VYSOKE UCENI TECHNICKE V BRNE

BRNO UNIVERSITY OF TECHNOLOGY

N
///
S

%
«Q
7

FAKULTA ELEKTROTECHNIKY A KOMUNIKACNICH
TECHNOLOGII
L/ N
/ kﬂ USTAV AUTOMATIZACE A MERICi TECHNIKY
FACULTY OF ELECTRICAL ENGINEERING AND COMMUNICATION
\\ DEPARTMENT OF CONTROL AND INSTRUMENTATION

DALKOVE OVLADANY KOLOVY ROBOT

REMOTE CONTROLLED WHEEL ROBOT

BAKALARSKA PRACE

BACHELOR'S THESIS

AUTOR PRACE SANDOR RUHAS
AUTHOR

VEDOUCI PRACE Ing. TOMAS FLORIAN
SUPERVISOR

BRNO 2012

\ \ H ‘ \ VYSOKE UCENI
| TECHNICKE V BRNE

Fakulta elektrotechniky
a komunikacnich technologii

| | Ustav automatizace a mérici techniky

Bakalarska prace

bakalarsky studijni obor
Automatiza¢ni a méfici technika

Student: Sandor Ruhas ID: 125302
Roénik: 3 Akademicky rok: 2011/2012
NAZEV TEMATU:

Dalkové ovladany kolovy robot

POKYNY PRO VYPRACOVANI:

Navrhnéte dalkové ovladany mobilni robot. Vyberte vhodny mikrokontrolér, kterym bude robot fizen.
Jako pohony pouzijte servomotory od spole¢nosti Dynamixel RX-64. Robot dopliite o vhodné snimace a
bezdratovy modul. Ovladaci software pro PC bude realizovan v jazyce C#.

DOPORUCENA LITERATURA:

H.R. Everett, Sensors for Mobile Robots, A K Peters/CRC Press (July 15, 1995), ISBN-13:
978-1568810485

Termin zadani: 6.2.2012 Termin odevzdani: 28.5.2012

Vedouci prace: Ing. Tomas Florian
Konzultanti bakalarské prace:

doc. Ing. Vaclav Jirsik, CSc.
Predseda oborové rady

UPOZORNENI:

Autor bakalarské prace nesmi pfi vytvareni bakalarské prace porusit autorska prava tretich osob, zejména nesmi
zasahovat nedovolenym zplisobem do cizich autorskych prav osobnostnich a musi si byt piné védom nésledki
poruseni ustanoveni § 11 a nasledujicich autorského zakona €. 121/2000 Sb., vCetné moznych trestnépravnich
disledkd vyplyvajicich z ustanoveni ¢asti druhé, hlavy VI. dil 4 Trestniho zakoniku ¢.40/2009 Sb.

Abstrakt:

Tato prace se zabyva navrhem a vytvorenim kolového robotu na dalkové ovladani.
Prvni ¢ast prace obsahuje zakladni uvod do robotiky. Poté se Ctenar seznami se vSemi
kroky navrhu, které byly provedeny. Samotna konstrukce je rozdélena do dvou hlavnich
Casti: navrh hardware a software. V kapitole navrhu hardware se ¢tenar dozvi, jaké
soucastky byly vybrany a pro¢. Pro vysvétleni funkce soucastek, budou uvedeny nékteré
dulezité parametry. Protoze vétSina souCastek muze byt nastavena riznym zpusobem,
jsou hlavni nastaveni detailn€ popsana.

V dokumentu je také uveden jednoduchy ilustrovany popis hlavnich funkci obsluzného
software.

Na konci tohoto textu jsou diskutovany dosazené vysledky.

Klicova slova:
Xbee, PIC24HJ64GP502, Dynamixel RX-64, robot, kompas, akcelerometr

Abstract:

This work deals with design and creation of a 4-wheel remote controlled robot.

The first part of the project includes some introduction to robotics. After that, the reader
will get familiar with all the design steps which were made to achieve a functional
robot. The design itself is divided into two major parts: hardware and software design.
In the hardware design chapter the reader will learn what kind of parts where selected
and why. Some main parameters of these parts will also be supplied to understand main
functionality. Because most of these parts can be configured in some way, main
configuration steps with detailed description can be found in the project for each
configurable part.

Regarding the software, this document will supply a simple description about the main
functions of the software illustrated with pictures.

In the end of this text the achieved results are discussed.

Keywords:
Xbee, PIC24HJ64GP502, Dynamixel RX-64, robot, compass, accelerometer

Bibliograficka citace mé prace:
RUHAS, S. Ddlkové oviadany kolovy robot. Bmo: Vysoké uéeni technické v Brng,
Fakulta elektrotechniky a komunikacnich technologii, 2012. 58 s. Vedouci bakalarské

prace Ing. Tomas Florian.

r

Prohlaseni

Prohlasuji, ze svoji bakalafskou praci na téma Dalkové ovladany kolovy robot jsem
vypracoval samostatné pod vedenim vedouci bakalarské prace a s pouzitim odborné
literatury a dalSich informacnich zdroji, které jsou vSechny citovany v praci a uvedeny
v seznamu literatury na konci prace.

Jako autor uvedené bakalarské prace dale prohlasuji, ze v souvislosti s vytvorenim této
prace jsem neporusil autorska prava tietich osob, zejména jsem nezasahl nedovolenym
zpusobem do cizich autorskych prav osobnostnich a jsem si plné védom nasledku
poruseni ustanoveni § 11 a nasledujicich autorského zakona ¢. 121/2000 Sb., véetné
moznych trestnépravnich disledkd vyplyvajicich z ustanoveni § 152 trestniho zakona €.
140/1961 Sb.

V Brné€ dne: 16. kvétna 2012 e
podpis autora

Podékovani

Dé&kuji vedouci bakalarské prace Ing. Toma$ Floridn za ucinnou metodickou,
pedagogickou a odbornou pomoc a dalsi cenné rady pii zpracovani mé bakalarské
prace.

V Brné€ dne: 16. kvétna 2012 e
podpis autora

Contents

1 INTRODUCTION.....couittietieeiietee ettt et sa et et sree s e ersess s essess s es e ss et enbesnee s e 10
2 Selecting the main parts Of the TODOL.........cccoiiiiiiiiiiiiiii 12
2.1 Selecting an RF module for wireless communication.............cooevevereeueieininiccnininiinnnns 12
2.1.1 Main parameters & using the Xbee modules ... 12
2.1.2 Xbee APT OPEIAtION....c.ueviureniieiitiiieitiie ettt 14

2.2 Selecting a suitable MiCrOCONIOIIETcviviiiiiiieiiiei 15
2.2.1 Main features of the selected MCU.........ccccociiiiiiiiiiiininniiiie e 15
222 Microcontroller CoOnfigurationc..ceeveiivuiiiiniineiiieniee e 16

2.3 Compass MOAUIEc.ceueuiiiiiiiititit it 16
2.3.1 Compass CONFIGUIALION.cvuiuriiiiiiereiee et 17

2.4 ACCEIETOIMELETvieevierieeietee ettt ettt st et et s abe st e e e et et ettt saa s 18
24.1 Accelerometer CONfiGUIAtiON.......c..coeeiiiuiiiiniiiiiie et 19

2.5 Digital temMPErature SENSOTccueririeririerteiiertestee ettt s 20
2.6 PrOXimULY SENSOT c..eoveuieiiuiiiiiiiiiiitit ettt ettt 21
2.6.1 WOrKing PrinCiplecoueeveieiiiiiiiiiiiicieie et 21
2.6.2 Generating 38 kHz signal for the IR LED........cccoooiiiniiiiii 22
2.6.3 Measuring the pulse Width ..o 24

2.7 LED ALIVET c.veetiiiitiectietee e et sttt et eie e sac e saae st e s eba e b s esaesb e e e sb et e ente s 25
2.8 Dynamixel RX-04cccooiiiiiiiiiiiiiiiii i 26
2.8.1 Communication with the RX-64cccccccccoiiiiiiiiiiiiii e 26
2.8.2 USING the ACHUALOTSveuviiiiiiietciieie ettt 27

2.9 Putting the pieces tOZELhErcccoviiiiiiiiiiiiii 29
2.9.1 Mechanical SOIULIONS.......c.veeveeieeeee e eiee ettt e era e s s 29

29.2 ELECIIOMICS o vt ceve ettt ee e sie ettt e et et et et e ss e a e st e eb e e eaaesabessseesnessse et eaeen 29
293 Schematic diagrams and PCB designscoovviiiiiiiniiinnininininicncin 29

B SOFEWATE vttt ettt e ettt se e eeeeeet et et et s saa e b e e a e e e b e e e b b e e b b e e s e s e s e et e e et 30
3.1 The software in the MiCrOCONLIOLIETcc.ccviiiiiiiiiiiiiinie e 30
3.2 The software for the PCccccooiiiiiiiiiiiiiiiiii e 33
3.2.1 The main —parent— WindOW..........ccccciiiiiiiiiii e 33
322 The ,,Compass™ child WINdOW.........cccceiviiiiimiiiii 34

323 The “Accelerometer” child WINAOW.........coeeeevininiiiiiiiiiie e 35
3.2.4 The “Console” child WINAOWcccceerviirniirniiiniiiiiiie e 36

3.25 The “3D” child WINAOW ...evviiieieieieeeie et 37
3.2.6 The “main control” child WINAOWccccecerviiriiiiiiiiiiiiiiii e 38

