
VYSOKÉ UCENI TECHNICKE V BRNE
B R N O UNIVERSITY OF T E C H N O L O G Y

FAKULTA ELEKTROTECHNIKY A KOMUNIKAČNÍCH
TECHNOLOGIÍ
ÚSTAV AUTOMATIZACE A MĚŘICÍ TECHNIKY

F A C U L T Y OF ELECTRICAL ENGINEERING AND COMMUNICATION
D E P A R T M E N T O F C O N T R O L AND INSTRUMENTATION

DÁLKOVĚ OVLÁDANÝ KOLOVÝ ROBOT
R E M O T E C O N T R O L L E D W H E E L ROBOT

BAKALÁŘSKÁ PRÁCE
B A C H E L O R ' S THESIS

AUTOR PRÁCE SÁNDOR RUHÁS
AUTHOR

VEDOUCÍ PRÁCE Ing. TOMÁŠ FLORIÁN
S U P E R V I S O R

B R N O 2012

VYSOKÉ UČENÍ
TECHNICKÉ V BRNĚ

Fakulta elektrotechniky
a komunikačních technologií

Ústav automatizace a měřicí techniky

Bakalářská práce
bakalářský studijní obor

Automatizační a měřicí technika

Student: SándorRuhás ID: 125302
Ročník: 3 Akademický rok: 2011/2012

NÁZEV TÉMATU:

Dálkově ovládaný kolový robot

POKYNY PRO VYPRACOVÁNÍ:

Navrhněte dálkově ovládaný mobilní robot. Vyberte vhodný mikrokontrolér, kterým bude robot řízen.
Jako pohony použijte servomotory od společnosti Dynamixel RX-64. Robot doplňte o vhodné snímače a
bezdrátový modul. Ovládací software pro P C bude realizován v jazyce C#.

DOPORUČENÁ LITERATURA:

H.R. Everett, Sensors for Mobile Robots, A K Peters/CRC Press (July 15, 1995), ISBN-13:
978-1568810485

Termín zadání: 6.2.2012 Termín odevzdání: 28.5.2012

Vedoucí práce: Ing. Tomáš Florián
Konzultanti bakalářské práce:

doc. Ing. Václav Jirsík, CSc.
Předseda oborové rady

UPOZORNĚNÍ:

Autor bakalářské práce nesmí při vytváření bakalářské práce porušit autorská práva třetích osob, zejména nesmí
zasahovat nedovoleným způsobem do cizích autorských práv osobnostních a musí si být plně vědom následků
porušení ustanovení § 11 a následujících autorského zákona č. 121/2000 Sb., včetně možných trestněprávních
důsledků vyplývajících z ustanovení části druhé, hlavy VI. díl 4 Trestního zákoníku č.40/2009 Sb.

Abstrakt:

Tato práce se zabývá návrhem a vytvořením kolového robotu na dálkové ovládání.

První část práce obsahuje základní úvod do robotiky. Poté se čtenář seznámí se všemi

kroky návrhu, které byly provedeny. Samotná konstrukce je rozdělena do dvou hlavních

částí: návrh hardware a software. V kapitole návrhu hardware se čtenář dozví, j aké

součástky byly vybrány a proč. Pro vysvětlení funkce součástek, budou uvedeny některé

důležité parametry. Protože většina součástek může být nastavena různým způsobem,

jsou hlavní nastavení detailně popsána.

V dokumentuje také uveden jednoduchý ilustrovaný popis hlavních funkcí obslužného

software.

N a konci tohoto textu jsou diskutovány dosažené výsledky.

Klíčová slova:
Xbee, PIC24HJ64GP502, Dynamixel RX-64 , robot, kompas, akcelerometr

Abstract:

This work deals with design and creation of a 4-wheel remote controlled robot.

The first part of the project includes some introduction to robotics. After that, the reader

wi l l get familiar with all the design steps which were made to achieve a functional

robot. The design itself is divided into two major parts: hardware and software design.

In the hardware design chapter the reader w i l l learn what kind of parts where selected

and why. Some main parameters of these parts w i l l also be supplied to understand main

functionality. Because most of these parts can be configured in some way, main

configuration steps with detailed description can be found in the project for each

configurable part.

Regarding the software, this document w i l l supply a simple description about the main

functions of the software illustrated with pictures.

In the end of this text the achieved results are discussed.

Keywords:
Xbee, PIC24HJ64GP502, Dynamixel R X - 6 4 , robot, compass, accelerometer

3

Bibliografická citace mé práce:
R U H A S , S. Dálkově ovládaný kolový robot. Brno: Vysoké učení technické v Brně,
Fakulta elektrotechniky a komunikačních technologií, 2012. 58 s. Vedoucí bakalářské
práce Ing. Tomáš Florián.

4

Prohlášení

Prohlašuji, že svoji bakalářskou práci na téma Dálkově ovládaný kolový robot jsem

vypracoval samostatně pod vedením vedoucí bakalářské práce a s použitím odborné

literatury a dalších informačních zdrojů, které jsou všechny citovány v práci a uvedeny

v seznamu literatury na konci práce.

Jako autor uvedené bakalářské práce dále prohlašuji, že v souvislosti s vytvořením této

práce jsem neporušil autorská práva třetích osob, zejména jsem nezasáhl nedovoleným

způsobem do cizích autorských práv osobnostních a jsem si plně vědom následků

porušení ustanovení § 11 a následujících autorského zákona č. 121/2000 Sb., včetně

možných trestněprávních důsledků vyplývajících z ustanovení § 152 trestního zákona č.

140/1961 Sb.

V Brně dne: 16. května 2012
podpis autora

5

Poděkování

Děkuji vedoucí bakalářské práce Ing. Tomáš Florián za účinnou metodickou,

pedagogickou a odbornou pomoc a další cenné rady při zpracování mé bakalářské

práce.

V Brně dne: 16. května 2012
podpis autora

6

Contents
1 INTRODUCTION 10
2 Selecting the main parts of the robot 12

2.1 Selecting an RF module for wireless communication 12
2.1.1 Main parameters & using the Xbee modules 12
2.1.2 Xbee API operation 14

2.2 Selecting a suitable microcontroller 15
2.2.1 Main features of the selected M C U 15
2.2.2 Microcontroller configuration 16

2.3 Compass module 16
2.3.1 Compass configuration 17

2.4 Accelerometer 18
2.4.1 Accelerometer configuration 19

2.5 Digital temperature sensor 20
2.6 Proximity sensor 21

2.6.1 Working principle 21
2.6.2 Generating 38 kHz signal for the IR L E D 22
2.6.3 Measuring the pulse width 24

2.7 L E D driver 25
2.8 Dynamixel RX-64 26

2.8.1 Communication with the RX-64 26
2.8.2 Using the actuators 27

2.9 Putting the pieces together 29
2.9.1 Mechanical solutions 29
2.9.2 Electronics 29
2.9.3 Schematic diagrams and PCB designs 29

3 Software 30
3.1 The software in the microcontroller 30
3.2 The software for the PC 33

3.2.1 The main -parent- window 33
3.2.2 The „Compass" child window 34
3.2.3 The "Accelerometer" child window 35
3.2.4 The "Console" child window 36
3.2.5 The "3D" child window 37
3.2.6 The "main control" child window 38

4 Summary and conclusions 39
5 Glossary 40
6 REFERENCES A N D BIBLIOGRAPHY 41
List of attachments: 44
Content of the supplied CD: 44

