BRNO UNIVERSITY OF TECHNOLOGY

Faculty of Electrical Engineering
and Communication

BACHELOR'S THESIS

Brno, 2020 Radek Polasek

VYSOKE UCENI FAKULTA ELEKTROTECHNIKY

TECHNICKE A KOMUNIKACNICH
V BRNE TECHNOLOGII

Bakalarska prace

bakalafsky studijni obor Angli€tina v elektrotechnice a informatice

Ustav jazyku
Student: Radek Polasek ID: 203160
Ro¢énik: 3 Akademicky rok: 2019/20

NAZEV TEMATU:
Ruzné pristupy k vizualizaci 2D a 3D objektd v pocitacové grafice

POKYNY PRO VYPRACOVANI:

Semestralni prace se bude zabyvat riznymi technikami pouzivanymi pfi vizualizaci 2D a 3D objektd. V Gvodni
Casti se autor/ka uvede rozdily mezi vektorovou a bitmapovou grafikou a v kratkosti popiSe pojmy jako napf.
Bézierovy kFivky nebo vhodné parametrické kfivky a funkce pouZivané v inZenyrské praxi. Uvodni &ast by bylo
vhodné doplnit o kratky historicky pfehled. Poté se autor/ka zaméfi na popis technik pouzivanych pro
vykreslovani 2D a 3D funkci ve specializovaném softwaru — nejlépe v matematickém softwaru jako napf. Maple,
MATLAB nebo Mathematica. V pfipadé zajmu mulze autor/ka také popsat zpisoby modelovani objektd v CAD
systémech. Semestralni prace by méla laikovi poskytnout zakladni pfedstavu o technikach a procesech, které
zpusobi, ze se 2D a 3D objekty (zejména ty, které jsou popsané, resp. popsatelné matematickymi funkcemi)
vykresli na monitoru pocitace.

DOPORUCENA LITERATURA:

Dokumentace k softwaru Maple / MATLAB / Mathematica a literatura zabyvajici se v obecnych rysech
pocitatovou grafikou.

Terminzadani: 6.2.2020 Terminodevzdani: 12.6.2020

Vedouci prace: Mgr. Petra Langerova

doc. PhDr. Milena Krhutova, Ph.D.
predseda oborové rady

UPOZORNENI:

Autor bakalarské prace nesmi pfi vytvareni bakalafské prace porusit autorska prava tretich osob, zejména nesmi zasahovat nedovolenym
zpUsobem do cizich autorskych prav osobnostnich a musi si byt pIné védom nasledku poru$eni ustanoveni § 11 a nasledujicich autorského
zakona €. 121/2000 Sb., véetné moznych trestnépravnich dusledkl vyplyvajicich z ustanoveni ¢asti druhé, hlavy VI. dil 4 Trestniho zakoniku
€.40/2009 Sb.

Fakulta elektrotechniky a komunika¢nich technologii, Vysoké uceni technické v Brné / Technicka 3058/10 / 616 00 / Brno

BRNO UNIVERSITY OF TECHNOLOGY

VYSOKE UCENI TECHNICKE V BRNE

FACULTY OF ELECTRICAL ENGINEERING AND
COMMUNICATION

FAKULTA ELEKTROTECHNIKY
A KOMUNIKACNICH TECHNOLOGII

DEPARTMENT OF FOREIGN LANGUAGES

USTAV JAZYKU

VARIOUS APPROACHES TO VISUALIZATION OF 2D AND
30 OBJECTS IN COMPUTER GRAPHICS

RUZNE PRISTUPY K VIZUALIZACI 2D A 3D OBJEKTU V POCITACOVE GRAFICE

BACHELOR'S THESIS

BAKALARSKA PRACE

AUTHOR Radek Polasek

AUTOR PRACE

SUPERVISOR Mgr. Petra Langerova

VEDOUCI PRACE

BRNO 2020

Abstract

This bachelor thesis aims to broaden people’s knowledge of the visualization processes used
in modern computer software to construct two and three-dimensional objects. First, some of
the essential definitions and concepts of functions and their parameters are explained, which
are then utilized in following chapters of this thesis to further explain additional processes that
allow these functions to be graphically represented in a system of coordinates. The next
chapter is focused on direct examples from specific computer software and what the user
should pay attention to in order to graphically interpret functions in a correct manner.
Additionally, practical example of more advanced object visualization is included. Lastly,

differences between individual visualization programs are also explained.

Keywords

Function, Visualization, graphics, variable, graph, fractal, Matlab, Maple

Abstrakt

Cilem této bakalarské prace je rozsifit povédomi lidi v okruhu procest, které jsou vyuzivany
modernimi pocita¢ovymi programy, k vizualizaci 2D a 3D objektl. Postupné jsou vysvétleny
nékteré nejzakladnéjsi definice a koncepty funkci a jejich parametri, které jsou poté
v nasledujicich kapitolach této prace vyuzity k vysvétleni pokrocilejSich procest, které
umoziuji grafickou reprezentaci téchto funkci v soufadnicovych systémech. Dalsi kapitola se
pak zaobira ptimo ptiklady z konkrétnich pocitacovych softwart a tim, na co by uzivatel mél
brat ztetel, aby dosahl tispésné grafické reprezentace funkci. Dodatecné je také demonstrovan
proces vizualizace pon¢kud komplikovanéjsiho objektu. Na zavér prace jsou nastinény rozdily

mezi jednotlivymi vizualizacnimi programy.

Klicova slova

Funkce, vizualizace, grafika, proménna, graf, fraktal, Matlab, Maple

POLASEK, Radek. Riizné pristupy k vizualizaci 2D a 3D objektii v pocitacové grafice. Brno,
2020. Dostupné také z: https://www.vutbr.cz/studenti/zav-prace/detail/127165. Bakalarska
prace. Vysoké uceni technické v Brné€, Fakulta elektrotechniky a komunikac¢nich technologii,

Ustav jazykil. Vedouci prace Petra Langerova.

ACKNOWLEDGEMENTS

I would like to thank my supervisor Mgr. Petra Langerova for guiding me during the
process of writing my thesis. I would also like to thank doc. RNDr. Michal Novak, Ph.D. for

his thorough and patient guidance concerning the mathematical aspects of this thesis.

TABLE OF CONTENTS

N 013 (014 L o1 T s DSOS PPPRTPPPRRPRN 1
2 Raster and vVector GraphiCs..........cccvuiiiieuiieieiiiieeeiie e erie e eetie e e e sereeeeeeraeeennreas 2
2.1 RaAStEr GraphiCs....ccuviiiiiciiii et et eeee et ee e et e e e eeraeeeeseseeeesssraeeeenenes 2
2.2 VECtOr @IAPNICS ..oouvviiieiiieieciiie et ee e ettee ettt e e e e e staeee s eenaee e neraeeeenssaeeeeneas 3
2.3 P et 4
I = 110 o OSSP 4
I 111 1o1 5 0] o OSSPSR 5
O B 103 1 3 11 PSPPSR 6
4.2 Range and COAOMAIMNuuuiieeiiiieeiiiie et e et e e ee e e e 7
4.3 IMPUCIt fUNCHONS ...eviiieiciiiieeeiieee ettt et ee e stae e e et e e eeereeeeenereeeesnraeeennnnes 7
4.4 Function of more than one variable..............cccciiiiiiiiiiiii e, 8
4.5 Real function of one real variable...........cccooviiiiiiriiie e 9
4.6 Complex function of one real variable...........c.ccoevevviiiirciiieinieee e, 9
4.7 Complex function of complex variablecccoocoiiiiiiiiiiiniie e 9
5 CoOTAINALE SYSTEIMSueeieieeiiiiieeiiitieeeiiieeeeteteessetee e e et eeeeenteee e nneeeesanseeeeeansaeeeennes 10
5.1 Cartesian coOTdiNate SYSTEIMcccvuireeriurieeeiiiereeeieeeeeieee e et eeeereeeeeeeaeeeeeeeeas 10
5.2 Polar coOrdinate SYSIEM.........ueieeiiiiieeeieieeeeeie e ettt e e et e e e et eeeeeeeeeeeeeeenne 11
5.3 Spherical coordinate SYStEIMeueeeeiueiieeeiireeriieee et ee e e 12
6 Too0ls Of VISUAIIZALIONeieiiiiieeiiiiee ettt e e ee e 13
(T B 13y o To) F: Y3 1o} 4 DRSS 13
6.2 SpPline INtETPOLAtIONuvveieiiiiiee ettt eeeer e e erae e e eees 14
(TR B 27V 1) a1 SRS 15
(TR O ¥ 101 1 SR 16
7 Visualization in specific software (Maple).........ccccveveriiiieieiiiieieiieeee e 18
7.1 Different types of plot commands in Maplecceeeeiiieiiiiiiniiiii e, 19
7.2 Examples of error messages in Maple........cccvveevcvieeiiciiiie i e 22
7.3 Other available software and differencescccceeveciiiieiiiiiiniciee e, 25
S\ 1 1 1 o J USSR 25
8.1 Matlab’s approach to visualizationcccoeeveeieeciiieeeniiie e 25
8.2 Construction of an advanced object in Matlabccccoiiiiiiiiiin . 35
8.3 Comparison between Matlab and Maple...........cccceveeiiieieiiieieecieieeiee e, 38
O CONCIUSION ..ttt ettt et et e et e et eeetaeeennee s 39
10 Rozsiteny Cesky abstrakt.........cccviiiiiiiiiiiiiiie e 40
L1 RETETEICES ...eeiiiiiiiiieciiie et ettt e e s 43
12 LISt OF fIZUIES .ovviiieiiiie ettt eeb e e eenaaeeensaeeeeeens 46

13 LIST OF tADIES ..ottt e 46

1 Introduction

Modern mathematical and programming software is becoming increasingly widespread as
more and more people engage with at least some form of it on daily basis. Whether it is part
of their job description or academic study, they often may have very little understanding of
how the processes that take place in the background of the software they are using. Processes
that make it possible for programs to output wide spectrum of images and the structure of
these processes will be among the main topics of this thesis.

