
Czech University of Life Sciences Prague

Faculty of Economics and Management

Department of Information Engineering

Diploma Thesis

Web Application for Local Agricultural Products in

Addis Ababa

Aleazar Doda Gobena

© 2019 CULS Prague

Declaration

I declare that I have worked on my diploma thesis titled "Web Application for

Local Agricultural Products in Addis Ababa" by myself and I have used only the sources

mentioned at the end of the thesis. As the author of the diploma thesis, I declare that the

thesis does not break copyrights of any their person.

In Prague on March 29th, 2019 ___________________________

 Aleazar Doda Gobena

Acknowledgement

First of all I would like to thank my family for their continuous

encouragement, support and love. They have always been there for me in times of

my need in all aspects of life.

I would like to thank deeply my thesis supervisor doc. Ing. Vojtěch

Merunka, Ph.D. of the Faculty of Economics and Management at Czech

University of Life Sciences Prague for his great support and understanding in the

completion of this thesis. His irreplaceable guidance in directing me to the right

ways led me to this success.

I would also like to thank my teachers, my fellow classmates and the

academic staff of the Systems Engineering and Informatics of the Czech

University of Life Sciences, Prague, for their support in my learning process for

the last two years.

Finally, I would like to thank my friends for their willingness to support

me in every way that I needed help. I could not have finished this thesis without

your encouragement and your vital contributions.

Web Application for Local Agricultural Products in

Addis Ababa

Abstract

In this age of technological transformation, it is inevitable for organizations to

adjust and adopt new information technologies and systems rather than traditional ones.

Information Technology (IT) and Information Systems (IS) are the backbones for all

small to high-level organizations. IT primarily denotes the hardware, software, and

telecommunications services and IS refers to the way by which individuals in an

organization use technology to gather, process, communicate and store data and

information. To cope up with the existing technology, organizations need to design and

model a robust information system. One of the vital parts in the process of information

systems is designing. Unified Modeling Language (UML) is one of the major designing

tools for information systems. In this document, the basic components and terminologies

of UML are defined. The latest version of UML is used to explain the comprehensive

structure and workflow of a web-based application system. Additionally, the theoretical

part discusses in depth the concepts of the software development process and the basic

definition of database types and structures. Designing the web application for local

agricultural products is used to clarify these theoretical concepts. The application is a

web-based application to be implemented to support local farmers in the suburbs of

Addis Ababa, Ethiopia, for a smooth transaction of their agricultural produces thereby

creating an opportunity for their potential buyers to get these products with a relatively

cheaper price and with higher quality. The primary focus of the application is to match

the minimum price of a product that a farmer requires and the maximum price that the

potential buyer is willing to pay for a certain quantity of the product. The system design

is analyzed using the class model, the interaction model, and the state model and their

respective UML diagrams. A prototype web application is developed to demonstrate the

effect of modeling in the development process.

Keywords: UML, Web-based Application, Object-Oriented Design, Unified Modeling

Language, Organic Product, Local Farmers, MySQL, Database

Návrh progresivní webové aplikace pro překladači

služby

Abstrakt

V dnešní době technologických transformací je pro organizace nevyhnutelné se přizpůsobit

a přijmout nové informační technologie a systémy spíše než ty tradiční. Informační

technologie (IT) a Informační systémy (IS) jsou základem všech organizací. IT primárně

představuje hardware, software a telekomunikační služby a IS poukazuje na způsob,

kterým jednotlivci v organizaci využívají technologie ke sběru, zpracovávání, předávání a

ukládání dat a informací. Aby se organizace vyrovnaly s existencí technologií, potřebují

navrhnout a vytvořit silný informační system. Jednou z nezbytných částí v postupu

informačních systémů je koncipování. Jednotný modelový jazyk (UML) je jedním z

hlavních projektových nástrojů pro informační systémy. V tomto dokumentu jsou

vymezeny základní komponenty a terminologie UML. Nejnovější verze UML je použita k

vysvětlení všeobecných struktur a pracovního postupu informačního systému založeného

na webu. Teoretická část se dále důkladně zabývá konceptem softweru vývoje procesu a

základní definicí typů a struktur databáze. Koncipování webových aplikací pro místní

zemědělské produkty je použito k objasnění těchto teoretických koncepcí. Tato aplikace je

aplikace založená na webu určená k podpoře místních farmářů v Addis Abbeba, Etiopii,

která má zajistit hladký průběh obchodování s jejich zemědelskými výrobky vytvořením

příležitosti pro jejich potenciální kupující získat tyto produkty za relativně levnější cenu a s

vyšší kvalitou. Hlavním bodem této aplikace je sjednotit minimální cenu produktu, kterou

farmář požaduje s maximální cenou, kterou je kupující ochoten zaplatit za určité množství

produktu. Systémové koncipování je analyzované pomocí vzorového modelu, interakčního

modelu, státního modelu a jejich příslušných UML diagramů. Prototyp webové aplikace je

vytvořen pro demonstraci efektu modelace ve vývojovém procesu.

Klíčová slova: UML, Aplikace založená na webu, Design orientovaný na předmět,

Jednotný modelový jazyk, bio produkt, místní farmáři, MySQL, database

8

Table of Contents

1 Introduction .. 11

2 Objectives and Methodology ... 12

2.1 Objectives ... 12

2.2 Methodology .. 12

3 Literature Review .. 13

3.1 Web Application .. 13

3.1.1 Static Web Application ... 13

3.1.2 Dynamic Web Application ... 14

3.2 Software Development ... 14

3.2.1 Software Development Life Cycle Models .. 15

3.2.2 The Waterfall Model ... 16

3.2.3 The V-shaped Model .. 18

3.2.4 Evolutionary Prototyping Model .. 20

3.2.5 Spiral Model ... 20

3.2.6 Iterative and Incremental Model ... 21

3.2.7 Agile Development ... 22

3.3 UML ... 23

3.3.1 Origin of UML .. 24

3.3.2 History of UML .. 24

3.4 UML Diagrams .. 26

3.4.1 Structure Diagram ... 27

3.4.2 Behavior Diagrams ... 32

3.5 Databases.. 37

3.5.1 Relational Databases ... 38

3.5.2 Non-relational Databases .. 38

3.6 Web Applications as a trading platform for local farmers 39

3.7 Web Applications as a trading platform for local farmers in Ethiopia 42

4 Practical Part .. 43

4.1 The Web Application ... 43

4.2 Over view of the Application ... 45

4.2.1 Functional Requirements .. 45

4.2.2 Non – Functional Requirements ... 46

4.3 Analysis Model .. 46

4.3.1 Data Dictionary ... 46

4.3.2 Static Model .. 47

9

4.3.3 Dynamic Model .. 51

4.3.4 State Model ... 59

4.4 Architectural Design .. 60

4.4.1 Systems Disintegration ... 61

5 Implementation of the web application system ... 63

6 Results and Discussion ... 75

6.1 Results .. 75

6.2 Conclusion ... 76

7 References ... 77

List of Figures

Figure 1: Software Development Life Cycle (Sami, 2017) .. 15

Figure 2: Waterfall Model (Sami, 2017) .. 16

Figure 3 The V-Shaped Model (Sami, 2018) ... 19

Figure 4: Spiral Model (Ghahrai, 2018) .. 21

Figure 5:The Agile Software Development (Ghahrai, 2018) ... 22

Figure 6: History of UML (Ghahrai, 2018) ... 25

Figure 7:UML Diagrams (Paradignm, 2017) ... 26

Figure 8: Relationships in Class Diagram (Paradignm, 2017) ... 30

Figure 9: Use Case Diagram and its interactions (Wikepedia, 2018) ... 33

Figure 10: Activity Diagram (Paradignm, 2017) ... 35

Figure 11: State Machine Diagram (Paradignm, 2017) .. 36

Figure 12: Sequence Diagram (Paradignm, 2017) ... 37

Figure 13:Mandi Trade App (Kedia, 2018) ... 40

Figure 14: Rainbow app (Sharma, 2015) .. 41

Figure 15: Class Diagram of the application (Author, 2019) ... 50

Figure 16: Use Case Diagram (Author, 2019) ... 52

Figure 17:Sequence Diagram of Place Order (Author, 2019) .. 54

Figure 18: Sequence Diagram of Report (Author, 2019) ... 55

Figure 19: Sequence Diagram of Registration (Author, 2019) .. 56

10

Figure 20: Activity Diagram of Order (Author, 2019) ... 57

Figure 21:Activity Diagram of Report (Author, 2019) .. 58

Figure 22: State Diagram of Make Order (Author, 2019) .. 59

Figure 23: Class Customer Code in Java (Author, 2019) .. 64

Figure 24: PHP Code for Registration (Author, 2019) .. 65

Figure 25: PHP Code for login (Author, 2019) .. 66

Figure 26: Continued PHP code for login (Author, 2019) .. 66

Figure 27: Home Page (Author, 2019) ... 68

Figure 28: Register Page (Author, 2019) .. 69

Figure 29:Log In Page (Author, 2019) .. 70

Figure 30: Add Product page (Author, 2019) ... 71

Figure 31: List of Potential Buyers after product added (Author, 2019) ... 72

Figure 32: List of Up Coming Events (Author, 2019) .. 73

11

1 Introduction

In todays world of technological advancement, the role of information systems in

improving the quality of daily human life activities is growing highly. Recent

developments in the World Wide Web and the Internet introduced a new era for data and

information sharing with greater agility and cost effectively all over the world, thereby

creating a conducive environment to a web-based information system to flourish.

High cost and limited functionality of traditional software systems resulted in to an

increased demand of web- b a s e d information systems. Due to high need for small

scale local farmers to have a system to manage their agricultural products which covers all

requirements and has low cost, this document covers the design of Web-based application

for local agricultural products in Addis Ababa.

The difference between Web information systems and traditional information systems

is that a huge number of information are organized in a web structure which is served to the

users via web pages and hyperlinks. To make this process simpler, for the development and

implementation phases, UML as a core modelling language of information systems is

used. The Unified Modeling Language (UML) is a standard modeling language that

facilitate communication and interaction between all participants in the development

process. The UML is appropriate and enough for modeling of the web application.

