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Abstrakt 
Tato doktorská práce se zabývá zlomkovým kalkulem na diskrétních množinách, přesněji 
v rámci takzvaného (q, /i)­kalkulu a jeho speciálního případu /i­kalkulu. Nejprve jsou 
položeny základy teorie lineárních zlomkových diferenčních rovnic v (q, /i)­kalkulu. Jsou 
diskutovány některé jejich základní vlastnosti, jako např. existence, jednoznačnost a struk­

tura řešení, a je zavedena diskrétní analogie Mittag­Lefflerovy funkce jako vlastní funkce 
operátoru zlomkové diference. Dále je v rámci /i­kalkulu provedena kvalitativní analýza 
skalární a vektorové testovací zlomkové diferenční rovnice. Výsledky analýzy stability 
a asymptotických vlastností umožňují vymezit souvislosti s jinými matematickými disci­

plínami, např. spojitým zlomkovým kalkulem, Volterrovými diferenčními rovnicemi a nu­

merickou analýzou. Nakonec je nastíněno možné rozšíření zlomkového kalkulu na obecnější 
časové škály. 

Abstract 

This doctoral thesis concerns with the fractional calculus on discrete settings, namely in 
the frame of the so­called (q, /i)­calculus and its special case /i­calculus. First, foundations 
of the theory of linear fractional difference equations in (q, /i)­calculus are established. In 
particular, basic properties, such as existence, uniqueness and structure of solutions, are 
discussed and a discrete analogue of the Mittag­Leffler function is introduced via eigenfunc­

tions of a fractional difference operator. Further, qualitative analysis of a scalar and vector 
test fractional difference equation is performed in the frame of /i­calculus. The results of 
stability and asymptotic analysis enable us to specify the connection to other mathematical 
disciplines, such as continuous fractional calculus, Volterra difference equations and nume­

rical analysis. Finally, a possible generalization of the fractional calculus to more general 
settings is outlined. 
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Introduction 

The idea of non-integer order derivatives is almost as old as the notion of the classical 
derivative itself. Its first mention dates from the end of the 17th century when Leibniz 
discussed the meaning of derivative of order one half in his list to l'Hospital. Thereafter, 
derivatives and integrals of arbitrary order attracted an attention of many important math­
ematicians who contributed to a discussion on this matter (e.g. Euler, Laplace, Fourier, 
Abel, Liouville, Riemann, Laurent, etc.). At the end of the 19th century, most of defini­
tions and results were unified and the theory, historically established as fractional calculus, 
finally got a solid base. 

During the 20th century, the technology development along with higher demands placed 
on mathematical models created a suitable opportunity for involvement of the fractional 
calculus into the world of applications and subsequently for its wide theoretical expansion. 
The true landmark in history of fractional calculus occurred in 1974 when the first inter­
national conference specialized on this subject was held in New Haven and the first book 
presenting a comprehensive survey of both fractional calculus theory and its applications 
was published by Oldham and Spanier [41]. Since then, the importance of fractional calcu­
lus is increasing and the number of related papers is permanently growing. Apart from the 
study of the fractional calculus itself and its influence on other mathematical disciplines 
(e.g. theory of functions, probability theory), an extensive research takes place also in appli-
cational fields, such as rheology, biology, electrical engineering, control theory, etc. Hence, 
numerical methods for solving of differential equations with fractional derivatives (the so-
called fractional differential equations, in short FDEs) became one of the main courses in 
fractional calculus expansion and, consequently, motivated the theoretical development of 
discrete fractional calculus. 

The theory of discrete fractional calculus originates from the works by Agarwal [1] and 
Diaz & Osier [21], where the first definitions of non-integer order differences and sums were 
introduced for functions considered on the sets of points forming geometric and arithmetic 
sequences, respectively. Recently, both the cases were unified and generalized, because frac­
tional operators were successfully established on any set of points such that the distance of 
two neighbours (the so-called graininess function) is given by an appropriate linear function 
(see [18]). So far, the research in this field is mainly concentrated on methods for solving 
of difference equations involving fractional differences (the so-called fractional difference 
equations, in short FdEs; see, e.g. [7,8,38,40]), while qualitative analysis of FdEs is just at 
the beginning. 

Since we discuss fractional calculus on various settings in this work, it is convenient to 
utilize a notation independent on the underlying set of points. For that purpose, the time 
scales theory turns out to be an excellent tool. This theory concerning joint investigation 
of continuous and discrete analysis was introduced by Hilger in 1988 and its inspiring ideas 
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resulted in fast development summarized in comprehensive monographs [11,12]. Up to 
now, there are no general definitions of fractional operators in the framework of the time 
scales theory applicable in practice. Nevertheless, the time scales theory allows at least 
a symbolical comparison of results achieved for particular settings where the fractional 
calculus is well-established (including the continuous fractional calculus), and, moreover, it 
provides a suitable starting point for possible further generalizations. 

This doctoral thesis is based on some of the author's papers. In particular, it summarizes 
the papers [14-17] (written jointly with other authors) with regard to [32,33]. The former 
group of papers deals mostly with solutions of FdEs (often considered as discretizations 
of appropriate FDEs), their qualitative properties and potential consequences for some 
numerical methods, while the latter one concerns with numerical solution of some particular 
problems. 

