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Abstract 

Dynamical systems possess an interesting and complex behaviour that have attracted 
a number of researchers across different fields, such as Biology, Economics and most 
importantly in Engineering. The complex and unpredictability of nonlinear customary 
behaviour or the chaotic behaviour, makes it strange to analyse them. This thesis presents 
the analysis of the system of nonlinear differential equations of the so-called L u - C h e n -
Cheng system. The system has similar dynamical behaviour wi th the famous Lorenz 
system. The nature of equilibrium points and stability of the system is presented in the 
thesis. Examples of chaotic dynamical systems are presented in the theory. The thesis 
shows the dynamical structure of the L u - C h e n - C h e n g system depending on the particular 
values of the system parameters and routes to chaos. This is done by both the qualitative 
and numerical techniques. The bifurcation diagrams of the Lu -Chen -Cheng system that 
indicate limit cycles and chaos as one parameter is varied are shown with the help of the 
largest Lyapunov exponent, which also confirms chaos in the system. It is found out that 
most of the system's equilibria are unstable especially for positive values of the parameters 
a, b. It is observed that the system is highly sensitive to ini t ial conditions. This study 
is very important because, it supports the previous findings on chaotic behaviours of 
different dynamical systems. 
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1 Introduction 
Studying dynamics of systems became a point of interest in the past and in the most recent 

mathematics and engineering researches. This is due to its fundamental characteristic of being 
a time-evolutionary process. It can be deterministic or having a pattern of a complex system 
that can be analysed but unpredictable. 

Nonlinear dynamics tries to answer questions of how a deterministic trajectory can be un
predictable, discusses routes to chaotic trajectories and other dynamical behaviours of systems. 
Over the past studies, interest and progress in nonlinear systems, chaos theory, and fractals have 
been noted, and this is reflected in many scientific journals. 

The essense of this thesis, is to discuss the behaviour of the so-called Lu-Chen-Cheng system. 
It belongs to the a Lorenz-like family of systems. In 1963, Edward Lorenz worked on the paper 
"Deterministic nonperiodic flow" that described numerical results obtained by integrating the 
third-order nonlinear ordinary differential equations. He was trying to model a convection in 
the atmosphere. He named his findings "Butterfly effect". His work became famous and so 
influential and set the trend of studying chaotic systems. 

In this thesis, we shall perform analysis of the Lu-Chen-Cheng system with respect to the 
set of values of the system's parameters. 

1.1 Motivat ion 
We shall investigate the routes to chaos by some qualitative as well as numerical techniques. 

The simulations will include e.g., bifurcation diagrams and calculation of the L L E (Largest 
Lyapunov Exponent) which is the basic indicator of a chaotic behavior. Focus will be put 
on bifurcations meaning the qualitative change of any system's structure with respect to any 
control parameter. Chaos is when a very small change may make the system behave completely 
differently. In other words, chaotic systems have extreme sensitivity to initial conditions. 

The content of the thesis is organised as follows: 
In Chapter Two, we discuss linear and nonlinear systems. We shall put more emphasis on 

nonlinear phenomena. These include, e.g., the finite escape time, possible existence of multiple 
isolated equilibria, existence of limit cycles, chaos, etc. Definition of a dynamical system, flow 
of a system, limit cycles, attractor and sensitive dependence of initial conditions, linearisation 
theorem and bifurcation will be presented here as well. 

In Chapter Three, we present the system under investigation, computation of the equilibria 
and discussion of their existence and number depending on the parameters is addressed. We 
also put emphasis on the stability analysis of the equilibria based on the Routh Hurwitz test. 
Regions of parameters making the equilibria stable will be discussed. Hopf bifurcation is also 
discussed in line with the system's stability. 

In Chapter Four, we present some simulations supporting the obtained theoretical results. 
In Chapter Five; we have main conclusions of the work and for future tasks as open problems. 

2 Nonlinear phenomena 

2.1 Nonlinear Dynamics 
In nonlinear systems, the equations of motion include at least one term that has a square, 

higher powers or even a product of system variables and more complicated functions. Unlike 
the linear systems, the addition of two solutions does not yield another valid solution, no matter 
how the system variables are defined. 
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A l l physical systems describable in terms of classical equations of motion are nonlinear. 
Examples are the pendulum dynamics, climate and other biological problems. The consequences 
of nonlinearity are profound. They can contain multiple attractors, and each one having its 
own basin of attraction. Thus nonlinear dynamical systems may be dependent on their initial 
conditions. The nonlinear phenomena arises when the basins of attraction change due to the 
variation of parameters [4] . 

Autonomous dynamical system 
Definition 2.1. A n autonomous system is a system of ordinary differential equations of the 
form 

x = f(x,fj) (2.1) 

where x, fx G 9ft and fx are the system parameters. When f(x, fx) if zero, the autonomous 
dynamical system is stationary and at this point, x is called a fixed point. The stationarity 
property means that no two trajectories cross because at every state x, the change in state 
determined by f(x,fx) is fixed. Thus the system does not explicitly depend on the independent 
variable. When the variable is time, they are also called time-invariant systems [11] . 

Consider the initial value problem of a nonlinear autonomous dynamical system 

x = f(x) (2.2) 

z(0) = x0 (2.3) 

where x G 9ft™. We assume that / : 9ft™ —> 9ft™ is a vector field of class Cr with r > 1, a condition 
for ensuring the existence and uniqueness theorem of (2.2). 

2.2 The fundamental Existence-Uniqueness Theorem 
According to [1], If you have a differential equation, the theorem guarantees that the dif

ferential equation has a unique solution provided / G C1(E) where E is an open subset of 9ft™. 
The theorem is proved by use of Picard's approximations. Consider the initial value problem 

y = f(x,y) 

y(xo) = yo, 

where (xo, yo) G E. 

Theorem 2.2. Let E be a domain in 9ft2

; / : E C 9ft2 —>• 9ft and f : E —>• 9ft be a real function 
satisfying the following conditions 

1. f is continuous on E 
2. f(x,y) is Lipschitz continuous with respect to x on E with positive Lipschitz constant a. 

Let (xo,yo) be an interior point on E and let a > 0, b > 0 be constants such that the 
rectangle R = (x,y) : \x — XQ\ < a, \y — yo\ < b C E Let 

M = max f(x, y) 
{x,y)&E 

then, the initial value problem has a unique solution y on the interval 

\x — XQ\ < h. 
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Proof. Since R is a closed rectangle in E, f satisfies all properties inside R If a < JJ then h = a. 
If JJ < athen h thus h is smaller than a, therefore 

this means that if a < TJ then R\ JJ then R\ = R and if jfe < a = 
4>i(x), <p2(x), (j>3(x),... on \x — XQ\ < h and are defined by 

R = (x,y) : \x - x0\ <a,\y- yQ\ < b, 

Ri = (x,y) : \x - x0\ <h,\y- y0\ < b 

4> R\ C R. Suppose we have iterants 

4>i{x) = y o + / f(t,yo)dt 
x0 

X 
h(x) = yo+ / f(t,Mt))dt 

J x0 

<f>n(x) = y0+ f(t,(t)n-i(t))dt (2.4) 

we prove the existence of solution to the IVP on [xo, xo+h]. Similar arguments hold for [xo—h, xo\. 
Then, uniqueness of solution follows from Uniqueness theorem. We divide the proof into 4 steps, 
(i) The function <f>n defined by (2.4) is 
a) well-defined, 
b) (fin's have continuous derivatives, 
c) \(fin(x) - y0 < b on [x0,x0 + h] 
d) f(x,(fin(x)) is well- defined. 
From mathematical induction, we will assume that it is true for n-1, it is true for n and check for it 
is true for all n+1. Assume that <fin—\ [x] exists, and has a continuous derivative on [xo, xo+h] and 
it satisfies \(fin-i(x) — yo\ < b for x G [xo, XQ + h] (x, <fin-i{x)) G R\. At this point we have 
f(xo, (fin-i(x)) defined and is continuous on the interval [xo, xo+h]. Further, \ f(xo, (fin-i(x)\ < M 
on the interval [xo, XQ + h]. Consider (fin(x) = yo + f^o f(t, (fin-i(t))dt <fin(x) exists and has 
continuous derivative on interval [XQ,XQ + h]. Also consider 

bn-i(x) - y0\ 

dt f(t,4>n-l(t)) 

< J Mdt = M(x - x0)h = min(a, 
Jxa 'XQ 

<Mh<b. 