In the first part we will go over the basic principles of computer graphics and most
importantly mathematical functions that serve as the backbone of all the visualization in
computer software. We will discuss the individual methods of turning these mathematical
functions into graphs and images and describe some rather interesting phenomena of the
visualization process. After the basics are discussed, our main focus for the rest of this thesis
will be specialized visualization software. It is this very software that serves as an entry point
into the world of visualization for vast majority of students and even businesses. And as such,
specialized software, namely Matlab and Maple, will be the main focus of the second part of
this thesis. We shall go over the basic principles we have already learned and demonstrate
them in the selected visualization software with attention to the most common errors and
phenomena that usually occur during the processes. This will be done for both Matlab and
Maple for the purpose of highlighting the main similarities and the most striking differences.
As there is an undeniable competition between the various available computer programmes
for visualization, every one of them has its own unique approach to specific procedures while
also sharing a considerable amount of similarities in other procedures. These differences and

similarities will be the main point of the last part of this thesis.

2 Raster and vector graphics

Before we delve into the process of visualization, it is important to discuss the most important
sections of this topic to improve our understanding of several key concepts. The first step is to

distinguish between vector and raster graphics.

2.1 Raster Graphics

One of the two fundamental ways to graphically represent information in computer graphics is
the raster method. This way of representation utilizes a network of points that are called
pixels. These pixels have each their own x and y coordinate in a square grid along with
specific colour value. By connecting these pixels we are then able to construct the entirety of
the image. Quality of image generated by this method greatly depends on its resolution or
rather on its pixels per centimetre (ppcm) value. This value tells us how many pixels there are
in a centimetre; therefore, higher ppcm value equals higher quality of an image. Perhaps the
biggest advantage of this method is how easy it is to edit a raster image and the realistic look
it offers. Raster image files must contain all the information that is necessary to create the
image (colour, position of all the pixels, etc.), and because of that, the size of these files can

scale up quickly with higher resolutions and sizes.

Figure I: Example of a resized raster image

The most common formats for storing raster graphics include jpeg, png, bmp and gif.
While jpeg is widely used, it does not support transparent parts and has lossy compression

which can affect the quality with each compression of the image. If we are looking for

2

formats with lossless compression, meaning formats of data that “can be decompressed to
exactly its original value” (Mahoney, 2010, pg.1), we can use .gif, .bmp or .png, but even

these have their own disadvantages.

2.2 Vector graphics

The second way of representation is vector graphics. Unlike raster, it does not utilize a square
grid of pixels but rather complex mathematical equations. These equations define the shape
and size of various lines (or polygons) along with their colour, orientation, line thickness,
curvature (depending on their anchor points) and other values. The main advantage of this
method over raster is the preservation of quality if we decide to change the size of the image.
Thanks to the mathematical equations that form the curves, rescaling the image is achieved by
a new calculation of these equations and the potential increase in size without any noticeable
damage on its quality is therefore unlimited. Apart from higher quality, vector image files also
tend to be smaller in size. This is due to them only containing the mathematical formulas that

are essential for rendering of the image.

Figure 2: Example of a resized vector image

Most common format to use for vector graphics is .svg. It has the benefit that it can be
edited and scripted in similar way to HTML while also having lossless compression with

significant reduction in file size.

2.3 PDF

One of the more prominent file formats in modern computer graphics is the portable
document format (pdf). The reason behind its widespread usage is primarily the fact that it
preserves all of the formatting of a file, regardless of the reader’s operating system or what
program is being used to read the file. We should know that pdf format supports the usage of
both vector and raster graphics in its files. Exporting file formats into pdf can be realized by
attempting to print the document and selecting a pdf printer as the designated device.

With the two main differences in graphics and formatting of files explained, we can
now begin exploring different functions and processes that make the projection of two and

three dimensional objects on our devices possible.

3 History

To get a good understanding of how computers turn series of numbers into lines and curves,
we first need to understand some of the building blocks of this process. The first one being
functions.

From the very beginning of advanced mathematics in ancient Mesopotamia and
Greece, people were working with basic principles of functions at that time, but there was no
notion of defined variable or explicitly defined functions. The notion of function did not arise
until much later in late seventeenth century, when it was first properly defined. It is believed
to be first used by Gottfried Wilhelm von Leibniz (1646-1716), German mathematician,
physicist and philosopher. It is him and Sir Isaac Newton who are attributed with the creation
of calculus and therefore mathematical analysis and its study of functions. This may well be
the origin of modern concept of a function, but it was not until nineteenth century that the
modern meaning of function was properly defined by Johann Peter Gustav Lejeune Dirichlet
(1805-1859), who in his work on proving convergence conditions in Fourier series states.: "fo

any x there corresponds a single finite y" (Dirichlet ,1829).

4 Function

Now that we know about the origin of functions, we can start delving into how they operate
and how to utilize them in computer graphics. We can interpret values of a function in the
form of table with two columns, one column being inputs of the function and the other being

its outputs (See table 1).

Input Output
1 3
2 6
3 9

Table 1: Representation of function as a table

From what we see, the conclusion to this function could be that output is always three times

the input. The mathematical transcription of this function would then be:

fx)=3-x (1)

Where “f” represents the name of the function, “x” is a parameter (input) of our function and
the part after equal sign tells us what the function does with our parameter or parameters.
Now we can order the input and output into pairs of (x, f{x)). This will allow us to construct a
graphical representation of our function, a graph. If we obtain several of these pairs, we can
start placing them as a set of dots into a coordinate system. By plotting one of the coordinates
(x) on the x-axis and the second coordinate (f(x)) on the y-axis, we construct a point. Plotting

more or all values from the function domain yields us a graph of the function (See Fig. 3).

o4

Figure 3: Graphical representation of a function

However, the table is not sufficient if we want to define a function properly. That is because
every function is determined by three properties: domain, codomain and by the rule of
assigning elements of the codomain (or rather range) to elements of the domain. This tells us
what relationship there is between x and f{x) and can be achieved in several ways, first of
which is simply listing the different values of a function in a table (similar to table 1). Another
and for us the most important way is by using a formula. We have already utilized this way of
representation previously while delving into the basics of how functions operate. The third
way in which a function can sometimes be represented is a graph of that specific function

from which we can obtain its values.

4.1 Domain

Every function has its domain, which represents a certain set of values that can be substituted
for the x variable of that function, and will output the f{x) value. For example if we consider a

function:

1
flx) = o 2

Then x cannot be zero because the function would not output a real value. We can therefore
say that the domain of this function is: D(f) = {x € R : x # 0}. It is also important to note that
every input value must be assigned to a unique output value; otherwise the function would not

know which output value to provide us with if two were assigned to a single input.

6

4.2 Range and codomain

While codomain is the set of all possible values that the function can output, range values of a
function are a subset of the codomain and represent a set of all the actual values that the
function outputs. We can use the previously used function of f(x) = 3-x. Graph of this
function (See Fig. 3) helps us to see that its range is not bounded and consists of all real
numbers, therefore it can be written down as: H(f) = R. If we were to change the transcription
for this function to f(x) = |3 - x|, then the range of values would change to: H(f) = (0,00),
since the output can no longer be a negative value. In other words, domain defines the

numbers on the input of a function while range determines the output numbers.

4.3 Implicit functions

So far, we have only discussed functions with explicitly given variable, so called “explicit
functions”, i.e. functions of the form f{x) = . The second way in which a function can be
given is called “implicit”. An example of such function can be the equation of circle with

centre in the origin and with radius of one.

x2+y2—-1=0 3)

We can see that the variable is not given independently in this case but rather in a form of
F(x, y) = 0. It is possible to convert implicit functions into their explicit forms, but it is often
not recommended as the resulting function is usually too complex and can branch into
multiple results. If we were to transform our circle function, the resulting explicit format

would look like this:

fO) = +J1—x? “)

Note that there are now two branches of this function: positive and negative which is one of
the reasons, why it is not recommended to convert between implicit and explicit form of more

complicated functions.

4.4 Function of more than one variable

It is also possible to have a function with multitude of input parameters. For our example we

can take a look at the power function:

flx,y)= x> (5)

Function in this example takes the two input values and gives us the result which is x to the
power of y. If we wanted to represent this function with a table, it would have three columns
instead of just two. In other words: we can interpret functions of more than one variable (n
variables) as a number that we assign to a set of » numbers. While functions of one variable
plot their graphs into two dimensional planes, when dealing with functions of more variables
that require two inputs and produce a single output, we need to pay attention to the fact that
the graph of that function will now be a surface in at least three dimensional space as opposed
to two dimensional plane. We can, of course, project graph of that function into just two
dimensional plane. This attribute is quite important for different computer programs for
graphical visualization as there are different commands to correctly display different functions
depending on the environment. A good example of a situation where the display environment

would make a tremendous difference is the multivariable function of:

fCx,y) = sin(x) - cos (y) (6)

If we choose to display this function in three dimensional space, we would get a different
graphical representation than if we were to use the contour graph variant which utilizes a
horizontal cross-section of the graph and assigns different colour values (for example) to

individual data points depending on their output value (see Fig. 4).

