(T) denotes the set of free variables
in some subformula T . This is further restricted to a different rewrite rule:

∃Xi.φ 7→ φ[Xj/Xi] (4.2)

provided that φ ≡ . . . ∧Xi = Xj ∧ . . . and Xj is some variable other than Xi. This,
however, is not guaranteed to yield better results.

23

Chapter 5

Deciding WSkS with
Non-deterministic Automata

The MONA tool implementation of the decision procedure for WSkS from Section 3.4
uses deterministic bottom-up tree automata (as described in Chapter 4) and so every time
non-determinism might be introduced, such as through the union and the projection corre-
sponding to the disjunction and the existential quantification respectively, the automaton
is determinised using the subset construction and the information about the original states
is forgotten.

While this approach makes automaton complementation easy (since a complete deter-
ministic automaton require only swapping final with non-final states), the extensive deter-
minisation is still a serious drawback. TheMONA tool is thus heavily optimized for the use
of deterministic finite (tree) automata, as we introduced in Section 4.2. However, a decision
procedure that uses non-deterministic automata needs to deal with the issue of complemen-
tation, for which there is currently no known algorithm that avoids determinisation and
the respective state explosion.

In practice, the representation of all models of φ is not always necessary and any model
or an invalid assignment to free variables suffices, therefore constructing the full automaton
Aφ representing all models of φ can be avoided.

Current trends in formal verification and theory of automata tend to use non-deter-
ministic automata instead of deterministic ones. This is due to the fact that there exist
optimized libraries for their use, like VATA [18], and recently new algorithms that are
efficient in practice were developed even for time complex operations like language inclu-
sion or universality testing, which are PSPACE-complete for finite word automata and
EXPTIME-complete for tree automata.

Here we propose to use an algorithm based on the principle of antichains [4], defined
in the following sections, and search for an accepting or a non-accepting state on-the-fly
without constructing the automaton corresponding to the given formula in the first place.

5.1 Antichain-based universality testing of NFAs

We will give a brief introduction to the universality testing for non-deterministic finite
word automata by an algorithm that uses a combination of the simulation-based and the
antichain-based approaches [4].

24

Example 5.1. Consider testing the validity of the formula ρ from Example 3.4:

ρ
def
= ∃P : Sing(P) ∧ P 6⊆ X. (5.1)

Given the automaton Aρ corresponding to the formula ρ (see Section 3.4), testing va-
lidity of ρ is equivalent to testing universality of the language L(Aρ), which can be done by
searching for an accepting state in the complemented automaton.

{1} {1, 4}

{1, 2}

{1, 4, 5}

{1, 2, 3}

{1, 2, 4, 5}

{1, 2, 3, 4, 5}

X: 0

X: 1

X: 0

X: 1

X: 0

X: 1

X: 0

X: 1

X: 0
X: 1

X: 0

X: 1

X: 1|0

Figure 5.1: Comparison of the antichain-based (grey nodes) and the classical (all nodes)
approach to universality checking.

When using the textbook approach for testing universality (by using the subset construc-
tion and complementation), 7 states are generated as depicted in Figure 5.1 If we use the
antichain-based approach, then macro-states {1, 2} and {1, 4} are simulated by the initial
state {1} so we can discard these states. Since we have not reached an accepting state, we
can conclude that the language of the complemented automaton A¬ρ is empty, then Aρ is
universal and ρ is thus valid.

Definition 5.1. A simulation on a finite automaton A = (Q,Σ, δ, I, F) is a relation
� ⊆ Q × Q such that p � r implies the following two conditions (i) p ∈ F ⇒ r ∈ F
and (ii) for every transition p

a−→ p′, there exists a transition r
a−→ r′ such that p′ � r′.

We use A⊆ to denote the set of relations over the states of A that imply language
inclusion, that is for all 5∈ A⊆ it holds that p 5 r ⇒ L(p) ⊆ L(r). Analogously we define
the set of relations over the macro-states A that imply language inclusion as Av.

Lemma 5.1. Given a simulation � on a NFA A, it holds that �∈ A⊆.

Proof. A proof can be found in [4].

The universality problem for a NFA A = (Q,Σ, δ, I, F) is to decide whether L(A) = Σ∗.
This problem is hard, it actually is PSPACE-complete, however, the heuristic described
in the following works well for many real-world examples.

The naive algorithm performs determinization using the subset construction to obtain
the deterministic automaton AD, then complements it to obtain AD and finally checks that
there is no reachable accepting state in AD (in case there is, the language is not universal).

The algorithm proposed in [4] runs the subset construction procedure on-the-fly, avoid-
ing explicit construction of AD, and checks if any accepting macro-state is reachable. This
procedure is further augmented with the following two optimizations.

25

The first optimization is based on the following lemma.

Lemma 5.2. Let P,R be two macro-states of a NFA A, and � be a relation from A⊆.
Then, P �∀∃ R implies LA(P) ⊆ LA(R), where P �∀∃ R stands for ∀p ∈ P.∃r ∈ R : p � r.

The relation � can be any relation on the states of A that implies language inclusion,
e.g. the maximum simulation or the identity relation. When two states P and R such
that P �∀∃ R are encountered during the search for a non-accepting state, we can discard
R, because L(P) ⊆ L(R) so P has a higher chance to find a non-accepting state. The
other optimization is based on the observation that LA(P) = LA(P \ {p1}) if there is some
p2 ∈ P \ {p1} such that p1 � p2, which is also a simple consequence of Lemma 5.2.

Algorithm 1: Checking reachability of a final state using optimized algorithm [4]

Input: A macro-state I of an automaton A, a relation 5∈ Av on the macro-states
of A, a successor function δ and a predicate IsFinal(F) that decides
whether a macro-state F is final

Output: TRUE iff there exists a final state in A reachable from I, FALSE
otherwise

Function IsFinalReachable(state I, relation 5, post δ, pred IsFinal)
1 if IsFinal(I) then
2 return TRUE;
3 Processed := ∅;
4 Next := {I};
5 while Next 6= ∅ do
6 Pick and remove a macro-state R from Next and move it to Processed ;
7 if IsFinal(R) then
8 return TRUE;
9 foreach P ∈ δ(R) do
10 if ¬∃S ∈ Processed ∪Next s.t. P 5 S then
11 Remove all S from Processed ∪Next s.t. S 5 P ;
12 Add P to Next ;
13 return FALSE;

The algorithm for testing universality of NFA is based on Algorithm 1, which works
as follows. While there are macro-states to be processed, and no accepting macro-state
has been found, one of the macro-states from Next is chosen and moved to the Processed
set. All successors of the macro-state are generated, minimized and moved to Next unless
there is already some 5-bigger macro-state in Next or in Processed . If a new macro-state
is added to Next , then all 5-smaller states are pruned out of both Next and Processed .

Testing universality of an automaton A is thus equivalent to the searching for an ac-
cepting state in the automaton AD obtained by determinization and complementation of
the set of final states.

Lemma 5.3. Given the automaton A = (Q,Σ, δ, I, F), the function IsFinalReachable({q},
5∈ Av, (λR. {{s} | ∃r ∈ R : r

a→ s ∈ δ}), (λ R.R ∩ F 6= ∅)) from Algorithm 1 returns
TRUE iff there is a reachable final state from state q in A.

Proof. A proof can be found in [7].

26

Lemma 5.4. The relation ⊆−1 is a simulation on the complemented automaton AD.