M' 

(x, <fin(x)) lies in the rectangle R, and hence f(x, <fin(x)) is defined and continuous on the interval 
[xo, xo + h]. When n = 1, we have 

rx 
(fii(x) =y0+ f(t,y0)dt 

Jx0 

f is continuous and phi\ is defined. Hence, has continuous derivative on [ X O , X Q + h]. Also, 

\.(x) - yo\ < f(t,Vo) dt 

< M(x - x 0 ) 

< Mh 
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< b. 

This implies that (x, <fii(x)) is in R\ and hence / (x , 4>n(x)) is continuous on the interval [xo, XQ + 
h], therefore, properties are true for n = 1. Thus, by the method of mathematical induction, 
<f)n the sequence of functions defined in (2.8) have all the desired properties in the interval 
[xo, xo + h]. Hence part (i) of the proof. 
(ii)The function (f>n satisfies the following inequality 

cj)n(x) - (f)n-i(x) < 
M (ah)1 

a n\ 

on [ X Q , X Q + h] we prove this by mathematical induction. Assume that 

(f>n-l(x) - (f)n-2 < 
Ma n-2 

( n - 1 ) ! 
(x - x0) n—1 (2.5) 

where x £ [xo, XQ + h] Then 

4>n(x) - (f)n-l / ( t , 0 „ _ l ( t ) ) - I f(t,(f>n-2(t))dt 

By part (i), \(j)n < b\ Vn and x G [xrj,£o ^1' n e n c e (x5 (^j 4>n-2(x)) are in i? i for 
x G [XQ, + h]. By Lipschitz continuity of / , we have 

0„(x) - 0. n—1 < a 

< a 

< 

< 

'x0 

Man~x 

( n - 1 ) ! 
M (ah)1 

a n\ 

4>n-l(t) ~ 4>n-2(t) 

Ma11'2 

(n - l)\(t - xo)™"1 

(t - Xoy 

n 

M a ™ " 1 , . _ M a " 
:—(x-xQ )n = -hv 

nl a n\ 

This implies that the inequality is true for n. Let n = 1, 

010*0 - yo < f(t,Vo) 
'xo 

< M(x - x0) 

< Mh. 

dt 

Therefore by mathematical induction, the inequality os true for all n. This proves part (ii) 
(hi) As n —>• oo. 4>n converges uniformly to a continuous function (f> on [xo, xo + h] 
To prove (iii) we need to show that 

(x) - yo f(t,<p(t))dt < (x) - 4>n(x) + a 0(i) -

(x) - yo f(t,<f>(t))dt < (x) - 4>n(x) + ah max 0(i) - <j>n-l(t) 

(2.6) 

(2.7) 

And therefore, the uniform convergence of <pn to <fi implies that the right hand side of (2.5) tends 
to zero as n —>• oo, but the left hand side is independent of n. Thus 4> satisfies the required 
properties of (2.8). 
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(iv) The limit function satisfies the give I V P on [XQ , XQ + h]. We prove that the limit function 
has a unique solution to the IVP. Let <fi and 4> satisfy (2.8) which yields, 

(x) — (j)(x) < f(t,<t>(t)-f(t,Ht)) 

Both 4>{x) and <fi(i) lie in R\ for all t G [XQ, XQ + h] and hence it follows that 

(x) — (f)(x) < a <t>(t) - <t>(t) dt. 

Thus, from inequality (2.5), 

4>{x) — (j)(x) = 0. 

on the interval [xo, XQ + h] which means 

4>{x) = 4>(x). 

This proves (iv) and hence completes the proof [1]. 

• 

2.3 Linearisation 
In complex nonlinear systems, it is nearly impossible to solve the problems analytically. 

Linearisation is a natural simplification of the original system. It is qualitatively effective in 
predicting the patterns of the solution of the original system. 

Definition 2.3. Suppose we have a linearised system of (2.2) 

x = Ax (2.8) 

where A = Df(xo) where XQ is a critical point. If the dynamics of a system is described by a 
differential equation, then equilibria can be obtained by setting the derivative to zero. 

Definition 2.4. Equilibrium points are zeros of the vector function f(x) of system (2.2). 

Remark. The point x* is an equilibrium point if f(x*) = 0. 

In other words, solve the system, we equate the left hand side of the equations (2.2) to zero. 
Two autonomous systems of differential equations such as (2.2) and (2.8) are said to be 

topologically equivalent in a neighborhood of the origin or to have the same qualitative structure 
near the origin if there is a homeomorphism H mapping to an open set U containing the origin 
onto an open set V and preserves their orientation by time in the sense that if a trajectory 
is directed from x\ to X2 in U, then its image is directed from H{x\) to H(x2) in V. If the 
homeomorphism H preserves the parametrization by time, then the systems (2.2) and (2.8) are 
said to be topologically conjugate in the neighbourhood of the origin [1]. 

Theorem 2.5 (The Hartman-Grobman theorem). Let E be an open subset of W1 containing 
the origin, let f G C1(E), and let <pt be the flow of the nonlinear system (2.2). Suppose that 
/(0) = 0, and that the matrix A = Df(0) has no eigenvalues with zero real part. Then there 
exists a homeomorphism H of an open set U containing the origin onto an open set V containing 
the origin such that for every XQ G U, there is an open interval IQ C 3ft containing zero such that 
for all XQ G U and t G IQ 

H o 4>t(x0) = eAtH(x0) : 

; i.e., H maps trajectories of (2.2) near the origin onto trajectories of (2.8) near the origin and 
preserves the parametrisation by time. 
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Outline of the proof [1]. Consider the nonlinear system (2.2) with / G C 1 ( £ ; ) , /(0) = 0 and 
A = Df(0). 
1. Suppose that the matrix A is written in the form 

0 Q 

where the eigenvalues of P have negative real part and the eigenvalues of Q have positive real 
part. 
2. Let 4>t be the flow of the nonlinear system (2.2) such that the solution 

xit,Xo) = Mxo)=(l?;™'^ (2-10) \z{t,yo,z0)J 

where XQ=[ G 3ftn,yo G P s> the stable subspace of A and G E U , the unstable subspace of 
, 2 o , 

A. 
3. We define the functions 

Y(yo,z0) = y(l,y0,z0) - epy0 (2.11) 

and 
Z(yo,z0) = z(l,y0, z0) - eQz0 (2.12) 

such that y(0) = Z(0) = DZ(0) = 0. Since / G C 1 ( P ) , F(yo: zo) a n d Z(yo ; zo) are continuously 
differentiable. Thus, 
|Z?F(yo, 2o)|| < o and ||Z)Z(yo, 2o)|| < a on the compact set |yo| 2 + |zo| 2 < -So- The constant a 

can be taken as small as we like by choosing so sufficiently small. We let Y(yo, ZQ) and Z(yo, ZQ) 

be smooth functions which are equal to F(yo,^o) and Z(yo,^o) for |yo| 2 + |zo| 2 < a n < ^ 

zero for \yo\2 + |zo| 2 > SQ- Then by mean value theorem 

\Y(y0, ZQ)\ < c V M 2 + M 2 < o(|y 0 | + M ) (2.13) 

and 

\Z(y0, z0)\ < a^/\y0\2 + \z0\2 < a(\y0\ + \z0\) 

for all (y 0, 2d) G We next let £ = e p and C = e9. Then assuming that we have carried out 
the normalization, b= \ \B\ \ < 1 and C = | | C _ 1 | | < 1. 

4. For x = G W1 we define the transformation L(y,z) = (^j^j a n o -

T{y,z) 
By + Y(y,z) 
Cz + Z(y,z)J ' 

i.e., L(x) = eAx and locally T(x) = <fi\{x). 

Lemma 2.6. There exists a homeomorphism H of an open set U containing the origin onto an 
open set V containing the origin such that 

H o T = L o H. 