(a) ®)

Figure 4: Three dimensional plot (a), Contour plot (b)

We will now have to distinguish between several types of function mapping. These are vital

as they tell us in which category of numbers is the function operating.

4.5 Real function of one real variable

We can approach this type as a simple function in which every real number x € X (x belongs
to group X which is also domain of that specific function) is associated with one real number
y € Y. Therefore (if both X and Y consist of only real numbers) we can denote this type of
mapping as /- R — R. This notation tells us that both domain (X) and codomain (Y) of the

function are composed of real numbers.

4.6 Complex function of one real variable

Similar to previous type of function mapping, this one represents functions that map variables

from a set of real numbers R into a set of complex numbers C, denoted as /> R — C.

4.7 Complex function of complex variable

This type of function represents a case in which both D(f) and H(f) of a function are complex
numbers, therefore: f: C — C and for an arbitrary z ¢ C (z = x + jy), we can say that

w = f(z) = ulx,y) + jv(x,y), where u and v are two real functions of two real variables.

It is important to distinguish between the different types of function mapping.
Computer software utilizes the different types to correctly draw graphs and eliminate potential

errors that could be caused by using the wrong one.

5 Coordinate systems

Now that we learned it is possible to project results of a function into a coordinate system, we
need to know about the different types that we can utilize. We shall start with perhaps the

most commonly used one in modern mathematics, the Cartesian coordinate system.

5.1 Cartesian coordinate system

This system breaks space into four quadrants separated by two perpendicular axes, horizontal
X-axis and vertical Y-axis. Intersection of these two axes is known as the point of origin and
has the value of 0. We calculate the location of an object by assigning respective x and y

coordinates, depending on the distance from the point of origin alongside the two axes.

3 [y-axis

¥-BHIS

Figure 5: Cartesian coordinate system

For example an object A with x coordinate of 3 and y coordinate of 2 will be positioned in the
first quadrant because both of its coordinates have a positive value. The object can then be
rewritten as: A (3, 2) and will be projected as in the previous figure (See Fig. 5). When we

work in 3D environment, Cartesian coordinate system is adjusted by adding the third axis, the

10

z-axis which is placed perpendicular to both x and y axes and intersects with the point of
origin. Objects in the system are now denoted by one additional value: z (depth) and can be
described by this transcription: A (3, 2, 4).

Another detail we should pay attention to is the scale of generated graphs. While in
our example identical for both x and y axes, it is by no means a rule. Certain programs may
automatically adjust the scale of axes to better display the entirety of the graph. This

information does not affect just the Cartesian coordinate system, but the other systems too.

5.2 Polar coordinate system

Another option for projecting functions into graphical environment is to utilize a system of
different radii and angles, also known as the polar coordinate system. It uses a radius value »
and an angle that is denoted by ¢ or 3. Polar grid is constructed from 2w rad or 360°
(Depending on whether we are working with radians or degrees) angle around a point of

origin that is denoted by intersection of two perpendicular axes.

-
N

B (-2, 60°)
B (2, 240°)

3

Figure 6: Polar coordinate system

If we are given an object with » = 2 and § = 60°, it would project as A (2, 60°). We can also
be given negative » value in which case we simply add 180° (or m rad) to the value of 4 to

accommodate for the negative value of » (see Fig. 6). It is of course possible to convert a set

11

of polar coordinates to their Cartesian counterpart. If we consider an object A (7, @) in polar

coordinate system, we can easily obtain x and y Cartesian coordinates using these equations:

X =T7"'CoS® (7
y=r-sing 8)

5.3 Spherical coordinate system

Spherical coordinates can be utilized to denote objects in three dimensional space using
distance to the object from point of origin that is held between three axes (each one
perpendicular to the other two), angle 9 (3 € (0;2m)) which is the deviation r from the z axis
and angle ¢ (¢ € (0;m)) that denotes deflection from the x axis. As we can see, this system is

very similar to the polar coordinate system in its structure (see Fig. 5).

k|

¢

Figure 7: Spherical coordinate system

It is of course possible to convert between spherical and Cartesian coordinates. To do so, we

will be using a set of three equations to obtain x, y and z Cartesian coordinates:

X=r-cose -sind

y=r-sing -sind)

Z=7-C0S @

12

There are various different examples of coordinate systems besides these three, but their main
application is usually outside the field of mathematics and it is therefore unimportant to delve
deeper into their definition. Most prominent examples of such systems would include
cylindrical (which is utilized mainly for computing electromagnetic fields) or logarithmic-
polar coordinate system. Cartesian system remains among the most used coordinate systems
and will be our primary subject through this thesis.

More about fundamentals of functions can be found in Calculus (SPIVAK, 1994) or in
Matematika 2 (SVOBODA, VITOVEC, 2014)

6 Tools of visualization

With all the basic principles of graphics and functions explained, it is now time to move onto
the essentials of the main procedure that turns typed in data into lines and curves. Before we
move to comparison between various computer programs and their approaches to

visualization, we can define some of the more basic functions that create these processes.

6.1 Interpolation

If we are given a set of data points of a function defined by a table (for example), they do not
accurately represent how the complete function would look. Without a way to connect these
data points, we would not be able to correctly identify what values are in between our given
points. We could utilize the process of linear interpolation and connect these points with
straight lines, but this approach introduces large amount of error. To interpret these values in a
more efficient way, we can use the process of polynomial interpolation which connects the
given data points with the use of polynomials. Depending on how many data points we are
working with, the correct degree of polynomial has to be used. When we only have two data
points available, we will be using a first degree polynomial which has the form of a line.
Polynomial will have the form of quadratic parabola if it is of second degree over three points,
while degree 3 and up means that polynomial will be a cubic curve over 4 or more points (see

Fig. 8).

13

I

fx) =ag+ax flx) =ag + a;x + azx? f(x) = ag+ ayx + ax® + azx?®

Figure 8: Examples of possible polynomials

If we are working with larger amount of data points, this approach can then be summed up

into the following equation for n+1/ of points:

f(x) =ag+ a1 x + azx® + -+ + apx™ (10)

More information about the process of interpolation can be found in the lectures on Data

Fitting (KUTZ, 2006) or in the WolframMathworld Web resources (WEISSTEIN, 2019)

6.2 Spline interpolation

With the usage of polynomials, the spline interpolation connects data points in a graph of
function. There are several variants of spline interpolation and we will be mainly focusing on
cubic spline interpolation as it provides the most accurate approximation out of these
methods, superior to that of linear or quadratic interpolation in particular if the function has
more abrupt and unpredictable changes in its behaviour (see fig. 9). Mathematical distinction
between specific types of the spline interpolation can be demonstrated on the equation for

polynomial. If we were to consider a degree 1 polynomial denoted by the following equation:
fx) = ap+ asx (11)

Then the spline interpolation method will be linear and individual points in the coordinate

systems will be connected by straight lines. If we move our polynomial up one degree, we

14

arrive at quadratic spline interpolation and degree 3 polynomial will then be used for cubic

spline interpolation.

x| fix) s
P2
-3 1 A
1 3 "'_,.’E*; \\\\ 1~ ' P4
L 4 2 \.’F’y

1 4 it

L] |
3 2

4 -3 1 R N VAR R R

5 | 3 B

Quadratic spline interpolation Cubic spline interpolation

Figure 9: Different types of interpolation

6.3 Bezier curves

A special category of construction curves utilizing a set of control points are called the Bezier
curves. Depending on the number of control points we can again distinguish between several
types of these curves. Using n to denote the number of control points gives us the necessary
information to distinguish between linear, quadratic and cubic Bezier curves. The control
points can then be further divided into end points and controlling points. Two of the end
points denote starting and end position of the curve and the remaining points control the shape
of the curve. Another thing to notice is that although all the control points usually do not lie
on the curve itself, all of them are confined inside a space known as convex hull, which is the

smallest possible area containing all of the given points.

15

6.4 Fractals

When we mention snowflakes, spiral shells or ferns, there is no striking similarity between
these objects at the first sight, but if we examine them closer, we find out they are all in fact
fractals. Fractals represent a unique shape composed of seemingly infinite number of nearly
exact shapes. To better understand this description, we will use the Mandelbrot set as an
example. This fractal is aptly named after mathematician Benoit B. Mandelbrot, who stood

behind the first mathematical description of a fractal and later computer visualization.

Figure 10: Mandelbrot set (Bourke, 2002) over real and imaginary coordinates

If we were to magnify any of the parts of this fractal, we would see infinitely expanding area
similar in shape to that of a complete Mandelbrot set. This is due to the infinitely expanding

length of its perimeter. This fractal image can then be generated by the following equation:

Zny1 =Z2+cC (12)

where z € C and ¢ € C. If we were to apply this equation to each and every pixel (representing
all the different ¢ values), in a coordinate system plane, repeatedly and the z, gets
exponentially bigger, then the value ¢ does not belong into the Mandelbrot set. If it, however,
remains small, then that pixel is part of the set. If we then mark all of the points that do belong

into the Mandelbrot set, we get a precise map of it (see Fig. 10).

16

Perhaps more easily demonstrated example of a fractal is the infinitely folding fractal also
known as the Heighway Dragon Curve, which was discovered in 1966 by two physicists: J.
Heighway and his colleague W. Harter (Tabachnikov, 2014). This particular curve represents
a process of possibly infinite amount of iterations that lead to the creation of the fractal. The
whole process begins with a single line. This line is then transformed during the first iteration
into two connected lines holding a 90° angle above the original line, with their outer ends in
place of the original line’s ends (This can be demonstrated by folding a straightened rope into
two equal parts and then creating a 90° angle between those parts). In the next iteration, we
would again create an angle above every straight line with an alternating pattern of right and
left. This process is then repeated in each of the following iterations and with each one of

them, we can see the fractal more and more clearly:

— m
%

] | .

