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Abstract
The rapid urbanization and increasing number of vehicles on the roads have stretched tra-
ditional traffic management systems to their limits. Intelligent Transportation Systems
(ITS) offer a solution, utilizing advanced technologies to enhance traffic Ćow and safety.
The robustness of computer vision methods within ITS, essential for traffic analysis, re-
mains a crucial area for improvement. This thesis substantially contributes to this Ąeld,
speciĄcally focusing on Vehicle Fine-Grained Recognition, Vehicle Re-IdentiĄcation, Li-
cense Plate Recognition, and Monocular Vehicle Speed Measurement. Several new datasets,
highly appreciated by the research community, were introduced, enhancing the evaluation
and exploration within each domain mentioned earlier.

The main contributions can be summarized as follows:

• Novel method for aggregation of visual features for vehicle re-identiĄcation & dataset.

• Innovative approach to license plate recognition using alignment of the license plate
and holistic recognition & three published datasets.

• Novel augmentation techniques for vehicle Ąne-grained recognition & extension of
previously published dataset.

• The biggest dataset for vehicle speed measurement & baseline evaluation with state-
of-the-art methods.

The key Ąndings of this work demonstrate a signiĄcant enhancement in the accuracy,
efficiency, and robustness of computer vision methods applied to traffic analysis. This
research’s contributions have been recognized at top conferences and journals in ITS, setting
new standards for future work.

By advancing the current state of ITS and contributing valuable resources for ongo-
ing research, this thesis represents a step towards more sustainable and efficient intelligent
transportation systems.
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Rozšířený abstrakt
Rostoucí urbanizace a zvyšující se počet vozidel na silnicích přetěžují tradiční systémy řízení
dopravy na hranici jejich možností. Řešení nabízejí inteligentní dopravní systémy (ITS),
které využívají pokročilé technologie ke zvýšení plynulosti a bezpečnosti dopravy. Zásadní
oblastí, kterou je třeba zlepšit a udělat robustnější, však zůstávají metody počítačového
vidění v rámci ITS, které jsou nezbytné pro analýzu dopravy. Tato práce přispívá k této
oblasti, konkrétně se zaměřuje na přesné (Ąne-grained) rozpoznávání vozidel, reidentiĄkaci
vozidel, rozpoznávání registračních značek a měření rychlosti vozidel z jedné kamery. Bylo
publikováno několik nových datových sad, ceněných výzkumnou komunitou, které slouží
jako benchmark pro vyhodnocení a zkoumání v každé z výše uvedených oblastí.

Rozpoznávání typu vozidel Výzkum v této oblasti shrnuje práce BoxCars: Improving
Ąne-grained recognition of vehicles using 3-d bounding boxes in traffic surveillance [202].
V rámci této publikace navrhujeme vylepšení stávající metody pro přesné (Ąne-grained)
rozpoznávání typu vozidel a zveřejňujeme rozšířenou verzi datové sady BoxCars. Kromě
datové sady patří mezi hlavní přínosy této práce návrh augmentačních technik pro učení
neuronových sítí a nová metoda detekce 3D obalového tělesa vozidla ze statického snímku.

Vizuální re-identiĄkace vozidel Přínosy v této oblasti byly publikovány v článku
Learning feature aggregation in temporal domain for re-identiĄcation [209]. V době pub-
likace této práce metody sloužící pro re-identiĄkaci vozidel pracovaly převážně s jedním
snímkem. Hlavním přínosem této práce je metoda agregace extrahovaných vektorů s vizuál-
ními příznaky v rámci celé trajektorie vozidla. Tento princip dovoluje efektivně využí-
vat jednotlivé části příznakových vektorů ve vztahu k jedinečnosti zachycené informace.
Součástí této práce je také publikace datové sady CarsReId74k.

Automatické rozpoznávání registrační značky Publikace Holistic recognition of low
quality license plates by CNN using track annotated data [208] a Geometric alignment by
deep learning for recognition of challenging license plates [207] popisují inovativní přístup
k rozpoznávání registračních značek pomocí zarovnání registrační značky a následného
rozpoznání holistickým způsobem. Výzkumné komunitě jsme také přispěli třemi datovými
sadami pro rozpoznání registračních značek ve ztížených podmínkách a pro kontrolu par-
kování.

Vizuální měření rychlosti vozidel Článek Comprehensive data set for automatic single
camera visual speed measurement [200] potom prezentuje nejvíce využívanou datovou sadu
BrnoCompSpeed a způsob jejího pořízení, včetně stanovení výchozích evaluačních metrik.

Přehled všech článků s počtem citací a hodnocením časopisů/konferencí je k dispozici
v anglickém jazyce v Tabulce 1.1.

Klíčová zjištění této práce prokazují významné zvýšení přesnosti, účinnosti a robustnosti
metod počítačového vidění aplikovaných na analýzu dopravy. Přínosy tohoto výzkumu byly
oceněny na nejvýznamnějších konferencích a v časopisech v oblasti ITS a stanovují nové
standardy pro budoucí práci.

Tím, že tato práce posunula současný stav ITS a přispěla cennými zdroji do stále
probíhajícího výzkumu, představuje krok směrem k udržitelnějším, efektivnějším a in-
teligentnějším dopravním systémům.
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Chapter 1

Introduction

Transportation has become an inextricable part of our modern existence, with thousands
of vehicles hitting the roads daily. The resultant traffic congestion, particularly during rush
hours, has become a universal urban experience, often leading to frustratingly long waits
and inefficiencies. Frequent traffic accidents, road repairs, and closures further exacerbate
this situation. For over a century, we have relied on traffic lights or semaphores to manage
this urban traffic chaos. However, with the increasing number of vehicles, the adequacy of
this system is being relentlessly tested.

The dawn of the fourth industrial revolution, characterized by a fusion of technologies
blurring the lines between the physical, digital, and biological spheres, has brought about
a paradigm shift in numerous sectors [189]. One of the critical areas experiencing this trans-
formative effect is transportation, mainly through the development and implementation of
Intelligent Transportation Systems (ITS). ITS are advanced applications that aim to pro-
vide innovative services relating to different modes of transport and traffic management [4],
enhancing safety, efficiency, and sustainability.

The CIVITAS initiative, an organization of cities dedicated to cleaner and better trans-
port in Europe, also emphasizes the importance of ITS for traffic monitoring, management,
and enforcement. The organization argues that:

Ş Intelligent transport systems (ITS) include traffic and congestion mon-
itoring and management systems, with the integration of traffic control
centers. Access control and route guidance systems offer a range of bene-
Ąts for a city. Goods delivery companies often introduce ITS because they
can optimize trips by combining global positioning system (GPS) tech-
nologies and existing logistics programs. Such traffic management and
control systems have signiĄcant efficiency beneĄts for both public and
private transport.1 Ť

CIVITAS, Intelligent transport systems (ITS) for traffic monitoring,
management and enforcement, 2013

In line with this perspective, several European cities, including Monza, Malaga, Stuttgart,
Tallinn, and Brno1, have joined the CIVITAS initiative and embarked on developing and
implementing ITS at a broader scale.

1http://www.civitas.eu/telematics/ITS
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The crucial role of ITS in addressing the persistent and emerging challenges in trans-
portation infrastructure cannot be overstated. These systems harness cutting-edge tech-
nologies to tackle issues like traffic congestion, environmental impacts, road safety, and
efficient logistics management [99]. The urgency of these issues is escalating in the back-
drop of rapid urbanization and population growth, making the research and development
in ITS a necessity rather than a choice [153].

At the heart of ITS lies the power of Computer Vision. As a subĄeld of artiĄcial intel-
ligence, Computer Vision allows machines to interpret and understand the visual world. In
the context of ITS, it enables vehicles and systems to perceive their environment, an essen-
tial capability for functionalities like traffic monitoring, vehicle detection, and autonomous
driving [231].

This thesis,
Ť
Steps Towards Improvements of Computer Vision Methods for Traffic

AnalysisŞ contributes to the growing body of ITS knowledge by focusing on the improve-
ments of Computer Vision methods applied to traffic analysis and their robustness. This
research extends through various sub-domains within ITS, speciĄcally, Vehicle Fine-Grained
Recognition, Vehicle Re-IdentiĄcation, License Plate Recognition, and Monocular Vehicle
Speed Measurement.

In the course of this research, several comprehensive datasets were introduced. Namely,
BoxCars116k for Vehicle Fine-Grained Recognition (Chapter 5 on page 43), CarsReId74k
for Vehicle Re-IdentiĄcation task (Chapter 4), ReId, HDR and CamCar6k datasets for
License Plate Alignment/Recognition (Chapter 3 on page 34), and Ąnally BrnoCompSpeed,
which is our frequently accessed dataset for Monocular Vehicle Speed Measurement task
(Chapter 6 on page 54). Each dataset has been meticulously created to serve as a benchmark
for advancing research in the respective areas. They are also proof of the rigorous work
undertaken to address the unique complexities inherent in each Ąeld, serving as valuable
resources for researchers and practitioners in ITS and Computer Vision.

These strides have been documented in a suite of articles (see Table 1.1 on the next
page) which were published within ITS and Computer Vision research communities. These
articles were accepted at major conferences and journals dedicated to ITS. This distinction
points to the relevance of the research contributions to the Ąeld. Despite the core articles
of this thesis, multiple Computer Vision and Pattern Recognition Workshops (IS 14.20)
articles were also accepted, mainly at the AI City Challenge workshop over multiple years
(2018-2022).

Each of listed research articles contributes to its Ąeld either by a novel method, a novel
dataset or a combination of both. Here is summary of my contributions for each Ąeld
speciĄcally.

Vehicle Re-IdentiĄcation Method for visual feature aggregation in the temporal do-
main for re-identiĄcation (called LFTD) and CarsReId74k dataset was published in journal
paper Špaňhel et al., Learning feature aggregation in temporal domain for re-identiĄcation,
the Ąrst row in Table 1.1. The LFTD method helps aggregate extracted visual features
from multiple observations (e.g., multiple video frames of vehicle trajectory) to create more
robust and distinct visual features for re-identiĄcation tasks. More information about the
proposed method is provided in Chapter 7 on page 62. Statistics and acquisition process
of the CarsReId74k dataset are available in Chapter 4 on page 39.
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Table 1.1: The following list of papers creates the core of this thesis. In addition to these
articles, another 16 co-authored papers were accepted for publishing at various conferences
or journals. The column Cited shows the number of citations in Scopus / Google Scholar.
IF/IS stands for Impact Factor/Impact Score, respectively.

# Authors Title Published at Rank Cited CiteScore IF/IS

1
Špaňhel, Sochor,
Juránek, Dobeš,
Bartl, Herout

Learning fea-
ture aggregation
in temporal
domain for re-
identiĄcation

Computer Vision
and Image Under-
standing,
2020

Q1 1 / 5 9.4 IF 5.526

2
Špaňhel, Sochor,
Juránek, Herout,
Marš̌̌ik, Zemčík

Holistic recogni-
tion of low quality
license plates by
CNN using track
annotated data

IEEE Interna-
tional Conference
on Advanced
Video and Signal
Based Surveil-
lance,
2017

B 78 / 111 - IS 3.20

3
Špaňhel, Sochor,
Juránek, Herout

Geometric align-
ment by deep
learning for
recognition of
challenging li-
cense plates

IEEE Interna-
tional Conference
on Intelligent
Transportation
Systems,
2018

- 2 / 4 - IS 1.20

4
Sochor, Špaňhel,
Herout

BoxCars: Improv-
ing Ąne-grained
recognition of
vehicles using 3-d
bounding boxes in
traffic surveillance

IEEE Transac-
tions on Intelli-
gent Transporta-
tion Systems,
2018

Q1 81 / 140 11.6 IF 7.801

5

Sochor, Juránek,
Špaňhel, Marš̌ík,
Široký, Herout,
Zemčík

Comprehensive
data set for au-
tomatic single
camera visual
speed measure-
ment

IEEE Transac-
tions on Intelli-
gent Transporta-
tion Systems,
2018

Q1 42 / 63 11.6 IF 7.801

License Plate Recognition Two conference papers, second and third row in Table 1.1,
cover my contribution to the LPR Ąeld. Article Špaňhel et al., Holistic recognition of low-
quality license plates by CNN using track annotated data proposes a method for recognition
of low-quality license plates in a holistic way by machine learning model and presents two
LPR datasets. Work Špaňhel et al., Geometric alignment by deep learning for recognition of
challenging license plates further extends the Ąndings from the previous article. It suggests
to align/rectify the license plate by a neural network as a pre-processing step for LPR. Also,
the license plate dataset for parking law enforcement was collected and published in this
work. More information about the proposed methods is provided in Part IV on page 76.
Statistics and acquisition process of the CarsReId74k dataset are available in Chapter 3 on
page 34.

Vehicle Fine-Grained Recognition Contribution to this area was presented in journal
paper Sochor et al., BoxCars: Improving Ąne-grained recognition of vehicles using 3-d
bounding boxes in traffic surveillance, fourth row in Table 1.1. We have extended the
previously published approach for vehicle Ąne-grained recognition and the original version of
BoxCars dataset [198]. My most signiĄcant contribution to this article was the proposition
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of multiple augmentation techniques for neural network training, share in the redesign of 3D
bounding box estimation from a single image, and Ąnally, the curation process and further
expansion of vehicle Ąne-grained recognition dataset in an unconstrained environment. This
article is cited by other researchers either for the BoxCars116k dataset or the presented
method. For this reason, its main parts are covered in Chapter 5 on page 43.

This work was awarded the second-highest possible mark in the 2019 National Qual-
ity Assessment (SKV Biblio 2019) organized by Research, Development and Innovation
Council, Government of the Czech Republic.

Monocular Vehicle Speed Measurement This research Ąeld is covered by paper So-
chor et al., Comprehensive data set for automatic single camera visual speed measurement,
Ąfth row in Table 1.1. As the third author of this paper, my role was to organize, provide
and control the data acquisition process and post-process collected data. I was also involved
in the evaluation process. The dataset acquisition process and statistics are included in this
thesis in Chapter 6 on page 54.

By augmenting the understanding and practical application of ITS, this thesis aims
to contribute to the ongoing evolution of transportation systems, emphasizing robustness,
efficiency, and sustainability. The broader objective is to catalyze advancements that will
redeĄne the landscape of urban mobility, shaping a future where transportation is more
intelligent, more responsive, and more inclusive.
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Chapter 2

Existing Methods in Traffic
Surveillance

This chapter compiles and further extends related work for all ITS Ąelds, that were covered
in published This chapter compiles and further extends related work for all ITS Ąelds covered
in published articles, forming the core of this thesis. It describes state of the art in part
of the automatic traffic video surveillance systems, namely automatic camera calibration
(Section 2.1), object detection (Section 2.2), object Ąne-grained recognition (Section 2.4),
object re-identiĄcation (Section 2.6) and license plate recognition (2.8). Methods focused
on detection, Ąne-grained recognition, and re-identiĄcation of vehicles are described in
Sections 2.3, 2.5 and 2.7, respectively.

2.1 Camera Calibration for Speed Measurement of Vehicles

One of the most important parts of speed measurement of vehicles from a single monocular
camera is calibration of the camera. In a general case, this includes dealing with perspective
projection and different rotations of the camera; it is also necessary to deal with unknown
distance from the camera to the ground plane of the road and possibly with radial and
tangential distortion. It is usually necessary to obtain intrinsic and extrinsic camera pa-
rameters together with the scene scale (or the distance of the camera from the road/ground
plane). Therefore, we include also a brief overview of the typical solutions of camera cal-
ibration for speed measurement of vehicles. However, the deĄnition of traffic surveillance
camera calibration is included in the Ąrst place. This section contains compiled version of
related work for Chapter 6 on page 54 compared to original paper.

2.1.1 Traffic Surveillance Camera Calibration

General mathematical model for camera calibration is represented by a projection matrix
P = K [R T], where K denotes intrinsic camera parameters, R stands for camera rotation,
and T represent camera translation. The extrinsic parameters (rotation and translation)
are relative to deĄned world coordinate system (see Figure 2.1). Since the calibration for
traffic surveillance is speciĄc, we describe all these aspects with application to vehicle
speed measurement in mind.

Goal The essential goal of traffic surveillance camera calibration is to measure speed of
vehicles. For the speed measurement, it is required to be able measure time and distances

8
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Figure 2.1: The essential goal of traffic surveillance camera calibration is to be able measure
real world distance d between two points (P 1, P 2) on road plane given their projection to
the image (p1, p2). X,Y, and Z axes represent a real world coordinate system and K

represent intrinsic camera parameters, while R and T are extrinsic camera parameters.

on the road plane. The time measurement part is rather trivial. However, for the distance
measurement it is necessary to measure the distance between two points on the road plane
(or any other plane parallel to the road plane and with known distance from the road plane)
given their projection to the image. See Figure 2.1 for an example.

Input For fully automatic methods, the camera calibration input is usually a video of the
observed traffic scene. However, for methods which include manual steps, part of the input
are also usually distance measurements on the road plane.

Assumptions Zero pixel skew is generally used as an assumption about the camera
model. Another widely used assumption is that the camera’s principal point is in the center
of the image. Also, there is usually the assumption that the road can be approximated by
a plane. The authors usually assume that the observed road segment is approximately
straight, that the vehicles move straight and their velocity is constant on the measured
segment (no acceleration).

Mathematical model As the standard camera model with K [R T] matrices is suffi-
ciently described in existing literature [71]; we refer the readers there. However, it is also
possible to use a different formulation based on vanishing points of the road plane [41]. This
formulation is easily convertible to the standard one. Finally, for computation of 3D real
world coordinates on the road plane of a point in image space, it is necessary to compute
intersection of the road plane (e.g. z = 0 as shown in Figure 2.1) and a ray deĄned by the
camera optical center and the coordinates on the image plane.

Attributes One important attribute of the camera calibration algorithm, which should
be kept in mind, is whether the algorithm works automatically in the sense that there is no
manual input required per installed camera. The property of being automatic becomes more
important as the number of installed cameras grows. A number of papers and approaches
to solving this problem exist and they will be discussed in detail in the following text.
Another important attribute is whether the algorithm works from arbitrary viewpoint, as
it is a signiĄcant drawback of a method if it requires speciĄc camera placement relative to
the observed road.
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2.1.2 Camera Calibration Methods

The calibration methods for surveillance cameras can be divided into four main research
directions. A brief summary is given in this section. For more details follow our original
paper [200] or individual works from this summary.

Methods Based on Acquired Line Markings These methods [78, 79, 19, 63, 254] are
based mainly on the detection of vanishing points and the assumption that the camera is
only tilted along Y axis in Figure 2.1. However, by deĄnition, this class of methods based
on observed line markings is usable only when the line markings are present, visible, and
recognizable.

Methods Based on Vehicles’ Movement Works [43, 41, 187, 49] are part of the second
research direction. The methods based on vehicles’ movement no longer need visible road
markings; however, when used on small local roads, the calibration may take some time as
it usually improves with more observed vehicles.

Methods Using Manual Measurements Measurements on the road [152, 164, 286,
195, 149] have the biggest disadvantage that it is necessary to do the manual measurements,
which potentially can mean stopping traffic on the road. The advantage of the methods
may be (in some cases) that they are more accurate than automatic or semi-automatic ones.

Uncategorised methods Dailey et al. [34] proposed a method for vehicles speed mea-
surement based on tracking of vehicle blobs and constraining them to move along a line.
The blobs are detected as inter-frame differences followed by Sobel edge detector. The
authors assume that the vehicles are moving towards or from the camera and use mean
length of vehicles to obtain the scene scale.

Do et al. [37] proposed a camera calibration method for speed measurement based on
artiĄcial markers drawn on the road. They assume that the camera has zero pan angle and
that markers determining vertices of an equilateral triangle with a known distance between
vertices which are visible on the road. They used the triangle to obtain the scale factor and
the tilt angle.

Lan et al. [114] use optical Ćow to compute the speed of different points of a vehicle
and they average this speed to get the speed of vehicle in image units. However, to convert
them into kilometers per hour, the authors assume that there is no perspective projection
effect and the width of the ROI (width of lanes) is known.

2.1.3 Automatic Calibration Method based On Statistics of Dimensions

This method was developed in our institution by Dubská et al. [42, 43]. This work Ąts
into the group of methods based on vehicles’ movement. Details about this method are
given here, as it meets all our requirements (it is fully automatic and it is usable from
arbitrary viewpoint) and we use it later in the experiments. In principle, the method relies
on camera calibration from two automatically detected vanishing points. The authors use
a simple foreground detection model to Ąlter areas with movement. The Ąrst vanishing
point (VP1, which is in the direction of vehicles’ movement) is recovered from tracked
feature points on the vehicles using min eigenvalue detector and KLT tracker. The tracked
points’ motion is transformed using a line-to-line Hough transformation parametrized by
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Figure 2.2: Automatic camera calibration according to Dubská [43]. From left to right:
Tracked keypoints for VP1, oriented edges voting for VP2, and road plane with bounding
boxes for the cars and reference points for tracking.

parallel coordinates [42] where the global maximum corresponds to the image of the Ąrst
vanishing point. The second vanishing point (VP2) is extracted from strong edges present
on the moving vehicles meeting some conditions given by the position of the VP1. The edges
(and their orientations) are, again, transformed to the Hough space where the strongest
maximum accounts for the vanishing point. From these two vanishing points, the camera
intrinsics and extrinsics can be recovered (assuming principal point in the image center,
square pixels and zero skew).

The authors propose an algorithm for computing the 3D bounding box around the
vehicle blobs. Mean size of the bounding boxes and known mean dimensions of the vehicles
for a given country accounts for the scene scale. Vehicle speed is measured simply by
tracking 3D bounding boxes around the blobs using Kalman Ąlter and measuring the travel
distance in the real world.

The method was evaluated on several videos with several car passes with ground truth
speed obtained from GPS.

2.1.4 Summary and Analysis of the Camera Calibration Methods

A summary of the presented camera calibration methods can be found in Table 2.1. As
the table shows, some approaches have different limitations and do not work under all
conditions. The reported mean error varies greatly Ű it should be noted that the error is
not directly comparable, as it was evaluated by the authors on different datasets (generally
not publicly available) and by different protocols.

To sum up the camera calibration methods, some of them [34, 114] do not take per-
spective projection into account, some algorithms [34, 63, 164, 114, 37] have limitations
in camera placement. Quite a large number of approaches [152, 164, 195, 149] use mea-
surements in the scene which enable direct camera calibration. Methods [78, 37] using
a calibration pattern (virtual or drawn on the road) have been proposed. Another set of
methods uses vanishing points to obtain camera calibration [187, 19, 63, 43].

Several approaches to scale calibration have been proposed. Besides the multiple manual
measurements on the road [152, 164, 195, 149] and calibration patterns [78, 37], two groups
of methods exist. The algorithms from the Ąrst one [187, 19, 63, 114] use one known distance
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Table 2.1: Summary of different camera calibration methods for speed measurement. It
should be noted that the reported errors are only informative as all the methods are evalu-
ated on different datasets and by different protocols. We consider a system to be automatic
if it does not require any manual calibration for each individual camera. auto Ű denotes
whether the system works fully automatically, view Ű denotes whether the system is usable
from arbitrary viewpoint

camera calibration method auto view mean error

Dailey et al., 2000 [34]
multiple assumptions on vehicle movements
and known mean length of vehicles

✓ ✗ 6.5 km/h

SchoepĆin et al., 2003 [187]
detection of two vanishing points, one known
length

✗ ✓ N/A

Cathey et al., 2005 [19]
vanishing point obtained from detected line
markings, scale computed from lengths of
stripes

✗ ✓ N/A

Grammatik. et al., 2005 [63]
one vanishing point obtained from detected
line markings, the second one assumed in in-
Ąnity, one known distance is required

✗ ✗ 3 km/h

He and Yung, 2007 [78]
calibration by pattern formed by lane mark-
ings

✗ ✓ 3.27 %

Maduro et al., 2008 [152]
known angle of the ground plane, lengths of
line markings’ stripes

✗ ✓ 2 %

Nurhadiyatna et al., 2013 [164]
known distances in the real world and in the
scene, zero pan assumption

✗ ✗ 7.63 km/h

Sina et al., 2013 [195] manual measurements ✗ ✓ 3.3 km/h

Dubská et al., 2014 [43]
detection of two vanishing points, scale com-
puted by matching of statistics of vehicles’ di-
mensions to mean dimensions of vehicles

✓ ✓ 1.99 %

Lan et al., 2014 [114]
relaxation of perspective projection, known
width of lanes

✗ ✗ 0.9 % Ű 2.5 %

Luvizon et al., 2014 [149] known real world measures ✗ ✓ 1.63 km/h

Do et al., 2015 [37]
zero pan assumption, equilateral triangle
drawn on the road

✗ ✗ 2.91 %

Filipiak et al., 2016 [49]
constant speed assumption, evolutionary algo-
rithm to recover intrinsic and extrinsic param-
eters from detected license plate sequences

✓ ✗ 2.3 km/h

You et al., 2016 [254]

detection of vanishing point in the direction of
vehicles’ movements from lane markings and
vanishing point perpendicular to road plane
from poles and pedestrians, the scale is ob-
tained from known height of camera above the
road

✗ ✓ N/A

in the scene (e.g., length of line marking stripe). The other methods use dimensions of
vehicles [34, 43] to obtain a proper scale calibration.

A critical attribute of the calibration methods is whether they work fully automatically
and do not require manual per-camera calibration input. Automation helps reduce the cost
of camera installation, and automatic methods have better scaling properties. Only two
approaches are fully automatic and do not require any manual camera calibration. Both of
these methods [34, 43] use the mean dimension of vehicles to obtain a proper scaling factor
for the given camera.

Methods [152, 164, 195, 149, 78, 37] which require measurements of physical dimensions
on the road have even more signiĄcant drawbacks concerning the scaling properties. To
perform the measurements, stopping (or limiting) traffic on the road is usually necessary,
increasing installation time and costs.
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Another critical attribute is whether the camera can be placed at an unconstrained
position above the road, as some methods require that the camera has zero pan. This
requirement can be hard to guarantee in real-world scenarios when the camera is not placed
on a portal above the road. The only method that satisĄes the conditions of automatic
calibration from arbitrary view is [43], which we use later in the experiments.

Bartl et al. beneĄted from the prior knowledge published in works [43, 41, 200, 199]
and further extends the idea of automatic camera calibration for traffic scenes either by
optimization of the road plane [8, 9] or calibration based on landmark detection [10]. Deep
neural networks were also adopted for the estimation of vehicle 3D location [222] or regres-
sion of camera calibration parameters from traffic scenes [268].

2.1.5 Evaluation Datasets Used in Existing Works

The described methods usually used different methods for evaluation of the speed measure-
ment and ground truth speed acquisition. Some methods [34, 187, 149, 49] use inductive
loops for ground truth acquisition, other methods [152, 43] GPS or RADAR [114]. Do et
al. [37] used the speedometer on a motorbike, which should be considered very imprecise.

When it comes to the number of evaluated speed measurements, Lan et al. [114] used
2 010 ground truth speeds (only one video sequence), others [34, 187, 49] have hundreds of
vehicles with known ground truth. And there are also works [63, 78, 152, 164, 195, 43, 114,
149, 37] that use at most tens of ground truth speeds with the lowest number in [37] (one
ground truth speed) and the highest number of 75 measurements in [149]. Cathey at al. [19]
have no evaluation at all. A summary of existing datasets can be found in Table 2.2. It
should be noted that with the exception of [164, 43], the datasets are not publicly available
which makes comparison of the methods impossible.

Almost every mentioned dataset (except [195] and a part of [78]) is recorded in daylight
as the methods usually become unusable in the night when only headlights of vehicles are
visible. Existing datasets usually evaluate only speed measurement error (with different
statistics Ű mean, deviation etc.) and some exceptions (see Table 2.2) evaluate also other
tasks.

The existing evaluation of algorithms should be considered insufficient as existing works
use a small number of observed vehicles and scenes. Also, for GPS and speedometer, the
ground truth is imprecise as in our evaluation GPS has mean error over 2 % and speedometer
reports higher speed then the actual. Therefore, we created our novel dataset with precise
ground truth and 20 865 of vehicles with ground truth speed. It is also possible to evaluate
other camera calibration aspects such as calibration error and distance measurement on
the road plane with the computed scale. These two metrics can provide interesting insights
into properties of camera calibration algorithms as they are needed and harnessed in the
intelligent transportation surveillance.