Proof, see [1] • 
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The lemma above is established using the method of successive approximations. 
For x e \W, let 

Then H oT = L o H is equivalent to the pair of equations 

^^ (y , z) = <j>(By + F(y , z), C z + Z(y, z)), (2.14) 

CiP(y, z) = ^{By + Y(y, z), Cz + Z(y, z)). (2.15) 

First of all, we define successive approximations for the second equation by 

My,*) = z> (2-16) 
^k+1(y,z) = C-1MBy + Y(y,z),Cz + Z(y,z)). (2.17) 

It then follows by an induction argument that for k = 0 ,1 ,2 ,3 , . . . , the ipk(y, z) are contin
uous and satisfy tpkiVi z) = z for |y| + |z| > 2so. We prove by induction that for j = 1.2,... 

\iPj(y,z)-iPj-1(y,z)\<Mri(\y\ + \z\y (2.18) 

where r = C[2 max(o, 6,c)]ff with a £ (0,1) chosen sufficiently smooth so that r < 1 (which is 
possible since C < 1) and M = ac(2so) 1 _ 7 • First of all for j = 1 

|V(y, z) - Vo(y, 2)| = z\C~lMBy + ^(y , z), C z + Z(y, z)) - z| 

= \C-l(Cz + Z(y,z))-z\ 
= \\C-1z(y,z)\\ 
< | | C - l | | | z ( y , z ) | 

< ca(\y\ + |z|) 

<Mr{\y\ + \z\)a 

since z(y, z) = 0 for |y| + |z| > 2so, and then assuming that the induction hypothesis holds for 
j = 1,. . . , k we have 

| V f c + i ( y , z) - z)\ = {C^MBy + ^(y , z), C z + Z(y, z)) - C " V f c - i ( 5 l / + *)> + Z(y, 

< I I C " 1 ! ! ! ^ ^ + F(y , z), C z + Z(y, z)) - A-i(By + F(y , z), C z + Z(y, z 

< cMrk\\By + Y(y,z)\\ + \Cz + Z(y,z)\ 

< cMrk[\By + Y(y,z)\ + \cz + z(y,z)\]a 

<cMrk[b\y\+2a(\y\ + \z\) + c\z\}a 

< cMr f c[2max(a,6, c)]a(\y\ + |z|)C T 

= M r f c + 1 ( | y | + |z|)C T. 
(2.20) 

Thus tpk(y, z) is a Cauchy sequence of continuous functions which converges uniformly as k —> oc 
to a continuous function tp(y,z). Also, ip(y,z) = z for |y| + |z| > 2«o- Taking limits to (2.12) 
shows that ip(y, z) is a solution of the second equation in (2.14) and (2.15). 
The equation (2.9) can be written as 

S " V ( y , z) = i>(B~ly + l i ( y , z), C " x z + z x(y, z)) (2.21) 

where the functions Y\ and Z i are defined by the inverse of T (which exists if the constant a is 
sufficiently small, i.e., if SQ is a sufficiently small) as follows: 
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T-\y,z) B-ty + Y^z) 
^ z + Z^y.z) 

then equation (2.15) can be solved by 7r(y, z) by the method of successive approximation exactly 
as above with 7To(y, z) = y since b = \ \B\ \ < l .We therefore obtain the continuous map. 

H(y,z) 
n(y,z) 

5.Let HQ be the homeomorphism defined above and let L L and Tl be the one-parameter 
families of transformations defined by 

and 

Defining 

L'fro) = eAtx0 

T\x0) = irt(x0) 

H f 
•I 0 

L-sHoTsds: 

it follows that using the above lemma that there exists a neighborhood of the origin for which 

L H L~SH o T^dsT 

i-t 
LSH o TsdsTl 

0 r-l-t 
L~sHoTsds+ / L~sHoTsdsT 

t Jo 

(2.22) 

L-'HoT'dsT1 = HT\ 

Since by the above Lemma HQ = L 1H O T which implies that 

0 i-l 
L~sHoTsds= / Lsds. 

i Ji-t 
(2.23) 

And it can be shown that H is a homeomorphism on Sft™. This completes the outline of the 
proof of the Hartman-Grobman theorem [1]. • 

Remark. The linearised matrix A or the Jacobian is always evaluated at a fixed point XQ G W1. 
The Jacobian matrix is given as 

J = Df(x0) 

(hi?*) 
dx\ 

\ dx\ 

Afro) \ 

dxn 

Afro) 

(2.24) 

dxi / 

The eigenvalues \x of the Jacobian can be obtained from the characteristic equation 

P(p) = det{J - fj,I), (2.25) 

where / represents the identity matrix. 
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Definition 2.7. A n equilibrium point XQ of the system (2.2) is called hyperbolic if none of the 
eigenvalues of the Jacobian matrix J = Df(xo) has zero real part. 

Otherwise, the equilibrium point is called non hyperbolic. If the fixed point x$ is hyperbolic, 
then according to Hartman-Grobman theorem, there exists a neighborhood of this point, in 
which the nonlinear system (2.2) is topologically conjugate to the system (2.8), where A is the 
linearisation matrix. 

Example 2.8. Compare trajectories of the system 

x\ = —xi, x2 = x\ + x2, 

and its linearization around the zero equilibrium. 

Taking the equilibrium point ( 0 , 0 ) , we have the linearised system as 

J = Df(x0) = (2.26) 

Let y\ = yi and 2/2 = 2/2- be the linearization, with the solution of y i ( 0 ) = 2 /1 ,2 /2(0) = 2/2> 

calculated as 

Vi(t) = y° exp(- i ) 

and 
2/2 (t) = 2/°exp(t) 

In this particular case, we can as well calculate the solution of the original system as 

xi(t) = Xie~l, 

and 
X2[t) =x°2et + (x<i)\et -e-2t)/3. 

respectively. 

The figures 1 and 2 below show the topological equivalence of the two systems. Trajectories 
of the considered nonlinear system and its linearisation around origin. 

2.4 Limi t cycles and attractors 
In reality, all we need to know to predict the long term behaviour of our nonlinear dissipative 

system is the position of the attractor, or perhaps which kind of attractor and the basin of 
attraction. There are four kinds of attractors. The first one is the simplest attractor called a 
fixed point which we discussed earlier. It describes the stationary longterm behaviour where the 
system eventually stops evolving. In the phase space, the trajectories around a fixed point are 
presented basically as an open loop or some trajectory being convergent to a point. The second 
one is slightly more complicated attractor called a limit cycle (kind of periodic). The tori (kind 
of quasi-periodic) is the third kind of attractor and it is also complicated. It behaves as a closed 
surface. Tori normally exist in higher n-dimensions, i.e., > 3. 
Finally, the fourth and strange one which is chaotic in nature is the "strange attractor". These 
attractors are quite remarkable. Strange attractors are famous for being sensitive to initial 
conditions. It should be noted that only fixed points can be found analytically, and this is 
only if the system is "nice" (low-dimensional, simple nonlinearity) .For limit cycles can be found 
analytically only for exceptional cases and unfortunately, the tori and chaotic attractors cannot 
be found analytically [2]. 
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Figure 1: Phase Portrait of the original nonlinear system 
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Figure 2: Behaviour of trajectories after linearization around the origin 

Definition 2.9. A limit cycle is an isolated closed trajectory that attracts at least one other 
trajectory. 

This means that its neighbouring trajectories are not closed - they spiral either towards or 
away from the limit cycle. Thus, limit cycles can only occur in nonlinear systems. 

Remark. A stable limit cycle is one which attracts all neighbouring trajectories. A system with 
a stable limit cycle can exhibit self-sustained oscillations, most of the biological processes of 
interest are of this kind. 

The neighbouring trajectories are repelled from unstable limit cycles. Half-stable limit cycles 
are, of course, ones which attract trajectories from one side and repel those on the other. 

stabk 
li m i l L - » f ] f I mil '. •. I. 

Figure 3: L imi t cycles 

Example 2.10. Consider the Van der Pol oscillator. It has a stable limit cycle as shown in 
Figure 4. 

X2 = Ml ~ x l ) x 2 - X\ 

where // > 0 is a damping parameter. 
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Figure 4: A stable limit cycle of the Van der Po l oscillator 

Theorem 2.11 (Poincare-Bendixson theorem). Suppose that: R is a closed bounded subset of 
the plane; 4 | = f(x) is a continuously differentiable vector field on an open set containing R;R 
does not contain any fixed points; There exists a trajectory C that is confined in R, in the sense 
that it starts in R and stays in R for all future time. Then either C is the closed orbit, or it 
spirals towards closed orbit as t —>• oo. So, R contains a closed orbit. 

