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Abstrakt 
Tato p r á c e popisuje s imu lá to r T O R C S a op t ima l i začn í algoritmy, j enž jsou využ ívány př i 
t v o r b ě a u t o n o m n í c h ř id ičů pro tento s imu lá to r . H l a v n í m cí lem je navržen í nového autonom
ního řidiče, k t e r ý se bude schopen s p o u ž i t í m p ř í r o d o u insp i rovaných op t ima l i začn ích tech
nik vyrovnat j iž dř íve n a v r ž e n ý m řešen ím. Chován í i m p l e m e n t o v a n é h o řešení lze rozděl i t do 
dvou h lavn ích čás t í , k t e r é jsou využ ívány v různých rozdí lných e t a p á c h závodu . Zahř ívac í 
kolo je využ i t o pro vy tvo řen í modelu t rat i , ze k t e r é h o je posléze z í skána o p t i m á l n í trajekto
rie p o m o c í gene t ického algori tmu. T é t o trajektorie je po tom využ íváno v s a m o t n é kvalifikaci 
či závodě pro za je t í co nejrychlejš ího kola. Z d ů v o d u s loži tost i p r o b l é m u optimalizace celé 
trajektorie je nutno tuto trajektori i rozděl i t na menš í úseky n a z ý v a n é segmenty, p ř i čemž 
každý z nich je potom op t ima l i zován oddě leně . J edno t l i vé op t ima l i zované segmenty jsou 
nás l edně spojeny dohromady, aby o p ě t u tvoř i ly trajektori i pro celou t r ať . P r o t o ž e něk t e r é 
p ř e c h o d y mezi segmenty mohou bý t nesouvis lé , je zde znovu apl ikován gene t ický algoritmus 
pro jejich vyh lazen í . B ě h e m z á v o d u je tato trajektorie nás l edována , p ř i čemž se z ní odvíj í 
i m a x i m á l n í m o ž n á rychlost v d a n é m úseku . V p rác i jsme ukázal i , že vzorkování t ra t i s 
ná s l ednou op t ima l i zac í p o m o c í gene t ického algori tmu t r v á pouze zlomek času v y h r a z e n é h o 
pro zahř ívac í kolo. Nejen d íky tomuto se řešení jeví jako v h o d n é pro závody a u t o n o m n í c h 
ř id ičů a m ů ž e bý t dá le rozš í řeno. 

Abstract 
This work describes the T O R C S simulator and opt imizat ion algorithms used in the field 
of autonomous dr iv ing competitions. The main purpose of this work is to design a new 
controller solution based on genetic algorithms. The controller's behavior can be divided 
into two main parts which are exploited during the distinct stages of the competi t ion. 
The warm-up stage serves for the track model sampling and the race line opt imizat ion. 
The race stage logic then benefits from the data obtained in the warm-up stage. The track 
opt imizat ion is done by a Genetic algori thm while the track is divided into several segments 
optimized separately. A genetic algori thm is applied once again to the track trajectory to 
smooth out gaps caused by the segment composit ion. In this work was shown that the 
track sampling and race line opt imizat ion by a genetic algori thm can be done during the 
warm-up stage. This makes the controller suitable for an autonomous driver competitions. 
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Chapter 1 

Introduction 

Autonomous dr iv ing is a very interesting research topic supported by many vehicle manu
facturers or the well-known Defense Advanced Research Projects Agency ( D A R P A ) orga
nization. Reducing fuel consumption/Efficient use of fuel, improving car safety and driver 
comfort are a l l aspects which could benefit from research on autonomous dr iv ing . The first 
long distance challenge, the D A R P A G r a n d Challenge [ ] has proved that real driver-less 
cars can race i n a demanding desert environment. C a r simulators became popular due to 
the fact that the cost of buying and modifying vehicles is unbearable for most researchers. 

The Open Rac ing C a r Simulator ( T O R C S ) is a very realistic car racing simulator w i th 
a sophisticated physics engine used for many autonomous car racing competi t ion challenges 
every year. This fact, combined wi th the large game community and possibil i ty of controller 
comparison makes T O R C S the most used simulator in the field of autonomous dr iving. 

A countless number of opt imizat ion techniques were used for a driver behaviour adap
tat ion however the genetic algorithms were the most used ones. Genetic algorithms ( G A s ) 
are able to solve many problems from various domains and this have been proven by their 
application to problems i n business, engineering or science [2]. 

The performance of each driver relies on many miscellaneous factors but no driver w i l l 
achieve the best results without following the op t imal trajectory called racing line [3]. 

1.1 Project outline 

This work is d ivided into nine main chapters and each of these chapters describe a distinct 
topic. Chapter 2 is dedicated to the T O R C S simulator. Chapter 3 discusses currently pro
posed opt imizat ion techniques used in the field of autonomous dr iv ing. Genetic algorithms 
are summarized in chapter 4. Chapter 5 describes the racing line problem. The controller 
design is introduced i n chapter 6 while chapter 7 discusses the implementat ion details of 
the proposed solution. Chapter 8 is dedicated to the experiments which were done on the 
designed controller. The last chapter, chapter 9 summarizes the contr ibut ion of this thesis 
and proposes future work. 
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Chapter 2 

TORCS 

The Open Rac ing C a r Simulator [ ] is an open source mul t i platform racing simulator 
which runs on various platforms, (e.g. G N U / L i n u x , F reeBSD, M a c O S X and Microsoft 
Windows) The simulator is wr i t ten i n C + + and licensed under the G N U G P L 1 . T O R C S 
was created by E r i c Espie and Christophe Guionneau and present code contributions are 
mostly made by Bernhard W y m a n n and Christos Dimi t rakakis . 

There are over 50 different cars and more than 20 cars can be driven by a keyboard, 
mouse, joystick or a steering wheel. The simulat ion includes a simple damage model, 
reliable physics system and many car properties which can change the car's behaviour such 
as springs, dampers, stiffness, ground effect, spoilers etc. A player can choose from various 
types of races from the practice session up to the championship. The game also offers 
multi-player by using a split screen mode. The online mode is the next development goal 
of interest. T O R C S also has a big community of users and developers who keep software 
bug free and updated. 

Due to these characteristics the simulator has became popular for several competitions 
held by congresses like I E E E Congress on Evolu t ionary computat ion ( C E C ) , Computa 
t ional Intelligence and Games Sympos ium ( C I G ) , I E E E W o r l d Congress on Computa t ion 
Intelligence ( W C C I ) and Genetic and Evolu t ionary Computa t ion Conference ( G E C C O ) . 

2.1 The Simulated Car Racing Championship 

The Simulated Car Rac ing Championship is a joint event of three simulated car racing 
competitions held i n 2011. A description of the championship, including the rules and 
regulations can be found at h t t p : / / c i g . d e i . p o l i m i . i t / . [5] 

The goal of the championship is to design a controller that would be able to finish a set 
of unknown tracks firstly alone i n a certain t ime l imi t and then against other controllers. 

Since The Open Rac ing C a r Simulator comes as a stand-alone application wi th the 
bui ld- in bots a new patch modifying T O R C S to client-server architecture and grating simple 
development of controllers has been created. 

The server module is a component of T O R C S which provides communicat ion to the 
remote controller. E a c h controller has to implement an A P I for the sensors and actuator 
models. Communica t ion between the server and the client modules is performed through 
U D P connections. W i t h every game t ic the server sends current sensory inputs to each bot 
and waits for an answer w i th new actions from a client. If no information is received the 

1 G N U General Public License 
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last performed action is used. T w o client modules have been provided. One is wri t ten in 
C + + , the second one i n Java. 

TORCS 

Game Engine 

TORCS 

Game Engine 

BOT 

Serve r 

1 

BOT 

Serve r 

Client 

Control ler 

I 
Client 

Control ler 

Figure 2.1: The architecture of the competi t ion software. Inspired by [ ] 

2.1.1 C o m p e t i t i o n R u l e s 

The championship consists of several races on different tracks divided into legs. E a c h race 
consists of three stages: 

1. the warm up 

2. the qualification 

3. the race 

Dur ing the warm-up stage, each controller races alone. Th is provides a controller w i th 
an opportuni ty to gather information about the track and to tune-up its behaviour. 

The qualification is used for the selection of best controllers for the final race. Each 
driver can race for the same time period on each track and the eight controllers which reach 
the longest distance w i l l take part i n the final races. 

Dur ing the final races, the eight most successful controllers race together. Races are 
done on three different tracks while eight runs are done on each of the tracks. Drivers are 
scored by the F o r m u l a l sys tem 2 and the driver performing the fastest lap i n the race w i l l 
get two extra points. F i r s t starting grid positions w i l l be formed by qualification rankings 
and each subsequent race grid posit ion w i l l be shifted by one so that every driver w i l l start 
from a l l gr id positions. 

More information can be found at [6]. 

21st controller gets 10 points, 2nd 8 points, 3rd 6 points, 4th 5 points, 5th 4 points, . . . 
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2.2 A new client development 

A s I mentioned i n section 2.1 two clients had been proposed to facilitate driver development. 
Let 's have a look at the C + + one. E a c h driver should inherit from the BaseDriver class 
containing following v i r tua l methods which need to be implemented: 

• void i n i t (float *angles) this method is called before the beginning of the race 
and it serves as an in i t i a l custom configuration of the track sensors. A l l of the 19 
range finders need to be set in the parameter. 

• string drive (string sensors) is a method used for controll ing your driver during 
the race. This method receives a l l sensor values by the sensor parameter and returns 
a s tr ing of effectors representing the actions taken. For further details see tables 2.1, 
2.2 and 2.3. 

• void onShutdownO method called at the end of the race. 

• void onRestart() method called when the race is restarted. 

B o t h methods onShutdown and onRestartO should be used to close opened files, save 
data to disk and free allocated memory. 

To identify the current stage of the race, the class attributes, stage and trackName are 
used. The current stage can be one of warm-up, qualifying, race or unknown. B y these 
attributes, we can choose different car behaviour and adopt different strategies in different 
stages of the competi t ion. 

To compile your client you need to uncomment two commented lines at the beginning of 
c l i e n t . cpp and modify them to use your driver class. Once the client is compiled without 
errors it can be run like a console applicat ion by: 

$ ./client host:<ip> port:<p> id:<client-id> maxEpisodes:<me> \ 
maxSteps:<ms> track:<trackname> stage:<s> 

where <ip> is the IP address of the T O R C S competi t ion server (by default localhost), 
<p> is the port on which the server is listening(the default is 3001), <client-id> stands for 
your bot ID (by default championship2011), <me> is a m a x i m u m of learning episodes, <ms> 
is m a x i m u m number of control steps i n each episode, <trackname> is the name of the track 
where the bot w i l l race(by default unknown), <s> represents the stage of the competi t ion 
(0 is Warm-up, 1 is Qualifying, 2 is Race and 3 is Unknown). A l l parameters are optional . 