Proof. A proof can be found in [7]

Lemma 5.5. The language of an automaton A = (Q,Σ, δ, I, F) is universal iff the function
IsFinalReachable(I, 5∈ Av, (λR. {{s} | ∃r ∈ R : r

a−→ s ∈ δ}), (λ R.R ∩ F 6= ∅)) from
Algorithm 1 returns TRUE.

5.2 Deciding WS1S with NFAs

In this section we will describe the proposed decision procedure on the simpler case for
k = 1, i.e. WS1S. In the next section, we will extend the procedure to an arbitrary k.

Given a formula φ, the construction of the automaton Aφ representing all models of φ is
not always necessary and in many applications any model or an invalid assignment suffices.
Therefore we can exploit the antichain-based techniques defined in the previous section and
search for an accepting or a non-accepting state on-the-fly while pruning the search space.

First, the formula φ is transformed to a logically equivalent formula ϕ in the existential
prenex form (see Section 3.3):

ϕ
def
= ∃Xm+1¬Xm¬ . . .¬∃X2¬∃X1 : π.

Supposing there are m negations in the prefix of the formula ϕ, we create a hierarchical
family of WSkS formulae Φ = {ϕ0, . . . , ϕm} where

ϕ0
def
= π (5.2)

and for all 0 ≤ i ≤ m− 1

ϕi+1
def
= ¬∃Xi+1 : ϕi. (5.3)

The relation between this family of formulae Φ and the formula ϕ is depicted as follows:

ϕ
def
= ∃Xm+1 ¬∃Xm ¬. . .¬∃X2 ¬∃X1 : π︸︷︷︸

ϕ0︸ ︷︷ ︸
ϕ1︸ ︷︷ ︸

ϕ2

. .
.︸ ︷︷ ︸

ϕm

(5.4)

We will use the notation Γ(G) to denote the alphabet defined as the set of functions
Γ(G) = {f : G → {0, 1,⊥}}, with the special case for G = ∅ defined as Γ(∅) = {#}.
Elements of this set can be viewed as strings of a fixed length |G| over the alphabet {0, 1,⊥}
where each position in the strings is associated with exactly one element of G.

Given the symbol f ∈ Γ(G) and a set H ⊆ G, the projection of f over the set H,
written as ωH(f), can be defined as the restriction of the function f over the set G \H, i.e.
ωH(f) = f |G\H . This can be further extended to sets of symbols. Given a set E ⊆ Γ(G),
we define the projection over a set H ⊆ G, written ωH(E), as ωH(E) = {ωH(f) | f ∈ E}.
For a string w = a1 . . . an ∈ Γ(G)∗ we define the operation as ωH(w) = ωH(a1) . . . ωH(an).

For a language L ⊆ Γ(G)∗, the projection of L over H, written as ωH(L), is defined as
ωH(L) = {ωH(f) | f ∈ L}. Note that ωH(L) ⊆ Γ(G \H)∗.

27

Lemma 5.6. Given the alphabet Γ(G), H ⊆ G and X,Y ⊆ Γ(G)∗ it holds that

X ⊆ Y =⇒ ωH(X) ⊆ ωH(Y). (5.5)

Proof. For each symbol z ∈ ωH(X) there must exist some x ∈ X such that z = ωH(x).
Since X ⊆ Y it must also hold that x ∈ Y , and hence it holds that ωH(x) ∈ ωH(Y).
Therefore ωH(X) ⊆ ωH(Y).

As we described in Section 3, there is an issue with the encoding of all models of formula
and using the projection operation on the automaton. If the projection were implemented
by only removing parts of symbols corresponding to the variables in the existential quantifi-
cation, the resulting automaton would not accept some of the valid models of the formula,
as described by Example 5.2. MONA (see Section 3.4) solves this by adjusting the final
states of the automaton by using the breadth-first search algorithm in the linear time after
every projection of an automaton.

Note that in the following we will use the symbol 0 as the substitute for the symbol 0k

for some known k.

Example 5.2. Consider the formula P 6⊆ X and its corresponding automaton AP 6⊆X
depicted in Figure 5.2 with one final state. After restricting the tracks of the automaton by
removing the variable P we get the automaton A∃P :P 6⊆Xb in Figure 5.2b.

After the restriction the automaton does not accept e.g. the following word 111, 111 /∈
L(A∃P :P 6⊆X), even though X = {1, 2, 3} |= ∃P : P 6⊆ X. However, it does accept another
encoding of this set namely 1110 ∈ L(A∃P :P 6⊆X), which is not a correct encoding according
to the rules set in Chapter 3. Hence we must adjust the final states by extending it by the
states that can reach them with words 0

∗
.

1 ⊥

1 ⊥

P: 0|0|1
X: 0|1|1

P: 1
X: 0

P: 0|0|1|1
X: 0|1|1|0

X: 0|1

X: 0

X: 0|1

b) A∃P :P 6⊆X

a) AP 6⊆X

Figure 5.2: The issue with final states after projection is that the language of the resulting
automaton restricts encodings of some valid models afterwards.

Adjusting the final states needs a fully constructed automaton, so this cannot be used
in an on-the-fly algorithm. Instead, we can either precompute the set of final states inspired
by backwards universality testing [12] or use a lazy approach that will determine whether
a state is final only when this information is actually needed.

Definition 5.2. For a set of states R of the automaton A = (Q,Σ, δ, I, F) we define the
set of direct predecessors through zero tracks as the set PRE 0(R) of states such that

PRE 0(R) = {q ∈ Q | ∃r ∈ R : q
0−→ r ∈ δ}. (5.6)

28

We denote the reflexive transitive closure of PRE 0(Q) as PRE ∗0(Q). Note that we can
define the POST 0 function similarly to PRE 0.

Definition 5.3. Given the automaton A = (Q,Σ, δ, I, F) we define the projection ωX of
A over the set of variables X as the automaton ωX (A) = (Q,ωX (Σ), ωX (δ), I,PRE ∗0(F))
where

ωX (δ) =

{
p
ω(a)−→ r | p a−→ r ∈ δ

}
. (5.7)

Note that the result of projection has the final states adjusted according to the PRE 0 relation.

Definition 5.4. Given the automaton A = (Q,Σ, δ, I, F) we define the complementation
γ of A as the automaton γ(A) = (2Q,Σ, δγ , {I}, {S ⊆ Q | S ∩ F = ∅}) where

δγ = {R a−→ S | S = {s ∈ Q | ∃r ∈ R : r
a−→ s ∈ δ}}. (5.8)

Note that this operation γ corresponds to the determinisation of the input automaton using
the subset construction followed by swapping final and non-final states of the determinised
automaton.

Given a WS1S formula ϕ in the ∃PNF form, the automaton for the matrix π of the
formula, Aπ, can be constructed out of the automata corresponding to the atomic formulae
and their complements by using the operations of union and intersection only (see Section
3.4). Further, Aϕ could be constructed from the automaton Aπ by successive applications
of complementation γ and projection ω according to the prefix of ϕ as these operations
were defined before. But we take a different path.

Analogously to the family of formulae Φ, we can define the family of automata A =
{A0, . . . ,Am} as follows:

A0 = Aπ, (5.9)

Ai+1 = γ(ωXi+1(Ai)). (5.10)

Note that the automaton Ai then corresponds to the following formula:

ϕi = ¬∃Xi . . .¬∃X1.π. (5.11)

We use the notation Ai = (Qi,Σi, δi, Ii, Fi) to address a particular automaton and its
components. There is a further connection between the hierarchical family of formulae Φ
and the hierarchical family of automata A as described by the following lemma.