Proof. The proof of this theorem is subtle, and requires some advanced ideas from Perko (1991), 
Coddington and Levinson (1955), Hurewicz (1958), or Cesari (1963). • 

Trajectories from the limit cycle's basin of attraction tend toward the limit cycle either in 
forward or backward time. Limit cycle corresponds to a periodic behaviour. For a system: 

x(t + T) = x(t) and y(t + T) = y(t): periodic movement with period T > 0. 
The Poincare-Bendixson theorem is one of the central results of nonlinear dynamics. It 

reveals that the dynamical possibilities in the phase plane are very limited:if a trajectory is 
confined to a closed, bounded region that contains no fixed points, then the trajectory must 
eventually approach a closed orbit. Nothing more complicated is possible. This result depends 
crucially on the two-dimensionality of the plane. In higher dimensional systems (n > 3), the 
Poincare-Bendixson theorem no longer applies, and something radically new can happen: tra
jectories may wander around forever in a bounded region without settling down to a fixed point 
or a closed orbit. In some cases, the trajectories are attracted to a complex geometric object 
called a strange attractor. As discussed earlier that strange attractors are highly sensitive to 
initial conditions, this sensitivity makes the motion unpredictable in the long run. We are now 
face to face with chaos. We'll discuss this fascinating topic soon enough. 
The following definition of an attracting set is an adaptation of the rigorous definition given by 
Milnor [5]. While Milnor's is very generalized and applies in a wide variety of mathematical 
contexts, the one given here has been simplified to deal only in Euclidean space (i.e., 9ft"). 

Definition 2.12. A set A C 9ftn will be called an attracting set if the following two conditions 
are true: 
1. The basin of attraction B(A), consisting of all points whose orbits converge to A, has strictly 
positive measure. 
2. For any closed proper subset A' C A, the set difference B(A) \ B(A') also has strictly positive 
measure. 

x = P(x, y) 

y = Q(x,y) 

(2.27) 

(2.28) 
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Since we are restricted to 9ft™, it should be easy to gain an intuitive understanding of what 
the above definition of an attracting set means. The first condition basically states that our 
basin of attraction must be, in some sense, tangible. It cannot be a single point or a set of 
discontinuous points (sets whose measures are zero). Our basin of attraction must consist of 
some sort of n-dimensional interval. If we consider the space 5ft2, the first condition states that 
any basin of attraction must have some positive area. If we consider the space 5ft3, any basin 
of attraction must have some positive volume.The second condition is slightly more nuanced. 
It says that if we were to change our attracting set at all, then the measure of our basin of 
attraction would also change. 
In 5ft2, for example, if we were to remove a single point from the attracting set, the basin of 
attraction would lose area. Alternatively, if we remove points from A by defining a new, closed 
set A' C A, and it turns out that the basin does not significantly change (the set difference 
B{A) \ B{A') has measure zero), then the implication would be that the removed points were 
not actually attracting a significant portion of the basin. In this case, A would not be considered 
an attracting set. Milnor gives the a nice explanation of the two conditions for an attracting 
set [5]. : " the first condition says that there is some positive possibility that a randomly chosen 
point will be attracted to A, and the second says that every part of A plays an essential role." 
In order for an attracting set to be considered an attractor, it must satisfy a third condition 
The term strange is usually used for attractors that exhibit chaotic behavior - i.e., sensitivity to 
initial conditions. Though it is true, the use of the term is somehow misleading. It is important 
to clarify that strangeness is not dependent on the existence of chaos. Though attractors showing 
extreme sensitivity to initial conditions are indeed strange, strange attractors need not be chaotic 
[6]. 

Definition 2.13. A n attractor is strange if its attracting set is fractal in nature. 

While the term chaotic is meant to convey a loss of information or loss of predictability, the 
term strange is meant to describe the unfamiliar geometric structure on which the motion moves 
in phase space [6]. In a chaotic regime, orbits on an attractor are non-periodic. Thus, any given 
point in the attracting set is never visited more than once, and there are entire regions of points 
that are never visited. Such sets of points are fractal in nature and usually have non-integer 
dimension. It follows that if an attractor exhibits chaotic behavior, then it is a strange attrac
tor. [2]. Suppose A is a closed set, an attract has the given properties: 

1. A is an invariant set; any trajectory x(t) starting in A stays in A all the time. 
2. A n open set of initial conditions are are attracted by A and there exists an open set U 

containing A such that x(0) G U, then the distance from x(t) to A attracts all trajectories 
that start sufficiently close to it. It is noted that the largest U is the basis of attraction 
os A. 

3. A is minimal; there exists no proper subset of A that satisfies conditions 1 and 2 [2]. 

Example 2.14. In 1963, Edward Lorenz (1917-2008), studied convection in the Earth's at
mosphere. As the Navier-Stokes equations that describe fluid dynamics are very difficult to 
solve, he simplified them drastically. The model he obtained probably has little to do with what 
really happens in the atmosphere. It is a toy-model, but Lorenz soon realised that it is very 
interesting in a mathematical sense. There are only three parameters in the model so that each 
point (x, y, z) symbolises a state of the atmosphere. 

Consider the Lorenz system of differential equations; which was his model of convection in the 
atmosphere. 

x = a(y — x) 
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y = x(p-z)-y 
z = xy — j3z 

where cr,p,/3 > 0 and a is the Prandtil number representing the ratio of the fluid viscosity 
to its thermal conductivity, p represents the difference in temperature between the top and 
bottom of the system, and j3 is the ratio of the width to height of the box used to hold the 
system. The choice of parameter values Lorenz used are a = 10, p = 28,(3 = 8/3. Basically the 
equations model the flow of fluid (particularly air) from hot area to cold area. On the surface 
these three equations seem simple to solve. However, they represent an extremely complicated 
dynamical system. If one plots the results in three dimensions the following figure, called the 
Lorenz attractor, is obtained[8]. 

Figure 5: The Lorenz strange attractor 

The evolution of the weather thus boils down to following trajectories in a vector field. Again, 
it is a toy model, and the objective is to try and understand some very complex behaviour. Two 
conditions of the atmosphere that are extremely close will rapidly evolve quite differently: after 
a while they represent conditions that are wide apart. Lorenz discovered this sensitivity to initial 
conditions in his model. 

If we take a large number of different initial conditions, then after a while they all land on 
the same object in the shape of a butterfly: the Lorenz attractor. As we said already that the 
Lorenz attractor is an example of a strange attractor. Strange attractors are unique from other 
phase-space attractors in that one does not know exactly where on the attractor the system 
will be. Two points on the attractor that are near each other at one time will be arbitrarily far 
apart at later times. The only restriction is that the state of system remain on the attractor. 
Strange attractors are also unique in that they never close on themselves — the motion of the 
system never repeats (non-periodic). The motion we are describing on these strange attractors 
is what we mean by chaotic behavior [3]. The Lorenz attractor was the first strange attractor, 
but there are many systems of equations that give rise to chaotic dynamics. Examples of other 
strange attractors include the Róssler, Chua and Hénon attractors among others, see [14]. 

Example 2.15. The Chua's Dynamical system: The circuit diagram of the Chua Circuit is 
shown in Figure 4. It contains 5 circuit elements. The first four elements on the left are 
standard off-the-shelf linear passive electrical components; namely, inductance L > 0, resistance 
R > 0, and two capacitances C\ > 0 and C2 > 0. They are called passive elements because they 
do not need a power supply (e.g., battery). Interconnection of passive elements always leads to 
trivial dynamics, with all element voltages and currents tending to zero (Chua, 1969). 

The Chua's Circuit is described by the equations: 

x = a(y — (f>(x)) 
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y = x - y + z 
z = -j3y. 

where a and/3 are real numbers, and 4>(x) is a scalar function of the single variable x. The 

R 

Figure 6: The Chua's circuit. 