- Fo|

4 5 6 12

Table 2: Different iterations of the Heighway Dragon creation process

If we take a closer look at this process, we can identify that it is identical to unfolding a
stacked strip of a paper, where with each step of the unfolding the previous shape is repeated
at a 90° angle from the previous step. In ideal conditions, this process can be repeated
indefinitely and what is rather interesting to observe is that the distance between the two ends

of the curve always remains the same, no matter the iteration.

17

7 Visualization in specific software (Maple)

There is a broad range of different software that can simulate visualization processes by
converting commands with functions into their respective representations. Each one of them
utilizes slightly different set of commands to do so. In our example of how these types of
software operate with functions we are firstly going to use Maple, mathematics-based
software developed by Maplesoft™. Important part of each software that can be used to
visualize functions is the form in which we feed the program commands. It is important to
uphold the exact structure of individual commands; otherwise the software will not visualize
the correct representation of the desired function or will simply not visualize it at all.

Maple allows us to use multiple visualization commands to graphically depict
functions depending on type of the function and environment in which we want the function
to be represented. We will begin with a command that allows us to depict a function in a two

dimensional plane: plot.

plot(f, x)

As we can see, this command consists of several parts. The command itself and the
parameters in brackets, where f symbolizes the function that we want to visualize and x is the
independent variable of the function. Consider the first function from the section about
functions (1). If we wanted to depict that function with domain of real numbers ranging from -

10 to 10, using the plot command, then the command would have the following form:
plot(3*x, x=-10..10)

We can notice that although we did not specify the range of the y axis, the program
automatically dealt with that problem and assigned a scale to it. This is one of the command
parameters that do not have to be specified in order for the command to work properly (see
Fig. 11a). There are, however, parameters and methods of visualization that have to be typed
into the command window in order to obtain the correct version of what we are trying to
visualize. We can demonstrate this problem on the following example where we try to use the

same command to visualize a graph of complex function:

plot(3*x + 2*], x =-10.. 10)

18

In this equation, the letter | represents the imaginary unit of a complex number, while x is the
real part of this number. Immediately after we run this command, Maple does not display the
expected graph, but instead an error message with the following text: “Warning, unable to
evaluate the function to numeric values in the region, complex values were detected”. This is
caused by the fact that the plot command serves the purpose of creating a two-dimensional
plot of real values, so if those are not provided, the software has a list of errors to reach for if
it finds any major inconsistency in the code such as this one. With the knowledge that Maple
makes use of different commands for different types of graphs, we can venture into its
documentation and find out what commands are used to display them. Programs such as
Maple often include broad range of different plot commands, each specifically focused on
narrow spectrum of functions In the next part we will go over some of the more prominent

examples.

7.1 Different types of plot commands in Maple

If we want to construct graph of a function, it is crucial to first know some of the graph’s
attributes. Whether we are projecting the function into two-dimensional plane or three-
dimensional space, whether the function operates with real numbers or complex numbers, in
which way is the function denoted and what coordinate systems do we want to use. All of
these attributes determine which of the different commands are available to be used. If we
want to visualize a real function of a single variable, we can use the previously discussed
“plot” command. If we are for example working with implicit function (See chapter 4.1), our

command of choice will be the following:

implicitplot(f, x, y, options)

Similar to the basic plot function, the implicit variation requires the same parameters of
function, domain and range. In addition the options parameter allows us to influence the
visual outcome in additional ways such as scaling, using different coordinate system (see Fig.
11b), changing colours of various parts of the graph and naming the individual function plots.
Now if we move out of the real numbers category and transition into visualization of complex

number functions, we will need to use a different command to generate the graph:

complexplot(f, t=a..b, options)

19

This command is used to create a two-dimensional plot of a complex function f, in which the
real part of the complex number is associated with the x-axis and imaginary part with the y-

axis. The parameter t is the parameter of that function over the range of a to b.

So far all of these commands operate within the Cartesian coordinate system by
default. We could of course change that by utilizing one of the coordinate options in
parameter part of the different commands, or we could simply use commands that directly
serve this purpose. As an example we can use the command “polarplot” which allows us to

directly generate graphs in polar coordinate system.

polarplot(f, ¢p=a..b, options)

As in the previous commands, f is the function we want to plot, this time in the form of r(o).
This entry then produces a curve defined by [r(p), ¢], where r stands for radius and ¢ is the
angle. The range argument is optional and if it is not given, then the default range will be

from 0 to 2x (See Fig. 11c¢).

We can now start discussing the commands for graphs of functions in three-
dimensional space. It is vital to know if we want our function visualized in 2D or in 3D
environment because the resulting graphs vastly differ from one another and the interpretation
could therefore not be what we were looking for. If we have a function that is to be projected

into a three-dimensional environment, we need to reach for a different type of plot command:

plot3d(f, x=a..b, y=c..d)

Where the parameter f represents the expression that we are visualizing with variables of x
and y, while the two additional parameters represent the range over which the graph is
constructed. If we decide to not provide the range parameters, default values of -2x to 2m will

be chosen for trigonometric functions and -10 to 10 for other entered functions (See Fig. 11d).

20

Figure 11: Resulting graphs of different Maple plot commands

(a plot(3x,x = —10..10)
(b) implicitplot(x®* +y? = 2,x = —-2..2,y = —=2..2)
(¢) polarplot(9,9 = 0..4Pi)

(d plot3d(sin(x) - cos(y),x = —2Pi..2Pi,y = —2Pi..2Pi);

(13)

(14)

(15)

(16)

Even though all of these commands are structured in a largely similar way, every one of them

has its own set of requirements that need to be fulfilled. As we have already learned before, if

any of these requirements are not met, the program will generate an error, warning us about a

fault in the code. We will go over some of these error messages in the next part.

21

7.2 Examples of error messages in Maple

Since we should now be familiar with the basic usage of commands in maple, we can discuss

what discrepancies in these commands cause specific error messages to occur. In the table

below you will find examples of the most common ways in which commands are entered

incorrectly along with their corresponding error message and the correct form of that

command. The second column contains a brief explanation of the error message.

plot (3*x

Error, unable to match delimiters

plot (3*x)

One of the basic syntax errors
warns us that the delimiters are
not entered in correct pair form.
Our example can be corrected

by ending the bracket

complexplot (3*x + 2*i, x = -10 .. 10)

Warning, expecting only range variable x in

expressions [Re (3*x+2*i), Im(3*x+2*i)] to be

plotted but found name i

complexplot (3*x + 2*I, x = -10 .. 10)

When working with complex
numbers, it is important to
uphold the correct form for
denoting the imaginary part
(Maple uses uppercase I, not

lowercase 1)

plot (3*x + 2*I, x = 2 .. 3)

Warning, unable to evaluate the function to

numeric values in the region; complex values

were detected

Complexplot (3*x + 2*I, x = 2 .. 3)

We can immediately notice that
although we are trying to plot a
complex function, we are using
the wrong command to do so.
This problem can be fixed by
using the correct type of plot

function

plot(3*x, v = 2 .. 3)

Warning, expecting only range variable y in

expression 3*x to be plotted but found name x

plot(3*x, x = 2 .. 3)

Error that occurs when we try to
plot a function with variables
that had not yet been defined
instead of one that has been
defined (x instead of y in this

example)

Table 3: Examples of different plot-related error messages in Maple 2019.2

22

Although Maple and similar software tends to warn us if we are attempting an incorrect
operation, there are some cases in which we must be at least partly familiar with the correct
outcome of a function to identify if the program is displaying the correct solution. One of the
best examples of this problem could be discontinuous functions, in other words: functions that
are not represented by a continuous unbroken curve. If we were to plot a function like this,
there would more than probably be large deviations around the discontinuity points of that

function or so a connection between two points of discontinuity (See Fig. 12a).

301 309
204 201
10+ 10
0 . . 0 g . . 1
L3 b EEE s n n in n
8 4 8 8 4 3
-10+ -104
-204 -204
-30- =30~

(a) (b)

Figure 12: Software representation of tan(x) (a) and real tan(x) (b)

As we can see from the figure above, software does not correctly acknowledge the
discontinuity and connects the two points with a line. There is of course a way to prevent this
from happening with some additional parameters when entering the command, namely then

entering the parameter “discont” and setting its value to true:

plot(tan(x), x = 0 .. Pi, discont = true)

This alteration of the command is then what allows us to arrive at the actual form of the
tangent function (See Fig. 12b). Additionally, if we take another look at the circle graph from
previous page (See Fig. 11b), we can notice that although the function is that of a circle, the

resulting image is quite angular. This property is influenced by the grid parameter of plot

23

command and is tied to interpolation (See chapter 6.1). The grid parameter can be entered in

the following manner:

implicitplot(x"2 +y?"2=2,x=-2..2,y=-2.. 2, grid =[g, gl)

The values of g determine the density of the interpolation grid. With increasing values of g we
obtain an object that more closely resembles a perfect circle. Another example of possible
outcomes could be the problem of two-dimensional or three-dimensional environment. If we
were to project the following function of: x*2 + y”2 = 20, into two-dimensional plane, the
outcome can highly different than if we were to construct its graph in three-dimensional

space.

S P

Plisias

1
Lh
I I A A

L
T.

(a) (b)

Figure 13: Function with the same transcription in space (a) and in 2D plane (b).