Lemma 5.7. For all 0 ≤ i ≤ m, the language of Ai is

1. universal iff ϕi is valid,

2. non-empty iff ϕi is satisfiable,

3. non-universal iff ϕi is invalid, and

4. empty iff ϕi is unsatisfiable.

Proof. A proof of this Lemma can be found in [6].

Given the automaton A0 and the sequence of sets of second-order variables (X1, . . . ,Xm)
corresponding to the matrix and the prefix of ϕ respectively, we can classify the formula
according to the existence of satisfying and unsatisfying assignments.

29

Definition 5.5. We say a formula φ is closed iff there is no free variable in φ, i.e.
freeVars(φ) = ∅. We further define the existential closure of a formula ϕ as the formula
∃-cl such that

∃-cl(ϕ) = ∃X : ϕ (5.12)

where
X = freeVars(ϕ). (5.13)

Note that we can construct an automaton corresponding to the existential closure of
a formula ϕ as Ãϕ = ωX (Aϕ). It is obvious that since the formula has no free variables,

the symbols on transitions in Ãϕ are #.

Lemma 5.8. Let ϕ be a closed WS1S formula. Then ϕ has a model iff there is an initial
state of Aϕ = (Q,Σ, δ, I, F) that is final, i.e.

Im ∩ Fm 6= ∅ ⇔ |= ϕ. (5.14)

Proof. This is implied by Lemma 5.7

We can extend this notion to any WS1S formula ψ by computing the closure of the
formula ψ to yield a formula ϕ and test the validity of the formula as stated by Lemma 5.8.

To optimize the algorithm of validity testing for WS1S formulae, we are going to de-
fine the necessary relations so that we can prune the state space during the search for
an accepting or a rejecting state.

Definition 5.6. For all 0 ≤ i ≤ m we define the relation ≤i⊆ Qi ×Qi as follows:

≤0 = id, (5.15)

A ≤i+1 B ⇔ ∀b ∈ B∃a ∈ A : a ≥i b. (5.16)

Lemma 5.9. For all 0 ≤ i ≤ m the relation ≤i is a simulation on Ai = (Qi,Σ, δi, Ii, Fi).

Proof. We will prove this lemma by induction on the level i of the relation.

1. The base case i = 0: From the definition of relation ≤i, ≤0 is equal to the identity
relation, which is a simulation [4].

2. Now let us take the following induction hypothesis:

≤n is a simulation on An. (5.17)

Further we wil prove the lemma for n+ 1, i.e. that the relation ≤n+1 such that

A ≤n+1 B
def⇔ ∀b ∈ B∃a ∈ A.a ≥n b (5.18)

is a simulation.
The relation ≤n is a simulation on ωn+1(An), since if a ≥n b then it also holds that

ωn+1(a) ≥n ωn+1(b).
Now to prove that A ≤n+1 B is a simulation we need to show that the following formula

is true for all x ∈ Σ:

(A
x→ A′ ⇒ (∃B′.B x→ B′ ∧A′ ≤n+1 B

′)) ∧ (A ∈ Fn+1 ⇒ B ∈ Fn+1). (5.19)

30

We consider the following case split:

a) (A
x→ A′ ⇒ (∃B′.B x→ B′ ∧A′ ≤n+1 B

′)):

This condition can be further elaborated into the following formula:

(A
x→ {a′ | ∃a ∈ A.a x→ a′ ∈ δn})⇒

⇒ ((B
x→ {b′ | ∃b ∈ B.b x→ b′ ∈ δn}) ∧ ∀b′ ∈ B′∃a′ ∈ A′.a′ ≥n b′)

(5.20)

Since A ≤n+1 B, so ∀b ∈ B. ∃a ∈ A. b ≤n a, it holds that ∀b′ ∈ {b′ | ∃b ∈ B.b x→ b′ ∈ δn}
there is some a′ ∈ {a′ | ∃a ∈ A. a x→ a′ ∈ δn} such that b′ ≤n a′. Because, if there did not
exists such a′, then A ≤n B could not be a simulation in the first place.

b) A ∈ Fn+1 ⇒ B ∈ Fn+1:

A macro-state A is final on the level i if it does not contain a state on the level i− 1 which

is final, i.e. A ∈ Fn+1
def⇔ ¬∃a ∈ A. a ∈ Fn. If there is no final state in A, then there will

surely be no final state in B because A has a bigger language than B.
We have shown that both formulae of the conjuction a) and b) are true and thus the

relation ≤n+1 is a simulation on An+1.

Definition 5.7. Given the automaton A = (Q,Σ, δ, I, F) we define the restriction of A to
zero tracks as the automaton A0 = (Q0, {0}, δ0, I, PRE∗0(F)) where

Q0 = {q ∈ Q | ∃w ∈ 0
∗

: f
w−→ q, f ∈ I}, (5.21)

δ0 = {p 0−→ q | p 0−→ q ∈ δ}. (5.22)

Note that all states are final due to the adjustment of states after projection. The final
Algorithm 2 is based on the universality checking algorithm as described in this chapter:

Algorithm 2: Algorithm for deciding the validity of a WSkS formula ϕ
Input: The initial state Im of the automaton A¬ϕm , a relation on macro-states

5∈ Av
Output: TRUE iff the formula ϕ is valid, FALSE otherwise

1 return IsStateAccepting(Im, m)

Function IsStateAccepting(state P , level i)
2 if i = 0 then
3 return P ∈ F0;
4 else
5 foreach p ∈ P do
6 if IsFinalReachable(p, 5, δ0

i−1, (λ q. IsStateAccepting(q, i− 1)))
then

7 return FALSE
8 return TRUE

31

5.3 Deciding WSkS

In the previous section we introduced the concept of the algorithm for deciding WS1S
formulae using non-deterministic finite automata (or unary tree automata). We will briefly
describe an extension of this procedure to an arbitrary k.

We extent the notion of projection to trees. Given a tree t : N∗ → Γ(G) the projection
of t over H ⊆ G is defined as ωH(t) = {(n, ωH(f)) | (n, f) ∈ t}. Note that ωH(t) : N∗ →
Γ(G \H).

Similarly to the logic WS1S we will define the hierarchical family of tree automata
A = {A0, . . . ,Am} where

A0 = (Q0,Σ0, δ0, F0) (5.23)

is a non-deterministic finite tree automaton corresponding to the WSkS formula ϕ0
def
= π(X),

such that Σ0 = Γ(X) and
Ai+1 = (Qi+1,Σi+1, δi+1, Fi+1) (5.24)

is a tree automaton corresponding to the formula ϕi+1
def
= ¬∃Xi+1 : ϕi where

Qi+1 = 2Qi , (5.25)

Σi+1 = ωXi+1(Σi), (5.26)

Fi+1 = {R ∈ Qi+1 | R ∩ Fi = ∅}, (5.27)

δi+1 = {(R1, . . . , Rt)
ωXi+1

(f)
−→ S}, (5.28)

where
S = {s ∈ Qi | ∃r1 ∈ R1, . . . , rt ∈ Rt.(r1, . . . , rt)

f−→, s}. (5.29)

In order to be able to talk about possible futures of states of automata from family of
A we exploit the notion of languages of the so called open trees as defined in [4].

