Implementation of Sample Selection Estimators into Double Machine Learning Framework – Ing. Michaela Kecskésová
Ing. Michaela Kecskésová
Bachelor's thesis
Implementation of Sample Selection Estimators into Double Machine Learning Framework
Implementation of Sample Selection Estimators into Double Machine Learning Framework
Abstract:
Táto práca predstavuje tzv. dvojité strojové učenie (Double Machine Learning - DML), rámec navrhnutý na odhadovanie vektorov parametrov vo vysokodimenzionálnom prostredí, kde môže byť počet premenných potenciálne veľmi veľký. Okrem všeobecného popisu tohto rámca je hlavným cieľom práce implementovať nedávne rozšírenie DML do DoubleML, populárnej knižnice jazyka Python pre modely založené na DML, ktorej …moreAbstract:
This thesis presents an overview of Double Machine Learning (DML), a framework designed for estimating lower-dimensional parameter vectors in high-dimensional settings, where the number of variables can potentially be very large. In addition to outlining the general framework, the main goal of the thesis is to implement a recent extension of DML into DoubleML, a popular Python library for DML-based …more
Language used: English
Date on which the thesis was submitted / produced: 23. 5. 2024
Identifier:
https://is.muni.cz/th/qqu9h/
Thesis defence
- Date of defence: 24. 6. 2024
- Supervisor: RNDr. Martin Jonáš, Ph.D.
- Reader: RNDr. Vít Musil, Ph.D.
Citation record
ISO 690-compliant citation record:
KECSKÉSOVÁ, Michaela. \textit{Implementation of Sample Selection Estimators into Double Machine Learning Framework}. Online. Bachelor's thesis. Brno: Masaryk University, Faculty of Informatics. 2024. Available from: https://theses.cz/id/bb8q2m/.
Full text of thesis
Contents of on-line thesis archive
Published in Theses:- světu
Other ways of accessing the text
Institution archiving the thesis and making it accessible: Masarykova univerzita, Fakulta informatikyMasaryk University
Faculty of InformaticsBachelor programme / field:
Informatics / Informatics
Theses on a related topic
-
Fiscal multipliers through machine learning
Juraj Szitás -
Inovativní investiční management: Analýza vlivu rizikového kapitálu na růst evropských high-tech startupů s využitím machine learning metod
Igor Kadet -
Machine Learning-Aided Monitoring and Prediction of Respiratory and Neurodegenerative Diseases Using Wearables
Justyna Skibińska -
Library for Boolean function manipulation in Rust and Python
Ondřej Hrdlička -
Webové rozhraní s využitím programovacího jazyka Python
Petr Raida -
RESTful API a klientská knihovna v jazyce Python pro server APhoS
Pavel Kinc -
Implementation of a python library for provenance
Roland Olejník -
Python a jeho využití v matematice
Tomáš Salavec