As we can see from the figure above, if we decide to use a command to project this function
into three-dimensional space, the resulting graph is that resembling of a cylinder, whereas
using a different command and projecting it into two-dimensional plane yields us a graph of a
circle. Since there is nothing inherently wrong with both ways in which this function can be
visualized, it is up to us to choose the right procedure to suit our needs such as domain and
range. All of the different command examples used above were retrieved from the official
Maple 2019.2 Help System which allows users to find additional information about all the

commands and options that Maple contains.

24

7.3 Other available software and differences

Where previously we utilized Maple to learn about the format of basic visualization
commands, we will now draw from different software to help us compare between them and
to understand their varying approaches to similar tasks. For the purpose of this thesis, we will
be mainly comparing features and command libraries of Maple and Matlab, as they are both
widely known and used. Before diving into specific procedures, it is important to shortly

introduce the software.

8 Matlab

Since we have already explained the basic principles of how visualization software operates
with commands containing our input, we can use that knowledge to compare between
different variants of visualization in the form of different software that we use.

According to its creator, Matlab is “a full-featured technical computing Environment”
(Moler C., Mathworks®, 2004). It is a product of the Mathworks, Inc. with widespread use
through different academic institutions and business ventures. One of the many features this
software provides is the ability to calculate input data, draw out visual representations of the
data and manipulate the results. Apart from all these features, Matlab’s working environment
operates and presents itself in ways rather similar to those of programming languages rather
than acting like an ordinary computing program. With such a wide variety of uses spanning
across computation of mathematical problems, analysis and visualization of data,
programming, and modelling & simulation, Matlab is arguably one of the most versatile
technical environments on today’s market. Once again we will first go through the most basic

of visualization commands to demonstrate how Matlab converts numbers into graphical data.

8.1 Matlab’s approach to visualization

Matlab operates as a computing language that is able to manage programming, mathematical
computations and, most importantly, visualization of the computations. As a computing
language it contains significant amount of similarities when compared to different available
programming languages and as one of the most widely used computing languages it is also a

good sample to demonstrate larger amount of some of the basic principles that these programs

25

operate on. We can begin by perhaps the most significant principle: indexing. Indexing is the
foundation of a large variety of commands that operate with arrays or matrices. We can

demonstrate indexing on an example of a matrix below:

A=[1234,5678;9101112] 17)

Using this command we defined matrix A consisting of three rows and four columns. Each
row end is marked by a semicolon and its length depends on the quantity of numbers in-

between two semicolons. After creation, the matrix A has the following form:

A=156 7 8

9101112

(18)

1234]

Now if we wanted to work with only few selected numbers of this matrix, we need to know
their positions. This is where indexing takes over. Utilizing Cartesian coordinate system
(Chapter 5.1), we are able to assign a coordinate pair to each of the matrix’s positions. The
only thing we need to do is determine our starting position which (in the case of matrices) is
the left-most coordinate in the first row. This position will therefore be marked as (1, 1), since
it marks the first row and the first column. If we wanted to include number on this position in
any further equations or in different commands, we simply need to know its position indexes.
For example, if we needed to add the value in the second row and the second column to a

variable v, following command sequence would be the solution:

v=1
(19)

r=v+A4A(Q2,2)
Using this command, we took the number with indexes of (2, 2) from our matrix 4 and after
adding its value to the previously defined variable, we saved the new result into ». Good thing
to notice here is how the index numbers operate. We can imagine that the number in first row
and the first column position is our point of origin as it would be in the Cartesian coordinate
system. Its index numbers however begin from 1 instead of zero as they would in the point of
origin or in vast majority of programming languages. This is one of the most prominent

distinctions between fundamentals of Matlab and different programming languages while at

26

the same time a huge similarity with other computing languages such as Maple. This
technique is called 1-based indexing (as opposed to 0-based indexing) and is implemented
mainly because of how matrix operations work. If we apply this knowledge on our previous

equation, we can safely compute the result saved in variable r which would, in this case, be 7.

Our primary focus in most of the forthcoming examples shall be graphs, so it would be useful
to know how to provide them with parameters. In Matlab, we are capable of generating and
saving entire arrays of numbers into a single variable. Consider variable x to which we are
going to generate the domain for our graph. If we want the domain to span from -2z to 2z, the

easiest way is to use this three parameter command:

X = -2*pi:pi/100:2*pi; (20)

We can see the three parameters (separated by colons) in the following order: minimum, step
size and maximum. With the help of this command, we have now managed to insert around
400 values into the variable x, effectively constructing our domain. The next step is to define
the range. For the purpose of our example, our goal will be to construct a graph of the cosines
function. Utilizing the following command, we are able to define y as cosine values of

variable x:

y = cos(x); (21)
With both these variables set up, our requirements for construction of a graph are fulfilled.
We can do so with the following command:

plot(x,y) (22)

This is the most basic form of a plot function. It utilizes our two previously defined arrays of
numbers and constructs a 2D line plot, which would in our case be the graph of cosine

function ranging from -2x to 2

27

Fi T T 70 T T
%
0.8 / '-.I : \ e
|II f III
0.6 \ \ i
|II II' |II
0.4 T |II II| |II II| i
.'I II| / I'u
0.2r f II !I \ T
I| II II |I
) I| |I |I
= 0r \ i \ f g
|I | |I {
II II |I II
02F |II I'I |II I: i
I| | I| I
041 \ \ | 1
|II | |II]
0.8 I'|| / I'ul | .
|III I.'I I'|I I.'I
o8t \ \ / |
1 . L . . v o
-8 -6 -2 0 2 4
_X

Figure 14: 2D line plot of a cosine function in Matlab

6

At this point we can start noticing differences between similar computing software. For

example, the basic plot command works differently in each of the programmes. If we take a

look back, in Maple, the plot command consists of variables and their definitions directly

inside of the parameters part whereas Matlab requires both variables to be previously defined

in order for the plot function to work correctly. Were we to try and use the same procedure we

used in Maple in order to construct graphs in Matlab, we would face an error message. If we

are working with Matlab, this is important to remember as any variable that we would like to

in an in-advance reserved portion of Matlab’s memory.

include in our computations must be properly defined beforehand, as all variables are stored

In the next part we can discuss how Matlab treats implicitly constructed functions and their

visualization in form of graphs. Similar to Maple, in Matlab we too are required to use a

different function to project an implicitly constructed function. Not only that, but we also

need to define the function’s variables (as we have learned in the previous part) before we can

use them in any subsequent commands. For our example we will again attempt to create a

28

graph, this time that of an implicit function of a circle. The difference between the different

approaches of Maple and Matlab can be spotted at first glance of the following command

sequence:

i=@(x,y) X2 +y.N2-2;

23
fimpicit(i) 23)

Notice how in the first step, we define the function and save it into the variable i. We can
then use this new variable i to call our previously defined function. The second step of the
sequence is the function for constructing graphs of implicit functions defined by the variable
in the parameters bracket which is, in our case, the variable i. Several other parameters are to
be noted as well. Firstly, we are utilizing the function handle (@) before specifying the
individual parameters. “A function handle is a MATLAB® data type that stores an association
to a function. Indirectly calling a function enables you to invoke the function regardless of
where you call it from” (Mathworks®, 2020). Without the function handle we would not be
able to define the function in this manner and would need to resort to more complicated
function definition. The other important aspect to keep in mind is that when computing with x
and y we are effectively no longer operating with scalars and therefore there is a need to
employ an element-wise multiplication. This can be done by adding a period after both x and
y variable, where the period marks that the operation after it is to be performed on an element-
wise basis. The main purpose of this approach is to execute the operation between each
element of the first variable and each element of the second variable. The one condition being
that both variables must be the same size or be at least compatible. If they are not the same
size, but are compatible, then they implicitly expand to match each other in size

(Mathworks®, 2020).

29

05,/ \

05r I“\ F 0.5

Figure 15: Implicit graphs in Matlab

If we take a look at the resultant graph (See Fig. 15), we see that although we did not specify
any range over which we would like the software to scale the axes, Matlab made this action
automatically. It is entirely possible however, to enter this parameter manually and choose
which portion of function to inspect. This is done by including a vector of individual range

parameters after the function variable parameter in the command structure:

fimplicit(i,[0 1.5 0 1.5]) (24)

Not only are we able to change the displayed range, but additional parameters also allow us to
shift colours, line patterns and properties and much more. We can also choose to project our
graph into a different coordinate system the same way we did it in Maple with one exception
and that is defining the two variables of radius r and angle & beforehand. The resulting graph

is visually identical to that of Maple (See chapter 7.1) :

theta = 0:0.01:4*pi;
r = theta;

polarplot(theta, r) (25)

Shifting away from real numbers, we can attempt to plot a function of complex numbers.

30

Operations with complex numbers and their visualization are handled in a similar way in
Matlab as they would be in Maple or any different software. We have previously learned that
in Maple, we are able to plot the real part on x-axis against the imaginary part on y-axis.
Similar procedure can be followed in Matlab and we would achieve the same exact results. If
we consider two arrays of complex numbers: a and b; that we want to use to construct our
graph, we can plot each one of them individually without a problem.If we were, however, to
plot multiple sets of complex coordinates, distinction needs to be made between their real and
imaginary parts as they can no longer be called as a single variable in which they are stored.

