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ABSTRACT 
The dissertation deals with SegDWT algorithms performing a segmented (segmentwise) 
computation of one- and multi-dimensional Discrete Wavelet Transform - DWT. The 
segmented approach allows one to perform the segment (block) wavelet analysis and 
synthesis using segment overlaps while preventing blocking artifacts. The parts of the 
wavelet coefficients of the whole signal wavelet transform corresponding to the actual 
segment are produced by the analysis part of the algorithm exploiting overlap-save prin­
ciple. The resulting coefficients belonging to the segment can be processed arbitrarily 
and than they can transformed back to the original domain. The reconstructed segments 
are than put together using overlap add principle. 
The already known SegDWT algorithm can not be effectively used on multidimensional 
signals. Several modifications of the algorithm are proposed which makes it possible to 
generalize it to multidimensional cases using separability property. In addition, the thesis 
presents SegLWT algorithm adopting ideas of the SegDWT and transferring it to the 
non-causal lifting filter bank structures. 

KEYWORDS 
discrete wavelet transform, lifting scheme, real-time, SegDWT, parallelization, overlap-
add, overlap-save 

ABSTRAKT 
Dizertační práce se zabývá algoritmy SegDWT pro segmentový výpočet Diskrétní 
Waveletové Transformace - DWT jedno i vícedimenzionálních dat. Segmentovým 
výpočtem se rozumí způsob výpočtu waveletové analýzy a syntézy po nezávislých seg­
mentech (blocích) s určitým překryvem tak, že nevznikají blokové artefakty. Analyzující 
část algoritmu pracuje na principu odstranění přesahu a produkuje vždy část wavele-
tových koeficientů z waveletové transformace celého signálu, které mohou být následně 
libovolně zpracovány a podrobeny zpětné transformaci. Rekonstruované segmenty jsou 
pak skládány podle principu přičtení přesahu. 
Algoritmus SegDWT, ze kterého tato práce vychází, není v současné podobně přímo 
použitelný pro vícerozměrné signály. Tato práce obsahuje několik jeho modifikací 
a následné zobecnění pro vícerozměrné signály pomocí principu separability. Kromě toho 
je v práci představen algoritmus SegLWT, který myšlenku SegDWT přenáší na výpočet 
waveletové transformace pomocí nekauzálních struktur filtrů typu lifting. 
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INTRODUCTION 
The discrete wavelet transform (DWT) has been extensively studied over the recent 
decades. Many applications have been proposed but the true power of the wavelet 
transform lies in its performance in compression and denoising schemes. The exis­
tence of fast algorithms for its computation is another important factor. The well 
known Mallat's algorithm employs a perfect reconstruction two-channel filter bank 
iteratively and the filter bank can be equally represented by a polyphase lifting 
scheme. The iterative application of the lifting scheme (LWT - Lifting Wavelet 
Transform) results in the same coefficients as the D W T does. 

The present thesis deals with the problem of computing the one- and multi­
dimensional wavelet transform segmentwise. Often, it is impractical or even impos­
sible to load the whole input signal at once. When using common border extension 
methods (e.g. zero-padding, periodization, symmetrical extension) the wavelet anal­
ysis results in "false" coefficients, which, in turn, result in distortion at borders of 
segments after the synthesis, provided the wavelet coefficients were modified (e.g. 
thresholded). The thesis presents an algorithm which circumvents the described 
border artifacts by employing segment overlaps whose lengths are derived from the 
actual discrete wavelet transform setup. 

The idea of the algorithm (Segmentwise D W T - SegDWT) for one-dimensional 
signals was originated by Mgr. Pavel Rajmic, Ph.D. in his dissertation Utilization 
of Wavelet Transform and Mathematical Statistics for Separating Signal from Noise 
[10]. The present thesis builds upon the algorithm and extends it in several ways as 
you can read in the summary in the chapter 3. 

The thesis is organized as follows. Chapter 1 contains a brief introduction to the 
wavelet transform theory on sequences and finite-length signals and highlights areas 
which are treated in greater detail for they are used later in the thesis. These areas 
are Mallat's algorithm, noble multirate identity, lifting scheme and extension of the 
wavelet transform to multidimensional signals. 

The next chapter 2 discusses other approaches to segmentwise computations of 
the wavelet transform found in the literature and the main part of the chapter is 
devoted to description of the original SegDWT algorithm and its parts. 

Chapter 3 describes the main drawbacks of the original algorithm and states 
objectives of the thesis. 

Starting from the chapter 4 the presented ideas are solely an original contribution 
of the author of the thesis. Chapter 4 is devoted to modifications of the original 
algorithm which is not directly usable for multidimensional signals. The new possible 
application of the algorithm rises from the presented modifications viz. Region of 
Interest - ROI wavelet coefficients processing. 
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The next chapter, chapter 5, adapts the ideas of the segmentwise computation 
to the lifting wavelet transform. The process of finding the correct overlaps is 
fundamentally different and more complex. Also the non-causality of a lifting scheme 
makes it difficult to cope with the extensions. 

Chapter 6 contains a generalization of the SegDWT algorithm to multiple di­
mensions (images, videos, M R I images/videos). 

Several programs were created as "proof-of-concept" of the proposed algorithms. 
Therefore, chapter 7 describes VST plugin for a real-time wavelet audio process­
ing. Another application described in chapter 7 is the parallel wavelet transform 
computation of large images. 

The thesis is concluded by an evaluation of the presented contributions and by 
stating directions for further research. 

10 



1 THEORETICAL BACKGROUND 
Despite the relatively short time of its existence, the wavelet transform (WT) es­
tablished itself as a standard tool for digital signal processing. The brisk evolution 
of the W T was driven by the need of a tool which would provide more effective 
representations of signals than the already known ones. Usually, the different kinds 
of representations were compared witch each other using sparsity or compressibility 
property (number of nonzero or important coefficients) i.e. signal recovery accuracy 
using just a minor number of the representation coefficients. Naturally, the property 
of the W T resulted in its usage in many compression schemes for images e.g. E Z W 
[11], SPIHT [12] and its modifications, E B C O T [13] in JPEG2000 standard and 
others and their extensions for videos and more dimensional signals. 

The properties of the W T also allow an effective denoising [14] which can be also 
found in many modifications. 

In addition, the W T was successfully used in areas like image watermarking [15] 
or computer vision [16]. Additional uncommon image operations in the wavelet 
domain were presented in [17]. 

Preliminaries This paragraph establishes common mathematical notation held in 
the thesis. Since the reader is expected to be familiar with the basic concept of the 
continuous W T (scale function, M R A , dilatation equations, there are many intro­
ductory books and publications, to name a few: [18-20] ), the theoretical background 
given in this chapter is limited to the discrete setting only. At first, signals x will be 
considered to be possibly infinite but finite-energy sequences belonging to Hilbert 
space £ 2 ( Z ) with a scalar product induced norm, later, a transition to finite-length 
discrete signals (vectors) from Euclidean space will be made. Moreover, only 
M R A compact support wavelets are considered allowing usage of the fast Mallat's 
algorithm for computing wavelet coefficients using FIR filter banks. 

The signals will be denoted as vectors x, their nth element will be denoted as x[n] 
and the subset of element as x[n] n e j , where X denotes an indexing set. Whenever 
the finite-length signal indexing is used, the zero index denotes the foremost sample. 
Moreover, throughout the text J denotes the depth of the wavelet decomposition and 
m denotes the length of the wavelet filters. The list of used symbols is summarized 
at page 88. 

The notion of the odd and the even downsampling (decimation) and upsam-
pling (interpolation) will become important when dealing with finite-length signals. 
Regarding the downsampling, the factor N even downsampling repeats two steps 
starting with the zero index sample: remove N — 1 samples and leave the N sample, 
whereas the odd downsampling does the steps in a reverse order: leave a sample 
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and than remove TV — 1 samples. Similarly, the factor TV upsampling adds TV — 1 
zero samples "between every two samples". The even upsampling adds TV — 1 zeros 
at beginning and at the end of the signal whereas odd upsampling does not. If it is 
not said otherwise, the even type will be considered throughout the text. 

1.1 Wavelet Expansions on Sequences 
The continuous W T theory concludes [21] that any practically interesting M R A 
compact support dyadic wavelets have a characteristic finite-length dilatation coef­
ficient vectors hmr, gmT associated with them. In the discrete setting, using dilata­
tion coefficients and given number of scales J > 0, one can build basis for M R A 
nested subspaces and their orthogonal complements In the orthogonal 
wavelet case, at each j - t h scale (level of decomposition), there is such set of se­
quences {v-p"''1} z which form orthogonal basis for subspace and for given j the 

sequences are shifted versions of the original one tp^ such as 

tp® [k] = <pP \k-pV 
fcez 

where <p^ is constructed using scale dilatation coefficients for j > 1 

rf) = E ^ [ * ] v ? " 1 ) , (1-2) 

and arbitrary tp^ as 

<P? = E hmAk}<ft£ or ipf = E M * ~ '• (1-3) 
k k 

Similarly, at each scale j , there is a set of sequences { V ^ } z which forms an 

orthogonal basis for subspace 

$)[k] = $)[k-p2>]k& (1.4) 

and using wavelet dilatation coefficients 

^ ' ) = E f t - r [ * ] r f - 1 ) - (1-5) 
k 

W = E f t - r W ^ OT *P = E & - r [ * - 2p] r f _ 1 ) - (1-6) 
k k 

The nested subspaces are organized as follows: 

y ( J ) c . . . c y ( 2 ) c V ( D c V ( o ) ; ( L 7 ) 

12 
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where = £ 2(Z) and {<£p°'>} = S[n — p] p e z being Dirac train and for j > 1 the 
V ( i - i ) = V(j) 0 ± a n d n = 0 for j ^ i h o l d s _ Consequently the union 

of subspaces and for j = 1,..., J covers whole £2(Z) space 

f(z) = y ( J ) u u . . . u (i.8) 

Denoting a^J^ [p] as approximation wavelet coefficients at level J and [p] as 
detail wavelet coefficients at the level j , the wavelet expansion of the input signal 
x can be written as 

<z = a ( J ) [p] ip^ + E [P] ^f- (1-9) 

As {^ J )} and {^>} = i are orthogonal basis vectors for £ 2 (Z), the wavelet 
coefficients of the input signal x are given by scalar products 

[p] = (x, , [p] = (x, tfjfl) , ( i . i o ) 

Using (1.3),(1.6) and = x, the and for j > 1 can be written as 

a O [p] = E / i m r [n - 2p]a^"1) [n], [p] = £ 9mr[n - 2p]a^ [n]. (1.11) 

and similarly in the reverse direction for j = J,..., 1 

a 0 - i ) [p] = £ frmr[p _ 2n]a® [n] + £ gmr[p - 2n]d® [n] (1.12) 

It is well known, that the equations (1.11) can be rewritten in a form of a 
convolution followed by the downsampling (see fig. 1.1) and for the given J form 
iterated two-channel filter bank. This way of computing the wavelet coefficients is 
referred to as fast (discrete) wavelet transform or MallaVs algorithm [20]. 

In the biorthogonal wavelet case, there are two sets of dilatation coefficient 
vectors hmr,gmr and /imr,<7mr and also two sets of hierarchical subspaces and 

V(J) . . . c y ( 2 ) c y d ) c y(o) a n d y ( J ) c y ( 2 ) c y(i) c y ( 0 ) j ( 1 1 3 ) 

having basis vectors 

{<4 j )}, respectively with V ( 0 ) = V ( 0 ) = £2 (Z) and 
jy>(°) j = {<£>p

0'>} = S[n — p] p Gz- For the given j , the bases are dual to each other, 
which means that projecting vector onto one base gives coordinates in the sec­
ond one and vice versa. Similarly, there are complementary spaces and y\AJ) 
with basis sequences j i / ^ j , JV>P"''> j respectively. The orthogonal complements are 

13 



y ( i - i ) = yO) 0 - L yyXi) a n d y O " 1 ) = y(i) 0 ^ Consequently, the union of sub-

spaces and and union of subspaces and V\AO for j = 1, . . . , J forms 

M R A biorthogonal bases for the £ 2 ( Z ) space 

£2(Z) = y ( J ) L I W ^ U W ^ 1 1 U . . . U 

V( J-2) 

£ 2 ( Z ) = y ( J ) u w ^ U W ^ 1 1 U . . . U 

; i . i4) 

; i . i 5 ) 

V( J-2) 
As in the orthogonal case, the wavelet expansion is given by (1.9) but the wavelet 

coefficients are calculated differently as projections onto the dual bases 

[P] dj[P\ = \ x ^ . ; i . i6) 

Again, the projections and expansion can be calculated iteratively using fast Mallat's 
algorithm. 

The two channel filter bank view of wavelet transform allowed new approaches 
to wavelet transform design in a form of an orthogonal or biorthogonal filter bank 
solutions satisfying a perfect reconstruction criterion [22, 23]. The approaches will 
not be discussed further, just the main results concerning filter's support and length. 

The analyzing low-pass filter is denoted by h, the high-pass filter by g, the recon­
structing low-pass filter by h, and the high-pass filter by g, see fig. 1.1. The filters 
directly define the dilatation coefficients / i m r , g r m r (and /im r ,<7m r in the biorthogonal 
case). 

a CJ-I) in] 

h 4 i 

9 
<F2 

| 2 V - » a^[n] — ( f 2 ' 

12 W d& [n] — { f 2 

t 2 > h 

9 

a in] 

Figure 1.1: Perfect reconstruction two channel filter bank. 

Wavelet Filters in Detail 

The filters can be of both odd and even length. (Satisfying m > 2 at the same time, 
to make the filtering significant.) The so-called quadrature mirror filters, which are 
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always orthogonal, have all four identical lengths of h, g, h, g. The biorthogonal 
filters nevertheless can have different effective lengths and can achieve properties 
that orthogonal filters cannot (symmetry, linear phase). According to [22], one 
of the following cases is true (both for the decomposition and the reconstruction 
stages): 

1. Both filters have odd lengths which differ by an odd multiple of two. 
2. Both filters have even lengths, being either equal or differing by an even mul­

tiple of two. 
3. One filter is of odd length, the other is of even length, and the zeros of both 

the filters are located at the unit circle. 
To work with filters of different lengths consistently, the shorter one is zero-

padded to the length of the longer one. Zeros, of course, do not affect the values 
at the output of the filter. (The "lifting scheme" [24] which would make use of the 
shorter length, is not exploited.) The rules for padding the shorter filter at both its 
ends follow immediately and they correspond with the Matlab Wavelet Toolbox [25] 
behavior. 

In the following text, only the first two of the mentioned cases are considered 
- case 3 is of no practical interest [22]. Two nonnegative variables l0 and r 0 are 

defined, denoting the number of zeros to be added from the left and the right end, 
respectively. Denoting the effective length of the shorter filter by m, the following 
naturally holds: m = Iq + m + tq. 

In the case 1 (odd m,m) the extensions are chosen so that Iq = ro — 2, which 
leads to 

lo = ^ = ~ l , r0 = —^= + \. (1.17) 

In the case 2 (even m,m) the extensions Iq,to are equal, which induces 
m-m 

lo = r0 = — - — . (1.18) 

Whenever a particular wavelet filter is mentioned in the paper, its abbreviated 
labeling is taken over from [25]. 
Example 1: The biorthogonal filter bank b ior2 .2 comprises the analyzing low-
pass filter h = (h[0],..., h[A]) of length m = len(/i) = 5 and the high-pass filter 
g = (g[0\, g[l], g[2\) of effective length m = len(gr) = 3. This corresponds to case 1, 
and according to (1.17), the extensions to be used are l0 = 0 a r 0 = 2. Thus, the 
resultant padded high-pass filter is (#[0], g[l], g[2], 0, 0). 
Example 2: The biorthogonal filter bank b i o r l . 5 : the analyzing low-pass filter 
h = (h[l],..., h[lQi\) of length m = len(/i) = 10, the high-pass filter g = (g[0],g[l]) 
of only the effective length m = len(gr) = 2. Case 2 should be used now, and 
according to (1.18), the final extensions are l0 = r 0 = 4. Thus the padded filter 
takes the form (0, 0, 0, 0, g[0], g[l], 0, 0, 0, 0). 
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From now on, h, g, h, and g will denote filters already extended to have an 
equal length m. 
Remark 3: When filters of odd lengths are considered, there is one difference 
between the Matlab Wavelet Toolbox [25] and the process just described. The 
Wavelet Toolbox inserts an extra zero at the beginning of both the filters to make 
their lengths be even. 