7

LIST OF FIGURES
Figure 2-1: The Xbee PRO module [6] 12
Figure 2-2: Connecting the modules to a host microcontroller [6] 13
Figure 2-3: API frame structure [6] 14
Figure 2-4: Microcontroller pin out [1] 15
Figure 2-5: example of signal pattern [22] 21
Figure 2-6: P W M mode block diagram[12] 22
Figure 2-7: Output compare operation [12] 23
Figure 2-8: Input Capture Event Generation [11] 24
Figure 2-9: UART/RS485 converter 26
Figure 2-10: MCU<-> RX-64 communication [3] 27
Figure 3-1: M C U program- simplified flow chart 32
Figure 3-2: Important parts of the parent window 33
Figure 3-3: The Compass child window 34
Figure 3-4: The Accelerometer child window 35
Figure 3-5: The Compass child window 36
Figure 3-6:The 3D child window 37
Figure 3-7: Main Control window 38
Figure 6-1: Schematic diagram- Main Control Circuit 45
Figure 6-2: Schematic diagram- L E D driver 46
Figure 6-3: Schematic diagram- Xbee <-> PC 47
Figure 6-4: Schematic diagram- IR sensor 48
Figure 6-5: PCB- Main Control Circuit 49
Figure 6-6: PCB component placement- Main Control Circuit 49
Figure 6-7: PCB- L E D driver 50
Figure 6-8: PCB component placement- L E D driver 50
Figure 6-9: PCB- Xbee <->PC 51
Figure 6-10: PCB component placement- Xbee<->PC 51
Figure 6-11: PCB- IR sensor 52
Figure 6-12: PCB component placement- IR sensor 52
Figure 6-13: The finished robot 55
Figure 6-14: Board with Xbee module- PC side 55
Figure 6-15 Compass and the Accelerometer mounted to a cuprextit board 56
Figure 6-16: The finished L E D driver 56
Figure 6-17: Finished main circuit- bottom side 57
Figure 6-18: Finished main circuit- top side 57
Figure 6-19: Finished robot- inside view 58

8

LIST OF TABLES
Table 2-1: API frame types [6] 14
Table 2-2: Operation mode register [5] 17
Table 2-3: Output mode register [5] 18
Table 2-4: Register B W _ R A T E [4] 19
Table 2-5: Register POWER_CTL [4] 19
Table 2-6: Register INT_ENABLE [4] 19
Table 2-7: Relationship between temperature and digital output [20] 20
Table 2-8: Dynamixel instruction packet[3] 27
Table 2-9: Dynamixel instruction packet- RESET 28
Table 2-10: Part of the dynamixel control table- Moving speed setting [3] 28
Table 3-1: Detailed information of the transmitted packet 31

9

1 INTRODUCTION

Definition of robot

A robot is a reprogrammable, multifunctional manipulator designed to move material,

parts, tools or specialized devices trough variable programmed motions for the

performance of a variety of tasks: Robot Institute of America, 1979

Types of robots

We can divide robots into a lot of categories; in the following list we find the main

categories:

- Mobi le Robots

Stationary Robots

Autonomous Robots

Remote-control Robot

Laws of Robotics [Isaac Asimov]

0. A robot may not harm humanity, or, by inaction, allow humanity to come to

harm.

1. A robot may not injure a human being or, trough inaction, allow a human being

to come to harm.

2. A robot must obey the orders given to it by human beings, except where such

orders would conflict with the First Law.

3. A robot must protect its own existence as long as such protection does not

conflict with the First or Second Laws.

Designing a robot

I always wanted to build a robot on my own, and to test different kind of sensors. This

project offers the opportunity to do so.

Because the main task of this project gives me freedom, I had a chance to design the

whole robot myself. This means that I can design the body, pick the sensors, design the

whole controlling "principle" ... etc.

This "freedom" also comes with a lot of questions:

Should I make metal or plastic body?!

How big the robot w i l l be?!

10

What kind of sensors w i l l I use?!

What w i l l be the abilities of the robot?!

P C B : use standard "trough-hole" parts or use S M D packages?!

For what purposes w i l l be this robot used?!

So I had to consider a lot of things before starting the design.

Because I love to try out new parts (and sensors too) I started to look around on the

internet. In the meantime I decided that I don't want to build a robot for a specific task,

so the sensor selection w i l l be almost random. From this comes out that my robot w i l l

serve demonstration purposes.

In the following chapters I w i l l describe the different parts and sensors what I chose

during the development

11

2 SELECTING THE MAIN PARTS OF THE
ROBOT

2.1 Selecting an RF module for wireless
communication

While looking for a suitable R F module, the following was considered:

Maximum distance of transmission

Transmission reliability

Current consumption

R F data rate

Difficulty to use

Price

Selected R F module: Xbee Pro S2 (International variant) from Digi International.

2.1.1 Main parameters & using the Xbee modules

Main parameters:
Supply voltage
R F data rate
Range

Operating current
Idle current

3.0-3.4 V

250 000 bps

1500m - outdoor, 60m - indoor

170mA (max. output power)

45mA

Figure 2-1: The Xbee PRO
module [6]

Using Xbee modules:

Xbee's are easy-to-use modules for low cost wireless communication. They are

interfacing to a host device using U A R T serial port. If the logic levels are the same, the

module can be connected directly to a host M C U . A n additional logic level converter is

required i f the logic levers are different (A hundreds of converters are available from

different manufacturers). Hardware flow control also available, i f the user wants to use

this feature.

12

CMOS Logic (2.8-3,4V)

V

Microcontroller

DIN (data in)

Microcontroller

DIN (data in)

XBee
Module Microcontroller

CTS
XBee

Module Microcontroller DOUT (data out)
XBee

Module Microcontroller
XBee

Module Microcontroller
XBee

Module Microcontroller

V
CMOS Logic (2.6-3.4V)

DIN [data n)

XBee
Module

CTS
DOUT {data out)

w
Microcontroller

RTS

Figure 2-2: Connecting the modules to a host microcontroller [6]

We can use the module in 2 different modes: Transparent or A P I operation.
Transparent operation - the module acts as a serial line replacement. A l l U A R T data
received through the D I N pin is queued up for R F transmission. When R F data is
received, it is sent out through the D O U T pin. In transparent operation the destination is
set at the main configuration (the user must reconfigure the module with entering to
command - A T - mode)

API operation - This is a frame based operation. Every communication between the
module and the host M C U is done by frames. The A P I operation is not that simple as
the transparent mode, but offers a lot more. Wi th using the A P I , we can send data to
multiple destinations without entering to command mode, configure remote modules,
sample 10 lines on remote module and do a lot of other things.
In this project we wi l l use A P I operation because of the flexibility.

Before using the modules, we have to configure them to meet our requirements.
The manufacturer provides a very useful program for that, called the " X - C T U " .
To successfully use the modules, we have to configure one of them as a coordinator,
and the second one as a router (In this design 2 Xbee modules are required - one w i l l be
placed on the robot, the second w i l l be connected to a PC) . The coordinator creates a
network, other devices (such as router, or end device) can join to the created network i f
the coordinator allows that. Every network has to contain minimally one coordinator.

With X - C T U we can upload the required firmware to the modules. After that, we
can set all the necessary options. With using the A P I operation, we don't have to spend
a lot of time with configuration - setting the speed of the serial communication and
enabling A P I mode w i l l be completely enough.

(Detailed information of the communication and packetizing w i l l be discussed in the
next chapters)

13

2.1.2 Xbee API operation
Like said in the previous chapter, in A P I operation mode all communication is done

using frames.

Start Deliniter Length Frame Data Checkam
(Bytel} (Eytes2-3) (Eytes4-n) (Byten + 1)

0K7E MSB LSB AH-spaaficStmctire 1 Byte

i--^^PMdentifier Identifier-spedficData"^

crrdlD crrtData

Figure 2-3: API frame structure [6]

Every frame starts with the "start delimiter" - 0x7E

A 2 byte value follows the start delimiter indicating the frame length (the

number of bytes that w i l l be contained in the frame data field excluding the

checksum).

Each A P I frame is identified with an ID, the available ID's are listed in the table

below.

After frame identification the module processes the data contained in the

cmdData field. The meaning of data in this field depends on the frame identifier.

The frame ends with a control checksum. To calculate checksum: excluding the

frame delimiters and length we have to add all bytes together (with keeping the

lowest 8 bits of the result) and subtract the result from OxFF.

In the following situations the received frame wi l l be discarded:

Invalid checksum, missing start delimiter, invalid length, invalid A P I identifier or the

frame is received incorrectly.

In the following table we can find the available A P I frame types:

API Frame Names API ID
A T Command 0x08

A T Command- Queue Parameter Value 0x09
ZigBee Transmit Request 0x10

Explicit Addressing ZigBee Command Frame 0x11
Remote Command Request 0x17

Create Source Route 0x21
A T Command Response 0x88

Modem Status 0x8A
ZigBee Transmit Status 0x8B
ZigBee Receive Packet 0x90

ZigBee Explicit Rx Indicator 0x91
ZigBee 10 Data Sample Rx Indicator 0x92

XBee Sensor Read Indicator 0x94
Node Identification Indicator 0x95
Remote Command Response 0x97

Over-the-Air Firmware Update Status OxAO
Route Record Indicator OxAl

Many-to-One Route Request Indicator 0xA3
Table 2-1: API frame types [6]

14

In this project the following frame types w i l l be used: ZigBee transmit request,

ZigBee receive packet.