2.3 Sensors and Actuators 

One of the reasons for the creation the competi t ion software was to separate the game 
engine and the bots. Therefore no knowledge about the core engine is needed to develop a 
driver. For this reason the sensors and actuators layer was created. 

Each controller perceives the racing environment through many sensors which contains 
information about the race, car status, posit ion on the track and opponents. A l l of the 
sensors are listed in the tables 2.1 and 2.2. The distances between cars from opponent 
sensors are computed „as the crow flies" even if the path crosses the edges of the track. 

The actuators which are used by a bot to control the car i n the race are described in 
table 2.3. The typica l set of effectors includes steering, the gas pedal, the brake pedal and 
the gearbox. 
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Figure 2.2: Edge and opponent sensors. [ ] 

2.4 Configuring TORCS Race 

There are several options how to run the simulator w i th external drivers. The easiest way to 
configure the race is v ia the G U I by selecting Race—^Quick Race—^Configure Race where 
you can select the track and the bots as well . B y selecting one of the championsh ip2011se rve r 
in the driver selection you can add one of the competi t ion servers which provides connection 
to a programmed bot. 

The race can also be configured through configuration files. The setting are stored in 
practice .xml and quickrace .xml files. These files are located i n config\raceman\ file 
structure of the installed simulator. Tracks can be selected in the Tracks section inside the 
X M L file and drivers i n the Drivers section. 

T O R C S can also be run in text mode which could be useful for running a selection 
of experiments where no G U I is needed. This can be done wi th a - T parameter in the 
command line: 

$ tores -T 

The competi t ion software can also be run wi th several other parameters to make it 
possible to conduct very long experiments. Fuel and damage should be disabled to decrease 
noise in the evaluation process because these two attributes change car behaviour and 
performance. The m a x i m u m lap t ime should be removed as well to let the car continue 
for as long as it needs. To disable these features T O R C S needs to be run wi th following 
arguments: 

$ tores -nofuel -nodamage -nolaptime 

Each bot has 10ms by default to perform an action and reply to the competi t ion server. 
If no response is received by the server, the last performed action w i l l be chosen. This time 
constraint can be changed, which can help during debugging your driver. The desired 
timeout is measured i n nanoseconds. 

$ tores - t <timeout> 

B y default the sensors return precise values but dur ing the competi t ion these sensors 
w i l l be affected by noise to emulate the real world more precisely. The way i n which the 
sensors w i l l be affected is described for each sensor i n tables 2.1 and 2.2. To enable noisy 
range finders, the following argument should be added: 

$ tores -noisy 
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Table 2.1: Descr ipt ion of the available sensors (part I). Ranges are reported wi th their unit 
of measure (where defined). [ ] 

Name Range (unit) Description 
angle [—7r, +7r] (rad) Angle between the car direction and the direction 

of the track axis. 
cu rLapT ime [O.+oo) (s) T ime elapsed during current lap. 

damage [0, + 0 0 ) (point) Current damage of the car (the higher the value 
is the higher the damage is). 

dis tFromStar t [0,+oo) (m) Distance of the car from the start line along the 
track line. 

d is tRaced [0,+oo) (m) Distance covered by the car from the beginning of 
the race 

focus [0,200] (m) Vector of 5 range finder sensors: each sensor re
turns the distance between the track edge and the 
car w i th in a range of 200 meters. W h e n noisy 
option is enabled, sensors are affected by normal 
noises w i t h a standard deviat ion equal to the 1% 
of sensors range. The sensors sample, w i th a res
olut ion of one degree, a five degree space along a 
specific direction provided by the client (the d i 
rection is defined wi th the focus command and 
must be i n the range [—TT/2, +7r/2] w.r.t. the car 
axis). Focus sensors are not always available: they 
can be used only once per second of the simulated 
time. W h e n the car is outside of the track (i.e., pos 
is less than -1 or greater than 1), the focus direc
t ion is outside the allowed range ([—7r/2, +7t/2]) 
or the sensors has been already used once i n the 
last second, the returned values are not reliable 
(typically -1 is returned). 

fuel [0, + 0 0 ) (1) Current fuel level. 
gear { - 1 , 0 , 1 , . . . , 7 } Current gear: -1 is reverse, 0 is neutral and the 

gear from 1 to 7. 

l a s tLapTime [0,+oo) (s) T ime to complete the last lap. 
opponents [0,200] (m) Vector of 36 opponent sensors: each sensor cov

ers a span of 7r/18 (10 degrees) wi th in a range of 
200 meters and returns the distance of the closest 
opponent i n the covered area. W h e n noisy option 
is enabled, sensors are affected by i . i . d . normal 
noises w i t h a standard deviat ion equal to the 2% 
of sensors range. The 36 sensors cover a l l the space 
around the car, spanning clockwise from +7T up to 
—7r w i th respect to the car axis. 

speedX ( — 0 0 , + 0 0 ) (km/h) Speed of the car along the longi tudinal axis of the 
car. 

speedY ( — 0 0 , + 0 0 ) (km/h) Speed of the car along the transverse axis of the 
car. 

speedZ ( — 0 0 , + 0 0 ) (km/h) Speed of the car along the Z axis of the car. 
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Table 2.2: Descript ion of the available sensors (part II). Ranges are reported wi th their 
unit of measure (where defined). [5] 

racePos l , 2 . . . , i V Posi t ion in the race wi th respect to other cars. 
r p m [2000,7000] (rpm) Number of revolutions per minute of the car engine. 
track [0,200] (m) Vector of 19 range finder sensors: each sensors re

turns the distance between the track edge and the 
car wi th in a range of 200 meters. W h e n noisy op
t ion is enabled, sensors are affected by normal noise 
wi th a standard deviation equal to the 10% of sen
sors range. B y default, the sensors sample the space 
i n front of the car every 10 degrees, spanning clock
wise from +7r /2 up to — ir/2 w i t h respect to the car 
axis. However, the configuration of the range finder 
sensors (i.e., the angle w.r.t . to the car axis) before 
the beginning of each race. W h e n the car is outside 
of the track (i.e., pos is less than -1 or greater than 
1), the returned values are not reliable. 

t rackPos ( -oo , +oo) Distance between the car and the track axis. The 
value is normalized w.r.t to the track wid th : it is 0 
when car is on the axis, -1 when the car is on the 
right edge of the track and +1 when it is on the left 
edge of the car. Values greater than 1 or smaller 
than -1 mean that the car is outside of the track. 

wheelSpinVel [0,+oo) (rad/s) Vector of 4 sensors representing the rotat ion speed 
of wheels. 

z ( -oo ,+oo) (m) Distance of the car mass center from the surface of 
the track along the Z axis. 

Table 2.3: Descr ipt ion of the available effectors. [ ] 
Name Range (unit) Description 
accel [0,1] V i r t u a l gas pedal (0 means no gas, 1 full gas). 
brake [0,1] V i r t u a l brake pedal (0 means no brake, 1 full brake). 
clutch [0,1] V i r t u a l clutch pedal (0 means no clutch, 1 full clutch). 
gear { - 1 , 0 , 1 , . . . , 7 } Gear value. 

steering [-1,1] Steering value: -1 and +1 means respectively full right and 
left, that corresponds to an angle of 0.785398 rad. 

focus [-90,90] Focus direction (see the focus sensors in Table 1) i n degrees. 
meta 0,1 This is meta-control command: 0 do nothing, 1 ask compe

t i t ion server to restart the race. 
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Chapter 3 

Proposed techniques 

M a n y solutions for simulated car racing have been proposed i n the past several years. The 
most important ones w i l l be discussed in this chapter. 

Lis ted below are three controllers which have taken part at The Simulated Car Rac
ing Championship i n the last two years. These specifications are adopted from the event 
presentations [8] and [7]. 

A u t o p i a 

Fuzzy Archi tecture based on three basic modules for gear, steering and speed control, 
opt imized wi th a genetic algori thm 

• Learning in the warm-up stage 

— M a i n t a i n a vector w i th as many real values as track length i n meters 

— Vector ini t ia l ized to 1.0 

— If the vehicle goes out of the track or suffers damage then mul t ip ly vector posi
tions from 250 meters before the current posit ion by 0.95. 

— Dur ing the race the vector is mul t ip l ied by F to make the driver more cautious 

as a function of the damage, where F = 1 — 0.02 • round (—^^-^j • 

Jorge Mufioz 

• B u i l d a model of the track during the warm-up stage. 

• Two neural networks predict the trajectory using the track model . T w o neural net
works predict the target speed given the model of the track and the current car 
position 

• These four neural networks are trained w i t h back propagation using data retrieved 
from a human player 

• Learning during the warm-up 

— The car remembers where it has gone out of the track or drives far from the 
trajectory and i n the next laps goes slower at those points 

— The car remembers where it has followed the trajectory perfectly and tries to go 
faster i n the next laps. 
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R e a d y 2 W i n 

• M o d u l a r architecture 

— D r i v i n g module 

— Over taking module 

— Recovery module 

— A B S module 

• Track learning during the warm-up: 

— Fi rs t lap is driven slow to identify turns (start, end, entry posit ion, curvature) 
and learn the track model 

— Other laps have speed adaptation 

3.1 Fuzzy architecture 

Fuzzy logic has been used several times i n the field of autonomous dr iv ing and fuzzy based 
controllers belong to the most successful ones. B o t h winners of the 2009 and 2010 C I G C a r 
Rac ing Compet i t ion used fuzzy controllers for their drivers. 

Fuzzy logic deals w i t h the reasoning which does approximation of definite values for 
false or true by a value of t ru th i n the range from 0 to 1. This can be easily applied for 
example for steering where range from 0 to 1 represents measure of steer while 0 means full 
steer to left, 1 full steer to right and 0.5 is to go straight. 

A typ ica l fuzzy controller consists of four main components: knowledge base, fuzzifier, 
inference engine and defuzzifier. The knowledge base contains the fuzzy sets which are sets 
of membership functions associated wi th each input /output of the system and the fuzzy 
rules which represents rules like the „ I F condit ion T H E N act ion". The fuzzifier converts 
real input values into fuzzy values. These values are processed by the interference engine 
by interference wi th the fuzzy sets. The defuzzifier then turns the output fuzzy sets to real 
values. The whole process is displayed at 3.1. 

^ C r i s p input 

F u z z y control ler 

Fuzz i f ier 

I J 

Interference 

I 
Defuzz i f ier > | C r i s p o u t p u t ^ ^ 

Figure 3.1: The architecture of a fuzzy controller [ ] 

Typ ica l ly more fuzzy modules are used i n the controller to obtain better results i.e. one 
fuzzy module for steering and another one for speed like i n [9]. Fuzzy logic has been used 
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together w i th the Genetic opt imizat ion algori thm which has led to better results [ ]. A l so 
the opponent overtaking solution has been proposed [11]. 