4 Summary and CONCIUSIONScciuiiuiiiiiriiite ittt e 39
5 GLOSSATY vttt ettt ettt h e s 40
6 REFERENCES AND BIBLIOGRAPHYccceooiiiiiiiiiiiiniiie it 41
LiSt OF AttACHMENES: ...ecvveiuieceie et et ee ettt ettt s et ar s e s e eb e sasess b e ssbesabe s e et eaaees 44
Content of the SUPPlied CDi....co.ovuiiiiiiiiiiiiie e 44

LIST OF FIGURES

Figure 2-1: The Xbee PRO module [6].......ccooveiiiimiiiiiiiiieiii s 12
Figure 2-2: Connecting the modules to a host microcontroller [6]cooiiiininniinin. 13
Figure 2-3: API frame Structure [6]ccooviiviiiiiiiiiiniiiiie 14
Figure 2-4: Microcontroller pin out [1].......ccooioiiniiiiiiiniiie e 15
Figure 2-5: example of signal pattern [22]..........coeiiiiiiiiiinieiiii s 21
Figure 2-6: PWM mode block diagram[12].........ccooeiiiiiiiiiiniiiiiiii s 22
Figure 2-7: Output compare operation [12]c.ccocooeiiiiiiiiiiniiiie s 23
Figure 2-8: Input Capture Event Generation [11]ocoooiiiiiiniiiis 24
Figure 2-9: UART/RS485 CONVEITEToviiiuiiiiieitiiet ittt 26
Figure 2-10: MCU<-> RX-64 communication [3]........cccooeiniiinininiiiiiniiccis 27
Figure 3-1: MCU program- simplified flow chartccooooiiiin 32
Figure 3-2: Important parts of the parent Windowccocooieiiiiiniiiniis 33
Figure 3-3: The Compass child WINAOWc.ccooiiiiiiiiiiiiiiiii s 34
Figure 3-4: The Accelerometer child WINAOWcocooviiiiiiiiiinii 35
Figure 3-5: The Compass child WindOWc.ccooooiiiiiiiiiiiii e 36
Figure 3-6:The 3D child WINAOWccoouiiiiiiiiiiiiii 37
Figure 3-7: Main Control WINAOWccccviiiiiiiiiiiiiiniii s 38
Figure 6-1: Schematic diagram- Main Control CirCuiteeouveniniiiininninncniiicneis 45
Figure 6-2: Schematic diagram- LED driVer...........ooooiiiiiiiiiiiiiiicccs 46
Figure 6-3: Schematic diagram- Xbee <-> PC........ccocooiiiiiiiiiiiiis 47
Figure 6-4: Schematic diagram- IR SENSOT.........ccooiiiiniiiiniiii 48
Figure 6-5: PCB- Main Control CIrCUILccooiuiiieiiieiiteiiiee i 49
Figure 6-6: PCB component placement- Main Control CirCuitcoovvvveveieininieencninniiciiiie, 49
Figure 6-7: PCB- LED dIiVeT......ccooiiiiiiiiiiiiiiie e 50
Figure 6-8: PCB component placement- LED driver..........cooooiiiiiiiiinniiiis 50
Figure 6-9: PCB- Xbee <->PC....ccoiiiiiiiiiiii 51
Figure 6-10: PCB component placement- Xbee<->PC.........ccooviiiniiiiiiniiiniiinis 51
Figure 6-11: PCB- IR SENSOT.......cciiiiiiiiiiiiitiietii it 52
Figure 6-12: PCB component placement- IR SENSOT..........ccooiiiiiiininiiiiiniiiiiis 52
Figure 6-13: The finished TObOtcooviiiiiiii 55
Figure 6-14: Board with Xbee module- PC Sidecocooviiiiniiiniiiiiiics 55
Figure 6-15 Compass and the Accelerometer mounted to a cuprextit boardc.ccoeeeeenes 56
Figure 6-16: The finished LED dIiVerccccooiiiiiiiiiniiiiii i 56
Figure 6-17: Finished main circuit- bottom Side.........cooveiiiiinieiiiiiiniiis 57
Figure 6-18: Finished main Circuit- tOP SIA€ooveiiriiieiiiii 57
Figure 6-19: Finished robot- inSide VIEWcociiiiiiiiiiiieniiiiiic 58

LIST

OF TABLES

Table 2-1: API frame types [6] ..c.eoeevieriiiiniiniiiiiiiitiie e 14
Table 2-2: Operation mode reZiSter [S]......c.ovuiiiiiniiiiiniiieii 17
Table 2-3: Output Mode re@ISter [S].....c.ooiiviiiiiiiiiiiitii 18
Table 2-4: Register BW_RATE [4]coooiiiiiiiiiiii s 19
Table 2-5: Register POWER_CTL [4].....ccooiiiiiiiiii s 19
Table 2-6: Register INT_ENABLE [4].....c.ccooiiiiiiiiii i 19
Table 2-7: Relationship between temperature and digital output [20]........ccovireiniiiinininnne. 20
Table 2-8: Dynamixel instruction packet[3]cocoviiiiiiiiiiini 27
Table 2-9: Dynamixel instruction packet- RESET ... 28
Table 2-10: Part of the dynamixel control table- Moving speed setting [3]cccooeirinininen. 28
Table 3-1: Detailed information of the transmitted packetcccoeieieiiiniiniiiiiniiniie 31

1 INTRODUCTION

Definition of robot

A robot is a reprogrammable, multifunctional manipulator designed to move material,
parts, tools or specialized devices trough variable programmed motions for the
performance of a variety of tasks: Robot Institute of America, 1979

Types of robots

We can divide robots into a lot of categories; in the following list we find the main
categories:

- Mobile Robots

- Stationary Robots

- Autonomous Robots

- Remote-control Robot

Laws of Robotics [Isaac Asimov]

0. A robot may not harm humanity, or, by inaction, allow humanity to come to
harm.

1. A robot may not injure a human being or, trough inaction, allow a human being
to come to harm.

2. A robot must obey the orders given to it by human beings, except where such
orders would conflict with the First Law.

3. A robot must protect its own existence as long as such protection does not
conflict with the First or Second Laws.

Designing a robot

I always wanted to build a robot on my own, and to test different kind of sensors. This
project offers the opportunity to do so.
Because the main task of this project gives me freedom, I had a chance to design the
whole robot myself. This means that I can design the body, pick the sensors, design the
whole controlling “principle” ...etc.
This “freedom” also comes with a lot of questions:

- Should I make metal or plastic body?!

- How big the robot will be?!

10

- What kind of sensors will [use?!

- What will be the abilities of the robot?!

- PCB: use standard “trough-hole” parts or use SMD packages?!
- For what purposes will be this robot used?!

So I had to consider a lot of things before starting the design.

Because I love to try out new parts (and sensors too) I started to look around on the
internet. In the meantime I decided that I don’t want to build a robot for a specific task,
so the sensor selection will be almost random. From this comes out that my robot will
serve demonstration purposes.

In the following chapters I will describe the different parts and sensors what I chose
during the development

11

2 SELECTING THE MAIN PARTS OF THE
ROBOT

2.1 Selecting an RF module for wireless
communication

While looking for a suitable RF module, the following was considered:
- Maximum distance of transmission
- Transmission reliability
- Current consumption
- RF datarate
- Difficulty to use
- Price

Selected RF module: Xbee Pro S2 (International variant) from Digi International.

2.1.1 Main parameters & using the Xbee modules

Main parameters:

Supply voltage 3.0-34V
RF data rate 250 000 bps
Range 1500m — outdoor, 60m — indoor
Operating current 170mA (max. output power)
Idle current 45mA
Figure 2-1: The Xbee PRO
module [6]
Using Xbee modules:

Xbee’s are easy-to-use modules for low cost wireless communication. They are
interfacing to a host device using UART serial port. If the logic levels are the same, the
module can be connected directly to a host MCU. An additional logic level converter is
required if the logic levers are different (A hundreds of converters are available from
different manufacturers). Hardware flow control also available, if the user wants to use
this feature.

12

CMOS Logic (2.8 - 3.4V) CMOS Logic (2.8 - 3.4V)

DIN (data in) DIN (data in)
"5)
cTe XB XBee T
: ee X
Microcontroller | o (data out) | Module Module | DOUT (data out) | Microcontrolier
1 L
RTS RTS

Figure 2-2: Connecting the modules to a host microcontroller [6]

We can use the module in 2 different modes: Transparent or API operation.
Transparent operation — the module acts as a serial line replacement. All UART data
received through the DIN pin is queued up for RF transmission. When RF data is
received, it is sent out through the DOUT pin. In transparent operation the destination is
set at the main configuration (the user must reconfigure the module with entering to
command —AT— mode)
API operation — This is a frame based operation. Every communication between the
module and the host MCU is done by frames. The API operation is not that simple as
the transparent mode, but offers a lot more. With using the API, we can send data to
multiple destinations without entering to command mode, configure remote modules,
sample IO lines on remote module and do a lot of other things.
In this project we will use API operation because of the flexibility.

Before using the modules, we have to configure them to meet our requirements.
The manufacturer provides a very useful program for that, called the “X-CTU”.
To successfully use the modules, we have to configure one of them as a coordinator,
and the second one as a router (In this design 2 Xbee modules are required — one will be
placed on the robot, the second will be connected to a PC). The coordinator creates a
network, other devices (such as router, or end device) can join to the created network if
the coordinator allows that. Every network has to contain minimally one coordinator.

With X-CTU we can upload the required firmware to the modules. After that, we
can set all the necessary options. With using the API operation, we don’t have to spend
a lot of time with configuration — setting the speed of the serial communication and
enabling API mode will be completely enough.
(Detailed information of the communication and packetizing will be discussed in the
next chapters)

13

2.1.2 Xbee API operation

Like said in the previous chapter, in API operation mode all communication is done

using frames.