Chua equations are simpler than the Lorenz equations in the sense that it contains only one 
scalar nonlinearity, whereas the Lorenz equations contains 3 nonlinear terms, each consisting of 
a product of two variables (Pivka et al, 1996). In the original version studied in-depth in (Chua 
et al, 1986), 4>{x) is defined as a piecewise-linear function: 

(f)(x) = x + g(x) = mix + ~^{mo ~ rni)[\x + 1| — \x — 1|] (2.29) 

where mo and m\ denote the slope of the inner and outer segments of the piecewise-linear 
function in the circuit. 
Although simpler smooth scalar functions, such as polynomials, could be chosen for 4>(x) without 
affecting the qualitative behaviors of the Chua equations, a continuous (but not differentiable) 
piecewise-linear function was chosen strategically from the outset in (Chua et al, 1986) in order 
to devise a rigorous proof showing the experimentally and numerically derived double scroll 
attractor is indeed chaotic [13]. 

Fractal Geometry of the Double Scroll Attractor: Based on an in-depth analysis 
of the phase portrait located in each of the 3 linear regions of the x — y — z state space, as well 
as from a specific numerical values of parameters of the double scroll attractor shown in Figure 
5, the geometrical structure of the double scroll attractor is found to consist of a juxtaposition 
of infinitely many thin, concentric, oppositely-directed fractal-like layers. The local geometry 
of each cross section appears to be a fractal at all cross sections and scales[2]. Chaotic systems 
have an interesting complex non linear phenomenon which has been intensively studied in the 
last four decades within the science, Mathematics and engineering communities. The term chaos 
is also difficult to define in a rigorous way. Loosely speaking, chaos is the science of surprises, 
of the nonlinear and the unpredictable systems. Transient chaos shows that a deterministic 
system can be unpredictable, even if its final states are very simple. The high sensitivity of 
chaotic dynamical systems brings the unpredictable behavior in the system [8]. As shown below 
in Figure fig. 8 , two trajectories start close and diverge exponentially; A defining attribute of an 
attractor on which the dynamics is chaotic is that it displays exponentially sensitive dependence 
on initial conditions. Consider two nearby initial conditions xi(0) and £ 2 ( 0 ) = a?i(0) + A ( 0 ) , 
and imagine that they have evolved in time by a continuous time dynamical system yielding 
orbits xi(t) and X2(t) as shown in Figure 6 above. At time t, the separation between the two 
orbits is 

A(t) = x2(t)-Xl(t). 
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Figure 7: Chua's circuit: a — 10 and j3 — 15 [13] 

Figure 8: Divergence of orbits in a phase space [5]. 

If in the limit 

solutions A(t) 

A(t) 0, and large t, orbits remain bounded and the difference between the 

grows exponentially for typical orientation of the vector A(0); 

A(t) 
A(0) 

exp(ht), h > 0, 

then we write that the system displays sensitive dependence on initial conditions and is chaotic 
[2]-

By bounded solutions, we mean that there is some ball in phase space, \x\ < R < oo, which 
solutions never leave [2]. This means that if the motion is on an attractor, then the attractor lies 
in |x| < R. The reason of imposing the restriction that orbits remain bounded is that, if orbits 
go to infinity, it is relatively simple for their distances to diverge exponentially. 

The exponential sensitivity of chaotic solutions means that as time goes on, small errors 
in the solution can grow very rapidly. On the existence of chaos,the bifurcation diagrams and 
nature the of Lyapunov Exponents give the confirmation whether chaos exits or not. 
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2.5 Bifurcation 
The qualitative behaviour of system (2.1) changes as we change the function or vector field 

/ in (2.1). 

Definition 2.16. Bifurcation is the qualitative change in behavior of the solution set of a system 

x = f{x,n) 

depending on a system parameter. The behavior changes as the vector field / passes through a 
point in the bifurcation set or as the parameter varies through a bifurcation value IXQ. 

[9]-
The qualitative structure of the flow can change as parameters are varied. In particular, fixed 

points can be created or destroyed, or their stability can change. These qualitative changes in 
the dynamics are called bifurcations, and the parameter values at which they occur are called 
bifurcation points. If the qualitative behavior remains the same for all nearby vector fields, then 
the system (2.2) or the vector field / is said to be structurally stable. 

The qualitative structure of the solution set or of the global phase portrait of (2.2) changes 
as the vector field / passes through a point in the bifurcation set. 
Consider the equations;(2.1) and 

x = g(x) (2.30) 

x = f(x,fi) (2.31) 

Definition 2.17. Let E be an open subset of R. A vector field / G C1(E) is said to be 
structurally stable if there is an e > 0 such that for all g G C1(E) with 

11/ " S i l l < e 

/ and g are topologically equivalent on E; i.e., there is a homeomorphism H : E h->• E which 
maps trajectories of (2.1) and preserves their orientation by time. 

Structural stability is typical of any dynamical system modeling a physical problem. Con
sidering an example of a damped pendulum. Mass, length and friction are changed in the 
pendulum by just a small value e. This means that the qualitative behavior of the solution 
remains un changed; i.e., the global phase geometrical structures of the two systems (2.1) and 
(2.32) modeling the two pendula will be topologically equivalent. Thus, the dynamical system 
(2.1) modeling the physical system consisting of a damped pendulum is structurally stable [8]. 

Remark. Given E = W1, then the e-perturbations of / in the above definition, i.e., the functions 
g G C 1 ( P ) satisfying 

\\f-9\\i < e 

include the C1-e-perturbations. Also if K is a compact subset of E and if g G Cl(K) satisfies 

max | / (s ) - g(x)\ + max.\\Df(x) - Dg(x)\\ (2.32) 

then there exists a compact subset k of E containing K and a function g G C^{E) such that 
g(x) = g{x) for all x G K, g(x) = f(x) for all x G E ~ K and || / — g\\\ < e. Thus, in order 
to show that / G C'(9ft") is not structurally stable on ffi2, it suffices to show that / is not 
structurally stable on some compact K C W1 with nonempty interior. 
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Definition 2.18. A point x G E is a non-wandering point of the flow <pt defined by (2.32) if for 
any neighborhood U of x and for any T > 0 there is a t > T such that 

4>t(u) n u ± o. 

The non-wandering set 0 of the flow <̂  is the set of all non-wandering points of <pt G -K- Any 
point x E E = Q is called a wandering point of <pt 

Non-wandering points of a flow are the equilibrium points and points on periodic orbits. 
These points are for a relatively-prime, planar, analytic flow. The only non-wandering points 
are critical points, points on cycles and points on graphics that belong to the w-limit set of a 
trajectory or the limit set of a sequence of periodic orbits of the flow (on 5R2 or on the Bendixson 
sphere) [1]. 

In Chapter two, we discussed the nonlinear phenomena of dynamical systems in relation to 
chaos and several chaotic models have been presented. As we said before, in this chapter, we 
focus directly on the analysis of the Lu-Chen-Cheng autonomous nonlinear system. 
We investigate the local behavior of the equilibria in their neighborhood, and the behavior of the 
trajectories depending on the parameter variations. Phase portraits and Bifurcations in chapter 
will also follow as per the numerical analysis of the system. 
According to [12], Vanecek and Celikovsky [1999] introduced the so-called generalized Lorenz 
system. More recently in 2004, Lu , Chen and cheng; discovered some similar but different chaotic 
systems. Below is one of those systems that is under our analysis. The system's equations are; 

The system has some similarities with the famous Lorenz system, but has a richer dynamics 
depending on the parameters 

where a, 6, c are real constants. In our analysis, we assume 3 cases of the nature of the parameters 
in the system. The system shows chaotic behaviour for different values of c and a as the mostly 
varied parameters in this work, i.e., for a = —10, b = —4 and c = 19, 8, 2and — 60 as shown in 
the figures below. 

3 Analysis of Lu-Chen-Cheng system 

(3.1) 
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Figure 9: Attractor with respect to 
parameters a = —10, b = —4 and c = 
19 wi th (1, —1,1), as ini t ial condition. 
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Figure 11: Attractor with respect to 
parameters a = —10, b = —4 and c = 
2 wi th ( 1 , - 1 , 1 ) , as ini t ial condition. 

Figure 10: Attractor wi th respect to 
parameters a = —10, b = —4 and c = 
8 wi th (1, —1,1), as ini t ial condition. 
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X 

Figure 12: Attractor wi th respect to 
parameters a = —10,6 = —4 and 
c = —60 wi th (1, —1,1), as ini t ial con
dition. 