3.2 Artificial Neural Networks 

Art i f i c i a l neural networks are commonly used in the field of racing games. A neural net
work is a mathematical model inspired by biological neural networks and it is created by 
interconnected artificial neurons. A typica l neural network consists of several layers where 
the first one is the input layer, the last one is the output layer and the layers i n between 
are called hidden layers. See figure 3.2. 

The most important character of neural networks is the possibil i ty of learning, which is 
obtained by changing the structure of the neural network during the learning phase. This 
is done by updat ing the weights of neurons. 

Neura l networks can be used to control one or more modules together which contributes 
to greater applicabili ty. In [12], neural networks have been used as an effective solution of 
the controller where neural networks had been trained on human data. Th is data has 
been reduced by removing of the first lap from each race to reduce the noise. T w o neural 
networks were used for trajectory and two other for velocity prediction. 

Hidden layer 

Figure 3.2: The architecture of an Ar t i f i c i a l Neura l Network 

Generally, neural networks are able to outperform other controller architectures [13] 
and have a potential to learn and improve themselves. The biggest disadvantage of this 
approach is the in i t i a l durat ion of needed training. 

3.3 Imitation 

Imitat ing human behaviour is quite a new interesting research topic which has even been 
used several times i n commercial games. One of them is Forza Motorspor t for the Microsoft 
X B o x . 

The ma in idea of this approach is to adopt behaviour of a given controller which can also 
be a human player. In Forza Motorspor t , this approach was used for creating bots called 
Dr iva ta r s 1 which were acting like players. They were able to react to the player's improve-

xhttp://research.microsoft.com/en-us/projects/drivatar/forza.aspx 
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merits and imitate his dr iv ing skills dur ing the races which had led to more competitive 
bots. Due to this fact the game became more entertaining. 

The disadvantage of this approach is that the controller created by the imi ta t ion w i l l 
never be better than the original controller. However, there have been some quite successful 
experiments. 

In [14], the imi ta t ion has been used to Human player, NEAT2 controller and Hand coded 
controller. For learning purposes the Ar t i f i c i a l Neura l Network wi th a back propagation 
algori thm was used. F r o m the results, the most complicated controller to learn is the human 
player because it does not act the same way in the same circumstances and it makes a lot 
of mistakes which had to solve. This leads to unexpected behaviour and the A N N is not 
able to learn anything useful. Non-player controllers are then easier to imitate. Another 
conclusion is that combining two types of controllers does not work because the controller 
learns mixed features from both of them but none of these features is learned properly. 

3.4 Behaviour-Based Artificial Intelligence 

Behaviour-Based Ar t i f i c i a l Intelligence is a technique known for over two decades, however, 
only a few solutions for racing games have been implemented so far. 

The system is divided into many modular components which are relatively simple and 
robust. E a c h of these components is able to react to conditions of the environment, therefore 
none of them has access to another's internal representation. A l l components are organized 
into layers i n a hierarchy where a higher layer may subsume a lower layer by affecting its 
inputs and outputs, also called as subsumption architecture [ ]. 

However, this approach needs more manual work caused by non-abil i ty to learn new 
actions by itself, it has great potential mainly because of its s implic i ty and robustness. 
Each module can also be opt imized for example by a genetic algori thm. 

More details can be found at [16]. 

3.5 Genetic algorithms 

Genetic algorithms [2] are very powerful techniques used at many different artificial intel l i
gence fields while in the autonomous dr iv ing problem these algorithms are mainly used for 
controller opt imizat ion. 

Generally genetic algorithms program the car setting to be compiled into strings of 
Os and Is while these strings can then be modified by mutat ion or crossover. M u t a t i o n 
maps to a random change of several Os or Is to the opposite value, crossover maps to 
a recombination of bits between two strings. Each solution is evaluated by the fitness 
function. A t the beginning of the algori thm, the in i t i a l populat ion is created and mutat ion 
and crossover are applied. Best solutions of this populat ion evaluated by the fitness function 
are then used in the next i teration. The algori thm typical ly ends by a given number of 
populations or t ime expiration. 

In [17], genetic algorithms have been used for evolving fuzzy sets i n a fuzzy based 
controller. G A s have also been used to evolve a controller i n [18]. 

2The NeuroEvolution of Augmenting Topologies - its a method for evolving artificial neural networks 
with a genetic algorithm. The idea is to start with a small, simple networks and let them increase to become 
more complex. 
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In comparison w i t h the Ar t i f i c i a l Neura l Networks, G A s are more usable i n the short 
term as they learn faster than A N N s but i n the long term A N N s overcome G A s . The 
most common use of genetic algorithms is for them to be used i n conjunction wi th another 
approach. 
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Chapter 4 

Genetic algorithms 

Genetic algorithms are a frequently used technique of the evolutionary algorithms. G A s 
have been applied to various problems and became popular mostly due to the complexity 
of the problem they are able to solve. This chapter provides a brief int roduct ion to the 
Genetic algorithms which w i l l be frequently discussed in the following chapters. Mos t of 
the information was taken from [2], [19] and [20]. 

The principle of Genetic algorithms is based on evolution of the populat ion while search
ing for the best ind iv idua l fit to the given conditions. The key part of the algori thm is the 
proper representation of individuals . A t the beginning, the in i t i a l populat ion w i t h hight 
diversity needs to be created. The fitness of every ind iv idua l is evaluated and the best so
lutions selected and modified by mutat ion or recombination to form a new populat ion. The 
algori thm terminates either if a sufficient ind iv idua l has been found or the given number of 
populations has been reached. The general work-flow chart is i l lustrated i n figure 4.1. 

4.1 Representation of individuals 

Each candidate solution needs to be encoded as a string of values (genes) referred as a 
chromosome or genotype. Due to the problem of diversity, chromosomes can have various 
types of representation. This part covers the most common ones. 

4.1.1 B i n a r y representat ion 

A chromosome is represented by a set of binary values. The special type of binary repre
sentation is the Gray encoding which can produce more superior results than the classic 
binary representation. Gray code is characterized by the H a m m i n g distance of 1 between 
adjacent values. A n example of a binary represented chromosome: 

c i = 0|1|0|0|1 

4.1.2 Integer representat ion 

A n ind iv idua l is represented by a string of integer numbers. This type is used to rep
resent problems which have natural integer variables like image processing parameters or 
categorical values from a fixed set. A n example of an integer representation: 

c 2 = 4|0|15|3|8 
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Figure 4.1: Genetic algori thm scheme 

4.1.3 F l o a t i n g po int representat ion 

A n ind iv idua l is represented by a string of floating point numbers. F loa t ing point repre
sentation can be useful when we need to represent real valued problems like continuous 
parameter opt imizat ion. A n example of a floating point represented chromosome: 

c 3 = 4.5|0.2|3.3|0|2.1 

4.1.4 P e r m u t a t i o n representat ion 

The permutat ion representation is typ ica l for ordering/sequencing problems e.g. the H a m i l -
tonian path or the T S P problem. Ordinary, i f a problem has n variables then it is repre
sented as a string of n integers where each occurs exactly once. Th is encoding also needs 
special recombination operators e.g. Par t i a l ly M a p p e d Crossover ( P M X ) or Cycle crossover 
[21]. 

4.2 Population 

Popula t ion is a set of chromosomes which encodes the current set of candidate solutions 
in one i teration of the algori thm. The next populat ion is formed by selecting a couple of 
candidate solutions from the current populat ion. 
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M u c h emphasis needs to be placed at the in i t i a l populat ion creation. A s a l l other popu
lations are based on the in i t i a l one, a large diversity of individuals is required. Usual ly, the 
random individuals are created to include the whole range of possible solutions. Sometimes, 
the solutions may be seeded in the area of the expected optima. 

The key parameter is a populat ion size which depends on the nature of the problem. 
Ideally, the algori thm outcome w i l l be better w i th a higher number of populations. O n the 
other hand, the computat ional t ime grows wi th quanti ty of solutions. Ordinar i ly , we are 
t ry ing to find a trade-off between number of populations and computat ional t ime. 

4.3 Fitness evaluation 

A l l individuals of the current populat ion are being scored during the fitness evaluation. 
This is done by a fitness function which evaluates a quali ty of a given solution. Generally, 
better solutions have a higher value. 

A wel l designed fitness function is a crucial step for good algori thm outcomes. It is also 
the most t ime consuming part of G A s [ ]. 

4.4 Selection 
Selection is one of the basic operators which is applied on each populat ion. B y selection, 
a set of individuals from the current populat ion is chosen and inserted into a mat ing pool . 
Individuals from the mat ing pool are used to generate new offspring which w i l l form a new 
generation. 

A s a new generation is based on the selected individuals , it is desirable that the mat ing 
pool consists of "good" individuals . Usually, the better individuals (with higher fitness 
function) are favored. 

The Selection pressure determines a degree to which the better individuals are favored. 
The higher the selection pressure, the better individuals are chosen, which leads to a faster 
convergence of the algori thm. O n the other hand, the chance of the convergence into an 
incorrect (suboptimal) solution is increased. However, i f the selection pressure is too low, 
the algori thm execution t ime w i l l be unnecessarily longer [23]. 

There are many different methods to select individuals for the next generation. Some 
of the most popular ones are described further. 

4.4.1 F i tness p r o p o r t i o n a l selection 

Fitness proport ional selection ( F P S ) is the selection technique based only on the individual 's 
fitness function. Each member of the populat ion has a certain probabil i ty to become a 
parent: 

where iV is the number of individuals i n the populat ion and fi is the fitness of the ith 

member. Th is technique has the following disadvantages: 

1. One ind iv idua l w i th very high fitness can rapidly decrease the probabi l i ty for the 
other individuals . 
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2. The selection pressure may be lost at the end of runs when fitnesses are similar. 

Roulette-wheel selection 

Fitness proport ional selection is sometimes called the Roulette-wheel selection due to the 
similar i ty to a roulette game. Each ind iv idua l gets a part of the wheel proport ional ly 
corresponding to its fitness value. A random number n G [0, fSUm] is generated which 
determines the chosen indiv idual . This represents the spinning of the roulette. 

Analogical ly, the Rank-based selection (see 4.4.2) can be associated wi th Roulette-wheel 
selection. The only difference is the use of selection probabi l i ty instead of the fitness value. 

4.4.2 R a n k - b a s e d selection 

Rank-based selection improves the Fitness proport ional selection (Section 4.4.1) where the 
selection is based on the rank instead of the fitness. A l l individuals of the populat ion need 
to be sorted by fitness value. The selection probabil i ty is then allocated according to the 
ind iv idua l rank. In comparison wi th the F P S , the influence of the ind iv idua l w i th rapidly 
high fitness is reduced. A l so the selection pressure is kept up at the end of runs when 
the fitness variance is low. The biggest disadvantage of Rank-based selection is potential ly 
t ime-consuming sorting which is needed for rank assignment. The mapping of the rank to 
the selection probabil i ty can be done either by linear or exponential function. 