The work is organized as follows. Chapter 1 consists of three large parts. First, the 
basics of continuous fractional calculus and some advanced results connected to our research 
are presented. Further, some necessary notions from the time scales theory are recalled and 
the generalized Laplace transform is established. The last part contains an overview of 
discrete fractional calculus in a framework of the time scales theory. Some original results 
regarding Laplace transform and discrete fractional calculus are also included. Chapter 2 
is based on papers [14,15]. It deals, among others, with the closed form of a solution 
for higher-order scalar linear FdEs. In particular, a discrete analogy of the Mittag-Leffler 
function is introduced. A l l the results of this chapter are formulated on the time scale with 
a general linear graininess function. In Chapter 3, originating from [16], the stability and 
asymptotic properties of a scalar two-term linear FdE are studied via its conversion to a 
Volterra difference equation. Further, Chapter 4 is based on the paper [17] and utilizes the 
discrete Laplace transform for an investigation of qualitative properties of linear fractional 
difference systems. The equations considered in Chapters 3 and 4 are studied on time scales 
with a constant graininess, especially because of possible applications to numerical analysis 
of corresponding FDEs. At last, the problem of an introduction of fractional operators on 
a general time scale is discussed and a possible solution with its consequences is sketched 
in Chapter 5. 
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1 Preliminaries 

In past few decades, several attempts to establish definitions of discrete fractional operators 
were performed (see, e.g. [1,18,21,27]). Some of these definitions differ only in formal details, 
some of them in underlying set of points and some of them are equivalent. Our approach to 
discrete fractional calculus is closest to the one presented in [18]. It takes into account the 
characteristics and results of the continuous fractional calculus and tries to consider them 
as paradigms. For that purpose, the notation known from the time scales theory seems to 
be very convenient. 

This chapter includes a variety of preliminary results. It refers mainly to some classical 
monographs, but presents also several assertions established in the author's joint papers 
[14,15,17]. First, we recall the well-established notation, definitions and statements of 
continuous fractional calculus (Section 1.1) and the time scales theory (Section 1.2 up to 
Subsection 1.2.4). Then we summarize some recent results regarding generalized Laplace 
transform and formulate a few related statements useful for our further investigation. The 
last section is mainly devoted to the discrete fractional calculus, where several original 
results on this matter are presented. 

1.1 Basics of continuous fractional calculus 

As it has been outlined in the Introduction, the fractional calculus appeared as a theoret­
ical concept without any instant practical application, and therefore without any possible 
objective evaluation of proposed definitions. Such an origin predetermined fractional cal­
culus for an interesting history embracing a parallel evolution of various approaches (see, 
e.g. [39,41]). 

Nowadays, the relations between the approaches are clarified which makes the theory of 
fractional calculus broad and unitary at the same time. In this work, we employ mostly the 
so-called Riemann-Liouville approach, which is the most important one from the historical 
and theoretical point of view. In applications its position is not so unquestionable, since 
there is a growing influence of the so-called Caputo fractional derivative, which will be also 
mentioned in this thesis several times. 

1.1.1 Differintegration operators and their properties 

Although many current definitions of fractional calculus have a rich historical background 
originating from complex analysis, it is quite customary to introduce them more straight­
forwardly (see, e.g. in modern monographs [31,39,43]). As a bridge between classical and 
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fractional calculus we can consider the Cauchy formula for mth integral 

ft l"rm-l fi~i ft <± \m-l 

aImf(t)= / . . . / /(ro)dro • • • d r m - ! = / \ J / ( r ) d r , (1.1) 
Ja Ja Ja Ja \ m ±)-

where m 6 Z + , a G M , t > a and /(£) is a real function integrable on [a,t\. In other words, 
the mth integral is represented as a single convolution integral with a polynomial kernel 
dependent on m. 

The generalization of this formula for non-integer values of m requires only a slight 
adjustment of the kernel. While the power function of non-integer (real or even complex) 
order is well-known, the factorial has to be replaced by the Euler T-function defined as 

r(z) = lim — — , z 4. Z Q , 

which is the unique logarithmically convex solution of the factorial equation F(z+1) = zT(z) 
with the normalizing condition T(l) = 1 (see, e.g. [36]). We can see that T-function has 
simple poles at non-positive integers, but its reciprocal 1/T(z), relevant to our study, is 
analytical at all complex values of the argument. Although in principle we can introduce 
integrals and derivatives of complex orders (see, e.g. [31,39]), in this work we concern with 
real orders only. 

These considerations lead us to the following definition of integral aP', where the order 
7 is a positive real. For a better consistency, we will denote this integral by a symbol for a 
derivative of negative order, i.e. a D ~ 7 = a J 7 . 

Definition 1.1. Let 7 6 R j and 0,0,6 e R be such that a < a < b. Then for a function 

/ : (a, b] —> M we define the fractional integral of order 7 e M + with the lower limit a as 

aB-y(t) = j T ( t ~ ^ ) 7 - / ( r ) d r , te[a,b] (1.2) 

and for 7 = 0 we put a D ° / ( 0 = f(t). 

Remark 1.2. Fractional operators can be considered in various function spaces (see, e.g. 
[31]). For our purposes we note that the fractional integral given by (1.2) is well-defined for 
functions being continuous on (a, b] and integrable on any finite subinterval of [a, b]. For 
t = a we consider the fractional integral in a limit sense. 

Considering a derivative of arbitrary order, the situation is more complicated since 
there is no differential analogue of (1.1). A simple extension of (1.2) to negative values of 
7 can be utilized in the frame of generalized functions theory, but it is not effective in our 
case due to the loss of integrability. We introduce two most broadly used definitions of 
fractional derivative, both employing the fractional integral to reach non-integer orders. To 
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keep the harmony in our notation, the usual mth derivative (m G Z + ) will be denoted by 

a D m , although the parameter a has no factual meaning here. Further, we recall the ceiling 
function defined for every £ G R as = min{m e Z ; m > ( } . 