Besides evaluation datasets covered in Table 2.2 on the next page, multiple new datasets
were for automatic camera calibration were published subsequently. SVLD-3D is combina-
tion of proposed BrnoCompSpeed dataset with dataset collected by Tang et al. [222]. The
annotations were enriched by information related to 3D bounding boxes, such as centroids
and vertices. On the other hand, BrnoCarPark by Bartl et al. [10] is dataset for automatic
camera calibration based on vehicle landmarks.

13



Table 2.2: Summary of datasets used for evaluation of visual speed measurement methods.

dataset videos vehicles source of gt resolution
evaluation met-
rics

Dailey, 2000 [34] 1 532 induction loops N/A
speed measurement
error

SchoepĆin, 2003 [187] 2 1 015 induction loops 320× 240
speed measurement
error

Grammatik., 2005 [63] 1 20 manual measurements 768× 576
speed measurement
error

He, 2007 [78] 1 64 RADAR 1280× 1024
speed measurement
error

Maduro, 2008 [152] 2 few GPS N/A
speed measurement
error

Nurhadiyatna, 2013 [164] 10 15 GPS 320× 240
speed measurement
error

Sina, 2013 [195] 13 13 GPS N/A
speed measurement
error, vehicle count-
ing

Dubská, 2014 [43] 6 29 GPS 864× 480

speed measurement
error, distance mea-
surement error

Lan, 2014 [114] 1 2 010 RADAR 640× 480
speed measurement
error

Luvizon, 2014 [149] 1 75 induction loops 768× 480

speed measurement
error, license plate
detection

Do, 2015 [37] 1 3 speedometer N/A
speed measurement
error

Filipiak, 2016 [49] 2 955 induction loops 1280× 720
speed measurement
error

BrnoCompSpeed 18 20 865 LIDAR gates 1920× 1080

calibration er-
ror, distance
measurement
error, speed mea-
surement error,
vehicle counting
recall, false posi-
tives vehicles per
minute

2.2 Object Detection in General

Humans are perfectly capable of differing object in the scene from each other, but com-
puters are not. Color information provided by an image is not sufficient and further image
processing is necessary. For this reason, different types of features and descriptors were
introduced into computer vision Ąeld for object detection or localization in image.

2.2.1 Feature Extraction

The most basic image feature extraction can be provided by simple image thresholding.
However, binary information from thresholded images may be insufficient for more advanced
detection task. Thus more robust and advanced features must be used.

Low-Level Features

The most basic low-level features for object detection are corners (also called keypoint
features or interest points). Another class of low-level features are edges, which can be
grouped into longer curves and straight line segments. This kind of features can be matched
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based on their local appearance and localization in image and can also be good indicators
of object boundaries. Both categories examine gradients in image for feature extraction or
detection. Thus edges can be deĄned as the rapid change of intensities in image in one
direction and corners can be deĄned as regions with rapid change of intensities in more
than one direction. Edge and corner detectors are based on this approach and are using
kernels for enhancement of gradient in image. In case of edge detection, the Ąrst and
second order gradients are used. The most commonly used edge detectors are Canny edge
detector [17], Sobel operator [197] (Ąrst-order methods) or Laplacian of Gaussian [154]
(second-order method), and two commonly used corner detectors are Moravec [160] and
Harris [70] corner detector.

Feature Descriptors

More advanced methods for image feature extraction/detection and matching these fea-
tures in different images are image descriptors. Image descriptors usually combine more
information to create richer and more robust description of image.

Scale invariant feature transform (SIFT) [143] aim to resolve many of the practical
problems in low-level feature extraction and their use in image matching. SIFTs are formed
by computing the gradient at each pixel in a 16 × 16 image sub-window around detected
keypoint, using appropriate level of the Gaussian pyramid. In each 4× 4 quadrant, a gra-
dient orientation histogram is formed adding the weighted gradient value to one of eight
orientation histogram bins. This results in 128 dimensional vector of non-negatives values
for each detected keypoint.

Histogram of oriented gradients (HOG) [35] is feature descriptor based on local object
appearance and shape within an image, which can be described by the distribution of
intensity gradients or directions of edges. The image is divided into cells and for the pixels,
in each cell, a histogram of oriented gradients is computed. HOG descriptor is then made
by concatenation of this computed histograms.

Speeded up robust features (SURF) [11] approach employs approximations to second-
order edge detection. SURF operator is computed on integral image by approximations of
second-order differencing for Laplacian-of-Gaussian (LoG) operator.

Gradient location-orientation histogram (GLOH) [159] is a variant on SIFT that uses
a log-polar binning structure instead of the four quadrants used in SIFT.

2.2.2 Object Detection Methods

The task of detection can be deĄned as localization of given pattern in image. Thus,
detectors are detection methods or algorithms, which are capable of determining if the
searched pattern is located in image or not, and give pattern position in the image. In this
way, detection can be reformulated as image classiĄcation task and then classiĄers can be
used.

Boosted ClassiĄers are widely used by computer vision community because of their per-
formance in image classiĄcation. The Ąrst boosted classiĄer was presented by Viola and
Jones [228]. They developed an approach for visual object detection using cascade classi-
Ąer and introduced AdaBoost algorithm for its training using Haar-like features. Cascade
classiĄer is made from numerous smaller and weaker classiĄers, which have together better
performance than a single classiĄer. The main contribution of this approach is decision in
multiple stages.
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Decision trees are another approach to multistage decision-making and their impact on
the pattern recognition task was discussed in numerous publications [103, 161, 119].

Neural Networks

Neural networks are widely used in machine learning nowadays. They are computational
models, based on a collection of neural units (neurons), which try to solve problems like
human brains. Each neural unit is connected with many others and transmits information
to other neurons based on its activation state. Neural networks are self-learning and trained,
and reach great performance in areas, where the solution of feature detection is difficult to
express in a traditional computer vision. Many variants of neural networks were developed.
However, only convolutional neural networks are covered in this part.

Convolutional neural networks (CNNs) play an important role in computer vision nowa-
days. They excel in many computer vision tasks like image classiĄcation, image super-
resolution, text de-blurring and text recognition, object recognition, even object detection.

The proof that convolution neural networks can resolve as object detectors can be found
in multiple publications [58, 182, 179, 134].

These days, convolution neural networks also thrive in other computer vision disciplines.
They excel at various computer vision tasks, including object identiĄcation, text de-blurring,
text recognition, and image super-resolution.

Due to their precision, CNNs are favored for object detection tasks. Numerous studies
employing CNN to detect objects have been done, including [134, 180, 218, 216, 58, 57, 182,
76, 33].

Based on their behavior, these networks may be divided into three basic meta-archi-
tectures. The Ąrst component of the detection network, known as the feature extractor,
is shared by all meta-architectures. Any currently available CNNs, such as VGG-16 [194],
Inception-v2 [93], Inception-v3 [219], Inception-v4 [216] ResNet-101 [76], MobileNet [83],
etc., can be used as a feature extractor.

The Ąrst meta-architecture covers the term Single Shot Detector (SSD). Despite the
work by Liu et al. [134] using the term SSD as the detector’s name, this context refers to
a class of detectors that use a single feed-forward CNN to make direct class predictions
without the need for proposed boxes for a second stage of classiĄcation. Apart from SSD
detector, typical members of this group include YOLO [180], Multibox [218] or the Region
Proposal Network (RPN) stage of Faster R-CNN [182], which are used to predict class-
independent box proposals.

The second meta-architecture represents Faster R-CNN [182]. It is the evolution of R-
CNN [58] and Fast R-CNN [57]. In this setting, detection is divided into two stages. In the
Ąrst stage, called Region Proposal Network (RPN), features extracted from the image by an
intermediate level of feature extractor are used to predict class-independent box proposals.
In the second stage, box proposals are used to crop extracted features from the feature
map, which are passed to the following levels of the feature extractor to predict classes and
class-related boxes. Plenty of work is based on Faster R-CNN meta-architecture since 2015
[76, 256, 12, 32, 192] including SSD and R-FCN.

The last meta-architecture is called Region-based Fully Convolutional Networks (R-
FCN) [33] follows-up the idea of the Faster R-CNN. However, crops are taken from the
last layer preceding prediction instead of cropping features from the same level where re-
gion proposals were predicted. This step reduces per-region computation, leading to faster
prediction than in the case of Faster R-CNN, while accuracies are comparable.
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Table 2.3: A summary of vehicle detection methods with a brief description. Mot. Ű
denotes motion-based methods. App. Ű denotes appearance-based methods.

Mot. App. Features Description

Cucchiara et al., 2000 [31] ✓ ✗

Multi-features: color, corners,
edge maps and three-frame dif-
ference

Detect vehicles in urban traffic
scenes by means of rule-based
reasoning on visual data

Gupte et al., 2002 [68] ✓ ✗

Multi-features: color, corners,
edge maps and background sub-
traction

Method is based on the cor-
respondences between regions
and vehicles. Experiment is
performed on highway scenes.

Ma et al., 2005 [151] ✗ ✓
SIFT and edge features,
Bayesian classiĄcation

Vehicle classiĄcation for mid-
Ąeld video surveillance

Tsai et al. 2007 [226] ✗ ✓

Multi-features: color, corners,
edge maps, and wavelet coeffi-
cients, RBF network, Bayesian
classiĄer

A novel color model and a mul-
tichannel classiĄer

Ottlik et al. 2008 [167] ✓ ✓
Optical Ćow and edge features,
3D wireframes

Experiments on urban traffic
videos with entire automatic
initialization

Buch et al. 2009 [16] ✗ ✓
3D histogram of oriented gradi-
ents (3DHOG)

Extension to HOG feature ex-
traction by applying 3D spatial
modeling

Feris et al. 2011 [48] ✗ ✓ Haar-like, AdaBoost
A novel detection/tracking ap-
proach for capturing vehicles in
challenging urban environments

2.3 Detection of Vehicles in Image and Video

Reliable and robust vehicle detection or localization in an image is one of the key parts
of traffic monitoring and traffic analysis systems. The accuracy of vehicle detection has
great impact on vehicle tracking, vehicle movement expression, and behavior understanding.
There are two main categories in vehicle detection research:

• Methods based on appearance features.

• Methods based on motion features.

Appearance-based methods use the appearance features, e.g., color, texture and shape of
vehicle to detect, or separate the vehicle from the background. Motion-based techniques use
movement characteristics to distinguish vehicles from the stationary background images.
Some methods can combine both principles. Table 2.3 presents methods described below.

2.3.1 Methods Based on Appearance Features

Ma et al. [151] designed framework for vehicle classiĄcation under a mid-Ąeld surveillance.
SIFT features [143] with several important modiĄcations were adopted as a descriptor for
edge points. Firstly, polarities of SIFT features are discarded (gradient orientations with
180∘ differences are regarded as the same), that leads to a more robust solution against
contrast differences and lighting changes. Secondly, gradient magnitudes are thresholded
before forming a SIFT vector to reduce the inĆuence of large specular reĆections and non-
uniform illumination changes. Thirdly, χ2-distance between SIFT vectors is used. The Ąnal
decision between pre-trained models is done by Bayesian classiĄcation.

Tsai et al. [226] proposed a method for detecting vehicles in static images using color
and edges. This method introduces a new color transform model to locating possible vehicle
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candidates by Ąnding important vehicle color. In the beginning, color transformation is used
to project all the colors of input pixels into a color space where vehicle pixels can be easily
identiĄed from backgrounds using Bayesian classiĄer or RBF network [15] (neural network
with radial basis function as activation function). After color classiĄcation, a potential
vehicle is veriĄed using corner features and edge maps with wavelet coefficients.

Buch et al. [16] proposed a method for the detection and classiĄcation of individual
vehicles and pedestrians in urban scenes with a modiĄcation of 2D features, derived from
the histogram of oriented gradients (HOG), into 3D space. A calibrated camera allows them
an affine transform of the observation into a normalized representation from which, using
a combination of 3D interest points and HOG, the 3D-HOG features are deĄned. A variable
set of interest points is used in the detection and classiĄcation processes, depending on which
points in the 3D model are visible.

Feris et al. [48] presented a novel approach for vehicle detection in urban surveillance
videos capable of handling large occlusions, different vehicle shapes and environmental
condition changes (lighting changes, rain, shadows, and reĆections). They created dataset
of vehicles from surveillance cameras containing about 1,000,000 pictures from different
surveillance cameras (different camera pose) and different lighting conditions with a user
supervision. After that, they generate even more sample with partial occlusion pasting
another vehicle on image IB into image IA using Poisson image reconstruction. Finally,
they train the detector proposed by Viola and Jones [228] based on AdaBoost classiĄers
with Haar-like features. One disadvantage of this method is that one detector is needed for
each camera view.

2.3.2 Methods Based on Motion Features

Cucchiara et al. [31] presented an approach for detecting vehicles in urban scenes with
the help of rule-based reasoning on extracted features. The image processing (low-level)
part extracts features from the scene by spatiotemporal analysis during daytime, and by
morphological analysis of headlight at night. Then, vehicles are detected using different
sets of rules in high-level module.

Gupte et al. [68] presented a method for vehicle detection and classiĄcation based on
establishment of correspondences between regions and vehicles, as the vehicles move through
the image sequence. First, a object mask is created using background subtraction. They
are adapting the background image by addition and subtraction of speciĄc parts of the
object mask creating instantaneous background. Background image adapted in this way
is more robust to illumination changes than the regular one. Regions extracted from the
object mask are tracked through the video sequence for better traffic monitoring.

2.3.3 Methods Based on Appearance and Motion Features

Ottlik et al. [167] used Optical Flow (OF) with 3D wireframes for vehicle segmentation,
estimated from line structure of the interlaced video recording to form OF Fields. OF Fields
are estimated and segmented for each frame of the image sequence resulting into object
image candidates (OICs). ConĄdences of OICs are accumulated by short-time tracking
of OP Ąelds. The Ąnal decision is made by predeĄned vehicle 3D models Ątting on edge
segments extracted from OICs. Compatibility of the 3D wireframe model and edge segments
is checked using thresholds, one for the minimum score in the Hough space and a second
one for the overlap between optical Ćow segment and object candidate. The disadvantage
of this method is the need of 3D wireframes deĄnition for each vehicle body type.
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2.4 General Fine-Grained Object Recognition

We divide the Ąne-grained recognition methods from recent literature into several categories
as they usually share some common traits. Methods exploiting annotated model parts
(e.g. [92, 264]) are not discussed in detail as it is not common in Ąne-grained datasets
of vehicles to have the parts annotated. This section contains updated related work for
Chapter 5 on page 43 which was further elaborated from original paper.

2.4.1 Automatic Part Discovery

Parts of classiĄed objects may be discriminatory and provide lots of information for the
Ąne-grained classiĄcation task. However, it is not practical to assume that the location of
such parts is known a priori as it requires signiĄcantly more annotation work. Therefore,
several papers [250, 40, 251, 108, 193, 109, 269] have dealt with this problem and proposed
methods how to automatically (during both training and test time) discover and localize
such parts. The methods differ mainly in the ways in which they are used for the discovery
of discriminative parts. The features extracted from the parts are usually classiĄed by
SVMs.

2.4.2 Methods using Bilinear Pooling

Lin et al. [128] use only convolutional layers from the net for extraction of features which
are classiĄed by a bilinear classiĄer [172]. Gao et al. [51] followed the path of bilinear
pooling and proposed a method for Compact Bilinear Pooling getting the same accuracy
as the full bilinear pooling with a signiĄcantly lower number of features.

2.4.3 Other Methods

Xie et al. [242] proposed to use a hyper-class for data augmentation and regularization of
Ąne-grained deep learning. Zhou et al. [280] use CNN with Bipartite Graph Labeling to
achieve better accuracy by exploiting the Ąne-grained annotations and coarse body type
(e.g. Sedan, SUV). Lin et al. [126] use three neural networks for simultaneous localization,
alignment and classiĄcation of images. Each of these three networks does one of the three
tasks and they are connected into one bigger network. Yao et al. [251] proposed an approach
which uses responses to random templates obtained from images and classiĄes merged rep-
resentations of the response maps by SVM. Zhang et al. [265] use pose normalization kernels
and their responses warped into a feature vector. Chai et al. [20] propose to use segmen-
tation for Ąne-grained recognition to obtain the foreground parts of an image. A similar
approach was also proposed by Li et al. [123]; however, the authors use a segmentation
algorithm which is optimized and Ąne-tuned for the purpose of Ąne-grained recognition.
Finally, Gavves et al. [52] propose to use object proposals to obtain the foreground mask
and unsupervised alignment to improve Ąne-grained classiĄcation accuracy.

2.5 Fine-Grained Recognition of Vehicles

The goal of Ąne-grained recognition of vehicles is to identify the exact type of the vehicle,
that is its make, model, submodel, and model year. The recognition system focused only
on vehicles (in relation to general Ąne-grained classiĄcation of birds, dogs, etc.) can beneĄt
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from that the vehicles are rigid, have some distinguishable landmarks (e.g. license plates),
and rigorous models (e.g. 3D CAD models) can be available.

2.5.1 Methods Limited to Frontal/Rear Images of Vehicles

There is a multitude of papers [171, 36, 30, 170, 174, 117, 261, 141] using a common
approach: they detect the license plate (as a common landmark) on the vehicle and extract
features from the area around the license plate as the front/rear parts of vehicles are usually
discriminative. There are also papers [262, 85, 88, 125, 7, 74] directly extracting features
from frontal images of vehicles by different methods and optionally exploiting the standard
structure of parts on the frontal mask of car (e.g. headlights).

2.5.2 Methods Based on 3D CAD Models

There were several approaches on how to deal with viewpoint variance using synthetic 3D
models of vehicles. Lin et al. [129] propose to jointly optimize 3D model Ątting and Ąne-
grained classiĄcation, Hsiao et al. [84] use detected contour and align the 3D model using
3D chamfer matching. Krause et al. [110] propose to use synthetic data to train geometry
and viewpoint classiĄers for the 3D model and 2D image alignment. Prokaj et al. [173]
propose to detect SIFT features on the vehicle image and on every 3D model seen from
a set of discretized viewpoints.

2.5.3 Other Methods Based on Hand-crafted Features

Gu et al. [65] propose extracting the center of a vehicle and roughly estimate the viewpoint
from the bounding box aspect ratio. Then, they use different Active Shape Models for align-
ment of data taken from different viewpoints and use segmentation for background removal.
Stark et al. [210] propose using an extension of Deformable Parts Model (DPM) [47] to be
able to handle multi-class recognition. The model is represented by latent linear multi-class
SVM with HOG [35] features. The authors show that the system outperforms different
methods based on Locally-constrained Linear Coding [232] and HOG. The recognized ve-
hicles are used for eye-level camera calibration. Boonsim et al. [14] propose a method for
Ąne-grained recognition of vehicles at night. The authors use relative position and shape of
features visible at night (e.g. lights, license plates) to identify the make&model of a vehicle,
which is visible from the rear side.

2.5.4 Machine Learning Based Methods

Liu et al. [132] use deep relative distance trained on a vehicle re-identiĄcation task and
propose training the neural net with Coupled Clusters Loss instead of triplet loss.

Fang et al. [46] propose using an approach based on detected parts. The parts are
obtained in an unsupervised manner as high activations in a mean response across channels
of the last convolutional layer of used CNN. The authors in [89] introduce spatially weighted
pooling of convolutional features in CNNs to extract important features from the image. Liu
et al. [139] suggest using a part object relation provided by the CapsNet to solve problems
that rely on a relation-based inference to detect visual saliency.

Since 2020, Lu et al. [145] propose using a part-level feature extraction method to
enhance the discriminative ability of deep convolutional features for Ąne-grained vehicle
recognition. More speciĄcally, a basic feature grouping module is adopted to integrate
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the feature maps of deep convolutional layers into groups in each of which the related
discriminative parts are assembled. Then a fusion module follows to model the coarse-to-
Ąne relationship of the part features and further ensure the integrity and effectiveness of
the part features. In paper [146], authors further elaborated the idea, and they extract
features from multiple ROIs from vehicles’ frontal images. In 2023 feature aggregation part
was added to the framework [144].

Hu et al. [87] proposed a method for Ąne-grained vehicle recognition in traffic surveil-
lance videos. In each frame, vehicles are detected and tracked. 3D orientation within
a frame is calculated based on pose estimation for each vehicle instance. RNN is used
for the Ąnal decision combining visual, spatial, and temporal information from each video
frame.

Besides traditional CNN architecture, the vision transformer (ViT) technique has shown
outstanding performance in Ąne-grained object recognition tasks. Hu et al. [90] proposed
a recurrent attention multi-scale transformer (RAMS-Trans), which recursively uses the
self-attention mechanisms to learn discriminant region attention in a multi-scale manner.
TransFG model by He et al. [75] integrates the raw weight of the transformers into an
attention map, on which the network could select discriminative image patches and calculate
their relation. This mechanism, named Part Selection Model, can be applied to most
transformer architectures.

2.5.5 Summary of Existing Methods

Existing methods for the Ąne-grained classiĄcation of vehicles usually have signiĄcant limi-
tations. They are either limited to frontal/rear viewpoints [171, 30, 174, 261, 141, 85, 88, 7]
or require some knowledge about 3D models of the vehicles [173, 110, 84, 129] which can be
impractical when new models of vehicles emerge. Our proposed method does not have such
limitations. The method works with arbitrary viewpoints, and we require only 3D bounding
boxes of vehicles. The 3D bounding boxes can be either automatically constructed from
traffic video surveillance data [43, 41] or estimated from a single image during training/test-
ing by our proposed method (see Section 5.2.4).

After the publication of our vehicle Ąne-grained recognition method, CNN models were
broadly adopted [139, 145, 146, 144, 87] and similarly to other areas, vision transformers
were applied as well [90, 75].
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2.6 Object Re-IdentiĄcation Methods

Object re-acquisition or re-identiĄcation is the process of matching identical objects be-
tween images taken from separate cameras. There is an enormous growth in requirements
for object re-identiĄcation due to the expansion of security systems and increasing public
security. There are two main areas of object re-identiĄcation topics. The Ąrst of them is
focused on the re-identiĄcation of persons. The second is focused on the re-identiĄcation
of vehicles.

The problem of person re-identiĄcation has been examined in numerous publications,
and different approaches for this task were developed.

The Ąrst approach is the extraction of appearance-based features and their matching
with already extracted features from different cameras. Oliveira et al. [165] presented
a person re-identiĄcation solution based on local appearance features Ű color histograms in
HSV space and SURF descriptors.

The second approach uses deep learning, such as neural networks, for person re-identi-
Ącation. Chopra et al. [29] adopted the Siamese neural network (SNN) for face veriĄcation
and obtained excellent results. Zhang et al. [263] achieved outstanding performance in gait
recognition for person identiĄcation using SNN. McLauglin et al. [158] presented a novel ap-
proach to person re-identiĄcation using recurrent convolutional network mixed with Siamese
networks. Two inputs for this network were used Ű color image and optical Ćow computed
from video sequence. This combination of inputs, network structure, and time recurrence
have great results, and a promising way for future research in object re-identiĄcation was
established. This section contains updated related work for Chapter 7 on page 62 which
was further elaborated from original paper.

2.6.1 Person Re-IdentiĄcation

Besides standard deep features learned by a Siamese network [158, 266, 245, 25, 284], other
approaches to person re-identiĄcation have been proposed [274, 278, 130].

Several papers proposed to use body parts [27, 105, 120, 273]. Other papers went beyond
Siamese networks and proposed triplet loss [27, 80] or quadruplet loss [26]. There were
also attempts to learn a metric for the re-identiĄcation like KISSME [113], XQDA [125],
You J. et al. [254] learn Mahalanobis distance on LBP and HOG3D features, and Ąnally Shi
et al. [191] learn Mahalanobis distance in an end-to-end manner. Sun et al. [214] proposed
to use SVD for weight matrix orthogonalization to de-correlate feature vectors for person
re-id.

Other authors exploit different types of features. For example, Wu et al. [239] propose
to use deep features learned by a CNN together with hand-crafted features. The Ąnal
representation for an image is obtained by fusing these features. Matsukawa et al. [156] use
a novel descriptor based on hierarchical gaussians computed for patches in image. Chen et
al. [24] propose to use compact binary hash codes as features for fast person re-identiĄcation.
There were also attempts [133, 51] to recognize the walking cycle in image sequence and
use the walking cycle to improve the accuracy of re-identiĄcation.

A group of works also propose to replace different parts of the re-identiĄcation pipeline
by alternative solutions. Zhong et al. [279] use re-ranking based on k-reciprocal near-
est neighbors to improve the performance. Zhou et al. [281] propose to use point-to-set
distance instead of standard point-to-point. Lin et al. [127] take inter-camera consisten-
cies of id assignment into account during training and inference to boost the results of
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re-identiĄcation. Xia et al. [241] propose to use domain guided dropout to improve re-
identiĄcation performance when trained on multiple datasets. Wang et al. [229] propose to
add a network computing a cross-image representation for pairs of images. Cho et al. [28]
estimate persons’ poses and compare images with each person in an as similar as possible
pose. Su et al. [213] use attributes (e.g Şlong sleeveŤ) for person re-id. The attributes are
Ąrst learned on a different dataset with attributes present and then Ąne-tuned for the target
dataset. The attributes supervision for the target dataset comes from the assumption that
same person has the same (unknown) attributes.

Luo et al. [147, 148] sets a strong baseline for deep person re-identiĄcation methods
applicable to other domains as well.

2.7 Vehicle Re-IdentiĄcation in Traffic Surveillance

Vehicle re-identiĄcation is the problem of identifying the same vehicle across different
surveillance camera views. This problem consists of extraction of sufficient information
from the detected vehicle in the image or video and the effectiveness usage of this informa-
tion to Ąnd the same vehicle in a different set of detected vehicles. There are three major
classes of vehicle re-identiĄcation methods.

• License plate recognition methods

• Appearance-based methods (hand-crafted)

• Appearance-based methods (ML based visual features)

Automatic license plate recognition (ALPR) plays an important role in numerous real-
life applications, such as road traffic monitoring, automatic toll collection, and traffic law
enforcement. When the license plate is a unique identiĄcation for each vehicle, license
plate recognition (LPR) or veriĄcation (LPV) has been widely used in industry for vehicles
identiĄcation. It is fulĄlled by a combination of many techniques, like object detection,
image processing, and pattern recognition. However, due to high demands on image quality
and due to lack of LPR-ready surveillance cameras, existing methods for LPR can be used
only in restricted conditions. Some methods are using license plate veriĄcation (LPV)
instead of LPR. In difference with LPR, in LPV task the objective is to check if two license
plates are the same.

Vehicle re-identiĄcation methods based on vehicle appearance are using visual features
extracted from detected vehicles for re-identiĄcation. This includes texture features (His-
togram of Oriented Gradients, SIFT, and their variances), color features (color histograms),
possibly vehicle dimensions and movement information.

Methods based on hand-crafted appearance features are described in Section 2.7.2. Li-
cense plate recognition based methods can be found in Section 2.7.1. The summary of
methods described in this section can be found in Table 2.4. Combination of both princi-
ples and another appearance-based machine learning methods are discussed in Section 2.7.3.

2.7.1 Vehicle Re-IdentiĄcation by License Plate Recognition

Wen et al. [237] developed an algorithm for LPR applied to ITS by a novel shadow removal
technique and character recognition algorithms. Main contributions of this paper are the
shadow removal method, which is based on the improved Bernsen algorithm [13] combined
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Table 2.4: A summary of vehicle re-identiĄcation methods and their orientation (hand-
crafted appearance-based, LPR-based) with a brief description. App. Ű denotes
appearance-based methods, LPR Ű denotes methods based on license plate recognition.
Appearance methods based on ML models are omitted from the table.

App. LPR Description Comment

Arth et al., 2007 [3] ✓ ✗ PCA-SIFT + vocabulary tree
Limited to 2D bouding boxes
and without color information

Wen et al., 2011 [237] ✗ ✓
Elastic mesh for character seg-
mentation + SVM

Novel shadow removal algo-
rithms

Feris et al., 2012 [48] ✓ ✗
Statistical features: date, time,
color, dimensions, speed

Vehicles classiĄed into different
types and colors

Zapletal et al., 2016 [257] ✓ ✗
HOG & color histogram models
+ linear regression

Models obtained from un-
wrapped 3D bounding boxes

Liu et al., 2016 [137] ✓ ✗

Low-level: SIFT + BOW,
Color Name + BOW, High-
level: learned by GoogLeNet

Mix of low-level and high-
level features for vehicle re-
identiĄcation

Kluwak et al., 2016 [107] ✗ ✓
ALPR + license plate tracking
+ In-Track Clustering

License plate clustering ensures
better recognition performance

Liu et al., 2016 [138] ✓ ✓

Appearance-based model, li-
cense plate veriĄcation (Siamese
CNN), spatiotemporal proper-
ties

Three step Ąltering of vehicles in
database

with the Gaussian Ąlter and support vector machine (SVM) integration for character recog-
nition. Characters’ features are extracted from the elastic mesh and the entire character
string is taken for further processing in SVM integration.