Start Delimiter Length Frame Data Checksum
(Byte 1) (Bytes 2-3) (Bytes 41) (Byten +1)
OXTE MsB LsB APl-specific Structure 1Byte
AP Identifier Identifier-specific Deta
cmedD cmdData

Figure 2-3: API frame structure [6]

- Every frame starts with the “start delimiter” — Ox7E

- A 2 byte value follows the start delimiter indicating the frame length (the

number of bytes that will be contained in the frame data field excluding the

checksum).

- Each API frame is identified with an ID, the available ID’s are listed in the table

below.

- After frame identification the module processes the data contained in the
cmdData field. The meaning of data in this field depends on the frame identifier.
- The frame ends with a control checksum. To calculate checksum: excluding the
frame delimiters and length we have to add all bytes together (with keeping the
lowest 8 bits of the result) and subtract the result from OxFF.

In the following situations the received frame will be discarded:

Invalid checksum, missing start delimiter, invalid length, invalid API identifier or the

frame is received incorrectly.

In the following table we can find the available API frame types:

API Frame Names API ID
AT Command 0x08
AT Command- Queue Parameter Value 0x09
ZigBee Transmit Request 0x10
Explicit Addressing ZigBee Command Frame 0x11
Remote Command Request 0x17
Create Source Route 0x21
AT Command Response 0x88
Modem Status 0x8A
ZigBee Transmit Status 0x8B
ZigBee Receive Packet 0x90
ZigBee Explicit Rx Indicator 0x91
ZigBee 10 Data Sample Rx Indicator 0x92
XBee Sensor Read Indicator 0x94
Node Identification Indicator 0x95
Remote Command Response 0x97
Over-the-Air Firmware Update Status 0xA0
Route Record Indicator OxAl
Many-to-One Route Request Indicator 0xA3

Table 2-1: API frame types [6]

14

In this project the following frame types will be used: ZigBee transmit request,

ZigBee receive packet.

2.2 Selecting a suitable microcontroller

While looking for an appropriate MCU, the following was considered:

Speed

Amount of communication interfaces
Number of general purpose 10-s
Support availability

Selected MCU: PIC24HJ64GP502 from Microchip Technology Inc.

2.2.1 Main features of the selected MCU

This microcontroller was selected because of the 16-bit wide data path, the availability

of the low-cost development kit: “Microstick” which supports source level debugging,

and because I had some experiences with microcontrollers from Microchip Technology.

Main features:

Modified Harvard architecture

Up to 40 MIPS operation

External crystal not necessary — contains an on-chip FRC oscillator
C-compiler optimized instruction set

Hardware support for SPI, I°C and UART communication

Up to five 16-bit timers
PWM support

45 available interrupt sources, with programmable priority levels

Remappable peripherals

MCLR

ANONREF+/ICN2/RAD
AN1/VREF-ICN3/RA1
PGED1/AN2/C2IN-/RPO'/CN4/RBO
PGEC1/ AN3/C2IN+/RP1("/CN5/RB1
AN4/C1IN-/RP2/CNE/RB2
ANS/C1IN+/RP3(")/CN7/RB3

Vss

OSC1/CLKVCN30/RA2
0SC2/CLKO/CN29/PMAO/RA3
SOSCIRP4"/CN1/PMBE/RB4
SOSCO/T1CK/ICNO/PMA1/RA4

PGED3/ASDA1/RP5\"/CN27/PMD7/RB5

Voo

ot

AVDD

AVss

AN9/RP15"/CN11/PMCS1/RB15
AN10/RTCC/RP14"/CN12/PMWR/RB14
AN11/RP13("//CN13/PMRD/RB13
AN12RP12("/CN14/PMDO/RB12
PGEC2/TMS/RP11"/CN15/PMD1/RB11
PGED2/TDVRP10{"/CN16/PMD2/RB10
vear®

Vss
TDO/SDA1/RPOM/CN21/PMDI/RBS
TCK/SCL1/RP8("/CN22/PMD4/RB8
INTO/RP7")/CN23/PMDS/RB7
PGEC3/ASCL1/RP6("/CN24/PMD6/RBE

Id
Id
Id
Id
Id
%)

Fy

20ZdO¥IrHYZI
w

20SdO8ZIMrHIZ
Z0ZdO8ZIrHYZO
Z0SdOVIrHYZO
Z0EAOZErHIZD
BRNRNR

Figure 2-4: Microcontroller pin out [1]

15

2.2.2 Microcontroller configuration

Main configuration steps:
1. Configure and Tune the clock
Enable all peripherals which will be used
Disable unused peripherals for power saving
Disable A/D converter (not used in this project)
Map enabled peripherals to the best 10 pin (considering the PCB design)
Configure interrupt(s)
Configure timer(s)
Test the configuration. (With testing the UART, FRC tuning can be confirmed.
If UART fails sending or reading the appropriate character, the FRC tuning is

® Nk WD

wrong. The sent character won’t appear on the receiver side correctly).

Actual configuration: FRC oscillator, maximum clock speed, UARTSs enabled, SPI
enabled, I12C enabled, Timerl-4 enabled, A/D disabled, Input Capture enabled, Output
Compare enabled, interrupt enabled for UART and the timers.

2.3 Compass module

As a first sensor the HMC6352 Digital Compass Solution was selected from Honeywell.

The sensor includes 2-axis magneto-resistive sensors and additional circuits &
algorithms for heading computation. The sensor calculates the heading and outputs it
over I2C protocol. Data from the magneto-resistive sensors also available for reading.
The sensor can be easily interfaced to the PIC24HJ64GP502, the 12C protocol only
requires 2 wires for establishing the connection. Two additional pull-up resistors are
required for the SCL and SCA line.

In our configuration, the PIC will act as a master, while the compass will be act
as a slave device.

Every transmission begins with the master device issuing a start sequence
followed by the slave address byte. The slave address is 7 bit wide only (upper 7 bits),
the remaining bit (least significant bit) is used to distinguish read/write operations. The
default HMC6352 address is 0x42 for write operations, and 0x43 for read operations
(factory default). After sending the address, the master waits for an acknowledge from
the slave. After getting the acknowledge, the master sends the data bytes to the slave, or
performs a read operation (depending on the sent address). The bus transactions are
terminated with the master issuing a stop sequence.

In all times the master handles the clock signal!

16

We can use our compass in different modes of operation.

Supported modes:

Standby mode- Factory default, waiting for commands from master. No measurement
until it’s requested.

Query mode- The internal processor of the compass waits for an “A” command
(command list can be found in appendix), performs a measurement, calculates the
heading, and waits for a read command. After a read, the compass automatically
performs another measurement and updates the data registers.

Continuous mode- The sensor performs periodic measurements with selectable rates of
1Hz, 5Hz, 10Hz or 20 Hz.

2.3.1 Compass configuration

The compass has two parameters which are controlling its operation. With configuring
the Operation Mode register we can control the continuous measurement rate, set/reset
function, and choose one of the three operation modes: Standby, Query, Continuous.
With configuring the Output Mode register we can set the compass to output heading
data, or magnetometer data.

At first use I set the compass for continuous measurement, with a rate of 20 Hz. This
configuration is saved to internal EEPROM, so further configuration not necessary.

Bit 7 (MSB) Bit 6 Bit5 Bit4 | Bit3 | Bit2 Bit 1 Bit 0 (LSB)
0 M. Rate_H | M. Rate_L | Per. S/R | 0 0 | OpMode_H | Op Mode_L
Bit6 | Bit5 Description ¢
0 1 Hz measurement rate Bit1 | Bit0 Description
0 1 5 Hz measurement rate 0 0 Standby mode
1 0 10 Hz measurement rate 0 1 Query mode
1 1 | 20 Hz measurement rate v 1 0 | Continuous mode
1 1 Not allowed

Bit 4 — Periodic Set/Reset — 0 = OFF, 1 = ON

Table 2-2: Operation mode register [5]

17

Bit 7 (MSB) Bit6 | Bit5 | Bit4 | Bit3 Bit2 Bit 1 Bit 0 (LSB)

0 0 0 0 0 Mode | Mode Mode
Bit2 | Bit1 | Bit 0 Description
0 0 0 Heading mode
0 0 1 | Raw Magnetometer X Mode
0 1 0 | Raw Magnetometer Y Mode
0 1 1 Magnetometer X Mode
1 0 0 Magnetometer Y Mode

Table 2-3: Output mode register [5]

2.4 Accelerometer

As the second sensor, the ADX1.345 accelerometer from Analog Devices takes place on
the robot.

The ADXL345 is a 3-axis accelerometer with selectable range of measurement.
Selectable ranges are: +2g, +4g +8g, +16g.

Its high resolution enables measurement of inclination changes less than 1.0°.

The accelerometer has other special functions such as activity/inactivity sensing,
tap/double tap sensing, free fall detection, and interrupt capability. However we won’t
use all of these functions- so they will be disabled.

The accelerometer can communicate via SPI or 12C interface. We will use the 4-wire
SPI configuration. Regarding the measurement range, for tilt measurement the lowest
range is the best choice (Tilt is a static measurement where gravity is the acceleration
being measured. Therefore, to achieve the highest degree resolution of a tilt
measurement, a low-g, high sensitivity accelerometer is required).

Information about acceleration is stored to specified registers, which ones can be read
by software. Acceleration information for each axis has 2 bytes length.