Web application for local agricultural products in Addis Ababa is designed to give a

platform for local farmer to market and sell their products. The system will provide a list of

different prices that the producers can offer based on the amount demanded by the

customers and the maximum the local customers like restaurants are willing to pay for a

certain amount. The system will have two different databases for the different pricings

from producers and demand and maximum to pay on the side of clients. The system makes

matchings between the minimum the farmers can offer with the maximum the customers

are willing to pay.

12

2 Objectives and Methodology

2.1 Objectives

The purpose of this thesis is to design a type of web-based application which can be

used as a platform for local farmers to make their small-scale farm products more

accessible and enhancing the consumption of fresh and organic quality products among the

society. The application will be designed to give different prices that the local farmer can

offer based on the amount demanded and. Especially for restaurants as customers of these

agricultural products it will help them to find the best of for their budget. The first part of

this thesis includes a brief market analysis, studies of UML, reviews of SQL Database and

requirements analysis for the web application design. The second part contains building a

UML model for the web application including prototypes.

2.2 Methodology

To achieve the objectives of this thesis, a literature review on UML and SQL

Database will be carried out. A brief market analysis using secondary data sources will

take place as an attempt to analyze the benefits of the application. Reviews on other similar

application (if exists) will be carried out and will be analyzed. Following this, the

application design will be carried out through UML modeling. The application will have

two separate Databases for different sort of prices offered by the farmers and list of the

maximum budget the customers (specifically restaurants) could give to obtain a certain

amount of product. The application should be able to match these two lists to show the best

match that can be achieved using the available resources for restaurants and the best price

for the farmers. Finally, the outcome of the thesis will be UML diagrams of the designed

system and prototypes of the application.

13

3 Literature Review

3.1 Web Application

Web application is a client-server computer program, where there is a browser as a

client (including user interface) and a web server, datum mainly stored on the server and

logic being distributed among the server and the client. It is designed to run on any

browser, work on desktop computers, laptops or mobile devices with established channel

for data exchange between the client and server (The Journal of Systems and Software,

2019).

Web application are classified mainly in to two different major categories. These

two major categories are Static Web Application and Dynamic web application. The major

classification is based on how the applications show their content, their design and

architectures, and how they distribute the logic in different ways between the client and

server (2019).

3.1.1 Static Web Application

A static web application is a web application with a very low flexibility and is one

that is usually written in plain HTML and what is in the code of the page is what is

displayed to the user. Their pages are generated by a server and offer little to none

interactivity. Usually, no room for personalization exists and any possible change takes

effect only after a full page reload (Detienne, 2012).

Even though modifying the contents of static web apps is not easy, every page can

be different if desired and the designer is free to put any special forms that a client may ask

for in a unique way on different pages. It can be considered more flexible on this term.

They are more suited when a very concise information is shared, and interaction is not

required.

Static web applications are usually hard to maintain and the excessive amount of

data they send and receive could create risks of poor performance. They are not best-suited

for a mobile environment, besides, there are ongoing costs related with updating the

content (Yaskevich, 2018).

14

3.1.2 Dynamic Web Application

Dynamic web applications are based on a much more complex web application

software framework that controls web page construction and facilitates maintenance. They

usually contain databases for interactively loading data and their contents are updated each

time the client accesses them. Ability to connect them to databases enables easy pull of

data in an organized and structured way. This in turn helps to create product pages or

categories of related products sorted in a variety of different ways depending on how the

user wants to view them there by enabling creation of content management system which

is an interface to allow the client to manage data. They generally have an administrator

who can correct or modify the application’s contents (Session persistence for dynamic web

applications in Named Data Networking, 2019).

The way contents are displayed on user’s end in such web applications are not

predetermined but rather dynamically changed by an application logic which is

implemented on the server side or the client side of the application. Their use cases

determine their architectural design and development approach.

PHP, C++, Python and ASP are some of many different programming languages

which can be used for dynamic web application development making the structuring and

upgrading of the contents very simple without even having direct access to the server.

Additionally, it enables the implementation of features like forums or databases and web

applications commercial sites providing a lot of information for buyers and sellers (2016).

3.2 Software Development

Software development is defined as a series of phases that provide a common

understanding of the software building process including the conception, requirements,

design, actual coding, documentation, testing, and bug fixing which are fundamental

building blocks of creating and maintaining any sort of applications or other software

components (Dietrich, 2017).

In a broader sense, software development involves all the necessary steps involved

between the beginning of a required software to the final realization of the desired software

in an organized, planned and structured process and it is the process of writing

and maintaining the source code in a more specific way. It may involve new developments

15

through researching to modify existing systems and prototyping and re-engineering to

reuse or maintain software products.

The three most common purposes of software are to meet requirements of a bunch of

potential users, or for a specific personal use, or to address a stated requirement of a

specific client. In order to achieve their specified purposes of their creations and to be able

to function in a complete way, most software development processes require systems

integration (Tornhill, 2018).

There are many approaches to software development process. Mainly they can be

divided in two major categories. The first one is waterfall model which is more traditional

approach in contrast with the second software development model; agile software

development approach which is a recently innovated modern approach. These two and

other similar approaches are discussed as follows:

3.2.1 Software Development Life Cycle Models

System/software development life cycle is a model and methodologies that involve

the five key phases of the development process. Because it includes all the phases involved

from the conception to its disposal it is called a life cycle. These phases are first

requirements analysis, design, implementation and evolution (Information and Software

Technology, 2019).

 Figure 1: Software Development Life Cycle (Sami, 2017)

16

3.2.2 The Waterfall Model

Implementing waterfall model in systems development is a direct forward process

due to the step by step process of the model. The steps can be slightly different for

different purposes, but the major core steps include requirements, design, coding and unit

test, system integration, operation and maintenance (Braude, 2014).

The waterfall model emphasizes that a logical progression of these steps be taken

throughout the software development life cycle (SDLC), much like the cascading steps

down an incremental waterfall. Progress flows in a downward fashion, like the way

rushing water, from a height, flows downwards, hence the name "waterfall" was conferred

onto this model. This means that any phase in the development process begins only if the

previous phase is complete. The waterfall approach does not define the process to go back

to the previous phase to handle changes in requirement (Tornhill, 2018).

 Figure 2: Waterfall Model (Sami, 2017)

17

Requirements:

This first phase involves understanding what it is needed to design and what its

functions and purposes will be. This is a critical phase for without having a clear

understanding and knowledge on what had to be designed, one cannot proceed with the

development of a given project.

Here, in this phase, the requirements which the software is going to satisfy are

listed and detailed to be analyzed by analysis team. Requirements are documented during

this phase and clarifications can be sought. The Business Analysts document the

requirement based on their discussion with the customer. A successful completion of this

phase ensures a effortless working of the upcoming phases, as the programmer will not be

burdened to make changes at ending phases because of changes in requirements (Dietrich,

2017).

Design:

This is the phase, where the fundamental work for actual programming and

implementation is done. The requirements, that are gathered in the previous phase are

broken down into logical units, so that hardware and system requirements are specified

precisely defining the overall system architecture. This is the stage, when the software

requirements along with the hardware requirements for every unit are identified and the

software code to be written in the next stage is created. Then the designs are made to

accommodate the interrelation between the various units of the software using algorithms

and diagrams. This process makes it easy for implementation (Ousterhout, 2018).

Coding and Unit test:

This phase is when all the actual code is written, and the idea and flowchart of the

application is physically created or materialized. It is also known as implementation phase

since a software code is written and tested based on algorithms written in the previous

phase. In order to check if the correct output is written, the, the system is first developed in

small programs called units and each unit is tested for its functionality which is referred to

as Unit Testing (Detienne, 2012).

This phase belongs to the programmers in the Waterfall method, as they take the

project requirements and specifications, and code the applications based on the algorithm

or flowchart designed (Dietrich, 2017).

18

System integration:

The system is first developed in a small program called units in the previous phase.

Following the development, testing of unit is carried out to check for its functionalities and

finally all the units will be integrated into a system. A proper execution of this stage

ensures that the customer interested in the created software, will be satisfied with the

finished product. If there are any flaws, the software development process must step back

to the design phase (Braude, 2014).

Operation and maintenance:

This is the final phase and it involves installation of the application on the servers

which are designated for its purpose and it involves insuring that the application will run

smoothly on the server with out any down time.

As the customer will be using the developed application in this phase, some

problems may arise with customers request for changes or enhancements or improper

requirement might be found or mistakes in the design process could be found. Therefore,

changes and modification are essentials parts of this phase (KarinaCurcio, 2019).

3.2.3 The V-shaped Model

The V- model mostly known as the validation and verification system development

model is considered and extension and improvement of the traditional waterfall model for

it follows linear step by step phase in the development process. The major difference

between the two is in v-shaped model as the as the steps progress instead of down in a

linear way the steps are fixed upwards after the coding phase to form the typical V shape

(Tornhill, 2018).

The V-shaped model shows the relationships between each phase of development

and the associated phase of testing. The horizontal and vertical axes represent time or

project completeness and level of abstraction. Each verification phase is associated with a

validation phase and the process is carrying out quality checks for all the new things a

software developer adds to a project. This model, therefore, introduces a disciplined approach to

software engineering.

19

Figure 3 The V-Shaped Model (Sami, 2018)

As the same as in the waterfall any phase in the system development process begins

only if the previous phase is fully completed. And on each phase, it has a corresponding

related test applied against completion. The technical aspect of the project cycle is

considered as a V shape starting with the business needs on the upper left and ending with

the user acceptance testing on the upper right.

20

3.2.4 Evolutionary Prototyping Model

This model typically is an early approximation of a final system or product only

including a few aspects of it, and instead of freezing the requirements before a design or

coding can proceed, a throwaway prototype is built to understand the requirements though

the final product could be completely different. Prototyping is mainly based on the

currently known requirements of the customers (Ousterhout, 2018).