Kluwak et al. [107] presented a new approach to ALPR methods on toll gates using
video object tracking and single image ALPR method to improve the recognition rate.
The proposed method of multi-frame LPR consists of three parts. First, a single plate is
recognized. Second, the recognized license plate is tracked through frames. The Ąrst two
parts can be done by standard ALPR and tracking methods.The last part is called In-Track
Clustering Correction and can be done by clustering of each recognized character into the
set of license plate characters through multiple positions in track. This principle ensures
better recognition performance in case of incorrect character recognition on some of the
track positions. Any of ALPR systems can be used for vehicle re-identiĄcation.

A survey of other automatic license plate recognition methods is discussed by Du et
al. [39].

2.7.2 Appearance-Based Methods

General approach for Appearance-based methods is to extract features from images and
classify extracted features by a classiĄer. Formerly, different types of hand-crafted features
were used.

Arth et al. [3] use PCA-SIFT features for vehicle data extraction and a vocabulary
tree for data representation. However, their approach does not take into account color
information of the vehicles and only 2D bounding box is used.

Zapletal and Herout [257] presented a method based on linear regression on two models.
One model is created by HOG descriptors and the other one is based on color histograms.
Both models are extracted from unwrapped 3D bounding boxes of detected vehicles [43].
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Atypical approach was proposed by Feris et al. [48], where vehicles are classiĄed into
different categories by date, time, color, vehicles’ dimensions and speed.

Liu X. et al. [137] proposed a fusion model of low-level features and high-level semantic
attributes for vehicle re-identiĄcation. Texture features are represented by the SIFT de-
scriptors and are encoded by the bag-of-words (BOW) due to its accuracy and efficiency in
image retrieval [196]. Color features are extracted by Color Name model [227] and quan-
tized by the BOW model. High-level attributes are learned by a deep convolutional neural
network (CNN) the GoogLeNet [217], which is Ąne-tuned on CompCars dataset [249].

Further improvements were made in work [138], where appearance-based model and
license plate veriĄcation by Siamese Neural Network is used for Ąltering the target vehicles
from database. These vehicles are then re-ranked exploiting spatiotemporal properties.

Zhang et al. [272] introduced new triplet sampling method for network training based on
pairwise images, instead of random sampling of triplets. Proposed pairwise triplet sampling
ensures simultaneous constraints both on intra-class similarity and inter-class dissimilarity.

Shen et al. [190] used visual-spatio-temporal states of the vehicle images and compute
similarity scores between pair of these states for generating queries. Then Ąnal decision
on similarity is make using Siamese CNN and path-LSTM network. Visual features are
extracted by ResNet network[76].

Wang et al. [235] suggested to use orientation invariant feature vector composed of one
global feature vector and four orientation-based region feature vectors, extracted from 20
vehicle key points. This aligned appearance-based feature representation is learned and
spatiotemporal relations between probe and gallery images is adopted as a regularization
strategy.

Liu H. et al. [132] proposed to use Coupled Cluster Loss (CCL) instead of Triplet Loss
to make training phase more stable and accelerate the convergence speed. CCL function
is deĄned over multiple samples rather than three and distances are measured between
samples and cluster center instead of any randomly selected anchor samples. Also special
variant of VGG neural network [194] is used to extract vehicle model information and the
instance differences.

Yan et al. [244] searches visually-similar vehicles by exploiting multi-grain ranking con-
straints. They propose to use Generalized Pairwise Ranking or Multi-Grain based List
Ranking for similar vehicle retrieval on features extracted by VGG neural network and
performs better then CCL.

2.7.3 Combination of Multiple Methods, Supervised and Unsupervised
Learning

Liu et al. [138] proposed the PROVID system for progressive vehicle re-identiĄcation, where
three different approaches are used. Firstly, the most vehicles from database are Ąltered
out due to different color, texture, shape or vehicle type using appearance-based model.
Secondly, remaining vehicles are Ąltered using the license plate similarities between query
and source vehicles, which are calculated by the Siamese neural network. Thirdly, the
spatiotemporal properties are exploited to re-rank the vehicles to improve the vehicle search
process.

Supervised Vehicle Re-IdentiĄcation Vehicle Re-Id aims to retrieve a speciĄc vehicle
from huge galleries captured by different cameras. To achieve this goal, more and more
works [138, 102, 223] use powerful convolutional neural networks (CNNs) to learn discrimi-
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native representations of vehicle images instead of handcrafted features. To further improve
performance, several works [138, 185, 112, 255] employ widely-used deep metric learning
methods to pull vehicle images of the same identity close and push different vehicles far
away.

However, these methods still suffer from the viewpoint variation problem. To address
this issue, some works [285, 175] studied discriminative part-level features for better per-
formance. Several recent works [66, 73, 225, 233] in vehicle ReID had stated that speciĄc
parts such as windscreen, lights, and vehicle brand tend to have much discriminative infor-
mation. Other works [282, 142] attempt to synthesize more multi-view vehicle images by
the popular generative adversarial networks (GANs).

Yao et al. [252] use a graphic engine to generate synthetic data with various view-
points. Zhou et al. [283] propose to extract view-invariant features by directly learning
a viewpoint-aware network. The authors designed a viewpoint-aware attentive multi-view
inference (VAMI) model that only requires visual information to solve multi-view vehicle
ReID problems.

He et al. [73] proposed a simple yet efficient part-regularized discriminative feature-
preserving method, which enhances the perceptive capability of subtle discrepancies, and
reported promising improvement.

Besides, a few works [190, 221, 277] make use of prior spatiotemporal knowledge to nar-
row down the possible search space to Ąlter out masses of hard negative samples. Although
achieving great success, these methods are difficult to distinguish subtle differences between
similar vehicles. To alleviate the problem, as mentioned earlier, many part-based methods
are proposed to mine Ąne-grained information. Liu X. et al. [136] divide the feature map
into several stripes and learn discriminative features from these stripes individually. Zhang
et al. [271] develop a part-guided attention network that adaptively locates import parts
and combines global-local features for Vehicle Re-Id.

Recently, a pure-transformer method called TransReID [77] has shown that transformer-
based methods achieve better performance than CNN-based methods on some vehicle ReID
benchmarks.

Unsupervised Domain Adaptation Object Re-IdentiĄcation When applied to un-
seen scenarios, supervised object re-id methods always suffer from dramatic performance
drops. In recent years, unsupervised domain adaptation (UDA) methods have drawn in-
creasing attention since they can mitigate the generalization problem by transferring re-id
knowledge from labeled data to unlabeled data. Usually, UDA object re-id methods adopt
a two-step pipeline for training. Firstly, training a re-id model by supervised learning on
the labeled dataset. Secondly, to Ąne-tune the re-id model, predicting pseudo-labels for the
unlabeled data by clustering algorithms and taking pseudo-labels as supervision signals.
Song et al. [204] provide more theoretical analyses based on this popular fashion. For ex-
ample, Lin et al. [130] proposes to leverage the attribute to help the knowledge transfer
and reduce the pseudo label noise. Ge et al. [53] extend this idea and develops a mutual
mean-teaching framework to ensemble parameters of different training state.

To enhance generalization ability, Zhai et al. [260] further extend the mutual learning
strategy to multiple heterogeneous networks. The recent state-of-the-art performance has
been achieved in [274] by using the mean teacher strategy and uncertainty [278].

Similarly, to resist label noise, Zhang et al. [270] gradually select reliable samples for
training, and Yang et al. [246] repose an asymmetric co-teaching framework where two
distinct modules generate pseudo labels for each other.
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Jiang et al. [97] focuses on developing a robust part-aware structure-based vehicle re-id
system against the massive appearance changes due to the pose and illumination variants.
Visual features are extracted from detected vehicle images and further enhanced by vehicle
parts detection, which explicitly introduces the prior knowledge on the structure of the rigid
object. The authors also use the basic UDA object re-id pipeline to learn robust features
for the unlabeled scenario.

2.7.4 Image Feature Pooling in Temporal Domain

In this section, we provide an overview of existing methods for feature pooling (aggregation)
in temporal domain. Such pooling is usually used in the context of person re-identiĄcation
(with the exception of Yang et al. [247] who used it for video face recognition). The methods
are often trained by using a Siamese network [158, 266, 245, 25, 243, 247] with contrastive
loss and optionally identiĄcation loss as well.

McLaughlin et al. [158] propose an approach for temporal domain pooling based on
Recurrent Neural Networks (RNN). The authors extract features using a CNN and use
a recurrent layer to compute the features for the whole track. The used RNN has an
output for each time step and these outputs are averaged to obtain the Ąnal feature vector
for re-identiĄcation. The authors further propose to use optical Ćow as an additional input
to the network. A similar approach was proposed by Zhang et al. [266] with the exception
that their method uses bi-directional RNN to get better re-id results. Also, the method
proposed by Yan et al. [245] is similar with the exception that the image level features are
not trained and LBP and color features are used instead.

Chen et al. [25] also follow the work of McLaughlin et al. [158]. However, they propose
to merge the features extracted by RNN together with CNN spatial features averaged over
the time steps. The authors use three such networks for different body parts and fuse their
output features (by a weighted sum). One network is for full person images, while the
second one is for upper body part, and the last network is used on lower body parts.

Another approach based on the work by [158] is proposed by [243], who introduce
signiĄcant modiĄcations to the method. First, image level features are extracted by spatial
pyramid pooling; thus, spatial information is preserved in the feature vector. These features
are then fed into a recurrent layer (similar to [158]). Finally, the recurrent features are
pooled by an Attentive Temporal Pooling layer proposed by the authors. The layer takes
features for all time steps for both, the probe and gallery sequences, and generate a matrix
with weights. These weights are then used for weighting of features from different time steps
in the sequence (see the original text for details). Although the approach beneĄts from using
both the sequences which are being compared, it also has a signiĄcant drawback: efficiency.
The comparison of two sequences becomes very complex because the attention matrix is
computed as a product of 3 matrices and more importantly, it needs to be computed for
every pair of sequences.

Zhangh et al. [267] adds a feature pooling layer into the CNN architecture before the
Ąrst fully connected layer. This layer aggregates key information from different views of
the person’s trajectory (different time steps) in a single feature vector. They also incorpo-
rate two different learning distance metrics Ű minimum distance and average of minimum
distance for comparing the query track with tracks in the database.

Unlike the other authors, [247] focus on video face recognition. The authors propose
an approach to temporal pooling based on weighting of feature vectors from different time
steps. The weight for a feature vector is obtained as a dot product with a template, which
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is computed by a fully connected layer. The weights are then normalized to a probability
distribution by softmax function. The weights for different time steps scale the contributions
of images in the sequence according to their discriminative value.

Similarly, [284] propose to use a temporal attention model and generate weights for
feature vectors in the track. However, in contrast to [247], the weights are generated at
each time step for all the feature vectors in the sequence. Then, at all time steps, all feature
vectors (from the given sequence) are weighted by a set of (different) weights; thus, at each
time step, differently weighted input feature vectors are produced. The weights at each time
step are obtained by a RNN layer. Furthermore, similarly to [158], the weighted feature
vectors are fed into another RNN layer with output at each time step and then averaged to
obtain the Ąnal track representation. The authors also use spatial RNNs to further improve
the re-identiĄcation results.

Generally, for temporal pooling, the authors use either recurrent neural networks [158,
266, 245, 25, 243], learned weighting of feature vectors [247], or a combination of these app-
roaches [284]. In contrast to the described methods, the proposed method (Section 7.2 on
page 64) produces a different weight for every element of the feature vectors. These meth-
ods might be beneĄcial for Multi-Target Multiple Camera (MTMC) tracking tasks, where
averaging/mean pooling of extracted identiĄcation features is used nowadays [253, 131].

2.7.5 Object Re-IdentiĄcation Ű Summary

Object re-identiĄcation in the past couple of years, mainly focusing on the re-identiĄcation
of persons and vehicles, has become essential due to increasing security needs.

Methods in this Ąeld usually use appearance-based features. They could be hand-
crafted [3, 48, 257, 138] or extracted by machine-learning model [158, 266, 245, 25, 284,
274, 278, 130] for single image object re-identiĄcation. Some methods are focused to more
distinctive parts of the object (e.g., body parts [27, 105, 120, 273, 113, 125, 26] or struc-
tured parts of vehicles [235, 66, 73, 225, 233, 271]). For a combination of multiple extracted
visual features along the object’s trajectory, pooling/aggregation methods in the temporal
domain are used [158, 266, 245, 25, 243, 284, 247]. These methods have beneĄts even for
Multi-Target Multiple Camera tracking tasks [253, 131]. Compared to these methods, our
proposed solution for pooling visual features in the temporal domain (Chapter 7 on page 62)
in a feature element-wise weighted manner and derives information from the vehicle’s tra-
jectory, which has the main beneĄt of vehicles’ viewpoint changes and more distinctive
parts of vehicles can be seen.
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2.8 License Plate Recognition

The problem of automatic license plate recognition coincides also with license plate detec-
tion, which can be done in multiple ways in software [2, 56, 86, 121, 178], even in hard-
ware [259] and GPUs [81]. However, the problematic of license plate detection in image is
not part of this thesis and it is mentioned only for completeness of the chapter.

Previous works on ALPR are typically based on optical character recognition (OCR)
techniques and they start the process by segmenting characters from the license plate.
Formerly used algorithms can be divided into two groups: projection-based and connected
component (CC) based techniques. The disadvantage of this type of techniques is their
sensitivity to rotation and distortion of license plate. These methods can be reffered to as
segmentation-based ALPR.

Formerly used algorithms for license plate character recognition are either based on
template matching [178] or machine learning. Learning-based methods are more robust
due to usage of more discriminant features for learning such as direction features [237]
or image density [56, 276]. The commonly used learning techniques include SVM [237],
probabilistic neural networks [2, 56], or artiĄcial neural networks [276].

This section contains updated related work for Part IV on page 76 which was further
elaborated from original paper.

Segmentation-based ALPR Rotation and distortion causes segmentation-based ALPR
methods [67, 163, 176, 178, 237, 116, 155] to fail in most cases.

Masood et al. [155] proposed to Ąrst detect and segment out the characters and then
recognize them by a convolutional neural network and they integrated their approach to
Sighthound Cloud API. Even recent work from Laroca et al. [116] uses character segmen-
tation combined with individual character recognition based on CNN. From this class of
methods, only one group can be used for in-the-wild license plate recognition under limited
conditions. These methods are based on connected component techniques (CC-based) and
they can deal with rotation and distortion of the license plate [2, 21, 56, 276]. CC-based
techniques label blocks of pixels from binarized LPs, depending on 4- or 8-neighborhood
connectivity and they use these blocks to segment the license plate. Unfortunately, these
methods cannot segment characters correctly if they are connected together or broken.

Another approach is to use OCR systems designed for reading multi-character text in the
wild, which are used to recognize digits and characters in different types of applications (e.g.
reading house numbers and other texts on facades), where character segmentation of the
input data can be also difficult. Goodfellow et al. [62] proved that neural nets are capable
of recognizing multi-character texts without segmenting the characters in unconstrained
natural photographs, which was conĄrmed by Jaderberg et al. [94].

Segmenation-free LPR Finally, segmentation-free methods [86, 23, 95, 121, 208, 122,
115, 6, 5] have state-of-the-art results in license plate recognition in the past few years.
In 2016, Li and Shen [121] developed the Ąrst segmentation-free license plate recognition
method. Their method is based on CNN for feature extraction and bi-directional recurrent
neural network with LSTM units and connectionist temporal classiĄcation (CTC) [64] for
sequential data labeling. They achieved state-of-the-art results on AOLP dataset [86] and
Caltech Cars 19991. Similar approaches based on CNNs were also used by other authors [23,

1http://www.vision.caltech.edu/archive.html
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95]. However, these methods are focused on standard, high-quality images of license plates.
Our work focuses on low-quality license plate images (e.g., motion blurred, damaged).

Li et al. [122] improved his previous work in 2017 using a region proposal network for
license plate detection, and the output of BRNNs is linearly transformed before CTC is
involved.

For the LPR task, methods originally proposed for scene text recognition can also be
used, as proved by Laroca et al. [115]. This includes models based on Connectionist Tem-
poral ClassiĄcation (CTC), Attention, or Vision Transformers.

SpaTial Attention Residue Network (STAR-Net) for recognizing scene texts was intro-
duced by Liu W. et al. [135]. This model is equipped with a spatial attention mechanism
that employs a spatial transformer to remove the distortions of texts in natural images. In
this way, the feature extractor can focus on the rectiĄed text region without further dis-
traction caused by text distortions. Their feature extractor exploits residue convolutional
blocks to extract more discriminative text features for scene text recognition tasks.

Baek et al. [6] developed a four-stage framework for scene text recognition. Each stage
was derived from the STR models existing in 2019 Ű (transformation, feature extraction,
sequence modeling, prediction) and allows the user to conĄgure models to match his needs.
For example, CTC or Attention mechanisms can be selected in the prediction stage. Laroca
et al. [115] beneĄts from this framework to create a TRBA model (Thin-Plate Spline trans-
formation, ResNet, BiLSTM, Attention) for the LPR task.

Two years later, the ViTSTR model was implemented by Atienza et al. [5]. ViTSTR is
a simple single-stage model architecture built on a vision transformer (ViT). The authors
stated that this model achieves competitive accuracy with fewer parameters and fewer
computational resources than the TRBA model. In terms of ViTSTR model trade-offs,
nearly all conĄgurations are at or near the frontiers to maximize accuracy, speed, and
computational efficiency simultaneously.

End-to-end LPR BeneĄting from the rapid development of convolutional neural net-
works, the performance of vehicle License Plate Detection (LPD) and License Plate Recog-
nition (LPR) has been largely improved. Nonetheless, most existing methods solve detection
and recognition problems separately and focus on speciĄc scenarios, hindering real-world
application deployment.

In 2018, Gonçalves et al. [60] pointed out the problem of combining LPD with LPR
methods as each task has its accuracy, and the error propagation between each task is detri-
mental to the Ąnal accuracy. They propose using two deep neural networks and combining
LPD and LPR tasks. They conĄrm that segmentation-free techniques for LPR further
reduce error propagation and improve results.

In 2021, Huang et al. [91], authors designed ALPRNet to detect and recognize mixed-
style LPs. The ALPRNet consists of two one-stage object detectors to detect and classify
license plates and characters simultaneously. After that, the assembly module outputs the
recognized license plate text. License plates and characters are objects for each detector
respectively, and directly outputs the bounding boxes and corresponding labels of the li-
cense plates and characters. This technique allows users to avoid recurrent neural network
branches for LPR. The authors also claim that this method is independent of the layout of
license plate characters and works well for different types of license plates.

A year later, Qin and Liu [177] proposed a light-weight end-to-end model based on the
anchor-free method for LPR, which can work in real-time. This model predicts the bounding
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box and four corners of the license plate, corrects the feature map after ROI Align, and
feeds it into the recognition CNN. The recognition task is treated as sequence labeling
problems, which are directly solved by Connectionist Temporal ClassiĄcation (CTC).

Fan et al. [45] incorporates a robust license plate detection network (CA-CenterNet)
together with a segmentation-free network (CNNG) in 2022. CA-CenterNet detects the
center of the license plate together with four regressed vectors pointing to license plate
corners which are further used for rectiĄcation of the license plate.

The most recent works [98, 104] focus on speed and application of ALPR methods in
real-world scenarios, which differ in requirements on distance, illumination, angle, and other
conditions to work reliably. Jiang et al. [98] aims to ALPR in the unconstrained environment
using a combination of proposed LPDNet and CRNet for LPD and LPR tasks, respectively.
On the other hand, Ke et al. [104] proposed a combination of YOLOv3-tiny detector and
light-weight MRNet based on multi-scale features to achieve high accuracy, high detection
speed (751 FPS) and fast license plate recognition (2.9 ms).

License Plate Recognition Ű Summary The Ąeld of License Plate Recognition has
evolved to encompass a range of approaches, from traditional segmentation-based methods
to modern segmentation-free and end-to-end techniques. These advancements have enabled
improved accuracy, speed, and adaptability in various real-world scenarios, while also ad-
dressing challenges like rotation, distortion, and error propagation. The research landscape
continues to innovate to meet the demands of practical LPR applications.
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Part II

Datasets for Traffic Analysis
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The Ąeld of traffic analysis has witnessed remarkable advancements in recent years,
largely due to the availability of large-scale datasets that facilitate the development and
evaluation of novel algorithms and methodologies. Although signiĄcant progress has been
made in several traffic analysis domains, including license plate recognition, vehicle re-
identiĄcation, vehicle Ąne-grained recognition, and monocular vehicle speed measurement,
the absence of publicly available datasets has signiĄcantly hampered further developments
in these domains.

Part II of this thesis focuses on addressing this crucial gap by presenting a collection of
diverse datasets, each catering to a speciĄc aspect of traffic analysis. These datasets were
meticulously curated, annotated, and made publicly available for researchers and practi-
tioners in the traffic analysis community. The development and release of these datasets
mark a signiĄcant contribution to the Ąeld, providing new opportunities for analysis, bench-
marking, and performance testing of algorithms.

The Re-Id, HDR and CamCar6k datasets (Chapter 3 on the next page) consti-
tute a comprehensive collection of annotated license plate images captured under various
environmental conditions, including different lighting conditions, weather conditions, and
camera angles. This dataset plays a crucial role in advancing the accuracy and robustness
of license plate recognition systems. Researchers can leverage this dataset to develop and
evaluate algorithms that address challenges such as low lighting, occlusions, and variations
in license plate styles, ultimately contributing to the development of more reliable and
efficient license plate recognition systems.

The difficulty of re-identifying vehicles across many non-overlapping cameras is ad-
dressed by the CarsReId74k dataset (Chapter 4 on page 39), in any case. This dataset
enables the development and testing of re-identiĄcation algorithms for identiĄcation of vehi-
cles throughout a network of surveillance cameras by collecting vehicle images from various
angles and in various situations. Such advancements in vehicle re-identiĄcation techniques
hold tremendous potential for enhancing traffic monitoring, security, and surveillance sys-
tems.

To further enrich the understanding of vehicle characteristics, the BoxCars116k dataset
(Chapter 5 on page 43) offers a comprehensive collection of images showcasing different vehi-
cle makes, models, types and model years. This dataset is an invaluable resource for vehicle
Ąne-grained recognition tasks, allowing researchers to create algorithms that can precisely
identify vehicle characteristics. The existence of such a dataset promotes improvements in
the identiĄcation of vehicle attributes, which enhances vehicle proĄling and identiĄcation
capabilities in traffic analysis systems.

As a crucial component of traffic analysis, monocular vehicle speed measurement is the
Ąnal emphasis of the BrnoCompSpeed dataset (Chapter 6 on page 54). This dataset
provides ground truth annotations for vehicle speed estimation tasks by capturing vehicle
images at known distances. This dataset’s accessibility enables researchers to create and
test algorithms that precisely gauge vehicle speed based solely on monocular vision, which
has profound implications for traffic management, enforcement, and safety.

The availability of these datasets to the traffic analysis community satisĄes a criti-
cal need and offers various advantages. Firstly, these datasets can be used by academic
researchers and industry professionals to evaluate and compare the effectiveness of their
algorithms to cutting-edge techniques, encouraging healthy competition and advancing the
Ąeld. Additionally, these datasets can be used as a foundation for training and Ąne-tuning
machine learning models, enabling the development of more accurate and robust traffic
analysis systems.
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Chapter 3

Datasets for License Plate
Recognition

This chapter discusses the creation of datasets for recognizing low-quality vehicle license
plates. The characteristics of the data correspond to vehicle re-identiĄcation in traffic
surveillance and parking law enforcement using controlling vehicles equipped with cameras.

The datasets of the Ąrst type were introduced in paper Špaňhel et al., Holistic Recogni-
tion of Low Quality License Plates by CNN using Track Annotated Data, AVSS 2017 [208].
This paper focuses on an alternative approach to license plate recognition in a holistic,
segmentation-free way. The novel user-annotated dataset was collected for this work and
made publicly available for non-commercial use1. Images in the dataset are annotated by
whole license plate tracks (sequences of observations of a single vehicle). Therefore, it pro-
vides accurate ground truth labels even for naturally blurred, partially occluded, and hardly
readable license plate images, allowing a robust license plate recognizer to be trained. An
example of such a license plate track can be seen in Figure 3.1.

The acquisition process for this dataset is described in Section 3.1 on the next page,
and it is hereafter referred to as ReId. Additionally, a hand-crafted HDR dataset with
license plates captured by a high-dynamic range camera was also introduced.

The second type dataset, referred to in the following text as CamCar6k, was pub-
lished in paper Špaňhel et al., Geometric Alignment by Deep Learning for Recognition of
Challenging License Plates, ITSC 2018 [207].

As is generally known, Automatic License Plate Recognition (ALPR) is the backbone for
many applications in traffic surveillance and intelligent transportation systems (automatic
parking systems, security surveillance systems, toll gates, etc.). In many such applications,
the cameras are Ąxed and positioned so that the license plates share a typical size (im-
age resolution) and orientation, and they are not skewed. In such scenarios, the existing
recognizers of license plates achieve almost perfect results. However, mobile monitoring
platforms are used more frequently for parking enforcement and other applications. Also,
the availability and properties of PTZ (pan-tilt-zoom) cameras offer much less restricted
scenarios. Existing solutions of automatic license plate recognition (an overview is avail-
able in Section 2.8 on page 29) are not designed for these unconstrained cases and tend to
achieve poor results. The Ąrst mentioned ALPR works proved that holistic (i.e., refrain-
ing from segmenting the characters) recognition outperforms other available recognition
methods. However, that work does not deal with challenging license plates captured from

1https://medusa.fit.vutbr.cz/traffic/
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Figure 3.1: During data collection, license plates are detected and tracked. All images
were manualy labeled in a per-track manner so even when text in some images cannot be
recognized correctly, the ground truth can be assigned as long as the track contains at least
one readable image.

different viewpoints. In this work, we propose a solution how to overcome that limitation.
We designed a new convolutional neural network (CNN) to predict four corner points of the
license plate in the unaligned image. These points deĄne the transformation which rectiĄes
the image for subsequent processing by the holistic license plate recognizer. Therefore,
a novel dataset had to be collected.

The dataset sample, speciĄcs, and acquisition process are described in Section 3.2 on
the next page.

3.1 Low-quality License Plate Recognition Dataset

Traffic surveillance systems in global target mainly images with sufficient quality. However,
it is important to be able to deal with low-quality images as the conditions might not be
perfect all the time. To deal with low-quality license plate images, we collected a new
dataset called ReId. Multiple videos from various locations and under different conditions
were recorded for this dataset. The data was captured by Full-HD video cameras placed on
bridges above the highway, simulating surveillance cameras on toll gates. We collected 9.5
hours of license plate recordings from 8 distinct locations on various daytimes. Examples
of the recorded data are shown in Figure 3.2.

License Plates Detection For each image in the input sequence, we detect license
plates using a boosted soft cascade classiĄer with LBP image features trained by a constant
soft cascade algorithm [38]. Each detected license plate is tracked with Kalman Ąlter.
Our detector implementation takes under 5ms per Full-HD frame on GTX 1080 GPU.
We trained the detector on the dataset of 5,000 frontal license plate samples dimensioned
55 × 22 pixels and 4,000 negative samples using 4 rounds of hard negative mining [38],
loading additional 4,000 negatives in each round. The Ąnal detector is composed from 512
LBP features serving as the weak classiĄers.
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Figure 3.2: Samples of recordings for different camera locations.

Figure 3.3: Examples of images from the ReId dataset. Each column shows license plates
with a different text length.

Ground Truth Assignment Finally, the collected license plates were labeled by their
ground truth texts. Ground truth label for each license plate was assigned by users using
a newly created web-based annotation tool. License plates were recognized by the user
from the whole track (a sequence of the same license plate in the video) and each license
plate in the track was labeled at once after that. Annotating the whole track has one major
advantage (putting the speed-up in annotation aside): it is possible to precisely annotate
even almost un-readable (e.g. blurred, small, partially covered, . . . ) license plates if only
one of the instances of the license plate is clear enough to be human-readable. The length
of the license plate texts varies from 5 to 8 characters. Example images from the dataset
are shown in Figure 3.3.