The linear ranking is based on the following equation: 

P i = 1 (v~+ (V+-V~)^f^j • i€{l,...N} (4.2) 

where is the probabil i ty of the worst ind iv idua l , ^ is the probabi l i ty of the best indi
v idua l to be selected and N is the number of the individuals i n the populat ion. 

The exponential ranking selection differs from the linear ranking selection by weighting 
probabilities of the ranked individuals: 

p* = ^ r r i c A r " 1 : i€{i,...N} (4.3) 

where base of the exponent is a parameter 0 < c < 1. The closer c is to 1, the lower the 
"exponentiality" of the selection method [ ]. 

The exponential ranking should be preferred i f individuals above the average fitness 
values need to be selected more frequently. 

4.4.3 T o u r n a m e n t selection 

Tournament selection of the size s provides the selection pressure by holding a tournament 
among s competitors. The winner of the tournament is the ind iv idua l w i th the highest 
fitness value. The winner is then inserted into the mat ing pool . The mat ing pool, being 
comprised of tournament winners, has a higher average fitness than the average fitness value 
of the populat ion. Due to this, the selection pressure is being increased by each generation 
which drives the G A to improve the fitness faster. Increased selection pressure can also be 
provided by increasing the tournament size s as the winner from the larger tournament w i l l 
have a higher fitness value [ ]. The tournament selection is i l lustrated i n figure 4.2. 
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Population Tournaments: Mating pool: 

10101111101110 

10101011011010 

10101010101101 

10101010010101 

10111011010111 

11111101010111 

10101101010111 

10101010101011 

10101011011010 10101010010101 

10101010010101 10101010101011 

10101101010111 

10101111101110 

10111011010111 

10101010101011 

4.4.4 E l i t i s m 

Figure 4.2: Tournament selection 

E l i t i s m is a special case of the selection operator which ensures that the present best 
solution w i l l be preserved in the next populat ion. Such individuals can be lost i f they are 
not selected or destroyed by mutat ion or crossover. It has been discovered that el i t ism 
significantly improves the G A s performance [19]. 

4.5 Crossover 

Once the individuals have been selected into a mat ing pool , the crossover operator can be 
applied. The main idea of the crossover is a combination of two good solutions from the 
mat ing pool into an even better solution. Since we do not know which features make the 
individuals good, the recombination of genes is done randomly. Apparent ly, this may also 
lead to worse solutions by combining poor features of the chromosomes. The typica l types 
of crossover have been introduced: 

4.5 .1 O n e - p o i n t crossover 

One-point crossover is the simplest crossover operator. A random number smaller then the 
length of the chromosome is generated and the parts of two parents behind the crossover 
posit ion are exchanged. 

c r o s s o v e r po i n t ^ 

®®@®®®®.®®®@®®® 
®®®®@®® ®@®®®®® 

Figure 4.3: One-point crossover 
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4.5.2 TV-point crossover 

iV-point crossover follows the same idea as the one-point crossover w i t h a difference that 
n crossover point are generated instead of one. The chromosomes are exchanged at each 
crossover point (see 4.4). 

c r o s s o v e r p o i n t s ^ ^ 

@®® ®©® ® ®®®®®®® 
©®©®®®®*®®®®®®® 

Figure 4.4: Two-point crossover 

4.5.3 U n i f o r m crossover 

Uniform crossover combines the chromosomes by the binary crossover mask of the same 
length as the chromosomes. The mask is generated by a uniform dis t r ibut ion over [0,1]. 
A l though the uniform crossover have been refused as a correct crossover for a long t ime it 
can introduce the demanded diversity into the populat ion. 

| 1 0 0 1 0 1 1 ~ | m a s k 

®®®®®@® ®®@®®®® 
®®®®®@® * ®®@®®®@ 

Figure 4.5: Un i fo rm crossover 

4.5.4 P e r m u t a t i o n crossover 

Due to the fact that applying ordinary crossover operators as described before would lead 
to inval id solutions, the special crossover operators need to be introduced. 

Partial ly mapped crossover 

The par t ia l ly mapped crossover ( P M X ) is a method which at first generates two crossover 
points and exchanges the substrings between them. The rest of the chromosome is then 
amended by the mapping based on the corresponding genes of the chromosomes. 

Cycle crossover 

The cycle crossover process can be divided into several parts. A t the beginning, the cycles 
need to be identified. Each gene of the new chi ld keeps the same posit ion as i n the parent, 
however, the genes for each cycle are taken alternately from both parents (see figure 4.6). 
Cycles are created i n the following way: 
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1. start w i th the first gene of the first parent 

2. look at the same posit ion of the second parent 

3. go to the posit ion wi th the same gene i n the first parent 

4. add this gene to the cycle 

5. repeat step 2 unt i l you get back to the first gene of first parent 

Figure 4.6: Cycle crossover (Inspired by [21]) 

4.6 Mutation 

The main characteristic of the mutat ion is that it operates on only one indiv idual . The 
purpose of the mutat ion is to preserve and introduce diversity into chromosomes. Th is pre
vents the permanent fixation at any part icular locus and thus playing more of a background 
role. M u t a t i o n was the only source of variat ion in some early versions of evolutionary pro
gramming or evolution strategies [19]. 

In comparison wi th crossover i n terms of disruption, mutat ion is more powerful than 
crossover, although it lacks abi l i ty to preserve alleles common to individuals . However, in 
terms of construction, crossover is more powerful than mutat ion [25]. 

The mutat ion operator is applied w i t h a probabi l i ty specified by the mutat ion rate 
parameter. A good choice of the mutat ion rate parameter belongs to one of the crucial 
steps of G A setting. H i g h mutat ion rate w i l l lead to losing good solutions and on the other 
hand a low mutat ion rate w i l l decrease diversity. 

The basic types of mutat ion for the ordinary representations are introduced below. 

4.6 .1 M u t a t i o n for b i n a r y representat ions 

Only one mutat ion operator exists for binary represented problems and this flips the gene 
at randomly generated positions (Figure 4.7). 
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®®®®®@® *®®®®®@® 
Figure 4.7: B i n a r y mutat ion 

4.6.2 M u t a t i o n for integer representat ions 

M u t a t i o n of integer represented individuals can be done either by Random resetting or by 
Creep mutation. B o t h type of mutations are displayed in the figure 4.8. 

R a n d o m resetting turns the value of each gene wi th probabil i ty pm into a new random 
value chosen from the set of permissible values. 

Creep mutation changes each gene wi th probabil i ty pm by increasing it by a smal l value 
which is usually obtained from symmetric dis t r ibut ion wi th the center at 0. 

r a n d o m r e s e t i n g 

© ®@®©©® + @® ©@ @©@ 
c r e e p m u t a t i o n 

©©©©©©© ©©©©©©© 
Figure 4.8: Integer mutations 

4.6.3 M u t a t i o n for floating-point representat ions 

A s well as integer representations, floating-point representation can be mutated i n two ways 
(Figure 4.9): 
Uni form mutation assigns to a randomly chosen gene a new value chosen from the set 

of permissible values. 

Nonuniform mutation does a smal l change of the each gene where the addi t ion value is 
generated by the Gaussian dis tr ibut ion. 

u n i f o r m m u t a t i o n 

Figure 4.9: Float ing-point mutations 
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4.6.4 M u t a t i o n for p e r m u t a t i o n representat ions 

A s it was discussed i n section 4.1.4, the permutat ion representation doesn't allow occurrence 
of two genes w i t h the same value. Due to this fact, the classic mutat ion operators cannot 
be used. A l l described mutat ion types are displayed in the figure 4.10. 

Insert mutation selects the genes at random positions. Move the second after the first 
and shifts the rest along to accommodate. 

Swap mutation picks two genes at random positions and swap their positions. 

Inversion mutation selects two alleges at random posit ion and inverts the whole sub
string. 

Scramble mutation selects two genes at random positions and mixes a l l substring genes. 

i n s e r t m u t a t i o n 

@®©®®®® • ®®®©®®© 
s w a p m u t a t i o n 

® ® © ( D ) ® ® © > ® ® @ ® ® ® © 
i n v e r s i o n m u t a t i o n 

®®@®®®© > ®®©®®®@ 
s c r a m b l e m u t a t i o n 

®®©®®®© ®®®@®®© 
Figure 4.10: Permuta t ion mutations 
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Chapter 5 

Racing line 

The performance of each driver depends on many miscellaneous factors. The sense of 
throt t l ing, judgment of speed, smooth shifting or well- t imed braking are some of them but 
no driver w i l l achieve the best results without following the opt imal racing line. B u t what 
is the "best" trajectory the driver can follow? In terms of racing the "best" means the 
trajectory driven i n the least t ime at the greatest average speed [26] [ ] [ ]. 

Firs t ly , let's focus on commonly known path opt imizat ion problems such as the Shortest 
path and the Minimal curvature path: 

Shortest path is a trajectory wi th the least distance possible (the red line i n the figure 
5.1). In this case, the driven distance w i l l be the shortest possible, however the average 
speed w i l l not be high due to sharp turns on the way. 

M i n i m a l curvature path is defined as a trajectory wi th the least curvature possible (the 
blue line i n the figure 5.1). Curvature is a major factor i n the determination of the 
opt imal trajectory [28]. 

Figure 5.1: Compar ison between Shortest pa th (red line) and M i n i m a l curvature path (blue 
line) 

Neither the shortest path nor the min ima l curvature path by itself usually comprise 
the op t imal racing line. A s it was mentioned i n [29], the op t imal racing line is a trade-off 
between the shortest pa th and the min ima l curvature path: 

r = (1 — e) • sp + e • mcp (5-1) 
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Chapter 6 

Controller design 

The a im of this chapter is to describe the design of the proposed controller. O n the note 
of the already used techniques discussed i n chapter 3, the controller based on the Genetic 
algorithms summarized i n the chapter 4, was created. 

Most of the controller logics can be divided into two main parts: the warm-up logic and 
the race logic. The proposed controller follows the same idea while the warm-up stage is 
used for track model creation and racing line (see chapter 5) opt imizat ion. The opt imized 
race line is being used during the race stage. 

6.1 Track model representation 

The track model representation needs to be introduced first as it is a fundamental element 
of bo th stages. Almos t each of the autonomous drivers racing in the T O R C S nowadays, use 
a certain model of a track. A s a human gets better while dr iv ing through the same segment 
of the track again, the performance of an autonomous driver can be improved too. This is 
caused by having more details about the track. W i t h more details, better path planning 
and car control can be done which lead to better lap times. In comparison wi th a human 
player, a l l information about the track can be stored by the autonomous driver at once. 