Definition 1.3. Let 7 6 K j and 0,0,6 e R be such that a < a < b. Then for a function 
/ : (a, b] —> K. we define the Riemann-Liouville fractional derivative of order a with the 
lower limit a as 

a D " / ( í ) = a D M a D - ( M - « ) / ( í ) , í e [a, 6]. 

Remark 1.4. (i) In the case of ct being a positive integer, the definition reduces to an 
ordinary derivative and the integrability assumption implied by the fractional integration 
can be removed. Thus, the integer-order derivatives are the only local ones in the family of 
fractional operators. 

(ii) The Caputo fractional derivative of order a with the lower limit a differs from the 
Riemann-Liouville one by reversed sequence of the operators, i.e. 

c

aBaf(t) = a D - ( M - ° ) a D M / ( í ) , t G [a,b]. 

More information about definitions of fractional operators and their properties, including 
the ones bellow, can be found, e.g. in [31,39,43]. In the sequel, we occasionally use the 
term fractional derivative even for fractional integral which will be indicated by its negative 
order. 

Besides an apparent linearity of all introduced fractional operators, we should first 
mention the composition rules. It holds 

aBa

aB-Pf(t) = aBa-Pf(t), (1.3) 

= au^f(t) - E ^ " f c / ( * ) L a r ( i - i - f c ) ' M 

-a—k 

k=l 
k) 

where a ER and (3 G R+. 
In mathematical analysis, the formulas for mth derivative and integral (m G Z + ) of 

elementary functions (such as í 7 , eť, siní, cosi, etc.) are well­known. It can be shown that 
corresponding formulas for fractional derivatives are generalizations of these relations (see, 
e.g. [39,41]). In particular, we present the formula 

° D " ^ r m ^ T T y ^ ( - 1 . » ) . « » <»•*) 

for the Riemann­Liouville derivative of a power function, which will serve as a paradigm in 
our later considerations. Note that according to (1.5) the Riemann­Liouville derivative of 
a constant function is nonzero, which is one of the most significant reasons why different 
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definitions of fractional operators, especially the Caputo one, are often preferred in many 
physical applications. 

The Laplace transform (see, e.g. [46]), for a given function f(t) denoted by £{f}(z), is 
well-known to be a powerful instrument for solving of linear ordinary differential equations. 
The case of linear FDEs is not different in this respect (see, e.g. [31,43]). On this account, 
we conclude this subsection by recalling the Laplace transforms of the fractional operators 

£ { „ D ^ / } ( z ) = z^£{f}(z), 7 > 0 , (1.6) 

£ { 0 D a / } ( * ) = zaC{f}(z) - A D Q - f e - 7 ( 0 | t = 0 , a>0. (1.7) 
k=0 

For a e Z+, the latter relation is reduced to the formula for the Laplace transform of the 
classical integer-order derivative. 

1.1.2 Linear FDEs 

In this work, we discuss mainly linear equations with a few outlines to more general prob­
lems. Hence, we recall some known results from the theory of linear FDEs for later com­
parisons. For more information see, e.g. [31,43]. 

In the theory of linear ordinary differential equations, a crucial significance belongs to 
the exponential function. In the theory of linear FDEs, this role is formally played by the 
so-called Mittag-Leffler function defined by the series expansion 

^ ) = E r J + ^ ) ' ?7 e M.+, /3 e IR. (1.8) 

We can see that for r] = (5 = 1 (1.8) is simplified to a well-known series expansion of the 
exponential function. Regarding fractional calculus, the key property of the Mittag-Leffler 
function is 

o D - ^ i S U A f ) ) = ( t"~a~lE^XtV) > P * a> ( L 9 ) 

where a, (3, i] e R+ and A e R . For solving of linear FDEs via the Laplace transform it is 
useful to recall the formula 

£{tP-1EvAW)}(z) = ^ - . (1.10) 

As indicated by (1.9) and (1.10), the notation via the Mittag-Leffler functions is utilized 
rather for historical reasons. The actual "fractional" generalization of the exponential func­
tion is 

0 0 \kfr)k+/3-l 

S(t; A, rj, (}) = t^EvAXn = £ f ^ ^ y (1.11) 
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introduced in a slightly more general form in [43, formula (9.8)]. However, we will keep the 

usual notation and express the results in terms of En$. 

In many aspects, theory of linear FDEs tracks its integer-order pattern. It can be 

demonstrated by existence and uniqueness theorems for various types of operators, solving 

methods and even by the form of a fundamental system for solutions of homogeneous 

linear equations (when solutions form a vector space). However, a question arises when a 

choice of initial conditions should be performed. Their number is derived from the number 

of integer-order derivatives occurring in involved operators, in particular the fractional 

derivative 0 D a (a G R+) generates \a] initial conditions. Their type is specified via (1.7), 

i.e. the Riemann-Liouville derivative requires the initial conditions in the form of fractional 

derivatives and integrals. The matter of physical meaning of such initial conditions is a 

subject of current discussions (see [28]) and it is the other reason for the use of the Caputo 

derivative in applications (it works with the ordinary initial conditions, see, e.g. [43]). 