The dataset was split to training and test parts per videos, therefore training and test
samples come from mutually exclusive sets of videos. The training part contains 7,393
tracks (105,924 images) and the test part contains 6,967 tracks (76,412 images). In total,
there is 14,360 tracks, containing 182,336 images of license plates.

As Laroca et al. [115] pointed out, there could be overlap in a few identities (LP texts)
as dataset splits were created based distinctiveness of individual recording sessions, not
based on identities.

3.2 ALPR Dataset for Parking Law Enforcement

Publicly available datasets of license plate images are a scarce commodity globally. Two
datasets designed for license plate recognition Ű ReId dataset (182,336 images), and HDR
dataset (657 images) were described in previous section. Unfortunately, none of these
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Figure 3.4: Left: Randomly selected samples from the HDR dataset. Center: random
original blurred samples from the dataset published by Svoboda et al. [215]. Right: De-
blurred images by the method proposed by Svoboda et al. [215].

Figure 3.5: Samples of license plate with annotated keypoints used for training aligner and
recognizer. Left: Samples from CamCar6k dataset. Right: Samples from synthetic data
(Sec. 3.2.2).

datasets contains ground truth annotations of license plate corners’ positions. They are
therefore not suitable neither for training or evaluation of license plate alignment.

In 2018, Laroca et al. [116] published the UFPR-ALPR dataset with 4,500 images
FullHD images with annotated license plates. However, the data was captured from a cam-
era Ąxed at a vehicle’s windshield, thus with minimal distortions of the LPs. The same
is true for the dataset created by Gonçalves et al. [61] which is even smaller (only 2,000
images).

3.2.1 CamCar6k Ű Public Dataset of License Plates in the Wild

We recorded 7.5 hours of video of license plates from different viewpoints taken by four
cameras mounted on a vehicle passing among vehicles parked on streets and/or parking lots.
The recordings cover almost all possible styles of parking (parallel, angle, perpendicular)
both outside (streets, outdoor parking lots) and inside (parking garages).

In each frame of the video, license plates were detected by a Boosted Soft Cascade
detector [38]. In order to deal with the range of rotations and perspective projections, we
used three detectors, each tuned to a different range of deformations. The outputs of these
detectors were merged and formed the Ąnal set of detections. Each detection was processed
with a preliminary version of the recognizer in order to Ąlter out false detections.

Original image frames with at least one detection were stored and 5,000 frames with
detected license plates were chosen randomly and further processed by users. Their task
was to annotate the inner corners of each license plate and transcribe the ground truth text
for each image. Thus created dataset CamCar6k contains 6,064 images of license plates.

The locations of annotated keypoints allow us to generate more training samples by
rotation, translation, shear and zoom. The distribution of the rotations of the original
license plates in the collected data is shown in Figure 3.6. It can be seen that majority of
license plates are rotated in an interval of ±20∘.

The CamCar6k dataset was divided into a training and a test split, containing 2,750
and 3,314 images of license plates, respectively. In our experiments (Section 9.3 on page 87),
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Figure 3.6: Distribution of rotation of license plates in the newly collected CamCar6k
dataset. The majority of LPs are almost horizontal, but the dataset also contains a good
coverage of angles between ±20∘.

we use ReId, HDR and CamCar6k datasets mixed together for learning the LP recog-
nizer. The CamCar6k dataset was made publicly available for non-commercial purposes2.

3.2.2 Dataset of Synthetic Images of Cars with License Plates

With image transformations, the texts of the annotated license plates remain unchanged. It
is impossible to collect all valid variants of license plates, or combinations of all the allowed
characters. To avoid misclassiĄcation of license plates with previously unseen characters
and their combinations, we developed a tool for generating synthetic data. Given real
images with annotated corner points of the license plates, a template of the country-speciĄc
license plate layout, and an appropriate font for characters, the tool is able to generate any
requested number of license plates with different text and rotation/distortion of the source
image. We generated 100 k synthetic license plates of multiple countries (denoted by synth
in the following text), which are used only in the training phase (we consider it appropriate
to only evaluate on real-world data). Sample of synthetic license plate can be found in
Figure 3.5 Ű right image.

2https://medusa.fit.vutbr.cz/traffic
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Chapter 4

Dataset for Vehicle
Re-identiĄcation

The availability of datasets for vehicle re-identiĄcation was limited for a longer time.
There are datasets of vehicles [110, 249, 202], which are created for Ąne-grained recog-

nition with annotations on several attributes such as type, make, and color. However, the
identities of the vehicles in the datasets are unknown; thus, the datasets are not directly
applicable for vehicle re-identiĄcation, especially for evaluation.

Regarding genuine vehicle re-identiĄcation, Liu X. et al. [138] constructed a relatively
small VeRi-776 dataset containing 50,000 images of 776 vehicles. Liu H. et al. [132] collected
a VehicleID dataset containing 26,267 vehicles in 220k images taken from a frontal/rear
viewpoint above the road. In 2017, Yan et al. [244] published two datasets, VD1 and
VD2, for vehicle re-identiĄcation and Ąne-grained classiĄcation with over 220k of vehicles
in total, with make, model, and year annotation. However, both datasets are limited to
frontal viewpoints only.

Following the publication of our CarsReId74k dataset, Tang et al. published CityFlow
dataset for NVIDIA AI City Challenge (AIC). From a single data source, authors created
datasets for multiple tasks Ű dataset for multi-target multi-camera (MTMC) for traffic
surveillance, made by multiple video sequences, and a vehicle re-identiĄcation dataset con-
sisting of cropped frames from the MTMC dataset. The CityFlow-ReID dataset is used
as a single probe for gallery search and does not contains annotations of image sequences
(vehicle trajectories). Additionally, images are tightly cropped around cars and may not be
suitable for every re-identiĄcation scenario. However, this dataset was not available during
the publishing process of CarsReId74k dataset. Thus it is not included in the following text.

This chapter provides detailed information about the CarsReId74k dataset. This
dataset was proposed in Computer Vision and Image Understanding journal in article
Špaňhel et al., Learning Feature Aggregation in Temporal Domain for Re-IdentiĄcation,
CVIU 2020 [209]. For more details about our vehicle re-identiĄcation approach methodol-
ogy and results of the experiments, please follow the text in Chapter 7 on page 62.

4.1 CarsReId74k Ű Novel Vehicle Re-IdentiĄcation Dataset

We focus on vehicle re-identiĄcation and we want to differentiate even vehicles with the same
Ąne-grained type but different identities (different license plates). Therefore, we cannot use
Ąne-grained vehicle recognition datasets [198, 202, 249, 110] for this task. As other existing
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Table 4.1: The comparison of various vehicle re-id datasets.
* Ű Tracks are not guaranteed for each unique vehicle.
† Ű Unique vehicles from each dataset part can overlap. The total number of unique vehicles
is probably lower.

CarsReId74k VehicleID VeRi-776 PKU-VDs

# unique vehicles 17,681 26,267 776 †221,519
# tracks 73,976 Ů 6,822 N/A
# images 3,242,713 221,763 51,035 1,354,876
viewpoints various front/rear various front
multiple images in
track

yes no *yes yes

cam-right

cam-center
cam-zoom

cam-left

cam-right

cam-center
cam-zoom

cam-left

Figure 4.1: Recording setup for acquisition of novel CarsReId74k dataset. We simultane-
ously recorded data on two bridges by multiple cameras. One camera on each bridge was
zoomed in so that it is possible to automatically recognize license plates and use them for
the construction of the ground truth labeling (left image). For part of dataset vehicles were
captured from single bridge on both sides, which yields to capture observed vehicles from
frontal and rear viewpoints (right image).

vehicle re-identiĄcation datasets VeRi-776 [138], VehicleID [132] and PKU-VDs [244] are
either small (VeRi-776) or limited to frontal/rear viewpoints (VehicleID, PKU-VDs). We
collected a novel dataset CarsReId74k which does not have these limitations. The data
were collected by 66 cameras from various angles and the dataset contains almost 74,000 of
vehicle tracks with precise identity annotation (acquired from license plates). More detailed
comparison of different available vehicle re-identiĄcation datasets can be found in Table 4.1.

4.1.1 Dataset Acquisition

The dataset was collected in multiple sessions. In each session, we placed four cameras on
a bridge overlooking a freeway and four cameras on another bridge in vehicles’ traveling
direction. Figure 4.1 illustrates the recording setup and Figure 4.2 shows example frames
from one such session. The videos were recorded for ∼ 1 hour and synchronized. One of
the cameras was zoomed in enough to be able to read the license plates of all the passing
vehicles (Figure 4.2 left). The other three cameras were placed so that they observed the
road from left, center, and right position.

We used the zoomed-in videos to identify the passing vehicles. We detected the license
plates by an ACF detector [38], tracked them, recognized by a recent method [208] and
manually veriĄed in order to eliminate any recognition errors. We also assigned a lane to
each license plate track for easier matching. On all the other videos (left, center, right),
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Figure 4.2: Frames from all cameras in one session. The license plates acquired from the
zoom camera (left) were used for ground truth re-identiĄcation (silver car). Each row shows
frames from one location within the session.

Figure 4.3: Examples of queries, positive, and negative samples. The negatives are sorted
by difficulty from left to right (hard to easy) based on distances obtained from our re-
identiĄcation feature vectors. It should be noted that the hardest negative sample has
usually subtle differences (e.g. missing a small spoiler in the Ąrst row).

we detected and tracked the vehicles. We also constructed 3D bounding boxes [43] around
the vehicles as [198] showed that the 3D bounding boxes were beneĄcial for Ąne-grained
recognition. We also assigned the lane for each of these vehicles [43]. Finally, we matched
the vehicles from the zoomed-in cameras (with known identities) to vehicles from the other
cameras. We omitted all the vehicles which were not matched. It should be noted that
the vehicles in the dataset from non-zoomed-in cameras have almost unreadable license
plates; therefore, the dataset is suitable for appearance-based vehicle re-identiĄcation,
preserving the anonymity of the vehicles.
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Table 4.2: CarsReId74k dataset statistics. *The total number of unique vehicles is lower
than the sum of unique vehicles from training, test and validation set because a small
number of vehicles appear in all sets (same car present at two or more recording sessions by
accident). †Number of negative pairs = mean number of negative pairs per positive pair.

training test validation total

# cameras 30 30 6 66

# unique vehicles∗ 7,658 9,678 1,100 17,681

# tracks 32,163 36,535 5,278 73,976

# images 1, 469, 494 1, 467, 680 305,539 3, 242, 713

# positive pairs 125,086 129,774 22,376 277,236

# negative pairs† 1,149 1,459 881 1,283

4.1.2 Dataset Statistics

The dataset was recorded in 11 sessions at different locations. We divided the dataset
into the training, the testing and the validation part by sessions (Ąve sessions for training,
Ąve sessions for testing and one validation). The total dataset statistics can be found
in Table 4.2. The Table 4.1 on page 40 shows that our dataset is signiĄcantly larger than
VeRi-776 [138] dataset with only 776 unique vehicles. And compared to VehicleID, VD1 and
VD2 datasets [132, 244], our dataset is not limited to frontal/rear viewpoints. Compared
to VehicleID dataset, CarsReId74k dataset has fewer unique vehicles (17,681 vs. 26,267),
however far more image (3, 242, 713 vs. 221,763) as vehicles are seen from more viewpoints.

4.1.3 Proposed Evaluation Protocol

For each part (training, testing and validation), we collected all the pairs of tracks with the
same vehicle identity (marked as query, positive). The query and positive tracks are always
from different videos; however, they can come from the same session and location (e.g. left
Ű right), from the same session and different location, or (in rare cases) also from different
sessions within the training (or testing) set. This yields a signiĄcant number of positive
pairs (277,236 in total). As the negative pairs, we use all other vehicle tracks in the same
video as the positive track with the exception of vehicle tracks with the same identity as the
positive track (a vehicle could be observed multiple times in one video). This yields a mean
number of 1,283 negative vehicle tracks per positive pair. See Figure 4.3 for examples of
positive and negative pairs.

Following other papers [132, 244, 138, 82, 234] on re-identiĄcation, we use mAP and
hit at rank as the metrics for evaluation on the dataset. We encourage others to report
hit rates at ranks 1, 5, 10, and 20 together with Cumulative Matching Curve for ranks 1 to
20.
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Chapter 5

BoxCars116k Ű Dataset for
Fine-grained Vehicle Recognition

There is a large number of datasets of vehicles (e.g., [184, 1, 169, 44, 240, 18, 166, 118, 59,
186, 55, 168, 157]) which are usable mainly for vehicle detection, pose estimation, and other
tasks. However, these datasets do not contain annotations of the precise vehicles’ make and
model.

Regarding the Ąne-grained recognition datasets, there are some [210, 110, 129, 125]
which are relatively small in number of samples or classes.

Lin et al. [129] published FG3DCar dataset (300 images, 30 classes), Stark et al. [210]
made another dataset containing 1,904 vehicles from 14 classes. Krause et al. [110] published
two datasets. One of them called Car Types, contains 16k images and 196 classes. The
other one, BMW 10, comprises ten models of BMW vehicles and 500 images. Finally,
Liao et al. [125] created a dataset of 1,482 vehicles from 8 classes. All these datasets are
relatively small. Therefore, they are impractical for the training of CNN and deployment
of real-world traffic surveillance applications.

Yang et al. [249] published a large dataset CompCars. The dataset consists of a web-
nature part, made of 136k of vehicles from 1 600 classes taken from different viewpoints. It
also contains a surveillance-nature part with 50k frontal images of vehicles taken from
surveillance cameras. Liu et al. [137] published dataset VeRi-776 for the vehicle re-
identiĄcation task. The dataset contains over 50k images of 776 vehicles captured by 20
cameras covering a 1.0 km2 area in 24 hours. Each vehicle is captured by 2 ∼ 18 cam-
eras under different viewpoints, illuminations, resolutions, and occlusions. The dataset also
provides additional attributes such as bounding boxes, vehicle types, and colors.

BoxCars116k dataset described in the following lines focuses on Ąne-grained vehicle
recognition task under an unconstrained environment, and it is an expansion of the original
BoxCars21k dataset [198], which was published in 2016. Images were captured from various
viewpoints in wild scenarios, which makes this dataset very challenging.

The following text in this chapter contains detailed information about our contribution
to vehicle Ąne-grained recognition and acquisition of BoxCars116k dataset. This work was
published in Transactions on Intelligent Transportation Systems journal in article Sochor
et al., BoxCars: Improving Ąne-grained recognition of vehicles using 3-d bounding boxes in
traffic surveillance, T-ITS 2018 [202]. Related work for this publication can be found in Sec-
tion 2.4 on page 19. For evaluations of our experiments, please see Section V. Experiments
in the original paper.
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Figure 5.1: Example of automatically obtained 3D bounding box used for Ąne-grained
vehicle classiĄcation. Top left: vehicle with 2D bounding box annotation, top right:
estimated contour, bottom left: estimated directions to vanishing points, bottom right:
3D bounding box automatically obtained from surveillance video (green) and our estimated
3D bounding box (red).

Abstract In this paper, we focus on Ąne-grained recognition of vehicles mainly in traffic
surveillance applications. We propose an approach that is orthogonal to recent advance-
ments in Ąne-grained recognition (automatic part discovery, bilinear pooling). Also, in
contrast to other methods focused on Ąne-grained recognition of vehicles, we do not limit
ourselves to a frontal/rear viewpoint, but allow the vehicles to be seen from any viewpoint.
Our approach is based on 3D bounding boxes built around the vehicles. The bounding
box can be automatically constructed from traffic surveillance data. For scenarios where
it is not possible to use precise construction, we propose a method for an estimation of
the 3D bounding box. The 3D bounding box is used to normalize the image viewpoint by
ŞunpackingŤ the image into a plane. We also propose to randomly alter the color of the
image and add a rectangle with random noise to a random position in the image during
the training of Convolutional Neural Networks. We have collected a large Ąne-grained ve-
hicle dataset BoxCars116k, with 116k images of vehicles from various viewpoints taken by
numerous surveillance cameras. We performed a number of experiments which show that
our proposed method signiĄcantly improves CNN classiĄcation accuracy (the accuracy is
increased by up to 12 percentage points and the error is reduced by up to 50 % compared
to CNNs without the proposed modiĄcations). We also show that our method outperforms
state-of-the-art methods for Ąne-grained recognition.

5.1 Fine-grained Vehicle Recognition

Fine-grained recognition of vehicles is interesting, both from the application point of view
(surveillance, data retrieval, etc.) and from the point of view of general Ąne-grained recog-
nition research applicable in other Ąelds. For example, Gebru et al. [54] proposed an
estimation of demographic statistics based on Ąne-grained recognition of vehicles. In this
article, we are presenting methodology which considerably increases the performance of
multiple state-of-the-art CNN architectures in the task of Ąne-grained vehicle recognition.
We target the traffic surveillance context, namely images of vehicles taken from an arbi-
trary viewpoint Ű we do not limit ourselves to frontal/rear viewpoints. As the images are
obtained from surveillance cameras, they have challenging properties Ű they are often small
and taken from very general viewpoints (high elevation). We also construct the training
and testing sets from images from different cameras as it is common for surveillance appli-
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cations that it is not known a priori under which viewpoint the camera will be observing
the road.

Methods focused on the Ąne-grained recognition of vehicles usually have some limitations
Ű they can be limited to frontal/rear viewpoints or use 3D CAD models of all the vehicles.
Both these limitations are rather impractical for large scale deployment. There are also
methods for Ąne-grained recognition in general which were applied on vehicles. The methods
recently follow several main directions Ű automatic discovery of parts [109, 193], bilinear
pooling [128, 51], or exploiting structure of Ąne-grained labels [242, 280]. Our method is
not limited to any particular viewpoint and it does not require 3D models of vehicles at all.

We propose an orthogonal approach to these methods and use CNNs with a modiĄed in-
put to achieve better image normalization and data augmentation (therefore, our approach
can be combined with other methods). We use 3D bounding boxes around vehicles to nor-
malize vehicle image (see Figure 5.4 for examples). This work is based on our previous
conference paper [198]; it pushes the performance further and we mainly propose a new
method on how to build the 3D bounding box without any prior knowledge (see Figure 5.1).
Our input modiĄcations are able to signiĄcantly increase the classiĄcation accuracy (up to
12 percentage points, classiĄcation error is reduced by up to 50 %).

The key contributions of the paper are:

• Complex and thorough evaluation of our previous method [198].

• Our novel data augmentation techniques further improve the results of the Ąne-grained
recognition of vehicles relative both to our previous method and other state-of-the-art
methods (Section 5.2.3).

• We remove the requirement of the previous method [198] to know the 3D bounding
box by estimating the bounding box both at training and test time (Section 5.2.4).

• We collected more samples to the BoxCars dataset, increasing the dataset size almost
twice (Section 5.3).

We will make the collected dataset and source codes for the proposed algorithm publicly
available1 for future reference and comparison.

5.2 Proposed Methodology for Fine-Grained Recognition of
Vehicles

In agreement with recent progress in the Convolutional Neural Networks [220, 111, 22], we
use CNN for both classiĄcation and veriĄcation (determining whether a pair of vehicles has
the same type). However, we propose to use several data normalization and augmentation
techniques to signiĄcantly boost the classiĄcation performance (up to 50% error reduction
compared to base net). We utilize information about 3D bounding boxes obtained from
traffic surveillance camera [43]. Finally, in order to increase the applicability of our method
to scenarios where the 3D bounding box is not known, we propose an algorithm for bounding
box estimation both at training and test time.
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Figure 5.2: 3D bounding box construction process. Each set of lines with the same color
intersects in one vanishing point. See the original paper for full details [43]. The image was
adopted from the paper with the authors’ permission.

𝑏0 𝑏1
𝑏2𝑏3

𝑏4 𝑏5
𝑏6𝑏7F SR𝑏0

𝑏4 𝑏5
𝑏1F
𝑏0 𝑏3𝑏2

𝑏6SR

Figure 5.3: 3D bounding box and its unpacked version.

5.2.1 Image Normalization by Unpacking the 3D Bounding Box

We based our work on 3D bounding boxes proposed by [43] (Fig. 5.4) which can be automat-
ically obtained for each vehicle seen by a surveillance camera (see Figure 5.2 for schematic
3D bounding box construction process or the original paper [43] for further details). These
boxes allow us to identify the side, roof, and front (or rear) side of vehicles in addition to
other information about the vehicles. We use these localized segments to normalize the
image of the observed vehicles (considerably boosting the recognition performance).

The normalization is done by unpacking the image into a plane. The plane contains
rectiĄed versions of the front/rear (F), side (S), and roof (R). These parts are adjacent to
each other (Fig. 5.3) and they are organized into the Ąnal matrix U:

U =

(︂

0 R

F S

)︂

(5.1)

The unpacking itself is done by obtaining homography between points bi (Fig. 5.3) and
perspective warping parts of the original image. The left top submatrix is Ąlled with zeros.
This unpacked version of the vehicle is used instead of the original image to feed the net.
The unpacking is beneĄcial as it localizes parts of the vehicles, normalizes their position in
the image and it does all that without the necessity of using DPM or other algorithms for
part localization. Later in the text, we will refer to this normalization method as Unpack.

5.2.2 Extended Input to the Neural Nets

It it possible to infer additional information about the vehicle from the 3D bounding box and
we found out that these data slightly improve the classiĄcation and veriĄcation performance.
One piece of this auxiliary information is the encoded viewpoint (direction from which the

1https://medusa.fit.vutbr.cz/traffic
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Figure 5.4: Examples of data normalization and auxiliary data fed to nets. Left to right:
vehicle with 2D bounding box, computed 3D bounding box, vectors encoding viewpoints on
the vehicle (View), unpacked image of the vehicle (Unpack), and rasterized 3D bounding
box fed to the net (Rast).

Figure 5.5: Examples of proposed data augmentation techniques. Left most image contains
the original cropped image of the vehicle and other images contains augmented versions of
the image (Top Ű Color, Bottom Ű ImageDrop).

vehicle is observed). We also add a rasterized 3D bounding box as an additional input to
the CNNs. Compared to our previously proposed auxiliary data fed to the net [198], we
handle frontal and rear vehicle sides differently.

View. The viewpoint is extracted from the orientation of the 3D bounding box Ű
Fig. 5.4. We encode the viewpoint as three 2D vectors vi, where i ∈ {f, s, r} (front/rear,
side, roof ) and pass them to the net. Vectors vi are connecting the center of the bounding
box with the centers of the box’s faces. Therefore, it can be computed as vi =

−−−→
CcCi. Point

Cc is the center of the bounding box and it can be obtained as the intersection of diagonals
←→
b2b4 and

←→
b5b3. Points Ci for i ∈ {f, s, r} denote the centers of each face, again computed as

intersections of face diagonals. In contrast to our previous approach [198], which did not
take the direction of the vehicle into account; instead, we encode the information about
the vehicle direction (d = 1 for vehicles going to camera, d = 0 for vehicles going from
the camera), in order to determine which side of the bounding box is the frontal one. The
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vectors are normalized to have a unit size; storing them with a different normalization (e.g.
the front one normalized, the other in the proper ratio) did not improve the results.

Rast. Another way of encoding the viewpoint and also the relative dimensions of
vehicles is to rasterize the 3D bounding box and use it as an additional input to the
net. The rasterization is done separately for all sides, each Ąlled by one color. The Ąnal
rasterized bounding box is then a four-channel image containing each visible face rasterized
in a different channel. Formally, point p of the rasterized bounding box T is obtained as

Tp =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

(1, 0, 0, 0) p ∈ b0b1b4b5 and d = 1
(0, 1, 0, 0) p ∈ b0b1b4b5 and d = 0
(0, 0, 1, 0) p ∈ b1b2b5b6
(0, 0, 0, 1) p ∈ b0b1b2b3
(0, 0, 0, 0) otherwise

(5.2)

where b0b1b4b5 denotes the quadrilateral deĄned by points b0, b1, b4 and b5 in Figure 5.3.
Finally, the 3D rasterized bounding box is cropped by the 2D bounding box of the

vehicle. For an example, see Figure 5.4, showing rasterized bounding boxes for different
vehicles taken from different viewpoints.

5.2.3 Additional Training Data Augmentation

In order to increase the diversity of the training data, we propose additional data augmen-
tation techniques. The Ąrst one (denoted as Color) deals with the fact that for Ąne-grained
recognition of vehicles (and some other objects), their color is irrelevant. The other method
(ImageDrop) deals with some potentially missing parts of the vehicle. Examples of the
data augmentation are shown in Figure 5.5. Both these augmentation techniques are done
only with predeĄned probability during training, otherwise they are not modiĄed. During
testing, we do not modify the images at all.

The results show that both these modiĄcations improve the classiĄcation accuracy both
in combination with other presented techniques or by themselves.

Color. In order to increase training samples color variability, we propose to randomly
alternate the color of the image. The alternation is done in the HSV color space by adding
the same random values to each pixel in the image (each HSV channel is processed sepa-
rately).

ImageDrop. Inspired by Zeiler et al. [258], who evaluated the inĆuence of covering
a part of the input image on the probability of the ground truth class, we take this a step
further and in order to deal with missing parts on the vehicles, we take a random rectangle
in the image and Ąll it with random noise, effectively dropping any information contained
in that part of the image.

5.2.4 Estimation of 3D Bounding Box from a Single Image

As the results show, the most important part of the proposed algorithm is Unpack followed
by Color and ImageDrop. However, the 3D bounding box is required for unpacking the
vehicles and we acknowledge that there may be scenarios when such information is not
available. For these cases, we propose a method on how to estimate the 3D bounding box
for both training and test time when only limited information is available.

As proposed by [43], the vehicle’s contour and vanishing points are required for the
bounding box construction. Therefore, it is necessary to estimate the contour and vanishing
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Figure 5.6: Estimation of 3D bounding box. Left to right: image with vehicle 2D bounding
box, output of contour object detector [248], our constructed contour, estimated directions
towards vanishing points, ground truth (green) and estimated (red) 3D bounding box.

points for the vehicle. For estimating the vehicle contour, we use Fully Convolutional
Encoder-Decoder network designed by Yang et al. [248] for general object contour detection
and masks with probabilities of vehicles contours for each image pixel. To obtain the Ąnal
contour, we search for global maxima along line segments from 2D bounding box centers
to edge points of the 2D bounding box (see Figure 5.6 for examples).

We found out that the exact position of the vanishing point is not required for 3D
bounding box construction, but the directions to the vanishing points are much more im-
portant. Therefore, we use regression to obtain the directions towards the vanishing points
and then assume that the vanishing points are in inĄnity.

Following the work by Rothe et al. [183], we formulated the regression of the direction
towards the vanishing points as a classiĄcation task into bins corresponding to angles and we
used ResNet50 [76] with three classiĄcation outputs. We found this approach more robust
than a direct regression. We added three separate fully connected layers with softmax
activation (one for each vanishing point) after the last average pooling in the ResNet50 (see
Figure 5.7). Each of these layers generates probabilities for each vanishing point belonging
to the speciĄc direction bin (represented as angles). We quantized the angle space by bins
of 3∘ from −90∘ to 90∘ (60 bins per vanishing point in total).

As the training data for the regression we used BoxCars116k dataset (Section 5.3) with
the test samples omitted. The direction to vanishing points were obtained by method [43,
41]; however, the quality of the ground truth bounding boxes was manually veriĄed during
annotation of the dataset and imprecise samples were removed by the annotators. To
construct the lines on which the vanishing points are, we use the center of the 2D bounding
box. Even though there is bias in the direction of the training data (some bins have very
low number of samples), it is highly unlikely that for example, the Ąrst vanishing point
direction will be close to horizontal.

With all this estimated information it is then possible to construct the 3D bounding
box in both training and test time. It is important to note that by using this 3D bounding
box estimation, it is possible to use this method outside the scope of traffic surveillance. It
is only necessary to train the regressor of vanishing points directions. For the training of
such a regressor, it is possible to use either the directions themselves or viewpoints on the
vehicle and focal lengths of the images.
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Figure 5.7: The CNN used for estimation of directions towards vanishing points. The
vehicle image is fed to ResNet50 with 3 separate outputs which predict probabilities for
directions of vanishing points as probabilities in a quantized angle space (60 bins from −90∘

to 90∘).