Pictures in fig. 9 to fig. 12 are generated by one initial condition, but what brings the 
difference in their structures is the change in parameter c. It is observed that the system is 
chaotic in several regions, for example, when |c| = 19, we have 2 two chaotic attractors with 
dense orbits. The system produces 2 periods of two limit cycles when the parameter c is between 
22.4 and 31.2 as shown in 13c. The system also appears to have attractors when the varying 
parameter is from 8.0 < |c| < 19.1. we have partial and bounded attractors whenever the system 
parameter c is such that 2.0 < |c| < 8.3 In the interval of 11.8 < |c| < 14.8, the system has a 
periodic window. 
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(a) The xy view of the periodic window 
with respect to parameters a = —10,6 = 
—4 and c = 10 with (1,-1,1) , as initial 
condition. 

4 0 

- 4 0 - 5 0 

(b) the xyz view of the attractor with re
spect to parameters a = —10,6 = —4 and 
c = 0 with (1, —1,1), as initial condition. 

4 0 

N 

y x 

(c) Limit cycles of the system with respect 
to parameters a = —10, 6 = —4 and c = 30 
with (1, —1,1), as initial condition. 

(d) Attractor with respect to parameters 
a = -10, 6 = - 4 and c = 45 with (1, -1 ,1) , 
as initial condition. 

Figure 13: Chaotic attractors and limit cycles of the system 
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3.1 Phase portraits of the system 
The following dynamical structures of the system show limit cycles of the system, attractors 

and chaotic regions depending on the variation of system parameters and change in initial 
conditions. Figures fig. 14 and Figure fig. 14 show a 3-D visualisation of the system with 2 — D 
views of x — y, y — z and x — z planes respectively. Other topological structures are also observed 
with respect to different axes. These diagrams are generated from two initial conditions [5,1,5] 
and [5,1,-5], showing the upper attractor and lower attractor respectively. The pictures in 
Figure 12 are generated from the initial conditions [1,-1,1] and [2,0,-2] with parameter c 
changed to zero. In future of this thesis, we shall show these behaviours from the bifurcation 
diagram. 

Figure 14: Dynamical behaviors of the system: xyz and x — y planar view wi th a = 
- 1 0 , 6 = - 4 and c = 18.1 

-20 -15 -10 -5 0 5 10 15 20 .15 _ i 0 _ 5 () 5 10 15 20 25 

y x 

Figure 15: Dynamical behaviors of the system: y — z and x — z planar views 
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Figure 16: Dynamical behaviors of the system: xyz views, given two init ial conditions (1, 
-1, 1) and (2, 0, -2) 

Figure 17: Dynamical behaviors of the system: x — y and xyz views respectively wi th 
parameter c = 0 

Figure 18: Dynamical behaviors of the system: xy view and yz planar views wi th c = 20 
and c = 50 respectively. 
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Figure 19: xz view wi th a = —10, 6 = —4 
and c = 50 with ini t ial conditions (1,1,1) 
and ( 1 , 1 , - 2 ) 
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Figure 20: xy view wi th a = —10, b = — 4 
and c = 50 wi th ini t ial conditions (1,1,1) 
and ( 1 , 1 , - 2 ) 

34 



3.2 Equil ibr ia of the system 
As we discussed already, equilibrium means a state of a system which does not change over 

time. Thus, fixed points of the generalized Lorenz-like system (3.1) are given by considering 
the nature of its parameters a, b and c as shown in the following cases. Equilibrium points of 
the system are obtained by the solutions of the equations: 

--^-x-yz + c = 0 (3.2) 
a + b 

ay + xz = 0 (3-3) 

bz + xy = 0, (3.4) 

The Jacobian of the matrix is given by 

J 

As we discussed already, the Routh-Hurwitz criterion is suitable to use in systems of higher 
dimension greater than 2. Therefore when the coefficients of the characteristic equation of the 
polynomial P(X) = det(A — XI) are satisfied, the corresponding equilibrium point will be stable. 
Otherwise, it will indicate instability of the equilibrium. 
Case 1: consider the system parameters 

a = 0 , 6 / 0 ; 

0 = — yz + c, 0 = xz, 0 = bz + xy 

Therefore, if x = 0, z = 0 and then c = 0. Hence, the first case; with c = 0, gives infinitely many 
equilibria, thus the points are Si = (x,0,0), S2 = (0,y,0) for x,y for x £ K and with c / 0, 
S = 4> (has no equilibria) 

Case 2: For parameters o,5 / 0,c = 0 with a, b > 0, We have five equilibria if the above 
condition is considered. 
Let Si be the equilibria when the parameter c = 0. Since a and b are different from zero, for 
a, b > 0 and c = 0; 

Si = (0,0,0), 

Let Tj be equilibrium points of Case 2 where i = 1,2, 3,4, 5. with c / 0. 
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3.3 Stability analysis of the equilibria 
After small perturbations, a stable equilibrium will always go back to its original state and 

for unstable one, the system will stay away from the equilibrium point. 

Definition 3.1. Let <pt denote the flow of the system (3.1) defined for all t G 3ft. A n equilibrium 
point x* is called locally stable if for all e > 0 there exists 5 > 0 such that for all x G Ng(x*) 
and t > 0 

<kix) G Ne(x*). 

The equilibrium point x* is locally asymptotically stable if it is stable and if there exists a 
5 > 0 such that for all x G Ng(x*), 

lim 4>t(x) = x* 
t—¥00 

Stability analysis of equilibrium points is basically done with the method of linearization. 
The sign of real parts of eigenvalues A of the Jacobian matrix determines the stability of a fixed 
point around the origin. 
Theorem 3.2. Let J = Df(x*) be the Jacobian matrix for the system (3.1) evaluated at a fixed 
point x* and let /Xj be its eigenvalues. 
(i) J/9ft(Aj) < 0 for all \i, then the fixed point x* is asymptotically stable. 
(ii) J/3ft(Aj) > 0 for at least one Aj, then the fixed point x* is unstable. 
(Hi) J/9ft(Aj) = 0 for at least one Aj, then the fixed point x* is non-hyperbolic and its stability 
cannot be determined by the linearization method [1]. 

3.4 Lyapunov stability Theorem 
Let D C S n open and connected. 

Theorem 3.3 (Lyapunov). If the derivative of the Lyapunov function along the trajectories of 
the system is 
1. negative semi-definite, then the equilibrium is stable in the sense of Lyapunov. 
2. negative definite, then the equilibrium is asymptotically stable. 
3. positive definite, then the equilibrium is unstable. 

The detailed proof of this theorem can be found in [1]. When V(x) < 0, the trajectories 
start inside a ball and will stay. But for V(x) < 0, the Lyapunov surface decreases in size. This 
will continue until the minimum value of V(x)is reached. At this point, V(0) = 0 which is the 
equilibrium point, after which the Lyapunov's surface grows along the trajectories which implies 
that x grows continuously and starts to diverge along any trajectory. This brings instability and 
at this point the derivative of the Lyapunov function is positive definite. 
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Remark. In nonlinear systems, it is usually somewhat difficult to find the Lyapunov function to 
use in the tests and therefore, when the test fails, there is no conclusion done. It is good to keep 
finding another possible function. 

3.5 Routh—Hurwitz Test 
In Lu-Chen-Cheng system, we decide to use the Routh-Hurwitz test, since the dynamical 

system has a dimension greater than two. It is convenient enough to use the method to test for 
stability of the system. 

The Routh-Hurwitz theorem provides a test to determine whether all roots of a given poly
nomial lie in the left half-plane. As in Subsection 3.2, the stability of the system's equilibria 
depends on the eigenvalues. To find the eigenvalues Aj where i = 1, 2, 3, it is necessary to solve 
the characteristic equation: 

det{J - XI) = 0. (3.5) 

Theorem 3.4 (Routh-Hurwitz criterion). Let the polynomial 

P(X) = A™ + a i A " " 1 + • • • + a „ _ i A + a „ , 

, n define the n Hurwitz matrices using the coeffi-
where ai are real constants and i = 1,2,3, 
cients a,i of P{X); 

# i = (ai) ,ff 2 

ai 1 
<33 (12 

M3 

ai 1 0 
ai 

a 5 a,\ a 3 

(3.6) 

and 
/ o i 1 0 0 • •• 0 \ 

A3 ai 1 • •• 0 

Hn — a 5 a,\ «3 a 2 • •• 0 

\ o 0 0 0 • • • an) 

where n > 3 . The coefficients aj = 0 if j > n. All of the roots of the polynomial P(X) are 
negative or have negative real part if and only if all Hurwitz determinants are positive, that is; 

det(Hj) > OJorj = 1, 2 , . . . , n. 