2.2 Selecting a suitable microcontroller

While looking for an appropriate M C U , the following was considered:

Speed

Amount of communication interfaces

Number of general purpose IO-s

Support availability

Selected M C U : PIC24HJ64GP502 from Microchip Technology Inc.

2.2.1 Main features of the selected MCU
This microcontroller was selected because of the 16-bit wide data path, the availability

of the low-cost development kit: "Microstick" which supports source level debugging,

and because I had some experiences with microcontrollers from Microchip Technology.

Ma in features:

Modified Harvard architecture

Up to 40 MIPS operation

External crystal not necessary - contains an on-chip F R C oscillator

C-compiler optimized instruction set

Hardware support for SPI, I 2 C and U A R T communication

Up to five 16-bit timers

P W M support

45 available interrupt sources, with programmable priority levels

Remappable peripherals

MCLR
AN0AA5EF+/CN2/RA0 £
AN1/Vsrr-/CN3/RA1 Q

PGED1/AN2/C2IN-/RP0(,VCN4/RB0 £
PGEC1/AN3/C2IN+/RP1<1VCN5/RB1 Q

AN4/C1IN-/RP2(,VCN6/RB2 Q
AN5/C1IN+/RP3'"/CN7/RB3 Q

V C
OSC1/CLKl/CN30mA2 £

OSC2/CLKO/CN29/PMA0/RA3 r~
SOSC l/R P4(1 >CN 1 /PM BE/R B4 H
SOSCO/T1CK/CN0/PMA1/RA4Q

VÖDE
PGED3/ASDA1/RP5|1,/CN27/PMD7/RB5

2 2 2 3
o o o o

c_ c_ c_ t_
to sj £ 2
O O T) TJ
TI "U ro
Ui M O O
o o ro to

28
27
26
25

I 23
u 22

o 21
S 20
ro

19
18
1?
18
15

• AVDO

^ AVss
• AN9/RP1511|CN11/PMCS1/RB15
^ AN10/RTCC/RP14(1,/CN12/PMWR/RB14
• AN11/RP13'1'/CN13/PMRD/RB13
n AN12/RP12<1)/CN14/PMD0/RB12

PGEC2/TMS7RP11(,|/CN15/PMD1/RB11
PGED2/TDI/RP10(11/CN16/PMD2/RB10
V c a p W

Vss
TDO/SDA1/RP9|1|/CN21/PMD3/RB9
TCK/SCL1/RP8l1>/CN22/PMD4/RB8
INT0/RP7|1>CN23/PMDS/RB7
PGEC3/ASCL1/RP6'1 >/CN 24/PM D6/R B6

Figure 2-4: Microcontroller pin out [1]

15

2.2.2 Microcontroller configuration
Main configuration steps:

1. Configure and Tune the clock

2. Enable all peripherals which w i l l be used

3. Disable unused peripherals for power saving

4. Disable A / D converter (not used in this project)

5. Map enabled peripherals to the best 10 pin (considering the P C B design)

6. Configure interrupt(s)

7. Configure timer(s)

8. Test the configuration. (With testing the U A R T , F R C tuning can be confirmed.

If U A R T fails sending or reading the appropriate character, the F R C tuning is

wrong. The sent character won't appear on the receiver side correctly).

Actual configuration: F R C oscillator, maximum clock speed, U A R T s enabled, SPI

enabled, I2C enabled, Timerl -4 enabled, A / D disabled, Input Capture enabled, Output

Compare enabled, interrupt enabled for U A R T and the timers.

2.3 Compass module

As a first sensor the HMC6352 Digital Compass Solution was selected from Honeywell.

The sensor includes 2-axis magneto-resistive sensors and additional circuits &

algorithms for heading computation. The sensor calculates the heading and outputs it

over I2C protocol. Data from the magneto-resistive sensors also available for reading.

The sensor can be easily interfaced to the PIC24HJ64GP502, the I2C protocol only

requires 2 wires for establishing the connection. Two additional pull-up resistors are

required for the S C L and S C A line.

In our configuration, the PIC w i l l act as a master, while the compass w i l l be act

as a slave device.

Every transmission begins with the master device issuing a start sequence

followed by the slave address byte. The slave address is 7 bit wide only (upper 7 bits),

the remaining bit (least significant bit) is used to distinguish read/write operations. The

default H M C 6 3 5 2 address is 0x42 for write operations, and 0x43 for read operations

(factory default). After sending the address, the master waits for an acknowledge from

the slave. After getting the acknowledge, the master sends the data bytes to the slave, or

performs a read operation (depending on the sent address). The bus transactions are

terminated with the master issuing a stop sequence.

In all times the master handles the clock signal!

16

We can use our compass in different modes of operation.
Supported modes:

Standby mode- Factory default, waiting for commands from master. No measurement
until it's requested.

Query mode- The internal processor of the compass waits for an " A " command
(command list can be found in appendix), performs a measurement, calculates the
heading, and waits for a read command. After a read, the compass automatically
performs another measurement and updates the data registers.

Continuous mode- The sensor performs periodic measurements with selectable rates of
1Hz, 5Hz, 10Hz or 20 Hz .

2.3.1 Compass configuration
The compass has two parameters which are controlling its operation. With configuring

the Operation Mode register we can control the continuous measurement rate, set/reset

function, and choose one of the three operation modes: Standby, Query, Continuous.

With configuring the Output Mode register we can set the compass to output heading

data, or magnetometer data.

A t first use I set the compass for continuous measurement, with a rate of 20 Hz . This

configuration is saved to internal E E P R O M , so further configuration not necessary.

Bit 7 (MSB) Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 (LSB)
0 M . Rate_H M . Rate_L Per. S/R 0 0 Op Mode_H Op Mode_L

Bit 6 Bit 5 Description
0 0 1 Hz measurement rate
0 1 5 Hz measurement rate
1 0 10 Hz measurement rate
1 1 20 Hz measurement rate

Bi t 4 - Periodic Set/Reset - 0 = OFF, 1 = O N

Table 2-2: Operation mode register [5]

Bit 1 BitO Description
0 0 Standby mode
0 1 Query mode
1 0 Continuous mode
1 1 Not allowed

17

Bit 7 (MSB) Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 (LSB)

0 0 0 0 0 Mode Mode Mode

Bit 2 Bi t 1 B i t O Description

0 0 0 Heading mode

0 0 1 Raw Magnetometer X Mode

0 1 0 Raw Magnetometer Y Mode

0 1 1 Magnetometer X Mode

1 0 0 Magnetometer Y Mode

Table 2-3: Output mode register [5]

2.4 Accelerometer
As the second sensor, the A D X L 3 4 5 accelerometer from Analog Devices takes place on
the robot.

The A D X L 3 4 5 is a 3-axis accelerometer with selectable range of measurement.
Selectable ranges are: ±2g, ±4g, ±8g, ±16g.

Its high resolution enables measurement of inclination changes less than 1.0°.
The accelerometer has other special functions such as activity/inactivity sensing,
tap/double tap sensing, free fall detection, and interrupt capability. However we won't
use all of these functions- so they w i l l be disabled.

The accelerometer can communicate via SPI or I2C interface. We w i l l use the 4-wire
SPI configuration. Regarding the measurement range, for tilt measurement the lowest
range is the best choice (Tilt is a static measurement where gravity is the acceleration
being measured. Therefore, to achieve the highest degree resolution of a tilt
measurement, a low-g, high sensitivity accelerometer is required).
Information about acceleration is stored to specified registers, which ones can be read
by software. Acceleration information for each axis has 2 bytes length.
The accelerometer allows the user to read multiple bytes at once, so the 6 bytes (X-axis,
Y-axis , Z-axis) can be read very quickly. The SPI protocol however requires always a
write operation in same time as the read operation. We can't just read from, or just write
to the device. So i f we want to read from the target device, we have to write "dummy"
data and during that, read the useful information. The software has to separate useful
information from the information that has to be discarded.

18

2.4.1 Accelerometer configuration
After the voltage supply is applied to the chip, it enters to standby mode waiting for
further commands.

To start measurement, device configuration is needed. Configuration has to be done in
standby mode and when it's done, the user can enable measurement. Before changing
any of the configuration settings, the measurements should be stopped.
In the following tables we can find the descriptions of all control registers that are used
in this project.