1.2 Discrete Wavelet Transform of Finite Length 
Signal 

A question that immediately comes to mind when working with time-limited signals: 
Since the fundamental part of D W T is convolution and since convolution is known 
to exhibit "boundary artifacts", how should one compute the wavelet coefficients 
located "near the boundaries"? 

Although this is not the main focus of this work, a summary of possible methods 
which answer the above question is presented in this section. Let us say in advance 
that all of the approaches suffer some shortcoming [18, 19, 25-28]. In this part of 
text, just a single level of the wavelet decomposition J = 1 is assumed (without loss 
of generality). 

1. Using special border filters. In this case, the signal samples in the neighborhood 
of the borders are reconstructed using special filters. The signal is not extended 
in any way. 

2. Assuming periodicity. The signal is considered to be one period of an infinite-
length periodic signal. If, in addition, the signal length is even, then the total 
number of coefficients produced at the first level of decomposition is equal to 
the original number of samples. 

3. Defining samples outside of the original domain. The idea here is that the sam­
ples beyond the signal domain are extrapolated using a more or less suitable 
and/or a more or less computationally demanding method. It is convenient to 
divide the possibilities into several groups: 
(a) Mirroring. The edge-samples are "mirrored" symmetrically. Such an ap­

proach brings "discontinuities" of the signals first difference. If symmetric 
filters (only the biorthogonal filters can be symmetric) are used, it is pos­
sible to make the D W T representation non-redundant (non-expansive). 

(b) Point-symmetric extension. [29] Using point-symmetry one can get rid 
of the discontinuity mentioned. 

(c) Smooth extension using polynomials. The method tries to "guess" sam­
ples outside of the signal domain using a polynomial of a specified order 
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(kth order polynomial preserves the "continuity" of k-th derivative), 
(d) Extending with zeros. This is the simplest method — the signal is con­

sidered to be zero beyond its original borders. 
4. Using samples from the neighboring segment. This approach is natural when 

the signal to be processed is in fact a time-limited portion cut from a longer sig­
nal. For example, in real-time speech processing the buffer holds 256 samples. 
This type of method reasonably uses samples directly from its neighbor(s) to 
extend the borders. 
In this sense, such a method could be considered a special case of group 3. 
Nevertheless, it is listed separately because in the case of the decomposition 
depth being J > 1, the recursive nature of the D W T makes the necessary ex­
tension length greater when compared with the other methods. Such situation 
requires more detailed treatment and modification of D W T and forms one of 
the goals of this dissertation. 

5. Cutting off. The goal of this naive approach is to keep the wavelet repre­
sentation non-redundant. The D W T computation is performed using any of 
the above methods and then the "border" coefficients are simply discarded. 
Therefore the reconstruction cannot be exact near the borders any more. 

Each of the stated methods suffers at least one shortcoming from the following list: 
• the necessity of having special border filters (which is not effective algorithmi-

cally), 
• the deviation from (bi)orthogonality of the transform, 
• inexact reconstruction from the transform coefficients, 
• redundancy (expansivity) of the wavelet representation, 
• possible errors at the "other end" due to periodicity. 

Hence, in choosing a method, one always has to make a compromise. 
We find the extension methods given under item 3 (and possibly 4) to be the 

most natural and the most generally utilizable in practice; such methods have only 
one drawback — expansivity — which means that the wavelet representation of 
a signal will have the total number of coefficients a bit higher than number of the 
input samples. As mentioned in 3a, there exist special situations when expansivity 
does not appear — this is typical of image processing with biorthogonal filters, for 
example [13]. Because of its universality, the generally expansive case 3 is considered 
exclusively. 
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1.2.1 Mallat 's algorithm for finite length signals 

Since the Mallat's algorithm application on finite-length signals may not be clear at 
a first glance, it is established in the following text. 
Algorithm 4: [Decomposing pyramid algorithm DWT] Let x be a discrete input 
signal of length len(cc), the pair of wavelet decomposition filters with length m is 
defined as g and h , J is a positive integer denoting the decomposition depth. Also, 
the type of boundary treatment has to be known: 

1. Denote the input signal x by and set j — 0. 
2. One decomposition step: 

(a) Extending the input vector. Extend from both the left and the right 
sides by (m — 1) samples, according to the type of boundary treatment. 

(b) Filtering. Convolve the extended signal with filter g. 
(c) Cropping. Take just its central part from the result, so that the remaining 

"tails" on both the left and the right sides have the same length (m — 1) 
samples. 

(d) Downsampling. Downsample the resultant vector. Denote the result by 
d^+1^ and store it. Than repeat items b) d), now with filter h, denoting 
and storing the result as a^+1\ 

3. Increase j by one. If it now holds j < J, return to item 2, in the other cases 
the algorithm ends. 

After Algorithm 4 finishes, the wavelet coefficients are stored in J + 1 vectors (of 
different lengths) a^J\ SJ\ d ( J _ 1 ) , . . . , 
Algorithm 5: [Reconstruction pyramid algorithm DWT] 

Given are: pair of wavelet reconstruction filters of length m - the highpass filter 
g and the lowpass filter h, number of signal samples in the time domain len(cc) and 
most importantly the J + 1 vectors of wavelet coefficients a^J\ SJ\ SJ~X\ ..., 
which are the result of the alg. 4. 

1. Set j := J. 
2. One level of decomposition: 

(a) Up sampling. Perform the even type upsampling of the vectors and 
d> . 

(b) Filtration. Filter upsampled, vectors i.e. perform a convolution with 
reconstruction filters h and g respectively. 

(c) Sum. Add up outcomes of both nitrations. 
(d) Cropp off. From the sum, keep just the "middle" part which length 

is equal to the length of vector d^~^ skipping m — 1 samples from the 
beginning. When j = 1 consider the length of the non existing vector 
d ( 0 ) to be len(sc). 
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Denote the resulting vector as a^~l\ 
3. Decrease j by one. If j > 0, than go to step 2., else the algorithm ends. 

The result of the algorithm (the reconstructed signal) is in after the algorithm 
ends. 

1.2.2 Noble M u l t irate Identity 

According to [30], the order of the FIR filters and the downsamplers/upsamplers can 
be interchanged assuming FIR filter impulse response resampling. The property is 
called noble multirate identity and it is shown in fig. 1.2. Using the property, the 
iterated filter bank can be transformed into a non-iterated filter bank. A n example 
of such operation for J = 3 is shown in figures 1.4a and 1.4b for the analyzing filter 
bank and in figures 1.5a and 1.5b for the reconstruction filter bank. The amplitude 
frequency response and impulse responses of the analyzing multirate identity filter 
bank are shown in fig. 1.4c and 1.5c respectively. 

Figure 1.2: Multirate noble identities, commuting operations. 

Figure 1.3: Path trough an iterated filter bank. 

For the purposes of the thesis, it is crucial to derive lengths of the impulse 
responses of the multirate identity filter bank. Given the length of the wavelet 
filters m (possibly zero padded in the biorthogonal filter bank case) and given the 
path trough the tree-structured analyzing iterated filter bank (from to c ^ ) 
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where arbitrary basic filter h,g is denoted as f1 (len(/ 1) = m) and accordingly its 
2*-times upsampled version as fi and assuming the odd-type of upsampling it can 
be written 

len(/i) = M t 2*/i) (1.19) 

len(t i V / J = N • M / i ) - (JV - 1) = JV • m - (iV - 1) (1.20) 

and the length of convolution of two impulse responses is equal to, 

len(/, * /,-) = l en ( / J + len(/,-) - 1 (1.21) 

then the length of the resulting single identical filter can be written as 

len(/! * • • • * fj) = m + 2 • m - 1 - 1 + • • • + 2 J • m - (2 J - 1) - 1 (1.22) 

which can be rewritten to 

len(/! * • • • * / . ) = (2? - l)m - {2? - 2). (1.23) 

1.2.3 Lifting Scheme 

The lifting scheme representation of the wavelet filter bank was introduced by 
Sweldens in [31] and according to [24], every wavelet filter bank can be decom­
posed (factored) into elementary lifting steps. In addition, lifting scheme brings yet 
another way of designing wavelets using custom combinations of these elementary 
lifting steps. Every transform by the lifting scheme can be inverted and it is per­
formed by a mere reversion of the lifting steps. The computation itself can be done 
in-place (no external memory needed) and the computation cost can be reduced 
compared to convolution. The factors are not unique so a considerable effort was 
devoted to finding effective ones [24, 32, 33] because not every factorization is more 
effective than the original filter bank. The most famous is the CDF9/7 wavelet 
factorization, employed in the JPEG2000 standard [13]. Again, the factorization 
process is not the aim of this work and the already known factors will be used. 

Another feature of the lifting scheme is that rounding the results of predict 
and update operation allows transformation which maps integers to integers, usable 
especially for lossless data compression [31]. 

The LWT can also be generalized to non-translation invariant grids and allows 
adaptivity of subsequent lifting steps [34]. However, these extensions are not con­
cerned in this work. 
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1.3 Multidimensional Discrete Wavelet Transform 
There are two ways of extending the discrete wavelet transform to multiple dimen­
sions [35]. There is the anisotropic and isotropic multidimensional wavelet trans­
form. The anisotropic transform consists of J level D W T of rows and then J level 
D W T of columns (the roles of rows and columns are interchangeable), but this is 
not preferred in practice. The isotropic version of the multidimensional W T is used 
almost exclusively. This can be seen as the multidimensional separable orthogo­
nal basis is being built using a tensor product of one-dimensional subspaces. For 
two-dimensional signals the following equation holds 

v ( i _ 1 ) © V ( i _ 1 ) = ( V ( i ) © x W(j)) © ( V ( i ) © x W(j)) 

= (v(j) © v ( j ) ) © ( v ( j ) © © © v ( j ) ) © © . 

(1.24) 

The approximation subspace is denoted as © and there are another three 
detail subspaces: horizontal, vertical and diagonal detail spaces 

yy4 i } = V ( i ) © W^j) = © V ( i ) , and = © (1.25) 

Again, the level j approximation subspaces are nested and the union of detail spaces 
at level j is its orthogonal complement to the coarse subspace at level one less. 

By extending the equation (1.24) to even more dimensions, one can conclude that 
in D dimensions, there are 2D — 1 detail subspaces in addition to the approximation 
subspace, resulting into total of J ( 2 D — 1) +1 subspaces. The multidimensional basis 
vectors are also tensor products of the respective one-dimensional basis vectors and 
they are separable with respect to the individual dimensions. Therefore, each level 
of the transform can be done one-dimension at a time using multiple fast wavelet 
transforms. In case of two-dimensional signals, first the rows, then the columns are 
processed (or vice versa) as shown in fig. 1.6 (left). 

The isotropic multidimensional transform results in the non-standard division of 
spectra [19], see idealized separation of frequency bands for D = 2 and J = 3 in 
fig. 1.6 (right). In fig. 1.7 (right), there is a concrete example of the wavelet repre­
sentation of the Lena image using level J = 3 and CDF9/7 wavelet with symmetric 
boundary handling. 
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Figure 1.4: Iterated filter bank for pyramidal algorithm D W T with J = 3. (a) 
Analysing iterated filter bank according to fast DWT. (b) Noble multirate identity 
of the iterated filter bank, (c) Module frequency response of the noble multirate 
identity. 
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Figure 1.5: Reconstruction iterated filter bank for pyramidal algorithm D W T with 
J = 3. (a) Reconstructing iterated filter bank according to fast DWT.(b) Noble mul-
tirate identity of the iterated filter bank, (c) Impulse responses of the noble multirate 
identity. 
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Figure 1.6: (Left) One level of filter bank for a non-standard division of the spectra. 
(Right) A n idealized non-standard division of the spectra for J = 3. 

Figure 1.7: Two-dimensional separable wavelet decomposition of Lena image, using 
CDF9/7 wavelet and J = 3. Logarithm of absolute values of coefficients is displayed. 
The representation is not expansive because of both symmetrical filters are symmet­
rical boundary extensions. 
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2 MOTIVATION AND STATE-OF-THE-ART 
Often in practice, there are situations when the input signal cannot be loaded and 
processed at once or it is simply not yet known. The input signal is therefore loaded 
one segment at a time, transformed to the wavelet domain, where all desirable 
coefficient processing takes place and than transformed back to the original domain. 
The importance of the border treatment is magnified for the border artifacts can 
become a great issue. This chapter summarizes approaches to the segmented wavelet 
processing. 

Firstly, the shortcomings of the so-called "naive" approach to the segmentwise 
computation of D W T will be shown. In this approach, no segment overlap is ex­
ploited and the segments are transformed using common border extension techniques 
independently. The perfect reconstruction is achieved if the wavelet coefficients are 
not subject to any kind of processing. Doing so, the artifacts at the borders rise up 
after the reconstruction when compared to the whole signal reconstruction. Fig. 2.2 
shows such situation at the 20th row of pixels taken form the Lena image. The setup 
is as follows: 4 level decomposition is used with db4 wavelet, the wavelet coefficients 
are hard-thresholded with A = 150 i.e. all coefficients with absolute value less than 
A are zeroed. Sorted wavelet coefficients before and after thresholding are shown in 
fig. 2.1. 

In addition, 2J-shift invariant property of the D W T restricts segment division 
lines to be multiples of 2 J , otherwise additional inaccuracies can be introduced 
provided a standard implementation of D W T is used. The example in fig. 2.2 
satisfies this criterion. 

0 200 400 600 0 200 400 600 
p —> p —> 

Figure 2.1: (Left) Log of the sorted absolute values of wavelet (both approximation 
and detail) coefficients and the threshold A = 150. (Right) Values smaller than 
threshold are set to zeros. 

The border artifacts are clearly visible in fig. 2.2. 
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Figure 2.2: Artifacts at the borders of the segments. The dividing lines are at in­
dexes k = 48,176,432. The graphs show intensities x[k] of pixels from the 20th 
row of the grayscale Lena image. The signal x[k] was transformed to the wavelet 
domain (level 4, wavelet db4) by the D W T algorithm, wavelet coefficients were 
hard-thresholded with A = 150 and than used for reconstruction. The reconstructed 
signal £ s e g[/c] was obtained by processing coefficients belonging to individual seg­
ments, whereas x[k] by processing the whole input signal. Samples beyond segment 
boundaries were assumed to be zeros (above) and symmetrically mirrored (below). 
The border artifacts are clearly visible, although the symmetrical extension performs 
better in this situation. 
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Figure 2.3: Reconstructed signal degradation using general windowing with overlap. 
The setup was the same as in fig. 2.2, 64 sample triangle window with 50% overlap 
was used. 

The next possible approach, adopted from the short-time Discrete Fourier Trans­
form, is based on signal windowing and overlapping the resultant segments. How­
ever, even when invertible (BUPU - bounded uniform partition of unity) windowing 
is used, severe problems are introduced provided the wavelet coefficients are subject 
to nonlinear processing (see fig. 2.3) or even to linear processing, which is not car­
ried out coefficient-wise, not to mention considerable potential numerical errors at 
the window tails. Such approach is discussed in [36]. 