For our later considerations, it is useful to introduce some initial value problems. First 

we deal with the initial value problem 

0Bax{t) = Xx{t), t e R+, 

o~Da~Jx(t)\t=0 = xa-j , 3 = 1,2,..., \a] , 

where a e R+, A e R and xa-j e R (j = 1,..., \a~\). Using (1.7) and (1.10) it can be 
shown that the solution is given by 

M 
<t) = YJ

xct-3ta-'Ea^_3+1{\ta). (1.12) 
i=i 

Further, we mention some recent stability and asymptotic results derived for the matrix 

initial value problem 

0Bax(t) = Ax(t), t e R + , (1.13) 

0 D a - 1 a ; ( * ) | t = 0 = a;o, (1.14) 

where 0 < a < 1, A e Rdxd and x0 e Rd. The autonomous system (1.13) is said to be 

asymptotically stable if and only if for any x0 e Rd the solution x(t) of the initial value 

problem (1.13), (1.14) satisfies ||x(t)|| —> 0 as t —> oo. 

From this point on, eigenvalues of a matrix A are denoted by \(A) and the function 

Arg(z) means the principal argument of z for any complex number z. We conclude this 

section by the main result of the paper [45]. 

Theorem 1.5. If all eigenvalues \(A) satisfy |Arg(A(A))| > ^f, then (1.13) is asymptoti­

cally stable. In this case, the components of the state decay towards zero like t~^1+a\ 
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1.2 Basics of the time scales theory 

To keep this thesis self-contained, we have to introduce some basic concepts of the time 

scales calculus. The time scales theory is divided into delta and nabla calculus according to 

the utilized definition of a derivative. As the names suggest, the delta calculus is built on a 

generalization of the forward difference, while the nabla calculus is based on the backward 

one. Although the delta version is usually preferred in the time scales literature, we will 

employ the nabla (backward) calculus, which seems to be more suitable for investigation of 

fractional operators as we will discuss later. 

In the sequel, we often use the terms derivative and integral also on discrete settings (in 

accordance with the time scales terminology). 

1.2.1 Elemental definitions of the nabla calculus 

By a time scale T we understand any non-empty closed subset of real numbers with ordering 

inherited from reals. We start our survey by general notions independent of our choice of 

the nabla calculus. The presented definitions and properties were adopted, with a few minor 

adjustments, from [11,12]. 

Throughout this thesis, we utilize especially the following particular time scales: 

• T = KL — {nh; n G Z}, where h > 0, 

• T ( , , h ) = {t0qn + hq-^r ; n e Z} U { ^ } , where t0 > 0, q > 1, h > 0, q + h > 1. 

The parameter t0 occurring in the definition of is not significant for our study, hence, 

for the sake of simplicity, it is not explicitly included in the symbol for this time scale. Note 

that if q — 1, h > 0 and to = h, then = KL and the cluster point h/(l — q) — —oc 

is not involved. If h = 0 and q > 1, then = qz = {t0qn; n e Z}, i.e. we obtain the 

g-calculus (see, e.g. [30]). 

Further, we use the symbols (a, b]j, [a, b]j, etc. for an intersection of a respective interval 

with the time scale T. 

Definition 1.6. Let T be a time scale. For t G T we define the forward jump operator 
a : T -»• T by 

a{t) = inf{r G T ; r > t} , 

while the backward jump operator p : T —> T is defined by 

p(t) = sup{r G T ; r < t] , 

where we put inf 0 = sup T and sup 0 = inf T. The jump operators of order m G Z + are 

defined recursively, i.e. am(t) = <r((Tm'~1(t)) and pm(t) = p(p m _ 1 ( t )) , respectively. 
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The jump operators allow to classify points in T as follows. 

Definition 1.7. Let T be a time scale and let t e l . Then t is called 

(i) right-scattered, if a(t) > t, 

(ii) left-scattered, if pit) < t, 

(iii) isolated, if it is right-scattered and left-scattered at the same time, 

(iv) right-dense, if t < sup T and a(t) = t, 

(v) left-dense, if t > inf T and pit) = t, 

(vi) dense, if it is right-dense and left-dense at the same time. 

If all points of T are isolated, we call T the isolated time scale. 

The graininess functions given bellow provide a convenient tool for a description of 

properties of time scales as well as functions defined on them. 

Definition 1.8. Let T be a time scale. The forward graininess function p : T —> K. is 
defined by 

fji(t) = a(t) -t 

and the backward graininess function v : T —> K. is defined by 

u(t) = t - p(t). 

Remark 1.9. Considering T = T ^ ) , the jump operators and graininess functions are 
linear with respect to t, i.e. a(t) = qt + h, p(t) = q~x{t — h), p(t) = (q — l)t + h and 
pit) = (1 - q~x)t + q~xh. It holds v(t) = qv(p(t)) and p(a(t)) = qp(t). 

From this point on, we focus only on notions of the nabla (backward) part of the time 
scales theory. Regarding discrete sets, it is useful to introduce a truncated time scale TK 

derived from T. If T has a right-scattered minimum t, then TK = T\{i}, otherwise T K = T. 
Further, the symbol TKm for m G Z + is specified via the recurrence TKm = (TKm-i)K. 

Now we can define the nabla derivative, a corner stone of the nabla calculus. In this 
thesis, we denote the nabla derivative by V / ( t ) instead of the usual / v ( t ) , because it is 
more suitable for a fractional generalization. If a function of two variables occurs, the 
symbol Vf(t,s) stands for the derivative with respect to the first variable. 

Definition 1.10. Let / : T —> M, t G TK. We define the nabla derivative of / at t, denoted 
by V / ( t ) , to be the number with the property that given any e > 0, there is a d~ > 0 such 
that 

1/00 - f(p(t)) - V/(*)(s - p(t))\ < e\s - p(t)\ for all s G (* - 5, t + 6)T . 