A controller proposed by [ I] uses a Cartesian coordinates to preserve the track model. 
In [30], the track is represented by a set of segments (start, end, direction) of turns or 
narrow parts. Each segment is moreover divided into smaller parts (start, end, type) which 
specify the segments more precisely. The solution proposed i n [12] does a track sampling 
by storing information about the distance from the start line of the car, the angle wi th the 
track, the distance of the car to the center of the track, the distance of the car wi th the 
track edges and the distance the rear wheels cover between two game ticks. 

The proposed controller uses a track model represented by vectors. E a c h vector deter
mines a relative direction from the current point and is represented by a direction and a 
magnitude in the polar coordinates. 

A n example of four vectors v\ = (2.5,0), V2 = (2.5,1), V3 = (2.5,0) and W4 = (2 .5 , -0 .4) 
displayed by Progressive vector diagram [ ] v i a M A T L A B [ I] can be found i n figure 6.1. 

6.2 Warm-up stage 

The warm-up stage is usually used for the track exploration and opt imizat ion. Each con
troller has the 100, 000 game ticks [7] (approximately 30 minutes of real time) to learn the 
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Figure 6.1: Track model representation 

track, optimize car settings and enhance performance. Behaviour of the proposed controller 
can be separated into several parts which are i l lustrated in figure 6.2 and described further 
in the following section. The main purpose of this stage is to bu i ld the track model which 
w i l l be opt imized by the Genetic algori thm i n the rest of the time. Design of the warm-up 
stage was inspired by [28] and [12]. 

track 
sampling 

segment 
creation 

segment 
optimization 

segment 
composition 

track 
optimization 

Figure 6.2: Warm-up stage process 

6.2.1 T r a c k s a m p l i n g 

A s it was discussed i n the section 6.1, the track is represented by the set of vectors while 
each set reflects the next relative direction. The track model is being bu i ld by the constant 
speed in the middle of the road. The constant speed without any high acceleration or sharp 
braking is important otherwise the wrong track model w i l l be buil t . 

Once the complete lap is sampled, the car stops and the op t imal race line evaluation 
begins. Let ' s have a look at the controller logic which leads to the smooth track sampling 
at first. 

The constant speed is reached by a simple logic which takes into account only the current 
and the desired speed. 

desiredSpeed — actualSpeed 
acceleration = ; — : — ; (6.1) 
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Steering control is based on the angle which the car contains wi th the track axis. This 
w i l l force the car to drive along the track. The track posit ion is important as well to keep 
the car i n the middle of the road. 

steer = angle — trackPosition (6-2) 

Track sampling is done by two sensors s\ and S2 containing angle j3. B y using the values 
of these sensors we are able to compute the direction of the next vector a (see Equat ions 
6.3 and 6.4). One sample is taken after driven distance which equals to the I value on 
the narrow road. This can be s imply computed by the track wid th (Equat ion 6.5) and 
represents the magnitude of the vector. The sampling process is displayed i n the figure 6.3. 

I = v s\2 + S22
 — 2 • s\ • S2 • cos /3 (6-3) 

Figure 6.3: Sampling scheme 

In comparison w i t h [ ] the track model is computed on the fly and the only stored 
information are the vectors. A l so the car wid th doesn't need to be known. 

6.2.2 Segment creat ion 

Segment creation is the first stage of the opt imizat ion process. Due to the problem com
plexity, the track needs to be divided into smaller parts and opt imized separately. The 
division is done i n the middle of each narrow part of the track which leads to the separation 
of each tu rn on the track. 

Since the track is already sampled the Segment creation process is very straight forward. 
Suppose that a is a m i n i m u m angle of a turn. A posit ion p i of the first angle bigger than 
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a represents the beginning of a turn . The next first angle lower than a represents the end 
of a actual turn. After a l l the posit ion of P2 of the next first angle bigger than a is the 
posit ion of the beginning of the next turn . The posit ion p = P 2 ~ p i is the new segment 
division point. 

6.2.3 Segment o p t i m i z a t i o n 

The most important and complicated part of the warm-up stage is the Segment opt imiza
t ion. Every segment is opt imized separately by a Genetic algori thm. 

Problem encoding 

Issued from the track representation described i n 6.1, the way of the alternate path rep
resentation needs to be introduced. Supposing the sampled trajectory as a center line of 
the road, the trajectory can be displaced for a certain length to the left or to the right side 
l imi ted by the m ^ t h for each side. Let ' s say that we have n positions on the track for each 
vector start ing point where the alternate paths can go through. Whole segments composed 
of j vectors w i l l need j + 1 points due to the last vector of segment. 

To make it clear, see figure 6.6. The red arrows represent the original vectors. Every 
vector has 9 points the new path can go through (represented by the black dots). The 
green arrow illustrates the new path represented by values — 1 for the beginning of the first 
vector and —2 for the end of the vector. 

A segment which consists of j vectors w i l l then be represented by string of j + 1 integers. 
Assuming that we have n positions, each gene range w i l l be (—f, § ) where 0 represents a 
point in the middle of the road. 

Initial seed 

Ini t ia l seed is done at the beginning of the algori thm to create the in i t i a l populat ion. Based 
on the knowledge of the opt imal racing line (chapter 5), the most outer orbit of a turn would 
be a good in i t i a l solution as it par t ly corresponds to the opt imal path by the entrance and 
exit of the turn . The fact that only a part of the in i t i a l populat ion can be seeded this way 
to keep diversity in the populat ion, a seed which includes these solutions is introduced. 

For each ind iv idua l a random number r £ (—f ; f) w i l l be generated, where n is a 
number of divis ion points for each vector. A l l genes of the ind iv idua l w i l l be seeded by the 
r value. This ensures that a l l in i t i a l individuals w i l l consist of a continuous path and the 
most outer orbit w i l l probably be included into the in i t i a l populat ion. 

Crossover 

A mean crossover operator w i l l be used for a recombination of individuals as it 's able to 
combine two solutions wi th preservation of a continuous path. A one-point crossover is not 
suitable as it may produce gaps during the recombination of two various individuals . A n 
offspring is created by averaging the parents alleles while the son is rounded down, and 
daughter rounded up. A proposed crossover is displayed i n figure 6.4. 

M u t a t i o n 

A mutat ion based on the Creep mutation (see 4.6.2) is introduced to br ing diversity into 
solutions. A random number of genes in a row starting at the random posit ion in the 
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parent 1 daughter 

@ ® ® 0 © ® ® ® ® ® 

Figure 6.4: Segment crossover 

chromosome are increased/decreased by a smal l value. The advantage of this operator 
is that the mutated chromosome preserves the original continuity. A n example of this 
mutat ion is displayed in figure 6.5, where chosen genes are decreased by 1. 

@ ® ® © © 0 ® @ ® ® 

Figure 6.5: Segment mutat ion 

Fitness function 

Fitness function usually belongs to the key part of Genetic algori thm. A s this approach 
uses the racing path as an evaluative criterion, it is fundamental to calculate a new path 
from the track vectors and a chromosome. Considering figure 6.6 which displays a relation 
between two segments and the detai l of this figure at 6.7, a new angle j3 and new length 
can be computed by following computat ional procedure: 

A dimensions of the basic triangle (formed by the red arrow) displayed i n figure 6.7 
needs to be computed first: 

7 = v r - ( - - a ) 

I 
x ==  

t a n a 
I 

y = -— 
sin a 

where I is the actual vector length and a is the direction of the next vector. B y these values, 
trackWidth and the current chromosome o we are able to compute the length In and angle 
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Figure 6.6: A relation between two vectors used during the fitness evaluation 

xn = x + Oi • trackWidth 
yn = y + Oj+i • trackWidth 

(6.9) 

(6.10) 

(6.11) 

(6.12) 

To get the final vector angle we need to take into account also the in i t i a l vector angle 
a0id and the addi t ion from the previous vector additionprev. 

Final ly , the new vector is formed by the direction a n e w and by the magnitude In. The 
fitness function for a segment w i t h n vectors v is computed as: 

6.2.4 Segment c o m p o s i t i o n 

Once a l l segments are opt imized the composit ion is done to form the whole track again. 
A s the segment w i th n vectors is formed by a chromosome of n + 1 length the overlapping 
genes (ending gene of a segment and beginning gene of the following segment) are combined 
into one by their average. The process is displayed in the figure 6.8. 

addition 

'prev 

(6.13) 

(6.14) 

(6.15) 

30 



Figure 6.7: T w o segment relation detail used during the fitness evaluation 

+ 

Figure 6.8: Compos i t ion of two segments into one 

6.2.5 T r a c k o p t i m i z a t i o n 

Track opt imizat ion is carried out to smooth out the gaps between segments. A gap may 
occur for example if a left tu rn follows after a right one. Track opt imizat ion carried out 
in the same way as Segment opt imizat ion. The same genetic algori thm is used w i t h a 
difference of the in i t i a l seed while each of the individuals is seeded as composed solution 
from a previous step. 

6.3 Race stage 

Dur ing the race stage the controller benefits from the race line obtained i n the warm-up 
stage. A simple logic was proposed to follow the opt imized path and change the speed 
according to the following curvature. 

Steering control is based on the steering proposed i n the warm-up stage (see Equa t ion 

V 2 / 

where Oj+i is the following opt imizat ion gene and n is a number of division points. 

6.2): 

(6.16) 
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The acceleration is computed by the same equation as i n the warm-up stage 6.1, however 
the desiredSpeed is predicted from the following set of vectors according to the curvature. 
The curvature for n following vectors v is computed as: 

n 

E \Vj I l O L n e W I 

curvature = — (6-17) 
n 

6.4 Interaction between warm-up stage and race stage 

The warm-up stage and the race stage are formed by two separate client runs thus the data 
obtained i n the warm-up stage needs to be persistently saved to disk. For each warm-up 
run three different files are created: 

6.4.1 In i t ia l vectors file 

A n in i t i a l vector file contains a l l vectors sampled during the warm-up stage. However these 
vectors are not used any way during the race stage they are well used during debugging to 
compare the in i t i a l pa th w i t h the opt imized one. 

6.4.2 F i n a l vectors file 

Similar to the Initial vectors file, this file contains vectors also wi th the difference being 
that these vectors represent the final opt imized path. The final pa th is obtained from the 
in i t i a l vectors by the same logic that uses the fitness function. This file is important for 
the race stage because the m a x i m u m speed predict ion is done based on the final vectors. 

6.4.3 O p t i m i z a t i o n values file 

The last file contains the opt imizat ion values of the best chromosome which is used for the 
prediction of the correct way during the race stage. 
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Chapter 7 

Implementation 

This chapter present the implementat ion details of the proposed controller described in 
chapter 6. A t first the application structure is introduced followed by the stage work-flow 
description. The implementat ion details of each stage are presented afterwards. 