 The process involves first developing, testing and refining a prototype through

continuous communication with customer until a final acceptable prototype that will form

the basis for developing the final product is achieved. This gives the customer an

opportunity to see the product early in the development life cycle.

This model works best in scenarios where not all the project requirements are

known in detail ahead of time and the process starts by interviewing the customers and

developing the incomplete high-level paper model. Iteration, trial and error and strong

communication between the customer and developers are the backbones of this model

(Dietrich, 2017).

3.2.5 Spiral Model

This model is one of the most important Software Development Life Cycle models

for it gives a means to support a great handling of risk. It is a combination of a waterfall

model and evolutionary prototyping model in which phases starts with a design goal and

finishes with the client reviewing the progress (Ousterhout, 2018).

It involves an iterative looping in the process of achieving requirements; taking a

single requirement at a time and going through the process steps and looping all over again

for the following requirements to develop a robust prototype.

After an evaluation period in the figure below, the cycle is initiated all over again

with new functionalities and releasing the following prototype. This way the process

continues, with the prototype growing bigger and bigger with every iteration. The theory

behind this is that set of requirements are hierarchical naturally allowing additional

functionalities to build on the previous efforts made. This is typically a good practice for

systems in which the entire problem is well defined from the start.

21

Figure 4: Spiral Model (Ghahrai, 2018)

3.2.6 Iterative and Incremental Model

The Iterative and Incremental model begins with constructing a small part of a total

system with its unique functionalities so that it will be in a deliverable state. The product is

decomposed into several components, each of which are intended and constructed

distinctly. Increased functionality and addition of features is expected at the end of each

iterative cycle which includes both development and maintenance. The product is defined

as finished when it satisfies all its requirements which are set at the beginning of the

project (Dietrich, 2017).

Upon completion each component will be presented to the customer. This allows

partial utilization of the product and avoids a long development time there by creating

good environment to deal with and fix defects, if any, on early stage of development cycle

which creates a large initial capital outlay with the subsequent long wait avoided. Besides

it also helps ease the traumatic effect of introducing completely new system all at once.

22

3.2.7 Agile Development

The agile development model refers to a group of software development

methodologies involving an iterative approach to a software development that helps

participating teams to deliver value to their clients with higher agility and fewer

inconveniences. Teams are self-organizing and cross-functional with a natural tendency to

respond to changes quickly and works are divided in to a small but consumable manner

with increments. Requirements and solutions evolve through collaboration between cross-

functional teams (Influence of software development agility on software firms, 2019).

Scrum, lean, Kanban, extreme programming, crystal, dynamic systems

development method and feature driven development are some of the major types of the

agile software development methodology. Below the figure shows how the agile

methodology basically works (Dietrich, 2017).

Figure 5:The Agile Software Development (Ghahrai, 2018)

23

3.3 UML

In this era of technological advancement, human race’s life style and activities are

entirely depending on established digital systems. As technology and social interaction

progresses over the years, digital systems are enormously growing in their size, depth,

delivery, complexity, and importance.

Though the high quantity in the growth of information systems, it is not without

various quality issues. Several system software developments come to an end before even

they get to the point of completion. Various reasons can be pointed out for this problem but

there is a one common denominator to all and that is imprecise and/or inadequate end-user

requirements and inability to completely handle them with modification on the developer’s

side. Most of the root sources of the problems can be up rooted by building the foundation

of the systems with a predefined and strong development process. One of the most popular

facility for designing a system and a tool for effective communication among stakeholders

of the development process is the UML (Wazlawick, 2014).

The Unified Modeling language is all purpose modeling language for designing a

system’s blueprint. It is used as a standard way to clearly visualize, stipulate, and

document the tools of a system. Its expressive nature and ability to give various

perspectives to view all parts of a system makes appropriate to use UML for modeling

systems ranging from enterprise information systems to distributed Web-based

applications and even to hard real-time embedded systems (Paradignm, 2017).

The object-oriented analysis and design (OOA&D) wave in the late '80s and early

'90s are the predecessor of The Unified Modeling Language (UML). Objects in UML

consists of data representing the state and behavior of an object and methods which

determine the characteristics of these data. Objects are the real-world entities that exist and

are contained in classes in UML, which forms a hierarchical structure to model and mimic real-

world systems.

The UML is not a method it is rather called a modeling language because in principle

all methods should consist at least both a modeling language and a process. Modeling

languages mainly use graphical representations and notations to explain system designs in

giving advice on steps to be taken in developing a design.

24

3.3.1 Origin of UML

Since UML is designed to be used for various types of applications, including

distributed systems, analysis, systems design and deployment, it provides a standardized

notation which will be used on all object-oriented methods of systems development. It is

a notation that revolved out of a combination of OML (Object Modeling Technique),

Booch (Grady Booch) and OOSE (Object-Oriented Software Engineering (Ivar

Jacobson) over the years. These three modeling methods have their own area of focus

and one is preferred over the other for the unique advantages they possess for system

developers in 1990s. OML is used as a best tool for the purpose of analysis and data-

intensive software, Booch was mostly preferred for its excellence in designing and

implementation and OOSE is typically preferred for its Use Case modeling techniques

(Paradignm, 2017).

The merging of the ideas between Booch and Jim Rumbaugh (creator of OMT) in

1994 as Jim joined Grady Booch laid great foundation in the development of UML for it

resulted in the birth of Unified Method. Following this, in 19195, the concept of use

cases introduced in to the unified method as Ivar Jacobson joined the previous two to

form the full picture of what now we call the Unified Modeling Language (UML)

(Paradignm, 2017).

Other notations like Mellor and Shlaer, Coad and Yourdon, Wirfs-Brock, and

Martin and Odell are some of the notations in 1990s which contributed to the

development of UML. Apart from these developments in the evolution of UML, it also

involves new concepts which are not in the previous methods.

3.3.2 History of UML

The first Request for proposal known as RFP was initiated and catalyzed by Object

Management group which paved a way for different organizations to join in the realization

process in 1996. Following this, a partner’s consortium was established among many

organizations like HP, IBM, Microsoft and Oracle which are willing to allocate their

resources towards building UML version 1.0 in its well defined, communicative,

influential and generally applicable form to be summited the object management group in

1997 (Paradignm, 2017).

In the same year IBM and 5 other partners also submitted their own versions of

UML to the OMG as a distinct RFP response. All these different ideas from different

25

organizations working together merged together and synthesized to give rise to the revised

UML version 1.1. This version is an improvement and clarification in the semantics of the

previous UML version 1.0 and the process incorporating the contributions from the new

partners. This version was summited to the OMG for approval and it was accepted in the

fall of 1997 and enhanced in the range of versions 1.1 to 1.5 and slowly growing in to

UML 2.1 and now it ended with the current version which is UML 2.5 as it is visually

explained in the figure below (Vrana, 2016).

Figure 6: History of UML (Ghahrai, 2018)

One of the very early attempts in the unification of constructs of UML took place

in 1994 as Coleman's fusion method even though it did not include the three main authors

of the basic methods (Booch, Jacobson, and Rumbaugh) and was also quite late to market

with a book explaining the approach. This method was overtaken and consumed as the

sequence of events in 1994 took place with Booch and Rumbaugh come together in

Rational Corporation to work on unified method (Reasoning about UML/OCL class

diagrams using constraint logic programming and formula, 2019).

New Visual syntaxes were introduced with the development of UML 2. Parts of

the modification are replacements and clarification for existing version’s syntax and parts

of it are entirely new semantics added to the language. One of the unique characteristics

26

of UML is provision of several means to display visually particular elements of a model

which is not the same for all modeling tools (Paradignm, 2017).

Even though the fundamental principles for the most parts remain the same, UML

2 brings many syntactic improvements to UML in contrast with UML1 there by letting

adoption of using UML 2 a seem less for users of the previous versions. Major changes

with the new UML 2 are to its metamodel and these are not come across straight on most

of modelers. This is a model of UML which itself explained in a subset of UML.

Definitions of the syntax and semantics that could possibly encountered are precisely

stated there by making the changes to the UML metamodel greatly about improving the

precision and consistency of the UML specification.

3.4 UML Diagrams

Since a development process involves variety of stakeholders playing different

roles, the unified modeling language specification version 2.5 is composed of a lot of

different diagrams expressing different aspects of system development from range of

different viewpoints. The diagrams can be categorized in to two broad classifications.

The first one focusing on the static aspects of a project and more expressing the structural

side describing objects of a system and the relations between them. The second one

focusing on the dynamic aspects of a project expressing the general types of behavior of

objects and how they evolve through time via different interactions among them.

Figure 7:UML Diagrams (Paradignm, 2017)

27

3.4.1 Structure Diagram

These diagrams express and define a static architectural structure of a system

where they are used to model elements that build up a system specification that are

regardless of time changes. Object classes, interfaces and physical components are main

elements that show relationships and dependencies representing the meaningful concept

of a system. Structural diagrams are not designed to show specifics of behavioral

dynamics but rather to show relationships of classifiers displayed through it (Paradignm,

2017). Class Diagram, Component Diagram, Deployment Diagram, Object Diagram,

Package Diagram, Composite Structure Diagram and Profile Diagram are some of the

main subsets of structural Diagrams and will be discussed shortly as follows, in this

material.

Class Diagram

One of the most common and central diagrams among UML is the so-called Class

diagram describing the kinds of objects elements in the system and several types of static

relationships that is existing among them. By (Booch, 2007) class diagrams are defined

as

“The descriptor for a set of objects that share the same attributes, operations,

methods, relation ships, and behavior.”

This can be summarized as a set of objects that share the same kind of behavior

and attributes. It basically addresses the static structural design and process view of an

information system. In a class diagram while all objects should have the same kind of

attributes, the same sort of operations and the same type of operations; but the values in

the attributes could be different.

All class instances i.e. objects need to follow specifications using the class as a

template in the time of their creation. Every object instance in a class should have its own

different values for the attributes defined within the class and should react to messages

through invoking the methods stated within the class. Different objects in the same class

may react in different ways to the same message depending on their current state. The

major aim for class diagram is to design the static side of a system. Their ability to be

associated with object-oriented languages in a straight forward manner makes them

unique and widely used by developers (Dietrich, 2017).