Figure 5.8: Collate of random samples from the BoxCars116k dataset.

Using this estimated bounding box, it is possible to unpack the vehicle image in test time
without any additional information required. This enables the usage of the method when
the traffic surveillance data are not available. The results show that by using this estimated
3D bounding boxes, our method still signiĄcantly outperforms other convolutional neural
networks without input modiĄcation.

5.3 BoxCars116k Dataset

We collected and annotated a new dataset BoxCars116k. The dataset is focused on images
taken from surveillance cameras as it is meant to be useful for traffic surveillance applica-
tions. We do not restrict that the vehicles are taken from the frontal side (Fig. 5.8). We used
surveillance cameras mounted near streets and tracked passing vehicles. The cameras were
placed on various locations around Brno, Czech Republic and recorded the passing traffic
from an arbitrary (reasonable) surveillance viewpoint. Each correctly detected vehicle (by
Faster-RCNN [182] trained on COD20k dataset [100]) is captured in multiple images, as it
passes by the camera; therefore, we have more visual information about each vehicle.
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Figure 5.9: BoxCars116k dataset statistics Ű top left: 2D bounding box dimensions, top
right: number of Ąne-grained types samples, bottom left: azimuth distribution (0∘ de-
notes frontal viewpoint), bottom right: elevation distribution.

5.3.1 Dataset Acquisition

The dataset is formed by two parts. The Ąrst part consists of data from BoxCars21k
dataset [198] which were cleaned up and some imprecise annotations were then corrected
(e.g. missing model years for some uncommon vehicle types).

We also collected other data from videos relevant to our previous work [43, 41, 201].
We detected all vehicles, tracked them and for each track collected images of the respective
vehicle. We downsampled the framerate to ∼ 12.5 FPS to avoid collecting multiple and
almost identical images of the same vehicle.

The new dataset was annotated by multiple human annotators with an interest in
vehicles and sufficient knowledge about vehicle types and models. The annotators were
assigned to clean up the processed data from invalid detections and assign exact vehicle
type (make, model, submodel, year) for each obtained track. While preparing the dataset
for annotation, 3D bounding boxes were constructed for each detected vehicle using the
method proposed by [43]. Invalid detections were then distinguished by the annotators
based on these constructed 3D bounding boxes. In the cases when all 3D bounding boxes
were not constructed precisely, the whole track was invalidated.

Vehicle type annotation reliability is guaranteed by providing multiple annotations for
each valid track (∼ 4 annotations per vehicle). The annotation of a vehicle type is con-
sidered as correct in the case of at least three identical annotations. Uncertain cases were
authoritatively annotated by the authors.

The tracks in BoxCars21k dataset consist of exactly 3 images per track. In the new
part of the dataset, we collect an arbitrary number of images per track (usually more than
3).

5.3.2 Dataset Statistics

The dataset contains 27 496 vehicles (116 286 images) of 45 different makes with 693 Ąne-
grained classes (make & model & submodel & model year) collected from 137 different
cameras with a large variation of viewpoints. Detailed statistics about the dataset can
be found in Figure 5.9 and the supplementary material. The distribution of types in the
dataset is shown in Figure 5.9 (top right) and samples from the dataset are in Figure 5.8.
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The dataset also includes information about the 3D bounding box [43] for each vehicle and
an image with a foreground mask extracted by background subtraction [211, 286]. The
dataset has been made publicly available2 for future reference and evaluation.

Compared to Şweb-basedŤ datasets, the new BoxCars116k dataset contains images of
vehicles relevant to traffic surveillance which have speciĄc viewpoints (high elevation), usu-
ally small images, etc. Compared to other Ąne-grained surveillance datasets, our dataset
provides data with a high variation of viewpoints (see Figure 5.9 and 3D plots in the sup-
plementary material).

5.3.3 Training & Test Splits

Our task is to provide a dataset for Ąne-grained recognition in traffic surveillance without
any viewpoint constraint. Therefore, we have constructed the splits for training and eval-
uation in a way which reĆects the fact that it is not usually known beforehand from which
viewpoints the vehicles will be seen by the surveillance camera.

Thus, for the construction of the splits, we randomly selected cameras and used all
tracks from these cameras for training and vehicles from the rest of the cameras for testing.
In this way, we are testing the classiĄcation algorithms on images of vehicles from previously
unseen cameras (viewpoints). This splits selection process implies that some of the vehicles
from the test set may be taken under slightly different viewpoints from the ones that are
in the training set.

We constructed two splits. In the Ąrst one (hard), we are interested in recognizing the
precise type, including the model year. In the other one (medium), we omit the difference
in model years and all vehicles of the same subtype (and potentially different model years)
are present in the same class. We selected only types which have at least 15 tracks in the
training set and at least one track in the testing set. The hard split contains 107 Ąne-grained
classes with 11 653 tracks (51 691 images) for training and 11 125 tracks (39 149 images) for
testing. Detailed split statistics can be found in the supplementary material.

5.4 Conclusion

This article presents and sums up multiple algorithmic modiĄcations suitable for CNN-
based Ąne-grained recognition of vehicles. Some of the modiĄcations were originally pro-
posed in a conference paper [198], while others are results of the ongoing research. We
also propose a method for obtaining the 3D bounding boxes necessary for the image un-
packing (which has the largest impact on performance improvement) without observing
a surveillance video, but only working with the individual input image. This considerably
increases the application potential of the proposed methodology (and the performance for
such estimated 3D boxes is only somewhat lower than when ŞproperŤ bounding boxes are
used). We focused on a thorough evaluation of the methods: we coupled them with multi-
ple state-of-the-art CNN architectures [194, 76], and measured the contribution/inĆuence
of individual modiĄcations.

Our method signiĄcantly improves the classiĄcation accuracy (up to +12 percentage
points) and reduces the classiĄcation error (up to 50 % error reduction) compared to
the base CNNs. Also, our method outperforms other state-of-the-art methods [128, 193, 51]
by 9 percentage points in single image accuracy and by 7 percentage points in whole
track accuracy.

2https://medusa.fit.vutbr.cz/traffic
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We collected, processed, and annotated a dataset BoxCars116k targeted to Ąne-grained
recognition of vehicles in the surveillance domain. Contrary to a majority of existing vehicle
recognition datasets, the viewpoints are greatly varying and correspond to surveillance
scenarios; the existing datasets are mostly collected from web images and the vehicles are
typically captured from eye-level positions. This dataset has been made publicly available
for future research and evaluation.
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Chapter 6

BrnoCompSpeed Ű Dataset for
Monocular Vehicle Speed
Measurement

The text in this chapter contains detailed information about acquiring the BrnoCompSpeed
dataset and our contribution to monocular vehicle speed measurement. This work was
published in Transactions on Intelligent Transportation Systems journal in article Sochor
et al., Comprehensive dataset for automatic single camera visual speed measurement, T-ITS
2018 [200]. Related work for vehicle speed measurement can be found in Section 2.1 on
page 8. The comparison of the proposed BrnoCompSpeed dataset with other available
datasets for vehicle speed measurement can be found in Table 2.2 on page 14, as this compar-
ison is heavily connected to state-of-the-are literature. For evaluations of our experiments,
please see Section V. Experiments in the original paper.

Abstract In this paper, we focus on traffic camera calibration and visual speed mea-
surement from a single monocular camera, which is an important task of visual traffic
surveillance. Existing methods addressing this problem are hard to compare due to a lack
of a common dataset with reliable ground truth. Therefore, it is not clear how the meth-
ods compare in various aspects and what are the factors affecting their performance. We
captured a new dataset of 18 full-HD videos, each around one hour long, captured at 6 differ-
ent locations. Vehicles in the videos (20 865 instances in total) are annotated with precise
speed measurements from optical gates using LIDAR and veriĄed with several reference
GPS tracks. We made the dataset available for download and it contains the videos and
metadata (calibration, lengths of features in image, annotations, etc.) for future compari-
son and evaluation. Camera calibration is the most crucial part of the speed measurement;
therefore, we provide a brief overview of the methods and analyze a recently published
method for fully automatic camera calibration and vehicle speed measurement and report
the results on this dataset in detail.

6.1 Monocular Vehicle Speed Measurement

Speed measurement is one of the crucial problems in traffic surveillance. So far, the Ąeld is
dominated by radar and section speed measurements because they meet tight methodolog-
ical requirements and standards. However, these methods are limited in the information
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Figure 6.1: The data recording setup. We use two LIDARs synced by GPS time, and three
cameras recording the highway from different surveillance viewpoints.

they provide and they may be expensive. For example, in radar measurement it is im-
possible to recognize the Ąne-grained models of passing cars and the radar antenna must
be placed at a speciĄc position regarding the traffic. Section speed measurement requires
two cameras for each position and a complex infrastructure for processing the data. Speed
measurement from a single monocular camera is not typically used for surveillance; however
it can be beneĄcial Ű one camera can be used for surveillance on multiple lanes, it is possi-
ble to use the data for Ąne-grained make & model recognition of the vehicles [74, 7, 88, 85]
and other tasks. Another interesting aspect is that it is possible to use already installed
monitoring/security cameras for speed measurement and other traffic analysis tasks.

A number of works dealing with monocular speed measurement can be found in the
literature [187, 34, 63, 78, 152, 164, 195, 43, 114, 149, 37] (detailed individually below).
Such systems are on the rise especially recently, with the growing number of IP cameras,
with increase of their resolution, and with the development of computer vision algorithms
used for their processing. Our aim is to provide an important missing piece: a dataset which
would allow for reliable comparison between the approaches. These systems are described
in detail in the following section.

We captured a new benchmark dataset of 18 full-HD videos taken from surveillance
viewpoints on the traffic (see Figure 6.1). Each of the videos is around one hour long
to allow for even lengthy calibration procedures and self-adjustment of the surveillance
system. Triplets of videos are observing the same time interval at the same location from
different angles. These shots were captured at 6 different locations. Vehicles in the videos
(20 865 instances in total) are annotated with precise speed measurements from optical gates
using LIDAR and veriĄed with several reference GPS tracks. We provide1 the videos and
metadata (calibration, distances measured on the road plane, annotations, etc.) for future
comparison and evaluation. To illustrate the properties of the dataset and to establish a Ąrst
baseline, we analyze the data by a recently published method for fully automatic camera
calibration and vehicle speed measurement [43] and we report the quantitative results.

Although the dataset is focused on speed measurement, it can be used also for different
traffic surveillance tasks, for example vehicle counting, tracking, vehicle classiĄcation and
other.

1https://medusa.fit.vutbr.cz/traffic
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Figure 6.2: Markings and measured distances on the road plane. Blue dashed lines
Ű annotated lane dividing lines, yellow dashed lines Ű measurement lines, red line
segments Ű measured distances towards the Ąrst vanishing point, green line segments
Ű measured distances towards the second vanishing point. Images with these annotations
for all videos can be found in the supplementary material. Best viewed on screen.

We consider the camera calibration algorithm to be the most crucial part of speed
measurement. It deĄnes how well the speed measurement is done as it is impossible to
measure speed accurately with a poorly calibrated camera. The used algorithm also deĄnes
whether it is usable with a camera observing the road from arbitrary viewpoint and it
determines whether the method can be used fully automatically which is important for
large scale deployment. Therefore, we include a brief overview of existing camera calibration
algorithms for traffic surveillance applications.

The key contributions of this paper are: a) Novel, publicly available dataset for eval-
uation of camera calibration in traffic surveillance and speed measurement. The dataset
contains 18 videos and 20 865 vehicles with known precise ground truth. b) Thorough and
complex evaluation of a recent fully automatic method for traffic camera calibration [43].

6.2 Dataset Acquisition Methodology

We performed six recording sessions at different locations with free Ćow traffic. For each
session, we obtained three videos (approximately one hour long) from different positions
by different video cameras (Panasonic HC-X920, Panasonic HDC-SD90, Sony Handycam
HDR-PJ410). The videos were recorded in full-HD resolution and with 50 frames per second
progressive scan. The recording setup is schematically shown in Figure 6.1 and an example
of the scene is in Figure 6.2.

Reference speed values of passing vehicles were obtained from a pair of experimental
setups, containing a LIDAR (LaserAce® IM HR 300), a GPS module (Leadtek LR9540D),
and a PC. These were placed on the side of the road perpendicular to the direction of traffic
Ćow at a deĄned distance D between them. It was important to place the lasers to the same
height and parallel in the vertical and horizontal axes (see Figure 6.1). This requirement
guarantees that an incoming vehicle always disturbs the laser beams at the same point.

The LIDAR works in the single shot mode (one laser pulse per range measurement). The
sampling rate is 1 kHz and maximal measurement range is 300 m. GPS receiver synchronizes
times on PC using TIMEMARK signal (1 pulse per second with 1µs precision). The data
from each LIDAR and GPS module were recorded by the computer and each measurement
was assigned with a high resolution timestamp obtained from the operating system.
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t11 t12

t21 t22

Figure 6.3: The four phases of a passing car which are used for ground truth speed anno-
tation. Best viewed on screen.

a) b) c) d)

Figure 6.4: Possible variants of occlusion. a) the vehicles are not occluded at all, b) the
closer vehicle is occluding the frontal part of the farther vehicle c) the farther vehicle is fully
covered, d) the farther vehicle’s rear part is covered. The graphs below represent LIDAR
responses with different levels for empty road, fast lane (top dashed line), and slower lane
(bottom dashed lane). See text for description of how all these situations are handled. Best
viewed on screen.

Distance logs from both LIDARs are pre-processed individually. We search for times-
tamps txy (see Figure 6.3) which correspond to car entering/leaving Ąrst/second laser beam.
And each excitation is assigned with the lane based on the measured distance from the LI-
DAR. Excitations generated by the same car on the Ąrst and second LIDAR need to be
matched. The matching is based on the correspondence of lane with limits on speed and
acceleration of cars. We calculate immediate speed when entering the Ąrst laser v11 (at
the time t11), length of the vehicle L, and its average acceleration a over measured span of
known length D by the following set of equations:

v11 +
1

2
a(t12 − t11) =

L

t12 − t11
(6.1)

v21 +
1

2
a(t22 − t21) =

L

t22 − t21
(6.2)

v11 +
1

2
a(t22 − t11) =

D + L

t22 − t11
(6.3)

Then, it is possible to compute immediate speed at any point of the measured span. Unfor-
tunately, when a car is partially occluded by another vehicle, the equations above cannot
be used for the calculation (as some timestamps are unknown). If at least timestamps t11
and t21 are known, the average speed can be computed as

vavg =
D

t21 − t11
. (6.4)
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Figure 6.5: top: Histograms of density of vehicles for each session; one minute granularity
in x-axis. middle: Ground truth speeds measured by the LIDAR setup (Section 6.2);
speed in km/h on x-axis. bottom: Ground truth accelerations; m/s2 on the x-axis.

As we are using LIDARs (instead of e.g. optical gates), we are able to detect situations
when a vehicle is partially occluded by a closer vehicle using the measured distances by
the LIDARs. See Figure 6.4 for examples of all possible occlusion types. There are several
possibilities of occlusion on the pair of LIDARs:

1. Occlusion situations on both the LIDARs are either a) or d) Ű in these situations we
are able to detect that there is a occluded vehicle and measure their speed.

2. Occlusion situations on at least one LIDAR is of type b) or c) Ű we are able to detect
that there is a second ŞshadowedŤ vehicle; the speed measurement is not reliable and
the second vehicle is omitted from the dataset and evaluation.

3. Occlusion situations on both LIDARs are c) Ű the second ŞshadowedŤ vehicle cannot
even be detected. This situation is very unlikely, as the vehicle in the fast lane would
have to be smaller, precisely aligned, and maintain the same speed as the closer
vehicle.

In summary, we either measure the speed accurately, or we know that the speed mea-
surement is not precise and we ignore such a measurement. Therefore, besides the 20 865
vehicles with precise ground truth speed, the dataset contains 2 779 instances of vehicles
which are marked as invalid for speed measurement evaluation.

We also performed manual veriĄcation of the matched timestamps t11 and t21 by check-
ing that they correspond to the same vehicle in the video.

6.2.1 Accuracy of the Acquired Dataset

The distance D between LIDARs is 28 meters (21 meters in one case), and the LIDARs have
1 kHz sampling rate. The actual value of D for every recording session was measured by
handheld laser distance meter, and we assume that upper bound of the distance measure-
ment error is ed = 0.05m. Time measurement error caused by improper synchronization
of LIDARs is at most et = 1ms. Both, ed and et are exaggerated and in reality they are
lower. The upper bound of speed measurement error Er (relative) and Ea (absolute) for
the given speed v can be computed as:
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Table 6.1: Numbers of vehicle passes with known ground truth for each video.

left center right

session1 854 848 849
session2 1 163 1 258 1 583
session3 193 193 193
session4 1 188 1 192 1 177
session5 2 021 2 027 2 030
session6 1 358 1 353 1 358

TOTAL 20 865

Er =
ed + et · v

D
Ea = Er · v
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For a vehicle going v = 20m/s (72 km/h), the resulting maximum possible errors are
Er = 0.25% and Ea = 0.05m/s (0.18 km/h). We consider these errors to be small enough
as the errors of the methods presented in experiments are much higher than this error of
measurement.

6.3 Dataset Statistics and Evaluation Protocol

The dataset consists of 18 videos (6 sessions on different locations, 3 videos from different
angles for each location) and there is totally 20 865 vehicles with known ground truth speed.

To provide statistics about the dataset we report the total number of cars with ground
truth speed for each video in Table 6.1. We also report histograms of speeds, accelerations,
and traffic density in Figure 6.5.

The dataset is (to our knowledge) by far larger than other datasets serving similar
purpose reported in the literature. It covers views typical for traffic surveillance from
arbitrary cameras. It provides high quality videos with various traffic conditions (low
traffic in Session 3, high traffic in Sessions 5 and 6). However, it is quite limited in lighting
and weather conditions. Almost all videos were taken in cloudy weather (except some parts
of Session 3) with no distracting phenomena (fog, rain, etc.).

6.3.1 Evaluation Protocol

For future comparison of methods, we provide an evaluation script2 which automatically
evaluates all the used metrics. It requires two vanishing points of the road plane, principal
point of the camera and scale of the scene as the calibration parameters. Then, the systems
are supposed to report for each observed vehicle a track of one arbitrary reference point on
the road plane (frame numbers + image coordinates). In our case, the point is obtained by
the constructed 3D bounding boxes (see Figure 2.2). The point must be on the road plane

2The evaluation code is available together with the dataset at https://medusa.fit.vutbr.cz/traffic
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for proper projection; however it can be any point on the road plane which the authors are
able to localize Ű it is not necessary to use the 3D bounding boxes.

To compare vehicles with the ground truth, we match the time when a vehicle passed
the measurement line to the time reported by LIDAR and the lane in which the vehicle
is. As the vehicles are sometimes not tracked correctly and the tracking can be lost, we
extrapolate the vehicle trajectory in order to get the correct time.

For each vehicle, we calculate tentative speeds between the positions K frames apart
(approximately 0.1 s, K = 5 for 50 fps video) by projecting the image point coordinates to
the road plane using the provided calibration. The resulting speed is then median of the
tentative speeds. We found out that this method is more robust than measuring the full
section speed due to possible tracking errors.

The computation of distance between two points p1 and p2 is schematically shown in
Figure 2.1 with general model for traffic surveillance camera and it is described in detail in
the supplementary material of BrnoCompSpeed paper [200].

As methods may require different training sets we deĄne three train/test splits. Split A
uses all videos for testing, split B has Session 1 and Session 2 reserved for training, and
Ąnally, split C has Session 1, Session 2, and Session 3 for training. Whenever it is possible,
the results should be reported on the splitting with the lowest number of training sessions.

6.4 Vehicle Speed Measurement Ű Summary

We collected and processed a dataset for evaluation of purely visual speed measurement by
a single monocular camera. Cameras are becoming ubiquitous and a considerable portion
of them observe traffic. By providing this dataset we intend to encourage research of fully
automatic traffic camera calibration methods, which could be used for mining valuable
automatic traffic surveillance data from existing and new camera infrastructure.

On the collected data, we evaluated an approach which is both fully automatic and can
process virtually arbitrary views (see Section V. Experiments in original paper [200]). The
evaluation shows its weaknesses (localization of the VP2 and scale inference), which can
encourage further research in this area, which we will focus on. The measurements also
established a Ąrst baseline to be outperformed by future works.
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Part III

Re-IdentiĄcation of Vehicles from
Image and Video
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Chapter 7

Learning Feature Aggregation in
Temporal Domain for
Re-IdentiĄcation

This part of the thesis contains detailed information about our contribution to vehicle re-
identiĄcation methods using feature aggregation in the temporal domain. This work was
published in Computer Vision and Image Understanding journal in article Špaňhel et al.,
Learning Feature Aggregation in Temporal Domain for Re-IdentiĄcation, CVIU 2020 [209].
Related work for this paper is elaborated in Section 2.6 on page 22. Statistics and infor-
mation about the acquisition process of CarsReId74k dataset, introduced in this work, is
presented in Chapter 4 on page 39.

Abstract Person re-identiĄcation is a standard and established problem in the computer
vision community. In recent years, vehicle re-identiĄcation is also getting more attention. In
this paper, we focus on both these tasks and propose a method for aggregation of features
in temporal domain as it is common to have multiple observations of the same object.
The aggregation is based on weighting different elements of the feature vectors by different
weights and it is trained in an end-to-end manner by a Siamese network. The experimental
results show that our method outperforms other existing methods for feature aggregation in
temporal domain on both vehicle and person re-identiĄcation tasks. Furthermore, to push
research in vehicle re-identiĄcation further, we introduce a novel dataset CarsReId74k. The
dataset is not limited to frontal/rear viewpoints. It contains 17,681 unique vehicles, 73,976
observed tracks, and 277,236 positive pairs. The dataset was captured by 66 cameras from
various angles.

7.1 Vehicle Re-IdentiĄcation Introduction

We consider the problem of re-identiĄcation of individuals observed by different came-
ras at different locations and times. Our work applies to the fairly standard person re-
identiĄcation [234, 82, 243, 266, 25, 284], and to the rather emerging vehicle re-id [132, 138,
190, 235, 244, 272], but it can be used for other similar tasks as well.

The re-id system is given a query track of images and a database of pre-stored tracks,
one of which is assumed to share the same identity with the query. The system is supposed
to output a small subset of the best matching database samples along with their similarity
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Figure 7.1: We propose a new method LFTD for aggregation of features in temporal do-
main. The method generates one feature vector per track of observed objects (e.g. vehicles,
persons). See Section 7.2.2 for details.

scores. Some solutions process the images in the tracks directly (comparing images in
the query track versus images in the database Ű e.g. [257]). However, fast and real-time
processing requires the system to extract a short feature vector for each of the database
tracks and to match them to the feature vector extracted from the query track by computing
a cheap pairwise metric. Our work is targeted on the second, generally more efficient, mode
of processing, that is extraction of a single Ąxed-size feature vector for a track of variable
length by aggregating the feature vectors extracted from individual observations (images).

We propose a new method for feature aggregation in temporal domain LFTD
(Learning Features in Temporal Domain) which takes feature vectors extracted from the
individual observations (images) as its input, and it results in a single relatively low-
dimensional time-pooled feature vector usable by the re-id system. Unlike other methods
which use either RNN [158, 266, 245, 25, 243, 284, 267] or produce weights for feature
vectors as a whole [247, 284, 243], our method produces a different weight for every ele-
ment of the feature vectors which leads to an improved performance as different parts of
feature vectors are weighted differently. The weights are generated by a neural network for
each set (track) of feature vectors. The Ąnal feature vector for the track is obtained by
computing element-wise product between the track’s features and the weight matrix, and
then reducing the matrix in temporal domain by summation. The results show that the
proposed method outperforms other methods [245, 158, 51, 243, 266, 25, 284, 267] in both
vehicle and person re-identiĄcation tasks. See Figure 7.1 for the full re-id pipeline.

Furthermore, we propose to use a different metric for comparing the feature vectors.
Previous works [113, 125, 191] showed that it is beneĄcial to use Mahalanobis distance for
feature comparison rather than Euclidean (or cosine) distance. However, the Mahalanobis
distance has signiĄcant limitations, mainly its time complexity which is quadratic with re-
spect to feature vector dimensionality. Therefore, we propose to use Weighted Euclidean
distance, constructed by constraining the Mahalanobis distance learning to diagonal matrix.
The experiments show that it outperforms both Mahalanobis [191] and Euclidean distance,
while it keeps linear time and memory complexity.
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To improve the availability of datasets for vehicle re-identiĄcation, we collected and
annotated a new vehicle re-identiĄcation dataset called CarsReId74k. As it is common in
traffic surveillance to have whole tracks of vehicles and not individual images, the dataset
includes multiple observations for each vehicle as it is passing in front of the cameras (left,
center, right). We focus on appearance-based vehicle re-identiĄcation: vehicles’ license
plates were only used for ground truth data acquisition (recorded by a zoomed-in camera).
The images of vehicles taken by the other cameras are in most cases so small that it is
not possible to recognize the license plates. The dataset contains 17,681 unique vehicles,
73,976 observed tracks, and 277,236 positive pairs, taken by 66 cameras from various angles
in multiple sessions. We make the dataset publicly available1 for future comparison and
research.

7.2 Proposed Method for Learning Feature Aggregation in
Temporal Domain

The standard baseline to aggregating features from multiple observations of the same object
in temporal domain is to use averaging over time. However, existing literature [245, 158,
51, 243, 266, 25, 284] shows that the accuracy can be improved over the simple averaging by
feature vector weighting or by using RNN. We propose a novel method for the aggregation
in temporal domain, which is based on weighting different elements of the features vectors
by different weights.

The proposed LFTD method aggregates arbitrary features from a sequence of images
(of an arbitrary length), extracted by any feature extractor (it can be even some of newly
presented spatial attention networks [230, 212]) into a single Ąxed-sized feature vector. It
allows to create a database of previously seen objects (with multiple observations) with
such Ąxed-sized feature vectors and then quickly search the database for objects similar to
query objects. LFTD expands the feature dimensions by concatenating the average feature
vector to features extracted in every time step. It allows the network to propagate global
information form the track to each individual observation. Feature vectors are weighted
by column-wise softmax (i.e. along time axis) which forces the network to pick important
observation for every feature in the vector instead of weighting observations as a whole.
This network design performed the best during our preliminary experiments, compared
with user-based vector normalization (subtracting or dividing features by average feature
vector), or different types of feature expansion (e.g. by max-pooled feature vector, etc.).

7.2.1 Image Feature Extraction

We are processing the whole tracks of objects of interest with labels corresponding to iden-
tities {(𝒯i, li)}, where 𝒯i is a sequence of images (I1, I2, . . . , ITi

), i.e. observations of an
object li in the track.

For each track (image sequence), features are extracted for each image independently
by a feature extractor (a CNN-based or another one, the method is not limited by design
to a particular type). The feature extractor yields a feature matrix Xi ∈ R

Ti×N for each
track 𝒯i. Ti is number of time samples (images) for each track 𝒯i and N is the length
of an individual feature vector. In our experiments N = 2048, in case of ResNet-50, and
N = 1536 for Inception-ResNet-v2.

1https://medusa.fit.vutbr.cz/traffic
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Figure 7.2: Schematic network design representing the proposed method for feature aggre-
gation in temporal domain. See Section 7.2.2 for explanation of the symbols.

To make the notation uncluttered, we will omit the lower index i from now on. There-
fore, we will refer to a individual track as 𝒯 , the number of time samples of the track as T ,
and its features as X ∈ R

T×N .

7.2.2 Processing of Features in Temporal Domain

The schematic design of the feature aggregation network is illustrated in Figure 7.2 and the
description follows. Aggregation of features X ∈ R

T×N in temporal domain is essentially
a mapping ϕ : RT×N ↦→ R

M , where M is the dimensionality of feature vector f representing
track 𝒯 .

First, the feature vector of each observation in the track is compressed from N to M
dimensions (M < N) by

yτ = tanh (W1xτ + b1) , 1 ≤ τ ≤ T, (7.1)

where W1 ∈ R
M×N are the parameters of the Ąrst fully connected layer (Figure 7.2),

forming a compressed feature matrix Y ∈ R
T×M .