Consider a ranked alphabet Σ, we define a special symbol � /∈ Σ with rank 0, called
a hole. Then an open tree over Σ is a tree over Σ ∪ {�} such that all its leaves are labeled
by symbol �. we use T�Σ to denote the set of all open trees over Σ. Given states q1, . . . , qn
of the automaton A = (Q,Σ, δ, F) and an open tree t with leaves v1, . . . , vn, a run π of A
on t from (q1, . . . , qn) is defined in similar way as the run on a tree except that for each
leaf vi, 1 ≤ i ≤ n, we have π(vi) = qi. We use t(q1, . . . , qn)

π
=⇒ q to denote that π is a run

of A on t from (q1, . . . , qn) such that π(ε) = q. We define the notation t(q1, . . . , qn) =⇒ q
similarly to runs on trees.

The language of A accepted from a tuple (q1, . . . , qn) of states of Q is L�A(q1, . . . , qn) =
{t ∈ T�Σ | t(q1, . . . , qn) =⇒ qfor some q ∈ F}. Then language of A accepted from a tuple
(S1, . . . , Sn) of sets of states from A is defined as follows:

L�A(S1, . . . , Sn) =
⋃

(s1,...,sn)∈S1×...×Sn

L�A(s1, . . . , sn). (5.30)

Given the vector
→
qn = (q1, . . . , qn) of states, we use the notation L�A to denote the

language of open trees L�Σ. Further we use the notation
→
qn[e 7→ s], where 1 ≤ e ≤ n,

to denote the vector (q1, . . . , qe−1, s, qe+1, . . . , qn). This notion can be further extended to
vectors of sets of states.

32

Further we extent the notion of pruning states as defined in previous sections over the
languages of open trees by the following lemmas.

Lemma 5.10. Let vi⊆ Qi×Qi, 0 ≤ i ≤ m−1, be a relation on the states of the automaton
Ai such that implies inclusion of languages of open trees, i.e.

a vi b⇒ ∀1 ≤ e ≤ n.∀
→
qn ∈ Qni .LAi(

→
qn[e 7→ a]) ⊆ LAi(

→
qn[e 7→ b]) (5.31)

then ∀p, r ∈ Qi, S ⊆ Qi and
→
Vn ⊆ Qni , 1 ≤ e ≤ n, it holds that

p vi r ⇒ LAi+1(
→
Vn[e 7→ ({p, r} ∪ S)]) ⊆ LAi+1(

→
Vn[e 7→ ({r} ∪ S)]) (5.32)

where ({p, r, } ∪ S), ({r} ∪ S) are states of the automaton Ai+1.

Proof. Proof can be found in [4].

Definition 5.8. For all 0 ≤ i ≤ m we define the family of relations {v0
i , . . . ,vii} over the

states of the automaton Ai such that ∀0 ≤ k ≤ i :vki⊆ Qi ×Qi as follows:

v0 = id, (5.33)

vi = {(A,B) | ∀b ∈ B∃a ∈ A.a w b}. (5.34)

We can use the Algorithm 2 described in previous section to decide any WSkS with
operation of projection extended over the trees. Further we can use relations previously
defined to prune the state space similarly to word automata.

33

Chapter 6

Implementation

As depicted in Figure 6.1, the input of the implemented application is a collection of WS1S
or WS2S formulae written using the MONA syntax as described in Appendix B. The
frontend of the created application is reused and slightly modified parser of tool MONA
that is based on yacc [13] parser generator. The input file is parsed into an intermediate
representation as an Abstract Syntax Tree (AST) with logical connectives or atomic for-
mulae as tree nodes. While parsing the input file, a symbol table is filled up with the used
first or second-order variables and defined predicates or macros.

We enhance the frontend as follows. Mapping of variables to MTBDD tracks can be
constructed in several possible ways. Either it can correspond to the place of the definition
of the variable during the parsing process, chosen randomly or match the sequence of
quantifiers from the prefix. We prefer the last option, because projection of lower-leveled
MTBDD nodes is more efficient than higher-level nodes.

The AST is then flattened according to the rules for translation to the restricted syntax
and transformed into the existential prenex normal form (see Section 3.3). The resulting
AST is then broken into the matrix (a quantifier free formula) and the prefix (a sequence
of quantifiers).

The matrix of the formula is converted to the NTA with the use of the libvata li-
brary [17]. Along with the prefix of the formula this is an input for the decision procedure
which decides whether the formula is either (i) valid, (ii) invalid, but satisfiable, or (iii)
unsatisfiable.

WSkS formula
specification

[MONA syntax]

Formula inter
representation

[AST]

Flattened Formula
[AST]

Formula in ExPNF
[AST]

Quantifier-free
matrix formula

[AST]

Prefix of formula
[List of Variable

lists]Flattening

Loading formula Conversion to exPNF

Breaking formula

Base automaton
[BottomUp NTA]

Valid /
Satisfiable /

Unsatisfiable

Conversion to NTA

Decision procedure

Figure 6.1: Transformation of data through the decision procedure

34

6.1 Manipulation with NTA

For the representation of automata used in the decision procedure, the libvata library [17],
written in C++, was chosen for being an efficient and open source library that exploits some
of the recent developments of algorithms for NTA manipulation. Its main use is in the fields
of formal verification, but it can be efficiently used in other domains as well.
libvata supports two possible encodings of tree automata (explicit and semi-symbolic)

which differ in the way they store the transition relations of automata. The semi-symbolic
representation uses MTBDDs for storing the transitions of automata as described in Section
2.3. This is mostly intended for automata with large input alphabets like in the case of
some decision procedures of logics such as WSkS [1] or MSO [22] (monadic second-order
logic). The library is designed in a modular way, so it can be easily extended with new
encodings and operations.

The library provides a command line interface, so the input of the library is usually
a text representation in Timbuk format [2], which is parsed and transformed into inner
representation with states, transition, alphabets, etc. However, we can also build the
automaton from scratch using API functions for appropriate encodings. Each automaton
can be serialized back to an output format (like Timbuk) through serializers.

We are going to use the semi-symbolic encoding that provides both bottom-up and top-
down representation of tree automata. These representation differs in storage of MTBDD
where for top-down representation the storage is more complex, while on the other hand,
in the bottom-up representation arity can be inferred from the arity of the tuples on the
left-hand side of the transition. As for the representation of automata, we have chosen the
bottom-up representation.

6.2 Decision procedure

Algorithm 3: Implementation of deciding validity of WSkS formula
Input: A state Im of the automaton Aϕm , a level of determinization m
Output: TRUE iff ϕm is valid, FALSE otherwise
Data: StateCache caches the answers of the StateIsFinal function

1 return IsStateFinal(Im, m);

Function IsStateFinal(state P , level i)
2 isFinal := StateCache[P , m];
3 if isFinal 6= ⊥ then
4 return isFinal ;

5 if m = 0 then
6 return Q ∈ F0;
7 else
8 foreach q ∈ Q do
9 if CheckForAcceptingState(q, m− 1) then
10 StateCache[P , m] := FALSE;
11 return FALSE;
12 StateCache[P , m] := TRUE;
13 return TRUE;

35

In Chapter 5 we introduced the formal concepts of deciding WS1S with non-deterministic
automata and designed the algorithm for testing validity of a given formula ϕ. We then
further extended this approach to an arbitrary k. In this section we will closely describe
the practical implementation of this formal algorithm in the C++ language. The prototype
of this procedure is going to be restricted to WS1S only.