Classes and Objects are the smallest and very basic building units in object-

28

oriented development model. In forming a larger system structure, classes are interrelated

by different sorts of relationships. Therefore, classes by themselves might not make

ample insight into how generally a system is designed. UML gives different sorts of

manifesting the kind of different relationships among classes representing various ways

of connections and has some limitations that are not completely addressed through UML

specifications. Some of the types of relationships are discussed as follows (Vrana, 2016).

Association

Associations are tougher relationships than simple dependencies and naturally

specify that one class holds a connection to another class over a stretched period. When

two classes are linked via associations their lifelines are most likely not tangled together

i.e. one can be demolished without inevitably destroying the other. A typical example of

this relationship can be the relationship between a person working for a company and

similarly, a company has several offices (Booch, 2007).

Association Class

When the relationship between two classes is a complex organizational connection,

it is recommended to represent this relationship using an association class which will be a

class on its own head making the connection between the two. Association class usually is

a class with name and list of attributes similar with regular object classes (Booch, 2007).

Aggregation

Aggregation is a stronger form of association of object composition in object-

oriented design. In contrast to association, aggregation represents a strong relationship by

introducing ownership among the connected classes and this in turn resulting with

dependencies of lifelines. Aggregation relationships in UML diagrams are shown in a

diamond shape on the connection line next to the owning class and a solid line pointing to

the owned class, as shown in class diagram visual representation below (Paradignm, 2017).

Composition

Composition signifies a very strong connection between two classes to the point

where one is contained in another representing a whole part relationship. In this

relationship a piece of the can only be composite part of a whole at any given time which

implies a strong tie between the lifetime of instances making it impossible for the part to

exist if the larger owning whole is destroyed. The only way to preserve the part piece in

UML is by allowing it to be owned by a different class before the destruction of the

29

owning whole, though this process is an exception. Since composition relationship is

always read as "...is part of...", it requires to be read the composition from the part piece to

the owning whole. Composition relationship in UML diagram is represented by using a

solid diamond next to the owning whole class and a solid line pointing to the owned part

piece class (Vrana, 2016).

Generalization/Inheritance

A generalization relationship depicts a hierarchical relationship between classes

with a nature of abstraction of child classes by the super classes. It pulls out communality

among the different classifiers for sub classes. Generalizations are usually read as "...is

a...", starting from the more specific class and reading toward the general class. In the

UML diagram representation generalization is shown by a solid line with a solid arrow

pointing from the specific sub class to the general super class (Booch, 2007).

Contrary to associations, generalizations relationships are usually without names

and do not have any sort of cardinality. In UML a sub class can have more than one super

class. This feature allows for multiple inheritances from different super classes with each

generalization class representing a different aspect. In modern object-oriented

programming languages like Java, multiple inheritance feature is not supported.

Interfaces

An interface is a classifier which can be used to support abstract specification of a

system in modular development with declarations of attributes and methods but not

implementations. Therefore, an interface is essentially an abstraction that encompasses a

list of operations, which clients of the interface will need, and which implementations of

the interface must implement. Though interfaces cannot inherit, they can be endpoints of

an associational relationship from a class.

 Most common use of interfaces is to group common elements between classifiers

and enable an implementation which an interface must obey. Interfaces are supported by

modern languages like Java, though it doesn’t allow them to have properties. Unlike in the

case of Java, other programing languages like C++, don't support this UML feature

interfaces; rather they are typically represented as pure abstract classes. The common

representation of interfaces is the standard UML classifier notation with the stereotype

«interface».

30

Dependency

This is the weakest connection among classes. Dependency between classes means

that one class uses, or has knowledge of, another class. This basically be defined as a

transient relationship which means a dependent class briefly interacts with the target class

but naturally doesn't retain a relationship with it for any real length of time. In UML

diagram a dependency between classes is represented using a dashed line with an arrow

pointing from the dependent class to the class that is used (Vrana, 2016).

Multiplicity

Because associations typically represent lasting relationships, they are often used to

indicate attributes of a class. Multiplicity describes the number of objects that are

involved in an association. In practice there are three common kinds of multiplicity across

an association, but in general there are more options. You can express how many instances

from a class are associated with how many instances from another class in a relationship. If

multiplicity in a relationship is not specified a multiplicity of 1 is assumed. To show a

different value, simply place the multiplicity specification near the owned class

(Wazlawick, 2014).

Figure 8: Relationships in Class Diagram (Paradignm, 2017)

31

Component Diagram

In the Unified Modeling Language, a component diagram represents how various

components of a system are bound together to form bigger components or a whole

software system. Basically, it demonstrates the designs of the system elements and shows

the dependencies between them. These system elements compose run-time components,

executable components and the source code components (Paradignm, 2017).

Deployment Diagram

The Deployment Diagram in UML aids to model the bodily aspect of an Object-

Oriented information system. It is a structural diagram that displays architecture of the

software as a function of distribution of software artifacts to deployment targets.

Software artifacts denote tangible elements in the real world that are the result of a

distribution process. It helps to design the run-time configuration in a static view and

pictures the distribution of artifacts in a system application. In most cases, it involves

modeling the hardware configurations together with the software components that lived

on.

Object Diagram

Objects and data values are the main components of an object diagram. A static

object diagram is a graphical representation of an instance of a class diagram; it shows a

snapshot of the detailed state of a system at a point in time. The main difference between

a class diagram and an object diagram is that a class diagram signifies an abstract model

consisting of classes and their relationships in contrast, an object diagram signifies an

instance at a specific moment in time, that is solid in nature. The practice of object

diagrams is justly limited (Paradignm, 2017).

Package Diagram

Package diagram is one of UML structure diagrams that displays packages and

relational dependence among the packages. Model diagrams allow to show different

views of a system, for example, as multi-layered (aka multi-tiered) application - multi-

layered application model (Paradignm, 2017).

Composite Structure Diagram

Composite Structure Diagram is one of the new artifacts added to UML 2.0. It

resembles to a class diagram and component diagram slightly differing for it will often be

applied for designing a software at micro point of view depicting individual parts instead

32

of whole classes. It is a type of static structure diagram that shows the internal structure

of a class and the collaborations that this structure makes possible (Ousterhout, 2018).

This diagram can contain interior portions, ports through which the parts interrelate

with each other or through which instances of the class interact with the parts and with

the external world, and connectors among parts or ports. A composite structure is a set of

interrelated elements that cooperate at runtime to accomplish some purpose. Each

element has some defined role in the collaboration.

Profile Diagram

A profile diagram allows one to create domain and platform specific typecasts

and define the associations amongst them. It is possible to create stereotypes by drawing

stereotype shapes and relating them with composition or generalization through the

resource-centric interface. It is also possible to define and visualize marked values of

stereotypes.

3.4.2 Behavior Diagrams

Dynamic aspects of system in UML are covered and modeled by Behavior

Diagram. There are two major aspects of behavioral modeling. The first one is an

interaction model that is a characteristic that encompasses an exchange of messages

between a set of objects in a specific situation to achieve a definite purpose. The second

one is a state model containing sequence of several states that can be obtained by an

object or an interaction throughout its lifetime. In state model change of states occurs as a

result of different events which are triggered by different operations in a class

(Wazlawick, 2014).

Behavioral Diagrams include Use Case Diagrams, State Machine diagrams,

Activity Diagrams, Sequence Diagram, Communication Diagrams, Interaction overview

diagrams and Timing diagrams. Basically, these diagrams focus more on different

happenings in a software or in any business process by describing the functionalities

among the systems and their inner workings. Some of behavior diagrams are discussed in

this material as follows (Booch, 2007).

Use Case Diagrams

System requirements and functionalities in UML are captured by use case diagram

which is a combination of list of actors invoking different activities, defined pieces of

functionalities in a system that are called use cases and object elements which are

33

responsible for implementation of the use cases. An actor in use case diagram is

represented with a stick figure and the entire system is represented as a rectangular box

and a use case is represented by an ellipse inside the rectangular box. Use cases are

representations of a separate part of functionalities of a system or a component. Use cases

need to have a name which is unique and composed of a few words unfolding the

essential functionality commonly represented in an oval with the name of the use case at

the center of it (Booch, 2007).

The actions of a use can be explained by the interaction diagrams i.e. sequence and

collaboration diagrams. Additionally, not only Activity diagrams and state diagrams but

natural languages and texts are also ways of explaining the interaction.

Use case is a high-level explanation of how an information system is supposed to

function aiming to capture requirements of the system, which implies that a use case

signifies a user communication with various possibilities to describe user interactions

(Wazlawick, 2014).

Figure 9: Use Case Diagram and its interactions (Wikepedia, 2018)

34

There are three different relationships in a use case diagram; Include, Extend and

Generalization. An include relationship among use cases represent the ability of a

use case to include and use other use cases in a clearly defined place in its

explanation. In contrast, an extend connection among use cases means that the base use

case is extended with additional behavior by the extending use case. A diagrammatic

explanation of the use case diagram and the sort of relationships in it is given on the

figure below (Paradignm, 2017). This use case on the example is with the scenario of a

restaurant.

Activity Diagrams

Activity diagrams are visual explanations of flow of work in a step by step

fashion and they represent activities and actions and contain support for choosing

iteratively and concurrently. It shows control flow of a given system, such as the

discovering intricate business rules and processes. The modeling of both computational

and organizational processes is the main goal of activity diagrams in UML (Paradignm,

2017).

The ability to allow modelling of a process as plain steps consisting of a

collection of nodes connected by edges makes activity diagrams often to be considered as

"object-oriented flowcharts" that can be used in modeling any sort of elements for the

purpose of explaining their behavior.

Usually these diagrams are easy to be understood by partakers of the development

process. The similarities between the most common flow charts and activity diagrams is

the main reason why it is easy to understand them there by making them a great, simple

and easy to understand tool of communication. With the new UML version 2, activity

diagrams obtained completely new semantics giving rise to a clear distinction between

activity and state machine UML diagrams and provision of greater flexibility of modeling

options (Booch, 2007). An example of activity diagram is given below.