The state-of-the-art methods which can be found in the literature and which 
treat the border problem differently will be discussed in the following text. However, 
most of the methods seems to be derived for the special case when each segment 
length is equal to a power of two. This assumption is their drawback, mainly for 
larger segments (e.g. the difference between 1024 and 2048 can be inadmissibly big, 
considering for example images, 10242 = 106 and 20482 = 4 • 106). Also, there are 
situations where the segment sizes are not a power of two (e.g. the signal buffer size 
in audio cards running with ASIO driver [37] could be 96 samples). The methods 
can be divided into two classes according to their purpose (and set of drawbacks). In 
the first class, there are methods for real-time wavelet transform which tend to allow 
small errors and in the second class, there are methods for parallel computation of 
the wavelet transform of images which calculate the wavelet transform exactly, but 
they are usually tailored to the specific wavelet filter or just to wavelet analysis. 
Moreover, the calculations are synchronized at each level of decomposition for the 
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purpose of data exchange or partially calculated coefficients completion. 
In [38], the border error-free method for the wavelet packet transform in the audio 

coder setting (nonlinear wavelet coefficient processing) is introduced. The idea is 
transferable to the wavelet transform and, for the wavelet analysis, it is based on 
reusing the last m — 2 approximation coefficients at each level j from the previous 
segment, achieving correct wavelet coefficients. However, the synthesis process is not 
derived for arbitrarily filter lengths and its description is somewhat confusing and 
therefore it is not clear whether the reconstruction is meant to be exact. Further, 
the method clearly works only with segments with length equal to a power of two, 
and it is restricted to the consecutive order of the segments. 

The paper [39] describes a framework for linear time-domain digital audio effects 
performed directly in the wavelet domain. The shift invariant wavelet transform is 
employed using signal circular shifts. The segment lengths are again restricted to 
a power of two. The border-end effect treatment method is built upon [38] but it 
reuses the whole previous segment so that the input segment size is doubled. The 
reconstruction segment length is preserved. This approach is somewhat "ad-hoc" 
and can fail for more demanding combinations of filter lengths m and depths of 
decomposition J or it can introduce a considerable redundancy of computations 
when m and J are of small values especially for multidimensional signals. 

Another attempt for real-time nonlinear wavelet processing (thresholding for 
denoising) was introduced in [40]. The extensible moving window with a constant 
step is employed but common border extension techniques are used. 

The paper [41] performs rather general segmented computation of the wavelet 
packet analysis (forward transform only) with arbitrary number of channels using 
segment overlap. Although it is not stated explicitly, the segment length restriction 
is lessened to a multiple of 2 J , where J is the depth of the deepest branch of the 
wavelet packet decomposition (depth of decomposition in the D W T case). Authors 
claim that the boundary distortion was removed but from the results, it is clear 
that it is not true for some combinations of J and m. Moreover, the overlaps seem 
unnecessary high when compared to the further described SegDWT algorithm. 

Authors of [42] bring an interesting approach to the segmented computation of 
the forward D W T using a lifting scheme. They use postprocessing of the partially 
transformed wavelet coefficients near the boundaries. No prior overlaps are used but 
after the forward transform of two adjacent segments, the ending coefficients of the 
first one and the beginning coefficients of the latter one are exchanged and they are 
subjected to the postprocessing to achieve correct values. The method not seems to 
restrict the segment lengths but adaptation of the method to the real-time setting 
assuming requirement for the wavelet coefficient processing would be difficult, not 
to mention the lack of the inverse transform. 
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The methods for parallel computation of the forward wavelet transform tailored 
to multiprocessor architectures with a message passing interprocessor communica­
tion were presented in [43] and later in [44] for the lifting scheme. The methods are 
based on exchanging samples from neighboring segments as needed after one level of 
the decomposition is calculated. The main focus of the papers is enumeration and 
optimization of the message sizes. Again, the inverse transform is omitted and the 
methods are not easily transferable to a real-time setting. 

The paper [45] deals with another parallelization of the 2D-DWT using C U D A 
architecture, but the segmented approach is not considered here. Rows and columns 
of the image are taken whole. 

Another approach to parallelization of lifting scheme 2D-DWT using C U D A is 
taken in [46]. To use devices' memory effectively, the sliding window with overlap is 
used when processing columns of the image. However, only one level of the transform 
is done in each sliding window run. 

To the author's best knowledge, there is but one algorithm which allows to 
perform exact wavelet analysis and synthesis with a segment at the same time 
provided equality of coefficients and reconstruction is preserved compared to the 
whole signal wavelet analysis and synthesis - the SegDWT algorithm [10]. It employs 
sophisticated segment overlaps for a correct wavelet coefficient synchronization and 
an exact reconstruction (as if the signal had not been segmented). The segment 
length is arbitrary as well as the depth of the decomposition and filter lengths. 

However, there is one more thing: neither of the described methods allow seg­
ments of varying sizes. It does not seem to be an issue for one-dimensional real-time 
signal processing but it can become an issue in the case of the parallel execution 
when segments of equal length prevent an effective load balancing between process­
ing units. 

2.1 SegDWT Algorithm 

Since the SegDWT algorithm is the cornerstone of the thesis, it will be described in 
detail. The algorithm processes the signal segment-by-segment and it comprise of 
analysis (forward) and synthesis (inverse) parts and both of them consist of several 
steps: 

• Analysis (forward) part: 
— Extension of the actual segment. 
— Application of the (modified) Mallat's algorithm. 
— Removal of redundant coefficients. 
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— The result consists of vectors of "full" wavelet coefficients, which are ready 
to be processed. 

• Synthesis (inverse) part: 
— Zero padding of the input wavelet coefficients vectors. 
— Application of the inverse Mallat's algorithm. 
— Addition of the overlap from the previously reconstructed segment. 

The analysis part is in principle similar to the overlap-save algorithm (OLS) for 
the linear convolution, while the synthesis part to the overlap-add (OLA). 

Overlap methods for linear convolution are well known in conjunction with 
fast convolution in spectral domain using F F T (circular convolution). Despite the 
fact that the fast convolution is not used in the SegDWT (the reasoning is given 
in sec. 7.1.2), the principles are valid even in the time domain. First, the linear 
convolution process of one segment is depicted in fig. 2.4. The well known formula 
for the linear convolution of two finite-length signals y = h * x is 

m—1 
y[n] = J2 h[k]x[n-k], (2.1) 

fc=0 

for x[n] being the input signal segment of length s, h[k] being the impulse response 
of length m and y[n] denotes the output signal of length s + m — 1 for n — 0 , . . . , s — 
1 + m — 1. 

777-

h[n] I . . . ' 2 V 0 I 
m — 1 s m — 1 zeros 

x\n] - + r " T " H I I I I 1 f 
1 1 ••• -3-2-1,0 12 3 -

influencing 
n 

m — 1 
y[n\ I I I I I 

0 12 3-
+ + rn 

influenced full response fade-out n 

Figure 2.4: Segment convolution in detail. Segment of length s from input signal 
x[n] is linearly convolved with impulse response h[n] of length m. Redrawn from 
[47] and modified. 

The OLS algorithm reuses last m — 1 samples (influencing samples) from a previ­
ous segment and it does not calculate m — 1 "fade-out" samples, m — 1 samples from 
the beginning are discarded afterwards for they are used only to make the m — 1 
influenced samples into full response (fig. 2.5). Usage of the algorithm is shown at 
fig. 2.6. 
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Figure 2.5: OLS Segment convolution in detail. 
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Figure 2.6: Overlap-Save Algorithm in detail. Last m — 1 samples of each segment 
are "saved" for the following segment. Redrawn from [47] and modified. 

The O L A algorithm always uses zero padding i.e. m — 1 zero samples are ap­
pended to the end of each segment. The fade-out samples are then held to be added 
to the first m — 1 influenced samples of the following segment (fig. 2.4). Usage of 
the algorithm is shown at fig. 2.7. 

2.1.1 Algor i thm description 

This section describes the actual SegDWT algorithm as it was presented in [10]. 
The SegDWT algorithm was developed for FIR orthogonal filter banks, but FIR 
biorthogonal filters can also be used if zero padded to the same length according to 
section 1.1. 

The one-dimensional input signal x is divided into TV > 1 segments of equal 
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x\n\ 

y[n\ 

Figure 2.7: Overlap-Add algorithm in detail, m — 1 zero samples are appended to 
the end of each segment. After convolution, these samples represent overlap, which 
has to be added to the beginning of the next segment. Redrawn from [47] and 
modified. 

length s. The last one can be shorter than s. To achieve a correct follow-up of 
two sets of wavelet coefficients at decomposition level j it is necessary that the two 
consecutive segments to be properly extended. It has been shown that the two 
consecutive segments must have 

r(j) = ( 2 J - l ) ( m - l ) (2.2) 

input samples in common after they were extended. This extension has to be divided 
into the right extension of the first segment (of length R) and the left extension of 
the following segment (of length L) so that r(J) = R + L, however R,L>0 cannot 
be chosen arbitrarily. The minimum suitable right extension of the segment n for 
n = 0, 2 , . . . , N - 2 is 

-(n + l)s, (2.3) 

and the maximum left extension of segment (n + 1) is 

n+1£max = r(J) - " R m i n . (2.4) 

The algorithm works such that it reads (receives) individual segments of the 
input signal, it makes them extend each other in a proper way, then it computes the 
wavelet coefficients in a modified way and, in the end, it easily joins the coefficients. 

[n Ds 
2-' 
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For simplicity, the whole signal border extension method is assumed to be zero 
padding, but the transition to different treatments is straightforward. The algorithm 
is stated as follows: 

Algorithm 6:[SegDWT analysis v. 1.0] Let the wavelet filters g, h of length m. 
decomposition level J and boundary treatment be given. The input signal x is 
divided into N segments of equal length s > 2J and the segments are denoted by 
0 ryt 2 ™ 3 fyt N 1 /-v> 

tJU - *JU . *JU j • • • 2 **-' • 

1. Set n = 0. 
2. Read the first segment, °x, label it as "current" and extend it from left by r( J) 

zero samples. 
3. I f the current segment is also the last one (n — N — 1) at the same time, 

compute D W T of this segment using Algorithm 4 and finish. 
4. Load (n + 1) segment and label it as "next". 
5. I f the next segment is the last one: 

(a) Combine the current nx and the next segment n+1x, set this new segment 
as current (the current becomes the last one). 

(b) Extend the current segment by r(J) zero samples from the right. 
(c) Calculate D W T of depth J from the extended current segment using the 

Algorithm 4. 

Else 
(d) Determine n + 1 L m a x for the next segment and n - R m i n for current segment 

using formulas (2.3) and (2.4). 

(e) Extend current segment from the right by n i ? m i n samples from the next 
segment. Extend the next segment from the left by n + 1 L m a x samples from 
the current segment. 

(f) Calculate the D W T of depth J from the extended current segment using 
the algorithm 4 with omitting step 2(a). 

6. Modify the vectors containing the wavelet coefficients by trimming off a certain 
number of redundant coefficients from the left side, specifically: at the level j, 
j = 1, 2 , . . . , J — 1 trim off r(J — j) coefficients. 

7. I f the current segment is the last segment, trim off the vectors in the same 
manner as in the previous step r(J — j) but this time from the right. 

8. Store the result as na(J\nd{J),nd{J-1],... ,nd{1). 
9. I f the current segment is not the last one, set the next segment as current, 

increase n by 1 and go to item 4. 

The output of Algorithm 6 is N(J + 1) vectors of wavelet coefficients 

{ y j ) ; d ( J ) ; d ( J - 1 ) , . . . ; d « } ^ 1 (2.5) 
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If we simply join these vectors together, we obtain a set of J + 1 vectors a^, 
SJ\ d ( J _ 1 ) , which are identical to the wavelet coefficients of signal x. 

Blocks of wavelet coefficients produced segment-by-segment by the forward part 
of the SegDWT constitute the input for the inverse algorithm. Analogue to the 
forward case, we use the boolean flag last, which becomes true if the very last 
segment is to be processed. 

In addition to that, the signal parity is kept (i.e. if the accumulated length is 
is even or odd). The information is then used at the very end of the signal for 
deciding to cut or not to cut the last reconstructed sample. The inverse SegDWT 
partly utilizes the overlap-add principle for joining the reconstructed pieces of the 
time-domain signal. The length of the overlap stays r(J) all the time. 

Algorithm 7: [SegDWT synthesis v. 1.0] Let the decomposition depth J be given, 
as well as wavelet reconstruction filters g and h of lengths m, and coefficients 
na,(J\nd{J) ,nd{J~l),... , n d ( 1 ) for all n. 

1. Set n — 0. Set last = 0. 
2. If last = 1, then the Algorithm ends. 
3. Read the n block of coefficients and update "last". 
4. Extend the detail coefficients: at the level j, j = 1,..., J — 1, append r(J — j) 

zero coefficients from the left side. 
5. Compute the inverse transform of depth J using Algorithm 5 with omitting 

the cropping part. 
6. If n ^ 0, recall the samples for the overlap, saved in the last cycle, and add 

them to the current inverted block. 
7. Update the parity of the signal. 
8. If last 7̂  1, append the central, non-overlapping part to the output. Save the 

samples of the overlap of the current inverted segment for the next cycle. 
Otherwise Append the whole inversion to the output. Eventually, crop sev­
eral samples from the end of the signal. 

9. The output (a segment of a time-domain signal) is now complete and prepared 
to be "sent". 

10. Increase n by 1 and return to item 2. 

The analysis and synthesis parts of the SegDWT algorithm can be both used on 
the actual segment consecutively thus forming a universal algorithm for any kind of 
wavelet coefficient processing task in real-time. The algorithm usage in this setup 
is shown in fig. 2.8 and fig. 2.9. 
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2.1.2 Algor i thm Remarks 

Extensions of the first (n = 0) and the last (n = 7V — 1) segments are treated 
differently and their values are 

°Lmax = N-1Rmin = r(J). (2.6) 

Given the actual segment nx and its extended version nxext, the length of the coef­
ficient vectors "c^t at levels j — 1,..., J before trimming is given by 

len("cS) = nN<& = [\en(nxext)2-i + (2"' - l ) (m - 1)J , (2.7) 

where len(ncce xt) = n^max + "S + n R m i n , and m denotes the length of the wavelet filters. 
However, first 

N$L = r(J-j) (2.8) 

coefficients at each level j < J are calculated redundantly and they are discarded 
according to the algorithm description. In addition, the same number of coefficients 
of the last segment are discarded from the right. Therefore, the number of coefficients 
after discarding the redundant ones is 

" A ^ f = nN^ - " A ^ , (2.9) 

except for the last segment which will have 

" - ^ S f = - 2 • " " W f f i , , (2.10) 

coefficients remaining. 
In the real-time setting, the algorithm delay is 
• r(J) samples if (s mod 2 J ) = 0 and therefore ™i?min = 0 for each n, 
• s + r(J) samples in all other cases, for the following segment have to be waited 

for. 
Another remark from [10] regards the fact that the extensions are periodic with 

respect to the segment number. 
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Figure 2.8: SegDWT algorithm demonstration example. The input signal x[n] of length 401 is divided into 4 segments of length 92 
and one of length 33, therefore n — 0,... ,3. J = 3, m = 4 (e.g. db2) which, according to (2.2), leads to r(3) = (23 — 1)(4 — 1) = 21. 