Further, let m G Z + and now let t G TK™. We define the mth nabla derivative of / at t 

recursively by Vmf{t) = V ( V m _ 1 / ( * ) ) -
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Obviously, in cases T = K. and T = Z the nabla derivative corresponds to an ordinary 
derivative and backward difference, respectively. Considering an isolated time scale (i.e. 
v(t) 7̂  0 for all t E TK) the nabla derivative exists for all t E T K and is given by 

Definition 1.11. Let a, b E T be such that a < b. Let / : [a, 6]T —> K. and F : [a, 6]T —>• K 
be functions such that -F v(t) = /(£) for all t E TK. Then function F(t) is called the 
antiderivative of /(£) and we define the definite nabla integral of fit) over [a, 6]T as 

f f{t)Vt = F{b)-F{a). 

Further, we put / 6 ° / (*)V* = - /*/(*) V * and £ f(t)Vt = 0. 

In the time scales theory, many types of integrals can be introduced (e.g. Riemann's, 
Lebesgue's, see [12]), but the definition above is sufficient for our concerns. On isolated 
time scales the definite nabla integral can be calculated as 

f f{t)Vt= £ u(t)f(t). (1.15) 
te(o,6]T 

It is known that a sufficient condition for the existence of the antiderivative is a gener­
alized continuity of f(t), the so-called ld-continuity. 

Definition 1.12. A function / : T —> K. is Id-continuous (left-dense continuous) provided 
it is continuous at left-dense points in T and it has finite right-sided limits at right-dense 
points in T. 

Considering the Laplace transform and fractional calculus on time scales, it is necessary 
to present also definitions of the improper integral of the first and second kind. Both 
notions were introduced in [12] in the framework of delta calculus, but their adjustment for 
the nabla case is straightforward. 

Definition 1.13. (i) Let a E T, T be unbounded above and let / : [a, OO)T —> K. be 
ld-continuous. Then we define the improper integral of first kind of fit) over [a, OO)T as 

^ " / ( O V * = hm (£f(t)Vt) • (!-16) 

(ii) Let a, a, b E T be such that a < a < b and let / : (a, b]j —> K. be ld-continuous on any 
interval [a, 6]T- Then we define the improper integral of second kind of f(t) over [a,b]j as 

fb , x f hma^a+ ( t f(t)Vt) , if a is right-dense, 
/ f(t)Vt = \ b V J a J w / 6 (1.17) 

A [ J_ f(t)Wt, if a is right-scattered. 
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Remark 1.14. (i) If the limit in (1.16) or (1.17) exists (does not exist), we call the corre­
sponding integral convergent (divergent). 
(ii) In [12], the improper integral of second kind is defined only for a being right-dense. Our 
formal extension to right-scattered points simplifies the notation throughout this thesis. 

Both nabla derivative and integral are linear operators and many well-known properties, 
such as relation for derivative of product and ratio or formula for integration by parts, can 
be derived also in the framework of the time scales theory (see, e.g. [11,12]). In particular, 
if we consider the nabla integral as a function of its upper limit t G T , the nabla derivative 
(with respect to t) is given by 

V f fit, r) V r = f(p(t),t) + f V / ( t , r) V r (1.18) 
J a J a 

provided f(t,s) and V / ( t , s) are ld-continuous with respect to the second variable. 

1.2.2 A dynamic equation on time scales 

To prepare a background for the next chapters, especially Chapter 2, we present some results 
on a nabla dynamic equation introduced for the case of the second order equation in [12]. 
The generalization of definitions and statements for equations of mth order (m G Z + ) is 
based on their delta versions stated in [11]. 

We discuss the linear initial value problem 

, ( t ) V m - ^ ( t ) = 0, t G TKn 

j = 1,2,...,m. 

(1.19) 

(1.20) 

= T K m, 

3=0 

V m " M * ) U = Vm-3 , 

where to G TKm, Pj(t) (j = l,...,m — 1) are ld-continuous functions for all t 
pm(t) = 1 and Dm-j [j = 1, • • • ,m) are arbitrary real scalars. 

Regarding the problem of existence and uniqueness of (1.19), (1.20) we recall the notion 
of z/-regressivity, which is introduced for linear dynamic equations of higher order via the 
corresponding dynamic system of the first order (for the idea see [11,12]). 

Definition 1.15. A matrix function A : T —> R.dxd is called u-regressive if 

det(J - u(t)A(t)) + 0 for all t G TK . 

Definition 1.16. We say that the equation (1.19) is ^-regressive provided the matrix 

/ 0 1 0 . . . 0 \ 

0 0 1 
A(t) 

0 0 
0 

0 1 

-Pm-2(t) -pm-l(t) ) 

is //-regressive. 
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Theorem 1.17. Let (1-19) be v-regressive. Then the problem (1.19), (1.20) has a unique 
solution defined for all t G T . 

Further, we recall the notion of Wronskian (this term is usually utilized in continuous 
analysis, while in the time scales theory the term Wronski determinant is more common). 

Definition 1.18. Let m G Z + . Then for y.j : T —> M. (j = 1,2,... ,m) we define the 

Wronskian W(yi,..., ym)(t) for all t G T K ™ as determinant of the matrix 

/ 2/i (0 V2{t) ... ym{t) \ 
Vyi(*) Vy2(t) ... Vym(t) 

V[yi,...,ym)[t)= . . . . 

\ V™" 1 ! / ^ ) Vm-ly2{t) ... Vm-lym{t) ) 

We recall this section by the following assertion describing the form of a general solution 

for (1.19), (1.20). 

Theorem 1.19. Let functions yi(t),...,ym(t) be solutions of the v-regressive equation 
(1-19) and let W{y\,... ,ym)(t) ^ 0 for some t G TKm. Then any solution y(t) of (1-19) 
can be written as y(t) = Y^k=\ ckyk(f), where Ck are real constants which can be determined 
via (1.20). 