D7 D6 D5 D4 D3 D2 D l DO

0 0 0 Low_Power Rate
Table 2-4: Register BW_RATE [4]

Low_Power bit: 0 = normal operation, 1 = reduced power operation (higher noise).

Rate bits: selecting device bandwidth and output data rate.

D7 D6 D5 D4 D3 D2 D l DO

0 0 L ink Auto_Sleep Measure Sleep Wakeup
Table 2-5: Register POWER_CTL [4]

Measure bit: 0 = standby mode, 1 = measurement mode

(Other bits aren't used, so description is not necessary)

D7 D6 D5 D4 D3 D2 Dl DO
Data_Ready Single_Tap Double_Tap Activity Inactivity Free_Fall Watermark Overrun

Table 2-6: Register INT_ENABLE [4]

These bits are used to enable/disable interrupts. In the control software we w i l l disable

all interrupts.

19

2.5 Digital temperature sensor
The next sensor on the robot is the STCN75 digital temperature sensor from
STMicroelectronics.

Ma in reasons why I have selected this sensor: I 2 C interface, selectable bus address, low
operating current (Typically 125 u A at 3.3V supply).

Because we have used the I C interface before, it 's not a problem to attach another slave
device to it. We just have to make sure that no address collision w i l l occur. This
criterion can be simply fulfilled because of the selectable bus address of the sensor.
The STCN75 provides 3 pins to select the interface address. A l l of the address selection
pins can be simply grounded, with this step the temperature sensor address w i l l be 0x90
for write operations and 0x91 for read operations -which is not in collision with the
address of the compass (0x42 for write operation, 0x43 for read operation).
The sensor has also an open drain output which features a thermal alarm function. This
feature is not used in this project.

The STCN75 stores the temperature as a 16-bit two's complement number, which can
be read from the sensor at any time. The conversions are performed in the background
so i f the user reads the temperature during a conversion it won't affect the operation in
progress.

Because none of the special features w i l l be used in this project, we can skip the
configuration step: studying the device datasheet [20] I have learned that after device
startup a simple read operation w i l l result as a reading from the temperature register.

Temperature data format

The left-most bit in the output data stream contains temperature polarity information for

each conversion. If the sign bit is '0 ' , the temperature is positive and i f the sign bit is

' 1', the temperature is negative [20].

Temperature Digital output

Binary H E X

+125°C 01111 1010 0 F A

+25°C 0 0011 0010 032

+0.5°C 0 0000 0001 001

o ° c 0 0000 0000 000

-0.5°C 1 11111111 IFF

-25°C 1 1100 1110 I C E

-40°C 1 1011 0000 1B0

-55°C 1 1001 0010 192

Table 2-7: Relationship between temperature and digital output [20]

20

2.6 Proximity sensor
I have decided to equip the robot with an obstacle sensing device. For this purpose an
infrared diode and an IR receiver module was chosen.

Selected parts: TSAL6200- infrared diode, TSOP4P38- IR receiver module for mid-
range proximity sensors- both part from V I S H A Y semiconductors.

2.6.1 Working principle

The main working principle of this sensor is the following: with an infrared diode we

are transmitting a light beam. This beam is reflected by obstacles located near to our

robot. When an obstacle is close to the robot a strong reflection occurs (high percentage

of emitted light is reflected), when an obstacle is far from the robot a weak reflection

occurs. The amount of reflected light not only depends on obstacle distance, but also

depends on the material of which the obstacle is made. Ambient light adds also an error

to the results.

Our TSOP4P38 offers an easy way to assemble a simple proximity sensor. This sensor

contains everything what we need: photo detector and conditioning circuits. The sensor

outputs analog information about the reflection. On the sensor output we can measure
pulses. The widths of these pulses are dependent on the absolute amount of reflected

light from the infrared diode. When a strong reflection occurs the pulse width is longer,
when a weak reflection occurs the pulse width is shorter (figure 2-5).

This sensor has one important requirement to work properly: the emitted light beam

from the infrared diode must be modulated with 38 k H z carrier frequency.

Because the IR L E D is placed next to the sensor, I had to separate them to avoid
crosstalk.

500 ms

120 ms, 33 kHz

Optical signal I

Response of the
TSOP4P33
(strong reflection)

Response of the
TSOP4P38 ' '
(weak reflection)

Figure 2-5: example of signal pattern [22]

21

2.6.2 Generating 38 kHz signal for the IR LED
There are many ways to generate the appropriate signal for the infrared diode. A have
decided to generate this signal using the microcontroller what I selected before. This
allows us to reduce the hardware costs. With the microcontroller the easiest way to
generate this signal is using one of the integrated "output compare" modules. The
output compare module can be configured to operate in P W M mode. Pulse width
modulation (P W M) is a technique that allows us changing the duty cycle of a square
wave while the period maintained constant (duty cycle = high pulse width divided by
the period).

I w i l l explain how the output compare module generates the needed signal. For the
explanation I w i l l use the following figure:

^ 7

Comparator

T%

Match Signal —

> -» • OCX

SET

OCxR T3 Rollover

r
OCxRS

OCTSEL

Data Bus <15:0>

Figure 2-6: PWM mode block diagram[12]

As we see in the picture, we have to associate a timer with the output compare module

before use. The output signal period w i l l be equal with the timer module period. After

configuring the timer, we just have to load the O C x R S register with a predefined value.

The value in this register w i l l control the high pulse width in the output signal.

The whole process can be described as follows:

A t the end of each timer period the output signal w i l l go high, and in the same

moment the O C x R S value is loaded into O C x R (The O C x R register can't be

written directly in P W M mode)

The comparator compares the timer value with the value in register O C x R

When the timer value equals with the value in O C x R the output signal w i l l go

low.

22

It is obvious that the value in the O C x R register controls the output signal duty cycle.

Wi th adjusting the duty cycle we can control the power consumption of the infrared

diode. Higher duty cycle means more forward current on the IR L E D .

The following figure illustrates the signal generation in different modes of operation:

TMRy

Active Low One-Shot mode
(OCM = 001)

Active High One-Shot mode
(OCM = 010)

Toggle mode
(OCM = O i l)

Delayed One-Shot
(OCM = 100)

Continuous Pulse mode
(OCM = 101)

PWM mode
(OCM = 110 or i l l)

Output Compare
mode enabled

OCxRS

Timer is reset on
period match

Figure 2-7: Output compare operation [12]

23

2.6.3 Measuring the pulse width
To obtain useful information from the sensor output we have to measure the pulse width
of this signal. This task can be done in some different ways. The best way to measure
the pulse width of a given signal is using one of the input capture modules in the
microcontroller. The input capture allows us to measure precisely the pulse width.
When this measurement is accomplished, we can calculate the distance between the
robot and the obstacle (However, to get accurate results the sensor should be
experimentally calibrated and tested- which is not the aim of this project).

The input capture module:

The input capture module function is to capture a timer value when an event occurs on a
predefined input pin (event = change in logic level). L ike in the case of the output
compare module we can select one of the two offered timer modules as the time base.
The input capture module can be configured in different modes (capture on rising edge,
capture on falling edge, prescaler mode...), for the pulse width measurement the edge
detect mode is the best. The input capture module has a four-level FIFO buffer; the user
program can read the captured timer value from this buffer. A flag bit indicates when
the buffer is empty or is containing captured values. The user program doesn't have to
poll the input buffer because the input capture module w i l l generate an interrupt
whenever a capture event occurs. The next figure shows when the input capture module
generates an interrupt (in different modes of operation):

ICx Pin

Capture Event
(Rising Edge Mode)

Capture Event
(Falling Edge Mode)

Capture Event
Edge Detection Mode)

Capture Event
(Prescaler Mode -14)

ICx Pin

Capture Event
(Rising Edge Mode)

Capture Event
(Falling Edge Mode)

Capture Event
Edge Detection Mode)

Capture Event
(Prescaler Mode -14)

ICx Pin

Capture Event
(Rising Edge Mode)

Capture Event
(Falling Edge Mode)

Capture Event
Edge Detection Mode)

Capture Event
(Prescaler Mode -14)

ICx Pin

Capture Event
(Rising Edge Mode)

Capture Event
(Falling Edge Mode)

Capture Event
Edge Detection Mode)

Capture Event
(Prescaler Mode -14)

ICx Pin

Capture Event
(Rising Edge Mode)

Capture Event
(Falling Edge Mode)

Capture Event
Edge Detection Mode)

Capture Event
(Prescaler Mode -14)

ICx Pin

Capture Event
(Rising Edge Mode)

Capture Event
(Falling Edge Mode)

Capture Event
Edge Detection Mode)

Capture Event
(Prescaler Mode -14)

Figure 2-8: Input Capture Event Generation [11]

Since we don't know exactly how long wi l l be the pulse width, the timer can overflow

before the second capture event. Because this, we have to calculate with the timer

overflow times. The exact equation for this calculus can be found in [8].