92 = 4 and ^ 2 1 - 4 = 17. Individual segments are extended from neighbors according to (2.3) and (2.4) e.g. ° i ? m i n = 2 3 

Using modified D W T on the extended segments, the wavelet coefficients are obtained (in rectangular boxes), from which the initial 
r(J — j) redundant samples are discarded (this only applies to the detail wavelet coefficients at level j < J since r(0) =0). At this 
point, wavelet coefficients can be processed in any way as they are identical to the whole signal wavelet transform. Prior to the 
inverse transform, the previously discarded samples are appended back but as zero samples. After the inverse DWT, the last r ( J ) 
samples of each segment form overlap. 
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Figure 2.9: SegDWT algorithm example in the real-time setup. The input signal x[n] is processed by segments of length s = 92. 
The length of the wavelet filters is m = 4 and the depth of decomposition is J = 3. This setup leads to r(J) = 21. Note that 
the reconstructed signal is delayed by the r(J) samples; the first r(J) samples of the reconstructed signal can be viewed as the 
"reconstruction warmup" and should be set to zero. 



3 THESIS OBJECTIVES 
The advantages of the segmentwise computation of D W T were discussed in chapter 
2. Algorithms for such computations can already be found in the recent literature, 
however, except for one, they were developed for a concrete application or/and are 
restricted to one type of wavelet filter and most of them lack perfect recovery. The 
special case (SegDWT in [10]) was formulated more universally but just for the one-
dimensional case and with the assumption of equal segment lengths. Direct usage of 
the algorithm for multidimensional signals seems to be too restricting to be usable 
in practice. Thus the first objective of this thesis deals with modifications of the 
original algorithm. 

The following list summarizes the main drawbacks and restrictions of the original 
algorithm design and proposes modifications to achieve maximal generality: 

• The left extension n L m a x is chosen to be as high as possible to maximize re-
usage of the received samples due to the original purpose of the algorithm for 
real time processing of the acoustic signals. The extension lengths can clearly 
be stated more universally, therefore formulas for the other extreme nLm[n and 
all intermediate values will be derived. 

• The algorithm considers only segments of equal size. This is inconvenient 
because it allows only square (cube) segments in multidimensional signals and 
prevents a dynamic splitting of segments. It will be shown that the lengths of 
both the right and the left extensions of the n and (n+1) segment, respectively, 
depend only on the position of their dividing line which in turn allows an 
arbitrary rectangular (box) segment shape for multidimensional signals. 

• The extensions are unnecessarily long. A more detailed analysis of the SegDWT 
algorithm reveals the fact that the even type of subsampling indirectly in­
creases lengths of extensions. It will be shown that a small modification can 
save up to 2 J — 1 samples of extensions. The number of the saved samples 
increases even more with increasing number of signal dimensions. 

• Another restricting factor is the need of the right extensions itself. The algo­
rithm analysis shows that the minimum right extension n i ? m i n is employed just 
to align the right border of the segment to a multiple of 2 J , thus n i ? m i n = 0 
when the dividing line index is a multiple of 2 J . This restriction can be also 
lifted by encompassing the (nonzero) right extension to the left one provided 
there is another modification of the algorithm. This is clearly beneficial when 
causality is a need (e.g. audio, video signals). There is a workaround proposed 
in the original algorithm, but it increases the processing delay by a whole seg­
ment duration. 

Having the generally stated SegDWT algorithm, the next goal is to tailor it to 
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the concrete usage exploiting prior information about the processed signal while 
optimizing some parameters of the algorithm. Since the original algorithm employs 
a overlap-save for the analysis and a overlap-add for the synthesis, the new versions 
of the SegDWT are: 

• Overlap-save SegDWT analysis with overlaps in wavelet domain In case of 
consecutive order of segments, the memory requirements can be reduced using 
overlaps directly in the wavelet domain (approx. coefficients at levels j = 
0 , . . . , J - 1 ) . 

• Overlap-Add SegDWT analysis and Overlap-Save SegDWT synthesis In some 
situations, it can be beneficial to use complementary methods i.e. Overlap-
Add for analysis and Overlap-Save for synthesis. Especially where a parallel 
processing of more segments is concerned, the overlap-add approach creates a 
so-called "race condition" [48] i.e. two parallel writes to one memory location 
can overwrite each other and result in errors. 

• Region of Interest wavelet coefficient processing Combining Overlap-Save type 
of SegDWT for both analysis and synthesis brings the possibility of processing 
arbitrary segment truly independently in a sense that the current segment 
samples are fully reconstructed in opposition to the incomplete reconstruction 
of the last r( J) samples when using O L A type SegDWT for synthesis, provided 
the equality of wavelet coefficients with the appropriate parts of the whole 
signal wavelet transform. 

A l l the proposed modifications are presented in chapter 4. 
Bearing the proposed modifications in mind, the second objective of the thesis, 

the multidimensional extensions via separability property, are relatively simple and 
can be stated universally for arbitrary dimension number which is done in chapter 6. 

The lifting scheme forms an alternative to the wavelet transform computation 
and can also be conducted segmentwise. Since the lifting scheme is more complex 
than the plain two channel filter bank, the segmentwise algorithm for LWT is not 
as straightforward as in SegDWT case. Therefore, the chapter 5 describes the de­
velopment of several algorithms, which, in the end, produces desired left end right 
extensions. 

The last objective of the thesis is to verify the proposed algorithms in real-life 
applications. 
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4 SEGMENTED DISCRETE WAVELET 
TRANSFORM 

This chapter1 contains all the modifications introduced in chapter 3. The purpose 
of these modifications is to increase generality of the algorithm, since the original 
algorithm is not directly usable for multidimensional signals. The desired properties 
are: an arbitrary order of segments to be processed, the independence of calculations 
so they can be carried out in parallel, custom extension lengths manipulations and 
an effective exploitation of 2J-shift invariance. 

Section 4.1 builds algorithm with the maximally general properties. The general­
ity comes at a cost of slightly more complicated formulas for the segment extensions 
lengths and there can be some redundant computations while sections 4.2 and 4.3 
present modifications that lead to optimization in some sense while sacrificing other 
properties. 

A l l further presented modifications were implemented in Matlab and the codes 
can be found on the accompanied D V D and on the SegDWT algorithm webpage 
[49]. 

4.1 SegDWT Analysis and Proposed Extensions 

Prior to the description of the modifications, a detailed analysis of the original al­
gorithm is needed. The following text follows section 2.1 and discusses details and 
remarks not yet described. First, the input samples and the wavelet coefficients 
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Figure 4.1: The input samples and the wavelet coefficients alignment of the input 
signal of length 46 using a wavelet with filter lengths m = 4 and depth of decompo­
sition J = 3. Gray coefficients denote "range" of the impulse response during the 
linear convolution. 

alignment of the whole input signal x need to be established. The even down-
sampling and the expansivity property result in the coefficient alignment shown in 

l rThe research in this chapter was conducted jointly with Mgr. Pavel Rajmic, Ph.D. Publications 
related this this chapter are [1-3]. 
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fig. 4.1. 
The number of coefficients N^'ei at level j of the input signal of length s when us­

ing filters of length m can be easily derived recursively, using a number of coefficients 
at the previous level. In [2], we derived a non-recursive formula 

There are both left and right extension of the segments employed in the SegDWT 
algorithm (recall (2.3) for ™Rmin and (2.4) n + 1 L m a x ) . 

The purpose of the right extension is to align the end of each segment to be 
integer multiple of 2 J , which results in the correct alignment of vectors of wavelet 
coefficients and to the unification of all consecutive calculations. 

The purpose of the left extension is to provide enough samples from the pre­
ceding segment (s) to "fully" (meaning as if the whole input signal was available) 
calculate the wavelet coefficients at the topmost level of decomposition. Together, 
both extension provide r(J) (from (2.2)) samples needed for the first coefficient at 
the topmost decomposition level in the current segment to be calculated fully. 

It is clear that like this the lengths of the extensions can vary from segment 
to segment, and that the respective lengths are thus induced, in contrast to the 
STFT-type classical windowing where the overlap lengths are fixed. 

Forward SegDWT As it was stated, after the extension of the segment, the Mal-
lat's algorithm (see sec. 1.2.1) is employed but without step 2a, Extending the input 
vector. Alternatively, it can be seen as using OLS type of convolution in each itera­
tion of Mallat's algorithm, assuming influencing samples (see fig. 2.4) to be already 
provided by the means of the segment's left extension. Since the OLS convolution 
in addition does not calculate "fade-out", the outcome of the OLS convolution is 
shorter by m — 1 samples (from the beginning) prior to the downsampling. After 
downsampling, the number of coefficients is equal to (2.7). 

The detailed depiction of the forward SegDWT at the segment transition is 
in fig. 4.2. In the figure, n+1S denotes the index of the leftmost sample of the 
n + 1 segment in a global point of view, prior to the extensions. Clearly, n+lS = 
(n + l)s assuming °S = 0 and equal length of segments. This denotation will be 
more convenient in the rest of this chapter. 

Inverse SegDWT The reconstructed segment length and position is equal to the 
length and position of the one analyzed after extensions. 

Prior to the reconstruction, r(J — j) zero coefficients are appended to the be­
ginning of the coefficient vector at level j (see fig. 4.3). In contrast to the forward 

(4.1) 
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Figure 4.2: Transition between two consecutive segments n and n + 1 at index 

= (n+l)s in the time-domain signal The segments are extended by n i ? m i n and 
n + 1 L m a x samples accordingly. The wavelet coefficients belonging to respective 
segments are shown. The coefficients belonging to the segment (n+1) lying to the left 
from the dividing line marked as r(J — 1), r(J — 2) , . . . are calculated redundantly 
and they ought to be discarded after the computations are complete. Also the 
wavelet coefficients of the n segment are aligned to the dividing line due to the right 
extension. 

SegDWT, the non-shortened (linear or OLA) version of convolution is employed af­
ter the even upsampling of the coefficient vector. This means that the length of the 
intermediate reconstruction vector grows between steps of the reconstruction and 
results in the overlap of r(J) samples reaching to the neighboring segment. 

Another remark, considering the inverse transform, regards the fact that after 
the reconstruction of the whole signal, there are additional and redundant r(J) 
samples at the beginning. Additional samples at the beginning bring ambiguity to 
the indexing of the reconstructed signal which can be viewed in two ways: 

• The reconstruction is delayed by r( J) samples. Hence the indexing of the input 
signal and the reconstruction does not match and also last the r(J) samples of 
each reconstructed segment form overlap to the next one. This view is natural 
in the real-time setup. 

• The first r(J) samples of the reconstruction are not included in the indexing. 
The indexing of both the input signal and the reconstruction matches and this 
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Figure 4.3: The inverse SegDWT in detail. The initial zero padding of the detail 
coefficients at levels j — 1,..., J — 1 causes a relative shift of individual coefficient 
vectors. This padding in turn causes the proclaimed delay of the reconstruction by 
r(J) samples. 

time, on the contrary, the first r(J) samples of each segment overlap to the 
previous segment. 

The second view will be considered in the following text to prevent an ambiguity. 
When necessary, the value according to the first view will be placed in brackets. 

Examples of both the forward and the inverse SegDWT are shown at fig. B.6a 
and fig. B.6c respectively. 

Noble multirate identity and the SegDWT algorithm There is a nice con­
nection between the noble multirate identity representation of the iterated filter 
bank (see sec. 1.2.2) and the SegDWT remarks. By supplying j = J to (1.23) one 
can get length of the filter identical to the longest branch of the iterated filter bank: 

len(/! * • • • * fj) = (2 J - l )m - (2 J - 2). (4.2) 

After a simple manipulation, the formula changes to 

( 2 J - l ) ( m - l ) + l , (4.3) 

and thus the necessary filter overlap is exactly equal to the r(J) from (2.2). 
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4.1.1 Enstensions tradeof 

As was mentioned, the original algorithm allows constant-length segments only and 
uses minimum right and maximum left extensions of two consecutive segments. 
Other possibilities were not derived in the original work and therefore this section 
completes them. Following ideas and the mathematic style of [10], the following 
notions are built upon the Theorem 8.11 (from [10]) which can be re-written as: 
Theorem 8: Let the segment n is given, whose length including its left extension is 
nl. Then the left extension of the next segment n+1L can be computed by the formula: 

2+1L = nl - 2Ji for integer % e 
r ( J ) nl 

'2? 

And for the right extension of n-th segment the following holds: 

nR = r{J)- n+1L. 

(4.4) 

(4.5) 

l-rUY 
2J The maximum left extension n + 1 L m a x is naturally reached for the lowest % = 

which is also done in the original algorithm, and the minimum left extension n+1L 
can be obtained when taking the other extreme, the highest % = J. - R m i n (for Lm 

is already known (2.3) and n i ? m a x (for n + 1 Z v m i n ) can be written as 

TIT} (n + l)s + r(J) 
2~J — ns. (4.6) 

(The proof is the same as in Theorem 8.14 in [10]). We can rewrite formula (4.4) as 

~nl -r(J) 
n+1L = n l - 2 j + k where k e N°, (4.7) 

satisfying n+1L > n+1Lm\n at the same time. Having compared formulas (2.3), (4.6) 
and (4.7), we can write the right extension of segment n as: 

nR = 2J 

or alternatively as 

(n+ l)s 
~^2J 

- (n+ l)s + 2Jk, where k eN 

nR = ™Rmin + 2Jk where fceff 

(4-

(4.9) 

satisfying nR < n i ? m a x at the same time. Using this formula and (4.5),(2.2) one 
can "trade-off" the multiples of 2J samples between extensions up to defined values 
n i ? m a x and n + 1 L m i n . Note that the resulting coefficients after wavelet analysis are 
traded too: it makes / c2 J _ J coefficients at level j and the formula (2.7) includes 
them. 

Examples of the modification for both forward and inverse SegDWT are shown 
in fig. B.6b and fig. B.6d respectively. 
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4.1.2 Segments of different sizes 

This modification appears to be the most important one. It lifts the constant seg­
ment length constriction which impacts the algorithm significantly. Namely: 

• The extensions depend on nS (index of segment's first sample from the global 
point of view) rather than on segment number and segment length (for example 
nL -)• nsL but nR ->• "+lsR and r ( J ) = " 5 L + "5i?) 

• The extensions become 2 J-periodic with respect to a sequence of nS increasing 
by one. 

• Dynamic splitting of segments is allowed. 
• The segments do not have to be processed in the consecutive order. 
• The algorithm can be further developed just for the general case of the two 

consecutive segments. 
• Each transition between segments can be treated individually. 

The following theorem describes the presented modification. 
Theorem 9: The right extension of the segment n (n = 0,1, 2 , . . . , TV — 2) and the 
left extension of the segment (n + 1) are given by the length of the portion of the 
signal starting at the beginning and ending at the end of the segment n (the number 
of already processed samples or the index of the segment's first sample from the global 
point of view) nS, and the following holds 

rnc- i 

"SR = 2J — -nS + k2J for ken0, while " 5i? < " 5 i ? m a x , (4.10) 
2J 

at the same time, or alternatively 

nsR = " 5 i ? m i n + k2J for ken0, while " 5i? < " 5 i ? m a x (4.11) 

The extensions are not dependent on the number of previous segments neither on 
their lengths. The proof A can be found in appendix A. 

This result is graphically shown in Fig 4.4. 