1.2.3 Exponential functions, polynomials, power functions 

In classical mathematical analysis the definitions of elementary functions were polished 
during the time and nowadays they are well-established. In the time scales theory we do 
not have such a historical background and the techniques broadly used in classical analysis 
often cannot be utilized. In particular, the power series expansion fails as a general definition 
tool since the variety of T (and v{t)) leads to problems with convergence. 

We present time scales versions of a few elementary functions to illustrate the idea of 
the generalization. A common principle of these introductions lies in an identification of a 
role which should be played by the current function, and its utilization for the definition 
itself. 

To ensure required qualities, the definitions usually appear in two simultaneous versions 
corresponding to delta and nabla calculus respectively. We discuss only the nabla definitions 
and omit the term "nabla" in the names of functions. 

Exponential function 

First, we discuss the time scales generalization of a key function with regard to the theory of 
differential equations, the exponential function. Among its many properties, its relationship 
to differential equations turned out to be most suitable for utilization as a paradigm. For 
more information as well as the proofs of presented assertions we refer to [11,12]. 

To simplify the notation we introduce the following classes of functions. 
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Definition 1.20. The class of all scalar Id-continuous and //-regressive functions on T is 
denoted by 1ZV, i.e. 1ZU = {/ : T —> R; /(£) is ld-continuous and //-regressive}. Further, 
we define = {/ G 1ZV ; 1 — /(t)z/(t) > 0 for all t G T K } . 

Thus, for any / G 72.v we define the exponential function ej : T x T 4 R as a unique 
solution of the initial value problem Vy(t) = f(t)y(t), y(s) = 1. It can be written as 

where £h(z), the so-called //-cylinder transformation, is given by ih(z) = — ̂ Log(l — zh) for 
h G R+, z G C \ and Log(z) being the principal logarithm function. This definition 
is supported by many reasonable properties, some of them are listed bellow. 

Theorem 1.21. Let /, g G 1ZV and s,t,r G T. Then 

(i) eo(t,s) = 1 and if(t,t) = 1, 

(ii) ITtfe) =e/(s,t), 

(iii) ef(t,r)ef(r,s) = ef(t,s), 

(iv) iffeK+ then ef(t, s) > 0 /or a//£ G T, 

(v) if f eTZu\TZ+ then ef(p(t), s)ef(t, s) < 0 /or all t £ T swc/t i/ioi 1 - f(t)u(t) < 0. 

Explicit formulas for the exponential function are derived for many special time scales 
(see [12]). In our investigations we need the following ones. 

Theorem 1.22. Let s,t G T and let 7 G K. 6e swc/i 7 G 7^. 

(i) J / T = R, then e 7(t,s) = e 7 ^ . 

(ii) 7/T «5 isolated and t = crn(s), then e 7 (£,s) = rifc=i(l — lv{pk~l{t)))~l > *n particular 
for T = hZ we arrive at e 7(£, s) = (1 — •yh)~n. 

Polynomials 

The central role in classical analysis is played by polynomials due to their connection 
to series expansions (namely the Taylor's series expansions). On that account, we focus 
on polynomials of the type - —{ , where s,t G R and m G Zg . It is known that such 
polynomials can be expressed as the mth integral of the unit function, which is a suitable 
property for the time scales generalization. 

Throughout this thesis, we define the generalized polynomials hm : T x T —> R on an 
arbitrary time scale recursively by 

(1.21) 

hQ(t,s) = 1 (1.22) 

(1.23) 
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A proper choice of functions hm(t,s) is supported by their characteristics bellow and also 
by their use in time scales Taylor's formula (see [12]). 

Theorem 1.23. Let m e Z+ and s,t e T. Then 

(i) hm(t,t) = o, 

(ii) Vhm(t, s) = hm-^t, s) for t e TK, 

(iii) hi(t, s) —t — s. 

To discuss the generalized polynomials on T^h), we recall some necessary background 
of g-calculus (for more information see, e.g. [18,30]). For any ( 6 l and 0 < q ̂  1 we set 
[€\q = ^~f- ^ n e continuity, we put [£]i = (. Further, the g-Gamma function is defined 
for 0 < q < 1 as 

°° i _ jp+i 
- g ) w T T 

i=o 
Note that this function satisfies the functional relation Tq(£ + 1) = [£]gFg(£) and the con­
dition r^(l) = 1 (compare with the properties of the Euler T-function). Using this, the 
g-binomial coefficients can be introduced as 

6 
rn r,-(m + i)r,-(£ - m +1) 

( e l , mez. 

Although the g-Gamma function is not defined at non-positive integers, we can employ the 
formula 

m) [ } r , ( i - e - m ) ' ^ 

to calculate this ratio also at such the points. It is well-known that if g —>- 1— then Tg(z) 
becomes the Euler Gamma function T(z) (and analogously for the g-binomial coefficients). 
Among many interesting properties of the g-Gamma function and g-binomial coefficients 
we mention g-Pascal rules 

6 
rn 

rn 

m — 1 
+ qm 

rn 

J <1 
m — 1 + rn 

( e l , m e Z , 

( e l , m e Z 

(1.24) 

(1.25) 
J 9 

and the g-Vandermonde identity 

E 
i=o 

"c" qj2-mj+£j _ "e + c 

m — j j _ m 
( , C e l , m e z j (1.26) 

(see [5]) that turn out to be very useful in our further investigations. 
To simplify the notation, we put q = g - 1 whenever considering the time scale or 

a time scale formed by its subinterval. 
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Theorem 1.24. Let s , i e T , m e Z j 

(i) IfT — R, thenhm(t,s) = ^ p . 