24

2.7 LED driver
When I finished adding the sensors to the robot, i had in mind the following question:

Why not use the robot at night, or in poor light conditions?!

So I decided to equip the robot with some light emitting diodes. This decision popped

up some further problems/questions: how many L E D s to be used, low-power or high-

power L E D s - and i f high power L E D s how they w i l l be controlled (L E D dimming

nowadays can be considered as a standard). Because the robot w i l l be supplied from

battery I had to choose an efficient method to control these L E D s .

Chosen L E D s : Luxeon Star L E D from Philips with green color and 1W of power.

Quantity: 4 (two for the front side, two for the back side).

Because of the battery supply I decided to use a buck converter to supply the L E D s .
Chosen buck converter: LM3407 (350mA constant current output floating buck
switching converter for high power LEDs) .

Advantages of the selected buck converter:

Ensures constant current to the L E D s (voltage drop in the supply don't affects
the output current)

The number of L E D s can be increased without a problem (max. 7 L E D s)

The actual current to the L E D s can be set with a single resistor

P W M dimming available

A t first I wanted 1 buck converter / diode, but there was not enough remappable I/O pin

in the microcontroller for P W M dimming- so I decided to assemble one control circuit

with buck converter for the front L E D s and one control circuit with buck converter for

the rear L E D s . This configuration allows us to separately switch O N / O F F the two set of

L E D s . The dimming is done by only one P W M signal, so the front and the rear L E D s

wi l l be at same power.

25

2.8 Dynamixel RX-64
The R X - 6 4 actuator is a compact and smart actuator which contains a gear reducer, a
precision D C motor (M A X O N motor) and a control circuitry. The R X - 6 4 is using serial
link for communication realizing the RS-485 standard. The standard allows operating
multiple actuators in a single link, using "daisy chain" connection.
The actuator can be operated with a wide range of supply voltage (12-21 V D C) , but in
accordance with datasheet [3] it should be 18V D C .

Because our microcontroller is not supporting the RS485 standard, we have to attach
between the actuator and the microcontroller an U A R T / R S 4 8 5 converter:

IC1

U A R T - R X D
D I R E C T I Q N - S E L

U A R T - T X D

R v c c
RE B
DE A
D GND

o
g *

inv output
6 non inv output
5

S N 6 5 1 7 6 P
G N D

RX-64

X
LU

G N D

Figure 2-9: UART/RS485 converter

The direction of data signals are specified by the state of R E , D E pins (connected
together, from now wi l l be referred as " D I R E C T I O N - S E L ") .
When the D I R E C T I O N - S E L is at logic high: T x D -> B , A
When the D I R E C T I O N - S E L is at logic low: B , A -> R x D

2.8.1 Communication with the RX-64
Communication between the actuator and the M C U is realized as follows:

The M C U sends an instruction packet addressed to the desired actuator, and then pulls

the D I R E C T I O N - S E L to logic low - allowing the actuator to respond with a status

packet. The actuator performs the required instruction, but only i f the following

conditions are met:

It is a valid instruction

The packet contains a valid actuator ID

There is a valid checksum at the end of the packet

26

r-l Instruction Packet(ID=N) ^ i i !—•

- j - ~y

r-=r-i_ 0 _ 0
Control ler W^S W^V^^ ^^^S

A

ID=0 ID=1 ID=N

I ^ Status Packet(ID=N) | I

Figure 2-10: MCU<-> RX-64 communication [3]

Before using any of the actuators, the ID must be set. Multiple actuators with the same

ID w i l l cause communication problems (packet collision caused by the returned status

packet).

ID's are ranging from 0x00 to OxFD (max. 254 actuator). ID OxFE is reserved for

broadcasting. A packet sent with the broadcast address w i l l not return any status

packets.

2.8.2 Using the actuators
Instruction packet format

OxFF OxFF ID Length Instruction Param. 1 Parám. N Checksum
Table 2-8: Dynamixel instruction packet[3]

The meaning of each packet byte definition is as the following:

OxFF, OxFF

ID

Length

Instruction

Parameter N

Checksum

-indicates the start of an incoming packet

-the unique ID of a Dynamixel unit (OxFE = broadcast ID)

-compute as: number of parameters + 2

-instruction to perform (possible instructions are discussed later)

-additional information to the instruction

-compute as: ~(ID + Length + Instruction + Param. 1 + Param. N)

(~ represents logical N O T)

The following instructions are available:

Ping, Read Data, Write Data, Register Write, Action, Reset, Sync Write.

In this project only the "write data" instruction is used, so we can discuss it in details:
-The main function of this instruction is to write data into the control table.
-Number of parameters: 1 or 2, depending on the address location in the control table.
-Instruction: 0x03

-First parameter: starting address of the location where the data is to be written.

27

The control table:

Each Dynamixel unit contains a control table. The control table controls the actuator

operation. We can set lots of parameters in the control table, but in this project the

following parameters w i l l do the work: C W angle limit, C C W angle limit, Moving

speed. We have to set the C W and C C W angle limits to zero, to achieve endless turn.

Then we only need to set the moving speed in the control table to get the robot moving.

(The whole control table can be found in [3]).

The first step what we have to do with the dynamixel actuators is to change their

identification number (ID). The factory default ID is: 0x01. With precaution, I decided

to reset all the actuators to their factory settings. This step ensures that all actuators w i l l

have the same settings.

For the broadcast reset I had used the following instruction packet:

OxFF OxFF OxFE 0x02 0x06 0xF9

Table 2-9: Dynamixel instruction packet- RESET

After resetting I have assigned an ID to all dynamixel actuators. The next step is to set

the C W and C C W angle limits (as mentioned before) to zero.

The last step is to set the moving speed. I w i l l describe this step in more detail, because

we are not just setting the moving speed, but the direction as well.

Setting the dynamixel actuator moving speed and the direction of the movement:

BIT 15-11 10 9 8 7 6 5 4 3 2 1 0

Value 0 Turn direction Speec value
Table 2-10: Part of the dynamixel control table- Moving speed setting [3]

In the previous table we can see that for controlling the speed we have only 10 bits. This

means that we can achieve 1024 different speed settings. In the other hand, this amount

of available speed setting is unnecessary. In the practice small changes in the moving

speed are almost unnoticeable.

We can set the moving direction of the actuator by setting/clearing the tenth bit at the

proper memory address of the control table. To increase the actuator lifetime, the turn

direction should be changed at low speeds.

28

2.9 Putting the pieces together

2.9.1 Mechanical solutions

During the development of electronics I decided that the robot w i l l have a plastic body.

This w i l l ensure the minimal weight of the body. I wanted a very simple solution so I

bought a simple plastic box. To this I mounted the 4 dynamixel actuator units from

outside.

2.9.2 Electronics

Nowadays a lot of part is available only in S M D package. This was the primary reason

for me to pick almost all of the parts with S M D package. The secondary reason to do so

is that I wanted to produce a small P C B what w i l l easily fit to the plastic box.

This decision what I made according the S M D packages raised more problem. For

development I always used a solderless breadboard. Of course the S M D packages are

not compatible with that. Because of this I had 2 choices: to make an adapter to the

breadboard for all S M D components or to design & realize the whole circuit without

previous testing.

In the end I made some adapters of course (Xbee modules for example), but in the case

of the L E D driver, RS485 converter, thermometer I tried out the functionality only

when the boards where finished.

I was lucky because all of the parts worked fine from the first "power-up".

2.9.3 Schematic diagrams and PCB designs

In the beginning of the schematic and P C B drawing I experienced some problems,

because just in that time I changed to new- unfamiliar- design software. As the time

passed this initial problems disappeared. During the design I had to draw some of the

schematic symbols and P C B footprints myself (some of the parts where too new, that

the design software does not included the specific symbol & footprint yet).

I made all of the P C B s to one-sided. This allowed me to manufacture the boards at

home.