In order to allow ŞcommunicationŤ between the features across the track, we form a new
feature matrix Y′ ∈ R

T×2M , where each row contains the original feature vector in that
row and an average feature vector for the whole track. Therefore Y′ = [y′

1,y
′
2, . . . ,y

′
T ]

⊤,
where

y′
τ =

[︂

yτ
1
T

∑︀T
i=1 yi

]︂

. (7.2)

From these feature vectors concatenated with the average feature vector, we generate ac-
tivations by another fully connected layer aτ = W2y

′
τ , forming matrix A ∈ R

T×M . These
activations are then normalized by softmax; however, the normalization is not done by rows
(as usually), but by columns to normalize the activation for each component of the feature
vector. Therefore, the normalization yields matrix E ∈ R

T×M , where

eτj =
exp(aτj)

∑︀T
i=1 exp(aij)

. (7.3)

The weight matrix E is then merged with the compressed feature matrix Y by Hadamard
(element-wise) product into matrix Z = Y ∘E. The Ąnal feature vector f is then obtained
as a sum of feature vectors in rows of matrix Z, normalized to a unit vector.

f =

∑︀T
τ=1 zτ

⃦

⃦

⃦

∑︀T
τ=1 zτ

⃦

⃦

⃦

2

(7.4)
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Therefore, if matrix A contained a single constant value, the aggregation would be reduced
to one fully connected layer followed by average pooling. Instead, the weights W1,W2,b1

are trained by back-propagation and the network is thus able to produce better features.

7.2.3 Metrics for Distance Computation

The re-identiĄcation task is deĄned by a query sample (track) and a gallery of samples
(tracks), where one sample from the gallery is supposed to have the same identity as the
query sample. It is common to use Euclidean (or cosine for unit feature vectors) distance
dE(u,v) =

√︀
∑︀

i(ui − vi)2 to rank the gallery samples by their distance from the query
feature vector.

Previous works have shown that other distance metrics can outperform the Euclidean
one, and the Mahalanobis distance seems to be powerful [113, 125]. Mahalanobis distance
between vectors u and v is computed as

√︀

(u− v)⊤M(u− v), requiring that matrix M is
symmetric and positive semi-deĄnite [191]. They claim that such a constraint is hard to
enforce and propose to decompose the matrix M = WW⊤ and learn W instead. Then,
the Mahalanobis distance is computed by the following equation:

dM(u,v) =
√︁

(u− v)⊤WW⊤(u− v). (7.5)

Using Mahalanobis distance as proposed by [191] improves the re-identiĄcation accuracy,
paying a high price in terms of its time complexity. Both time and memory asymptotic
complexities are 𝒪(D2) where D is the dimensionality of the feature vectors. This can
cause signiĄcant problems in re-identiĄcation as the computational cost for quadratic time
complexity is signiĄcantly larger even for D = 128. Therefore, we propose to learn suitable
weights for Weighted Euclidean distance (equivalent to Mahalanobis distance when matrix
M is diagonal), instead. We express the Weighted Euclidean distance by

dWE(u,v) =

⎯

⎸

⎸

⎷

D
∑︁

i=1

wi(ui − vi)2, (7.6)
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Figure 7.4: Middle: Distribution of mean weights for test images in iLIDS-VID
dataset [234]. The dashed grey line denotes image weight for average pooling with T = 16.
Sides: Images with the lowest and highest weights which show that low weight is usually
assigned to images with occluding pedestrians.

where w = [w1, w2, . . . , wD] are learned weights. It should be noted that if all the weights
wi are equal to 1, the metric is reduced to standard Euclidean distance. Before learning,
we initialize the weights by randomly sampling from normal distribution with µ = 1 and
σ = 0.1.

As the Weighted Euclidean distance can be interpreted as Mahalanobis distance with
diagonal matrix M, the same conditions must be kept. The symmetricity is satisĄed trivially
as it is a diagonal matrix. However, to ensure the positive semi-deĄnite property, we ensure
that all the weights wi are non-negative by clipping values bellow zero after each update of
the weights during learning.

The Weighted Euclidean distance has beneĄts when compared to both standard Eu-
clidean and Mahalanobis distances. Compared to the Euclidean distance, it has a higher
expressive power thanks to learned weights w. On the other hand, compared to full Ma-
halanobis distance, it is much faster as both time and memory complexity of the Weighted
Euclidean distance is 𝒪(D). At the same time, as the results in Section 7.3.1 show, our pro-
posed Weighted Euclidean distance also outperforms both Euclidean and full Mahalanobis
distance in terms of re-identiĄcation accuracy.

7.2.4 Full Training and Inference Network

Both the feature aggregation network (Section 7.2.2) and the Weighted Euclidean metric
(Section 7.2.3) are trained by a Siamese network [69], see Figure 7.3. For speeding up the
training, we pre-train the feature extractor (Inception-ResNet-v1 [216] for vehicle re-id and
ResNet50 [76] for person in our case) for the identiĄcation task using the dataset training
data and then we cache all features for the tracks and train the feature aggregation and
distance metric with the cached features. Training the network end-to-end did not improve
the results further. We use a standard contrastive loss [69]

L(u,v, y) = y · d(u,v)2 + (1− y) · [m− d(u,v)]2+ , (7.7)

where u and v are feature vectors, m is the margin between negative samples, [. . . ]+
denotes maximum value with zero, and y = 1, if lu = lv or 0 otherwise (lu and lv are sample
identities). Distance d is one of dE, dM, or dWE from the previous section.
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Figure 7.5: CMC curve on the iLIDS dataset for individual parts of the proposed network.

7.2.5 Design Choices

We analyzed several design choices we made. During preliminary experiments we used
ReLU nonlinearity in Equation (7.1) and found out that the results are signiĄcantly better
with tanh nonlinearity.

Furthermore, on iLIDS-VID dataset [234], we tested how important different parts of
the network are. In these experiments, 128 dimensional features were used (except the
average pooling, where the features had 2048 dimensions). When only average pooling was
used, we got Hit@1 46.3% and with the full network Hit@1 is 61.4%. However, if we use
only the weighting mechanism (omit feature projection by (7.1)), the Hit@1 is 51.6%. And
Ąnally, if we use average pooling (omit the weighting mechanism) with the feature projection
(7.1), we receive Hit@1 56.7%. This shows that both parts of the network contribute to
the accuracy and the contributions can be merged to obtain better results. A graphical
comparison of design choices evaluation can be found in Figure 7.5. Full results of design
choices evaluation for different Hit@Rank can be found in Table 7.1.

Finally, we analyzed the mean weights for different images and the distribution of mean
weights together with images with lowest and highest weights can be found in Figure 7.4.
The results show that the weights are centered around 1/T (i.e. average pooling weight)
which was expected. Also, low weights are usually assigned to images with occluding objects
or pedestrians.

Furthermore, we analyzed the homogeneity of the weights for individual observations
(i.e. how much the weights differ within one observation). The mean relative standard
deviation is 0.34; the weights therefore differ signiĄcantly.

7.3 LFTD Ű Experimental Results

We evaluate our method on the vehicle and person re-identiĄcation tasks on multiple public
datasets to show that the aggregation performs well on various classes of data. Datasets
for evaluation were chosen considering the availability of tracks (multiple observations) of
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Table 7.1: Evaluation of individual parts of the proposed network on the iLIDS dataset.

Method Hit@R (iLIDS)
1 5 10 20

IDE + avg 46.3 71.4 80.2 87.6
IDE + Project (128 feat.) 56.7 79.8 86.6 93.1
IDE + Attention (128 feat.) 51.6 77.6 86.5 91.7
IDE + LFTD (128 feat.) 61.4 79.9 87.8 93.5

Table 7.2: Results for different methods for vehicle re-identiĄcation on CarsReId74k dataset.
The methods use 128 dimensional feature vectors with the exception of avg which uses 1,536
dimensional feature vectors. The methods use Euclidean distance with the exception of
LFTD Ű M (full Mahalanobis [191]) and LFTD Ű WE (Weighted Euclidean as proposed in
Section 7.2.3). Input modiĄers Ű UNP, UNP+IM [202]. Aggregation methods Ű RNN [158],
NAN [247].

Hit@Rank
Input Modif. Aggregation mAP 1 5 10 20

None avg 0.608 55.3 66.4 71.3 76.5
UNP avg 0.652 58.4 72.8 78.0 83.1
UNP+IM avg 0.672 61.2 73.8 78.7 83.5

UNP+IM RNN 0.678 59.0 78.2 84.5 89.7
UNP+IM NAN 0.700 63.3 77.5 82.7 87.5

UNP+IM LFTD 0.746 68.5 81.6 85.8 89.6
UNP+IM LFTD Ű M 0.757 69.5 83.2 87.3 90.7
UNP+IM LFTD Ű WE 0.779 71.3 85.8 89.9 93.1

each object’s identity in the dataset because this work proposes a method for aggregation
of features in the time domain and variable camera viewpoints.

7.3.1 Vehicle Re-IdentiĄcation

Datasets available in 2019 does not Ąt conditions described before at least in one condition
(see Sec. 4.1), thus vehicle re-identiĄcation task was evaluated on our novel CarsReId74k
only.

For feature extraction from images we use Inception-ResNet-v2 [216] with images
resized to 331×331 yielding feature vectors with length 1,536 for each input image. [198, 202]
showed that unpacking the input vehicle by 3D bounding box and alternating the input
image colors is beneĄcial for Ąne-grained recognition of vehicles; we use these modiĄcations
for re-identiĄcation of vehicles as well.

The feature extractor was Ąne-tuned on the identiĄcation task using the training part
of the CarsReId74k dataset. The Ąne-tuning was done with Adam optimizer, learning rate
0.0001, batch size 4 for 300 epochs with standard augmentation techniques (random Ćip
and shift of the bounding box).

When it comes to feature aggregation in temporal domain, we compare several methods
with the following naming conventions:

• avg Ű standard average pooling of feature vectors,
• RNN Ű method proposed by [158] based on recurrent neural network,
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• NAN Ű Neural Aggregation Network proposed by [247],
• LFTD Ű our method (short for Learning Features in Temporal Domain).

To make the comparison fair, we always compare the methods with features of the same
length (128 dimensional features by default). The only exception is average pooling where
the Ąnal features are always 1,536 dimensional. As NAN [247] does not reduce the number
of features, we added a trainable fully connected layer between the feature extractor and
the aggregation network. As both RNN [158] and NAN [244] use Euclidean distance in
the original design, we evaluate the networks with the Euclidean distance. Following other
previous works [158, 266, 25, 243, 284], we Ąx the number of time samples to T = 16.

We also compare different metrics for comparison of the feature vectors. The standard
Euclidean distance is used as the baseline. We also use the full Mahalanobis distance (as
proposed by [191]) Ű shortened as M; and our Weighted Euclidean distance Ű shortened as
WE. The full Mahalanobis distance was trained with regularization term 0.5λ‖WW⊤−I‖2F
as proposed by the authors [191] with λ = 0.01.

To increase the training speed, all the aggregation networks were trained on cached
features extracted by the Inception-ResNet-v2 feature extractor. The networks were trained
in Siamese settings for 30 epochs with batch size 32 on train and validation set. We employed
hard negative mining during the training and all positive pairs and one hardest negative
pair per positive pair were presented to the network in one epoch during the training. For
the RNN [158], we used original hyperparameters as proposed in the paper (SGD, lr: 0.001,
margin: 2); changing them did not improve the accuracy further. We were forced to change
the hyperparemters for NAN [247] to different values than used in the paper as the network
did not converge with the original ones. We used RMSprop optimizer with learning rate
1e-6, and margin 1; different hyperparameters did not improve the accuracy further. Our
method LFTD was trained by Adam optimizer with learning rate 1e-5 (1e-4.4 in the case
of Mahalanobis and Weighted Euclidean distance) and margin 2.

The vehicle re-identiĄcation results can be found in Table 7.2 and Cumulative Matching
Curve (CMC) is shown in Figure 7.6. The results show several things. First, both the
Unpack (UNP) [198] modiĄcation and image modiĄcations (IM) [202] improve the accuracy
of vehicle re-identiĄcation. Second, all feature aggregation methods in the temporal domain
(RNN [158], NAN [247], LFTD) improve the accuracy when compared with the average
pooling in the task of vehicle re-identiĄcation. Third, our method (LFTD) outperforms
other methods for temporal aggregation (RNN [158], NAN [247]). Finally, using other
metrics than Euclidean also improves the accuracy. Our proposed Weighted Euclidean
distance signiĄcantly outperforms the full Mahalanobis distance (as proposed by [191]);
and at the same time, our method has signiĄcantly lower time demands. It has time and
memory complexity 𝒪(D) instead of 𝒪(D2) for the full Mahalanobis distance, where D is
the dimensionality of the feature vectors.

Our explanation of better performance of Weighted Euclidean distance instead of Ma-
halanobis distance is that there is not enough training data to train the full matrix M. This
hypothesis is supported by Fig. 7.7 where the performance with Mahalanobis distance does

not increase and by the fact that
tr(|M|)
∑︀

|M|
= 0.997, i.e. almost all the information in the

matrix is on its diagonal.
We were also curious how the accuracy changes with increasing the dimensionality of the

feature vectors. As Figure 7.7 shows, all methods improve with increasing dimensionality;
however, the results are still similar. Our method LFTD with our proposed Weighted

70



1 5 10 15 20
Rank

55

60

65

70

75

80

85

90

95

Hi
t r

at
e 

[%
]

None + avg
UNP + avg
UNP+IM + avg
UNP+IM + RNN
UNP+IM + NAN
UNP+IM + LFTD - E (ours)
UNP+IM + LFTD - M (ours)
UNP+IM + LFTD - WE (ours)

Figure 7.6: Cumulative Matching Curve for different methods for vehicle re-identiĄcation on
CarsReId74k dataset. The methods use 128 dimensional feature vectors with the exception
of avg which uses 1,536 dimensional feature vectors. The methods use Euclidean distance
with the exception of LFTD Ű M (full Mahalanobis [191]) and LFTD Ű WE (Weighted
Euclidean as proposed in Section 7.2.3).

Euclidean distance is outperforming all other methods for all of the tested feature vector
dimensionalities.

7.3.2 Person Re-IdentiĄcation

To show that our method is applicable also outside the scope of vehicle re-identiĄcation,
we evaluated it on the person re-identiĄcation task. We use two common datasets: iLIDS-
VID [234] and PRID-2011 [82] as they are usually used by other methods for feature aggre-
gation in temporal domain [245, 158, 51, 243, 266, 25, 284]. Futrhermore, for fair comparison
of proposed method, our work was also evaluated on the MARS dataset by [275].

It should be noted that the subject of our study is the aggregation of features extracted
on images by an existing feature extractor. That is why we include in the comparison those
methods that do the same, not methods which use a signiĄcantly different method of image
feature extraction.

For the above reasons, we are not comparing our method with some of the published
methods such as QAN [140] or SpaAtn (DRSTA) [124] as they are focusing on spatiotemporal
attention pooling, and because of that, they provide enhanced feature extraction. In our
work, we target fusion of existing feature extractors. Besides that, their evaluation is not
following the standard evaluation protocol used in the previous works and with the used
datasets, as they are pre-training the networks on different types of image-based person
re-identiĄcation tasks, thus their results are hardly comparable.

iLIDS-VID and PRID-2011

We always used a half of the dataset for training and the other half for testing. Therefore,
the evaluation is done on 100 tracks (150 tracks) with PRID-2011 (iLIDS-VID) dataset.
We used 10 random splits in the case of the PRID-2011 dataset, and the 10 published splits
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Figure 7.7: Performance analysis of different methods for feature vector aggregation in
temporal domain with changing number of features on CarsReId74k dataset. The avg
pooling is shown only for visual comparison and uses 1,536 dimensional feature vectors.
We omitted LFTD Ű M with 1024 features from evaluation because of long evaluation
time (months) and performance drop of version with 512 features. All the methods use
Euclidean distance with the exception of LFTD Ű M (full Mahalanobis [191]) and LFTD Ű
WE (Weighted Euclidean as proposed in Section 7.2.3).

in the case of iLIDS-VID. We used ResNet50 [76] as the feature extractor from the images
and trained it on the identiĄcation task by Adam optimizer with learning rate 0.0001 for 60
epochs with batch size 8, using standard augmentation techniques (random Ćip, rotation,
and shift). We trained our method (LFTD) in a Siamese network by Adam optimizer with
cross-validated learning rate for 150 epochs with batch size 8. We always used 16 time
samples per track and contrastive loss margin 2. We also evaluate the average pooling with
KISSME [113] and XQDA [125] with cross-validated hyperparameters (regularization, and
PCA reduction dimensionality in the case of KISSME).

We used standard Euclidean distance as the metric for our algorithm, because the
number of training data in the datasets is rather low and the accuracy did not improve
further with other distances. This is caused mainly by insufficient amount of training
data because the network was able to re-identify the training tracks without any error
already with the standard Euclidean distance. The results can be found in Table 7.3 and
as the table shows, LFTD signiĄcantly increases the performance compared to average
pooling or average pooling with other metric learning (KISSME, XQDA). The results also
show that our method outperforms other methods for feature aggregation in temporal
domain [245, 158, 51, 243, 266, 25, 284] in Hit@1.

Evaluation of KISSME or XQDA metrics together with the features produced by the
proposed LFTD method is not included in the results because of lacking relevancy of such
comparison. LFTD produces features dependent on the metric used during training and it
generates different feature vector representations for different metrics involved (Euclidean,
Weighted Euclidean, Mahalanobis).
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Table 7.3: Person re-identiĄcation results on PRID-2011 and iLIDS-VID dataset. The top-3
results are highlighted in the following way: Ąrst, second, and third. KISSME Ű [113],
XQDA Ű [125]. LFTD metric used for this experiment is the standard Euclidean distance
because of insufficient amount of training data for the Weighted Euclidean.

Method Hit@R (PRID) Hit@R (iLIDS)
1 5 10 20 1 5 10 20

Yan et al., 2016 [245] 58.2 85.8 93.4 97.9 49.3 76.8 85.3 90.0
McLaughlin et al., 2016 [158] 70.0 90.0 95.0 97.0 58.0 84.0 91.0 96.0
Gao et al., 2016 [51] 68.6 94.6 97.4 98.9 55.0 87.5 93.8 97.2
Xu et al., 2017 [243] 77.0 95.0 99.0 99.0 62.0 86.0 94.0 98.0
Zhang et al., 2017 [266] 72.8 92.0 95.1 97.6 55.3 85.0 91.7 95.1
Chen et al., 2017 [25] 77.0 93.0 95.0 98.0 61.0 85.0 94.0 97.0
Zhou et al., 2017 [284] 79.4 94.4 Ů 99.3 55.2 86.5 Ů 97.0
Zhang et al., 2017 [267] 60.2 85.1 Ů 94.2 83.3 93.3 Ů 96.7

avg 69.4 90.5 95.0 97.6 46.3 71.4 80.2 87.6
avg + KISSME 70.5 91.0 95.1 97.7 56.1 79.0 87.9 93.9
avg + XQDA 75.6 94.3 98.2 99.0 59.5 83.7 90.3 96.2

LFTD (128) 79.2 92.4 95.8 98.4 61.4 79.9 87.8 93.5
LFTD (256) 79.4 93.7 96.8 98.6 62.8 82.1 88.1 94.1
LFTD (512) 80.2 94.6 97.3 98.9 63.5 83.3 89.5 94.9
LFTD (1024) 80.0 93.9 97.4 99.2 63.7 82.9 90.0 94.7

MARS dataset

Features published by the authors of the dataset were used in our experiments. The network
was trained on the training part of the published features in the Siamese setting for 30
epochs with batch size 32 with Contrastive Loss and Adam optimizer. Hard negative mining
was employed during the training, and all positive pairs and 20 hardest negative pairs were
presented to the network in one epoch during the training. Values of learning rate and loss
margin were Ąne-tuned for each variant individually. All variants of our method evaluated
on the dataset can be found in Table 7.4. It should be noted that Baseline is the variant
(IDE, average pooling, Euclidean distance, single query) reported by the authors [275].

7.4 Feature Aggregation in Temporal Domain Ű Summary

We proposed a new scheme for extracting feature vectors for the whole tracks of multiple
observations of an object (vehicle, person) of interest in the re-identiĄcation task. Our
method can work with arbitrary per-image features (e.g. feature vectors from ResNet50 or
Inception-ResNet-v2). Based on such feature vectors we learn a considerably shorter (128
features) per-track feature vector by using the newly proposed LFTD (Learning Features
in Temporal Domain). We also propose to use a different distance metric for comparing
the feature vectors Ű WE (Weighted Euclidean). It is based on the Mahalanobis distance,
whose learned matrix M is made diagonal. This proposed distance metric is much cheaper
in terms of computational and memory resources (𝒪(D) instead of 𝒪(D2) in the case of the
full Mahalanobis metric), but at the same time, it is better at solving the re-identiĄcation
task. The results show that the increase of HIT@1 by using the LFTD was 7.3 percentage
points for the vehicle re-identiĄcation task compared to average pooling, and 17.4 percentage
points for the person re-identiĄcation with the iLIDS-VID dataset and up to 6.4 percentage
points on the MARS dataset. The Weighted Euclidean metric further increased HIT@1 by
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Table 7.4: Person re-identiĄcation results on MARS dataset. Baseline is the variant (IDE,
average pooling, Euclidean distance, single query) reported by authors of the dataset [275].
* - RNN-CNN [158] trained by [243].

Hit@Rank
Variant mAP 1 5 10 20

Baseline 0.424 60.0 77.9 - 87.9
RNN-CNN* [243] - 40.0 64.0 70.0 77.0
ASTPN [243] - 44.0 70.0 74.0 81.0
[267] - 55.5 70.2 - 80.2

LFTD - E (512) 0.481 65.5 80.3 85.5 89.4
LFTD - E (1024) 0.483 65.9 80.7 84.8 89.2
LFTD - WE (512) 0.488 66.1 81.0 85.4 89.8
LFTD - WE (1024) 0.489 66.4 81.5 85.9 89.8

other 2.8 percentage points in case of vehicle re-identiĄcation. We collected and annotated
a vehicle re-identiĄcation dataset CarsReId74k for development and evaluation of vehicle
re-identiĄcation systems and we make it public. It contains 17,681 unique vehicles, 73,976
observed tracks, and 277,236 positive pairs, taken from various angles Ű not just from the
front or rear.
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Part IV

Improvements in License Plate
Recognition
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A key component of traffic analysis, law enforcement, and surveillance systems is licence
plate recognition (LPR). However, the accurate recognition of license plates remains a chal-
lenging task, particularly when dealing with low-quality, degraded and distorted license
plate images. Furthermore, the precise geometric alignment of license plates is essential
for improving the overall recognition accuracy. In this thesis, we present two signiĄcant
contributions that address these challenges: the proposed methods for holistic recognition
of low-quality license plates (Chapter 8 on the following page) and geometric alignment of
license plates using deep learning techniques (Chapter 9 on page 83).

The recognition of low-quality license plates is a crucial task for ensuring the robustness
and effectiveness of license plate recognition systems in real-world scenarios. Traditional
approaches often struggle with low-quality images that suffer from issues such as blur,
noise, and poor lighting conditions. To overcome these challenges, we propose a novel deep
learning-based method for holistic recognition of low-quality license plates. Our method
leverages the power of convolutional neural networks (CNNs) to learn discriminative fea-
tures directly from the license plate images, enabling accurate recognition even in challeng-
ing conditions. By considering the holistic representation of the license plates, our method
exhibits superior performance compared to traditional methods, offering a promising solu-
tion for improving the overall recognition accuracy in real-world scenarios. This work was
published in paper Špaňhel et al., Holistic Recognition of Low Quality License Plates by
CNN using Track Annotated Data [208]. This conference article is included in Chapter 8 on
the following page.

In addition to low-quality license plate recognition, the geometric alignment of license
plates is a critical pre-processing step that signiĄcantly impacts the subsequent recognition
performance. Misalignment of license plates due to varying camera perspectives, vehi-
cle poses, and other factors can introduce challenges such as occlusions, distortions, and
skewed characters, leading to decreased recognition accuracy. To address this issue, in pa-
per Špaňhel et al., Geometric Alignment by Deep Learning for Recognition of Challenging
License Plates [207], we propose a deep learning-based method for the geometric alignment
of license plates. By exploiting the power of convolutional neural networks, our method
learns to detect and correct the misalignment in license plate images, ensuring that the
license plates are correctly oriented and aligned for accurate recognition. Integrating this
geometric alignment step into the license plate recognition pipeline enhances the overall sys-
tem performance, particularly in scenarios where license plates exhibit signiĄcant variations
in alignment. The content of this article is available in Chapter 9 on page 83.

In conclusion, the contributions made by these two papers are signiĄcant in the Ąeld
of license plate recognition. The proposed method for holistic recognition of low-quality
license plates offers a robust solution to the challenges associated with poor image quality,
enhancing the accuracy and reliability of license plate recognition systems in real-world
scenarios. Additionally, the deep learning-based method for the geometric alignment of
license plates addresses the crucial issue of misalignment, ensuring accurate recognition by
correcting misaligned license plate images. By integrating these methods into license plate
recognition systems, the overall performance is greatly improved, making them more effec-
tive in scenarios with varying image quality and alignment. These contributions have the
potential to advance the Ąeld of license plate recognition and contribute to the development
of more accurate, robust, and efficient systems.
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Chapter 8

Holistic Recognition of Low
Quality License Plates by CNN
using Track Annotated Data

Abstract This work is focused on recognition of license plates in low resolution and
low quality images. We present a methodology for collection of real world (non-synthetic)
dataset of low quality license plate images with ground truth transcriptions. Our approach
to the license plate recognition is based on a Convolutional Neural Network which holis-
tically processes the whole image, avoiding segmentation of the license plate characters.
Evaluation results on multiple datasets show that our method signiĄcantly outperforms
other free and commercial solutions to license plate recognition on the low quality data.
To enable further research of low quality license plate recognition, we make the datasets
publicly available.

8.1 Low-quality License Plate Recognition

Automatic license plate recognition (ALPR) is a common task nowadays and it is used
by many applications of intelligent transportation systems for security and traffic control.
Traffic Ćow analysis, automatic vehicle speed measurement, parking violation enforcement
are only a few examples where ALPR is commonly used. A large number of previous
approaches to ALPR have been proposed [2, 23, 56, 95, 121, 178, 237, 276]. Most of the
existing algorithms (and commercial solutions) use character segmentation as one step in
their algorithm. However, proper character segmentation has a signiĄcant inĆuence on the
recognition rate of such an ALPR system. If the segmentation is improper, the license
plate will be recognized incorrectly even if the recognizer itself is robust and it can deal
with different characters font, rotation and size. Other problems that affect the character
segmentation process and that are hard to handle include image blur, uneven lighting,
shadows and noise.

This paper focuses on an alternative approach to the license plate recognition in a holis-
tic, segmentation-free way. The results conĄrm that this approach is applicable even un-
der challenging conditions (e.g. low-quality images, blurred images, uneven lighting, image
noise), where proper character segmentation is nearly impossible. The novel user-annotated
dataset was collected for the purpose of this work and will be publicly available for non-
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Figure 8.1: Schematic Ągure of used Convolutional Neural Network. The network contains
three sequences of three convolutional layers with ReLU and Batch Normalization. The
features are then fed into 8 branches of the net with fully connected layers predicting
characters on respective positions.

commercial use1. Images in the dataset are annotated by whole license plate tracks (se-
quences of observations of a single vehicle), therefore it provides real ground truth labels
even for naturally blurred, partially occluded, and hardly readable license plate images,
which allows to train a very robust license plate recognizer. An example of such a license
plate track can be seen in Figure 3.1 on page 35.

A single convolutional neural network (CNN) is used in the proposed method for holistic
license plate recognition. Unlike [23, 121], our method handles character localization and
recognition by a single CNN, without the need of additional recurrent neural network for
correct data labeling. In our case, the model is trained on European license plates only and
it is evaluated on the same types of license plates. It is safe to assume that the proposed
approach will be applicable to different styles of license plates (e.g. US, China, etc.) by
providing a sufficient amount of training data.

8.2 Holistic-CNN Ű Methodology

We use Convolutional Neural Networks for recognition of the license plate text. In order
to avoid using character segmentation, the whole RGB image of the license plate is fed
into the net. The net is designed to predict 8 characters of the license plate. The image is
processed by a convolutional part of the CNN and then 8 branches of fully connected layers
predict 8 characters while each branch always predicts one character on the same position
in the license plate text. Scheme of the CNN is shown in Figure 8.1. As it can be seen
in Figure 8.1, the convolutional part contains three sequences of three convolutional layers
with ReLU and Batch Normalization.

We also tested a smaller network which contains three sequences of two convolutional
(instead of three) layers with a smaller number of Ąlters (16/32/64 instead of 32/64/128).