We can demonstrate this process on the following examples:

Plot(a)
(26)

Plot(real(a),imag(a))

If our goal was to create a graph from an array of complex values, either of these two
commands would deliver the appropriate results. As we can see in the second command
example, we are utilizing the commands real() and imag() in our arguments. These
commands take the complex array and produce only the real or the imaginary values of each
complex number as their return values. This becomes important if more than one array of
complex values is to be visualized. If we were to simply use the variables in which they are
stored as arguments for the plot() function, Matlab would create a graph, but only of real
values of the first array against the real values of the second array while simultaneously
producing a warning message to warn us about the fact that both sets of imaginary values are
being ignored and not projected. This is where we need to utilize the real() and imag()

functions in the following form:

Plot(real(a),imag(a),real(b),imag(b)) (27)

With this approach, both complex arrays are projected into the graph with their real values on
the x-axis and imaginary values on the y-axis. The entire process can further be adjusted by
inserting the return values of both real() and imag() commands into new variables and

utilizing those variables rather than the commands themselves.

31

So far both software choices seem to operate in a very similar manner in terms of
command structure. Both have a command portion, portion for parameters and both can enter
additional parameters to influence the graphic side of a visualized function. Now we are going
to explore the different options we are presented with while using the Matlab’s tools to
visualize functions in three-dimensional environment. Our command of choice will be
dependent on whether we want to project a curve or a surface. Let’s begin by introducing
Matlab’s three-dimensional environment with construction of lines.

Our first task is to define a set of values over which the function will be projected. We

can define a new variable r to accommodate these values:

r=-2*pi:0.1:2*pi (28)

We now have an array of 126 values saved inside r which means that our next step will be
defining the individual variables of our function. This can be accomplished by a series of the

following commands:

X = sin(r)

y = cos(r)
(29)
z = sin(r).*cos(r)

plot3(x, y, z)

The last line consists of the command “plot3” which plots our line-connected coordinates in a
three-dimensional space (See Fig. 16). This is, however, only one of the possible approaches.
If our goal is to project a surface instead of a curve in three-dimensional space, we need to use
an entirely different command and also define all of the data and save it into variables
beforehand. This will make the process more intricate than we might be used to from Maple

for example, but it is a necessary step required my Matlab.

32

0.5 - X

N
\
— i -"\\
s % A
] 0 \ \\
\
\\\ \
\\ !
b \
%
0.5 / Rl
i
1 \\\ \\J.l)
0.5 - e 3 1
D\\‘-:_\\ e 0.5
: — 0
e g 05
¥ -1 X

Figure 16: Example of a resulting graph of a plot3() command in Matlab

To make a graph of a surface in Matlab, we firstly need to create something called meshgrid.
To achieve this, we need two sets of coordinates to serve as a base for our meshgrid. We can
begin by defining these two variables:
X =-2%pi:0.1:2*pi
(30)
y =-2%pi:0.1:2*pi

The next step is to create a two-dimensional grid coordinates using the defined x and y arrays:

[X, Y] = meshgrid(x, y) (31)

At this point of the process we have successfully created two matrices containing grid
coordinates based on previously defined vector arrays. The only step that is left is to introduce
a function into the process and we can now use the new X and ¥ coordinates as parameters of

this function:

Z = sin(X).* cos(Y) (32)

33

After this step, all the required parameters are now defined and we are now presented with
another choice. We can either project these parameters into a two-dimensional space with the
usage of the contour() command (See Fig. 17a) or use the command surf() to visualize what
we have been working on in three-dimensional space (See Fig. 17b). Whatever the choice, we
will be using X, Y and Z as the three input parameters in both cases. “The function plots the
values in matrix Z as heights above a grid in the x-y plane defined by X and Y. The color of
the surface varies according to the heights specified by Z.” (Mathworks®, 2020).

Figure 17: graphs of contour() (a) and surf() (b) commands in Matlab

As we can see, the surf() command yields us fairly equal results to those of Maple’s plot3d()
command. The uttermost difference between the approaches of these two programs is
undoubtedly the process which Matlab introduces. Where in Maple we can fit the entirety of
the command structure into a single line, making it more compact and easier to navigate
within the single command, Matlab’s method is that of individually defining each parameter
as its own variable. This fact can sway our view both ways. The approach in Matlab is
considerably more demanding and can introduce unwanted syntax errors if we are not familiar
with Matlab’s commands and working environment or careful enough, but by the same
measure it also makes our working space more organized and each of the parameters is more
accessible and easier to modify, should we want to. All the commands used in this chapter are

retrievable from and can be further examined in the official Mathworks® Help Center.

34

8.2 Construction of an advanced object in Matlab

Since we have already gone over the most important Matlab commands and their usage, we
can now better describe a more complicated process of visualization. For this purpose we are
going to follow a process of a fractal creation (see chapter 6.4), namely that of the Heighway
Dragon curve, and analyze it step by step. The following code was sourced from Mathworks’

community file exchange and was originally uploaded by Mr. Joseph Kirk.

x=[1 @]; y=[@ 0]; angle=90; n=13;
for k=1:n-1
xr = fliplr(x); yr = fliplr(y); a = x(length(x)); b = y(length{(y));
[theta, rho]=cart2pol(xr - a,yr - b);
[rx@, ry@] = pol2cart(theta + angle*pi/18@, rha);
rx = rx@ + a; ry = ryd + b;
x=[x rx(2:1length(rx))1;
y=[y ry(2:length(rx))];
end

Figure 18: Code for generating the Heighway Dragon fractal (Kirk, 2006)

First step, as in any more intricate Matlab visualization procedure, is to define some
essential variables. In our case the x and y vectors that provide the sets of x and y coordinates

for the line of the fractal:

x=[10]

y=[00] (33)

The other two important parameters to define at the beginning of the entire process are the
angle which determines by how man degrees will each iteration be rotated, and the number of
the iteration of which we want the fractal to be constructed. The iteration number is saved into

the variable n and angle in degrees into the variable angle:

angle =90

n=13 (34)

With the essential variables defined, we can delve into the process by which the fractal is
constructed. First step is to encapsulate the entirety of the following command sequence into a

loop, in our case the “for” loop:

35

for k=1:n-1 (35)

This means each of the commands following this one will repeat a set amount of times (in our
case until we reach one less iteration than the set amount #). The next line of commands deals

mainly with saving data into new variables that will be used later:

xr = fliplr(x); yr = fliplr(y)

(36)
a = x(length(x)); b = y(length(y))

The first line makes use of the fliplr() command which is used to flip the order of an array
from left to right the variables x and y are used as an argument for this command and the
output data is saved into alternatively named variables xr and yr. The second line introduces
two new variables (a and b) and simultaneously defines them. The command length() (which
returns a number of elements contained in an array) is used as an index for the variable x (see
chapter 8.1). This means that we count the elements in x then take the element on the position
of that value and save it into the variable a. The same process is followed for b, but with

values of y instead of x.

[theta, rho]=cart2pol(xr - a,yr - b) (37)

Next, in the line above, the variables @ and b are subtracted from the flipped arrays xr and yr
the results are then transformed into arrays of polar coordinates (see chapter 5.2) with the help
of the cart2pol() command. The next part accommodates for the rotation of the ongoing

iteration:

[rx0, ry0] = pol2cart(theta + angle*pi/180, rho) (38)

As we need to shift the structure of the fractal by a set amount of degrees, the value of the
previously defined variable angle is computed with the converted polar coordinate array theta
and both polar coordinate arrays are then again converted to arrays of Cartesian coordinates
with the help of the pol2cart() command. The newly converted arrays are saved into rx0 and

ry0 variables.

36

rx=rx0+a;ry=ry0+b; 39)

We create yet another set of variables and save the previously converted variables with the
beforehand calculated array sizes (a and b) into them. The final step is to update the original
arrays x and y that we started with to reflect this iteration’s progress. This is achieved by the

following set of commands.

x = [x rx(2:length(rx))];
y = [y ry(2:length(rx))]; (40)

’

Selected elements (from second to the last one) of the rx array are added to the elements of
the original array x and the newly created array then overwrites the previous array of x. Same
is done for y, this time with ry and y elements. This entire process is then repeated again and
again, until the for loop ends as mentioned in the beginning. All that is left to do is to enter
the correct visualization command which would in our case be the standard plot() with x and

y as its two parameters:

S . T -
T I W] - I 1 W]
o ot R o o =
an b ot r: P 2o =10 . '_r|r:H" 4
Rf, AP A, A B
20 -u“-”:;r_;ﬁ“':::LLHII #”F: i 1
o o Eid f
P h b D B O -
sl ok % th s SR)
2 i :
it i o,
: L |

=
ot 3
|:|_J|‘-E
j%%ﬂ;”
FE .
hqe
gl
p o
i H

[=pEe=g) .! I}.

_3D 1 1 1 1 1 1 1 1 1 1
=20 -10 0 10 20 30 40 50 60 70

X

Figure 19: Resultant representation of 13™ iteration of the Heighway Dragon fractal

37

8.3 Comparison between Matlab and Maple

This segment serves as a summary of different functions both programs offer and features that
might be present in one but missing in the other. We can begin by assessing the software’s
working environment.

Regardless of the type, any graph we will visualize in Maple will be displayed directly
in the working environment together with our code. While this approach is quite
straightforward, it can also cause minor problems if our working environment is cluttered
with heaps of information, displaying our graphical results into it might make it substantially
more difficult to navigate through the data. Another disadvantage of this approach is the
limited accessibility of different tools that would let us modify the final portrayal of the graph.
This issue is not present in Matlab as every graph we visualize, via all the different types of
plot functions, is opened in a separate window that also contains a handful of useful tools (as
does Maple’s working environment) that allow us to enrich the graph with additional
information or visual aids such as axe labels, height levels, tools to change the environment
around the graph itself and many more. All these graph enrichments can also be implemented
as additional parameters directly inside the various functions. This approach is more direct but
can also make the commands seem cluttered with non-vital text.