35

Figure 10: Activity Diagram (Paradignm, 2017)

State Machine Diagrams

State Machine diagrams contain the behavioral aspects of an information system.

They are often used to model behavior of system elements at a different level of

hierarchy such as at class, a subsystem, or an entire application. A state in UML is

represented by using the basic rectangular notation with the name printed at the very top

compartment of the rectangle. A state can only have one of the only two states at a time;

either it will be active, or it will be inactive. As transactions fire, states can be entered

and as soon as a state is entered, it is considered active. Similarly, a state is considered

inactive right after the state is left. A transition in a state diagram means the relationship

among separate states representing the definite change in the arrangement of a state as it

flows from one state to the other. Sometimes transition can be protected by a guard

condition that indicates if the transition should be taken in consideration. An activity that

leads execution of the transition is called a trigger (Vrana, 2016). Visual representation of

the State Machine diagram is as shown below.

36

Figure 11: State Machine Diagram (Paradignm, 2017)

Sequence Diagrams

One of the Interaction Diagrams in UML is Sequence Diagram model

emphasizing the interactions among objects and not on the data operations linked with

those interactions based on time sequence. It expresses how the objects interrelate with

others in a scenario of a given use case.

Participants in an interaction of Sequence Diagrams are represented using a solid

rectangular bar called a lifeline. When they interact, their interactions are represented

with a dashed line with a rectangle at the end of the line pointing the related life line.

Communication among participants can take a range of several forms such as method

calls, signals, new instance etc. which can generally be categorized as messages. These

relationships and the whole sequence diagram are illustrated in the figure below (Vrana,

2016).

37

Figure 12: Sequence Diagram (Paradignm, 2017)

3.5 Databases

Generally, a database (DB) can be defined as list of information which is arranged

in orderly fashion for sake of easy management of accessing and updating. Information in

a database is manipulated through digital systems. Collection of files and records in a

database are typically kept and sorted by rows and columns of a data table. Rows in a table

are always indexed for easy identification of relevant information. As new information is

added in to a raw existing data will be either deleted or updated. To this end databases

need to give their users a means to access information, read or write and enable them to

generate a report. Size wise, databases could range from bulky mainframe systems to

minor scattered workstations. Most modern and large databases use a database

management system (DBMS) to facilitate the interaction between the database and its

users (Brown, 2001).

Database Management Systems (DBMS) are standardized software tools which are

used in storing, organizing and manipulating records in a database. Several standard

queries and algorithms are used to execute deletion, updating, creation of a record. Even

though, there are several types of database management systems, mainly they can be

divided in two major categories. These are, relational databases and non-relational

38

databases. These two major categories are discussed in this document briefly (Dietrich, et

al., 2011).

3.5.1 Relational Databases

Relational databases are first founded and introduced by E.F. Codd in 1970 at

International Business Machines. This is the most commonly used database management

system. Relational database is a tabular arrangement and organization of data. Data tables

are fitted into predefined classifications and every table needs to have at least one data

classification in a column and each row needs to have a firm data record of the

classifications. In relational database data are saved in a table with each row having a

unique identifier called a key that enables it to connect with other related rows in other

data tables (Williams, 2015).

Major behavioral properties that are relate to the characteristics of all relational

databases are as follows:

➢ Atomic values

➢ Unique row

➢ Columns consisting of the same sort of data

➢ Insignificant row order

➢ Columns share a common name

The most common standard for application and users to interface in relational

databases management system is the structured query language. Modifying records in

relational database using SQL (Structured Query Language) is easy to expand since

additional category can be created without requiring modification of all the existing

systems. SQL is a domain specific language mainly used to handle structured data in

relational database where there exists a connection among various parts of the data. Some

of the major relational database management systems include Microsoft SQL Server,

MySQL, IBM DB and Oracle Database (Date, et al., 2000).

3.5.2 Non-relational Databases

Non-relational database is different from relational databases in a way that they do

not track the traditional database management system they are rather designed to overcome

the limitations in the relational databases. They usually are referred as a NoSQL since they

use a different query language other than SQL and their popularity is rising in recent years

39

since 2000 as usage of big data system grows. MongoDB, HBase, Ne04j and Cassandra

are the major ones among the non-relational database management systems (Harrington,

2013).

The major distinction between relational and non-relational database management

systems is, non-relational databases are more mountable and flexible than relational

databases. They provide a data retrieval and management technique that is completely

different from the traditional tabular models. For the following reasons, we can state non-

relational databases are improvements to relational data model (Fortier, 1999).

First, their simplicity in design, since joining of several data tables is not required,

makes them preferable over the relational databases. Second, this data models are flexible

in updating and handling changes. Third, scaling horizontally is much easier. Fourth,

designed to accommodate unstructured data. Fifth, better availability especially when

servers are being added or removed. Sixth, most of the non-relational database models are

open source. Seventh, suitable to handle big data. Eighth, less costly. Finally, better speed.

These are the advantages of non-relational databases over the relational (Geoffrey, et al.,

1994).

As a matter of statistics, among the many non-relational databases, MongoDB

ranks out number one with number of downloads over 10,000,000 and multiple

dispositions. It is recently named as a front-runner database management system covering

both relational and non-relational models leading all NoSQL database goods (Fortier,

1999).

Based on different aspects, databases also can be further divided in seven different

categories. Hierarchical, Network, Relational, Object-oriented, Graph, Documentational

and ER model.

3.6 Web Applications as a trading platform for local farmers

From time to time our dependence on digital technologies is rising. Almost all our

day to day activities are supported by some sort of information system application. Trading

is not an exception in this list of human activities.

Trading is one of the early human activities since ancient times. As trading evolved

through time, it paved a way for mankind to prefer trading over subsistence. This in turn

lead to unrestricted movement of humans beyond geographical boundaries resulting in

40

advancement of human lives in general and economic advancement in specific. As a result,

a profound economic productivity was brought in the scene.

In the early eras of human evolution trading in its basic form was practiced as an

exchange of agricultural products and simple tools used for hunting. Even now in the

modern time trading of agricultural products still considered one of the major trading items

between countries.

In this time of digital modernization, trading is greatly advanced with the support of

information technologies. It improved further the speed and the quality of trading by

enabling an exchange of massive information between trading parties. Currently all over

the world there are plenty of different platforms to support trading in local markets to take

advantage of the benefits related with it. For instance, applications like Mandi Trades helps

local farmers and consumers of their product in a great way (Kedia, 2018). It helps farmers

to sell their agricultural products locally to the consumers without involvement of any

mediators. And, it provides digital solutions for farmers in boosting their harvests in India.

Figure 13:Mandi Trade App (Kedia, 2018)

 Basically, the app serves as a platform linking farmers and customers in the

agrarian value chain by enabling both parties to access and manage market data and fast

communication between them. This improves the bargaining power in making an informed

decision for the farmers and further it arranges means of loan from financial institutions if

needed (Kedia, 2018).

41

Similarly Rainbow Agri is an internet of farmers for it allows to have a direct

communication with customer and other farmers in India. It enables farmers to sell and

customers to buy locally produced agricultural produces even by providing a live change in

prices. Other than individual customers local restaurants and supermarkets are also able to

use this app in the facilitation of their trading. One can find and associate even with

farmers in the neighborhood to see a real time pictures of their produce. This app enables

the users to make a customized order, get discounts and get detailed information on the

orders made (Sharma, 2015).

Figure 14: Rainbow app (Sharma, 2015)

Similarly, Agro-Hub is an application designed to help farmers trade in Cameroon.

The application was developed by a business vendor in cooperation with Cameroonian

telecom services to facilitate the growth of local farmer’s income by trading their produces

for good prices both in local and international markets. In achieving these goals agro – hub

established a collaborative effort of the communities through SMS mobile messages and

the internet in broadcasting and managing any information in relation to existing

agricultural situations.

Therefore, we can state that different web applications and mobile applications are

used to promote trading and to ensure the benefits of local farmers in the developing

42

economies are secured. These applications are used in a more agricultural intensive and

growing economies than in advanced developed economies.

3.7 Web Applications as a trading platform for local farmers in

Ethiopia

Background

Ethiopia is a nation located in the horn of Africa. It is a land locked country with a

total area covering about 1.1 million kilometer-square. The economy is one of the fastest

growing economies in Africa and its mainly agriculture based. This sector is the largest

contributor to the countries annual GDP followed by the service sector and manufacturing

sector. Even though the developments in spreading the services sector is encouraging there

is still a lot of work to do regarding this. The only internet and other telecom service in the

country is Ethio Telecom. This monopolistic approach led the country’s telecom service

quality to downgrade and rank as one of the worse in the world.

Recent changes in the political situations of the country forced Ethio Telecom to

resolve some issues in relation to the availability and affordability of internet and telecom

services though profound problem of monopolistic approach remains unchanged. These

changes enable the low-income classes of the society to be able to afford buying some of

the services by opening a window of opportunity to introduce new information technology-

based application.

Current Situation

For the past few years not only the prevalence of telecom services over the country

was very limited and low quality but it was extremely expensive to the point were more

than half of working force couldn’t afford to have 3G internet. These negatively affected

by hindering the growth of information technology-based application there by depriving

the society from benefiting from them. But as the recent political transformation takes

place through social revolutions, the prices are significantly lowered since the past few

months.

Considering the history of telecom services in the whole country as a general and

the capital Addis Ababa specifically there were no web applications to support farmers to

trade their agricultural produces. Farmers living in the suburbs of Addis Ababa, use the

traditional market to sell their produces which is not cost effective, fast and modern.

43

4 Practical Part

4.1 The Web Application

This web application is designed to help local farmers living in the suburbs of

Addis Ababa, Ethiopia. The application facilitates smooth transaction between the

customers and the farmers without involving a middle man. This benefit both the farmers

and the customers. Since these farmers are local and small scale, accessing the market for

commercial purposes is limited. Accessibility of produces of these farmers is one of the

major roles of the application. Therefore, for the local farmers it will be a way to access the

market without needing to take so many bureaucratic processes on their side. Similarly, the

benefit for customers also great. First off, it will be a good place to get a fair price to buy

agricultural products, not only that but it will be a source of organic food which is more

health compared to mass produced commercial products.