The smaller network contains ∼ 8M parameters while the bigger one has ∼ 17M pa-
rameters. The results in Section 8.3 show that the smaller CNN achieves similar accuracy
as the deeper one. However, the smaller network is able to process an image approximately
three times faster.

License plates of variable lengths. One of the challenging tasks in segmentation-
free license plate recognition are license plates with variable length (frequently, but not
exclusively license plates from different countries). The method proposed in this work is
trained for nmax number of outputs, which equals to license plate with maximal length in
our ReId dataset (8 characters in our case). In the case that license plate has lower than
nmax number of characters, than nadd = nmax − nlp blank Ąll characters (Ş#Ť) is added to

1https://medusa.fit.vutbr.cz/traffic/
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Figure 8.2: Attention of fully connected layers for different letters in the license plate. Left
to right, top to bottom: 1st to 8th character. The 4th letter in most cases contains the blank
Ąll character.

the license plate text during the training phase, where nlp is the length of current license
plate. This blind text of nadd characters is inserted to the ground truth license plate text
before last 4 characters. Location of this blind text outcomes from the most common layout
of license plates in our country. Examples of license plates with various character layouts
can be found in Figure 3.3.

Training details. Both variants of the CNNs were trained using TensorĆow with Adam
optimizer. Initial learning rate was set to 0.001 and the nets were trained for 80 epochs.
We also tested larger number of features in fully connected layers, however the accuracy
did not improve further.

Attention span of fully connected layers. During experimenting with the learned
CNN, we visualized the locations where the individual fully connected parts of the CNN
ŞlookŤ for their data. Figure 8.2 shows images with mean of weights in the Ąrst fully
connected layer corresponding to different spatial locations. The mean is done over all
128 channels and all 128 outputs of the fully connected layer. The Ągure shows that the
network properly learned to use correct spatial locations for different letters in the license
plates. The 4th letter does not have a clear blob with a distinct maximum, as majority
of the license plates in the datasets (Sec. 8.3) contain 7 characters, and the 4th letter was
designated as the blank Ąll character.

8.3 Experiments with Holistic LPR

The proposed method was evaluated on different datasets together with two other methods
for appropriate evaluation. The proposed method was trained on the training part of the
ReId dataset only and evaluated on the test part the of ReId dataset. We also evaluated
whether it is possible to use the trained model with license plates of different type from
other datasets to analyze transferability of the model.

8.3.1 Existing solutions

OpenALPR. OpenALPR2 is an open source library for Automatic License Plate Recog-
nition written in C++. This software is based on OpenCV3 computer vision library and
Tesseract OCR4 and it is a classical representative of a method based on character segmen-
tation.

2https://github.com/openalpr/openalpr
3http://www.opencv.org
4https://github.com/tesseract-ocr/tesseract
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Table 8.1: Evaluation of different license plate recognition systems on ReId, HDR, and
Svoboda et al. [215] (blurred + deblurred) datasets. The datasets were evaluated as char-
acter/license plate error rate for Top 1 results including processing time of most of the
methods. The processing speed was measured on a PC with i5-6500@3.2GHz and GTX
1080 and PC with i7-3770@3.4GHz in the case of UnicamLPR.

error rate [%] (character/license plate) speed [ms]
system ReId HDR [215] deblur. [215] CPU GPU

OpenALPR 41.9/66.0 28.6/60.0 93.1/99.0 12.3/30.4 22.64 Ů
UnicamLPR 19.8/30.0 65.0/68.1 38.8/61.7 12.9/16.7 13.70 Ů

ours 0.4/1.4 3.5/9.7 16.4/44.6 2.7/9.0 36.64 0.82
ours (small) 0.4/1.7 4.5/12.1 20.0/54.1 3.1/11.3 9.59 0.31

In our experiments, we use the original settings for EU license plates. Detection phase
is skipped and license plate recognition is evaluated on already cropped images, where top
10 recognized license plates are obtained for each input image for better comparison.

UnicamLPR. Similarly to the evaluation by Svoboda et al. [215], a commercial license
plate OCR was also evaluated on testing datasets. The UnicamLPR5 is a software for
detection and recognition of license plates optimized for real-time and low latency processing
of license plates captured by traffic surveillance cameras. The software is robust and allows
an angle between the camera and the license plate up to ±30∘. It should be noted that the
UnicamLPR is designed for license plates of standard image quality.

8.3.2 Evaluation Datasets

ReId. The testing part of our ReId dataset (described in Section 3.1 on page 35) was
used in the experiments. It contains 76,412 color license plate images of different lengths,
image blur and slight occlusion. The dataset samples are shown in Figure 3.3 on page 36.

HDR. The HDR dataset (described in Section 3.1 on page 35) used in evaluation was
captured by DSLR camera with three different exposures, from which medium and high
exposure images were used in experiments. License plates were hand-cropped from images
and annotated by users resulting in 652 images. Examples from the dataset can be found
in Figure 3.4 on page 37. It should be noted that the images contain rotated license plates
which are of different type than the ones used for training.

Svoboda et al [215]. The dataset used by Svoboda et al. [215] was captured by surveil-
lance cameras in a production-use traffic monitoring system and were set to capture license
plates with motion blur. The task of Svoboda et al. [215] was to deblur these license
plates by CNN. License plates were labeled with their ground truth texts by humans from
deblurred images. We evaluate the method on two sets from this dataset. The Ąrst one
contain the original blurred images, and the second one contain images deblurred by the
authors of the deblurring method [215]. Each set consist of 711 greyscale images with IR
Ćashlight. Samples from both parts of the dataset are shown in Figure 3.4 on page 37. It

5http://www.camea.cz
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Figure 8.3: Error rates for different license plate recognition methods on different datasets.
The top row shows the error rates for full license plate recognition and the bottom row
shows the error rates for single character recognition. The Ągures show error rates for differ-
ent number of most probable license plates. The results show that our method outperforms
both OpenALPR and commercial solution UnicamLPR used by Svoboda et al. [215]. Also,
a small variant of our CNN achieves a similar accuracy as the larger used CNN.
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Figure 8.4: Examples of correctly (top row) and incorrectly (bottom row) recognized
license plates from ReId (left part) and HDR (right part) datasets with top-2 recognition
results for each image. It can be seen that license plates are very challenging and almost
unreadable for human in some cases.

should be noted that those license plate images which were unreadable from the deblurred
version by humans were removed from both parts of the dataset to provide reliable ground
truth labels, so the results are slightly different from those that were published before.

8.3.3 Results

As it can be seen from Table 8.1 and Figure 8.3, the proposed CNNs outperform other
evaluated solutions on all used datasets. The results show slight increase of error rates on
HDR and Svoboda et al. [215] datasets, but it should be noted that our method was trained
only on the ReId dataset, therefore the error rates on the datasets show transferability of
the trained CNNs to other datasets with different types of images (e.g. long shutter time,
greyscale, rotated license plates). Figure 8.3 also shows the progress of error rates of the
proposed method and OpenALPR from Top-1 to Top-10 accuracy results.

The results also show that a smaller version of the network (see Section 8.2 for details)
has competitive results with the full network, while the license plate (LP) processing time
is signiĄcantly lower (especially on CPU). When considering the processing speed of the
full pipeline on GTX 1080 (LP detection and recognition) it can Ąt within 20 ms per Full-
HD frame. We consider 5 ms for detection, 10 LPs per image for recognition (8 ms), and
processing overhead.

81



Examples of correctly and incorrectly recognized LPs from ReId and HDR datasets are
shown in Figure 8.4. The top row contains correctly recognized LPs and the bottom row
contains incorrectly recognized LPs. Both rows are shown with the best scoring two results
for each plate.

8.4 Holistic LPR Ű Summary

This paper presents a holistic license plate recognition method using the promising CNN
technique. The last convolutional layer of used CNNs is connected to 8 branches of fully
connected layers, each with 36 outputs, for predicting characters at the respective positions
in the image. Each network is trained to localize and recognize characters in the image at
different locations, which are learned automatically. Evaluation of the proposed method
proves that the CNN can localize the position of characters automatically and it can learn
such distinctive features that are robust to various illumination, rotation, occlusion, and
image blur.

The results show that the proposed networks signiĄcantly outperform existing open-
source and commercial solutions on numerous datasets, while the processing speed is com-
parable when used on CPUs and our solution is easy to use on GPUs.
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Chapter 9

Geometric Alignment by Deep
Learning for Recognition of
Challenging License Plates

Abstract In this paper, we explore the problem of license plate recognition in-the-wild (in
the meaning of capturing data in unconstrained conditions, taken from arbitrary viewpoints
and distances). We propose a method for automatic license plate recognition in-the-wild
based on a geometric alignment of license plates as a preceding step for holistic license
plate recognition. The alignment is done by a Convolutional Neural Network that estimates
control points for rectifying the image and the following rectiĄcation step is formulated so
that the whole alignment and recognition process can be assembled into one computational
graph of a contemporary neural network framework, such as TensorĆow. The experiments
show that the use of the aligner helps the recognition considerably: the error rate dropped
from 9.6% to 2.1% on real-life images of license plates. The experiments also show that
the solution is fast Ű it is capable of real-time processing even on an embedded and low-
power platform (Jetson TX2). We collected and annotated a dataset of license plates called
CamCar6k, containing 6,064 images with annotated corner points and ground truth texts.
We make this dataset publicly available.

9.1 License Plate Recognition in Unconstrained Environment

Automatic License Plate Recognition (ALPR) is the backbone for many applications in
traffic surveillance and intelligent transportation systems (automatic parking systems, se-
curity surveillance systems, toll gates, etc.). In many such applications, the cameras are
Ąxed and positioned so that the license plates share a common size (image resolution),
orientation and they are not skewed. In such scenarios, the existing recognizers of license
plates achieve almost perfect results. However, mobile monitoring platforms are used more
frequently for parking enforcement and other applications, and also the availability and
properties of PTZ (pan-tilt-zoom) cameras offer for much less restricted scenarios. Existing
solutions of automatic license plate recognition (an overview is available in Section 2.8) are
not designed for these unconstrained cases and tend to achieve poor results.

Our paper described in previous chapter proved that holistic (i.e. refraining from seg-
menting the characters) recognition outperforms other available recognition methods. How-
ever, our previous work does not deal with challenging license plates captured from different
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Figure 9.1: Overview of our approach. The input license plates of various resolutions,
padding, rotation, and skew are analyzed by the aligner CNN, rectiĄed and processed
by a holistic license plate recognizer. The whole process can be incorporated into one
computational graph and computed as a whole, for example in a GPU.

viewpoints. In this work, we propose a solution how to overcome that limitation. We de-
signed a new convolutional neural network (CNN) whose purpose is to predict four corner
points of the license plate in the unaligned image. These points deĄne the transformation
which rectiĄes the image for subsequent processing by the holistic license plate recognizer.
Although the neural networks are trained separately, they can be assembled into one com-
putational graph so that the solution works as a whole, its use is no more complicated than
using only the recognizer. The proposed framework can be seen in Figure 9.1.

We carried out experimental evaluation of the proposed approach. The proposed aligner
network decreases the recognition error on real-life license plates considerably. We evaluated
the sensitivity of the newly proposed pipeline to various distortions of the input images:
rotation, skew, blur, noise, etc. Again, the aligner network helps the stability notably. We
also evaluated the speed of the proposed recognition pipeline. Thanks to the fact that it
can be assembled with the recognizer into one computational graph, it can be efficiently
(in real time) executed even on low-power and embedded devices. All these Ąndings make
the proposed approach interesting in applications of traffic enforcement and intelligent
transportation systems.

The contributions of this paper are the following:

• A method for aligning license plates before recognition based on CNN.

• Novel CamCar6k dataset of in-the-wild license plates.

• Detailed evaluation of aligner/recognizer performance inĆuenced by different distor-
tions.

9.2 Aligner-CNN Ű Methodology

This section presents our processing pipeline, mostly the newly added aligner CNN and
the way the whole system is assembled and learned. It should be noted that this work is
not focused on license plate detection as we assume that the license plates are detected
by an existing technique in software [2, 56, 86, 121, 178], hardware [259], or GPUs [81].
The license plate detector does not need to be very sophisticated and the system can
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Figure 9.2: The whole license plate processing pipeline. The aligner outputs four
heatmaps based on which the LP’s corner points are found and the license plate is trans-
formed/aligned. Then, the existing state-of-the-art recognizer processes it.

Figure 9.3: Hourglass architecture of the proposed Aligner CNN for estimation of the
corner points. It consists of three stacked hourglass modules, allowing repetitive top-down,
bottom-up inference with skip connections. The Aligner CNN estimates the probability map
for each corner point independently, in the case of a missing corner points, the probability
map is (close to) zero over all its surface.

tolerate its relatively high false positive rate, since the candidate locations are veriĄed by
the aligner/recognizer presented in this work.

9.2.1 Hourglass Network for Keypoint Detection

The proposed Aligner CNN is shown in Figure 9.3. It is based on the stacked hourglass
neural network as designed by Newell et al. [162]. The Aligner CNN is a fully convolutional
network which for each image point evaluates the probability that the point contains one of
the four corner points. The network contains three hourglass modules which downsample
and upsample the features in the spatial dimension. For better gradient Ćow, the network
contains skip connections and an additional output layer with MSE or Binary Cross-Entropy
losses after each hourglass module. The hourglass design allows the network to process and
consolidate features across different scales. It has the capacity to capture all of these
features together and create per-pixel predictions at the output. For further details about
the model, we refer readers to the original paper [162].

The network is trained using randomly rotated images of license plates and ground
truth probability maps for each corner point are used as the supervision. To reduce the
computational complexity, we used only three hourglass modules and feature size 64.
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Figure 9.4: Examples of the alignment process. From left to right: input image, merged
predictions, detected keypoints, aligned license plates.

9.2.2 License Plate Processing Pipeline

The hourglass network estimates the locations of the inner corner points of the license
plate. Its outputs are four probability maps for the four corner points in a speciĄed order
(top left, top right, bottom right, bottom left). If a keypoint is not present in the input
image (occlusion, damage, image does not contain a license plate), the peak is missing in
the appropriate heatmap. An example of the predicted heatmaps merged into one can be
found in Figure 9.2 middle (merged predictions) and in Figure 9.4.

The maximum of each predicted heatmap is used as the detected keypoint, shown in
Figure 9.2 (detected keypoints). The detected keypoints are then used to normalize the
license plate using homography H between the estimated points and predeĄned axis-aligned
corner points.

Finally, aligned license plates depicted in Figure 9.2 (aligned license plate) are passed
to the recognizer network to provide the Ąnal recognition.

9.2.3 Recognizer Network

Recognition of the aligned license plates is based on a CNN proposed by Špaňhel et al. [208]
(described in previous Chapter 8). The proposed network processes the whole image at once
without character segmentation. During training, the CNN learns the presumed location
for each output layer (each character of the LP) from the training data. The network is
composed of three blocks sharing the same structure: three identical subblocks containing
the convolutions and nonlinearity (3×3 convolution layer + ReLU + Batch normalization)
followed by one 2×2 max pooling. At the end, the network predicts eight different characters
independently.

During inference for aligner+recognizer network, both variants are evaluated (even the
variant without the aligner) and the result with higher conĄdence is selected as the Ąnal
output. It results in an increase of recognition accuracy; however, the processing speed
decreases, which can be seen in Section 9.3, Table 9.2.
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Table 9.1: Accuracy of license plate recognition with different versions of aligner
(rows)/recognizer (columns).

RECOGNIZER
ALIGNER Real Real+Synth OpenALPR

None 87.5 90.4 69.4

Real 96.0 97.9 73.6

Real+Synth 95.8 97.7 71.4

9.3 Experiments with Aligned License Plates

In our experiments, we evaluated different combinations of the aligner and the recognizer
networks. We trained two variants of the aligner network, different in the datasets used
for training. The Real variant is trained on the training split of the CamCar6k dataset
only because this real-world dataset contains the annotations of the LP corners. The
Real+Synth option expands the training set by adding the synthetic data in the training
phase. The networks were trained with learning rate 2.5e-4, batch size 16, and input
resolution 128×128. The output probability maps have shape 32×32×4 as we are estimating
4 corner points. The network was shown 5 millions randomly transformed samples during
the training.

On the other hand, the recognizer network trained on the real-world data (denoted
by Real) is trained using all data from ReId and HDR and the training part of the Cam-
Car6k dataset because the corner point annotations are not necessary. The second variant
Real+Synth expands the training set by synthetically generated images just like in the
case of the aligner network. The networks were trained with learning rate 0.01 and Adam
optimizer for 20 epochs. The input image shape is 128× 35. During the training, the input
license plates were randomly rotated in range ±15∘, shifted, and resized. These different
variants are denoted in the form of ALIGNER / RECOGNIZER throughout the whole
paper.

For evaluating the recognition accuracy and the processing speed, only the test split
of the CamCar6k dataset was used (depicted in Section 3.2 on page 36). The evaluation
of each variant of the aligner/recognizer networks can be found in Table 9.1. The results
show that using the aligner CNN considerably improves the recognition rate on the in-the-
wild data: error rate reduced from 12.5% to 4.0%. Extending the real-world dataset by
synthetic data did not improve the aligner’s performance (it even slightly degraded). On the
other hand, using the synthetic data when learning the recognizer network helped visibly:
error rate reduced from 4.0% to 2.1%. Two publicly available license plate recognizers were
also evaluated. OpenALPR1 which is the most famous open-source solution for license plate
recognition and license plate recognition Sighthound Cloud API2. Both solutions suffer from
being based on character segmentation (Section 2.8). Interestingly, Sighthound was able to
detect at least some characters only on 1% of license plates in the dataset so we omitted it
from Table 9.1.
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Figure 9.5: Three different distortions added to the real-world images (testing part of
the CamCar6k dataset). In all cases, the aligner improves the recognition performance
considerably. In the case of added padding (the LP does not cover the whole region of
interest, but a margin is added around), the recognizer helps tremendously Ű allowing for
a high tolerance for the detector of the LPs.

9.3.1 Robustness of the Proposed Method

Robustness of the method against various distortions and inĆuences is crucial for license
plate recognition in the wild, so we made experiments with different types of distortions.

All the distortions were applied on the original image data (testing part of the CamCar6k
dataset). The detailed results of these tests are shown in Figure 9.5 from left to right,
respectively.

Additive noise Noise added to the source image simulates varying quality of the used
camera or its setting. Use of the aligner keeps the performance constantly better than
without it and the drop with the increasing noise comes later. Interestingly, recognizer
trained on purely real data does not drop its performance as quickly as the one trained also
with synthetic data (though the second one performs slightly better when the noise is not
added).

Padding As expected, the aligner detects the extra padding around the license plate
and the recognizer then can focus on the license plate instead of on its surroundings. The
performance with the aligner remains almost unchanged and it starts to fall only with such
a large padding which was not covered in the training data.

Out of focus blur The recognition seems to be equally sensitive to disc blurring regard-
less of the use of the aligner.

The following distortions have two parameters, so they are visualized by using 2D graphs
in Figure 9.6.

Rotation/Shear The purpose of the aligner is to compensate for random rotations and
skewed license plates. The test veriĄes that the aligner is very successful in this task and
broadens the tolerance to these distortions greatly.

1OpenALPR – https://www.openalpr.com
2Sighthound Cloud API – https://www.sighthound.com/products/cloud

88

https://www.openalpr.com
https://www.sighthound.com/products/cloud


−50 0 50
rotation [deg]

−40

−20

0

20

40
sh

ea
r [

de
g]

None / Real

−50 0 50
rotation [deg]

None / Real+Synth

−50 0 50
rotation [deg]

Real / Real

−50 0 50
rotation [deg]

Real / Real+Synth

−50 0 50
rotation [deg]

Real+Synth / Real

−50 0 50
rotation [deg]

Real+Synth / Real+Synth

−25 0 25
blur dir [deg]

0

10

20

30

40

bl
ur

 le
ng

th
 [p

x]

−25 0 25
blur dir [deg]

−25 0 25
blur dir [deg]

−25 0 25
blur dir [deg]

−25 0 25
blur dir [deg]

−25 0 25
blur dir [deg]

−1 0 1
pixel add

0

1

2

3

pi
xe

l m
ul

t

−1 0 1
pixel add

−1 0 1
pixel add

−1 0 1
pixel add

−1 0 1
pixel add

−1 0 1
pixel add

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

Figure 9.6: Three different distortions added to the real-world images (testing part of the
CamCar6k dataset), top to bottom: rotation vs. shear, simulated motion blur (direction +
length), brightness / contrast adjustment. The versions with the aligner at work (columns
4 to 6) are clearly superior in all cases. Also, it should be noted that the Aligner CNN was
trained for rotations ±45∘.

Table 9.2: Processing speed of recognizer on different platforms.

Recognizer Aligner+Recognizer
Platform Model ms FPS ms FPS

CPU i5-6500 7.944 125.9 25.850 38.7

GPU GTX 1080 0.686 1, 457.3 1.877 532.7

SoC Jetson TX2 4.456 224.4 16.466 60.7

Motion blur The motion blur (important factor in surveillance and monitoring of moving
vehicles and/or from a moving vehicle) is simulated by applying blur of given length (in
pixels) in a given direction (in degrees). Use of the aligner improves the results also in this
case.

Brightness/Contrast changes The last test studies how the performance is inĆuenced
by brightness/contrast changes, simulated by adding and multiplying the individual pixel
values.

9.3.2 Processing Speed

The processing speed of the recognizer and the combination of the aligner plus the recognizer
was evaluated on different platforms: on CPU, GPU, and on an embedded device (SoC).
The results are presented in Table 9.2. The results show that the solution is able to greatly
beneĄt from using contemporary GPUs Ű the coupled aligner with recognizer can process
over 500 LPs per second. Even an embedded system, represented by NVIDIA Jetson TX2
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platform (Tegra X2 chip, Pascal architecture, 256 CUDA cores), is capable of processing
at least 60 LPs per second, with power consumption of only 7.5 Watts. This performance
is sufficient for processing data from a connected camera in real time and it is suitable for
usage in real-world applications.

9.4 License Plate Alignment Ű Summary

In this paper, we are dealing with the problem of recognizing license plates in the wild Ű
rotated, skewed, blurred, noised, etc. Recognition of such license plate images is crucial
for many applications from the domain of traffic enforcement and intelligent transportation
systems.

We propose to precede the LP recognizer by an aligner having the Hourglass CNN ar-
chitecture. The experimental results show that harnessing the aligner helped considerably:
the error rate dropped from 9.6% without it to 2.1% on a real-world dataset captured by
cameras mounted on a vehicle. The aligner is designed so that it can be assembled with the
recognizer into one computational graph used by contemporary neural network platforms.
This greatly helps the efficiency and the whole solution is able to work in real time even
on low-power and embedded architectures (represented by Jetson TX2 in the experiments).
The speed of processing 60.7 LPs per second on an embedded device outperforms current
solutions signiĄcantly.

Along with this research, we collected a dataset of 6,064 in-the-wild license plates and
annotated their ground truth texts and four inner corner points. We made the dataset
CamCar6k publicly available for non-commercial use.
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Part V

Application of Presented Research
in the Real World
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The previous parts of this thesis described advances in various areas of traffic analy-
sis, the contributions of different methods and published datasets, described in previous
Chapters 5, 6, 7, 8, 9. This part brieĆy overviews previously described methods within the
context of NVIDIA AI City Challenges3 or contractual research.

General Traffic Analysis (Challenges) NVIDIA AI City Challenge started in the
year 2017. As the challenge evolves, it attracts more researchers’ attention and allows
them to evaluate proposed solutions against top methods/solutions that are Ąne-tuned for
each challenge track. In traffic analysis tracks, we have tried to avoid such Ąne-tuning
as much as possible to test the ability of our proposed methods across multiple challenge
tracks (Speed Measurement, Vehicle Re-IdentiĄcation, Multi-Target Multi-Camera Vehicle
Tracking, Vehicle Trajectory Analysis). Chapter 10 contains our a brief overview of our
submissions to this challenges [203, 205, 50]

Analysis of Vehicle Trajectories (Contractual research) This contractual research
aimed to analyze the behavior of vehicles on third-grade roads with and without horizontal
lane markings with slight curvature (R ≤ 200m). The roads are not frequented by many
vehicles, so a general short-term study would not provide enough data. We used record-
ing devices for long-term (weeks) traffic recording and designed a system for analyzing the
trajectories of the vehicles employing computer vision, based on camera calibration, precise
LP detection and tracking We collected a dataset at 6 distinct locations, containing 1 010
hours of daytime video. In this dataset, we tracked over 12 000 cars and analyzed their
trajectories. The results show that the selected approach is functional and provides infor-
mation that would be hard to mine otherwise. After applying the horizontal markings, the
drivers slowed down and shifted slightly toward the outer side of the curvature. This re-
search study was conducted for Transport Research Center (Cetrum Dopravního Výzkum4)
in Brno. Conclusions from this research were published in the following works [72, 206].
A summary of this research is provided in Chapter 11 on page 104.

The results show that after the lines were drawn, the drivers tended to slow down (by
around 4 km/h) and to move slightly (around 20 cm) towards the outer side of the curvature.
When the center line was drawn (contrary to the situation when the shoulder line markings
were drawn), the cars were less spread across the driving lane, i.e., the drivers generally
stayed closer to the ideal center line of the driving lane.

3https:\\www.aicitychallenge.org
4https:\\www.cdv.cz
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Chapter 10

NVIDIA AI City Challenges

We have attended multiple NVIDIA AI City Challenges, organized as Computer Vision and
Pattern Recognition Workshop since 2017. Over several years, we have submitted multiple
submissions covering the various tracks of this challenge.

10.1 Speed Measurement and Vehicle Re-IdentiĄcation from
Video (AIC 2018)

In this submission, we address the tasks of vehicle speed measurement and re-identiĄcation
(i.e. Task1 and Task3 ). We used our approach to camera calibration (Section 6.2). Also, for
the re-identiĄcation task, we use the approach proposed in our LFTD paper (Section 7.2).
In the paper, we show that using ŞunpackedŤ versions of vehicles (Section 5.2) improves
the re-identiĄcation performance.

The vehicles were detected by a CNN-based detector, tracked in time, and a 3D bound-
ing box was constructed for every detected vehicle. These 3D bounding boxes are used for
different purposes in the tasks. In the re-identiĄcation task, we use the 3D bounding box to
produce an ŞunpackedŤ version of the vehicle and normalize the input image. In the speed
measurement task, the 3D bounding box is used to compute the center of the vehicle’s base,
as it is a point in the road plane; therefore, it can be used for speed measurement.

10.1.1 Vehicle Detection and Data Preprocessing

As a Ąrst step of processing the video, it is necessary to detect vehicles in all frames.
We used Faster-RCNN [182] with ResNet101 [76] backbone. The detector was trained on
UA-DETRAC [150] and COD20K [100] datasets. The detections were merged to tracks
using Kalman Ąlter [101]. Examples of the detections can be found in Figure 10.1 (left).
Furthermore, we detected vanishing points in every video using our recent algorithm [199].
Figure 10.2 (top left) shows a visualization of the detected vanishing points.

For each detected vehicle, we used general object contour detector [248] to estimate
the contours [202] of the vehicles (Figure 10.1 Ű center left and center right) and then
constructed 3D bounding boxes of the vehicles [43] (Figure 10.1 right). The 3D bounding
box is used for two main purposes. First, it is possible to use it to normalize the image for
vehicle Ąne-grained recognition [198, 202] and re-identiĄcation [209]. Second, it is possible
to estimate a point on the road plane which can be used for speed measurement of the
vehicles [43, 199].
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Figure 10.1: Left: detected vehicle using Faster-RCNN detector [182], center left: con-
tour probability map estimated by general object contour detector [248], center right:
estimated contour from the contour probability map [202], right: constructed 3D bound-
ing box [43, 202].

10.1.2 Vehicle Speed Measurement

To estimate the scale for vanishing point-based calibration, we used Google Earth to
measure the real-world distance of two points in the road plane (Figure 10.2 Ű top right).
However, as we assume that the measurements will be imprecise, we used many of them
(∼ 40) to reduce the error. The set of measurements ℳ was divided into two groups.
The Ąrst group ℳu contains measurements in the direction to the Ąrst vanishing point u

(represented by red arrows in Fig. 10.2, top left). The other group ℳv is computed as
ℳv =ℳ∖ℳu.