For each level 1 ≤ i ≤ m we define two caches that will store the already computed
results to avoid their repeated computation during the decision procedure. In case we get
a cache miss, the value ⊥ is returned instead. BDDCachei is a cache that maps states of
level i to their corresponding MTBDDs representing their transition relations δi, i.e.

BDDCachei : Qi → ((Σi → 2Qi) ∪ {⊥}). (6.1)

Further we define the cache StateCachei for storing which states are final and which are
non-final, i.e.

StateCachei : Qi → {Final,NonFinal,⊥} (6.2)

The core function for deciding WSkS is CheckForAcceptingState which checks whether
there exists a reachable final state on level 0 ≤ i ≤ m from state q. This function is
corresponding to the implementation of Algorithm 2 with use of function buildSuccessorTree
for building successors of states and function IsStateFinal from Algorithm 3 for checking
whether the state is final. The implementation is based on the workset algorithm and uses
efficient apply operations over the MTBDDs of constructed successors.

Function CheckForAcceptingState(state q, level m)
Input: A state q of the automaton Aϕm , a level of determinization m
Output: TRUE if there is a reachable accepting state from q, FALSE otherwise

1 workset := {q};
2 processed := workset ;
3 while ∃qm ∈ workset do
4 workset := workset \{qm};
5 if IsStateFinal(qm, m) then
6 return TRUE;
7 else
8 succ := buildSuccessorTree(qm, m);
9 apply1 succ (λ x. if x /∈ processed ∧ ¬∃y ∈ processed : x < y

then workset := workset ∪{x});
10 processed := processed ∪ workset ;
11 return FALSE;

The main Algorithm 3 for deciding WSkS is corresponding to the implementation of
Algorithm 1. It first checks the cache whether a state has already been decided and else calls
the function CheckForAcceptingState for checking if there exists a reachable final state.

We can further extend this procedure to deciding satisfiability of WSkS formulae by check-
ing the validity of ∃-closed input formulae. This means that given the input we close the
formula and its negation and test the validity of constructed formulae to decide their satis-
fiability. Further we can decide the formula according to the relationships between validity,
satisfiability and unsatisfiability [8].

36

Function buildSuccessorTree(state q, level m)
Input: A state q of the automaton Aϕm , a level of determinization m
Output: A successor of state q
Data: BDDCache mapping macro-states to their transition BDDs

1 succ := BDDCache[q];
2 if succ 6= ⊥ then
3 return succ;
4 succ := ∅;
5 foreach r ∈ q do
6 childSucc := buildSuccessorTree(r, m− 1);
7 apply2 succ childSucc (λ x y. x ∪ y);
8 succ := project(succ, level);
9 BDDCache[q] := succ;
10 return succ;

The successor of a state can be constructed out of its children as described by the
function buildSuccessorTree. This construction is also optimized with the use of the cache.
After the MTBDDs for transitions of children of a state are built, we use the binary apply
for doing the union of those MTBDDs to yield the MTBDD corresponding to the transition
from the state. This MTBDD is further modified using the operation of projection.

6.3 Optimizations

During the implementation process we used the tool valgrind [3], especially its part
callgrind, to profile the implementation in C++ and tried to identify weak spots of
the application. One of the most frequent operations in the procedure are the relational
operators on the classes representing macro-states used e.g. for pruning the state search,
macro-state comparison and operations with worklist.

We propose to optimize this by using bitwise operations and bit array for storing the leaf
states to ease some of the computation. There are several possibilities to use in C++ [16]
and we have chosen the container with best performance, which is boost::dynamic bitset.
The results have shown that the performance of comparison between macro-states of first
level of determinization got better by fair margin.

Besides some of the minor optimizations, we also extended the set of atomic formulae and
tried to cache some of the intermediate results during the process to lessen the computation
time. We will briefly describe these optimizations in the following subsections and the
impact of the optimizations will be further discussed in following Chapter 7.

6.3.1 Extending set of atomic formulae

While the set of atomic formulae in the restricted syntax is indeed enough for defining the
whole range of WSkS logic, automata corresponding to the flattened versions of some of
atomic formulae (like ≤ for example) can be too large for processing and slow down the
algorithm. As shown in Table 6.1 we can heavily reduce the size of the matrix automa-
ton just by extending the set of the atomic formulae defined in 3.3 and construct special
automata for frequently used operations and yielding smaller base automata in result.

37

Formula
quantifiers/alternations automaton size [states]
before after before after

X ⊆ N 0 0 ∞ max(X)+2

X = {1, 4, 6} 0 0 24 8
X = {1, 3, 5, 7, 9} 0 0 93 11

x ∈ X 0 0 5 2
const k ∈ X k + 1 0 k+3 k+3

0 ∈ X 1 0 3 3
1 ∈ X 2 0 4 4

x ≤ y 3/2 0 13 4

Table 6.1: Comparison of the basic set of atomic formulae with the extended set in size of
the automaton, number of quantifiers and alternations. Note that ∞ denotes that number
of states cannot be measured or described by mathematical equation.

Example 6.1. Let us take the formula ϕ
def
= x ≤ y for example. In the classical restricted

syntax, this formula ϕ would be flattened as follows:

x ≤ y def⇔ ∀X.(y ∈ X ∧ (∀z.z1 ∈ X ⇒ z ∈ X))⇒ x ∈ X (6.3)

which corresponds to the automaton with 13 states. However, we can construct the following
atomic automaton with 4 states only depicted in Figure 6.2, which means we can save around
70% of states.

0

2 3

1

x: 0
y: 0

x: 1
y: 1

x: 0
y: 1

x: 1
y: 0

x: 0
y: 0 x: 1|1|0

y: 0|1|1

x: 0
y: 0

x: 1|1
y: 0|1

x: 0
y: 1

x: X
y: X

Figure 6.2: Atomic automaton corresponding to atomic formulae x ≤ y

38

Even though some of the reductions can seem to be insignificant, due to their frequent
occurrences in many practical formulae the overall reduction can be enormous in result.
Another reduction comes from lessening the number of quantifications produced by creation

of some temporary variables like for formula ϕ
def
= k ∈ X which after extending atomic

formulae yields same number of states, however without quantifications, and hence decrease
the number of projections of MTBDDs during the process.

Besides defining automata for more of the WSkS syntax connectives and atomic for-
mulae, we could extend the syntax even further and create some of the more complex
operations like the modulo or the predecessor predicate, just like MONA does, which are
not specifically defined in WSkS logic. MONA [15] takes this even further and allows us
to define external automata that can be included in the input specification.

Note that we can decide Presburger formulae [21] with the basic set of atomic formulae
as shown for example in [10]. This approach yields big automaton in process with one
alternation of negation for each addition in formula. However, we can construct a special
automaton accepting the addition of two Presburger constants with 4 states only, thus
greatly reducing the time needed to decide this family of formulae.

6.3.2 Cache

The caching of some of the intermediate products can be applied to several places in code.
First we can cache the already computed results of deciding which of the macro-states are
final or non-final. Also during the computation of successors of states, we can cache the
MTBDDs that were already constructed before.

Generally, caching is a trade-off between time and space, which raises the questions how
much will we store in the cache. One of the most frequent operations over MTBDDs is the
union of posts of macro-states. By storing all of the intermediate results during the union
of MTBDDs we can speed up the algorithm greatly on the expenses of using more memory.