4.1.3 Extension length reduction 

As it was stated previously, globally the even type of up-/down-sampling is consid­
ered. In practice, in the dyadic case, it means discarding every first sample after 
every convolution. This is a legitimate operation for the wavelet transform of the 
whole signal, since it is a commonly accepted convention. In a segmentwise case, the 
left extensions have to be long enough to allow discarding first sample in each level 
after convolution which is clearly a waste of computational resources. Switching 
from the even to the odd type of up-/down-sampling, the left extension is reduced 
by 2J — 1 samples. The change is done just for the segmentwise computation pur­
poses and the even type of up-/down-sampling is preserved globally. Since right 
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Figure 4.4: Figure presenting Theorem 9. Five cases of division of the input signal x 
are shown. There is always a division of a pair of segments between samples 515 and 
516, but the divisions of the preceding part differs from case to case. Nevertheless, 
the lengths of the related extensions of the neighboring segments are equal in all 
cases. 

extensions are not affected by this change, the left extension reduction cuts r(J) 
down to 

r r e d ( J ) = ( 2 J - l ) ( m - 2 ) . (4.12) 

The rest of the algorithm remains the same except for the r(J) substituted with 
fred(<̂ ) which exhibits in several places: in the number of discarded coefficients 
after forward transform rred(</ — j) (and in number of the zero coefficients that are 
appended back prior to the inverse transform) and thus the total number of the 
coefficients containing the redundant ones (from (2.7)) is 

n len("Xext)2-J + (2~j - l ) (m - 2)J . (4.13) 

The length of the segment overlap after the reconstruction is also equal to rTe<i(J). 
In fact, the real segment overlap (meaning the number of nonzero samples within 
the r(J) ones at the beginning of the reconstructed segment) was always rred(</) 
since the even upsampling adds a zero to the beginning at each level prior to the 
convolution, which is propagated through the iterations of the synthesis filter bank. 
There is but one exception to this rule: the right extension of the last segment 
remains r(J) and therefore also the number of the discarded coefficients from the 
right remains r(J — j). 

Examples of the modification for both forward and inverse SegDWT are shown 
in fig. B.7a and fig. B.7c respectively. 
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4.1.4 Right extension removal 

The original algorithm with its possible nonzero right extension(s) have two disad­
vantages 

• It violates causality and makes it hard to be used directly in the real-time 
setup. 

• The right extension aligning the right border to the next multiple of 2J causes 
the reconstructed segment to be aligned as well. This means that the segment 
borders of the input signal and the reconstructed signal do not match. 

Regarding the first drawback, the original algorithm employs a delay of the process­
ing by whole next segment, but this additional delay could be unacceptable. Another 
approach could be the employment of the "negative" right extension in a sense that 
the right border of the segment would be aligned with the lesser multiple of 2J and 
the remaining samples would be encompassed into the left extension of the following 
segment. However, these approaches are both "workarounds" and do not solve the 
second drawback. 

Regardless to this, the idea of the "negative" extension is worth describing for 
the coefficient alignment is not impaired and the algorithm complexity does not 
increase. It is clear that the number of the remaining samples after aligning with 
the lesser multiple of 2J is (nS mod 2J) and thus the right extension is a negative 
number 

"Si?neg = - ( n S m o d 2 J ) , (4.14) 

which leads to the necessary left extension 

nsLneg = r r e d ( J ) + (nS mod 2 J ) . (4.15) 

The negative right extension is also a special case of the algorithm modification 
described in sec. 4.1.1, where k — — 1 in (4.9). 

To attack the second drawback, it is necessary to modify the algorithm so that 
no 2J-alignment is needed and therefore neither is the right extension. In this setup, 
considerable modifications of the main formulas need to be done. 

First, the formulas for r ( J ) and L become the same (since the right extension 
is always zero) 

"^noright = r r e d ( J ) + (nS mod 2 J ) (4.16) 

If (nS mod 2J) = 0, the right segment border is already aligned; the extension has to 
be increased accordingly if it is not. Note that the worst case is (nS mod 2J) = 2J — 1 
which leads us back to "^noright = r(J)-

Second, since the segment's right border is no longer aligned, the number of 
coefficients which belong to actual segment changes at each level of decomposition. 
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Let this value be denoted as nsN^e{ (similarly as in (2.9)). It is derived using indexes 
of coefficients belonging to the given segment (starting with nS, for n = 0 , . . . , TV — 1). 
The number of coefficients, or the index of the first coefficient belonging to the given 
segment starting with zero at level j in the segment starting at index nS = nS^ is 
given by 

~2f 
(4.17) 

but the last segment demands a different treatment due to the expansivity of the 
DWT. Let NSW = len(x) denote a non-existing segment following the last one, than 
for other j using (4.1) we can write 

JV. s(j) 
N rn NS2~j + (1 - 2-j)(m - 1)J 

The number of coefficients is then 

coef 

(4.18) 

(4.19) 

in the segment starting with nS. The number of the detail coefficients at level j 
that have to be discarded from the beginning of the coefficient vectors after forward 
transform is equal to 

nS mod 2J) •sNU) 
disc rVed(J - j) + 2? 

therefore prior to the coefficient discarding there are 

— i v d i s c -\- i v c o e f 

(4.20) 

(4-21) 

coefficients. 
And, lastly, the calculated segment overlap after reconstruction is ™ 5L n o ri ght. 
Examples of modification for both the forward and the inverse SegDWT are 

shown in fig. B.7b and fig. B.7d respectively. A n additional example of the algorithm 
modification usage at concrete signal is shown in fig. B.2 and B.3. 

Segment length limitation It makes sense to define the minimum segment 
length s m i n allowing the SegDWT algorithm to be carried out as it was described so 
far. It turns out, that the SegDWT algorithm needs the segment to contain at least 
one coefficient at the topmost level J , which limits the s m i n to be 

Smin ^ 2 . (4.22) 

On one hand, this limitation can seem restricting, but on the other hand the neces­
sary (and induced) extensions are approximately m—1 times longer than the minimal 
allowed segment length and the shorter the segments the higher the computational 
overhead. 
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New SegDWT formulation At this point, the algorithm is considered to be 
"maximally" general. Since the original algorithm description (alg. 6 and alg. 7) 
is somewhat obsolete now, the description of the new SegDWT algorithm follows. 
For simplicity, at least two segments are to be processed TV > 1 and s m i n > r(J) 
is assumed to limit the extensions to reach just to the directly adjacent segments. 
Also the reconstructed signal x is delayed by r( J) samples (for it is maximal possible 
"^Lnonght). The example of this setup is shown in fig. 4.6 (without the initial delay 
in fig. 4.5). 

Algorithm 10: [SegDWT analysis v. 1.1 - no right extensions] 
Let be given: g, h of length m, J, input signal x divided into N > 1 segments 

Zero padding is considered whenever segment extension reaches 
outside of the input signal x support. 
One segment analysis: 
For n = 0 , . . . , N — 1 repeat: 

1. Read segment nx and extend it from left by ™5I/noright samples from the pre­
vious segment. 

2. If n — N — 1, the current segment is the last one, extend it from the right by 
r(J) zero samples. 

3. Calculate the D W T of depth J from the extended current segment using the 
algorithm 4 omitting step 2(a) (OLS-type convolution with odd type down-
sampling) . 

4. Modify the vectors containing the wavelet coefficients by trimming off a certain 
number of redundant coefficients from the left side, specifically: at the level j, 
j — 1, 2 , . . . , J — 1 trim off ™5ArjjgC coefficients. 

5. If n — N — 1, trim off the vectors in the same manner as in the previous step 
but this time the number of trimmed coefficients is r(J — j) and the trimming 
is performed from the right. 

6. Store the result as na(J\ nd{J\ n d { J ~ 1 ) , n d { 1 ) . 

Algorithm 11: [SegDWT synthesis v. 1.1 - no right extensions] 
Let be given: wavelet reconstruction filters g and h of lengths m, J, nS for all 
segments °x, 1x, 2x,..., N~1x to be reconstructed. The reconstructed segments do 
not have to be equal to the analyzed ones if respective coefficients are available. For 
storing the overlap, a buffer of length r( J) is used. 
One segment synthesis: 
For n = 0 , . . . , N — 1 repeat: 

1. Read respective coefficient vectors na(-J\nd('J\nd('J~1\ ... ,nd^ according to 
the reconstructed segment nx. 
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2. Extend the detail coefficients: at the level j, j — 1 , . . . , J — 1, append ™5A^SC 

zero coefficients from the left side. 
3. Compute the inverse transform of depth J using Algorithm 5 omitting the 

cropping part (OLA-type convolution, odd upsampling). 
4. If n 7^ 0, add samples from the buffer to the current inverted segment: 

(a) Add last "^tnoright samples from the buffer to the first respective samples 
of the current segment. 

(b) Append remaining r(J) — nsLnorig^t first samples from the buffer from the 
left side of the current segment. 

5. If n N — 1, store r( J) last samples of nx in the buffer, append the remaining 
samples to the output. 
Else Append the whole inversion to the output. 

6. The output (a segment of a time-domain signal) is now complete and prepared 
to be "sent". 

4.2 Exploiting consecutive order of segments 
One of the assumptions one can benefit from when seeking a way to optimize the 
SegDWT algorithm is the consecutive order of the segments (i.e. the real-time 
case). It can be safely presumed that both unprocessed and processed previous 
wavelet coefficients are available. The necessary overlaps for the SegDWT analysis 
can then be derived directly in wavelet domain and thus reducing the computational 
and mainly the memory complexity (from exponential to linear dependence on J) . 
The SegDWT synthesis with overlaps in the wavelet domain does not bring such 
computational reduction and the overlap handling becomes complex enough not to 
be beneficial in the practical implementation. 

4.2.1 SegDWT analysis with overlaps in wavelet domain 

The algorithm clearly performs redundant computations whenever segments are an­
alyzed (forward transformed) in the consecutive order i.e. in real-time setting. Even 
though it might not be apparent at the first glance, there are ^NJf^ (4.20) foremost 
approximation coefficients at levels j = 1,..., J — 1 calculated redundantly for they 
were already calculated during the transformation of the previous segment. Since 
approximation coefficients of the previous segments can be buffered, the left exten­
sion of the actual segment can be carried out directly at each level of decomposition 
as if OLS convolution (fig. 2.5) was done at each level but the number of influencing 
samples may vary. The length of the extension of approximation coefficient at levels 
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j = 0 , . . . , J — 1 is m — 1 or m — 2. The exact value depends on the position of the 
dividing line between segments (index nS) so that 

"S4oriSht = m - 2 + (nS^ mod 2) = m - 2 + 2? 
mod 2 , (4.23) 

while the OLS convolution and the odd type subsampling are preserved and no 
additional coefficient discarding is necessary except for the last segment, which is 
extended from the right side by r(J) samples like in the original algorithm, and 
an appropriate coefficient discarding from the right side takes place. 

Example of the algorithm is shown in fig. B.9. 

4.3 Complementary methods and offline process­
ing 

So far, the modifications have not impaired causality (except for the possible 2J 

samples exchange between extensions) and the overlap-save SegDWT analysis en­
sured that the received coefficients were fully calculated (i.e. no overlap-add type 
overlaps in the wavelet domain after the forward transform). Also the purpose of 
the algorithm so far was to perform the analysis, to allow possible coefficient modi­
fications and then to perform the synthesis of the given segment (with some overlap 
in the time or the wavelet domain). The algorithm however can be also used for 
segmentwise wavelet analysis only when the output comprises of vectors of wavelet 
coefficients of the whole signal and, similarly, it can be used for the segmentwise 
synthesis, when a whole signal wavelet domain representation of a signal is avail­
able. Therefore the causality restriction can be removed but on the other hand, the 
requirement for the arbitrary order of the segment processing may rise up. 

Regarding the off-line segmented processing, the idea of a single-level D W T 
at a time comes to a play. Since the entire signal (or the whole signal wavelet 
transform) is available, the single-level segmented D W T (or inverse DWT) can be 
done at a time and the division into segments at each level of decomposition can 
be treated individually. Conveniently, the necessary overlaps from sec. 4.2 can be 
reused. 

The complementary methods, presented further, form alternatives in both real-
and non-real-time cases. The methods are derived for arbitrary segment lengths 
(and dividing lines), but the formulas are greatly simplified, when 2J segment border 
alignment is held, which can be easily done in the offline case. 
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4.3.1 Overlap-Add for SegDWT analysis 

There are several changes when compared to the OLS analysis, which is employed 
in the original algorithm: 

• Extensions to neighboring segments are no longer used and the O L A type 
of convolution is employed. However, when calculating coefficients at level 
j > 1 the downsampling type is chosen with respect to " S ^ - 1 ) . A n odd 
downsampling is used when "S^ - 1 ) is odd and vice versa. 

• After the wavelet analysis, the number of the wavelet coefficients at each level 
j produced this way can be calculated using formula (4.19) but taking the 
current segment as the last one (n + 1 = N). This mean, that there are 

nSr>(j) 
nOLA 

r(j) + (nS mod 2-
2J 

lS mod 2J 

2i 
(4.24) 

more coefficients than there would be if the current segment were not con­
sidered as last. These coefficients form overlaps to the respective vectors of 
coefficients belonging to the following segment. Again, the formula is greatly 
simplified when (nS mod 2J) = 0: 

nOLA 
r(j) 

23 
(4.25) 

An example is shown in fig. B.8a. 
The values of these coefficients are not yet fully calculated and thus cannot be 
processed non-linearly and used for the inverse transform. Linear operations 
are allowed (multiplication, equal value coefficient shift) as long as as the 
machine precision is not an issue (the values of the tailing coefficients at the 
higher levels are calculated using the incomplete ones from the lower levels). 
On the other hand, carefully choosing and processing the complete wavelet 
coefficients is allowed as well as the inverse transform using just these coeffi­
cients. However, the idea will not be developed further because it can become 
cumbersome to deal with in practice especially when the overlap lengths (pro­
jected to the time domain) become comparable to segment lengths. 

4.3.2 Overlap-Save for SegDWT synthesis 

After the segment n reconstruction using the O L A synthesis (like in the original al­
gorithm), there are ™ + 1 , s i no r igh t last samples, which are not fully calculated. The goal 
of OLS synthesis is to fully reconstruct all segment samples which were analyzed 
(prior to extension) with no overlap. Contrary to the convention this means that the 
coefficient vectors belonging to actual segment have to be extended from the right 
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side using coefficients belonging to the following segment and thus violating causal­
ity. The number of these coefficients is the same as in (4.24). No zero coefficients are 
appended and OLS type of convolution is used. Again, when calculating coefficients 
at level j, the upsampling type depends on the nS^ in the similar manner like in 
the previous section: the odd type upsampling is used when nS^ is odd and vice 
versa. 

An example is shown in fig. B.8c. 

4.4 Region of Interest SegDWT 
In the following paragraphs, a new promising combination of the OLS methods for 
analysis and synthesis is discussed. Recall that the original algorithm uses overlap-
save for analysis and overlap-add for synthesis. Because of using the OLS analysis 
and synthesis it is possible to process (analyze and reconstruct) an arbitrarily chosen 
segment while no overlap after reconstruction is needed. 

This approach also answers the question stated in [50] asking which wavelet 
coefficients participate in exact reconstruction of the arbitrarily chosen rectangle 
ROI. The number of such affected coefficients is clearly higher than the OLS analysis 
SegDWT algorithm produces. 

OLS analysis and OLS synthesis In this setup, the wavelet coefficients exten­
sion necessary for the synthesis OLS needs to be calculated as part of the analysis 
step. Naturally it requires an additional right extension of the analyzed segment in 
turn and therefore the causality is violated. The length of the right extension in 
the input samples is given by the number of coefficients in the topmost level (J). 
Supplying j = J into (4.24) results in 

r(J) + (nS mod 2J) nSr>(J) 
- " -OLS 2J 

(4.26) 

which represents number of the additional coefficients at level J. Mapping them 
back to the right extension at level j = 0 result into 

r(J) + (nS mod 2J) "5d(0) 
O L S 2J 

2J - (nS mod 2J) (4.27) 

Again, the formula is greatly simplified when (nS mod 2J) =0: 

"5d(0) 
-" -OLS 

r_{J) 
2J 

(4.28) 

The processed segment n is therefore extended from both sides by "sLnoright samples 
from the left and by ™+15ROLS from the right. 
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The extended segment is then OLS-analyzed as the original algorithm is, but 
an additional right coefficient vector cropping is necessary. The number of the 
cropped coefficients is given by " s i V ^ from (4.19) (as if the segment was the last 
one) subtracted from the total number of the calculated coefficients after cropping 
them from the left side 

>sNV) 
discright 

nSjvrU) _ "SatU) 
extright coef (4.29) 

where 
-sN(j) 

extngnt 

nS + ns + n + 1 5p(i) 
O L S 

2> 
(4.30) 

Knowing the lengths of the wavelet coefficient vectors, the analysis is done as de­
scribed in sec. 4.1.4, the synthesis as described in sec. 4.3.2. 