 The application allows the farmers to post their produces with the amount quantity

they can supply. They can also post different prices for different quantity demanded on the

customers side for a certain product. The customers mostly are comprised of individual

residents of Addis Ababa and Restaurants in the city. Customers will have an option to

search for a specific product that they want. They must put the name of the product that

they are looking for and the amount they want before they hit the search button.

Typically following the search, the customers will be provided by a list of the best

prices they can get based on the quantity they demand. Based on these search results the

customer will decide and place the order. Before they complete placing the order, they will

be prompted by the system to choose if their preferred delivery mechanism. Either they can

choose to use delivery services or a personal pick up. If they choose the delivery services,

the price will be included in the order to be placed.

As soon as the customer placed the order it will be a pending order. Confirmation

of the order will take place, after the full settlement of payment for the order within 30 min

from the time the order was made. Payments can be settled online or in person. Otherwise,

the pending reservation will expire. As soon as the payment is settled the order will be

marked as confirmed by the system. A notification for the relevant supplier (farmer) and

delivery service provider will be sent following the confirmation of the order. The farmer

can view the details of the order and prepare the order.

44

For this to take place smoothly in the system, different parts of the system should

work harmoniously. There will be a systems integration with the bank system, delivery

service providers and the application. Many customers are expected to use this application

since the residents of Addis Ababa are 3 million. The application uses a real-time data of

the orders and updates of posts of products.

For these and other related reasons the application needs to be a web-based

application and the design process should be made carefully. UML one of the best tools to

design any information systems that are web base. Therefore, it is also used in the design

of this web application to cover all the vital parts of the system design.

This application is a web-based application intended and developed to assist

farmers and customers to exchange efficiently and effectively, which involves several

farmers and customers living in and around Addis Ababa. To this end, this web

application will have several different mechanisms and functionality to support the on-

going activities. These functionalities include online registration system, customer

management system, payment system, delivery management, employee management,

reporting and analytics and other extra custom features.

Based on the level of importance they have for the overall system some of the key

components of the system are discussed in this document as follows.

Online Registration system: This allows farmers and their potential customers to

register online using internet. Both users can register and have an account.

Customer Management system: is a method to manage the interaction of farmers

with current and potential customers. It uses data analysis of customers' history with the

suppliers to progress business relationships with customers, giving a more emphasis on

customers satisfaction.

Payment System: This is designed to handle all issues related with the billing of

customers. Refund requests and online payments related with services and goods.

Employee Management: is an information system that supports employees involved

in running this web application smoothly.

Reporting and Analytics: Reporting is the act of shaping a raw data into a

meaningful information. It helps to see how the different aspects of the application are

performing. On the other hand, analytics is the procedure of extracting meaningful

insights that are useful in understanding and improving the business to a better level.

45

4.2 Over view of the Application

The anticipated application will able to display all necessary information for both

customers and farmers. Ii will be designed with high robust to be available and accessed

online at any time, anywhere.

4.2.1 Functional Requirements

Functional requirement specifies what a specific result would be. It also states

definition for the functions that the whole system will have in general and particularly of

components which constitute it. Functional requirement describes the communication

among the application system and the users regardless of its execution. The following are

the main functional requirements of the web application:

- Record both customers and farmers information,

- Register restaurant requirement information,

- Execute online payment according to the payment method,

- Display available products with their full information. For instances, their

prices, availability and so on,

- Downloadable reports in pdf format,

- A search functionality,

- The application should provide navigation to a different category of the

system,

- The application should be able to authenticate different users and their

assigned privileges,

- The application should give the ability for all users for them to be able to

change password,

- The application should have a function to show the possible buyers for the

farmers,

- The application should enable for the customers to find the minimum price in

the market for their desired products,

- The application should allow the farmers to add new products with their

specified details

- The application should display information on upcoming market events

- The application should display the administration page menu according to the

46

assigned user’s right and so on.

4.2.2 Non – Functional Requirements

Non-functional requirements of the system are requirements which enable one to

judge the quality of operation of the system. Unlike functional requirements it doesn’t

focus on specific behaviors of the system. They are often referred as quality attributes of a

system application.

The following are some of the non-functional requirements of the system from both

the front end and the back end of the system:

- The application on the front it should allow users who only have a username

and password,

- The system should be able to work in a networked environment,

- The application in the back end should be able to validate data entries,

- The application should respond to different web requests in a rational period

which refers that the system should respond at least before session expiration,

- The application should provide only valid result. It shouldn’t have to crash in

case no data is found, instead it should be able to handle this kind of

situations,

4.3 Analysis Model

In this section of the document, the necessary system design for the application is

discussed with different UML diagrams to the best visualization. Class diagram is used to

show the static behavior of the system and interactions between entities of the system are

described using the dynamic models of unified modeling language.

4.3.1 Data Dictionary

- Customer: is a person or a restaurant who desires to buy a product from the local

farmers in the market.

- System Amin: is an employee who performs clerical work related to orders of

customers.

- Order: is the placed requirement of the customers in the system. And it consists

of the chosen product of their interest and the means of delivery.

- Farmer: is a person who supplies the agricultural products and enters them in the

47

system with their specified prices and quantity.

- Product: is a product posted in the system by the suppliers. Product should

include at least two different prices, one for individual customers which will be

stated as a retail price and one for restaurants as customers which will be stated as

a business price. Business prices should be a discounted price than the retail

prices.

- Restaurant: is a customer who will be interested to buy a product and offers a

maximum price affordable for the quantity demanded.

- Pending Order: a temporary placement of an order.

- Confirmed Order: is a confirmed order. As soon as the customers makes a

payment on a pending order it will change to a confirmed order.

- Delivery: involved in the system to give the service of delivery.

- Receipt: is a confirmation of payment. Receipt can be either an electronic one

which can be downloaded from the system or a paper one.

- Refund Request: is a request for the payment already made on an order. It can be

made by customers if the product wasn’t as it was promised on the app or for any

reason if the customer doesn’t like it.

4.3.2 Static Model

Class Diagram
Figure 15 below reveals the over-all arrangement of putting all the elements i.e.

objects and classes and shows the relationship among them in a class diagram. In each

class we can see the objects with their related attributes and operation/methods. All the

relationships between the classes their links, association and generalizations were

recognized before designing the diagram. The class diagram is design taking these in to

consideration. As shown in Figure 15 the classes and their relationships are designed by

understanding the project description of the web application. We can see here classes of

order, person, customer, restaurant, product, delivery, system admin and so on. The

connections among the classes and their respective multiplicities are also identified in the

diagrams.

As we can see on the below figure 15 the class Person generalizes three classes i.e.

class Farmer, class Customer and class System Admin. Class person abstracts the

common attributes from these child classes. These classes inherit the attributes and the

48

operations from their super class Person. Therefore, these three child classes have a

generalization relationship with their super class Person. Even though, these three classes

inherit their common attributes from the super class, they still have their own unique

operation which makes them different from one another. It is also evident that child

classes have their own unique attributed other than their inheritance, in this case we don’t

see a unique attribute for all child classes.

In this generalization relationship, even though, the child classes inherit the operations

from their super class, the way they implement it could be different on their own respect

because of polymorphism. This lets the same operation on a given time to be executed in

various ways resulting different activities in the child classes. Likewise, we see a

generalization relationship between class Order, super class and class Pending Order and

class Confirmed Order. All the behaviors and characteristics discussed for the previous

generalization are also applicable to this generalization.

The other relationship we will see on figure 15 below is a relationship of association.

Association relationship is characterized by multiple instance of relationships between

the associated classes. In this class diagram class Restaurant and class Person have

association relationship. Their cardinalities are stated on the figure. A person can own

non or multiple restaurants at a given time. Therefore, the multiplicity to the association

from class Person to class Restaurant is zero to many. Likewise, a restaurant also can be

owned by different persons at a given time. Therefore, the multiplicity from class

Restaurant to class Person is one to many which is slightly different from the previous

multiplicity. This is because a restaurant needs to have at least one owner at a given time.

Similarly, in Figure 15 we can see that there is an association relationship between

classes farmer and product, classes system admin and order, classes customer and order,

and classes customer and refund request.

 The other type of relationship we see the class diagram on Figure 15 is a relationship

of aggregation. We can see these relationships between class Order and class Delivery.

When the customers make order, they can include a delivery service or a personal pickup.

If the customer chose to use the delivery service, this service will be the integral part of

their order. It depicts a part whole relationship. Therefore, in this aggregation relationship

class order is the whole and class delivery in the part. In aggregation relationship it is not

a must that the part is included in the whole. Similarly, we see the same type of

relationship between class restaurant and class customer.

49

The special type of aggregation is called a composition relationship. Composition

relationships are more stronger relationships than aggregation relationships because they

represent ownership from the whole to the part. Destroying the whole effectively leads to

destroying the part. On figure 15 these relationships can be seen between class order and

class product. An order must have a product in it. It is not optional like in aggregation

relationship. Therefore, destroying class order will effectively destroy the product in it.

The same kind of relationships can be observed between classes confirmed order and

receipt and classes refund request and confirmed order.

As we can see in the figure, both aggregation relationship and composition

relationship can have different cardinalities.

50

Figure 15: Class Diagram of the application (Author, 2019)

51

4.3.3 Dynamic Model

Use Case Diagram
As we can see in the figure 16 below the use case login is used by all the actors in

the system. Customers, system admin and farmers can register to the web application

system gateway and make their desired inquires. The login use case includes the register

use case and extends help in case any of the users demand support in the area.

Farmers as users of the system can add a product to it. They will be required to

fill in the fields in the user interface which gives them access to fill their data on the

database table. One product to be added to the system it at least requires fulfilling four

necessary fields. The first one, is the name of the product. Second, the minimum price

that the farmer can offer to individual customers as a retail price. The third one is the

minimum price that the farmer can offer to restaurants as a business price and the fourth

is the amount of the product that the farmer has in his/her stock.