The accelerometer allows the user to read multiple bytes at once, so the 6 bytes (X-axis,
Y-axis, Z-axis) can be read very quickly. The SPI protocol however requires always a
write operation in same time as the read operation. We can’t just read from, or just write
to the device. So if we want to read from the target device, we have to write “dummy”
data and during that, read the useful information. The software has to separate useful
information from the information that has to be discarded.

18

2.4.1 Accelerometer configuration

After the voltage supply is applied to the chip, it enters to standby mode waiting for
further commands.

To start measurement, device configuration is needed. Configuration has to be done in
standby mode and when it’s done, the user can enable measurement. Before changing
any of the configuration settings, the measurements should be stopped.

In the following tables we can find the descriptions of all control registers that are used
in this project.

D7 | D6 | D5 D4 D3|D2\D1\Do

0 0 0 | Low_Power Rate
Table 2-4: Register BW_RATE [4]

Low_Power bit: 0 =normal operation, 1 =reduced power operation (higher noise).
Rate bits: selecting device bandwidth and output data rate.

D7 | D6 | D5 D4 D3 D2 | D1 \Do

0 | O |Link | Auto_Sleep | Measure | Sleep | Wakeup
Table 2-5: Register POWER_CTL [4]

Measure bit: 0 = standby mode, 1 = measurement mode
(Other bits aren’t used, so description is not necessary)

D7 D6 D5 D4 D3 D2 D1 DO
Data_Ready | Single_Tap | Double_Tap | Activity | Inactivity | Free_Fall | Watermark | Overrun
Table 2-6: Register INT_ENABLE [4]

These bits are used to enable/disable interrupts. In the control software we will disable
all interrupts.

19

2.5 Digital temperature sensor

The next sensor on the robot is the STCN75 digital temperature sensor from
STMicroelectronics.

Main reasons why I have selected this sensor: I’C interface, selectable bus address, low
operating current (Typically 125 pA at 3.3V supply).

Because we have used the I°C interface before, it’s not a problem to attach another slave
device to it. We just have to make sure that no address collision will occur. This
criterion can be simply fulfilled because of the selectable bus address of the sensor.

The STCNT75 provides 3 pins to select the interface address. All of the address selection
pins can be simply grounded, with this step the temperature sensor address will be 0x90
for write operations and 0x91 for read operations —which is not in collision with the
address of the compass (0x42 for write operation, 0x43 for read operation).

The sensor has also an open drain output which features a thermal alarm function. This
feature is not used in this project.

The STCNT75 stores the temperature as a 16-bit two’s complement number, which can
be read from the sensor at any time. The conversions are performed in the background
so if the user reads the temperature during a conversion it won’t affect the operation in
progress.

Because none of the special features will be used in this project, we can skip the
configuration step: studying the device datasheet [20] I have learned that after device
startup a simple read operation will result as a reading from the temperature register.

Temperature data format

The left-most bit in the output data stream contains temperature polarity information for
each conversion. If the sign bit is ‘0’, the temperature is positive and if the sign bit is
‘1’, the temperature is negative [20].

Temperature Digital output

Binary HEX
+125°C 011111010 OFA
+25°C 000110010 032
+0.5°C 0 0000 0001 001
0°C 0 0000 0000 000
-0.5°C L1111 1111 IFF
-25°C 11100 1110 ICE
-40°C 1 1011 0000 1BO
-55°C 1 1001 0010 192

Table 2-7: Relationship between temperature and digital output [20]

20

2.6 Proximity sensor

I have decided to equip the robot with an obstacle sensing device. For this purpose an
infrared diode and an IR receiver module was chosen.

Selected parts: TSAL6200- infrared diode, TSOP4P38- IR receiver module for mid-
range proximity sensors- both part from VISHAY semiconductors.

2.6.1 Working principle

The main working principle of this sensor is the following: with an infrared diode we
are transmitting a light beam. This beam is reflected by obstacles located near to our
robot. When an obstacle is close to the robot a strong reflection occurs (high percentage
of emitted light is reflected), when an obstacle is far from the robot a weak reflection
occurs. The amount of reflected light not only depends on obstacle distance, but also
depends on the material of which the obstacle is made. Ambient light adds also an error
to the results.

Our TSOP4P38 offers an easy way to assemble a simple proximity sensor. This sensor
contains everything what we need: photo detector and conditioning circuits. The sensor
outputs analog information about the reflection. On the sensor output we can measure
pulses. The widths of these pulses are dependent on the absolute amount of reflected
light from the infrared diode. When a strong reflection occurs the pulse width is longer,
when a weak reflection occurs the pulse width is shorter (figure 2-5).

This sensor has one important requirement to work properly: the emitted light beam
from the infrared diode must be modulated with 38 kHz carrier frequency.

Because the IR LED is placed next to the sensor, I had to separate them to avoid
crosstalk.

500 ms |
120 ms, 38 kHz | ‘

Optical signal | | | I

Response of the | I I |

TSOP4P38
(strong reflection)

Response of the | | I

TSOP4P38
(weak reflection)

Figure 2-5: example of signal pattern [22]

21

2.6.2 Generating 38 kHz signal for the IR LED

There are many ways to generate the appropriate signal for the infrared diode. A have
decided to generate this signal using the microcontroller what I selected before. This
allows us to reduce the hardware costs. With the microcontroller the easiest way to
generate this signal is using one of the integrated “output compare” modules. The
output compare module can be configured to operate in PWM mode. Pulse width
modulation (PWM) is a technique that allows us changing the duty cycle of a square
wave while the period maintained constant (duty cycle = high pulse width divided by
the period).

I will explain how the output compare module generates the needed signal. For the
explanation I will use the following figure:

TMR2 TMR3

Gosk

s U 7

|

Comparator

SET
T2 Rollover
0

Load

—

Match Signal = >

OCxR

IT

OCxRS

‘ r Data Bus <15:0=

Figure 2-6: PWM mode block diagram[12]

T3 Rollover

OCTSEL

As we see in the picture, we have to associate a timer with the output compare module
before use. The output signal period will be equal with the timer module period. After
configuring the timer, we just have to load the OCxRS register with a predefined value.
The value in this register will control the high pulse width in the output signal.

The whole process can be described as follows:

- At the end of each timer period the output signal will go high, and in the same
moment the OCxRS value is loaded into OCxR (The OCxR register can’t be
written directly in PWM mode)

- The comparator compares the timer value with the value in register OCxR

- When the timer value equals with the value in OCxR the output signal will go
low.

22

It is obvious that the value in the OCxR register controls the output signal duty cycle.
With adjusting the duty cycle we can control the power consumption of the infrared
diode. Higher duty cycle means more forward current on the IR LED.

The following figure illustrates the signal generation in different modes of operation:

Output Compare Timer is reset on
mode enabled y period match

TMRy

Active Low One-Shot mode
(OCM=001) |

Active High One-Shot mode
(OCM =010) o

Toggle mode
(OCM=011)

Delayed One-Shot
(OCM =100) | —

Continuous Pulse mode
(OCM =101)

]
I
|
I
Il
I
1
|
1
RN, | S — } 1 [EEp———
|
|
|
I
|
|
|
|
]
|

PWM mode
(OCM=1100r111) —— - _— _——_—

Figure 2-7: Output compare operation [12]

23

2.6.3 Measuring the pulse width

To obtain useful information from the sensor output we have to measure the pulse width
of this signal. This task can be done in some different ways. The best way to measure
the pulse width of a given signal is using one of the input capture modules in the
microcontroller. The input capture allows us to measure precisely the pulse width.
When this measurement is accomplished, we can calculate the distance between the
robot and the obstacle (However, to get accurate results the sensor should be
experimentally calibrated and tested- which is not the aim of this project).

The input capture module:

The input capture module function is to capture a timer value when an event occurs on a
predefined input pin (event = change in logic level). Like in the case of the output
compare module we can select one of the two offered timer modules as the time base.
The input capture module can be configured in different modes (capture on rising edge,
capture on falling edge, prescaler mode...), for the pulse width measurement the edge
detect mode is the best. The input capture module has a four-level FIFO buffer; the user
program can read the captured timer value from this buffer. A flag bit indicates when
the buffer is empty or is containing captured values. The user program doesn’t have to
poll the input buffer because the input capture module will generate an interrupt
whenever a capture event occurs. The next figure shows when the input capture module
generates an interrupt (in different modes of operation):

ICx Pin

Capture Event —‘ W —‘ —‘ —‘ —‘ —‘ | W !
(Rising Edge Mode) I

Capture Event
(Falling Edge Mode) I ‘ ‘ I I

Capture Event
Edge Detection Mode)

Capture Event
(Prescaler Mode - /4)

Figure 2-8: Input Capture Event Generation [11]

Since we don’t know exactly how long will be the pulse width, the timer can overflow
before the second capture event. Because this, we have to calculate with the timer
overflow times. The exact equation for this calculus can be found in [8].

24

2.7 LED driver

When I finished adding the sensors to the robot, i had in mind the following question:
Why not use the robot at night, or in poor light conditions?!

So I decided to equip the robot with some light emitting diodes. This decision popped
up some further problems/questions: how many LEDs to be used, low-power or high-
power LEDs- and if high power LEDs how they will be controlled (LED dimming
nowadays can be considered as a standard). Because the robot will be supplied from
battery I had to choose an efficient method to control these LEDs.

Chosen LEDs: Luxeon Star LED from Philips with green color and 1W of power.
Quantity: 4 (two for the front side, two for the back side).

Because of the battery supply I decided to use a buck converter to supply the LEDs.
Chosen buck converter: LM3407 (350mA constant current output floating buck
switching converter for high power LEDs).