An example is shown in fig. B.8b and B.8d. 
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Figure 4.5: SegDWT algorithm modification demonstration example. The setup is like in the example in fig. 2.8 ( J = 3, m — 4) 
but the lengths of the segments vary slightly. Modifications from section 4.1.4 regarding the removal of the right extension are 
considered. The segment extensions are calculated using eq. (4.16) and the number of discarded (and appended back as zeros during 
inverse transform) using eq. (4.20). Note the ends of the analyzed and the reconstructed segment is to be aligned. 
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Figure 4.6: SegDWT algorithm modification example in the real-time setup. The setting and the extension lengths are the same as 
in fig. 4.5, but the reconstruction is delayed by r(3) = 21. This is equal to the longest possible segment overlap and therefore some 
reconstructed segments are shifted accordingly. 



5 SEGMENTED LIFTING WAVELET 
TRANSFORM 

In this chapter, a novel algorithm of a segmented computation of a LWT is proposed, 
called Segmented Lifting Wavelet transform - SegLWT 1 . The main idea is similar 
to the SegDWT algorithm. The forward transform: 

1. Read a segment from the input, calculate its proper left and right extensions 
and read samples according to them. 

2. Perform the LWT of the extended segment. 
3. Crop the redundant samples in each level of decomposition from both sides. 

Repeat these steps until all samples are processed. The fair generality of the algo­
rithm lies in choice of the segment lengths, which are not restricted to the power of 
two and can be chosen arbitrarily (up to some minimal length) and can even differ 
from each other. The inverse transform is similar: 

1. Read the corresponding sets of coefficients and extend them from both sides 
with zeros. 

2. Perform the inverse LWT. 
3. Place the segment to the correct position (within the output), add overlaps to 

the neighboring segments. 
Again, repeat these steps until all samples are processed. The reconstructed sig­
nal does not suffer from the border distortion as it would when no overlaps were 
exploited. 

The LWT differ from the D W T especially in the possibility of the calculations to 
be carried out in-place and in the number of elementary operations which is reduced 
by about a half. Also the lifting scheme provides a richer family of wavelets, since 
every wavelet filter bank can be transformed into the lifting scheme and in addition 
the invertible lifting transform can be designed directly as the lifting scheme does 
not have an equivalent wavelet filter bank representation. 

Preliminaries Let us revise the notation: the x is input signal, the x recon­
structed signal, afj\ d^ where j = 0,1, 2 , . . . , J are approximation (coarse) resp. 
detail (fine) coefficients and = x. Symbol nx, n = 0 ,1,2, . . . denotes the 
segment n, na^\nd^ denote approximation and detail coefficients of segment n 
accordingly. The length of the signal is given by len(cc). Equivalently, every signal 
(or set of coefficients) can be understood as column vectors in MN, where N is the 
signal length. To address a particular sample (coefficient), square brackets are used, 
e.g. x[n], n = 0,1, 2 , . . . or to choose set of samples x[k]k^x- Clearly, x[k] ^ nx[k] for 

Publication related to this chapter is [4]. 
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n > 0. nS denotes the first index of the segment n in the global indexing x[nS] = nx[0] 
and nx[k] = x[nS + k] for k — 0,1, 2 , . . . , len(ncc) — 1. Further, several operations are 
used | / J , M to round r e 1 to the nearest lower resp. greater integer, indicator 
functions odd(n),even(n) return 1 when n is odd, even and 0 otherwise. Similarly, 
the indicator function pow2p(n) returns 1 when n = 2P, and 0 otherwise. The result 
of the indicator function is negated by bar, i.e. odd(n) = even(n). The indicator 
function applied to signals chooses samples at indexes with indicator function equal 
to 1 e.g. y = pow2p(cc) = x[/c]fcgZApow2p(fc)=i and stack them together forming a new 
vector. 

Lifting scheme is build upon splitting samples to odd and even ones, therefore 
Xe = even(cc) = x[2n] n e Z , Xo = odd(cc) = x[2n + l ]„ e z , but to preserve the correct 
global division of samples even in segments, the starting index must be taken into 
account i.e. nXo = odd(ncc) = x[nS + odd(nS) + 2n]„ ez and NXE = even(ncc) = 
x[nS + even(nS) + 2 n ] n e Z . 

The lifting scheme [24, 31] maintains all the coefficients a^\d^\ j > 0 inter­
leaved in vector x when computed in-place, so x also holds the intermediate results. 
After transforming the whole signal, the coefficients are interleaved in a way that 

= pow2j(x) and = pow2J(x[/c + 2 J _ 1 ] f c e Z ) . Given segment nx with the 
first index nS, it is crucial to know indexes of all interleaved na^\nd^\ j > 0 
from the global indexing point of view: na^ = pow2-(x[fc + 2 J ] f c e Z ) and 
nd(j) = pow2i(x[A; + [ f - §] 2* + 2^- 1] f c e Z) as the = [ f j denotes first approx­
imation coefficient at j level indexing point of view (compare with D W T coefficient 
indexing alignment (4.17)). 

The lifting scheme [24, 31] consists of four steps: split, predict, update and scale, 
see fig. 5.2 for one stage forward (left) and inverse (right) transform. The inverse 
transform part contains the same steps as the forward transform part in reverse 
order and with minus signs. Operators P, U are known to be Laurent polynomials 
after the Z-transform which can have both positive and negative exponents. For 
the purposes of our algorithm, we regard P, U as signals (row vectors) containing 
coefficients of Laurent polynomial supplemented with zeros for missing exponents 
between the lowest and the highest one. Accordingly we define supp(P) as a set of 
all exponents between the smallest and the greatest ones. 

The lifting steps are the following: 
1. Split - splits samples to odd and even ones 
2. Predict - combines several even samples and adds the result to the actual 

odd sample. This can be described by 

« o V ] <- « o V ] + E P[k]a$[n + k\. (5.1) 
fc£supp(P) 
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3. Update - combines several odd samples and adds the result to the actual 
even sample 

og) [n] <- a^'} [n] + £ t / ^ a g 5 [n + k]. (5.2) 
fc£supp([7) 

4. Scale - scales each sample by a given factor K or 1/K. 
The number of the lifting update and predict steps depends on the actual factor­

ization. Additional levels of decomposition can be achieved when using the scheme 
iteratively on the output a^+1\ The maximal desired level is denoted as J as in 
D W T and since the number of samples halves with each iteration (rounded up), the 
maximal reasonable J m a x , for which there are at least two samples in a^J~^ (to get 
at least one sample in each and SJS>). 

5.1 Supporting algorithms 

5.1.1 Lifting scheme and neighboring segments 

From now on, let us consider the neighboring segments n and (n + 1). Accordingly, 
the left extension of (n + 1) segment is denoted by n+1L and the right extension of 
segment n is nR. These extensions depend on the level of decomposition J and on 
the type of the lifting scheme (lifting steps count, type, values). First, the exten­
sions to compute a single level (from j to j + 1) LWT need to be established. Since 
lifting schemes factorizations may differ in number of lifting steps and their Laurent 
polynomials, we chose an algorithmic approach: 

Algorithm 12:[Determination of extensions for one level analysis] 
Given: lifting scheme, segments n and (n + 1), index of the first approximation 
coefficient of (n+ 1) segment at level j: n+1S^\ To be determined: the right and 
the left extension from j to (j + 1) level nR^) and n+1L^ (for clarity, front superscripts 
will be omitted in the following text) 

Set = 0 and = 0. For all the predict and the update lifting steps taken 
in the reverse order, repeat: 

1. Determine the type (U or P) and the maximal (e m a x ) and the minimal (e m m ) 
exponent of the current step. 

2. If the current step is predict P: 
(a) If e m i n < 0 then <- - 2e m i n + odd(S® - L&) 
(b) If e m a x > 0 then <- + 2e m a x - 2 + odd(S^ - 1 + R^) 

3. If the current step is update U: 
(a) If e m i n < 0 then <- - 2e m i n - 1 - odd(S^ - L&) 
(b) If e m a x > 0 then <- + 2e m a x + 1 - otiA^S® - 1 + Rij)) 
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Applying this algorithm iteratively as more levels of decomposition are needed, 
the algorithm for nR and n+1L can be stated: 

Algorithm 13: [Determination of extensions for J level analysis] 
Given: lifting scheme, segments n and (n + 1), index of the first sample of (n + 1) 
segment in the global indexing point of view : n+1S. To be determined: the right 
and the left extension nR and n+1L. In addition, let us denote the index of the first 
approximation coefficient at level j of segment n + 1 after left extension n+1S(f•'and 
similarly last approximation coefficient of segment n as nS{i}. A gain, the front 
superscripts will be omitted in further description. 

Set = 0 and S^' = oo. For all levels of the analysis j from J — 1 up to 0, 

repeat: 
1. Determine S{£ = max.{S® - 1,2S%+1)) and = mm(SM,2S%+1)] 
2. Calculate S U) S{£ + i?Cj) and sf S^) — via utilizing Algorithm 12 

taking S^} as the beginning of the (n + 1) for the left extension and + 1 
as the beginning of the (n + 1) segment for the right extension. 

Then nR = nR^ - n+1S + 1 and n+1L = n+1S - n+1L^. 

The left and the right extension can trade-off integer multiples of 2 J samples the 
same way as in SegDWT 

nR^nR + k2J, 

n+iL ±_ n+lL _ k2J_ 

as long as nR, n+1L > 0 holds for chosen integer k. 

(5.3) 

(5.4) 

a U) 

A E 

" 1 

a o 

sp l i t Pi u 2 

K a (j+i) 

Figure 5.3: Lifting scheme for the wavelet cdf 3.1 with Laurent polynomials U\ 
-\z~\ P i = -\z - | , C72 = | , K = 2.1213 

Example 14: Let us take lifting scheme for wavelet cdf 3.1 see fig. 5.3. The desired 
depth of the analysis is J = 3. The signal x, len(cc) = 32 is divided into two segments 
°x,1 x with °S = 0 and XS = 15 and extensions °R and XL are to be evaluated. 

According to Algorithm 13, we start with level 2 ( J — 1 = 2): 
1. j = 2: ^ ( 2 ) = [ | ] = 4, ° ^ 2 ) = 3, lSl£) = 4. Via Algorithm 12, °R^ and ^ 

are enumerated: 
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(a) U2 is the last lifting step, e m i n = e m a x = 0. According to step 3b in 
Algorithm 12, = 0 + 0 + 1 - 1 = 0 . 

(b) P i is the second lifting step, e m i n = 0, e m a x = 1. According to steps 2a 
and 2b in Algorithm 12: W = 0 + 0 + 0 = 0 and =0 + 2 - 2 + 1 = 1. 

(c) U\ is the first lifting step, e m i n , e m a x = —1. According to step 3a in 
Algorithm 12, W = 0 + 2 - 1 - 0 = 1. 

So we have = 1, = 1 and °S%] = 4, ^ = 3. 

2. j = 1: ^ ( 2 ) = [ | ] = 8, = 8, 1S£] = 6. Extensions °R^,W are defined 

similarly as in the previous step: °R^ = 2, llP) = 1 and °Sp) = 10, = 5. 
3. j = 0: Similarly, = 15, 0S^ = 20, ^ = 10, Extensions °R(°) = 

2 , ^ ° ) = 1 a n d ° 4 0 ) = 2 2 , 1 4 0 ) =9 . 
Extensions for cdf 3.1 are °R = 22 — 15 + 1 = 8 and lL = 15 — 9 = 6. The example 
is depicted in fig 5.1. Fig. 5.4 shows all (two) possible extensions parametrized by 
(5.3), (5.4). 

n 0 'l5 22 
£ C e x t • • • • • • • • • • • • • • • • • • n o o o n n 

<V 1 9 115 31 Xext • • • • • D|D • • • • • • • • • • • • • • • • 

n o 14! 

1 1 115 31 

Figure 5.4: Possible extensions derived from Example 14. Equations (5.3), (5.4) 
were used with k — 0 (a) and k — — 1 (b) 

5.2 The Main Algorithm 
This section contains a full description of the forward and the inverse segmented 
wavelet transform via the lifting scheme. When extending segments, one can slide 
of the support of the input signal. In this case, a zero padding is considered for 
the sake of simplicity, but the extension for other types of boundary treatment is 
straightforward. 

Algorithm 15:[SegLWT analysis of one segment] 
Given: segment n, index of the first sample in the segment in the global indexing 
point of view, nS, and the last one (n+1S — 1), desired level of decomposition J. 
lifting scheme, parameter k from parametrized extensions (5.3), (5.4) of neighboring 
segments already transformed. Output: ( J + 1) interleaved sets of coefficients na^ 
and nd(j) for j = 1,..., J. 
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1. Via Algorithm 13 and formulas (5.3), (5.4), determine left and right extensions 
of segment n: To get the proper left extension, apply Algorithm 13 to (n — 1) 
and n segments, in (5.4) use k from the previous segment if such exists, choose 
and store one in other case. To get the right extension apply Algorithm 13 
to n and (n + 1) segments and in (5.3) use k from the next segment if such 
exists, otherwise choose and store some k. 

2. Perform LWT of the extended segment in-place. 
3. Crop the same amount of samples as was (or would be) added from both sides 

for k = 0 in (5.3), (5.4). 
4. Optionally: Deinterleave coefficients to get sets n a ' J ' and nd^\ 

Algorithm 16:[SegLWT synthesis of one segment] 
Given: Interleaved sets of coefficients n a ' J ' and nd^ for j = 1,..., J , global index 
of the first sample in segment nS, lifting scheme. Output: segment nx, extended 
from both sides (containing overlaps to neighboring segments). 

1. Extend interleaved coefficients from both sides with zeros as in Algorithm 15, 
though the extensions are computed differently now. Algorithm 13 is followed, 
but for several changes. The signs in step 2 are switched when computing nS^ 
and n+1S^\ nS^ and n+1S^ switch values and also the resulting nR and n+1L 
switch values and have an opposing sign in addition. 

2. Perform inverse L W T on the zero-extended segments. 
3. Add the resulting segment nx of length len(ncc) = nL + len(ncc) + nR to the 

output signal starting at the global index nS^ =nS — nL. 

5.2.1 SegLWT algorithm in real-time 

According to (5.3) the minimum right extension can be n i ? m i n = {nR mod 2 J ) £ 
{ 0 , . . . , 2 J — 1}. It depends on the value of nS but also on the concrete structure of 
the lifting scheme. In this section, a modification of the algorithm is proposed not 
requiring a right extension in a sense that none of the samples from the following 
segment are needed. This notion greatly simplifies the practical use of the proposed 
algorithm. 

The idea is similar to the notion of the "negative" right extension from eq. (4.14). 
The situation is still the same (two neighboring segments n and (n + 1) as in section 
5.1.1) but in addition, we are not allowed to use any samples from (n + 1) when 
working with segment n. Let us assume the ™i?min > 0. The restriction for eq. (5.3), 
(5.4) (nR, n+1L) > 0 can be overcome assuming a slight modification of the proposed 
algorithm. In the discussed case, we are interested in the case nR < 0 which can be 
interpreted as that there are 2 J — n i ? m i n samples at the end of the n segment, which 
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are not processed at the same time as segment n. These samples are encompassed 
in the left extension of the (n + 1) segment. This left extension is then given by 

+ l r _ n+lr , -̂ noright l-i ~X~ 
nR 

2J (5.5) 

Example 17: Let us assume the same setup as in Example 1: XS = 15, J = 3, 
°R = 8 and thus ° i? m i n = (°R mod 23) = 0 see fig. 5.4 b). Extensions for every possible 
lS — 1,..., 31 are shown in the fig. 5.5. Let us leave aside the impracticality of the 
extending segments so that after the extension, one or both of them ale longer than 
the whole signal (clearly there are limitations). Periodicity 2J = 8 of the extensions 
are clearly visible, and °i?mi n = 0 for lS = p2J — 1 for some integer p, however 
the indexes for which the °i?mi n = 0 differ for different lifting schemes, only the 
periodicity remains. 