7.1 Application structure 

The application was implemented i n the C + + programming language based on the client 
provided for The Simulated Car Racing Championship (section 2.1). The package can be 
downloaded from the C I G project page 1 and provides a stand-alone console application 
which purveys the U D P communicat ion wi th a server and composes the sensors/actuators 
wrapper. The Genetic A l g o r i t h m U t i l i t y L ib ra ry ( G A U L ) [33] has been used for the race 
line opt imizat ion. 

The application structure is displayed i n figure 7.1 while the ma in class of the au
tonomous driver is providing the car control a Driver class. The vehicle control is done v i a 
v i r tua l methods from the base class BaseDriver, the purpose of this class was already dis
cussed in section 2.2. The WrapperBaseDriver class provides a v i r tua l method CarControl 
wDrive (CarState cs) which is used instead of string drive (string sensors) method 
from the BaseDriver. The wDriveO method encapsulates a l l sensors into CarState object 
by parsing the input string obtained from server. The CarControl object then builds the 
output string from given drive directives. 

The TrackDetail is a class which holding a l l information about the track and providing 
input /output file control. A method for the in i t i a l trajectory, final trajectory and the saving 
of opt imizat ion values is used at the end of the warm-up stage to preserve these values for 
the other stages of the race. These files are loaded during the in i t ia l iza t ion of the stage 
(see 7.2.1). This class is also used during the track sampling of the warm-up stage to 
preserve the sampled vectors by the .vectors attribute and during other stages to obtain 
the m a x i m u m speed for the next sector of a track or the next opt imizat ion value. 

The opt imizat ion is done v ia Optimization class which allows opt imizat ion by seg
ments or the entire track. In this approach, the segments are opt imized before the track 
opt imizat ion. 

The SegmentOptimization and TrackOptimization classes contain Genetic algorithms 
for segment/track opt imizat ion. 

xhttp://sourceforge.net/proj e c t s / c i g / 
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Driver 
t r a c k D e t a i l : T r a c k D e t a i l 

+Driver() 
+wDrive(cs:CarState): CarControl 

+onShutdown() : void 

+onRestart(): void 

+init(angles:float *): void 

+initl_ogging(): void 
-WarmUpControl(cs:CarState): CarControl 
-RaceControl(cs:CarState): CarControl 
-getSteer(cs:CarState &): f l o a t 
-getAccel(cs:CarState &): f l o a t 
-getRaceAccel(cs:CarState &,maximumAllowedSpeed:int): f l o a t 
-getRaceSteer(cs:CarState &): f l o a t 
-sampleVector(cs:CarState &): void 

WrapperBaseDriver 

+drive(sensors:string): string 

+wDrive(cs:CarState): CarControl 

BaseDriver 

+stage: tstage 
+trackName: char * 
+logFileName: char * 
+BaseDriver() 
+~BaseDriver() 

+init{angles:float *): void 

+drive(sensors:string) string 

+onShutdown(): void 

+onRestart(): void 

TrackDetail 
trackWidth: f l o a t 
vectors: vector<pathVector> 
o p t i m i z a t i o n : vector<int> 
segments: vector<segment> 

+TrackDetail() 
+SetTrackWidth(width:float): void 
+LoadVectors(fileName:string): void 
+LoadOptimizedValues(fileName:string): void 
+ S a v e I n i t i a l P a t h ( f i l e N a m e : s t r i n g ) : void 
+SaveFinalPath(fileName:string): void 
+SaveOptimizedValues(fileName:string): void 
+AddVector(angle:float.length:float): void 
+DoOptimization(): void 
+GetMaximumAllowedSpeed(distFromStart:float): i n t 
+GetNextVectorAngle(distFromStart:float): f l o a t 
+ G etActualOptimization(distFromStart:float): i n t 
+GetNextOptimization(distFromStart:float): i n t 

1 
l 

Optimization 
+_vectors: vector<pathVector> * 
+_segments: vector<segment> * 
+_optimization: vector<int> * 
+Optimization(vectors:vector<pathVector> 

segments:vector<segment> *, 
optiniization:vector<int> *) 

+OptimizeAllSegments(): void 
+CombineOptimizedSegments(): void 
+OptimizeTrack(): void 

I 

TrackOptimization 
track: t r a c k * 

+TrackOptimization(track:track *) 
+Execute(): void 

SegmentOptimization 

segment: vector<segment>::iterator 
+SegmentOptimization(_segment:vecto r<segment>: 
+Execute(): void 

i t e r a t o r ) 

Figure 7.1: App l i ca t ion class diagram 



7.2 Stage work-flow 

Each client run can be divided into three main parts displayed in figure 7.2 while different 
methods are called during each of them. 

^ Initialization ^ 1> Car control End race ^ 

Figure 7.2: Stage work-flow 

7.2.1 In i t ia l i zat ion 

A t the beginning of each stage the driver needs to be ini t ia l ized. Sensor in i t ia l iza t ion is 
mandatory and is done by the void i n i t (float *angles) method during the U D P client 
identification. The car has 19 range sensors which need to be ini t ia l ized. The ini t ia l izat ion 
is done the same way for a l l stages of the race: 

• 9 sensors i n the middle by 5 degrees 

• 10 side sensors by 15 degrees 

A new method void initLoggingO was added to facilitate loading of the information 
about the track which was sampled during the warm-up stage. This is done dur ing the 
qualification or the race stage by LoadVectorsO and LoadOptimizedValues () methods. 
For the file structure description see section 7.5. 

7.2.2 C a r contro l 

The car control is the main part of the stage work-flow when the server provides information 
about the environment and driver reacts to it by effectors. Accord ing to the stage of the 
race either WarmUpControl () method for the warm-up stage or RaceControl () for a l l other 
stages is used. B o t h of the implemented controls follow the same basic idea mentioned 
below: 

1. get gear 

2. get steer 

3. get throt t le /brake 

4. calculate clutching 

Gear change and clutching calculation is kept unchanged from the client proposed for 
The Simulated Car Racing Championship while methods to obtain steer and thrott le have 
been changed to conform the requirements. 

7.2.3 E n d of the r u n 

A t the end of each run either void onShutdownO or void onRestartO method is called 
to inform the driver that the run has ended. This is used by the warm-up stage to store a l l 
obtained information into the files (see 7.5). 
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7.3 Warm-up stage 
This section and the following section clarify information i n the Controller design chapter 
(see 6) and complement the implementat ion details. 

7.3.1 T r a c k s a m p l i n g 

Track sampling is being done while the car is d r iv ing at a constant speed i n the middle 
of road. The speed of 40 kilometers per hour was experimentally chosen because it is 
sufficiently slow speed to do track sampling and on the other hand fast enough to complete 
one lap in a specified time. This means that the car is able to take as many vector samples 
as desired and to react sufficiently fast to keep the car s t i l l i n the middle of the track. W i t h 
a higher speed the car goes off the center of the track by going through sharp turns. This 
causes wrong track sampling. 

The steering control is provided by the getSteer () method while the equation i n section 
6.2 was slightly modified to provide faster reaction to the track curvature: 

steer = 7 • angle — 3 • trackPosition (7-1) 

Sample are taken by the sampleVector () method which uses sensors at positions 0 and 
2 for the left side of the track and 18,16 for the right side of the track. Accord ing to the 
sensor ini t ia l izat ion i n 7.2.1 this pair of sensors cover a ^ angle. It is essential to take a 
sample from the outer side of the tu rn otherwise a wrong model w i l l be created. This is 
explained i n figure 7.3 where the right side sensor S\Q w i l l obtain an incorrect value. 

S„ S, 

Figure 7.3: Wrong sampling by the right side of a car 

7.3.2 Segment creat ion 

The track is d ivided in the middle of each narrow part of the track based on the tu rn 
identification. A constant TURN_THRESHOLD determines the angle i n which a current vector 
is considered as a part of the tu rn or not. The angle needs to be provided in radians and 
the number of segments created relies on this constant. 

7.3.3 Segment o p t i m i z a t i o n 

Segment opt imizat ion is done by the The Genetic Algorithm Utility Library ( G A U L ) while 
the original Darwin ian Genetic algori thm is being used. M a n y different rules for the passage 
of parent individuals into subsequent generations exist while i n this approach a l l parents 
that rank sufficiently highly w i l l pass to the next generation. This w i l l preserve the currently 
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best solution into the next generation. The integer representation of individuals is l imi ted by 
( — § , § ) where n is defined by a constant NUMBER_0F_P0SITI0NS. Th is constant determines 
the number of divis ion points for each vector and it need to be set to the same value during 
the warm-up stage and the race stage otherwise the race predict ion w i l l not work correctly 
in the race stage. 

In the in i t i a l seed, a l l genes of each ind iv idua l are set to the same random value from 
the range ( — § , § ) which w i l l gain the required diversity. 

A crucial aspect of G A s is the selection operator which is used to choose individuals from 
the populat ion for crossover and mutat ion. For this purpose G A U L allows the definition 
of a single ind iv idua l selection operator (for mutation) and a double selection operator (for 
crossover). The single ind iv idua l selection operator i n this solution selects the best solution 
from the populat ion. A roulette-wheel algori thm is used to select two individuals . B o t h of 
these operators are buil t i n the G A U L . 

The a lgori thm convergence is most influenced by the mutat ion operator which was buil t 
according to the design described i n 6.2.3. A t the beginning, the direction is chosen to 
determine whether genes w i l l be decremented or incremented. Then , a couple of genes in a 
row are modified. The length of muta t ion is generated randomly from interval (0,1) where 
I is a length of the chromosome. A mean crossover from the G A U L l ibrary is used as a 
crossover operator. 

The fitness function was implemented along the design described i n 6.2.3 where the 
racing line is used as an evaluative criterion. The constant SEGMENT_FITNESS_TRADE_OFF 
determines the trade-off between Minimal curvature path and Shortest path. The range of 
this constant is [0,1] where 0 stands for the Minimal curvature path and 1 for the Shortest 
path. Fitness function source code can be found i n the Append ix A . 