With the design of algorithm, which is looking for existing example, i.e. searching
for reachable state, in automaton corresponding to the formulae and its negation (to get
counterexample) this means we do not have to compute and classify lots of states twice.

39

Chapter 7

Evaluation

In this chapter we are going to provide an evaluation of our tool dWiNA1— an implemen-
tation of the decision procedure described in the previous chapters. All the tests were
performed in a virtualized environment with the Linux Ubuntu 12.10 operating system
with 4 096 MB of operating memory and one virtual processor natively running on a laptop
computer with 8 GB RAM memory and a dual core processor running on 2.5 GHz.

The performance of our prototype implementation was tested by measuring several
different metrics and compared with the MONA tool which uses the deterministic tree
automata instead of non-deterministic automata used in our approach and is heavily op-
timized (See Section 4.2) as well. The run tests were measuring the speed and size of the
state space of the decision procedure depending on the size of the input formula and the
number of quantifier alternations. The other tests were examining the impact of the used
optimizations on the performance of our implementation, like the cache hit-miss ratio or
the overall speed.

Note that we will use the symbol ∞ if either the test fails due to insufficient memory
or it has been interrupted due a timeout, which was set to 5 minutes.

7.1 Parametric Horn formulae

Experiments done with our implemented tool were carried out on a specific parametric
family of formulae in the following Horn form:

ϕn
def
= ∃X∀x1 . . . xn.

n−1∧
i=1

(xi ∈ X ⇒ xi+1 ∈ X) (7.1)

The formulae in this family are closed and valid and suitable for our experiments since
we can freely change the number of alternations in the formulae and the size of the resulting
automaton depending on the quantifier prefix and the parameter n. Also it was further
discovered that MONA is able to only decide formulae up to the value of n = 15 due
to insufficient memory for storing MTBDDs. In results it is proposed by its authors that
the logical approach designed in [9] proves to be better for solving this kind of formulae
in contrary to the automata-based approach used by both MONA and dWiNA. However,
we will show that our algorithm and the used library for manipulating non-deterministic
automata [17] is far more memory efficient with handling MTBDDs and has no problems
deciding these formulae and thus can fairly compete with the logical composition approach.

1deciding With Non-deterministic Automata

40

7.2 Comparison with MONA

We have run tests with the generated formulae of the form 7.1 for the parameter n ranging
from 2 to 50 with various numbers of quantifier alternations bounded by the value of n
ranging from 2 to 9 alternations per formula. The size of the base automaton (corresponding
to the quantifier-free matrix) is heavily dependent on the number of alterations in the
formulae as depicted in Table 7.1. Even number of alternations spawns one additional
negation of the base automaton which then results in the disjunction of formulae that is
handled as the union of automata. This way the automaton size is increasing heavily in
the relation with parameter n.

n
automaton

[states]
odd alternations even alternations

3 18 30
4 27 144
5 36 648
6 45 3 240
7 54 15 336

Table 7.1: The base automaton size depending on the number of alternations in the formula
and parameter n. The number of alternations can range from 1 to n, where even number
spawns additional negation and results into the union of automata which heavily increases
the resulting base automaton size.

In [9] it was proposed that this type of formulae is not suitable for automata-based ap-
proach and logical decomposition is a much better decision procedure. The results in Table
7.2 certainly proved that MONA has problems with deciding these formulae for n ≥ 15,
however, this is due to the enormous size of MTBDDs representing transitions in the au-
tomatona that are stored as an optimization and not a flaw in the automata-based approach,
since our tool dWiNA has no problems with deciding formulae for a greater n.

n
time [s]

logic dWiNA MONA

10 0.01 0.01 0.12
12 0.01 0.01 0.89
13 0.01 0.01 2.28
14 0.01 0.01 5.53
15 0.01 0.02 15.06
16 0.01 0.02 ∞
50 0.01 0.07 ∞

Table 7.2: Time evaluation of deciding formulae of the form 7.1 in dependence on the
parameter n for a fixed number of alternations (1).

41

 2

 4

 6

n

 1
 2

 3
 4

 5
 6

 7

alternations

0
1
2
3

time [s]

Figure 7.1: Speed performance of dWiNA based on the parameter n and the number of
alternations in the formula. For even number of alternation the size of the base automaton
rises heavily and thus increases the overall time needed to perform the decision procedure.

We further compared our tool with the MONA tool in dependence on the parameter n
and the number of alternations. It is clear from Figure 7.1 that due to the huge differences
in the base automaton size between odd and even alternations on the generated benchmark
formulae the time needed for the computation is rather unsteady for our implementation.
This is because of the inefficient representation of macro-states which makes some operations
take too much time to compute, like pruning or state comparison. MONA, however, has no
problem with alternations and yields steady times for all numbers of alternations showing
that the full construction of the automaton along with minimizations is still efficient and
gives good results. This is contrary to our base assumption that our on-the-fly approach
should not have issues with alternations. Note that some combinations of alternations and
parameter n cannot be done and were thus approximated in the shown mesh grid.

alternations dWiNA MONA

2 2.20 0.01
3 0.01 0.01
4 1.49 0.01
5 0.04 0.01
6 2.90 0.01

Table 7.3: Time comparison of dWiNA and MONA with fixed n = 6

42

In Figure 7.2 we show the alternate view on the data: the time comparison withMONA
based on the size of the base automaton (our). Here we see that in dependence on the size
of the automaton our approach is not that bad and can yield good results even though there
are no automata reductions during the process. Even thoughMONA is far more consistent
when it comes to the number of alternations of quantifiers in the formulae and has better
computational results, in terms of the generated and evaluated search space our dWiNA is
more efficient. Figure 7.3 shows that the on-the-fly approach generates much less states
and needs only a portion of them for evaluation. This shows that our approach certainly
has a potential to beat MONA even in time, but requires additional optimizations to take
place.

dWiNA
MONA

 10 30 50 70 90 110 130 150

size
 1

 3
 5

 7

alternations

 1
 2
 3
 4
 5

time [s]

Figure 7.2: Alternative speed comparison of dWiNA and MONA based on the size of the
automaton.

43

Comparison of the generated state space

 0
 20
 40
 60
 80

 100
 120
 140
 160
 180
 200
 220
 240
 260
 280

1 2 3

st
at

es

alternations

MONA versus dWiNA

evaluated with pruning
evaluated
generated

MONA

 0
 20
 40
 60
 80

 100
 120
 140
 160
 180
 200
 220

1 2 3
st

at
es

alternations

dWiNA only

evaluated with pruning
evaluated
generated

Figure 7.3: Comparison of the number of the generated/evaluated states between dWiNA
and MONA on the base automaton with 36 states.

The other thing is that for many practical cases we do not need the fully expanded
automaton to decide whether its language is universal (or empty) and usually any non-
accepting (or accepting) suffices. Thus the on-the-fly approach is more suited for these
kinds of problems.

7.3 The impact of the used optimizations

We will discuss the impact of optimizations developed on the performance of the implemen-
tation. Aside from some minor optimizations we introduced some of our implementation
secrets in Section 6.3. The most notable ones is the pruning of the states during the search
for the accepting states. The other ones is smarter flattening of the input formulae with
an extended set of atomic formulae and the caching during the process.