After performing LWT of the actual segment n, nL samples are discarded from 
the left and nR from the right side. The resulting coefficients can be processed (e.g. 
thresholded) prior to the inverse LWT. 

Inverse SegLWT in real-time setting After the coefficient cropping, the index 
nS actually changes (to nS[nv). Also values n i ? i n v and n+1L-mv have to be recalculated 
using 

nR 
(5.6) 

V 
Then, according to the alg. 16, nx contain overlaps both to the next and the to 
the previous segment. So the last n i ? i n v + " + 1 Anv samples should be held for they 
will be added to the first respective samples in the following segment. The real­
time SegLWT is depicted in fig. 5.6 for two arbitrary segments assuming len(n£c) 3> 
nR + n+1L. It is shown that the process exhibits delay of n+1S — n+1S-mv + n+1Linv 

samples. 
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Figure 5.5: Extensions from Example , XS = 1,..., 31, (a) Left (nR) and right ( n + 1 L ) 
extensions using alg. 15 (b) Maximum left extensions n+1Lmax and minimum right 
extensions n . R m i n . (c) Left extensions ( n + 1 £ n o r i g h t ) only using formula (5.5). 
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Figure 5.6: Depiction of the real-time SLWT for two segments nx and n+1x divided at index n+1S. a) Extensions nR,n+1L calculated 
using alg. 15. b) Extensions n - R m m , n + 1 £ m a x calculated using eq. (5.3), (5.4). c) Only left extension n + 1 I / n o r i g h t using (5.5). d) The 
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The segments after inverse LWT. The last n i ? i n v + n + 1 ^ m v samples of segment n are "overlap", so they are added to the same number 
of the first samples of the segment (n + 1). g) The segments after adding the overlap. 



6 MULTIDIMENSIONAL EXTENSIONS 
In this chapter, the extension of the segmented algorithm to the multidimensional 
isotropic discrete wavelet transform is presented. The separability property ensures 
that the principles from the previous chapters are valid even for multidimensional 
signals. For simplicity, the consecutive order of segments along the time dimension 
(if present as one of the dimensions) will not be exploited. The starting point is the 
maximally general algorithm from sec. 4.1 with a left extension only. The input of 
the multidimensional SegDWT is then an arbitrary box-shaped segment since the 
segment dimensions can differ in each direction. Since the segment order in each 
dimension cannot be defined unambiguously, the S = (S[0], S[l],..., S[D — 1]), de­
note left, upper, (near,...) corner of the segment and s = (s[0], s [ l ] , . . . , s[D — 1]) 
its dimensions, where D denotes the number of the input signal dimensions. Accord­
ingly, the SL = ( 5 [ 0 1 L n o r i g h t , 5 [ 1 1 L n o r i g h t , . . . , s[D~1]Lnoright) denote left, top (front,...) 
extension (according to (4.16)) of the segment starting with S. Extended segment 
dimensions are then s e xt = (L[0] +s[0], L[l] +s[l],..., L[D-1] +s[D-1]). One level 
isotropic D W T of one segment consists of a multiple one-dimensional D W T in each 
direction at a time. After that, there are additional 2D — 1 detail coefficient vectors 
in addition to one approximation coefficient vector sharing the same dimensions. 
The dimensions at level j can be derived similarly as in (4.19) taking a direction at 
a time. 

In addition to the new SegDWT formulation (alg. 10 and alg. 11), the two pre­
sented modifications seem to be suitable for the multidimensional signals: Overlap-
Save for SegDWT synthesis and subsequently the ROI SegDWT. 

An example of the two-dimensional SegDWT algorithm usage on the real image 
is in fig. B . l . 
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7 APPLICATIONS 
The chapter introduces two applications using SegDWT algorithm serving as a proof-
of-concept. 

The first application is V S T effect plugin that allows custom real-time wavelet 
coefficient processing. The V S T (Virtual Studio Technology) is a product of the 
Steinberg company which provides an interface for integrating software audio syn­
thesizer and effect plugins with audio editors and recording systems. To run a plugin, 
a host application is needed to feed the plugin with audio data and processing the 
output. Since VST technology is nowadays a standard in the digital audio processing 
field, there are many such host application available. We used two host applications 
for the (succesful) testing of the created plugin module. The first one was DSOUND 
GT-Player (EDU) Express, version 2.6 Feb 17 2006. This host is simple enough and 
great for debugging, etc. It is no longer supported, but it is downloadable from the 
archive [51]. The second host was Cubase 4 (EDU), version 4.5.2 Build 274. 

The second application is an implementation of a parallel computation of D W T 
of images. The actual parallelization is done by the means of the Intel Threading 
Building Blocks (TBB) library framework [48]. There are other mechanisms for 
computation parallelization but the T B B became popular enough to be incorporated 
in the widely used computer vision OpenCV library [52]. 

7.1 VST plugin for Real-Time Wavelet Audio Pro­
cessing 

The implementation started from the template by Dr. J. Schimmel, which is acces­
sible from U R L [51]. The template is designed for creating VST plugin modules 
compatible with V S T 2.4 specification. 

The VST plugin uses "SegDWT" library which was created in the C++ language. 
The library consists of the SegDWT.h and SegDWT.lib files, whose source codes 
are available at [49]. The library processes single precision data types only. Both 
the forward and the inverse transforms are implemented in the FloatSegDWT class. 
Wavelet filters and wavelet coefficient processor are injected into the class by means 
of the FloatWf i l t e r and IWaveletCoeff Processor type objects, respectively. The 

main public functions of the class are summarized in Listing 7.1. 

Listing 7.1: Important functions from FloatSegDWT class, 
c l a s s FloatSegDWT{ 

p u b l i c : 
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F l o a t S e g D W T ( F l o a t W f i l t e r : : T y p e w a v e l e t T y p e , i n t n e w j = l ) ; 
F l o a t S e g D W T ( F l o a t W f i l t e r * newWavelet, i n t n e w j = l ) ; 

v o i d f o r w a r d O L S ( f l o a t * i n , i n t i n L e n , f l o a t * out [] , i n t o u t L e n [ ] , 
u n s i g n e d l o n g Sn= 0 ) ; 

v o i d i n v e r s e O L A ( f l o a t * i n [ ] , i n t i n L e n [ ] , f l o a t * o u t , i n t o u t L e n , 
u n s i g n e d l o n g Sn= 0 ) ; 

v o i d p r o c e s s ( f l o a t * i n , f l o a t * o u t , i n t i n L e n , 
u n s i g n e d l o n g Sn= 0 ) ; 

v o i d s e t W a v e l e t P r o c e s s o r ( I W a v e l e t C o e f f P r o c e s s o r * p r o c e s o r _ ) ; 

>; 

The class instance can be created using two constructors. The object containing 
the (four) wavelet filters can be either supplied directly by a pointer or created in 
the constructor according to the enumeration data type FloatWf i l t e r : :Type value. 
Function f orwardOLS takes the input array in and calculates wavelet the coefficient 
arrays, which have to be allocated beforehand. Value Sn identifies the index of 
the first sample from the global indexing point of view. Function inverseOLA is 
complementary to f orwardOLS. Function process initially calls f orwardOLS, then 
processes the function of the IWaveletCoeff Processor object and, lastly, the i n ­
verseOLA. 

The storage of the overlaps is handled internally. Routines for allocating memory 
for arrays of wavelet coefficients are included as well. 

The compiled V S T plugin module is accessible through U R L [49] in the ready-to-
use form of a D L L file (~1.2 MB) . It suffices to copy the file to the plugin directory 
of the V S T host software before the host is run. 

The graphical user interface (GUI) is a simple, minimal one and consists of two 
parts, see Fig. 7.1. The left part of the plugin GUI appears always the same. It 
allows the user to set the global gain after the signal synthesis — Gain, choosing the 
wavelet filter — Wavelet, the depth of decomposition — Depth, and the method of 
processing the wavelet coefficients — Process. Wavelet filter names and filters were 
adopted from the Matlab Wavelet toolbox. The depth of decomposition J is limited 
by the size of the input buffer stmf (which is controlled by the host application) so 
that 2J < Sbuf, and at the same time, its maximum is set to J = 10. 

The right part of the GUI depends on the selected Process. There are wavelet 
coefficient processors bundled with the plugin by default, however they serve mainly 
to "prove" the proposed algorithm. (Of course, if no modification was done to the 
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Figure 7.1: VST plugin GUI when "Filter" is selected for processing the coefficients. 

coefficients, the output signal would be equal to the input signal up to numerical er­
rors!) The controls at the right hand side allow setting parameters for the respective 
processors. The bundled processors are: 

• Default — simply copies the wavelet coefficients and leaves them intact. This 
is incorporated to verify the perfect reconstruction. 

• Filter — allows a multiplication of the wavelet coefficients by the specified 
values. Each decomposition level is assigned its own value. 

• Hard Thr — hard-thresholds each subband with a specified value, i.e., the 
coefficients in absolute values smaller than the threshold are set to zero. 

• Random — each coefficient in each subband is randomly perturbed. The 
extend of the scattering is controlled by the specified parameters. 

The number of sliders is J + 1 in all these cases, each of them linked with the 
respective decomposition level. The depths go from the highest-frequency details to 
the approximation coefficients when taken from the top to the bottom. 

The delay of the output in comparison to the input is always equal to r(J) 
regardless of the buffer size. 

However, the limit of the C P U performance can be reached on some computers 
when a demanding combination of parameters is set. For example, J = 10, wavelet 
dblO (Daubechies 10 with m = 20), which leads to r(J) = 19456 samples of the left 
extension which have to be processed in addition to the actual segment samples, 
whose minimal length is restricted to stmf > 1024. 

This paragraph clarifies how to add your own real-time wavelet coefficient proces­
sor into the V S T (2.4) plugin, extend and adapt it to your specific needs. The cus­
tom processor can be inserted into the plugin (or, more precisely, into the SegDWT 
library) by means of the Template pattern paradigm. To do this, create a class inher­
ited from the interface called IWaveletCoeff Processor which implements all its vir-
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tual functions, see Listing 7.2. In the setUserVariables function in vst_temp. cpp 
file, dynamically create the instance of your processor, create the instance of the 
structure Processor Info and fill the respective variables. Then append the struc­
ture object to the processorList vector. 

After compiling and running the plugin in a host application, your processor 
should be accessible by means of the Process slider, at a position corresponding to 
its index in the processorList vector. To demonstrate how to access the individual 
wavelet coefficients, we display Def aultProcessor process function implementa­
tion in Listing 7.3. 

7.1.1 Convolution and down/upsampling 

The convolution and the down/upsampling are realized in the time domain. The 
standard two-direction cyclic buffer is exploited and the convolution and downsam-
pling are done together in a single step, for both the filters simultaneously, according 
to the formulas 

m—1 
a^'+1) [n] = J2 aU) [2n-k + m-l] h[k], (7.1) 

fc=0 

m—1 
d0'+1) [n] = J2 a U ) [2n-k + m-l]g[k], (7.2) 

fc=0 

for n = 0,...,nsN® - 1, j increasing from zero to J — 1, the formulas have to 
be modified for the first and the last segments—they have to be treated slightly 
differently. However, the last segment cannot be identified properly in the V S T live 
streaming audio setup. 

The described process is equivalent to the "full" linear convolution followed by 
cropping m — 1 samples from both sides, followed by the odd downsampling. This 
way, half the operations are saved. 

In a similar manner, the upsampling and the convolution in the inverse D W T 
are done together in a single step, for both filters simultaneously, according to the 

Listing 7.2: Structure of IWaveletCoeff Processor interface. 
c l a s s I W a v e l e t C o e f f P r o c e s s o r { 
p u b l i c : 
v i r t u a l v o i d p r o c e s s ( f l o a t * * i n , f l o a t ** o u t , i n t * c o e f L e n s , i n t J ) = 0 ; 

v i r t u a l v o i d s e t P a r a m s ( f l o a t * p a r a m s , i n t paramLen) = 0; 

v i r t u a l v o i d g e t P a r a m s ( f l o a t * p a r a m s , i n t paramLen) = 0; 

>; 
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Listing 7.3: Demonstration of accessing wavelet coefficients 
v o i d D e f a u l t P r o c e s s o r : : p r o c e s s ( f l o a t * * i n , f l o a t * * o u t , 

i n t * c o e f L e n s , i n t J ) { 
// t e m p o r a r y v a i a b l e s 

f l o a t * i n S u b b a n d ; f l o a t * o u t S u b b a n d ; i n t jTemp = 0; i n t c o e f L e n = 0; 

f o r ( i n t j=1;j<=J;j++){ 
// i n i t i a t i o n of temp, v a r i a b l e s f o r j - l e v e l d e t a i l c o e f f i c i e n t s 

jTemp = j - 1 ; 
c o e f L e n = c o e f L e n s [ j T e m p ] ; 
i n S u b b a n d = i n [ j T e m p ] ; 
outSubband = o u t [ j T e m p ] ; 
// i t e r a t i o n o v e r j - l e v e l d e t a i l c o e f f . 
f o r ( i n t i = 0 ; i < c o e f L e n ; i + + ) { 
/**PLACE FOR j - t h l e v e l i - t h DETAIL COEFFICIENT PROCESSING**/ 

o u t S u b b a n d [ i ] = i n S u b b a n d [ i ] ; 

} 

> 

// i n i t i a t i o n of temp, v a r i a b l e s f o r J - l e v e l a p p r o x i m a t i o n c o e f f . 
jTemp=J; c o e f L e n = c o e f L e n s [ J ] ; i n S u b b a n d = i n [ J ] ; o u t S u b b a n d = o u t [ J ] ; 

f o r ( i n t i = 0 ; i < c o e f L e n ; i + + ) { 
/**PLACE FOR i - t h APPROXIMATION COEFFICIENT PROCESSING**/ 

o u t S u b b a n d [ i ] = i n S u b b a n d [ i ] ; 

} 
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formula 

a{j) [n] 
|̂ m—l+(re mod 2) j 

,(3+1) = E 
|̂ m-l+(ra mod 2) j 

+ e 
fc=0 

-Jfc 

-k 

h [2k + (n mod 2)] 

g [2k + (n mod 2)] 

(7.3) 

n = 0 , . . . , nsNW - 1 and j = J - 1,..., 0. 
Again, the number of operations is reduced in comparison to the equivalent 

calculation consisting of upsampling both a^ + 1 ) and d^+1\ followed by a linear 
convolution and the sum of the outcomes. 

7.1.2 Fast convolution via F F T is not faster 

Although it may seem tempting to perform the convolution and the resampling in 
the frequency domain using F F T , so far our tests have shown that this approach 
brings only a negligible performance increase and only in some extreme situations. 
In the rest of cases, the F F T approach performs worse. Moreover, the frequency 
domain filtering and the resampling bring, apart from the segment size constric­
tions, complications with implementation, and require a considerable revision of the 
SegDWT algorithm. The fact that the F F T approach does not perform so well in 
such situations is caused mainly by the short length of filters the wavelet filter bank 
comprises (i.e. m < 20) and by the relatively short segments, even after they had 
been extended s e x t = r n o r i g h t ( J ) + s b u f . 