(ii) IfT — hZ and t = <Jn(s), then 

hm(t,s) = K 
m + n — 1 

n — 1 
\n—1 urn, -m — 1 

n — 1 

(iii) IfT = T(gj/j) and £ = a n(s), £/«en 

M M = "m(*) 
m + n — 1 

n — 1 
a( S))g( 

—m — 1 

n — 1 

Remark 1.25. Note that for / i = 1 in (ii) we obtain the polynomials for classical difference 
calculus (T = Z) and setting h — 0 in (iii) we get the polynomials on the time scale T = q1, 
q > 1. 

Power functions 

As observed in Section 1.1, the power functions enjoy the most importance in continuous 
fractional calculus. However, we find the lack of well-established formulas allowing their 
convenient generalization for the time scales theory (similar to (1.21) for exponential func­
tion or (1.22) and (1.23) for polynomials). In fact, no essential property of power functions 
enabling such extension was proposed so far. The most promising attempt was performed 
in [10], where the authors defined power functions (in delta calculus) via the inverse Laplace 
transform as hp(t, 0) = C~1{z~^~1}(t), but no explicit formula was derived by this method. 
Moreover, this approach is not entirely general since, as we will discuss later, the Laplace 
transform cannot be defined on every time scale. 

However, this matter seems to be answerable on some particular time scales, for which 
an explicit form of hm(t, s) is known when m G Z + . Substituting non-integer values of m to 
the formulas for hm(t,s) yields reasonable relations for power functions. So far, there are 
only a few time scales enabling this method (see Theorem 1.24), namely M, T ^ ) , KL, q1 

and their subintervals. Obviously, the power functions on subintervals are inherited from 
the ones on original time scales. 

Definition 1.26. Let s,t G T, /3 G ( - l ,oo) . 

(i) I fT = R, then hp{t, s) = 

(ii) If T = hZ and t = an{s), then 

- i \n— 1 -(3-1 
n — 1 

(1.27) 
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(iii) If T = T(qjh) and t = crn(s), then 

hf}(t,s) = v^it) 
P + n-1 

n — 1 
-1 */>(*)) ^ 

n — 1 
(1.28) 

Remark 1.27. Formulas (1.27) and (1.28) are often employed even for (3 < —1. 

Since there are no prescribed properties which are supposed to be met by the power 

functions, we cannot ultimately decide whether the power function is defined properly. 

Considering the time scales M, KL and g z , the formulas above are historically established 

and the behaviour of such functions seems to be reasonable. That is not the case of T(q,h), 

since it was introduced only recently (see [18]) and its validity has to be confirmed by 

verifying the requirements occurring during our investigation. 

We show that (1.28) (and consequently (1.27)) extends the fundamental relation (1.23) 

also to non-integer orders as published in the author's joint paper [15]. 

Lemma 1.28. Let m G L+, (5 G M., s,t G and n G L+, n > m be such that t = an(s). 

Then 

Vmhp(t,s) 
hp-m(t,s), (3 g {0 ,1 , . . . ,m - 1} , 

0, & G { 0 , 1 , . . . , m - 1}. 

Proof. First let m — 1. For (3 = 0 we get h0(t, s) — 1 and the first nabla derivative is zero. 

If 0 ^ 0, then by (1.28) and (1.24) we have 

V M M ) 
hp(t,s) - hp(p(t),s) 

u(t) 

g-n+ll/(a(s)) 

' - l ^ - V " 1 ! (7(a))g( 

- / 3 - 1 
n — 1 

- / 3 - 1 

n — 1 + 

- 1 ) " " V 

- / 3 - 1 

n - 2 

- / 3 - 1 
n-2 

h/3-i(t,s) 

The case m >2 can be verified by the induction principle. • 
We end this subsection by recalling an asymptotic property of the power function on 

T = KL revealing its relation to the continuous power functions (see Definition 1.26). We 

employ a symbol ~ for asymptotic equivalence defined as 

f(i) 
f ~ g if and only if lim —— = 1. 

t^oo g{t) 
Corollary 1.29. Let P G M \ L~, T = KL, s, t G T and let s be fixed. Then it holds 

hp(t,s) 
r(i + p) 

as t —> oo . (1.29) 
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Proof. Let n G Z + be such that t = an(s). Using the asymptotic expansion 

1 a s n ^ o c , ^ I \ Z + , m G Z + (1.30) 
\ r a / m 1 + i ; l ( — 4 ) 

(see [42, p. 54]) we obtain 

M M ) = ( - ! ) - * ' ( t ) ~ ^ ^ ^ ^ = as „ ^ oc. 

• 

1.2.4 Laplace transform 

This subsection is devoted to the nabla Laplace transform on time scales (shortly the 
Laplace transform). While its delta (forward) version is extensively studied by many authors 
(see, e.g. [2,11,19]), the basics of the Laplace transform derived from the nabla calculus, 
i.e. the one we utilize in this thesis, appear only occasionally (see [3]). That is the reason 
why we discuss this matter in more details. Throughout this subsection we use the symbol 
T 0 for a time scale such that 

0 G T 0 and sup T 0 = 00 . 

Note that the Laplace transform can be, in general, defined with a starting point different 
from zero, but we are not interested in such a case. 