We can see from Table 7.4 that all of these optimizations have a great impact on the
performance. However, the greatest one is definitely the smart flattening since this way we
are working with considerably smaller automata than with the basic atomic automata set.
The pruning of the state space had a lower impact on this kind of formulae than expected
as shown in Figure 7.3, but still is a great asset to the overall speed.

44

n alternations all [s] no opt [s] pruning [s] smart flatten [s] cache [s]

5

2 0.11 ∞ 24.05 0.49 25.20
3 0.02 0.75 0.16 0.04 0.08
4 0.14 ∞ ∞ 1.09 13.71
5 0.03 5.40 1.04 0.17 0.42

6

2 2.20 ∞ ∞ 9.59 ∞
3 0.01 1.22 0.30 0.06 0.14
4 1.49 ∞ ∞ 11.15 ∞
5 0.04 17.7 2.34 0.28 2.47

Table 7.4: Speed comparison for various optimizations based on the number of alternations
and the parameter n. The columns show what optimization was used with implementation
and time it took to decide the given formula.

Other notable optimization is definitely the cache. Based on the result in Table 7.4 the
impact of caching intermediate results during the decision process is high and for some n,
where the implementation without optimizations fails, is even able to give a proper answer.
While the cache that stores whether a given state is final or non-final is not overly used
in the process, the cache for storing MTBDDs and especially some of the intermediate
results during the construction of MTBDDs corresponding to the successors of states is
used in more than 75% of cases. A more detailed look on the efficiency of the MTBDD
cache is depicted in Table 7.5. The cache was tested on various formulae of the parameter
n and the results are shown for macro-state levels up to 7.

Level Cache-hit ratio

1 0.816
2 0.768
3 0.760
4 0.728
5 0.704
6 0.667

Table 7.5: Average cache-hit ratio for various level of determinizations for the MTBDD
cache.

7.4 Discussion of results

In this chapter we have shown that the implementation can beatMONA in several aspects,
namely the generated search space and for some cases the computation time to decide
benchmark formulae. While MONA is indeed far more consistent with its results, we can
see that for some kinds of formulae generating the whole state space can be excessive and
to search for an accepting state in the automaton corresponding to formulae only a small
fragment of the state space is required.

Our tool thus has a good potential of becoming a proper decision procedure for WSkS,
but still needs some optimizations to yield more consistent results in practice.

45

Chapter 8

Conclusion

In this work we introduced the WSkS logic and some of its decision procedures and imple-
mentations. We have described the classical approach that uses deterministic automata, as
well as the MONA tool that enhances this procedure by using several optimizations and
discussed their complexity issues and problems they have to deal with.

Another approach was proposed that uses non-deterministic automata instead of deter-
ministic ones. This makes use of recent developments in fields of non-deterministic automata
algorithms, like universality checking or language inclusion, allowing us to implement a pro-
cedure similar to antichain-based testing [4] and search for rejecting or accepting states
on-the-fly without need to construct the automaton corresponding to the given formula at
all.

We implemented a prototype of the designed decision procedure that is able to handle
a subset of WSkS formulae, namely formulae for k = 1, and studied the impact of the use
of non-deterministic automata on several case studies. Out of the computational results
on a set of formulae we identified some of the weak spots of the application and tried to
optimize them to achieve better results.

We evaluated our tool dWiNA on a family of parametric formulae of the Horn form and
compared it with MONA in several different aspects. We have shown that the on-the-fly
approach generates only a portion of the state space in contrary to the classical deterministic
approach. While MONA is more consistent with its results and has no problems with an
excessive number of alternations, based on the size of the base automaton we were able to
beat MONA even in the speed. The non-deterministic approach to deciding WSkS has
indeed a great potential and may yield good results with future research.

We further propose some optimizations that could enhance the results. One of the
weak spots of the implementation is the size of the base automaton corresponding to the
quantifier-free matrix of the formula. MONA always performs minimization after every
operation so it works with the smallest automata possible. We could reduce the size of
non-deterministic automata through simulation computation followed by the downward
reduction.

Most of the formulae used in practice share very similar subformulae that can be rep-
resented as a single state and reuse the constructed automaton by reindexing its variables.
We propose to optimize the frontend of the procedure to use the Direct Acyclic Graph
(DAG) instead of plain AST.

46

Bibliography

[1] MONA: Web pages of MONA. [online] Available on:
<http://www.brics.dk/mona/>.

[2] Timbuk Reachability Analysis and Tree Automata Calculations. [online] Available
on: <http://www.irisa.fr/celtique/genet/timbuk/>.

[3] Valgrind’s Tool Suite. [online] Available on:
<http://valgrind.org/info/tools.html>.

[4] Parosh A. Abdulla, Lukáš Holík, Yu-Fang Chen, Richard Mayr, and Tomáš Vojnar.
When Simulation Meets Antichains (On Checking Language Inclusion of
Nondeterministic Finite (Tree) Automata). In Tools and Algorithms for the
Construction and Analysis of Systems, LNCS 6015, pages 158–174. Springer Verlag,
2010.

[5] Julius R. Büchi. Weak Second-Order Arithmetic and Finite Automata. Mathematical
Logic Quarterly, 6(1–6):66–92, 1960.

[6] Hubert Comon, Max Dauchet, Rémi Gilleron, Christof Löding, Denis Lugiez, Florent
Jacquemard, Sophie Tison, and Marc Tommasi. Tree Automata Techniques and
Applications. Available on: <http://www.grappa.univ-lille3.fr/tata>, 2007.

[7] Laurent Doyen and Jean-Francois Raskin. Antichain Algorithms for Finite Automata.
In Tools and Algorithms for the Construction and Analysis of Systems, volume 6015
of Lecture Notes in Computer Science, pages 2–22. Springer Berlin Heidelberg, 2010.

[8] Herbert B. Enderton. A Mathematical Introduction to Logic. 1979.

[9] Tobias Ganzow and Lukasz Kaiser. New Algorithm for Weak Monadic Second-Order
Logic on Inductive Structures. In Computer Science Logic, volume 6247 of Lecture
Notes in Computer Science, pages 366–380. Springer Berlin Heidelberg, 2010.

[10] James Glenn and William Gasarch. Implementing WS1S via Finite Automata. In
Automata Implementation, volume 1260 of Lecture Notes in Computer Science, pages
50–63. Springer Berlin Heidelberg, 1997.

[11] Jesper G. Henriksen, Jakob L. Jensen, Michael E. Jørgensen, Nils Klarlund, Robert
Paige, Theis Rauhe, and Anders Sandholm. MONA: Monadic Second-Order Logic in
Practice. In Tools and Algorithms for the Construction and Analysis of Systems,
volume 1019 of Lecture Notes in Computer Science, pages 89–110. Springer, 1995.

47

[12] Thomas A. Henzinger, Jean-Francois Raskin, and Martin De Wulf. Antichains:
A New Algorithm for Checking Universality of Finite Automata. In Thomas Ball and
Robert B. Jones, editors, Computer Aided Verification, volume 4144 of Lecture Notes
in Computer Science, pages 17–30. Springer Berlin Heidelberg, 2006.

[13] Stephen C. Johnson. Yacc: Yet Another Compiler-Compiler. [online] Available on:
<http://dinosaur.compilertools.net/yacc/>.

[14] Nils Klarlund and Anders Møller. MONA Version 1.4 User Manual. BRICS,
Department of Computer Science, Aarhus University, January 2001. Available on:
<http://www.brics.dk/mona/mona14.pdf>.