After registered and log in the customer will have access to place order as it is

shown in the use case on figure 16. Placing order starts with a process of searching for

desired product. Then the system will give them a list of minimum price offers from the

farmers. When they see the desired product, they can add it to the cart and then select

their delivery service if they need and proceed with the payment. As soon as the complete

the payment they will get a confirmation. The use case place order includes use case

make payment and use case search and use case pending order are extension points to it.

System admin the other actor in the system as shown on figure 16. The system

admin check until payment is made on the pending orders and as soon as the payment is

made, he/she will confirm the order and the system sends a message to the delivery and

the farmer to prepare the order and it also confirms the customer. Similarly, the system

admin is also the actor for the use case reports. He/she can download a report from a

system regarding every aspects of the system.

All the users in the system will have a different type of accounts. During the

registration, they will be prompted by the system to choose the type of the account they

will use and access to activities will be provided based on that. Especially, individual

customers and restaurants will be treated differently when it comes to price of the

products.

52

Figure 16: Use Case Diagram (Author, 2019)

53

Sequence Diagram
A sequence diagram is related with the above use case objects on figure 16. It

mainly depicts the communication and interaction among involving objects in a single

use case. Even though, sequence diagrams must be represented by a graphical form, a

descriptive textual support is used to explain the model. This textual explanation is called

a scenario. Below selected sequence diagrams of the system are discussed.

Sequence Diagram of Place Order

Figure 17 shows a sequence diagram for Place Order.

Scenario: Customer makes the order.

The customer opens the website of the system to make order. As the customer

searches and places the order, the system checks the availability of the requested goods

and services and the quantity demanded. Following the result, the customer decides the

best option that suits him.

Sequence Diagram of Report

Figure 18 shows a sequence diagram for Report.

Scenario: System admin will draw general report.

System admin logins to the web application using her/his credentials. The system

admin goes through the system to identify among pending orders which are already paid.

He/she will discard the expired pending reservations. And finally download the report

and email it to the management.

Sequence Diagram of Report

Figure 19 shows a sequence diagram for Registration.

Scenario: User is on the web application web page.

As the user clicks on register option the system should prompt him/her to fill a

registration form. After the completion of the registration form, the system will create an

account for the user base on the input data. The user will access the other pages in the

website depending on the kind of user he/she is. There will also be an option for the user

to register in the application through social medias.

54

 Sequence Diagram of Place Order

 Figure 17:Sequence Diagram of Place Order (Author, 2019)

55

Sequence Diagram of Report

Figure 18: Sequence Diagram of Report (Author, 2019)

56

Sequence Diagram of Registration

Figure 19: Sequence Diagram of Registration (Author, 2019)

57

Activity Diagram

Activity Diagram of Make Order

Figure 19 shows an activity diagram for making order. The customer can make a

pending order and make payment later. The order will be reserved for 12 hours before it

expires. The payment must be made within these 12 hours.

Figure 20: Activity Diagram of Order (Author, 2019)

58

Activity Diagram of Report

As it can be seen on Figure below, Activity diagram for report is shown. The

system admin collects the necessary information specifically focused on payments and

refund requests. The system admin has a responsibility of collecting this information and

summarizing it. The final action will be reporting the summarized report to the

management team.

Figure 21:Activity Diagram of Report (Author, 2019)

59

4.3.4 State Model

State Diagram
State machine diagram describes the behavior of a system with a graphical

representation. The foundation to state machine diagram is different state a system can be

in at a given time of activities and interactions. It depicts and shows the states and their

respective transitions and events which trigger an action to fire. In this document state

diagram for making order is explained on figure22 below.

State Diagram of Make Order

As we can see on figure 22, the state starts with the customer logged in to the

application and is on the main menu. Then they system will display the necessary

information and the customer searches and adds the desired products and services in to the

cart. An order in a cart can be canceled, temporarily reserved or can be checked out and

paid. As we can see with every activity taking place in the application the state for order

will change.

Figure 22: State Diagram of Make Order (Author, 2019)

60

4.4 Architectural Design

In the process of designing a web application one must strictly follow standard

architectural designing procedures. These procedures are followed in the development of

several software development and are widely accepted by the system development

community. The main parts of these criterion are discussed as follows:

Performance:

The first criterion is the criteria of fast response. It must perform fast in a high

throughput. This means a customer should get a response from the system with 1 minute

when he/she places an order. Retrieving details on order should also be delivered quickly.

Reliability:

This refers to a backup plan that a system should have in order to tackle failures.

Failures in any systems, could happened and therefore there should be a way to cover

these failures with a least down time possible. It must also be able to recover any kind of

losses in data at any given time.

Availability:

The web application must be available 24/7 all throughout the year. To make the

uptime the highest and to avoid down times. A host with high percentage of SLA must be

used for the web application. This makes the recovery time quicker with a very small

down time when undesired things happened with the system.

Maintenance:

In order to maximize the performance and functionality of the web application, it

should be in a state of easy maintainability. There will be a periodical procedure to check

up and maintain the application.

Security:

Multiple security procedures must be in place to secure the system. Starting from

its physical safety to an air tight protection of the data. Users will be managed to have

access based on their needs and security issues in the application only be reserved for

authorized system admins. There should also be ability to detect suspicious activities like

several attempted login failures. When these activities detected, the IP address must be

black listed.

End User:

A responsive easily understandable graphical user face is required. For instance,

61

fields in any form in the system should be self-explanatory. Button and menus should

have a simple and descriptive name.

Implementation of the proposed system architecture will have a great level of

availability. It will be structured in a structure. To this end, the database servers will be in

clusters and continuously up and running. This will also help the system by giving more

capacity and performance to handle when unexpected odds happen in the system.

Similarly, it allows performing systematic and steady maintenance of the infrastructure.

The architecture is expected to be robust with a minimum downtime and unavailability.

4.4.1 Systems Disintegration

The proposed architecture consists of five major subsystems. Specializations of

performed tasks in the system are the basis for the categorization of the sub systems. The

disintegration of the system in to different sub systems will guarantee a high level of

coherence. High level of data exchange between all subsystems is required to ensure the

smooth running of the whole web application system. Here all the sub systems i.e. search,

resources, customers, employee, and security are discussed as follows.

Search

Its main concern is dealing with the global search functionality of the application.

In addition, it deals with new information taken from the users through the system to

improve the interactivity of the web application. It is designed to enable the system users

to search for the product of their interest which are provided by the web application for

local agricultural products. The farmers as users also should be able to search for a better

price.

Resources

Resources are collections of several types of agricultural products with their

related business prices, retail prices and their quantities which are available for the

customers to choose from. Customers will be able to select a product and the quantity

that they demand.

Customers

All data records in relation to customers interactions with the web application and

their activities are dealt with this subsystem. It basically improves the services delivered

to the customers by opening a way to understand the customer’s behavior. Customers can

be categorized in to two different account types which are business and individual. The

62

services that they get will be different base on the type of the account a user will have.

Employee

All activities and interaction of employees with the web application system are

contained in this subsystem. Its main intention is to monitor the activities of employees

and differentiate between the active and the passive ones. Additionally, things in relation

to vacancies and new positions are also dealt with this.

Security

It needs to be designed with the high level of structural design since security

issues are critical in the performance and existence of an organization. Security is a major

component of many business architectures and needs to be considered seriously. Any

failure with security could cause major problem that threaten the existence of a business.

Therefore, it must be air tight and robust.

63

5 Implementation of the web application system

Implementation can take two major ways. Either it will be creating an

improvement for existing system or introducing a completely new system. In this project

an attempt is made to create a new system. Creating a new system from scratch requires

to establish and introduce the new features of the application for employees. Employees

must be trained to the point where they are able to operate the system on a surface level

and deeper level. All possible ways of malfunctioning of the system should be identified

and countering mechanisms and troubleshooting techniques must be communicated with

them likewise. There should be a prepared manual to guide the users through this

troubleshooting steps. The implementation will be partial creating prototypes.

A prototype web-based application for local agricultural products is implemented

using Java, PHP, JS, HTML and CSS. UML modeling language is used in the designing

ideas and concepts of the web application system which enables different stakeholders to

have the same view of the system in the development process. It smooths the

communication and fast implementation among coders, designers and testers of the

system. It can easily also be implemented on various software development paradigms.

As UML is a language to specify the web application precisely, unambiguously and

completely, it is used to design the system. Though it is not used in this implementation,

using some traditional programing languages like PHP, it is possible to generate some

code from UML directly. This document mainly focuses of discussing the process of how

the farmers add their products in the system and get list of their potential buyers.

The development process of web application for agricultural products is dependent on

the source codes and a tangible user interface. The user interface helps the users to easily

use the functionalities of the system and be able to read information with the right font

and colors. User interfaces for registration process, log in and add product functions of

the system are discussed in this document.

Some screen shots of the implementation code are shown below. The implementation is

based on Java and PHP on the back-end server side and html and CSS and java scrip are

used to create the user interface on the front end and to make it responsive.

Figure 23 below shows definition of customer class. The attributes are defined. A

constructor is made to provide a template for the class and the appropriate getters are also

64

provided to make sure that the fields are not accessible. As we can see all the attributes are

private to access them, we need to through the getters. Directly.

Figure 23: Class Customer Code in Java (Author, 2019)

65

Customer class has several methods but two of them are explained two of the

methods; register and login are discussed below on figure 24, 25 and 26 as follows.

Figure 24 shows the PHP code and the user interface code to the method of registration.

The values from the fields of the user interface are collected and inserted in to the

database table. Database connection needs to be established there by creating a business

logic to pass the values into the tables.

Figure 24: PHP Code for Registration (Author, 2019)

Figure 25 and 26 similarly describe the codes used for login. From the website

text fields, the necessary data i.e. username and passwords are passed to the php code

running on the back end. Using the established connection matching between the entered

user name and password will be made with the user name and password stored in the

database. If successful user will be directed to home page and will have all the additional

access of the system which are only reserved for users with accounts. If the attempt is

unsuccessful the fields will be cleared, and the user is prompted to try again.