But perhaps the most apparent distinction between the two is the Matlab’s emphasis of
saving data (parameters) into individual variables. Where Maple’s primary functionality is
listing of all the parameters directly inside the function in question, Matlab goes the way of
saving individual parameters as their own entities. Both programs can of course apply the
opposite approaches, but that might not work correctly every time or not be compatible with
some more intricate commands.

To make sure the approach we have chosen at any given moment is the right one, both
Maple and Matlab have fairly extensive Help centres at their disposal. These Help centres
contain additional information about different commands, processes and even specific
parameters for individual commands. It is strongly encouraged to utilize these Help centres as
much as possible every time an uncertainty arises through our work process, as they offer first

hand explanations behind vast majority of the program’s functions.

38

9 Conclusion

This thesis is focused on the procedures in computer software that make it possible for
functions to be projected as their graphical representation on a computer. After we go through
the first chapters describing the principles of computer graphics and the fundamental
distinction between raster and vector graphics, the primary focus is then on introduction into
the scope of functions, their different attributes and their behaviour under specific
circumstances in different environment. Further, the focus shifts more to the different ways of
operating with the visualization process.

In the second part of the thesis, mathematical software called Maple is utilized to
demonstrate how software of this kind can be useful in our effort to create graphs of function.
We learn about how different commands are constructed and what mistakes to avoid in order
for them to function properly and that while similar software is usually quite intuitive and
helps its user achieve the desired results, it is still important to follow certain procedures in
order for the program to fully act according to our expectations. Afterwards we utilize
different visualization software — Matlab by Mathworks® to further explain some of the
processes and most importantly to make a comparison between different types of software
available to the public. Whilst we see that there are many differences between how each of
them operates and treats individual tasks, the innate mechanics of these programs share
tremendous amount of similarities and it is therefore quite easy to navigate them once we

learn the most differences such as the syntax and process of combining commands.

Software tools like Maple, Matlab, Mathematica and many others are nowadays
widely used in academic and professional environment and it is therefore very beneficial for
wider public to become more acquainted with at least the basics of the processes that stand

behind the operation of such software.

39

10 RozSireny Cesky abstrakt

Cilem této bakalarské prace je seznameni Ctenafe nejriznéjS§imi pfistupy pocitacové
vizualizace objektli ve dvourozmérném i trojrozmérném prostredi. Jelikoz jakakoliv iterace
takovéhoto procesu vyzaduje urcité znalosti nejriznéjSich problematik matematiky, tvoii
jejich vysvétleni prvni Cast této prace.

Pied ptikrocenim k zédkladnim stavebnim blokiim matematické stranky vizualizace
jsou také vysvétleny rozdily mezi dvéma zakladnimi typy grafiky, s kterymi se setkavame v
bézném pocitacovém rozhrani. Rozdily v jejich realizaci a jejich pouziti v praxi jsou obsahem
prvni tematické kapitoly. DalSim krokem k porozuméni pocitacové vizualizace je chapani
matematickych funkci. Funkce tvofi zakladnimi stavebni jednotky jakékoliv navazujici
operace probirané v této praci a je tedy dulezit¢ se dikladné obeznamit s jejich konstrukci a
vlastnostmi. Pozornost je vénovana také historii moderni definice funkce, bez které by nebylo
kapitoly o funkcich je Ctenati pfedstaven jednoduchy koncept fungovani funkce. Mimo to
jsou také probrany dodate¢né vlastnosti, jez tvofi podminky spravného zobrazeni dané funkce
ve formé grafu, jako napiiklad defini¢ni obor, obor hodnot. Nasledujici ¢ast prace je vénovana
jednotlivym typtim funkci, jez jsou urceny specifickymi pravidly tykajici se veli¢in, s kterymi
funkce operuje. Rovnéz se Ctenafi seznami s funkcemi implicitnimi, které na rozdil od
standardnich funkci nemaji svou funkéni veli¢inu zadanou explicitni formou, a také je
predstaven typ funkci, ve kterych figuruje vice nez jedna proménna. Po piedstaveni téchto
typt funkei ptichazi na fadu dal$i mozna kategorizace funkei, tentokrat zavisla na tom, z jaké
mnoziny Cisel do funkce pfifazujeme. VSechny tyto kategorizace funkci nam Iépe pomahaji
porozumeét jednotlivym principtim jejich konstrukce a slouzi proto jako pomyslny vstupni bod
k praktikam vizualizace.

Nez je mozno pfistoupit k praci v jednotlivych pocitacovych programech, je nutno
porozumét procesiim zobrazovani jako takovym a pfesné s touto problematikou se poji dalsi
kapitola této prace. Soufadnicové systémy tvoii pomyslny zdklad zobrazovaciho prostiedi a to
at’ jiz v pocitacové grafice, €i pii zobrazovani na prosty papir. Znalost spravného prostiedi pro
zobrazeni dané funkce urcuje zpusob jejiho predpisu a v prvni fad¢ také formu soufadnic pro
takovou funkci. Presto, ze vb&Zné praxi se nejCastéji setkavame pouze s jednim
soufadnicovym systémem, znalost a chapani ostatnich jsou kliCovymi vlastnostmi pii praci
v poc¢itacové grafice, jelikoz nékteré operace nelze realizovat bez nutné zmény

soufadnicového systému a s tim spjatého prevodu hodnot soufadnic.

40

Dalsim kritickym faktorem vizualizace objektli je samotny proces vykreslovani obrazct. Za
vytvofenim kfivky grafu muze stat jeden z procesii popsanych v nasledujici kapitole této
bakalaiské prace. Nejprve je pozornost vénovana konstrukci pomoci polynomi. Ctendf se
dozvida, co to polynomy jsou, a jak jejich fady ovliviiuji vzhled konstruované kiivky. DalSim
a tim pfevazné v praxi vyuzivanym procesem je interpolace soufadnicovych bodt za pomoci
splajnt. Takovato interpolace rovnéz zahrnuje nékolik podkategorii, které je mozno vyuzit
v nejriznéjsich situacich, kdy tou nejjednodussi metodou je prosté spojovani sousednich bodi
grafu za pomoci pfimek. V neposledni fadé¢ je také nastinén proces generovani fraktald, ktery
rovné€z souvisi s vykreslovanim dat v grafu, jak je mozno demonstrovat na Mandelbrotove
mnozin€ a pozdéji i v demonstraci v prostiedi jednoho z vizualiza¢nich softwarti.

Po seznameni cCtenafe se zakladnimi principy funkci a vizualizace pfichazi na fadu
obeznameni se specifickymi postupy vizualizacnich softwarti. V prvni kapitole této cCasti
prace je Ctendii predstaven matematicky vizualizacni software Maple. S vyuzitim tohoto
softwaru je poté Ctenafi predstaveno vyuziti funkci ve vizualizaénim softwaru. Pozornost je
vénovana predevsim konstrukci grafii vSech typu jiz pfedem zminénych funkci ¢tenai ma
moznost dozvédét se, jak jsou takova konstrukéni pravidla pfenesena piimo do softwaru.
Jelikoz se jedna o vizualizacni software, je nanejvys dulezité znat a dodrzovat spravnou formu
syntaxe ve vSech prikazech, které programu zadavame. Tomuto tématu se vénuje kratka
kapitola, ve které jsou popsany nejen nejcastéjsi chyby syntaxe ze strany uzivatele, na které je
tteba brat zretel, ale také nezadouci artefakty, jez mohou pfi procesu zobrazovani za
specifickych podminek vzniknout a ¢asto negativné ovlivnit kyzeny vysledek.

V dalsi kapitole je Ctenafi predstaven Matlab, velice rozSiteny software nejen pro
matematickou vizualizaci. Struktura fungovani Matlabu pro ucel vizualizace se od jiz
predstaveného softwaru Maple pon€kud liSi, zejména protoze Matlab dokaze plnit spoustu
jinych funkei mimo pole vizualizace. Je proto dilezité si nejprve predstavit tyto nové metody
a postupy, na kterych je fungovani programu Matlab postaveno. Nejvyraznéjsi zménou celého
procesu zadavani piikazii mtize byt pro uzivatele napiiklad definovani kazdé nové veliciny a
jeji ukladani do specifickych proménnych, pred jakymkoliv jinym pouzitim této nadefinované
proménné v dalSich ptikazech. Vizualizacni postupy, které tak naptiklad Maple dokazal
zvladnout prostym zadanim jednoho ptikazu, se v Matlabu mohou zna¢né protahnout, jelikoz
je tfeba pfedem definovat veskeré komponenty tohoto procesu. Na prvni pohled by se tak
mohlo zdat, Zze Maple nabizi jednodus$si feSeni, avSak pfi podrobnéjSim zkoumani a
porovnavani dalSich funkci obou programil zjistujeme, Ze postupy Matlabu ptinaseji své

vlastni vyhody.
41

Po shrnuti vizualiza¢nich postupti Matlabu je vénovana pozornost také praktické
ukazce konstrukce kodu k vykresleni jiz diive zminéného fenoménu — fraktalu. V této casti
jsou jiz diive popsané postupy a taktiky uplatnény v praktické ukazce vizualizace v prostiedi
programu Matlab a ¢tenafi je tak co moznd nejpiesnéji priblizen vizualizacni proces ponékud
komplikovangjsiho objektu.