As the second vanishing point v (green arrows in Fig. 10.2 Ű top left) is sometimes
detected imprecisely (see horizon line in the same Ągure), we further reĄne its position. To
achieve that, we optimize the following term

v* = argmin
v

∑︁

p1,p2,m∈ℳu

|m− du,v,ℳv
(p1,p2)| , (10.1)

where du,v,ℳv
(p1,p2) represents the distance of two image points p1 and p2 in meters. It

should be noted that the distance depends on the vanishing points and on the scene scale
(which is computed using measurementsℳv); therefore, we include all these variables in the
lower index of the function. The Ąnal scene scale λ is computed using all measurementsℳ.
For further details about the optimization and scene scale computation, see our paper [199].
Final calibrations represented by the regular orthogonal grid can be found in Figure 10.3.
Using this calibration, measuring the distance of two image points in the road plane in
meters is possible. Furthermore, with known video framerate, it is possible to compute the
speed of the vehicles. To stabilize the speed measurement, we measure the speed between
detections 10 video frames apart.

The point in the center of the base of the 3D bounding box (intersection of its diagonals)
is used to measure speed in the road plane. Short tracks are represented by the median
value for speed measurement noise elimination. Longer tracks are Ąltered to suppress high
frequencies in the speed signal. Figure 10.4 (left) shows all measured speeds in all videos.

10.1.3 Approach to Vehicle Re-IdentiĄcation

The InceptionResNet-V2 [216] CNN with ŞunpackedŤ vehicle images [202] with size 331×331
was Ąne-tuned to identiĄcation task in the Ąrst place on an early version of CarsReId74k
dataset. The Ąne-tuning was done with Adam [106] optimizer and learning rate 1e-4.
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Figure 10.2: Top left: visualization of estimated 3 vanishing points (arrows with different
color coding) and horizon (yellow line), top right: an example of used measurement on the
road plane from Google Earth, bottom left: all measurements on the road plane, bottom
right: Ąnal regular orthogonal grid with 2m sides.
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Figure 10.3: Examples of regular orthogonal grids and horizon lines for every location (from
top left: Loc1 Ű Loc4). The size of the grid cells is 2× 2 meters.

Afterward, we cached the ID features and trained LFTD network to aggregate the
features in the temporal domain as there are multiple observations for the vehicle as they
pass in front of the cameras. The LFTD network used had 1,024 output features and tanh
non-linearity, and Weighted Euclidean distance (WE) was adopted.

We kept queries from part of our dataset for validation. The Hit@1 with ID features
and average temporal pooling was 69%. It increased to 78% with the LFTD network and
standard Euclidean distance. Finally, using the WE distance pushed the performance on
validation data to 79%.

These 1,024-dimensional features and learned WE distance was used for computation of
pairwise distance between all detected and tracked vehicles at every location. We used
these distances to construct quadruplets with one vehicle track from every location. These
quadruplets are supposed to represent vehicle tracks with the same identity. As the vehicle
needs to be observed at every location, we used the maximal distance of pairs within the
quadruplet to measure the total similarity of the quadruplet. Therefore, we are interested
only in the quadruplets with low maximal distance of pairs in the quadruplet.
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Figure 10.4: Left: Histogram of all measured speeds of observed vehicles.Right: Validation
net used to reĄne the vehicle re-id results. The network takes two images of vehicles as
inputs and produces the probability that the identity is the same for both of them.

To further improve the re-id accuracy, we trained a validation neural network which
takes two images of vehicles and produces the probability that they have the same identity.
The schematic design of the validation network can be found in Figure 10.4 (right). This
validation net was applied with every pair in the quadruplets. Median and minimal prob-
ability values were used as a threshold for the quadruplets, and the ones with probabilities
below the thresholds were removed.

Finally, we used these sorted and Ąltered quadruplets as the identities. We took only
Ąve best-scoring quadruplets to limit false positives. As the vehicles could be observed
multiple times at every location, we merged these Ąve quadruplets with any high-scoring
quadruplet containing at least once the exact vehicle. This way, we acquire sets of vehicles
with the assumed same identity as required by the task rules. For examples of such sets,
see Figure 10.5.

10.2 Vehicle Re-ID and Multi-Camera Tracking in City-Scale
Environment (AIC 2019)

In this submission, we address the tasks of vehicle multi-camera tracking and re-identiĄcation
(i.e., Track1 and Track2 ) on the CityFlow dataset [224].

Our approach to visual vehicle re-id is based on extracting feature vectors using a con-
volutional neural network and aggregating extracted feature vectors from observed vehicles
in the temporal domain. We use standard CNNs [76, 217, 83] trained for the identiĄcation
task, and we employ an LFTD network [209] for feature aggregation.

For the multi-camera tracking part, we propose a method for matching points from
vehicle trajectories in real-world linear coordinate system space. This approach is based on
a projection of 2D image points into the real-world linear space [236] and the matching of
vehicles in this linear space with respect to time and space constraints. Furthermore, this
approach can also be combined with the extraction of feature vectors for all observed and
pre-matched tracks.

10.2.1 Vehicle Re-IdentiĄcation

Approach to vehicle re-id task follows the previous year (Section 10.2.1 on this page). Ad-
ditionally, ResNet-50 [76] was trained and evaluated. Also, we could not use our previously
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Figure 10.5: Each column represents a set of vehicles from all locations (from top to bottom:
Loc1 to Loc4), which are considered by our re-identiĄcation method to share their identity.
Only one track per location is shown.

proposed modiĄcation using the ŞunpackedŤ version of vehicle images due to viewpoints
limitations and already cropped images in Track2.

We evaluated different variants of backbone networks together with the inĆuence of
using image modiĄers [198, 202] and pre-training the networks on different datasets.

Vehicle Re-Id Design Changes

The results of our submissions from the evaluation server showed unbalanced values com-
pared to our evaluation, which led to design changes in our methodology proposed above.
Inspired by previous works [112, 224], we tried to replace our feature extractor with a much
smaller CNN MobileNet [83] with feature vector dimensionality reduced to 128 dimensions.
The second change was replacing the cross-entropy loss with triplet loss combined with
semi-hard batch sampling [188]. The rest of our design remained the same. We tried
multiple variants of image modiĄers and pooling methods.
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Figure 10.6: left: Detections’ bottom points used for localization of camera’s view area.
right: Corresponding points transformed to the linear space (viewpoint selected as convex
hull of these points).

10.2.2 Multi-Camera Tracking

Unlike the vehicle re-id task, the multi-camera tracking task does not have to be solved by
visually comparing detected vehicles. The problem can be solved even using positional
matching with knowledge of GPS coordinates of cameras, known distances and time syn-
chronization between them, and their calibrations. In this case, matching is based on a
projection of the 2D point of vehicle trajectory from the image space into the world coor-
dinate space (linear system in our case). These projections from multiple cameras can be
matched with each other for every time step in order to obtain matching between tracks
across multiple cameras.

It should be noted that the approach described below assumes that for each camera
within the session, an overlap exists in the camera’s view area with at least one other
camera in the same session. This condition is satisĄed for almost all test-session cameras,
as seen in Figure 10.9. In other cases, vehicles from the camera without overlap cannot
be matched with the rest of the cameras, and the matching procedure had to be modiĄed.
However, this modiĄcation is straightforward with knowledge of time synchronization and
distances between the cameras.

Vehicle Trajectory Estimation

Positional matching counts on the estimation of trajectory points of each observed vehicle.
The selection of a point from vehicle detection may inĆuence the precision of point local-
ization in the world space. One solution is to construct the 3D bounding box [198, 202]
around the vehicle and select the middle point of the vehicle base lying on the ground plane.
However, this 3D bounding box construction is computationally expensive as it relies on
the vehicle’s silhouette. We use the middle point of 2D detections’ bottom line provided
instead, as this point performs the best from available data.

Transformation from Image to World Coordinate System

The transformation process assumes that the calibration parameters for each camera are
known. We used camera calibration provided with the dataset to compute a homogra-
phy matrix describing the transformation from the image plane to GPS coordinates in DD
(Decimal degrees) format. The transformation between coordinate systems is a straightfor-
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Figure 10.7: Visualization of the positional matching method. Red and green tracks
corresponds to same vehicle observed by multiple cameras. Blue track represents another
track of another vehicle. Positional matching iteratively determines if points from one
trajectory correspond to points from another trajectory by constructing a circle with radius
R in each time-step t, and matches are accumulated to the matching matrix. This matrix
contains a score for each possible combination of camera-track pairs.

c006

c007

c008 c009

c006

c007

c008

c009

c006_001

c006_095

c007_001 c007_103c007_051

c006_050

Figure 10.8: Left: Matching matrix for S02. Each block size differs based on the count of
tracks detected in single cameras. Right: Matrix corresponding to sub-block c006-c007.
Each cell contains the count of matches between the track in each row and each column.

ward operation made only by matrix multiplication Ů homography matrix H multiplied
by GPS coordinates in homogeneous format to transform from GPS to the image plane
(i.e., inverted homography matrix multiplied by image point in homogeneous format to
transform image plane point to GPS coordinates). Two cameras in the dataset (c005 and
c035 ) are Ąsheye, and thus compensation for the distortion of the point is necessary before
transformation to GPS coordinate systems.

Projection of GPS to Linear System Since GPS coordinates are known in the DD
format and not as positions on the Ćat plane, the distances, and positions do not correspond
precisely to the real world because of the curvature of the Earth. Although distances
in the DD format can be computed by Haversine formula, they can potentially suffer
from some inaccuracies, and thus transformation to the linear space was done. We used
transformation from EPSG:4326 to EPSG:26975 (corresponds to North Iowa where the
dataset was collected).
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Figure 10.9: Localized viewpoints for part of all cameras in S04 and S05.

Camera View Area Estimation Our solution is automatically detecting the camera
view area (polygon covering part of the real world, where a speciĄc camera can see objects).
The two bottom corners of the vehicle’s bounding box are transformed into the linear space
for each observed vehicle. The Convex hull of the points is used as a polygon covering
the camera’s view area. An example of the points used during the detection of a camera’s
viewpoint together with the corresponding linear space is depicted in Figure 10.6. Examples
of localized viewpoints for a part of all cameras in a session can be seen in Figure 10.9. Our
experiments show that it is convenient not to use all detections but to limit them in some
way Ů detections must be larger than 1000 pixels (in area), and all detections should be
no further than 300 meters from the camera in the linear space.

Multi-Camera Tracks Positional Matching

Positional matching between vehicle tracks observed by multiple cameras at one session is
based on comparing mutual positions of individual trajectory points from multiple cameras
in the real-world linear coordinate system in each time step. Trajectory points from each
camera in a session are sorted by their observation time (time steps). For each time step
and each trajectory point observed by one camera, we construct a circle in the linear
space with radius R, and we are looking for trajectory points from other cameras in the
session, which are contained inside the constructed circle (for better understanding, please
see Figure 10.7). These pairwise cameraŰtrack matches are accumulated in a matching
matrix M . This matrix contains all possible matches from each track in one camera to all
tracks in the other cameras. Figure 10.8 shows an example of the matching matrix.

The matching matrix is split into pairwise camera blocks. In each row of these blocks,
we look for maximal accumulated values in other camera blocks separately using Linear
Sum Assingment solver. These maximal values correspond to the best matching tracks
between all cameras in the session. Best matches are further processed and joined into
bigger groups if some element of pairs, triplets, quadruplets,... is missing in the other set,
which has at least one shared element.

Even visual features can be employed in the proposed method for solving multi-camera
tracking problem. We can extract features (by using the same convolutional neural network
with pooling as described in Section 10.2.1) from vehicle tracks given by camera-track
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Figure 10.10: Example result of our positional matching method with a projection of tra-
jectories’ points into a linear coordinate system. Arrows depict transformed points from
image to real-world space in a speciĄc time-step (displayed camera frame).

indices of the matching matrix and construct a pairwise distance matrix with the same
shape as the matching matrix. This distance matrix is then used to weigh elements in the
matching matrix.

10.3 Determining Vehicle Turn Counts (AIC 2020)

In this submission, we address the task of vehicle counting by their class at multiple in-
tersections (i.e., Track1 ). This track is focused on counting four-wheel vehicles and freight
trucks that follow pre-deĄned movements (travel directions) (see Fig. 10.11) on different
camera scenes, which should help DOTs’ traffic engineers in traffic analysis and planning.
In this challenge’s track, the emphasis is placed on effectiveness (precision of counting) and,
along with that, also on efficiency.

Our solution is based on counting by tracking approach. It beneĄts from using convolu-
tional neural networks in the detection and tracking steps. Trajectories of vehicles obtained
for the CNN feature-based tracker are further processed and analyzed to determine each
vehicle’s entry and exit point for correct counting of trajectories.

10.3.1 Determining Entry and Exit Areas

Assigning a vehicle trajectory to a speciĄc travel direction requires knowledge of the vehicle
entrance/exit area on the road. This task is crucial to obtain correct counts for every possi-
ble travel direction. In our case, the entrance and exit areas were manually annotated using
polygonal representation from 3 to 5 points for each polygon. We also have a user-deĄned
trajectory for each travel direction deĄned by pair of an entrance/exit area. Examples of
areas deĄned for each camera together with region-of-interest can be found in Figure 10.12.
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Figure 10.11: The main idea of this task Ů counting vehicles for every pre-deĄned movement
of interest (travel direction).

10.3.2 Vehicle Detection and Tracking

The proposed solution is based on vehicle detection and tracking. For every input video
frame, we Ąrst detect vehicles using a CNN-based detector. In order to achieve real-time
detection or even quicker processing but still have a high detection accuracy, we decided
to use the YOLOv3-416 detector [181]. For the tracking task, we decided to use Simple
Online and Real-time Tracking with Deep Association Metric (DeepSORT) [238].

For each vehicle, we save its trajectory points. The centroid of the detected vehicle’s
bounding box is used as a point representing the vehicle in the trajectory. When the vehicle
is no longer detected but still appears in a frame of the video (its trajectory has not left
the ROI yet), we predict the next position of the vehicle based on its last trajectory points.
We compute the average angle between the last 5 points of the vehicle trajectory and the
Euclidean distance between the last 2 points. Based on the computed angle and distance,
we predict the next trajectory point of the vehicle.

Merging Broken Trajectories

Before the tracker prediction step, we deal with long-term occlusion and detection inaccu-
racies by a trajectory merging step. When the vehicle is not visible for a certain period
and then reappears in a subsequent frame, it starts its new trajectory even though the old
trajectory of this vehicle is still predicted.

To deal with this situation, when one vehicle is being tracked twice, the proposed method
tries to merge broken trajectories. For each trajectory predicted by the tracker, we try to
Ąnd a newly detected vehicle trajectory formed by 2 or 3 points. We compare the latest
predicted points of the tracker-predicted trajectory with the location and direction of this
new trajectory.

If the trajectories are similar in their location and speed, these two trajectories are
merged. This merging prevents counting two vehicles instead of a single correct one. This
approach may lead to identity switching, but this is Ąne if vehicles are traveling in the same
direction Ű which they are. Otherwise, they would not be merged by the algorithm.
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Figure 10.12: Examples of images from a few cameras in the dataset with annotated en-
trance/exit areas and pre-deĄned movements of interests and ROIs. Images were updated
to Ąt the view better. The ordering of images does not fully correspond to the sequence of
camera IDs.

10.3.3 Travel Direction Assignment

The Ąnal step is determining the correct travel direction (movement of interest) for each
ended trajectory outside pre-deĄned ROIs. Pairs of the entrance/exit areas deĄne the travel
directions.

For each detected trajectory, the entrance area is deĄned by its intersection with the
beginning of this trajectory or by the distance to the closest one. The same principle is
applied even for the exit area of each trajectory. This pair then deĄnes a travel direction.

UnĄnished trajectories In some situations, the detector can lose the vehicle in the
middle of a pre-deĄned ROI. This situation may occur, for example, when the vehicle
is turning from one road to another. In such a case, the prediction-based trajectory of
the vehicle will continue in the determined direction (e.g., straight, even if the vehicle is
turning). In contrast, the detection-based trajectory ends before it exceeds the border of
the ROI. If new detections no longer update the prediction-based trajectory, it may cause
the vehicle will be counted in the wrong direction.

For these cases, our annotations for every camera contain the average trajectory for
each travel direction. When every point of the detection-based trajectory can be Ąt to
this average trajectory (point from detection-based trajectory is inside of polygon, which
deĄnes average trajectory), the prediction-based trajectory will follow this direction, even
if the detection is lost.
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Chapter 11

Analysis of Vehicle Trajectories for
Determining Cross-Sectional Load
Density Based on Computer Vision

The principal assumption of this research is that the driver controls their vehicle according
to previous stimuli coming from the roadway. The driver adjusts the vehicle’s path and/or
speed based on these. It is known that the driver approaching a narrow part of the roadway
decelerates [96]. The speed, together with the reaction times of the driver, further inĆu-
ence the trajectory of the vehicle, having a direct impact on conĆict situations and traffic
accidents.

Dangerous situations often occur in directional bends with smaller radii, where the
roadway is narrowed, and the drivers are acting recklessly (they do not decrease the speed).
Widening the road or changing its location would be too expensive and often unfeasible.
A low-cost solution that could help to some extent would be horizontal traffic marking on
the road, either as a shoulderline or as the centerline between the lanes. Which of these (or
their combination) is more suitable/inĆuential, and what effect can be expected from their
application?

In this work, we used long-term visual recording and computer vision analysis of the
recorded videos to get answers to these questions related to transportation safety and
improve the situation with meager costs. The information could be tough to obtain, mainly
when the locations of interest were on third-grade roads with meager traffic intensity, where
human observation would be inefficient or impossible.

Our measurements were related to traffic density across the lateral cross-section of the
road in the directional arc as dependent on the horizontal lane markings. The distance of
the vehicle from the side of the road and its speed can provide evidence of the inĆuence that
the presence of the central/side lane markings might have on the vehicle’s trajectory. The
assumption is that the drivers keep their distance from these markings and try to adjust
their driving style.

We took long video recordings on several analyzed locations before and after horizontal
road markings were applied and processed the videos. First, we calibrated the cameras
to enable measurements on the road plane. We detected and tracked passing vehicles and
measured their position on three road cross-sections at each location. Finally, we analyzed
how the distribution of car speeds and positions changes with the presence of road markings.
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Figure 11.1: Left: We detect and track cars in videos and record lateral position of cars
on three road cross sections. We analyze how driver behavior changes when horizontal
line markings are drawn. Right: Construction of road plane coordinates Pi based on the
measured distances dij .

11.1 Methodology

We installed a static camera at each location and visually captured several days of traffic
before and after road markings were drawn. Our goal was to analyze lower-class roads
with low traffic intensity, and multiple days are required to capture a sufficient number of
trajectories.

In order to measure distances in the captured image space, the camera needs to be
calibrated (including the scale). After camera installation, the operators marked several
clearly visible points on the road surface and measured their distances.We deĄne three
virtual cross-sections in which the positions of the passing cars are being measured and
evaluated. Figure 11.2 shows a camera view from one of analyzed locations with virtual
lines and measured distances. After camera installation, the speed of several cars was
measured by a handheld radar in order to get reference speeds for validating the visual
vehicle tracker.

11.1.1 Camera calibration

From the marker locations pi in the camera image (annotated manually) and their distances
dij , we recovered locations of markers on the road plane Pi (see Figure 11.1 Ű Right).
To estimate the homogeneous positions of the markers in the road plane Pi, we Ąrst set
P1 = (0, 0, 1)⊺ and P2 = (0, d12, 1)

⊺. Then, it is possible to construct other points Pi

always as an intersection of two circles. Formally, point P3 is computed as:

P3 = argmin
P

∑︁

j∈{1,2}

⃒

⃒

⃒
dj3 − ‖Pj −P‖

⃒

⃒

⃒
. (11.1)

As the two circles have two intersections, the ones with higher x coordinates are used.
Following this procedure, the rest of the points are constructed. Finally, as distances d34
and d56 are not used for constructing the points, we used them as validation measurements,
and the relative error was approximately 1%.

To construct the mapping between the image space and the road plane, 2D homography
H is computed between annotated positions in the image space pi and the corresponding
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Figure 11.2: An example of the calibration markings and measurements. A minimal of
6 points, 3 on each side of the road are marked on the side of the road and the mutual
distances are measured in real world. Left: camera image where positions of markers were
deĄned. Middle: birds-eye view of the scene rendered using homography recovered form
point distances. Right: our reconstruction of the road overlayed on orthographic map
shows that the reconstruction is correct.

points on the road plane Pi. Since there are 6-point correspondences, the linear system is
over-determined, and linear least squares is used to estimate the homography.

In this step, the scene is assumed to be approximately planar Ű this condition must be
locally satisĄed, at least in the measured area. After this calibration, any image point can
be mapped to its position on the road plane, and the real-world distances between image
points can thus be measured.

11.1.2 Video processing

Tens of hours of Full HD video recording have to be processed. Videos were pre-processed
by custom-trained detector [38] for license plate (LP) detection, followed by Faster R-CNN
detector [182] for precise vehicle detection within pre-Ąltered video segments (nighttime
videos were discarded). A Kalman Ąlter tracked car detections, and LP detections were
associated with tracks. To measure the position of a car on the road plane, we simply
project the center of its license plate to the bottom edge of the car’s bounding box and
transform this point using homography H.

Formally, car track T of length NT is a sequence of image points xi transformed with
the calibration homography H to the road plane, associated with a timestamp t.

T = {(Hxi, ti) | i = 1 . . . NT } (11.2)

To remove noise from the tracking, positions Hxi are Ąltered by a third-order polynomial,
and the interpolated track S is obtained.

For a trajectory S, crossing points lj with the road cross sections j ∈ {1, 2, 3} are
obtained. The average speed v between the Ąrst and the last cross-section is determined
by measuring the traveled distance on the road plane and the time difference. Finally, for
purposes of statistics, a trajectory is represented by its speed and the three positions on
the cross sections 𝒯k = (lj , v), j ∈ {1, 2, 3}.

11.2 Results

We analyzed 6 locations on lower-class roads. On each location, a static camera was installed
several days before line markings were drawn and recorded the traffic before and after the
line marking application. The study includes 1,010 hours of traffic video recording.

Although the cameras were meant to be static, the long recording shows a slight drift
of the camera image due to wind and instability of camera mounting. Therefore we used
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Figure 11.3: Visualization of the measured localities. top: camera view before lane makings
applied, middle: view after lane markings applied, bottom: camera view projected on the
ground plane computed from the calibration measurements blue color marks the envelope
of trajectories prior to road marking, orange marks envelopes after road markings were
drawn.

Table 11.1: Details of the measurements at different localities. Average speed is in km/h.

Location 1 Location 2 Location 3

Curve Inner Outer Inner Outer Inner Outer

Marking ✘ ✔ ✘ ✔ ✘ ✔ ✘ ✔ ✘ ✔ ✘ ✔

# cars 131 41 844 367 777 709 673 621 255 307 520 668

Avg.

speed
66.1 71.7 66.3 69.1 70.3 63.7 66.7 64.9 61.3 61.6 61.5 60.0

Location 4 Location 5 Location 6

Curve Inner Outer Inner Outer Inner Outer

Marking ✘ ✔ ✘ ✔ ✘ ✔ ✘ ✔ ✘ ✔ ✘ ✔

# cars 352 222 51 61 308 201 382 274 1201 979 1690 880

Avg.

speed
48.5 47.9 48.6 47.4 56.9 55.0 56.7 55.1 62.5 64.1 61.7 62.0

different sets of annotated marker locations for video before and after the road marking
application. On Location 2, the recording was affected by severe wind, which caused camera
vibrations and subsequent camera image shaking. This resulted in a signiĄcant error in the
measurements of car positions (where the assumption is a Ąxed camera image). We did not
Ąnd any reliable method to stabilize the image to Ąx the position of markers automatically.
We include the results from this location; however, they are not to be considered signiĄcant.

The individual scenes included in the study are visualized by Figure 11.3. The illus-
tration shows an illustrative frame from the video before and after applying the horizontal
line markings. It also shows the camera view re-projected to the horizontal plane based on
the calibration points. In these views, the three cross-section lines are shown, a visualiza-
tion of the distribution of cars going in each direction before (blue) and after (orange) the
application of the horizontal line markings.

More detailed histograms of the vehicles’ lateral positions within section 2 (the middle
one) and the vehicles’ speeds are shown in Figure 11.4. The lateral shifts in the vehicles’
position are more signiĄcant than the vehicles’ speed change. Table 11.1 shows detailed
location information, number of observed vehicles, and average speed for the inner and
outer driving lanes. Finally, Figure 11.5 visualizes the change in speed and lateral position
within the cross-sections for all the locations (separately reporting the inner and the outer
driving lane).
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Figure 11.4: Distributions of the changes of speeds (rows 1 and 2 for inner and outer
curve) and positions of cars (rows 3 and 4 for inner and outer curve) for all locations
(in columns). blue: distribution before application of lines, orange: distribution after
application of lines.
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Figure 11.5: Left: Change of mean car position (horizontal axis) and mean car speed
(vertical axis) after the markings were drawn. The car position is measured on the middle
cross section. Locations are color coded. On most locations, cars tend to slow down with the
markings present. Triangle pointing down: inner lane in the curve; up: outer lane. Right:
Visual representation of approximate driving trajectories, based on obtained differences in
lateral positions in three proĄles.
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Chapter 12

Conclusion

This thesis presents a contribution to the traffic analysis community in four critical aspects
of Intelligent Transportation Systems (ITS), namely Vehicle Fine-Grained Recognition, Ve-
hicle Re-IdentiĄcation, License Plate Recognition, and Monocular Vehicle Speed Measure-
ment. Throughout this research, signiĄcant strides were made by advancing the robustness
of Computer Vision methods for traffic analysis, an essential component of ITS.

This includes novel method and augmentation techniques for vehicle Ąne-grained recog-
nition Chapter 5, a novel method for aggregation visual features for vehicle re-identiĄcation
Chapter 7 and innovative approach to license plate recognition using alignment of the license
plate and holistic recognition Part IV.

Another part of this contribution is made by providing rigorously curated datasets in the
areas of license plate recognition, vehicle re-identiĄcation, vehicle Ąne-grained recognition,
and monocular vehicle speed measurement. The benchmarking of algorithms, performance
evaluation, and advancement of research in traffic analysis applications are only a few advan-
tages these datasets provide. The availability of these datasets enables researchers to push
the boundaries of traffic analysis, ultimately leading to safer, more efficient transportation
systems.

The following articles represent the culmination of this research, each contributing inno-
vative approaches and solutions to its respective Ąeld. Their acceptance in the prestigious
conferences and journals in the ITS Ąeld has validated the research efforts and conĄrmed
their alignment with the current research trends and priorities in ITS.

• Špaňhel et al., Learning feature aggregation in temporal domain for re-identiĄcation,
CVIU 2020, (Q1, IF 2023: 4.886).

• Špaňhel et al., Holistic recognition of low quality license plates by CNN using track
annotated data, IEEE AVSS 2017 (CORE Rank: B).

• Špaňhel et al., Geometric alignment by deep learning for recognition of challenging
license plates, IEEE ITSC 2018.

• Sochor et al., BoxCars: Improving Ąne-grained recognition of vehicles using 3-d
bounding boxes in traffic surveillance, IEEE T-ITS 2018 (Q1, IF 2023: 9.551).

• Sochor et al., Comprehensive data set for automatic single camera visual speed mea-
surement, IEEE T-ITS 2018 (Q1, IF 2023: 9.551).

Despite the advances made, it is acknowledged that the Ąeld of ITS, especially con-
cerning the application of Computer Vision methods, is continuously evolving. Therefore,
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there are several potential avenues for future research. For example, achieving very accu-
rate detection of license plate corners to sub-pixel accuracy could be a step forward for
a monocular speed measurement system certiĄed by the relevant authorities.

Moreover, as ITS become more pervasive, it would be crucial to focus on their scalability
and interoperability while considering their societal, economic, and environmental impacts.
The current state-of-the-art methods in ITS often rely on the availability of large amounts
of computational resources, and many problems are solved by enlarging models or combi-
nations of models. However, these steps are incompatible with real-world deployments of
these approaches, where methods often need to run on hardware with limited performance,
such as traffic cameras. In this case, methods based on knowledge distillation could be the
leaders of the Ąeld in the following years.

In summary, this dissertation represents a step in the ongoing journey of understanding
and improving Computer Vision methods for traffic analysis and their robustness. Hope-
fully, this research’s Ąndings, insights, and contributions will inspire and inform future
endeavors in this exciting and transformative Ąeld.
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