66

Figure 25: PHP Code for login (Author, 2019)

Figure 26: Continued PHP code for login (Author, 2019)

67

The web application for local agricultural products has different navigation menus

which are linked with related functionalities and services of the web site. The major

menus i.e Home, About, Events, Add Product and login are discussed as follows:

Home:

The home page is first page users see when they open the web site. No matter on what

page they exit the system users when they login from different locations in the city the

system takes them to this home page. The home page and an introductory well come page

for all. It has a global search engine which only appears on the page when the user is

logged in. The users can type in the text field to search for anything that they want in the

application and they will be provided with a list of results.

About:

The about page is a page in the web application system which provides the necessary

information about the company running this website. It states the background history of

the company briefly. It also covers the company’s visions and mission. The

organizational structure and other similar issues like location are raised in this page.

Events:

The Events page gives information about an upcoming event if any. Events are

exhibitions and special holiday or weekend markets in which both customers and

suppliers can be participating to their respective benefits. This events also will be a good

way to introduce the web application to the general society. Mostly small-scale farm

products will be exhibited by the farmers. Additionally, handmade traditional house hold

products are also can be exhibited and traded.

Add Product:

This is a page where farmers will be able to add products and detail information about

them including their This page can only be accessed by a logged in account user. And the

account type must be a supplier account type. As soon as the supplier enters the details of

his/her product, he/she will get a list of potential buyers with their respective addresses.

Register:

Register is a page on which customer will put their details to create an account which

appropriates their interest. All types of users are required to have registered and their

accounts chosen and detail on their accounts must be saved to the database. Unless users

are not able to use the different functionalities of the web application and even some

menus like add product and search will only appear after they logged in.

68

Login:

This is a page which allows all users of the system to log in. The system

administrators will have a full right to access and have control over the system. Access

rights if needed can be granted by this user and reports also can be printed out by them.

All users are required to put their saved user name and password to log in to the system

and it is a must to do this before the use the system.

Some of the prototype pages for the web application are shown in the following

consecutive pictures.

Figure 27: Home Page (Author, 2019)

69

Figure 28: Register Page (Author, 2019)

70

Figure 29:Log In Page (Author, 2019)

71

Figure 30: Add Product page (Author, 2019)

72

Figure 31: List of Potential Buyers after product added (Author, 2019)

73

Figure 32: List of Up Coming Events (Author, 2019)

74

In this part of the document all the necessary partial implementations of the web

application for local agricultural products are discussed and illustrated with the screen

shots of the prototype web site. MySQL database is used to save all the related data of the

server of the application. Using UML in the system design made it easier to implement

i.e. executing the necessary codes and building the user interface. In the following section

of the document result of the project will be discussed.

75

6 Results and Discussion

6.1 Results

On the third chapter of this thesis document a literature review is carried out. The

unified modelling language, software development life cycle and types of databases are

discussed in detail. Similarly, an examination is made to find if there exist similar

application elsewhere in the world and to assess related benefits of using them. As the

findings show similar application are being used in India and Cameroon. These

applications highly contributed in improving the effective trading of agricultural products,

increasing the bargaining power of farmers and creating an opportunity for a better price.

Furthermore, a background study on Addis Ababa region in Ethiopia is carried out to

examine if there is a conducive environment for the application to be implemented. Based

on the research conducted the current political, social and technological revival in the

country opens a window of opportunity to the successful implementation. On the other

hand, our findings show that there is no similar application in use in the area currently.

 These two major topics discussed above can be taken as a premise to argue that the

web application for local agricultural products has a great potential to change the

traditional trading ways in the area there by improving effective information exchange

between the farmers and their potential customers. This has a greater implication on the

improvement of both the suppliers of these products and the consumers.

Following this background study, the web application for local agricultural products

design is carried out in unified modelling language. Both static and dynamic elements of

the system are addressed using appropriate static and dynamic UML diagrams. Similarly,

architectural design of the system is also carried out. Both designs are discussed in detail

on the fourth chapter of this document.

Since, there was a time and resource limitation on the researcher’s side, it wasn’t

possible to carry out the full implementation of the web application for local agricultural

products. Therefore, a partial implementation and prototyping is made according to the

system design, architecture, and functional and non-functional requirements. To this effect

a prototype user interface with basic chosen functionalities of the system are implemented.

Details of the partial implantation and prototyping is discussed on the fifth chapter of this

document.

76

6.2 Conclusion

The purpose of this research includes designing a prototype of web application for

local agricultural products in Addis Ababa, Ethiopia and to describe the benefits of the

application in the day to day activities of the farmers living in the suburbs of Addis Ababa

and their potential customers as well as to understand if the designed application can serve

as a trading platform enhancing the effective transaction of agricultural goods. The second

chapter of this document addresses in detail the objectives of this research and the

methodologies carried out to obtain the desired outcomes of this process.

In the third chapter of this document a literature review is made on three main topics

i.e. the software development process, the unified modelling language and database

structures and types. These topics are discussed in relation to the web application for local

agricultural products. In addition, a research is made on similar applications in India and

the effects of the applications are also examined. Furthermore, a background study of the

country in relation to this technology and the status quo is examined to look if similar

applications are existing in the generally in the country and in Addis Ababa region

specifically.

In the practical part of this research the web application system implementation is

carried out. The system designing is carried out using the unified modelling language.

Class diagram is used to describe the main objects of the system and their relations.

Furthermore, UML dynamic diagrams are used to show the interactions of the objects in

the system. Following this a prototype of the web application is carried out. Some of major

functionalities of the system and a user interface is built.

Based on the results of the study, it can be argued that the web application for local

agricultural products has a potential to be successful in improving the agricultural market

of Addis Ababa region there by improving the availability of local organic agricultural

products for the society residing in this region. Since this cannot be a concluding

statement, our recommendation is to make a further research to make a more complete

conclusion and develop the web application as a strong trading platform for the farmers.

77

7 References

Booch, Grady. 2007. Object-Oriented Analysis and Design with Applications , MA: . [ed.]

Addison Wesley. 3rd ed. Boston : s.n., 2007.

Braude, Eric J. 2014. Software Design. Los Angeles : J. Wiley, 2004, 2014.

Brown, Paul. 2001. Object-relational Database Development. s.l. : Prentice Hall, 2001.

Date, C. J. and Darwen, Hugh. 2000. Foundation for Future Database Systems. s.l. :

Addison-Wesley, 2000.

Detienne, Francoise. 2012. Software Design - Congnitive Aspect. [ed.] Frank Bott. s.l. :

Springer Science & Business Media, 2012.

Dietrich, Erik. 2017. Developer Hegemony. 3rd. s.l. : LeanPub, 2017.

Dietrich, Suzanne W. and Urban, Susan D. . 2011 . Fundamentals of Object Databases.

s.l. : Morgan and Claypool Publishers, 2011 .

Fortier, Paul J. 1999. SQL-3: Implementing the Object-relational Database. Michigan :

McGraw-Hill enterprise, 1999.

Geoffrey, Roderic and Cattell, Galton . 1994. Object Data Management: Object-

Oriented and Extended Relational Database Systems. Michigan : Addison-Wesley

Publishing Company, 1994.

Ghahrai, Amir. 2018.

Harrington, Jan L. 2013. Relational Database Design Clearly Explained. [ed.] Second.

2013.

Influence of software development agility on software firms. FarzanaSadia. 2019. 2019.

Information and Software Technology. SarahBeecham. 2019. 2019.

KarinaCurcio. 2019. Computer Standards & Interfaces. s.l. : RodolfoSantana, 2019.

78

Kedia, Shruti. 2018. This mobile-based IoT platform aims to double farmers’ income by

2022. This mobile-based IoT platform aims to double farmers’ income by 2022. [Online]

March 2018. https://yourstory.com/2018/04/mandi-trades.

2019. MobiDev. MobiDev. [Online] Mobi Dev, 2019.

https://mobidev.biz/blog/3_types_of_web_application_architecture.

Ousterhout, John K. 2018. A Philosophy of Software Design. s.l. : John K Ousterhout,

2018, 2018.

Paradignm, Visual. 2017. Visual Paradignm. What is Unified Modeling Language.

[Online] 2017. https://www.visual-paradigm.com/guide/uml-unified-modeling-

language/what-is-uml/.

Reasoning about UML/OCL class diagrams using constraint logic programming and

formula. Péreza, Beatriz and Porresb, Ivan. 2019. s.l. : Science Direct, 2019.

Sami, Mohamed. 2017.

—. 2018.

Session persistence for dynamic web applications in Named Data Networking.

JunliangChen. 2019. January 2019, Journal of Network and Computer Applications.

Sharma, Radhika. 2015. 3 Agri Apps That Are Helping Farmers Buy/Sell Produce

Effectively. 3 Agri Apps That Are Helping Farmers Buy/Sell Produce Effectively. [Online]

June 2015. http://www.networkedindia.com/2015/06/03/3-agri-apps-that-are-helping-

farmers-buysell-produce-effectively/.

The Journal of Systems and Software. Abdullaha, Muhammad. 2019. Doha : Science

Direct, 2019, The Journal of Systems and Software.

Tornhill, Adam. 2018. Software Design X-Rays. 1st. s.l. : Andy Hunt, 2018.

Vrana. 2016. Projecting of Information Systems with UML. Prague : Czechia, 2016.

Wazlawick, R. S. 2014. Object-Oriented Analysis and Design for Information Systems:

Modeling with UML. Boston, : Elsevier, 2014.

Wikepedia. 2018.

79

Williams, Robert. 2015. Upgrading Relational Databases with Objects. [ed.] 2nd. New

York : Printes hall, 2015.

Yaskevich, Anastasia. 2018. DZone. Types of Web Applications. [Online] 2018.

https://dzone.com/articles/types-of-web-applications-from-a-static-web-page-t.

2016. Yeeply. yeeply. [Online] April 2016. https://en.yeeply.com/blog/6-different-kinds-

web-app-development/.