For a particular case say n = 3, we have the criteria written such that 

ai > 0, a3 > 0, and a i a 2 > 0 3 . 

Considering a case of one equilibrium point, we analyze its stability as follows: 
From case 2, For a, b > 0, c = 0 we have the equilibrium point 

S i = (0,0,0), 

The Jacobian Matrix is given as; 

J(Si 
(-

\ 

-ab 
a + b 

0 
0 

0 o\ 

a 0 
0 b) 

(3.7) 
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Thus from Equation 3.6, we have 

A 
a2 + b2 + ab 

a + b M 2 + 
azb 

a + b 
0. 

for stability, the coefficients on A 2 and A must satisfy the Routh-Hurwitz test, it is clearly seen 
that there is no stability since a\ < 0. 
Thus, the equilibrium point (0, 0, 0) is not stable. The characteristic polynomial of S2 is given 
as 

P(A) = A 3 
a2 + b2 + ab 

a + b 
A 2 + 

ab3 alb ab2 

(a + b)2 (a + b)2 a + b J \(a + b)2 (a + b)2 a + b 
3a6b 3a 26 3 alb •iii 

From Routh-Hurwitz test, thee coefficient on A 2 is negative, hence no stability. 
The equilibria S 3 , £ 4 and £ 5 have the same characteristic polynomial given by 

P(A) = A 3 
a2 + b2 + ab 

a + b 

•iii 4azb 
a + b' 

Hence, all are not stable. They have the same characteristics. 
Similarly, for the case where the parameter c is different from zero, and a, b kept positive, 

we have the linearised system as shown in the matrix below. 

Let J(Ti) be the evaluated Jacobian matrix with respect to the equilibria Tj for i = 1, 2 . . . , 5. 
Considering a case of equilibrium point T\, the Jacobian is given as 

/-ab 
a+b 0 0 \ 

J(Ti) = 0 a (a+b) _ 
ab c 10 

ab c b ) 

(3.8) 

The characteristic polynomial is 

' ab + a2 + b2 

P(A) = A 
a + b 

2,-2 (a + b)2c 
a2b2 

•A + 
j 6 3 - (-2a6 + a 2 + 52) 

ab(a + b)c2 

It is clearly seen that there is no stability for this equilibrium point. 

,a + b 

Since, the coefficients on A and A 2 are negative. 
From the system, we note that when ab < 0, there is only one equilibrium point which is 

the origin. The symmetry with respect to the x, y and z axes is observed in equilibrium points 
5*2j S3, 6 4 and £ 5 . The origin is a saddle point for all a, b ^= 0. 

When 
> ~(a&) (3/2) 
" a + b ' 

There are only three equilibrium points namely: 

3 i 
a + b 

ab 
c,0,0 

T-2 ab, 
ib2 be 

a + b ab 

Igf ab2 

b\a + b 
be 
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ab, 
a + b 

and we have three equilibria only if 

c < 
(o6)(3/2) 

a + b 
If we set the parameter c = 18.0702, using two initial conditions we get the following dy

namical structures showing three equilibrium points. 

10 -

' 0 

(a) The xyz view of the 3 equilibrium points 
of the system, with 2 initial conditions 
(XQ, yo, ZQ) and ZQ > 0 and c = 18.1 . 

(b) The xyz view with 2 initial conditions 
(XQ, yo, ZQ) and ZQ < 0 and c = 20 

Figure 21: Chaotic attractors 

The system has remarkable interesting behaviour. That is, the system is chaotic for parame
ters a = —10, b = —4 and 7 < |c| < 22.9. In this region, the system develops a 4-scroll attractor, 
and beyond this and not greater than 24.1, the trajectories start converging to a limit cycle. In 
the interval between 24.1 and 27, the system's trajectories converge to a limit cycle. 

Just like the Lorenz attractor, the Lu-Chen-Cheng with system parameter c = 0, the sys
tem is invariant under the transformation of (x,y,z) —>• (x,—y,—z), (x,y,z) —>• (—x,—y,z) 
and (x,y,z), i.e.,the system behaves symmetrically about the 3 axes (xy, z) respectively. The 
symmetry remains as the parameters are varied. Also, the axes are solutions to the system. 

Consider the dissipative nature of our dynamical system. Given 

'x=^bx-yz + c 
y = xz + ay 
z = bz + xy, 

we have 

dx dy +dz 
h — 

ox dy oz 

-ab 
a + b 
(a + b)2 

+ a + b 

ab 
a + b 
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_ a2 + b2 + ab 
~ a + b 

Since the divergence is constant, the rate of contraction is exponential from the solution of 

V a + b J 

which is given by 
a2 + b2+ab, 

V(t) = V(0)e -+b . 

This means that whenever (a + b) < 0, the volume in the state space shrinks fast to zero. Hence, 
if we start with a group of initial conditions, it eventually decreases to a limiting set of zero 
volume, just like air sucked out of a balloon. 

At this point, V(0) is contracted by the flow as t —> oo, at the rate a +J'+^'ab, meaning the 
trajectories of the system will end up somewhere in a limiting set. 

3.6 Hopf Bifurcation 
Consider the nonlinear autonomous system: 

x = f{x,n) 

where fx G 3ft is a parameter and Df(x, fx) is the Jacobian of the system. Then, there exists a 
unique equilibrium point xa near XQ such that when the eigenvalues of the Jacobian evaluated 
at Df(xu,/x) cross the imaginary axis at the bifurcation value fx = fxo, then the stability nature 
and the topological structure(local phase portraits) will change as fx passes through /XQ which is 
the bifurcation value. 

Theorem 3.5 (Hopf Bifurcation theorem). Consider the planar system 

(x\ = hu(x1,x2) 
\x2 = gu(xi,x2) 

where fx is a parameter. Let the system have a critical point, say the origin. Let also the 
eigenvalues of the linearized system about the origin be given by = a + ij3. Suppose that 
[x = 0, then the following conditions are satisfiable; 
(i) a = 0, j3 = OJ / 0 (non-hyperbolicity condition). The conjugate pair of imaginary eigenvalues. 

da(n) 
(n) dfi 

= d / 0 which is transversality condition. Here, the eigenvalues cross the 

imaginary axis with non-zero speed. 
1 1 

(Hi) OL ^ 0 where, OL — ~rz(hx\x\x\ + hXix2X2 + 9x\x\x2 + 9x2x2x2) + T7. ^\hx\x2^J^x\x\ + hX2x2) 
lb loo; " " 

9x\X2^9x\x\ +9x2x2) ~ hXlxi9xixi + hX2X2gX2X^)^ with 
d2h 

hxi3 dxA •('2 

(0,0). 
=̂0 

(generecity condition)[7]. 

After which, a unique curve of periodic solutions bifurcates from the origin into the region// > 
0 if ad < 0 or fx < 0 if ad > 0. The origin is a stable fixed point for fx > 0 (resp. fx < 0 ) and an 
unstable fixed point for fx < 0 (resp. fx > 0 ) if d < 0 (resp. d > 0 ) whilst the periodic solutions 
are stable (resp. unstable) if the origin is unstable (resp. stable) on the side of fx = 0 where the 
periodic solutions exist [7]. 
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Suppose that a 2 dimension system has a stable equilibrium point, the point loses stability 
as \x the varying parameter increases. At this point of time, a periodic orbit emerges out of 
the stable equilibrium point. The neighbouring trajectories move away from the point and get 
attracted to the stable limit cycle. The hopf bifurcation has two forms: 
(i) supercritical hopf bifurcation and, 
(ii) subcritical hopf bifurcation. The nature of eigenvalues is responsible for the occurrence 
of hopf bifurcation, i.e., when the real part is zero. The super critical bifurcation prevails for 
u > no, when a stable spiral moves into an unstable one. 

Example 3.6. consider the system 

r = \x — r 3 , 

9 = LO + br2. 
In this simple system, there are three parameters where /mu is the changing parameter that 
controls stability of the system at the origin [2]. 