[15] Nils Klarlund, Anders Møller, and Michael I. Schwartzbach. MONA Implementation
Secrets. In Workshop on Implementing Automata, 2010.

[16] Derrick G. Kourie, Vreda Pieterse, Loek Cleophas, and Bruce W. Watson.
Performance of C++ Bit-vector Implementations. In Proceedings of the 2010 Annual
Research Conference of the South African Institute of Computer Scientists and
Information Technologists, pages 242–250, 2010.

[17] Ondřej Lengál, Jiří Šimáček, and Tomáš Vojnar. The VATA Tree Automata Library.
[online] Available on:
<http://www.fit.vutbr.cz/research/groups/verifit/tools/libvata/>.

[18] Ondřej Lengál, Jiří Šimáček, and Tomáš Vojnar. VATA: A Library for Efficient
Manipulation of Non-deterministic Tree Automata. In Tools and Algorithms for the
Construction and Analysis of Systems, volume 7214 of Lecture Notes in Computer
Science, pages 79–94. Springer Berlin Heidelberg, 2012.

[19] Alexander Meduna. Automata and Languages: Theory and Applications. Springer
Verlag, 2005.

[20] Albert R. Meyer. Weak Monadic Second Order Theory of Succesor is Not
Elementary-recursive. In Logic Colloquium, volume 453 of Lecture Notes in
Mathematics, pages 132–154. Springer Berlin Heidelberg, 1975.

[21] Mojżesz Presburger. Über die Vollständigkeit eines gewissen Systems der Arithmetik
ganzer Zahlen, in welchem die Addition als einzige Operation hervortritt. Comptes
Rendus du I congrés de Mathématiciens des Pays Slaves, pages 92–101, 1929.

[22] Michael O. Rabin. Decidability of Second-Order Theories and Automata on Infinite
Trees. Transactions of the American Mathematical Society, pages 1–35, 1969.

48

Appendix A

Contents of CD

In the main directory of the cd, there is a cmake source for compilation of the application.

Directory /doc/thesis Contains LATEX sources with Makefile for the compilation of
this thesis.

Directory /examples Contains examples written in MONA syntax for deciding. Rang-
ing from simple examples used for testing functionality to more complex ones used for
evaluation of the created code.

Directory /include/vata Contains headers needed to be included during the compila-
tion of program for part of the functions that are used from the libvata library.

Directory /src/app/DecisionProcedure Contains main part of the application sources
that does the conversion of given representation of formulae into the non-deterministic
automaton and the procedure for deciding validity or satisfiability.

Directory /src/app/Frontend Contains part of the sources that does the parsing of the
input formulae specification into inner representation in program

Directory /src/libs Contains external libraries that are used in application. Namely
these are several libraries needed for MONA frontend and the libvata library for manip-
ulating with NTA.

49

Appendix B

WSkS specification syntax

The following grammar describes supported subset of MONA syntax for the specification
of verified formulae. It uses the classical BNF-like notation. For full syntax for MONA
program consult the tool manual [14].

Specification

program ::= (header;)? (declaration;)+

header ::= ws1s | ws2s

Declarations

declaration ::= formula

| var0 (varname)+

| var1 (varname)+

| var2 (varname)+

| ’pred’ varname (params)? = formula

| ’macro’ varname (params)? = formula

Formulae

formula ::= ’true’ | ’false’ | (formula)

| zero-order-var

| ~formula

| formula | formula

| formula & formula

| formula => formula

| formula <=> formula

| first-order-term = first-order-term

| first-order-term ~= first-order-term

| first-order-term < first-order-term

| first-order-term > first-order-term

| first-order-term <= first-order-term

| first-order-term >= first-order-term

| second-order-term = second-order-term

| second-order-term = { (int)+ }

| second-order-term ~= second-order-term

50

| second-order-term ’sub’ second-order-term

| first-order-term ’in’ second-order-term

| ex1 (varname)+ : formula

| all1 (varname)+ : formula

| ex2 (varname)+ : formula

| all2 (varname)+ : formula

First-order terms in WS1S

first-order-term ::= varname | (first-order-term)

| int

| first-order-term + int

Second-order terms in WS1S

second-order-term ::= varname | (second-order-term)

| second-order-term + int

51

Appendix C

Usage

The usage of the decision procedure tool is:

dWiNA [options] <filename>

<filename> is relative or absolute path to specification of WSkS formula as defined by
syntax described in Appendix B. The options that can be further set are following:

-t ,--time – prints elapsed time for decision procedure and further information about
timing of procedure.

-d ,--dump-all – dumps information about AST representation of given formula, symbol
table, created automaton and etc.

-q ,--quiet – suppress printing of information about decision process.

--reorder-bdd – by default variables are reorder according to the prefix of the given
formula. This can be suppressed by adding parameter no or random reordering can
be done by option random.

C.1 Instalation

To compile the application run the following command from the main directory:

$ make release

To run the application use the following command or consult the usage:

$./dWiNA ./examples/formulae/in.mona

52

Appendix D

List of Atomic Formulae

We list in this Appendix automata corresponding to atomic formulae of WSkS logic used
in decision procedure. These automata are further used for the construction of initial base
automaton as described in Section 3. This appendinx is structured into two parts: first
describes the basic set of atomic formulae defined for restricted syntax (see 3.3) and the
other lists automata for the extension of syntax we are supporting to optimize size of used
automata.

Note that all shown automata are non-deterministic and we use symbol X as a substitute
for any symbol of Σ, i.e. we do not care about its value.

D.1 Atomic formulae for restricted syntax

0 1 2

X: 0
Y: 0

X: 1
Y: 0

X: 0
Y: 1

X: 0
Y: 0

Figure D.1: Automaton corresponding to atomic formulae X = Y 1, i.e. Y is successor of
X.

0 1
X: 1

X: 0

Figure D.2: Automaton corresponding to atomic formulae X = ε.

53

0

T1: 0|1
T2: 0|1

Figure D.3: Automaton corresponding to atomic formulae T1 = T2, where T1 and T2 are
two second-order variables.

1 2

P: 0

P: 1

P: 0

Figure D.4: Automaton corresponding to atomic formulae Singleton(P), i.e. that P is set
containing exactly one element.

0

X: 0|0|1
Y: 0|1|1

Figure D.5: Automaton corresponding to atomic formulae X ⊆ Y

D.2 Extending restricted syntax

0 1

2

x: 0|0
X: 0|1

x: 1
X: 1

x: 1
X: 0

x: 0
X: X

x: 1
X: X

x: X
X: X

Figure D.6: Automaton corresponding to atomic formulae x ∈ X

54

0

2 3

1

x: 0
y: 0

x: 1
y: 1

x: 0
y: 1

x: 1
y: 0

x: 0
y: 0 x: 1|1|0

y: 0|1|1

x: 0
y: 0

x: 1|1
y: 0|1

x: 0
y: 1

x: X
y: X

Figure D.7: Automaton corresponding to atomic formulae x ≤ y

0 . . . k qf

⊥

X: X X: X X: 1
X: X

X: 0

X: X

Figure D.8: Automaton corresponding to atomic formulae constk ∈ X

0 . . . xn+1

⊥

X : 0 ∈ X

X : ¬0 ∈ X

X : X

X : X

Figure D.9: Automaton corresponding to atomic formulae X = {x1, . . . , xn}, for some
ordering of integer constants x1 ≤ . . . ≤ xn.

55