Zavérem prace je porovnani obou vizualiza¢nich softwarii s ohledem na bézny proces
zobrazovani. Z uvedenych piikladi a popisu vyplyva zejména velkd podobnost mezi obéma
programy a do jisté miry i zna¢na univerzalita pfikazli pro vizualizaci jednotlivych druht
funkci. Ne ve vSem se vsak programy shoduji a je tak zfejmé i podstatné mnozstvi rozdilt
vjejich fungovani. Tyto rozdily vSak ve zna¢ném mnozstvi spadaji spiSe pod kategorii
syntaxe a fundamentalnich operaci dané¢ho programu, nez samotného procesu vizualizace.
Dtlezité je také zminit, ze jak pro Maple, tak Matlab je online k dispozici oficialni knihovna
veskerych jejich vizualizacnich ptikazli a postupd, kterd dobfe poslouzi nejen zacinajicim

uzivatelim tohoto softwaru.

Klicova slova

Funkce, vizualizace, grafika, proménna, graf, fraktal, Matlab, Maple

42

11 References

ADOBE, Portable Document Format [online]. 2019. Retrieved from:
https://acrobat.adobe.com/ie/en/acrobat/about-adobe-pdf.html

BOURKE, Paul. The Mandelbrot at a Glance [online]. 2002. Retrieved from:
http://paulbourke.net/fractals/mandelbrot/

BOURNE, Murray. Domain and Range of functions [online]. 2019. Retrieved from:
https://www.intmath.com/functions-and-graphs/2a-domain-and-range.php

BRONSHTEIN, 1. N. Handbook of mathematics. 4th ed. New York: Springer, c2004. ISBN
978-3540434917.

Data fitting: Polynomial Fitting and Splines (2016) YouTube video, added by Data4Bio
[Online]. Avaliable at: https://youtu.be/BqZXS3n7510

EVES, Howard. Foundations and Fundamental Concepts of Mathematics. 3rd edition. Dover
Publications, 1997. ISBN 978-0486696096.

FOLEY, James D. Computer graphics: principles and practice. 2nd ed. in C. Reading, Mass.:
Addison-Wesley, 1995. ISBN 978-0201848403.

KIRK, J. (2020). Dragon Curve (aka Jurassic Park Fractal) Retrieved from:
https://www.mathworks.com/matlabcentral/fileexchange/11069-dragon-curve-aka-jurassic-

park-fractal, MATLAB Central File Exchange. Retrieved June 1, 2020.

KAUFMAN, Arie. Rendering, visualization, and rasterization hardware. New Y ork:
Springer-Verlag, c1993. ISBN 978-354-0567-875.

KOPKA, Helmut a Patrick W. DALY. LATEX: kompletni priivodce. Brno: Computer Press,
2004. ISBN 80-722-6973-9.

MAHONEY, Matt. Data Compression Explained [online]. Ocarina Networks, 2010. Can be
retrieved from: http://nishi.dreamhosters.com/u/dce2010-02-26.pdf

43

Maple Online Help, complexplot. Toronto: Maplesoft, a division of Waterloo Maple Inc.,
2019. From:
https://www.maplesoft.com/support/help/maple/view.aspx?path=plots%2Fcomplexplot

Maple Online Help, implicitplot. Toronto: Maplesoft, a division of Waterloo Maple Inc.,
2019. From:
https://www.maplesoft.com/support/help/Maple/view.aspx?path=plots/implicitplot

Maple Online Help, plot. Toronto: Maplesoft, a division of Waterloo Maple Inc., 2019.
From:: https://www.maplesoft.com/support/help/Maple/view.aspx?path=plot

Maple Online Help, plot3d. Toronto: Maplesoft, a division of Waterloo Maple Inc., 2019.
From: https://www.maplesoft.com/support/help/Maple/view.aspx?path=plot3d&term=plot3d

Maple Online Help, Plotting Discontinuous Functions. Toronto: Maplesoft, a division of
Waterloo Maple Inc., 2019. From:
https://www.maplesoft.com/support/help/Maple/view.aspx?path=plot/discont

Maple Online Help, polarplot. Toronto: Maplesoft, a division of Waterloo Maple Inc., 2019.
From: https://www.maplesoft.com/support/help/Maple/view.aspx?path=plots/polarplot

MathWorks, (2020). Help Center: cart2pol (R2020a). Retrieved June 1, 2020 from:
https://uk.mathworks.com/help/matlab/ref/cart2pol.html

MathWorks, (2020). Help Center: Create Function Handle (R2020a). Retrieved March 22,
2020 from: https://uk.mathworks.com/help/matlab/matlab _prog/creating-a-function-

handle.html

MathWorks, (2020). Help Center: fliplr (R2020a). Retrieved June 1, 2020 from:
https://uk.mathworks.com/help/matlab/ref/fliplr.html

MathWorks, (2020). Help Center: Meshgrid (R2020a). Retrieved March 23, 2020 from:
https://uk.mathworks.com/help/matlab/ref/meshgrid.html

44

MathWorks, (2020). Help Center: Plot Imaginary and Complex Data (R2020a). Retrieved
March 22, 2020 from: https://www.mathworks.com/help/matlab/creating_plots/plot-

imaginary-and-complex-data.html

MathWorks, (2020). Help Center: pol2cart (R2020a). Retrieved June 1, 2020 from:
https://uk.mathworks.com/help/matlab/ref/pol2cart.html

MathWorks, (2020). Help Center: Power, .™ (R2020a). Retrieved March 22, 2020 from:
https://uk.mathworks.com/help/matlab/ref/power.html

MOLER, Cleve. The Origins of MATLAB: Mathworks 2004. From:

https://uk.mathworks.com/company/newsletters/articles/the-origins-of-matlab.html

ROSE, Michael. Explainer: what are fractals? [online]. 2012. Retrieved from:
https://theconversation.com/explainer-what-are-fractals-10865

SHANNON, Alexander. Fractals, Compression and Contraction Mapping. Eureka. 2012,
(62), 32-37.

SPIVAK, Michael. Calculus. 3rd edition. Houston: Publish or Perish, 1994. ISBN 0-914098-
89-6.

STOVER, Christopher and WEISSTEIN, Eric. Cartesian Coordinates. From MathWorld--A

Wolfram Web Resource. http://mathworld.wolfram.com/CartesianCoordinates.html

STOVER, Christopher and WEISSTEIN, Eric. Polar coordinates. From MathWorld--A

Wolfram Web Resource. http://mathworld.wolfram.com/PolarCoordinates.html

SVOBODA, Zden&k a Jiti VITOVEC. Matematika 2 [online]. Brno, 2014. Retrieved
December 10, 2019

TABACHNIKOV, S. Dragon Curves Revisited, Mathematical Intelligencer, 36, No. 1 (2014).

Retrieved from: http://www.personal.psu.edu/sot2/prints/DragonCurves.pdf

45

WEISSTEIN, Eric W. Bézier Curve. From MathWorld--A Wolfram Web

Resource. http://mathworld.wolfram.com/BezierCurve.html

WEISSTEIN, Eric W. Spherical Coordinates. From MathWorld--A Wolfram Web

Resource. http://mathworld.wolfram.com/SphericalCoordinates.html

What’s the Difference Between Raster rand Vector? (2019) Retrieved from:

https://www.psprint.com/resources/difference-between-raster-vector/

ZARA, Jiii, B. BENES, J. SOCHOR a P. FEKEL. Moderni poéitacova grafika. 2., pfeprac. a
roz§. vyd. Brno: Computer Press, 2004. ISBN 80-251-0454-0.

12 List of figures

Figure 1: Example of a resized raster iMage..........cccvvveeeerivieeerciiieieeiieeeeeieeeeeeeneeeesnneeens 2
Figure 2: Example of a resized VeCtOr IMAZE.........cccuvveeeeiuiieeeriiieeeiiieeeeeieeeeeeerreeeeseneens 3
Figure 3: Graphical representation of a function..............cceeeeeviiiiinciiiie e, 6
Figure 4: Three dimensional plot (a), Contour plot (D)ceevvvveieiriiieeiciiie e, 9
Figure 5: Cartesian coOrdinate SYStEIM.........eeereuvereeriiieeeeiiieeestiieeeeiieeeeeneeeeessnreeeessneens 10
Figure 6: Polar coOrdinate SYSIEIMcccvvviieeiieeeeiiiieees e e eiieeeeeieaeeeereeesserree e eeeneees 11
Figure 7: Spherical coordinate SySteM..........ccccvviieeiiieeeiiiieeeicieeeeerieieeeereeeesevee e eeeneees 12
Figure 8: Examples of possible polynomialsccccoovvveiieiciiieieciiie e 14
Figure 9: Different types of interpolationcoocvveieiiiiiie i 15
Figure 10: Mandelbrot set (Bourke, 2002) over real and imaginary coordinates............. 16
Figure 11: Resulting graphs of different Maple plot commands.............cccceveeriierennnnnenn. 21
Figure 12: Software representation of tan(x) (a) and real tan(x) (b).......cccccceeereeenrnne. 23
Figure 13: Function with the same transcription in space (a) and in 2D plane (b).......... 24
Figure 14: 2D line plot of a cosine function in Matlab.............ccccooiiiiiiiiiiiii . 28
Figure 15: Tmplicit graphs in Matlab...........c.o.oooiiiiiiii e 30
Figure 16: Example of a resulting graph of a plot3() command in Matlab 33
Figure 17: graphs of contour() (a) and surf() (b) commands in Matlab......................... 34
Figure 18:]. Kirk’s code for generating the Heighway Dragon fractal 35

Figure 19: Resultant representation of 13™ iteration of the Heighway Dragon fractal37

13 List of tables

Table 1: Representation of function as a table............cccceivriiiiiiiiiiie e, 5
Table 2: Different iterations of the Heighway Dragon creation process..........ccccecuvveenn... 17
Table 3: Examples of different plot-related error messages in Maple 2019.2 22

46