When /x < 0, the origin is stable and when// = 0 the origin is still stable but not strong and 
after this point when \x > 0 there exist an unstable spiral at the origin and a stable circular 
limit cycle at 

r = y/(ii-iio)-

that attracts neighbouring trajectories. 

In the case os subcritical hopf bifurcation, the trajectories jump to an attractor which is a 
bit distant or somewhere in the phase space. 

4 Numerical Bifurcations Analysis 
In most cases, it is quite very strange to differentiate between randomness and chaos of 

oscillations or limit cycles (attractors). But this is clearly shown by the bifurcation analysis of 
the system's behavior as a varying parameters bifurcates through the equilibria. Bifurcation 
diagrams also show exactly how the system bifurcates from either stable or unstable structure 
depending on the system's parameter variations. As we noted earlier, the idea of sensitive 
dependence is experienced in chaotic nonlinear dynamical systems, in which the smallest error 
in the change of initial condition grows to become as large as the true and actual value of the 
state. This makes prediction of the future behavior impossible. This explains why we have 
sudden bifurcations at un expected points in the bifurcation diagram. However, this does not 
mean that the system is not deterministic. Numerically, sensitivity is measured by Lyapunov 
exponent such that a positive value implies the system is really sensitive to initial conditions. 
This implies that Lyapunov exponents measure the rate of divergence of orbits away from each 
other 

4.1 Bifurcation diagrams 
The diagram in figure 22 represents the bifurcation diagram with the change in the values 

of c and the rest of the system's parameters remain fixed. 
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Figure 22: Bifurcation diagram showing chaotic regions as the system parameter c is 
varied c from values 1 — 45 

As the system parameter c is varied, we observe different chaotic regimes. The bifurcation 
diagram corresponds with the system attractors as shown already in the diagrams. Starting 
from c = 1.9 to about c = 8.7, there is chaos. The system has two big periodic windows between 
about 12 — 14.7. There is period doubling bifurcation between c = 19.1 to 23, after which it 
shows 2 limit cycles from c = 23 — 30. For values of c > 30, the bifurcation diagram indicates 
that there is only one limit cycle as also portrayed by the dynamical structures of the system. 
At c = 23, there is a bifurcation changing from 4 limit cycles to 2. 

The behaviour coincides with the system's structure depending on the value of the varying 
parameter c as shown in the following figures. 
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1 1 1 1 1 1 1 y - 4 0 - 4 0 v 
-20 -10 0 10 20 30 40 

x (b) Dynamical structure showing 4 scrolls, 
(a) The xy view when c is 23 when c = 5 

Figure 23: L imi t cycles and Chaotic attractors 

The figures fig. 24b behave as mirror images of the others when c is positive and negative 
respectively. 
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4 0 v, 

(a) The xyz view of the 3 equilibrium points of 5 equilibrium points of the system, with 
of the system, with 2 initial conditions 2 initial conditions (1, —1,1), and(0,1, —1) 
(0,1,-1) and c = 57. with c = - 9 

Figure 24: Topological behaviour of the system 

(a) planar view of the 3 equilibrium points 4 °-4o -30 -20 -10 0 10 

of the system, with 2 initial conditions x 

(1, —1,1), and(0,1, —1) and c = 9 . (b) Mirror Image of 25a. c = —9 

Figure 25: Chaotic attractors 
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4.2 The Largest Lyapunov Exponent (LLE) 
The Lyapunov exponent is responsible in the characterisation of the rate of separation of two 

trajectories in the phase space quantitatively. The trajectories diverge exponentially. Largest 
Lyapunov exponent is computed at every point for over 10000 initial conditions against the 
vector of initial conditions [—1.4916;—0.7076; 20.7295] close to the attractor. The maximum 
Lyapunov exponent is at 7556 initial condition with a value of 1.171817949093744. The positive 
maximum value of Lyapunov exponent confirms the existence of chaos as shown in fig. 26. This 
confirms that the Lu-Chen-Cheng system is a chaotic nonlinear dynamical system. 

1.173 

1.172 

1.171 

1.17 

1.169 

1.168 

1.167 

1.166 

1.165 

1.164 

Running average LLE 

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 

Figure 26: Lyapunov exponent 

In the bifurcation diagram where c varies and the rest of the parameters are fixed, there exist 
several chaotic regions and this is confirmed by the positive values of the maximum Lyapunov 
exponent. 

When another parameter a is varied, we obtain similar topological behaviour at specific 
values (not symmetric like in parameter c). But, there are restrictions for a and b as discussed 
earlier. The bifurcation diagram 31 also coincides with the already obtained results of chaos. 
The chaotic regions are seen coinciding also with the diagrams in 28a to 30b and figures from 
32a to 35 as shown . We also provide the topological behaviour when the next parameter is 
varied. Suppose we fix b and c at one value b = c = — 8 (raised a bit compared to the first value 
of 6 = - 4 ) . 

Consider the Bifurcation diagram 31 where c varies directly from 0 — 40 and parameter 
a changed to —20 The bifurcation Figure corresponds with the topological structures of the 
system. 
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-20 -15 -50 -50 

(a) yz view when a = 0 (b) he xyz view whena = —11 

Figure 27: Topological structures of the system 

(a) The xy view whena = —11 (b) The xy view whena = —20 

Figure 28: Dynamical behaviour of attractors of the Lu -Chen -Cheng system wi th two 
init ial conditions where b = —8 and c = —8 
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30 r 

(a) Chaotic attractor with two initial con- x 

ditions where a = —40, b = — 8 and c = —8 (b) a = —20, b = —4 and c = —20 

Figure 29: Attractors 

20 r 

(a) The xyz view of 2 initial conditions (b) a = 0, b = c = — 8 with two initial 
(1, -1 ,1) and (0, - 1 , -1) for c = -60 . conditions (1, -1 ,1) and (0, - 1 , -1) 

Figure 30: Chaotic attractors 
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Figure 31: Bifurcation diagram showing points of chaos and limit cycles of the L u - C h e n -
Cheng system when the parameter a = —20, b = —4 with ini t ial condition (1, —1,1) 

(a) c = 0 with two initial conditions (b) The xy view of initial condition (1. — 
(1,-1,1) and (1,0,0) l , l ) f o r c = l 

Figure 32: Chaotic attractors 
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40 r 

(a) xy view when c = 4.3 for initial condi- (b) The xz view when c = 7.1 for initial 
tion (1. — 1,1) condition (1. — 1,1) 

Figure 33: Attractors 

40 r 

(a) The xz view when c = 9 for initial con- (b) The xz view when c = 10 for initial 
dition (1. — 1,1) condition (1. — 1,1) 

Figure 34: Attractors 
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(a) The xz view of a limit cycle for c = 12.5. (b) The xy view of a limit cycle for 
Initial condition (1,-1,1) . Initial condition (1,-1,1) . 

Figure 35: Attractors 
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5 Conclusion 
Over the years from 1963, the most exciting and interesting developments in nonlinear 

systems, is the realisation of the importance of chaos. When one thinks of chaos, it looks not 
an interesting thing, but yet a number of studies and practical scenarios have been solved by 
use of chaos. Such applications include the private communication sector, medicine, business 
and in engineering. It was quite strange to believe that the flapping of wings of a butterfly in 
Brazil could set off a cascade of atmospheric, events that, weeks later spurs the tornado in Texas. 
But Edward Lorenz (1963) explained this as a chaotic behaviour that is possessed in most of 
the nonlinear dynamical systems. Since then, there has been many researches on modeling the 
nonlinear autonomous differential equations of such systems with a chaotic behaviour. 

In this work, the Lu-Chen-Cheng system is one of the many chaotic systems out there, 
that is analysed. The system has a 1-scroll chaotic attractors on 3 equilibrium points and two 
2-scroll chaotic attractors simultaneously on the 5 equilibrium points. The system is found to 
exhibit a complex behaviour with respect to initial conditions and the parameter variations. 
Analytical and numerical methods of approach have been exhibited in the research. This work 
is of full support of the forthcoming investigations of 3 dimensional chaotic systems with three 
or more than 3 real constant parameters to deduce the system's properties and behaviour of 
bifurcations and stability structure of such systems. 
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