Advantages of the selected buck converter:

- Ensures constant current to the LEDs (voltage drop in the supply don’t affects
the output current)

- The number of LEDs can be increased without a problem (max. 7 LEDs)

- The actual current to the LEDs can be set with a single resistor

- PWM dimming available

At first I wanted 1 buck converter / diode, but there was not enough remappable I/O pin
in the microcontroller for PWM dimming- so I decided to assemble one control circuit
with buck converter for the front LEDs and one control circuit with buck converter for
the rear LEDs. This configuration allows us to separately switch ON/OFF the two set of
LEDs. The dimming is done by only one PWM signal, so the front and the rear LEDs
will be at same power.

25

2.8 Dynamixel RX-64

The RX-64 actuator is a compact and smart actuator which contains a gear reducer, a
precision DC motor (MAXON motor) and a control circuitry. The RX-64 is using serial
link for communication realizing the RS-485 standard. The standard allows operating
multiple actuators in a single link, using “daisy chain” connection.

The actuator can be operated with a wide range of supply voltage (12-21 V DC), but in
accordance with datasheet [3] it should be 18V DC.

Because our microcontroller is not supporting the RS485 standard, we have to attach
between the actuator and the microcontroller an UART/RS485 converter:

RX-64
UART-RXD)
DIRECTION-SEL inv_output o
non inv. output o
UART-TXD o

1

Figure 2-9: UART/RS485 converter

The direction of data signals are specified by the state of RE, DE pins (connected
together, from now will be referred as “DIRECTION-SEL”).

When the DIRECTION-SEL is at logic high: TxD -> B,A

When the DIRECTION-SEL is at logic low: B,A -> RxD

2.8.1 Communication with the RX-64

Communication between the actuator and the MCU is realized as follows:
The MCU sends an instruction packet addressed to the desired actuator, and then pulls
the DIRECTION-SEL to logic low — allowing the actuator to respond with a status
packet. The actuator performs the required instruction, but only if the following
conditions are met:

- Itis a valid instruction

- The packet contains a valid actuator ID

- There is a valid checksum at the end of the packet

26

l—l Instruction Packet(ID=N) >l ---------

Main
Controller

T D=0 D=1 ID=N
> o
< Status Packet(ID=N) |—J

Figure 2-10: MCU<-> RX-64 communication [3]

Before using any of the actuators, the ID must be set. Multiple actuators with the same
ID will cause communication problems (packet collision caused by the returned status
packet).
ID’s are ranging from 0x00 to OxFD (max. 254 actuator). ID OXFE is reserved for
broadcasting. A packet sent with the broadcast address will not return any status
packets.

2.8.2 Using the actuators

Instruction packet format

| OxFF ’ OxFF | ID | Length ’ Instruction | Param.1 ‘ ‘ Param. N | Checksum

Table 2-8: Dynamixel instruction packet[3]

The meaning of each packet byte definition is as the following:

0xFF, OxFF -indicates the start of an incoming packet

ID -the unique ID of a Dynamixel unit (OXxFE = broadcast ID)
Length -compute as: number of parameters + 2

Instruction -instruction to perform (possible instructions are discussed later)
Parameter N -additional information to the instruction

Checksum -compute as: ~(ID + Length + Instruction + Param.1 + Param. N)

(~ represents logical NOT)

The following instructions are available:
Ping, Read Data, Write Data, Register Write, Action, Reset, Sync Write.

In this project only the “write data” instruction is used, so we can discuss it in details:
-The main function of this instruction is to write data into the control table.

-Number of parameters: 1 or 2, depending on the address location in the control table.
-Instruction: 0x03

-First parameter: starting address of the location where the data is to be written.

27

The control table:

Each Dynamixel unit contains a control table. The control table controls the actuator
operation. We can set lots of parameters in the control table, but in this project the
following parameters will do the work: CW angle limit, CCW angle limit, Moving
speed. We have to set the CW and CCW angle limits to zero, to achieve endless turn.
Then we only need to set the moving speed in the control table to get the robot moving.
(The whole control table can be found in [3]).

The first step what we have to do with the dynamixel actuators is to change their
identification number (ID). The factory default ID is: 0xO1. With precaution, I decided
to reset all the actuators to their factory settings. This step ensures that all actuators will
have the same settings.

For the broadcast reset I had used the following instruction packet:

\ 0xFF | 0xFF | OxFE | 0x02 | 0x06 | 0xF9 |

Table 2-9: Dynamixel instruction packet- RESET

After resetting I have assigned an ID to all dynamixel actuators. The next step is to set
the CW and CCW angle limits (as mentioned before) to zero.

The last step is to set the moving speed. I will describe this step in more detail, because
we are not just setting the moving speed, but the direction as well.

Setting the dynamixel actuator moving speed and the direction of the movement:

BIT 15~11 10 918716514 (32|10

Value 0 Turn direction Speed value

Table 2-10: Part of the dynamixel control table- Moving speed setting [3]

In the previous table we can see that for controlling the speed we have only 10 bits. This
means that we can achieve 1024 different speed settings. In the other hand, this amount
of available speed setting is unnecessary. In the practice small changes in the moving
speed are almost unnoticeable.

We can set the moving direction of the actuator by setting/clearing the tenth bit at the
proper memory address of the control table. To increase the actuator lifetime, the turn
direction should be changed at low speeds.

28

2.9 Putting the pieces together

2.9.1 Mechanical solutions

During the development of electronics I decided that the robot will have a plastic body.
This will ensure the minimal weight of the body. I wanted a very simple solution so I
bought a simple plastic box. To this I mounted the 4 dynamixel actuator units from
outside.

2.9.2 Electronics

Nowadays a lot of part is available only in SMD package. This was the primary reason
for me to pick almost all of the parts with SMD package. The secondary reason to do so
is that I wanted to produce a small PCB what will easily fit to the plastic box.

This decision what I made according the SMD packages raised more problem. For
development I always used a solderless breadboard. Of course the SMD packages are
not compatible with that. Because of this I had 2 choices: to make an adapter to the
breadboard for all SMD components or to design & realize the whole circuit without
previous testing.

In the end I made some adapters of course (Xbee modules for example), but in the case
of the LED driver, RS485 converter, thermometer I tried out the functionality only
when the boards where finished.

I was lucky because all of the parts worked fine from the first “power-up”.

2.9.3 Schematic diagrams and PCB designs

In the beginning of the schematic and PCB drawing I experienced some problems,
because just in that time I changed to new- unfamiliar- design software. As the time
passed this initial problems disappeared. During the design I had to draw some of the
schematic symbols and PCB footprints myself (some of the parts where too new, that
the design software does not included the specific symbol & footprint yet).

I made all of the PCBs to one-sided. This allowed me to manufacture the boards at
home.

The word “SMD” changes a lot of things both in the PCB design and PCB assembly
process. The final board of course will be smaller, but the manufacturing process can be
challenging. Not to mention the repairing difficulties. Anyway, I didn’t mind that I
chose SMD parts- the technology evolves fast; we have to do the same.

29

3 SOFTWARE

3.1 The software in the microcontroller

Because this was my first time to work with a 16-bit microcontroller I had to read a lot
of datasheets and user manuals before starting the programming itself. The 16-bit
architecture allowed me to write the program in the C language and not in the assembler
language. This has some advantages and disadvantages. The main advantage in using
the C language is the code clarity; the main disadvantage is the compiled code size.

The program in the microcontroller has the following responsibilities:

- Self-configuration: enabling all the necessary peripheral modules

- Communication with the control program (PC) over the Xbee modules. This
includes packet assembly for transmitting, and packet processing (received
packet).

- PWM signal generation for the IR LED (38 kHz carrier)

- PWM signal generation for the LED dimming (power LEDs)

- Compass configuration, reading the information about the heading

- Accelerometer configuration, acquiring the acceleration of each axis from the
Sensor.

- Reading the actual temperature from the thermometer

- Measuring the pulse widths on the TSOP4P38 output

- Controlling the dynamixel actuators- speed and direction, all actuators
independently.

In Figure 3-1 we can see how the program works. The flowchart is simplified, some
details are not included.

We can see from the flowchart that the main program configures the oscillator, and then
maps all the peripherals to the predefined IO pins. The mapping process has to be done
before using these peripherals. The peripherals can be remapped during program flow,
but before remapping the program should disable the actual module to prevent
unexpected operation.

After these steps the program configures every required module (operation mode, speed,
interrupts ...etc.). When that is finished, the program toggles ON/OFF the power LEDs-
this indicates to the user that the microcontroller is finished with the initialization steps.
When finished with this startup “animation”, the program enters to an endless loop. In
this endless loop the program acquires information from all sensors, and then sends the
acquired data to the Xbee module. Because the Xbee is configured for API operation,

30

the microcontroller has to assemble the “transmit request packet” (described in previous
chapters). If the packet is assembled correctly, the Xbee will transmit it to the
destination. The destination device (second Xbee) is connected to a PC.

Because each sensor formats its output data in a different way, the program has to
process these differences. It’s obvious that the transmit request packet will carry
different information for each sensor. Because of this, the program in the
microcontroller has to mark these different packets — allowing the software on the PC to
recognize from which sensor the information is.

So I had to choose a method, how to mark these packets. The following table shows
how the packets are marked:

| Source Information ‘
Value Source)
Source Information Length
0xC Compass
0xA Accelerometer Compass Heading 2 byte
X,Y,Z axi
0xB Thermometer Accelerometer axis 6 byte
T acceleration

0xD | Proximity sensor
Thermometer Actual temp. 2 byte
Proximity sensor Pulse width 2 byte

Table 3-1: Detailed information of the transmitted packet

Of course, this is not the whole “transmit request” packet, just a part of it- the useful
information.