We compared our implementation of the D W T analysis (forward transform only) 
in the time domain with frequency domain implementation using F F T W [53] 3.3.1 
default 32bit dll binary distribution using Intel C++ compiler 12.0.1 with the \03 
optimization parameter. The tests were run 101 times and the median was taken as 
the result, which is plotted in Fig. 7.2. The testing machine was running Windows 
7 Professional 64bit on Intel(R) Core(TM) i7 C P U 960 3.2GHz. We can conclude 
that the F F T implementation starts being beneficial for J > 10 and m > 17, since 
the segment length after the (maximal) extension depends on J exponentially and 
on m linearly, and it will be s e x t = 16368 + stmf-
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Figure 7.2: Comparison between time domain an frequency domain forward D W T 
implementations for different sequence lengths. Since the relative differences were 
not affected by the choice of the depth of decomposition, J = 6 was used. 
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7.2 Parallel 2D Wavelet Transform Library 
The parallel implementation of the SegDWT was done in C++ and it is distributed 
as a static library available at [49]. To introduce parallelism into the implementa­
tion the Intel Threading Building Blocks (TBB) library was used. T B B provides 
algorithms and concepts which enable to fully exploit the possibilities of the multi-
core processors. It also provides automatic task scheduler and the automatic thread 
management. For more detailed information on using T B B in image processing see 
[5] or [48]. 

A basic concept of T B B is that tasks are recursively divided into smaller parts 
and then they are processed in parallel. When processing an image, the initial 
task range spans the whole image. This range is then recursively split into halves 
and when the new range is small enough, it is processed. T B B manages this split­
ting automatically and even allows task stealing to achieve a load balancing between 
working threads. A programmer can control the size of the smallest range by param­
eter grainsize, but if T B B decides not to split the range any more, the grainsize 
does not have to be reached so grainsize is only a coarse value that define size 
up to which range will not be split. Hence, the size of the segment to be processed 
is not known beforehand. At this point the new algorithm enters and after each 
division the extensions of the two affected segments are computed. According to the 
Theorem 9 these extensions are not affected by any other division of ranges. 

At this point a very important fact needs to be highlighted. Every division of the 
range brings a redundancy of the computation. Obviously the number of redundant 
rows or columns of the input pixels is up to r(J), which is depends on the length 
of the filters m and the depth of the wavelet decomposition J , see (2.2). So it is 
advisable to use as few divisions as possible, but at the same time it is important 
to effectively exploit all available threads to achieve the desired speedup. 

7.2.1 Testing 

Via testing, we would like to establish the optimum grainsize for a given r(J) to 
reach the highest speedup possible. The serial version, to which parallel versions in 
different setups are compared to, is computed as if the whole image was one segment, 
so there are extensions by r(J) only at the image borders. For testing purposes we 
used system running Intel C2Q Q9550 (4 cores). A l l data types were single precision 
32-bit floating points. The compiler associated with Microsoft Visual Studio 2008 
was used with the \02 optimization parameter. A median from 10 runs was taken 
as a result. 

Firstly, we performed several tests with 4096x4096px image for a fixed r(5) 
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and varying grainsize. It can be seen in Fig. 7.3 that the speedup is relatively 
independent on the choice of grainsize, but with the increasing r(J) a bigger 
grainsize is needed. Using that, the speedup for a different r(J) with an almost 
optimum choice of grainsize ~ 2r(J) is shown in Fig. 7.4. 

m: • 2 • 6 | 10 | 14 Q 18 

4 

32 64 128 256 512 1024 2048 

grainsize 

Figure 7.3: Speedup for increasing grainsize for different values of r(5) (31, 155, 
279, 403, 527 corresponding to filters with m — 2, 6,10,14,18) 

~d 2 
c ID i 
ft 1 

0 
31 93 155 217 279 341 403 465 527 589 

r(J) 

Figure 7.4: Speedup for increasing r(J) for J = 5 and m = 2, ,20 

We obtained another interesting result through Intel parallel Universe Portal. It 
is a web service where Intel offers computing resources on a 8-Core Intel Xeon@2.80GHz 
with hyperthreading (effectively 16 cores) (the service is suspended now). The tests 
were performed in the following setup: image 4096 x 4096 px, m = 10, J = 4 leading 
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to r(J) = 135, grainsize was set to 512 in both directions. In Fig. 7.5 the scala­
bility of the speedup can be seen - that means the performance is increases with an 
increasing number of cores. 

1 2 4 8 16 

Cores 

Figure 7.5: Speedup on Intel Parallel Universe 

7.2.2 Software 

The described implementation is distributed as a static library for 32bit OS Windows 
freely under the GPLv2 license. The library and the source codes are accessible 
from [49]. To use the library, it is necessary to include the header file segDTWT.h 
from the include directory and set the linker to include segDTWT2D.lib from the 
l i b directory. The functions, which perform parallel forward and inverse wavelet 
transforms are: 

segDTWTfwd_32f_Cl(float* i_data, int i_widthStep, float* subbands[], 
int widthSteps[], int levels, Size size, 
separableWavelet* w); 

segDTWTinv_32f_Cl(float* subbands[],int widthSteps[], float* o_data, 
int o_widthStep, int levels, Size size, 
separableWavelet* w); 

float* i_data - pointer to the beginning of the image 

int i_widthStep - distance between two consecutive rows of the image in memory 
in bytes 

float* subbands [] - array of pointers to the output subbands. For details see 
below. 
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int widthSteps [] - array of the distances between two consecutive rows in bytes 
in E A C H individual subband 

int levels - depth of decomposition, the J variable 

Size size - dimensions of the input image 

typedef struct 
int width; 
int height; 

Size; 

separableWavelet* w - object defining the wavelet filters 

Prior to the calling of this functions one must have separableWavelet object 
prepared and also the memory for the output subbands needs to be allocated. One 
of the constructors for separableWavelet class accepts the wavelet name and the 
file name, where the wavelet filters definitions are located. 

separableWavelet(string name="default", 
const char* f i l e = "wavelets.dat") 

The wavelets.dat file is distributed with the library and it contains wavelet fil­
ters defined in MatLab wavelet toolbox, but more filters can be added keeping the 
prescribed format. 

^ \ (7 t , 7 t ) 

3H1 LH1 HH1 

HL1 1H2 LH2 HH2 HL1 HL1 

HL2 

HL1 HL1 

m? r.H? 

HL1 

fffll LH1 HH1 

( - 7 t , - 7 t ) I 

Figure 7.6: Subbands labeling 

The subbands [] is an array of pointers to the output subbands. The pointers are 
stored in the following order: subbands [0] =HL1, [1] =HH1, [2] =LH1, [3] =HL2, [4] =HH2, 
[5]=LH2 . . . [last]=LL assuming the subband labeling as depicted in fig. 7.6. The 
memory allocation can by done by means of the allocateSubbands function: 
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allocateSubbands(float* subbands[], int widthSteps[], int level, 
int filter_length_L, int filter_length_H, 
Size size); 

float* subbands [] - array of pointers to be filled with pointers to the subbands 

int widthSteps [] - array of the distances between two consecutive rows in bytes 

in E A C H individual subband 

int f ilter_length_L/H - length of the low- high-pass filter 
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8 CONCLUSION 
The presented thesis was devoted to the generalization of a SegDWT algorithm to 
one- and multi-dimensional signals. The crucial shortcomings of the original algo­
rithm were identified and removed. In addition, several optimizations of the algo­
rithm were proposed. In particular, the necessity of the right extension of segments 
was removed and the possibility of segments of different lengths was introduced. 

Several novel ideas were incorporated into the SegDWT algorithm including 
moving the overlaps from the time domain to the wavelet domain and thus reducing 
memory complexity. Further, the idea of the ROI SegDWT was introduced. For a 
chosen segment it identifies wavelet coefficients which participate on its full recon­
struction and it further determines the left and the right extension of the analyzed 
segment which are necessary for the concerned coefficients calculation. 

The presented novel SegLWT algorithm extends ideas of the SegDWT to the lift­
ing scheme. The main motivation was a possible reduction of the overlaps. It turned 
out that the overlap lengths were strongly dependent on the actual filter bank fac­
torization (lifting scheme) which is not unique. At best, the required overlap lengths 
are comparable to the SegDWT ones. However, the lifting scheme computational 
advantages (in-place, math operation number reduction) still remain. 

A l l of the proposed modifications were confirmed in the Matlab simulations. 
The code with demos is accessible on the accompanied D V D and on the SegDWT 
algorithm webpage [49]. 

Two proof-of-concept applications were created to confirm the SegDWT algo­
rithm design and its usability in the practice. That is the VST plugin for the real­
time wavelet processing of the audio signals, which provide mechanism for custom 
(user-defined) wavelet coefficient processing. During the playback, no disturbing 
border artifacts occurs even after strong non-linear modifications of the wavelet co­
efficients. Also the VST technology buffer sizes are host application specific, not 
limited to the powers of two and can even vary during the playback. The SegDWT 
algorithm presented in this thesis is designed to cope with this behavior. The second 
application is the exploitation of SegDWT algorithm for the parallel implementation 
of the forward and the inverse D W T of the images using Intel Threading Building 
Blocks library. The advantage of the SegDWT usage in this type of application 
is its ability to let the library split the pixels blocks even during the computation 
execution for load balancing. It was shown that the achieved speedup is scalable 
and it is proportional to the number of the working threads of the C P U . On the 
other hand, the optimum minimal pixel block dimensions seem to be ~ 2 r ( J ) . To 
retain the speedup scalability the images have to be large enough. 

The SegDWT algorithm is not limited to the D W T only. Any tree structured 
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separable filter bank based transforms can be calculated segmentwise using SegDWT 
e.g. framelets [54], complex wavelet transform C W T [55], wavelet packets and oth­
ers. 

Hereafter the text sketches ideas for a future research. The segmentwise com­
putations can be extended even to the non-iterated FIR filter bank structures for 
the noble identity filter bank representation has such structure. The only limit­
ing factors seem to be the lengths of the impulse responses (directly defining the 
necessary overlaps) and the subsampling factor. Another possible extension of the 
SegDWT could be its adaptation to non-separable wavelet-type transforms [34] of 
the images and the multidimensional signals. A particular challenge lies in dealing 
with non-separable subsampling patterns. 
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A PROOFS 
Proof of the theorem 9 
Proof: Let us consider that the portion of the signal preceding segment n of length 
ns is divided into (n — 1) segments of general sizes ls 

n-l 
nS=J2 is-

Then, according to (4.7) and the fact that nl = nL + ns, we can write 

~nL + ns -r(J)~ 

(A.1) 

n+1L = nL + n s - 2 J 

For n = 0 =>• °L = r(J) the following holds, since 

(A.2) 

1L = r(J) + °s-2J k , (A.3) 

so for n = 0 the theorem holds 

°R = r{J) -1L = 2J 

Then we can continue using induction 

n+2L = 

k \ - u s . (A.4) 

_ n+lL + n+lg _ 2J 

= r(J) -nR + n+1s - 2J 

+1L + n+ls _ r ( J ) 

2J 

nR + n+1s 
2~J 

+ / 

r(J) - 2J 

r{J) - 2J 

r(J) - 2J 

2> 

k) + nS + n + 1 s - 2 J 

( 

ls-2J(\£]+k)+nS 

k) + ^ ' s - 2 " 
i=0 

Z's-2" 
i=0 

2-> 
+ 1 

2J 
+ 1 

r(J)+n+1S-2J 

k ) + n+1S - 2J  

+1S~ 

( -n+lg -nS-
u 

{ 2-' 2J — K + 1 

I 

l+1R — r(J) - n+2L = 2J 

n + l 5' 
2J 

+ D - n+1s 

• 
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B EXAMPLES 

1 | 
'•SWjB'H V i f f 

Wmsm 

• 

(a) (b) 

(c) (d) 

Figure B . l : SegDWT applied to an image. Wavelet filter bank setting: J = 3 and 
m — 8. (a) Initial division into segments (blocks), (b) Wavelet coefficients colored 
according to the segments they belong to. (c) Properly extended segments, (d) 
Reconstructed segments. 
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Figure B.2: No border artifact SegDWT example. The setup from fig. 2.2 ( J = 4, 
m — 8) which results in "sLnoright = 90 for each segment, (a) Initial segments, (b) 
Extended segments, (c) Segments after reconstruction, (d) Segments with added 
overlaps (black line). 
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Figure B.7: SegDWT algorithm modifications examples. Depth of decomposition J = 3 and filter length m = 4, which leads to rrea(J) = 14. The dividing 
index between segments is n + 1 S = 66. (a) SegDWT analysis modification employing odd subsampling with " + l s R m i n = 6, " + l s L m a x = 8. (b) SegDWT 
analysis modification employing odd subsampling and no right extension: + s L n o r j g h t = 14 + (66 mod 2 3) = 16. (c) SegDWT synthesis modification for 
odd subsampling. Zero coefficients are appended to the beginning of coefficients vectors: r r e d(3 — 1) = 6 at level j = 1 and r r e d(3 — 2) = 2 in level j = 2. 
The non-zero reconstructed segments overlap is equal to r?ed(J) = 14. (d) SegDWT synthesis modification for odd subsampling and no right extension. 
Zero coefficients are appended to the beginning of coefficients vectors: r r e d(3 — 1) + 

level j = 2. The reconstructed segment overlap is equal to + sLr 

(66 mod 2 J ) 
21 J = 7 at level j = 1 and r r e d (3 — 2) + ( 6 6 ™ d ^ ) _ 2 in 

16. 
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Figure B.8: O L A and R O I SegDWT algorithm modifications. Depth of decomposition is J = 3 and filter length is m = 4 . (a) SegDWT analysis algorithm 

O L A modification. Numbers of coefficients forming overlaps in the wavelet coefficients vectors are: for j = 1, i?. 66p( 1 ) 
O L A 

r ( l ) + ( 6 6 mod 2 3 ) 
2 1 

for j = 2, 6 6 R O L A = 2 and for j = 3, 6 6 R Q L A = 2- (b) R O I SegDWT analysis algorithm modification. The segment is initially extended by T bL 66T?(3) 

(66 mod 2S) 

2 i 

+ 1 S T srht 

1 4 + (66 mod 2 3) = 16 samples from the left and by 8 5 R Q L S 21+(85 mod 2 J ) 
23 2 3 — (85 mod 2 3) = 19 samples from the right. Gray coefficients are discarded 

prior to further processing, (c) SegDWT synthesis algorithm OLS modification. Initially, there are 6 6 f i o L A coefficients borrowed from the following segment. 

The number of zero samples, appended to the beginning of wavelet coefficients at level j is r r e a( J — j)- (d) ROI inverse SegDWT. 
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Figure B.9: SegDWT analysis with overlaps in the wavelet domain. J = 3. 
m — 4. Overlap-save SegDWT analysis: vectors n + 1 a^°- ) (which are identical to 
n+1x),n+1a(-1\n+1a^ are extended from the left by m — 1 or m — 2 coefficients 
taken from the previous approximation coefficient vectors. 
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C DVD C O N T E N T 
The folders on the accompanied D V D are organized as follows: 

• algorithms - folder contains Matlab code implementing proposed algorithms. 
See readme files. 

— ch4_SegDWT - Matlab implementation of the original SegDWT and the 
proposed SegDWT algorithm modifications 

— ch5_SegLWT - Matlab implementation of the novel SegDWT algorithm 
— ch6_multidimensional_SegDWT - Matlab demonstration of the 1D-3D 

SegDWT algorithm 
• software - VST plugin and SegDWT library. 

— ch7. l_VST_plugin - contain source codes and binaries of the VST plugin 
— ch7.2_Parallel_2D - contain source codes and binaries of the parallel 

implementation of 2D SegDWT. 
• text - contains the electronic version of this thesis in pdf and ps formats as 

well as all D T E X source codes. 

The codes can be also found on the SegDWT algorithm webpage [49]. 
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