The Genetic algori thm used for segment opt imizat ion can also be modified by the fol
lowing parameters located in the Const ant s.h file: 

SEGMENT_P0PULATI0N_SIZE determines the size of the populat ion 

SEGMENT_MAX_GENERATIONS defines the m a x i m u m number of generations 

SEGMENT_CR0SS0VER_PR0BABILITY defines the crossover probabili ty, where pc G [0,1] 

SEGMENT_MUTATION_PROBABILITY defines the mutat ion probabili ty, where pm G [0,1] 

7.3.4 T r a c k o p t i m i z a t i o n 

The same Genetic algori thm as for the Segment opt imizat ion is used for the track opt imiza
t ion where the only difference is the in i t i a l seed. Each ind iv idua l is seeded as a composed 
optimized segment from previous step while each gene is increased by a random number 
from the range (—f, §)• Due to the long length of chromosome the length of mutat ion 
is l imi ted by a constant MAXIMUM_TRACK_MUTATION_LENGTH. A fitness value trade-off can 
be adjusted by TRACK_FITNESS_TRADE_0FF. A s well as the segment opt imizat ion, the track 
opt imizat ion can be also modified by following parameters: 

TRACK_P0PULATI0N_SIZE defines the size of the populat ion 

TRACK_MAX_GENERATIONS determines the m a x i m u m number of generations 

TRACK_CR0SS0VER_PR0BABILITY defines the crossover probability, where pc G [0,1] 
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TRACK_MUTATION_PROBABILITY defines the mutat ion probability, where pm G [0,1] 

After the track opt imizat ion ends the in i t i a l and opt imized track represented by vectors 
and opt imizat ion values are saved into output files (see section 7.5). 

7.4 Race stage 

A simple controller logic which utilizes the path evolved during the race stage has been 
implemented. A t the start of the warm-up stage the opt imized path and opt imizat ion 
values are loaded from files. 

A steering control is obtained by the getRaceSteer () method while the steer value 
is computed by equation 6.16 shown i n design. The opt imizat ion Oj+i is retrieved by the 
GetActualOptimization(int distFromStart) method and n is defined by the constant 
NUMBER_0F_P0SITI0NS. The distFromStart sensor value (see table 2.1) is used to identify 
the posit ion at the lap thus finding a corresponding opt imizat ion value. Since the posit ion 
— 1 or 1 of the trackPosition denotes the posit ion of the car's center to the roadside, the 
max imum posit ion needs to be l imi ted . The MAX_P0SITI0N constant defines the max ima l 
value of ~w~ • 

2 
The acceleration is computed by the equation 6.1 like i n the warm-up stage wi th a 

difference that desiredSpeed is a variable obtained by the GetMaximumAllowedSpeed(int 
distFromStart) method. The speed predict ion is done based on the curvature of the 
following path (equation 6.17). The length of the following path taken into account is 
defined by the FUTURE_LENGTH constant. The predicted speed based on the curvature is de
scribed in table 7.1. These values were experimentally chosen to provide the best controller 
performance. 

Table 7.1: The max ima l speed based on the following curvature 
Curvature < 0.008 < 0.01 < 0.02 < 0.03 < 0.06 > 0.06 
M a x i m a l speed 200 160 130 100 50 40 

7.5 Files specification 

The information about the track obtained i n the warm-up stage is stored into files to 
preserve it for the next stages. A t the end of each warm-up stage three files are created: 

L0GFILENAME preserves the in i t i a l sampled track where each vector is stored at a new row. 
The vector is stored as an angle and length while these values are separated by a 
blank space. 

L0GFILENAME_f i n a l keeps the opt imized track composed by vectors. The file format is the 
same as in the case of L0GFILENAME while each row consists of one vector composed 
by an angle and length separated by a blank space. 

L0GFILENAME_optimized holds the data of the final chromosome. Each gene is stored on 
a separate row. 
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The LOGFILENAME can be specified by a parameter of the applicat ion (the impl ic i t value 
is default): 

$ ./client logFileName:<1> 

7.6 Track visualization 

The visual comparison of the evolved solution wi th the in i t i a l one is important because it 
is difficult to evaluate the better solution using just the values of the vectors. The best way 
to compare two solutions is to display them i n one figure. The visualizat ion was essential 
during debugging of the track sampling and it is also well used dur ing segment and track 
opt imizat ion. 

The visualizat ion is done in M A T L A B [32] while the 2D Progressive Vector Diagram [31] 
function is used to plot vectors. The input of this function demands vectors i n Cartesian 
coordinate sys tem 2 . The getVectorComponentsFromFile() function was implemented to 
obtain Cartesian components of the vectors and display them. Funct ion comparePaths () 
allows comparisons between the in i t i a l pa th and opt imal paths. B o t h functions can be 
found in Append ix B . 

2 Cartesian coordinate system specifies each point by pair of numerical coordinates 
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Chapter 8 

Experiments 

The behaviour of the proposed car driver was tested on five chosen tracks a l l of which can 
be found in table 8.1. The selection consists of the mountain road track Alpine 2 where 
the rel iabil i ty of the Track sampling (see section 8.1) was tested or the oval track Michigan 
Speedway where the Segment creation (see section 8.2) is difficult due to the dist inct ion for 
turning. 

Experiments follow the logical process of the controller's behaviour described i n chapter 
6. Since just a certain amount of t ime is dedicated to a controller i n the warm-up stage, 
hence the t ime elapsed from the start of the warm-up stage is displayed in table 8.1 for 
each track. The longest run is 7'15"90 which means that the controller s t i l l has a lots of 
free t ime to reach the l imi t 30 minutes (see 6.2). 

Table 8.1: The t ime elapsed from the start of the warm-up stage 
Track Track Segment Segment Track 

sampling creation opt imizat ion opt imizat ion 

A a l b o r g (2567.54m) 3'46"54 3'46"72 4'33"66 4'55"86 
A l p i n e 2 (3773.57m) 5'30"89 5'30"93 6'37"00 7'09"92 
C G Speedway 1 (2057.56m) 3'07"47 3'07"50 3'31"36 3'43"28 
Mich igan Speedway (2311.79m) 3'27"18 3'27"30 3'59"05 4'01"79 
Whee l 1 (4257.62m) 6'04"30 6'04"43 6'52"30 7'15"90 

8.1 Track sampling 

Track sampling is the first step of the warm-up stage while the car is going by a constant 
speed of 40 kilometers per hour. The sampling was tested on the tracks mentioned i n table 
8.1. A s it can be seen from the table, track sampling is the most t ime consuming part of 
the warm-up stage. The longest sampling t ime has was on the Wheel 1 track and this was 
caused by the length of the track. 

Dur ing sampling, the main cri teria which needs to be met is the min ima l bias of the 
central line. However the controller logic is not able to keep the strict constant speed which 
can be seen on the left in figure 8.1, the bias of the central line is s t i l l m in ima l (see the 
figure on the right i n figure 8.1). The largest speed deflection was logged during the Alpine 
2 sampling due to mountainous terrain. 
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eg speedway -
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eg speedway -

michigan speedway 

wheel 1 

Figure 8.1: Speed and distance from the centre of the road during sampling 

Two of the sampled tracks are displayed in figure 8.2. It is apparent that the end of the 
track does not meet w i th the beginning of the track which is caused by the inaccurate angle 
values. This probably happens due to vector sampling using the same dr iv ing distance a l l 
the throughout despite different lengths at corners. Th is can be fixed either by a dynamic 
change of vector length sampling or by angle adaptation at corners. Beyond that, the 
sampled track is s t i l l sufficient due to track representation by vectors which express the 
relative direction from one point to the next one. This means that the end of the track 
links smoothly to the beginning of the track. 

500 

Figure 8.2: Sampled tracks Aalborg and Wheel 1 

8.2 Segment creation 

Divis ion of the track into segments is done i n the middle of each narrow part between 
corners. The number of created segments can be affected by the TURN_THRESHOLD constant. 
The segments i n picture 8.3 were created from the Aalborg track wi th a TURN_THRESHOLD 
value 0.016 rad. The effect on the created segments by the TURN_THRESHOLD is displayed in 
table 8.2. 
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Figure 8.3: A few segments created from track Aalborg 

Table 8.2: Number of segments created i n relation to the TURN_THRESHOLD constant 
0.010 0.016 0.5 

A a l b o r g 18 17 13 
A l p i n e 2 15 16 17 
C G Speedway 1 9 9 7 
Mich igan Speedway 3 2 2 
Whee l 1 9 10 15 

8.3 Segment optimization 

Segment opt imizat ion is the most important part of the warm up stage while several con
figurations were explored to obtain the best results. The Segment opt imizat ion process is 
demonstrated at the first segment of the Aalborg track (see figure 8.6) while the track wid th 
is set to 5 meters. 

In a l l figures the fitness function proposed i n equation 6.15 is used which expresses the 
rat ion between the in i t i a l and evolved track. This means that a fitness value of 1 represents 
the in i t i a l path or the path as good as in i t i a l one. A number higher than 1 then represents 
the better solution. The tests below are based on the following parameters: 

NUMBER_0F_P0SITI0NS: 50 

SEGMENT_P0PULATI0N_SIZE: 50 

SEGMENT_MAX_GENERATIONS: 10000 

SEGMENT_CR0SS0VER_PR0BABILITY: 0.7 

SEGMENT_MUTATI0N_PR0BABILITY: 0.3 

SEGMENT_FITNESS_TRADE_0FF: 0.7 

The left graph i n figure i n 8.4 compares the separate runs wi th default parameters. 
A s can be seen from the figure, fitness function values of each run grow un t i l the 5000*^ 
generation and then the solution does not evolve further. 
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The right graph i n figure 8.4 displays the fitness convergence wi th the effects of the 
track wid th . The wider the track is, the lower the fitness value is reached. B y increasing 
the NUMBER_0F_P0SITI0NS to 100 for a track 10 meters wide, almost the same fitness value 
is acquired (refer to the purple line in the figure). 

Fitness convBrgBncB - 10 Fitness convergence - track width 

/ _ / _ 

\Y 
1 

_ _ _ _ 

width 5, divisions 50 
width 10, divisions 50 
w dth 15. divisions 50 

width 10, divisions 100 

Figure 8.4: A comparison between fitness values on separate runs and the relationship 
between fitness values and differing track widths 

Fitness convergence of the algori thm is largely dependent on the number of divis ion 
points for each vector, which is displayed i n figure 8.5. For a track 5 meters wide, 50 
division points achieves the fastest convergence of the algori thm. 

O n the basis of the graph on the right in figure 8.4 it can be deduced that the best ratio 
between the track wid th and number of divis ion points is d = w • 10 where d is a number 
of divis ion points and w is the track width . 

F i t n e s s c o n v e r g e n c e - n u m b e r of d iv i s ion po in ts 

S 1.6 -

2 0 0 0 4 0 0 0 6 0 0 0 

G e n e r a t i o n 

8 0 0 0 1 0 0 0 0 

Figure 8.5: The fitness convergence of the track 5 meters wide wi th the effects of a number 
of divis ion points 

The difference between the same segment of the track 5 meters wide evolved for 30 
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and 50 points is displayed in figure 8.6 where the blue line represents the in i t i a l path, the 
green line shows the path that has evolved for 30 points and red line shows the path that 
has evolved for 50 points. The green line therefore represents the worse solution as the 
advantage of the inner part of the t u r n is not used. Some of the other evolved segments 
can be found in figure 8.7. 