The word " S M D " changes a lot of things both in the P C B design and P C B assembly

process. The final board of course w i l l be smaller, but the manufacturing process can be

challenging. Not to mention the repairing difficulties. Anyway, I didn't mind that I

chose S M D parts- the technology evolves fast; we have to do the same.

29

3 SOFTWARE

3.1 The software in the microcontroller
Because this was my first time to work with a 16-bit microcontroller I had to read a lot

of datasheets and user manuals before starting the programming itself The 16-bit

architecture allowed me to write the program in the C language and not in the assembler

language. This has some advantages and disadvantages. The main advantage in using

the C language is the code clarity; the main disadvantage is the compiled code size.

The program in the microcontroller has the following responsibilities:

Self-configuration: enabling all the necessary peripheral modules

Communication with the control program (PC) over the Xbee modules. This

includes packet assembly for transmitting, and packet processing (received

packet).

P W M signal generation for the IR L E D (38 k H z carrier)

P W M signal generation for the L E D dimming (power L E D s)

Compass configuration, reading the information about the heading

Accelerometer configuration, acquiring the acceleration of each axis from the

sensor.

Reading the actual temperature from the thermometer

Measuring the pulse widths on the TSOP4P38 output

Controlling the dynamixel actuators- speed and direction, all actuators

independently.

In Figure 3-1 we can see how the program works. The flowchart is simplified, some

details are not included.

We can see from the flowchart that the main program configures the oscillator, and then

maps all the peripherals to the predefined 10 pins. The mapping process has to be done

before using these peripherals. The peripherals can be remapped during program flow,

but before remapping the program should disable the actual module to prevent

unexpected operation.

After these steps the program configures every required module (operation mode, speed,

interrupts .. .etc.). When that is finished, the program toggles O N / O F F the power L E D s -

this indicates to the user that the microcontroller is finished with the initialization steps.

When finished with this startup "animation", the program enters to an endless loop. In

this endless loop the program acquires information from all sensors, and then sends the

acquired data to the Xbee module. Because the Xbee is configured for A P I operation,

30

the microcontroller has to assemble the "transmit request packet" (described in previous

chapters). If the packet is assembled correctly, the Xbee w i l l transmit it to the

destination. The destination device (second Xbee) is connected to a P C .

Because each sensor formats its output data in a different way, the program has to

process these differences. It's obvious that the transmit request packet w i l l carry

different information for each sensor. Because of this, the program in the

microcontroller has to mark these different packets - allowing the software on the P C to

recognize from which sensor the information is.

So I had to choose a method, how to mark these packets. The following table shows

how the packets are marked:

Source Information

Value Source

OxC Compass

OxA Accelerometer

OxB Thermometer

OxD Proximity sensor

Source Information Length

Compass Heading 2 byte

Accelerometer
X , Y , Z axis

acceleration
6 byte

Thermometer Actual temp. 2 byte

Proximity sensor Pulse width 2 byte

Table 3-1: Detailed information of the transmitted packet

O f course, this is not the whole "transmit request" packet, just a part of it- the useful
information.

While the program runs in the endless cycle, the flow can be interrupted by the
hardware. More precisely the following modules can interrupt the main program flow:
U A R T modules, some of the T I M E R modules, the Output Compare module and the
Input capture module. When one of the two U A R T modules interrupts the main
program flow means, that there is information in the input buffer that needs to be read.
The first U A R T is connected directly to the Xbee module, the second to the dynamixel
actuators trough an RS485 driver. When an interrupt comes from the T I M E R 1 module,
the program controls i f there is a whole packet received by the U A R T s or not. If there is
a whole packet available, the program processes it.

31

Power-on-reset

Configure & Tune
the Oscillator

map peripherals

enable all necessary
peripherals

Config the following modules:
UART1-2,Output Compare 1-2,
Input Capture 1, Timer 1-2-3-4
(some with interrupts enabled)

toggle ON/OFF the
Power LEDs

Endless loop:
read from sensors &

transmit
(waiting for interrupts)

discard packet

process packet

return from
interrupt

UART interrupt

read available
data from the buffer

and save it

Input Capture
interrupt

> f
save captured value

set state:
wait for rise edge

set state:
wait for fall edge

set state:
wait for fall edge,

calculate pulse width

Figure 3-1: MCU program- simplified flow chart

32

3.2 The software for the PC
The user interface to the robot is written in the C# language. In the beginning, I decided
to create the software as an M D I application, so in the main window (parent) the user
wi l l be able to open more than one secondary window (child). This allows the user to
use more than one feature at a time.

Let 's discuss the user interface in details:

3.2.1 The main -parent- window

In the following figure we can see the important parts of the parent window:

Figure 3-2: Important parts of the parent window

Under the File menu the user can open any of the child windows. The Window menu

allows some simple arrangements of these opened windows. The Window menu also

allows the user to hide the "control tab" which is located at the bottom side of the main

window.

In the control tab the user can select one of the offered serial ports, and select desired

parameters before opening. When the serial port opening was successful the program

wi l l disable these controls to avoid further modification. When the port is closed, the

controls w i l l be enabled again. Because another program can use our selected serial

port, we have to make sure the program won't crash during the opening process.

33

3.2.2 The ,,Compass" child window

When the user opens the Compass window from the File menu the following window
wi l l appear:

When this window is opened, the program w i l l draw and rotate a picture according to

heading information. The concrete heading is also displayed (in degrees) at the bottom

of the window. The picture is downloaded from:

http://projectgroundswell.com/2010/04/23/a-man-and-his-bicycle/600px-

compass rose english north-svg/

Figure 3-3: The Compass child window

34

http://projectgroundswell.com/2010/04/23/a-man-and-his-bicycle/600px-

3.2.3 The "Accelerometer" child window

In the following figure (Figure 3-4) we can see how the data from the accelerometer is

displayed.

Figure 3-4: The Accelerometer child window

The A D X L 3 4 5 is a 3-axis accelerometer, so we are displaying here 3 curves in the
graph- each with a different color. In this graph the acceleration is displayed (with
informative character), however we can calculate the inclination from the acceleration.
For this calculus we can use the following formulas 1:

X-axis inclination:

6 = tan - l
-t- 4 Z

^y,out^^z,out

(1.)

Y-axis inclination:

Z-axis inclination:

xfj = tan — 1 I ^y,out

<p = tan - 1 N

I A2 - t - 4 2

A2 I A2
ny,out^^z,out

Az,out

(2.)

(3.)

Inclination values are displayed at the top-left corner of the window; however the

practical use of these values w i l l be discussed later.

Formulas where copied from [25]

35

3.2.4 The "Console" child window
In the Console window (Figure 3-5) we can control the incoming transmission. A t first
sight this is not an important thing to do, but when we are developing a program which
processes some incoming data, that's a basic thing that in some way we're displaying
the original incoming transmission. When it's done, we can start to develop the
processing algorithms. In Figure 3-5 we can clearly see all the incoming data from the
robot: we can see at the beginning of each packet there is the "start delimiter" which is
followed by the packet length (2 bytes), packet type, 64-bit source address, 16-bit
source network address and the receive options. Just after these information comes the
most important part of the message: information from the sensors. As discussed before,
the information from each sensor is marked with a character before the actual
information.

J n j x j

7E 00 OF 90 00 13 A2 00 40 7G A5 79 67 96 G1 OC OA F0 EE
7E00OF90 00 IS A2 004070 A579679601 OD EE BB 3S
7E00 1390 00 13 A2 00 40 70 A579679601 OA0500 0900 FB 00 DB
7E00OF90 00 13 A2 00 40 70 A579679601 OB ID 00 C6
7E 00 OF 90 00 13 A2 00 40 70 A5 79 67 96 01 OC OA FE DA
7E00OF90 00 13 A2 004070 A579679601 OD EE BB 35
7E 00 1390 00 13 A2 004070 A579679601 OA0200 11 00 FA 00 D7
7E 00 OF 90 00 13 A2 00 40 70 A5 79 67 96 01 OB 1D00C6
7E000F90 00 13 A2004070A5796796010C0AFCDC
7E 00 OF 90 00 13 A2 00 40 70 A5 79 67 96 01 OD EF3SBA
7E 00 1390 00 13 A2 00 40 70 A5796796010A00000400F700 E9
7E00OF90 00 13 A2 004070 A579679601 OB ID 00 C6
7E 00 OF 90 00 13 A2 00 40 70 A5 79 67 96 01 OC OA FS EO
7E00OF90 00 13 A2 004070 A579679601 OD EF 38 BA
7E 00 13 90 00 13 A2 00 40 70 A5 79 67 96 01 OA OB 00 14 00 F3 00 DO

~2J Send

Clear

Close

Figure 3-5: The Compass child window

The reader may have noticed that there is a send button in the top-right corner of this

window. This button is not yet used; it was placed there for future use together with the

textbox (bottom part of the window) - to allow the user sending specific messages to the

robot. This function w i l l be implemented when someone w i l l develop further this

program/project.