While the program runs in the endless cycle, the flow can be interrupted by the
hardware. More precisely the following modules can interrupt the main program flow:
UART modules, some of the TIMER modules, the Output Compare module and the
Input capture module. When one of the two UART modules interrupts the main
program flow means, that there is information in the input buffer that needs to be read.
The first UART is connected directly to the Xbee module, the second to the dynamixel
actuators trough an RS485 driver. When an interrupt comes from the TIMER1 module,
the program controls if there is a whole packet received by the UARTS or not. If there is
a whole packet available, the program processes it.

31

Power-on-reset

Configure & Tune
the Oscillator

PLL locked?

map peripherals

'

enable all necessary
peripherals

i}

UART interrupt

read available
data from the buffer <€
and save it

Config the following modules:
UART1-2,0utput Compare 1-2,
Input Capture1, Timer 1-2-3-4
(some with interrupts enabled)

v

toggle ON/OFF the
Power LEDs

A

Endless loop:
read from sensors &
transmit
(waiting for interrupts)

TIMER1 interrupt

enough data in the
temporary buffer to
process?

containts the start

discard packet delimiter?

process packet

}

5| returnfrom |

interrupt

buffer empty?

return from
interrupt

Input Capture

interrupt

\

save captured value

waited for falling edge?

waited for rising edge?

set state:
wait for fall edge,
calculate pulse width

TIMER2 interrupt

set PWM duty cycle
for the next period.
(Power LEDs)

}

return from
interrupt

set state:
wait for rise edge

set state:
wait for fall edge

A
break 't

Figure 3-1: MCU program- simplified flow chart

32

3.2 The software for the PC

The user interface to the robot is written in the C# language. In the beginning, I decided
to create the software as an MDI application, so in the main window (parent) the user
will be able to open more than one secondary window (child). This allows the user to
use more than one feature at a time.

Let’s discuss the user interface in details:

3.2.1 The main —parent— window

In the following figure we can see the important parts of the parent window:

File | Window Window
MainCantrol ‘ Arrange 4 Cascade
Accelero Status/Control bar Tile horizontal

Compass Tile vertical

Temp sensor

Arrange Icons
Console

30
Exit

Available ports b FaritleOﬂE j Stop bits IOne j Data bits IE j Baud rate |1152CH) j Cpen | Close | Refresh | Pt]

Figure 3-2: Important parts of the parent window

Under the File menu the user can open any of the child windows. The Window menu
allows some simple arrangements of these opened windows. The Window menu also
allows the user to hide the “control tab” which is located at the bottom side of the main
window.

In the control tab the user can select one of the offered serial ports, and select desired
parameters before opening. When the serial port opening was successful the program
will disable these controls to avoid further modification. When the port is closed, the
controls will be enabled again. Because another program can use our selected serial
port, we have to make sure the program won’t crash during the opening process.

33

3.2.2 The ,,Compass“ child window

When the user opens the Compass window from the File menu the following window
will appear:

EEr— o]

Figure 3-3: The Compass child window

When this window is opened, the program will draw and rotate a picture according to
heading information. The concrete heading is also displayed (in degrees) at the bottom
of the window. The picture is downloaded from:
http://projectgroundswell.com/2010/04/23/a-man-and-his-bicycle/600px-
compass_rose_english north-svg/

34

http://projectgroundswell.com/2010/04/23/a-man-and-his-bicycle/600px-

3.2.3 The “Accelerometer” child window

In the following figure (Figure 3-4) we can see how the data from the accelerometer is
displayed.

Data from ADXLIS

X Ais

Figure 3-4: The Accelerometer child window

The ADXL345 is a 3-axis accelerometer, so we are displaying here 3 curves in the
graph- each with a different color. In this graph the acceleration is displayed (with
informative character), however we can calculate the inclination from the acceleration.
For this calculus we can use the following formulas':

X-axis inclination:
A
0 = tan 1| —=2£ (1.)

/ 2 2
Ay,out+Az,out

Y -axis inclination:

_ Ay out
Y = tan | =22— (2.)
,Aazc,out"'A%,out
Z-axis inclination:
_1 A5 ouetAZ oue
¢ = tan~t[L2 3.)
Az,out

Inclination values are displayed at the top-left corner of the window; however the
practical use of these values will be discussed later.

! Formulas where copied from [25]

35

3.2.4 The “Console” child window

In the Console window (Figure 3-5) we can control the incoming transmission. At first
sight this is not an important thing to do, but when we are developing a program which
processes some incoming data, that’s a basic thing that in some way we’re displaying
the original incoming transmission. When it’s done, we can start to develop the
processing algorithms. In Figure 3-5 we can clearly see all the incoming data from the
robot: we can see at the beginning of each packet there is the “start delimiter” which is
followed by the packet length (2 bytes), packet type, 64-bit source address, 16-bit
source network address and the receive options. Just after these information comes the
most important part of the message: information from the sensors. As discussed before,
the information from each sensor is marked with a character before the actual
information.

Console

79675601 0C OAFOES
010D EE BB 38
01 0A 0500 05 00 FE 0O DB
0108 1D 00 Cs
07 0C OA FE DA
0100 EE BB 38

01 0A 02 00 11 00 FA 00 D7

OF 50 0013 A2
OF 50 0013 A2 0
13500013 A2
OF 50 00 13 A2
OF 50 00 13 A2
OF 500013 A20
13500013 A2
OF 50 00 13 A2
OF 50 0013 A2
OF 50 0013

JE00 13500013 A200

01 0A 00 00 D4 00 F7 00 E3
0108 1D 00 C5
01 0C DA F8 ED
010D EF 38 BA

$010A03001400F800 D0

Pl S e e e e e e el e e
mnininnininninininin

Figure 3-5: The Compass child window

The reader may have noticed that there is a send button in the top-right corner of this
window. This button is not yet used; it was placed there for future use together with the
textbox (bottom part of the window) - to allow the user sending specific messages to the
robot. This function will be implemented when someone will develop further this
program/project.

36

3.2.5 The “3D” child window

During the development I decided to display the information from the accelerometer not
just in a simple graph, but also in a 3-Dimensional form. Because we are calculated the
inclination before, this is the best moment to use this data.

Figure 3-6 shows the practical implementation of the calculated inclination.

[child_wpf =10l x|

Camera X Position:

Camera Y Position:

I 6.5

Camera Z Position:

IE

Look Direction X-
-9

Look Direction Y-

Figure 3-6:The 3D child window

With this part of the software I had some problems, because in the beginning a created
this program as a “WindowsForm” application. This meant that drawing and rotating
3D objects will be a big problem. I had 2 choices: re-create the whole program as a
WPF application (which offers everything what we need for 3D drawing & rotating), or
to find some other way to do the drawing. A did a lot of research on the internet, when |
found out that a WPF application can be integrated to an existing WindowsForm
application.

The tutorial what I used to create this 3D animation is available at [26]. The source code
of this tutorial was modified by me. The original source code of this tutorial contained
only the rendering of a 3D-cube (Figure 3-6), so I had to modify it to add rotation
availability. The rotation is done by object transformations.

This 3D animation is using the acquired data from the compass and the accelerometer.
Because the compass is not tilt compensated, the heading information won’t be valid if
the robot is tilted. Therefore if the inclination exceeds a predefined value, the program

37

ignores the heading information from the compass, and leaves the last value of rotation
displayed. When the inclination drops below the predefined limit, the program will
again use the heading value from the compass for the animation.

3.2.6 The “main control” child window

There is only one thing what we haven’t discussed yet, and that’s the actual control of
the robot.

I had in mind that I should add interactive control ability to the user program. So |
decided that the robot will be “guided” by the help of the mouse. To allow this
functionality I added a “picture —box” control to the Main Control window (Figure 3-7),
in this picture box will be the user able to control the robot movement. When the user
clicks with the mouse (and holds the button) inside the picture box, a line will appear
inside the picture box connecting the cursor and the bottom-center side of the picture
box together. From the length of this line and its position (compared to the picture box
boarders) the program calculates the necessary speed for each dynamixel actuator. The
length of the line gives the total speed which is then divided between the left-side and
right-side servos. When the left-side servos are turning faster the robot will turn right, in
opposite case the robot will turn left. When the user releases the button, the robot stops.
The program distinguishes the left-button click from the right-button click. This allows
moving direction change.

- (o] x|
1 2 1 s LED

16,32

I Front [~ Back o

12
45
—
r Synchro

DIRECTIONS [T Synchro

STOP! |

Figure 3-7: Main Control window

In some cases the situation requires to operate the servos separately. The program
allows that too, for that reason I added “slider” controls. The moving speed and
direction can be controlled with these sliders for each servo. The last slider serves for
LED dimming control. With that we can control the brightness of the power LEDs.

38

4 SUMMARY AND CONCLUSIONS

I have successfully designed and realized a remote controlled robot. If we take a close
look at the sensors, the robot contains the following: a compass, a 3-axis digital
accelerometer, a thermometer and a mid-range proximity sensor. Almost all of them are
working without a single problem. I experienced some problems with the proximity
sensor. During the development I corrected one mistake in the software, but the problem
with this sensor still remained. In my opinion there is not enough isolation between the
IR-diode and the sensor to avoid crosstalk. Because the lack of time I haven’t corrected
this error, so the control program just displays a meaningless value from the sensor —
which should be of course the pulse width at the sensor output.