2501 1 1 1 1 1 1 

200 -

150 -

100 -

50 -

0 
-10 0 10 20 30 40 50 

Figure 8.6: Opt imized segment of the track 5 meters wide for 30 divis ion points (green line) 
and 50 divis ion points (red line) divis ion points. The blue line represents the in i t i a l path. 

8.4 Track optimization 

The track opt imizat ion is applied to the composed path by the segments when the overlap
ping end points of each segment are averaged. The main purpose of the track opt imizat ion 
is to smooth out the gaps between segments. Various settings of the genetic algori thm were 
tested to achieve some passable results. The parameters which give the best results are 
described below: 

NUMBER_0F_P0SITI0NS: 50 

TRACK_P0PULATI0N_SIZE: 30 

TRACK_MAX_GENERATI0NS: 1000 

TRACK_CR0SS0VER_PR0BABILITY: 0.5 

TRACK_MUTATI0N_PR0BABILITY: 0.3 

TRACK_FITNESS_TRADE_0FF: 0.7 
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- 5 0 5 10 15 20 25 30 35 40 45 - 5 10 15 20 25 30 

Figure 8.7: Op t imized segments of the Aalborg track 

A comparison of the gap between two segments before and after opt imizat ion is displayed 
in figure 8.8. The segment interpolation achieved v i a the segment composit ion (see section 
6.2.4) is displayed on the left side. The figure on the right side then shows the image of the 
gap enhanced by the track opt imizat ion. The whole opt imized track Aalborg can be found 
in figure 8.9 and the rest of the evolved tracks are i n A p p e n d i x C . 

20 25 30 35 40 45 60 65 20 25 30 35 40 45 60 65 

Figure 8.8: A gap between two segments smoothed out by the track opt imizat ion (the 
Aalborg track). 

The Genetic algori thm is not the best approach to do smal l enhancements but it is s t i l l 
able to optimize the problem and produce a solution. The better approach would be, for 
example, Hill climbing1 applied to the segment transitions. 

The track opt imizat ion could be excluded from the process in the case where the each 
segment is opt imized based on the fact the start ing point is fixed to the last gene of the 
previous segment. 

1 H i l l climbing is an optimization technique good for a local optimum finding 
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Figure 8.9: Op t imized the A a l b o r g track 



8.5 Comparison with other solutions 

The performance of the proposed controller was compared wi th the Bernhard W y m a n n 
controller (called berniw i n T O R C S ) and a human player during the qualification stage. 
This means that each of the tested controllers run on the track alone and the best lap was 
recorded. The best lap times are displayed i n table 8.3. 

F rom the results it is evident that the proposed controller cannot outperform neither 
the berniw's controller nor the human player. This is caused by the fact that the simple 
race stage logic is not able to fully uti l ize the opt imized path from the warm-up stage. The 
controller also has problems wi th deceleration on the turns following long narrow parts that 
sometimes deviate from the track. Despite a l l of that, the opt imized path could form the 
fundamental part of the controller which w i l l be able to outperform the other controllers. 

Table 8.3: The best lap times during the qualification stage 
Track H u m a n berniw's controller proposed driver 

A a l b o r g 1'38"80 1'40"68 2'28"10 
A l p i n e 2 1'48"30 1'55"15 3'33"10 
C G Speedway 1 43"47 46"34 2'03"10 
Mich igan Speedway 42" 53 41"32 2'21"30 
Whee l 1 1'48"10 1'42"16 3'38"42 
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Chapter 9 

Conclusion 

The main a im of this thesis has been to propose an autonomous controller for the T O R C S 
simulator which would take advantage of algorithms inspired by biology. O n the basis of 
already proposed techniques, a new controller based on the G A s is carried out. 

The controller is implemented i n the C + + programming language while the Genetic 
algori thm opt imizat ion is done by the G A U L library. The controller behaviour can be d i 
vided into two ma in parts which are exploited during the different stages of the competi t ion. 
The warm-up stage servers for the track sampling and the race line opt imizat ion. The race 
stage logic then benefits from the data obtained i n the warm-up stage. 

Track sampling is being done while the car drives at a constant speed in the middle of 
road. The track model is being buil t on the fly and it is represented by a set of vectors. 
Each vector determines a relative direction from the current point and is represented by a 
direction and a magnitude of polar coordinates. 

Once the single lap has been sampled, the obtained track model is d ivided into smaller 
parts called segments and a l l segments are opt imized separately. The divis ion is done in 
the middle of each narrow part of a track and it is important because the entire track 
opt imizat ion would be unsuccessful due to complexity of the problem. 

The segment opt imizat ion is done by the G A which uses as an evaluative cri teria of the 
racing line. W h e n the G A is applied to the proposed track representation, a new mutat ion 
and fitness function which computes the final trajectory is introduced. 

However the divis ion of the track into segments yields gaps between the segments, 
these gaps need to be smoothed out by another G A ut i l iz ing the whole trajectory which 
is composed of segments. The opt imized trajectory is used during the race stage while an 
opt imal posit ion on the track and m a x i m u m allowed speed are obtained. 

The implemented controller was tested on five tracks of the T O R C S simulator and 
compared wi th other solutions. However, the implemented controller is not as fast as other 
controllers the opt imized trajectory w i t h a proper race logic has a big potential. 

9.1 Own contribution 

The main findings of this work are a new track model representation, different track sam
pling and race line opt imizat ion. A l though various solutions have been proposed, most 
of the implementat ion details are kept hidden due to the competi t ion held i n the field of 
autonomous dr iv ing. Th is work proposes the complete solution which can be used to bu i ld 
a highly competit ive driver. 
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9.2 Future work 

The major enhancement which can be done on the warm-up stage is the segment composi
t ion. A l t h o u g h the segment gaps are enhanced by the G A , this approach is not able to fully 
remove them. One solution could be to start the opt imizat ion of each following segment 
wi th a fixed start ing point to the last opt imized gene from the previous segment. 

The main focus of future work should be on the race stage. Based on the track rep
resentation, the Ar t i f i c i a l Neura l Networks ( A N N ) trained beforehand might form a race 
stage logic which w i l l fully use the potential of the obtained racing line. The A N N might 
also be very effective to overtake other drivers. A s well as trajectory opt imizat ion, the gear 
shifting can also be improved by evolutionary techniques. 
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Appendix A 

Fitness function 

boolean s e g m e n t . s c o r e ( p o p u l a t i o n *pop , e n t i t y * e n t i t y ) 
{ 

f l o a t c u r v a t u r e = 0; 
f l o a t t o t a l L e n g t h = 0; 

segment *seg = (segment *)pop->data; 

f l o a t s e c t i o n W i d t h = seg->width / NUMBER_0F_P0SITI0NS; 

f l o a t a l p h a , b e t a , n e w A n g l e , a n g l e A d d i t i o n , newLength, x, 
xn , y, yn; 

i n t i =0; 
f l o a t o l d A d d i t i o n = 0; 

f o r ( v e c t o r < p a t h V e c t o r > : : i t e r a t o r i t V e c t = 
s e g - > v e c t o r s . b e g i n ( ) ; i t V e c t < s e g - > v e c t o r s . e n d ( ) ; 
itVect++, i++ ) 

{ 

a l p h a = ( i t V e c t + 1) < se g - > v e c t o r s . e n d ( ) ? ( i t V e c t + 
l ) - > a n g l e : 0.000001; 

x = i t V e c t - > l e n g t h / t a n ( a l p h a ) ; 
y = i t V e c t - > l e n g t h / s i n ( a l p h a ) ; 

xn = x + ( ( ( i n t 
*)entity->chromosome [0]) [ i ] ) * s e c t ionWidth; 

yn = y + ( ( ( i n t 
*)entity->chromosome [0]) [ i + l ] ) * s e c t i o n W i d t h ; 

newLength = 

sq r t ( p o w ( x n , 2 ) + p o w ( y n , 2 ) - 2 * x n * y n * c o s ( a l p h a ) ) ; 

b e t a = acos ((pow (newLength , 2) +pow (xn , 2) -pow (yn , 2) ) / 
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(2*newLength*xn)); 

a n g l e A d d i t i o n = r i g h t A n g l e l n R a d s - b e t a ; 

newAngle = i t V e c t - > a n g l e + a n g l e A d d i t i o n -
o l d A d d i t i o n ; 

o l d A d d i t i o n = a n g l e A d d i t i o n ; 

c u r v a t u r e += pow((fabs(newAngle)*RAD_TO_DEGREE), 2) ; 
t o t a l L e n g t h += newLength; 

} 

e n t i t y - > f i t n e s s = (1 - SEGMENT_FITNESS_TRADE_OFF) * 
s e g - > t o t a l L e n g t h / t o t a l L e n g t h + 
SEGMENT_FITNESS_TRADE_OFF * 
s e g - > t o t a l C u r v a t u r e / c u r v a t u r e ; 

r e t u r n TRUE; 
} 
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Appendix B 

Matlab functions 

B . l comparePaths function 

f u n c t i o n [] = c o m p a r e P a t h s ( f i l e N a m e 1 , f i l e N a m e 2 , s t a r t P o s i t i o n ) 

i f n a r g i n < 3 
s t a r t P o s i t i o n = 0 ; 

end 

g e t V e c t o r C o m p o n e n t s F r o m F i l e ( f i l e N a m e l ) 
h o l d on 
g e t V e c t o r C o m p o n e n t s F r o m F i l e ( f i l e N a m e 2 , s t a r t P o s i t i o n ) 
h o l d o f f 

B.2 getVectorComponentsFromFile function 

f u n c t i o n [vx,vy] = 
g e t V e c t o r C o m p o n e n t s F r o m F i l e ( f i l e N a m e , s t a r t P o s i t i o n ) 

i f n a r g i n < 2 
s t a r t P o s i t i o n = 0 ; 

end 

A = i m p o r t D a t a ( f i l e N a m e ) ; 

angle = 0 ; 

rows = s i z e ( A , 1) ; 

vx = z e r o s ( 1 , r o w s ) ; 
vy = z e r o s ( 1 , r o w s ) ; 

f o r i = 1 : rows 
a = A ( i , 1 ) ; 
l e n g t h = A ( i , 2 ) ; 
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v x ( i ) = s i n ( a + a n g l e ) * l e n g t h ; 
v y ( i ) = c o s ( a + a n g l e ) * l e n g t h ; 

angle = angle + a; 

end 
i p v d ( v x , v y , s t a r t P o s i t i o n , 0 ) 
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Appendix C 

Optimized track figures 
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Figure C . l : Opt imized A l p i n e 2 track 





Figure C .3 : Opt imized Mich igan Speedway track 



Figure C.4: Opt imized Whee l 1 track 