36

3.2.5 The "3D" child window

During the development I decided to display the information from the accelerometer not
just in a simple graph, but also in a 3-Dimensional form. Because we are calculated the
inclination before, this is the best moment to use this data.
Figure 3-6 shows the practical implementation of the calculated inclination.

With this part of the software I had some problems, because in the beginning a created
this program as a "WindowsForm" application. This meant that drawing and rotating
3D objects w i l l be a big problem. I had 2 choices: re-create the whole program as a
W P F application (which offers everything what we need for 3D drawing & rotating), or
to find some other way to do the drawing. A did a lot of research on the internet, when I
found out that a W P F application can be integrated to an existing WindowsForm
application.

The tutorial what I used to create this 3D animation is available at [26]. The source code
of this tutorial was modified by me. The original source code of this tutorial contained
only the rendering of a 3D-cube (Figure 3-6), so I had to modify it to add rotation
availability. The rotation is done by object transformations.

This 3D animation is using the acquired data from the compass and the accelerometer.
Because the compass is not tilt compensated, the heading information won't be valid i f
the robot is tilted. Therefore i f the inclination exceeds a predefined value, the program

Figure 3-6:The 3D child window

37

ignores the heading information from the compass, and leaves the last value of rotation
displayed. When the inclination drops below the predefined limit, the program wi l l
again use the heading value from the compass for the animation.

3.2.6 The "main control" child window

There is only one thing what we haven't discussed yet, and that's the actual control of
the robot.

I had in mind that I should add interactive control ability to the user program. So I
decided that the robot w i l l be "guided" by the help of the mouse. To allow this
functionality I added a "picture -box" control to the M a i n Control window (Figure 3-7),
in this picture box w i l l be the user able to control the robot movement. When the user
clicks with the mouse (and holds the button) inside the picture box, a line w i l l appear
inside the picture box connecting the cursor and the bottom-center side of the picture
box together. From the length of this line and its position (compared to the picture box
boarders) the program calculates the necessary speed for each dynamixel actuator. The
length of the line gives the total speed which is then divided between the left-side and
right-side servos. When the left-side servos are turning faster the robot w i l l turn right, in
opposite case the robot w i l l turn left. When the user releases the button, the robot stops.
The program distinguishes the left-button click from the right-button click. This allows
moving direction change.

Figure 3-7: Main Control window

In some cases the situation requires to operate the servos separately. The program

allows that too, for that reason I added "slider" controls. The moving speed and

direction can be controlled with these sliders for each servo. The last slider serves for

L E D dimming control. Wi th that we can control the brightness of the power L E D s .

38

4 SUMMARY AND CONCLUSIONS

I have successfully designed and realized a remote controlled robot. If we take a close
look at the sensors, the robot contains the following: a compass, a 3-axis digital
accelerometer, a thermometer and a mid-range proximity sensor. Almost all of them are
working without a single problem. I experienced some problems with the proximity
sensor. During the development I corrected one mistake in the software, but the problem
with this sensor still remained. In my opinion there is not enough isolation between the
IR-diode and the sensor to avoid crosstalk. Because the lack of time I haven't corrected
this error, so the control program just displays a meaningless value from the sensor -
which should be of course the pulse width at the sensor output.

As the heart of my robot I used a 16-bit microcontroller from Microchip Technology. It
handles all the attached sensors and the communication trough the Xbee module too.
Communication over these Xbee modules can be an interesting challenge. In the
beginning I tried the "transparent" operation, which means that the Xbee module simply
replaces a serial link. This method proved to be an ineffective one in this project. After
that I decided to use the second option- the A P I mode. This meant that for success
communication I had program the microcontroller to assemble the corresponding packet
(in A P I mode the Xbee module accepts only packets-in a predefined format). A t this
point of development I experienced the following problem: the wireless communication
speed was very low. After 2 days of debugging I found the problem. Every packet
which has to be transmitted to another device (router, end device...) contains the
destination address. But for the coordinator there is a reserved address. So I decided to
use this reserved address instead of the actual - as the packet destination. However I
was not aware of the following: finding the coordinator on a network takes some time
(The Xbee automatically searches for the coordinator). After changing this reserved
address to the actual, the problem was solved.

The main control software for the P C is realized in the C# language. This software
provides a simple user interface to control the robot. A n M D I application was created to
allow more comfort to the user. This software processes all information coming from
the robot. After processing the program displays the useful information to the user. The
interface allows the user controlling the robot interactively with the mouse. A l l
dynamixel actuators can be controlled separately i f desired.

M y robot isn't perfect; there are some bugs in the software which needs to be
corrected in the future. I hope that I w i l l have an opportunity to continue the
development of this robot, because there are some features that I wanted to try- both in
software and hardware.

39

5 GLOSSARY
PIC Peripheral Interface Controller

M C U Microcontroller Unit

I 2 C Inter-Integrated Circuit

SPI Serial Peripheral Interface

U A R T Universal Asynchronous Receiver Transmitter

P C B Printed Circuit Board

E E P R O M Electrically Erasable Programmable Read-only Memory

M D I Multiple Document Interface

A P I Application Programming Interface

P L L Phase Locked Loop

W P F Windows Presentation Foundation

S M D Surface Mount Device

6 REFERENCES AND BIBLIOGRAPHY
[1] Microchip [online]. Datasheet PIC24HJ32GP302/304, PIC24HJ64GPX02/X04 and

PIC24HJ128GPX02/X04. Microchip Technology Inc. [cit. 21.05.2012].
Available at www:
http://wwl.microchip.com/downloads/en/DeviceDoc/70293F.pdf

[2] Microchip [online]. User's guide MPLAB® C30 C COMPILER. Microchip Technology,
Inc. [cit. 21.05.2012]. Available at www:
http://wwl.microchip.com/downloads/en/DeviceDoc/MPLAB%20C30%20UG DS-
51284f.pdf

[3] Megarobot [online]. User's manual Dynamixel RX-64. ROBOTIS. [cit. 21.05.2012].
Available at www:
http://www.megarobot.net/ci/manualy/robotis/RX64 ai.pdf

[4] Analog Devices [online]. Datasheet ADXL345 Digital 3-Axis Accelerometer. Analog
Devices, Inc. [cit. 21.05.2012]. Available at www:
http://www.analog.com/static/imported-files/data sheets/ADXL345.pdf

[5] Honeywell [online]. Datasheet 2-Axis Compass with Algorithms HMC6352. Honeywell
International, Inc. [cit. 21.05.2012]. Available at www:
http://www51.honeywell.com/aero/common/documents/myaerospacecatalog-
documents/Missiles-Munitions/HMC6352.pdf

[6] Digi International [online]. Datasheet XbeeWXbee-PRO® ZB RF Modules. Digi
International, Inc. [cit. 21.05.2012]. Available at www:
ftp://ftpl•digi.com/support/documentation/90000976 H.pdf

[7] SHARP, J. Microsoft Visual C# 2010 Step by Step, Microsoft press, 2010

[8] Robert Reese, J.W. Bruce, Bryan A. Jones Microcontrollers- From Assembly Language
to C Using the PIC24 Family, Course Technology, 2009

[9] Microchip [online]. 16-bit M C U and DSC Programmer's Reference Manual, Microchip
Technology, Inc. [cit. 21.05.2012]. Available at www:
http://wwl.microchip.com/downloads/en/devicedoc/prog ref manual.pdf

[10] Microchip [online]. 16-bit Language Tools Libraries, Microchip Technology, Inc.
[cit. 21.05.2012]. Available at www:
http://wwl.microchip.com/downloads/en/DeviceDoc/51456G.pdf