As the heart of my robot I used a 16-bit microcontroller from Microchip Technology. It
handles all the attached sensors and the communication trough the Xbee module too.
Communication over these Xbee modules can be an interesting challenge. In the
beginning I tried the “transparent” operation, which means that the Xbee module simply
replaces a serial link. This method proved to be an ineffective one in this project. After
that I decided to use the second option- the API mode. This meant that for success
communication I had program the microcontroller to assemble the corresponding packet
(in API mode the Xbee module accepts only packets-in a predefined format). At this
point of development I experienced the following problem: the wireless communication
speed was very low. After 2 days of debugging I found the problem. Every packet
which has to be transmitted to another device (router, end device...) contains the
destination address. But for the coordinator there is a reserved address. So I decided to
use this reserved address instead of the actual — as the packet destination. However |
was not aware of the following: finding the coordinator on a network takes some time
(The Xbee automatically searches for the coordinator). After changing this reserved
address to the actual, the problem was solved.

The main control software for the PC is realized in the C# language. This software
provides a simple user interface to control the robot. An MDI application was created to
allow more comfort to the user. This software processes all information coming from
the robot. After processing the program displays the useful information to the user. The
interface allows the user controlling the robot interactively with the mouse. All
dynamixel actuators can be controlled separately if desired.

My robot isn’t perfect; there are some bugs in the software which needs to be
corrected in the future. I hope that I will have an opportunity to continue the
development of this robot, because there are some features that I wanted to try- both in
software and hardware.

39

S GLOSSARY

PIC
MCU
I’C
SPI
UART
PCB
EEPROM
MDI
API
PLL
WPF
SMD

Peripheral Interface Controller
Microcontroller Unit

Inter-Integrated Circuit

Serial Peripheral Interface

Universal Asynchronous Receiver Transmitter
Printed Circuit Board

Electrically Erasable Programmable Read-only Memory
Multiple Document Interface

Application Programming Interface

Phase Locked Loop

Windows Presentation Foundation

Surface Mount Device

40

6 REFERENCES AND BIBLIOGRAPHY

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

Microchip [online]. Datasheet PIC24HJ32GP302/304, PIC24HJ64GPX02/X04 and
PIC24HJ128GPX02/X04. Microchip Technology Inc. [cit. 21.05.2012].

Available at www:

http://ww1.microchip.com/downloads/en/DeviceDoc/70293F.pdf

Microchip [online]. User’s guide MPLAB® C30 C COMPILER. Microchip Technology,
Inc. [cit. 21.05.2012]. Available at www:
http://ww1.microchip.com/downloads/en/DeviceDoc/MPLAB%20C30%20UG_DS-

51284f.pdf

Megarobot [online]. User’s manual Dynamixel RX-64. ROBOTIS. [cit. 21.05.2012].
Available at www:
http://www.megarobot.net/cj/manualy/robotis/RX64 aj.pdf

Analog Devices [online]. Datasheet ADXL345 Digital 3-Axis Accelerometer. Analog
Devices, Inc. [cit. 21.05.2012]. Available at www:
http://www.analog.com/static/imported-files/data_sheets/ADXI.345.pdf

Honeywell [online]. Datasheet 2-Axis Compass with Algorithms HMC6352. Honeywell
International, Inc. [cit. 21.05.2012]. Available at www:

http://www5 1.honeywell.com/aero/common/documents/myaerospacecatalog-
documents/Missiles-Munitions/HMC6352.pdf

Digi International [online]. Datasheet Xbee®/Xbee-PRO® ZB RF Modules. Digi
International, Inc. [cit. 21.05.2012]. Available at www:
ftp://ftp1.digi.com/support/documentation/90000976_H.pdf

SHARP, J. Microsoft Visual C# 2010 Step by Step, Microsoft press, 2010

Robert Reese, J.W. Bruce, Bryan A. Jones Microcontrollers- From Assembly Language
to C Using the PIC24 Family, Course Technology, 2009

Microchip [online]. 16-bit MCU and DSC Programmer’s Reference Manual, Microchip
Technology, Inc. [cit. 21.05.2012]. Available at www:
http://ww1.microchip.com/downloads/en/devicedoc/prog_ref manual.pdf

Microchip [online]. 16-bit Language Tools Libraries, Microchip Technology, Inc.
[cit. 21.05.2012]. Available at www:
http://ww1.microchip.com/downloads/en/DeviceDoc/51456G.pdf

41

http://wwl.microchip.com/downloads/en/DeviceDoc/70293F.pdf
http://wwl.microchip.com/downloads/en/DeviceDoc/MPLAB%20C30%20UG
http://www.megarobot.net/ci/manualy/robotis/RX64
http://www.analog.com/static/imported-files/data
http://www51.honeywell.com/aero/common/documents/myaerospacecatalog-
ftp://ftpl�digi.com/support/documentation/90000976
http://wwl.microchip.com/downloads/en/devicedoc/prog
http://wwl.microchip.com/downloads/en/DeviceDoc/51456G.pdf

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

Microchip [online]. Reference manual Section 12. Input Capture, Microchip
Technology, Inc. [cit. 21.05.2012]. Available at www:
http://ww1.microchip.com/downloads/en/DeviceDoc/70198D.pdf

Microchip [online]. Reference manual Section 13. Output Compare, Microchip
Technology, Inc. [cit. 21.05.2012]. Available at www:
http://ww1.microchip.com/downloads/en/DeviceDoc/70209A.pdf

Microchip [online]. Reference manual Section 18. Serial Peripheral Interface,
Microchip Technology, Inc. [cit. 21.05.2012]. Available at www:
http://ww1.microchip.com/downloads/en/DeviceDoc/70206b.pdf

Microchip [online]. Reference manual Section 19. Inter-Integrated Circuit, Microchip
Technology, Inc. [cit. 21.05.2012]. Available at www:
http://ww1.microchip.com/downloads/en/DeviceDoc/70195B.pdf

Microchip [online]. Reference manual Section 17. UART, Microchip Technology, Inc.
[cit. 21.05.2012]. Available at www:
http://ww1.microchip.com/downloads/en/DeviceDoc/70188C.pdf

Microchip [online]. Reference manual Section 11. Timers, Microchip Technology, Inc.
[cit. 21.05.2012]. Available at www:
http://ww1.microchip.com/downloads/en/DeviceDoc/70205B.pdf

Microchip [online]. Reference manual Section 6. Interrupts, Microchip Technology,
Inc. [cit. 21.05.2012]. Available at www:
http://ww1.microchip.com/downloads/en/DeviceDoc/70184b.pdf

Microchip [online]. Reference manual Section 7. Oscillator, Microchip Technology,
Inc. [cit. 21.05.2012]. Available at www:
http://ww1.microchip.com/downloads/en/DeviceDoc/70186E.pdf

Jack Xu. Practical WPF Charts and Graphics, Apress, 2009

STMicroelectronics [online]. Datasheet STCN75- Digital temperature sensor and
thermal watchdog. STMicroelectronics. [cit. 21.05.2012]. Available at www:
http://www.st.com/internet/com/TECHNICAL._RESOURCES/TECHNICAL_LITERA
TURE/DATASHEET/CD00153589.pdf

Vishay Intertechnology [online]. Datasheet TSAL6200 High Power Infrared Emitting
Diode. Vishay Intertechnology, Inc. [cit. 21.05.2012]. Available at www:
http://www.vishay.com/docs/81010/tsal6200.pdf

42

http://wwl.microchip.com/downloads/en/DeviceDoc/70198D.pdf
http://wwl.microchip.com/downloads/en/DeviceDoc/70209A.pdf
http://wwl.microchip.com/downloads/en/DeviceDoc/70206b.pdf
http://ww
http://�microchip.com/downloads/en/DeviceDoc/70
http://wwl.microchip.com/downloads/en/DeviceDoc/70188C.pdf
http://wwl.microchip.com/downloads/en/DeviceDoc/70205B.pdf
http://wwl.microchip.com/downloads/en/DeviceDoc/70184b.pdf
http://wwl.microchip.com/downloads/en/DeviceDoc/70186E.pdf
http://www.st.com/internet/com/TECHNICAL
http://www.vishay.com/docs/81010/tsal6200.pdf

[22]

[23]

[24]

[25]

[26]

Vishay Intertechnology [online]. Datasheet TSOP4P38 IR Receiver Modules for Mid
Range Proximity Sensors. Vishay Intertechnology, Inc. [cit. 21.05.2012].
Available at www:

http://www.vishay.com/docs/83305/tsop4p.pdf

Texas Instruments [online]. Datasheet LM3407 350mA, Constant Current Output
Floating Buck Switching Converter for High Power LEDs. National Semiconductor
[cit. 21.05.2012]. Available at www:

http://www.ti.com/lit/ds/symlink/Im3407.pdf

H.R. Everett, Sensors for Mobile Robots, A K Peters/CRC Press (July 15, 1995)

Analog Devices [online]. Application Note Using an Accelerometer for Inclination
Sensing. Analog Devices, Inc. [cit. 21.05.2012]. Available at www:
http://www.analog.com/static/imported-files/application_notes/AN-1057.pdf

Window Presentation Foundation (WPF) 3D Tutorial [online]. [cit. 21.05.2012].
Available at www:
http://kindohm.com/technical/ WPF3DTutorial.htm

43

http://www.vishay.com/docs/83305/tsop4p.pdf
http://www.ti.com/lit/ds/symlink/lm3407.pdf
http://www.analog.com/static/imported-files/application
http://kindohm.com/technical/WPF3DTutorial.htm

LIST OF ATTACHMENTS:

Attachment 1: Schematic diagrams & PCB designs
Attachment 2: Bill of materials
Attachment 3: Pictures of the finished robot

CONTENT OF THE SUPPLIED CD:

- Microcontroller source code

- Main control program- Visual Studio Project

- Bachelor thesis Remote Controlled 4-wheel robot

- Schematic diagrams & PCB designs (in PDF format)

44

& Printed

iagrams

ic d

Schemat

Attachment 1

t board designs

Circul

14 _ € 2 3
Agumeiq | 00Qy; i E
10 198yg 2102561 E1e ano
v 19)aU0J9[200y -
uoisiey JagqunN 2218 g A_OM\
L
9 0as
on, Fol oy ayo
§ =0 =
m SOV seduny
= _ ——r=
= 9d z P0kg
0ideq v L — MoLiuT
_ £AED0N o
>t +0Ia aNo 7 =
X1 4010/ 810 8010/ 410 =X aNo v
= EAE00A
ano X—gr1d3TT8/NO N X _ EAEDON
Iﬁ| o % et 436A HOIO [e—X 0
W \I‘ 71 501/ OISy ZL0Ia/ WM ISSH [9B—X
\Na >—51 9010/ S14 13534 —X
>t 01 /eav 21010 {p—x
1 2010 /2av NIQ o X 16vn
>t 101/ 1av 1n0a P X411V
- b
»—5g™] 0oia/oay gl T EAEDON N
ano N
— ano
_— EAEDOA
m>_m0mzm‘_mmvmm. ||
o NEEETD 0S/3-FEJDYErHYZO!
WO opuner L 8H/ISONd/} INO/SHJH/BNY
= e oL ¥ LEHHWNIEND/Y L dH/ODLH/O INY
0 - v LGH/GHNG/E INO/E L db/ | INY
MPHUEIAQ) XHON= kg it 199/00Nd/PIND/ZH U2 INY
s S L LBMING/SIND/L L H/SWLZONIE/Z200d s
£ S _ L8H/20N/9 IND/OLdH/IAL/ZANINZZADd aNo
z 68H/EQN/END/6dHLYS/OAL =
L — = o0A 88H/ AN d/ZINO/RIL/L TOSMOL
o = “or QH/GAN/EZNO/LAH/O NI
b oidn o 1/90Nd/VZND/9dH/L TOSV/EONI/E0Dd
8H/.ANd/ZZNO/SdH/ LY ASY/EANNIEADd
38N/ INOME/IDSOS
8L/IND/EdH/+NILOSNY SSAV
28U/9NO/ZdH/NIHO/PNY SSA
EABOON ONO GH/SNO/L B/ NIZO/ENY /1 ONINT/109d ssn (2
. = 088 /PNO/0dH/NIZD/NY/ L GNIN4 0D o
= QY 5z <aan > s
= _ VH/LYING/ONO/YOLLIOOSOS aan & 5
f— S — FERIT) EVH/0VINd/6ZNO/OM10/00S0
el sosues dum 2 INFHONG 2VH/0END/O/IOSO 34000aNdvOA (m—EiE
v — ano aon [S3 v LYH/END/4THNVINY
3 OVH/ZND/4THN/ONY HION for ERRID
) — OV 17 Zn
i 1y
e £AEDON oL
Id S [35)
EAEDON 108 %< <10S » uoys uoys yoys
> HINO/INI V3OS [E—Was —W— —W— —W—
n 24 ey vy £AEDOA
14 € 2 3

Control Circuit

ain

Schematic diagram- M

Figure 6-1

45

v [L
“AGUMEIq J0QPSIOAID Po] JIBBoS\ DEAUNS | o1
10 1994S | 2102561 1]
w
uoisiey J8quUNN 0215
oL
aND aND aN®
oueag/ny
429 0982 Y89
Y
ano 1 9y i)
= 10
AW OPEN
d3 00 [
N9 sd [
21) owesy/nt
2a31 £04a0 @lm R RE]]
]
8] uin Y |55 ZNIa
, i} X1 sNs| o
Z] 2N
opeon
aNo aNo aNd 3
= = = [
ZNIa 8
2d
oueag/ny TNIa
429¢ 0983 Y89
2T g N3
and) ey 8¢
= €0 NI
AWOVEN
43 O0A (5
aNo sS4 o
ano
1031 5 | © NG = awo
8 un Y |3 TAIG fiddng
4u001
L X1 SNSI [y o
d mn

<+

Id
UIA - UIA

1ver

Schematic diagram- LED dri

Figure 6-2

46

14 € 2 3

47

Schematic diagram- Xbee <-> PC

Figure 6-3

:Agumeiq | 00quoEn episOd _sea\ eAUNSta ETE]
10 1994S | 2102561]
lad
uoIsIey JaquNN 2zIS
apL
a3l
5029 !\“« HO
o va o SNgo =2} 0L'6NId
a3 aIrpow ez
e 5 Wewi1o #S10 X
H0/9 Ho
#4331 axd
* e e * HZEZNI -
v ayo X #13s3d #S1d X
ERRR I_Hl > N3umd axL g
7 0500A OIOOA 5
5] BWdasn 20A =X
OASOON e araiHs aakHs
€n 3
anoe
01 %qx
X voIa aNS 57
X1 L0Ia /810 8010/81a e—X
e X5 43318 /NO ON X
oo \a3 b EECT Hoia e—x
.mm 571 SO0/ Iossy 240Ia / INMI ISSH a—X
¥,
\No >571 9010/ SLY 13834 g—X
VT%V €010 /€av zioia Avv.lx
Y5 2oia/zav NI o
X5 1oia/av 1n0a p=
55> “00ia/0av PN 7 1
anos 2n
EAEDOA
and
[LEY)
5029 _A
1y 5
1a n

O0ASOOA EAEDON O0ASOOA

14 €
:Agumeld | 00Qugyos Auixady peAunsia CTE]
10 1994S | 2102561]
lad
uoIsIey JaquNN 2zIS
apL
ano
“dind-ueb Lt
[te] od
and
and
Hozg
ot v
€
4
b
ICET AN A_s Aw
a A]
ENE ENE
v
ene
14 €

chematic diagram- IR sensor

~

I

Figure 6-4

48

BNL 3073
\@NUAgIK\
XBNHY200

ni°1

T

Figure 6-5: PCB- Main Control Circuit

L ACH]

o3
51

| I ¥S
L L o 00 19
e o 0o 0 ml |m Eg il =
P cd HEHn o
mmo €U - U |e
- :D: B = o= ¢
. o CEE = - |
8 I — - 8
: u - - [m(®
g 114 e H - - e
. I_U 1 BE - - e
* =f]l= mmEs = Y -
m :D: 570 EES an
i ® & & & & 0 0 0
B3

Figure 6-6: PCB component placement- Main Control Circuit

49

-g:;;

W EwE
i s
un

Pl]
®:eom)

Figure 6-8: PCB component placement- LED driver

50

x
=X
2
I
<
[40)
o
o
/
50
.|
Cc
2
1]
At
7/
vy
|
|_
“
(=)
g
(%]

Figure 6-9: PCB- Xbee <->PC

LB

Figure 6-10: PCB component placement- Xbee<->PC

51

o

\PNUAIK\
XBNHY200

13
=
O
1
—
C
m

-
—
C

Figure 6-11: PCB- IR sensor

Figure 6-12: PCB component placement- IR sensor

Attachment 2: Bill of materials

Main Control Circuit

STCN75

PIC24HJ64GP502

RS485 transceiver

Xbee Pro S2

DC/DC converter 1A

10uF /1206

100nF /1206

LED /1206

Header, 4-pin

Terminal, 2-pin

Header, 8-pin

Header, 5-pin

Header, 3-pin

NPN general purpose transistor /SMD
10kQ /1206

0Q /1206

RS485 termination resistor, not included
680 /1206

Board with Xbee module for PC
100nF /1206

LED 5mm /green

6700 /1206

460Q /1206

0Q /1206

LF33CV

Xbee Pro S2

MM232 USB/UART dev. module

IR proximity sensor

TSAL6200

20Q /1206

4k7 /1206

NPN general purpose transistor /SMD
TSOP4P38 — IR receiver

Header, 4-pin

Ul

U2

U3

U4

Us

C1

C2

D1, D2
P1, P2, P5
P3, P4

P6

P7

P8

Ql

R1, R5, R6,R10,R11
R2,R3, R4
R7

R8, R9

Cl1

D1, D2, D3, D4
R1,R3, R4

R2

RS5, R6, R7, R8
Ul

U2

U3

D1
RS
R6
Ql
Ul
P1

53

LED driver circuit
100nF, ceramic /1206
1uF, ceramic /1206
Schottky, 30V/1A
22uH/SMD
Terminal, 2-pin
Header, 3-pin
68k /1206

67k /1206

6700 /1206
LM3407 /eMSOP-8

Miscellaneous

4x Green LED -1W
4x Dynamixel RX-64
1x Plastic enclosure
1x 3A fuse

HMC6352 digital 2-axis compass
ADXL345 3-axis digital accelerometer

Cl
C2,C3,C4,C5
D1, D2

L1,L2

P1, P3, P4

P2

R1, R4

R3, R6

R2, RS

Ul, U2

54

Attachment 3: Pictures of the finished robot

Figure 6-13: The finished robot

Figure 6-14: Board with Xbee module- PC side

55

zzn&mw..

_com -

oas(®
Zin(®

) Tani(e
N s
Jon(#

Figure 6-15 Compass and the Accelerometer mounted to a cuprextit board

Figure 6-16: The finished LED driver

56

I S

T HIE | -
u

1
3
o
=y

|
-
»
;.00“-0»0.5'.1.

¥y
Y
A

.
T

Figure 6-17: Finished main circuit- bottom side

Figure 6-18: Finished main circuit- top side

57

Figure 6-19: Finished robot- inside view

58