41

http://wwl.microchip.com/downloads/en/DeviceDoc/70293F.pdf
http://wwl.microchip.com/downloads/en/DeviceDoc/MPLAB%20C30%20UG
http://www.megarobot.net/ci/manualy/robotis/RX64
http://www.analog.com/static/imported-files/data
http://www51.honeywell.com/aero/common/documents/myaerospacecatalog-
ftp://ftpl�digi.com/support/documentation/90000976
http://wwl.microchip.com/downloads/en/devicedoc/prog
http://wwl.microchip.com/downloads/en/DeviceDoc/51456G.pdf

[11] Microchip [online]. Reference manual Section 12. Input Capture, Microchip
Technology, Inc. [cit. 21.05.2012]. Available at www:
http://wwl.microchip.com/downloads/en/DeviceDoc/70198D.pdf

[12] Microchip [online]. Reference manual Section 13. Output Compare, Microchip
Technology, Inc. [cit. 21.05.2012]. Available at www:
http://wwl.microchip.com/downloads/en/DeviceDoc/70209A.pdf

[13] Microchip [online]. Reference manual Section 18. Serial Peripheral Interface,
Microchip Technology, Inc. [cit. 21.05.2012]. Available at www:
http://wwl.microchip.com/downloads/en/DeviceDoc/70206b.pdf

[14] Microchip [online]. Reference manual Section 19. Inter-Integrated Circuit, Microchip
Technology, Inc. [cit. 21.05.2012]. Available at www:
http://ww 1 •microchip.com/downloads/en/DeviceDoc/70195B .pdf

[15] Microchip [online]. Reference manual Section 17. UART, Microchip Technology, Inc.
[cit. 21.05.2012]. Available at www:
http://wwl.microchip.com/downloads/en/DeviceDoc/70188C.pdf

[16] Microchip [online]. Reference manual Section 11. Timers, Microchip Technology, Inc.
[cit. 21.05.2012]. Available at www:
http://wwl.microchip.com/downloads/en/DeviceDoc/70205B.pdf

[17] Microchip [online]. Reference manual Section 6. Interrupts, Microchip Technology,
Inc. [cit. 21.05.2012]. Available at www:
http://wwl.microchip.com/downloads/en/DeviceDoc/70184b.pdf

[18] Microchip [online]. Reference manual Section 7. Oscillator, Microchip Technology,
Inc. [cit. 21.05.2012]. Available at www:

http://wwl.microchip.com/downloads/en/DeviceDoc/70186E.pdf

[19] Jack X u . Practical WPF Charts and Graphics, Apress, 2009

[20] STMicroelectronics [online]. Datasheet STCN75- Digital temperature sensor and
thermal watchdog. STMicroelectronics. [cit. 21.05.2012]. Available at www:
http://www.st.com/internet/com/TECHNICAL RESOURCES/TECHNICAL L I T E R A
TURE/DATASHEET/CD00153589.pdf

[21] Vishay Intertechnology [online]. Datasheet TSAL6200 High Power Infrared Emitting
Diode. Vishay Intertechnology, Inc. [cit. 21.05.2012]. Available at www:
http://www.vishay.com/docs/81010/tsal6200.pdf

42

http://wwl.microchip.com/downloads/en/DeviceDoc/70198D.pdf
http://wwl.microchip.com/downloads/en/DeviceDoc/70209A.pdf
http://wwl.microchip.com/downloads/en/DeviceDoc/70206b.pdf
http://ww
http://�microchip.com/downloads/en/DeviceDoc/70
http://wwl.microchip.com/downloads/en/DeviceDoc/70188C.pdf
http://wwl.microchip.com/downloads/en/DeviceDoc/70205B.pdf
http://wwl.microchip.com/downloads/en/DeviceDoc/70184b.pdf
http://wwl.microchip.com/downloads/en/DeviceDoc/70186E.pdf
http://www.st.com/internet/com/TECHNICAL
http://www.vishay.com/docs/81010/tsal6200.pdf

[22] Vishay Intertechnology [online]. Datasheet TSOP4P38 IR Receiver Modules for Mid
Range Proximity Sensors. Vishay Intertechnology, Inc. [cit. 21.05.2012].
Available at www:
http://www.vishay.com/docs/83305/tsop4p.pdf

[23] Texas Instruments [online]. Datasheet LM3407 350mA, Constant Current Output
Floating Buck Switching Converter for High Power LEDs. National Semiconductor
[cit. 21.05.2012]. Available at www:
http://www.ti.com/lit/ds/symlink/lm3407.pdf

[24] H.R. Everett, Sensors for Mobile Robots, A K Peters/CRC Press (July 15, 1995)

[25] Analog Devices [online]. Application Note Using an Accelerometer for Inclination
Sensing. Analog Devices, Inc. [cit. 21.05.2012]. Available at www:
http://www.analog.com/static/imported-files/application notes/AN-1057.pdf

[26] Window Presentation Foundation (WPF) 3D Tutorial [online], [cit. 21.05.2012].
Available at www:
http://kindohm.com/technical/WPF3DTutorial.htm

43

http://www.vishay.com/docs/83305/tsop4p.pdf
http://www.ti.com/lit/ds/symlink/lm3407.pdf
http://www.analog.com/static/imported-files/application
http://kindohm.com/technical/WPF3DTutorial.htm

LIST OF ATTACHMENTS
Attachment 1: Schematic diagrams & P C B designs

Attachment 2: B i l l of materials

Attachment 3: Pictures of the finished robot

CONTENT OF THE SUPPLIED CD:
Microcontroller source code

M a i n control program- Visual Studio Project

Bachelor thesis Remote Controlled 4-wheel robot

Schematic diagrams & P C B designs (in P D F format)

Attachment 1: Schematic diagrams & Printed
circuit board designs

Figure 6-1: Schematic diagram- Main Control Circuit

45

Figure 6-2: Schematic diagram- LED driver

46

I — M

H
Ulli 1111
8 g g g I 1 | | § g
§ I I § i I g l

I
J l § 1 1 I I 1 1|

In
i - H

111*111

1 § 111 i i i

TT
4SL

T

Figure 6-3: Schematic diagram- Xbee <-> PC

47

Figure 6-4: Schematic diagram- IR sensor

48

49

50

51

Attachment 2: Bill of materials

Main Control Circuit
STCN75
PIC24HJ64GP502
RS485 transceiver
Xbee Pro S2
D C / D C converter 1A
10uF/1206
100nF/1206
L E D /1206
Header, 4-pin
Terminal, 2-pin
Header, 8-pin
Header, 5-pin
Header, 3-pin

N P N general purpose transistor / S M D

10kfi/1206

OQ /1206
RS485 termination resistor, not included
680Q /1206

U l
U 2
U3
U4
U5
C I
C2

D 1 , D 2

P1 ,P2 , P5

P 3 , P 4

P6
P7

P8

Q i
R 1 , R 5 , R 6 , R 1 0 , R 1 1

R2, R3 , R4

R7

R8, R9

Board with Xbee module for PC
100nF/1206 C I
L E D 5mm/green D 1 , D 2 , D 3 , D 4
670Q/1206 R 1 , R 3 , R 4

460Q /1206 R2
OQ /1206 R5, R6, R7, R8
L F 3 3 C V U l

Xbee Pro S2 U 2
M M 2 3 2 U S B / U A R T dev. module U3

IR proximity sensor
TSAL6200 D l

20Q /1206 R5

4k7 /1206 R6
N P N general purpose transistor / S M D Q l
TSOP4P38 - IR receiver U l

Header, 4-pin P I

L E D driver circuit
lOOnF, ceramic /1206
luF , ceramic /1206
Schottky, 30V/1A
22uH/SMD
Terminal, 2-pin
Header, 3-pin
68kQ /1206
67kQ /1206
670Q /1206
LM3407 /eMSOP-8

CI
C2, C3 , C4, C5
D 1 , D 2

L 1 , L 2

P I , P3, P4

P2

R l , R4
R3 , R6
R2, R5
U 1 , U 2

Miscellaneous
4x Green L E D - 1 W
4x Dynamixel R X - 6 4
l x Plastic enclosure
l x 3 A fuse

H M C 6 3 5 2 digital 2-axis compass
A D X L 3 4 5 3-axis digital accelerometer

Attachment 3: Pictures of the finished robot

Figure 6-14: Board with Xbee module- PC side

Figure 6-15 Compass and the Accelerometer mounted to a cuprextit board

Figure 6-16: The finished LED driver

Figure 6-17: Finished main circuit- bottom side

Figure 6-18: Finished main circuit- top side

Figure 6-19: Finished robot- inside view