Before we engage in the Laplace transform, we have to establish the notion of a con­
volution of two functions (/ * g)(t), which is essential for our latter investigation. The 
definitions of a convolution employed in continuous and difference calculus, i.e. (f*g)(t) = 
Jo ftt ~ T )fl , ( T M' 7 " a n d (/ * d)(n) — Ylk=i f(n ~ k + l)g(k), respectively, are not applicable 
for a general time scale. For the delta calculus the appropriate definition was proposed 
in [13]. Adapting that approach for the nabla case we obtain the following introductions 
and assertions. 

Definition 1.30. Let T be such that supT = 00 and fix t0 e T. For a given function 

/ : [to, OO)T —> C, the solution of the shifting problem 

V u(t, p(s)) = - V u(t, s), s, t G T , * > s > t0 , 

u(Mo) = /(*), teT, t>to 

is called the shift (or delay) of f(t). The symbol V denotes the derivative with respect to 

the second variable. 

Remark 1.31. (i) For T = MQ and T = KLq the shifting problem has a unique solution 

u(t,s) = f(t-s) for all /(*). 

(ii) The shift of the polynomial hm(t,r) (m G Z Q ) is hm(t,s) independent of r. 
(iii) Let A be a //-regressive constant. Then the shift of the exponential function e\(t,r) is 
e\(t,s) independent of r. 
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Definition 1.32. For given functions / , g : T 0 —> M, their convolution is defined by 

(f*g)(t)= f f(t,p(r))g(r)Wr, teT0, 
Jo 

where f(t,s) is the shift of f(t). 

Such the definition of convolution keeps the key properties known from the classical 

analysis, e.g. associativity (/ * g) * u = f * (g * u). They can be verified by modifications 

of proofs in [13]. The most important property, the convolution theorem, is related to the 

Laplace transform and will be discussed bellow. 

In [3] the authors introduced the generalized Laplace transform for the so-called alpha 

derivatives and the nabla Laplace transform falls within this theory. Setting the alpha 

function to the backward jump operator p yields the following definition and subsequent 

assertions. 

Definition 1.33. Let f(t) be a real function defined at least on (0,OO)T 0 - The Laplace 

transform of f(t) is defined by 
roc 

£{ /} (* ) = / /(*) e*(0, p(t))Vt for z G V(f), (1.31) 
Jo 

where T>(f) consists of all complex numbers z G 1ZV for which the improper integral exists. 

Remark 1.34. It can be proved that the necessary condition for V(f) being of nonzero 

measure is existence of M G M + such that v(t) < M for all t G (0,oo) T o. Obviously, the 

constant M does not exist in the case of T(g^), while for T = hZ we can choose an arbitrary 

real number greater than h. 

Proposition 1.35. Let A G 1ZU be such that \imt^ooe\(t,0)ez(0,t) = 0. Then 

£{ex(;0)}(z) = ^ — . 
Z — A 

Proposition 1.36. Let m G Z + . Then it holds 

(i) £{hm(;0)}(z) = z - m - \ 

(ii) £{Vmf}(z) = zmC{f}(z) - E ^ o ^ V ^ - V W U , 

(iii) C{f*f(T)VT}(z) = z-i£{f}(z). 

Finally, the nabla Laplace transform retains the usual form of the convolution theorem 

and extends its validity on every time scale where the appropriate integrals (1.31) are 

applicable. 

Theorem 1.37. Let f(t), g(t) be functions such that £{f}(z), £{g}(z) exist. Then 

£{f * g}(z) = £{f}(z) • £{g}(z). (1.32) 
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Proof. The assertion can be proved utilizing the nabla analogy of the technique performed 
in the proof of [13, Theorem 3.2]. • 

Now we point our attention at the time scale KL and derive some other results related 
to our later investigations (see the author's joint paper [17]). 

/i-Laplace transform 

Applying the general definition relation (1.31) to To = KLq and considering Theorem 1.22 (ii), 
we obtain the formula for nabla /i-Laplace transform of a function f(tn) as 

oo 
£{/}(*) = h J 2 / & X 1

 - h z ^ ~ X '
 w h e r e

 tn = nh. (1.33) 
k=l 

The backward /i-Laplace transform is given by a power series with the center at zo = / i _ 1 , 
i.e. it holds V(f) = £?( / i _ 1 , r ) , where we use the notation B(z0,r) = {z G C ; \z — z0\ < r}. 
In particular, if the series converges at some z ^ h~l, then there exists r > 0 such that the 
series converges locally uniformly (and absolutely) in the open disk B{h~l,r). Moreover, the 
series expansion is determined uniquely and £{f}(z) is an analytic function on £? ( / i _ 1 , r ) . 

The /i-Laplace transform is related to some other known discrete transformations. The 
connection with the classical Z-transform of f(tn), defined by Z{f}(z) = J2T=o f(tk)z~k, 
is given via the relation 

£{/(•)}(*) = ^ { / ( * ( 0 ) } ( i ^ - ) • ( L 3 4 ) 

If h — 1 then the backward /i-Laplace transform agrees with J\fto-transform introduced in [8] 
for the value t0 — 1. 

Now we state the /i-Laplace transforms of power functions (1.27) and of an /i-analogue 
of the Kronecker delta (or more generally of Dirac delta function). 

Lemma 1.38. Let (3 G K. \ Z~ and 5h(tn) be a function defined as Sh(tn) = h~x for n — 1 
and zero otherwise. Then 

(i) £{h,(;0)}(z) = Z-^-\ 

(ii) £{5h}(z) = 1. 

Proof. The proof of (i) can be found in [8] (for the case h — 1). Here we present an 
alternative proof based on the binomial theorem. It holds 

£ { M " , 0)}(z) = hJ2 ^ ( - l ) * " 1 ( " / _ " / ) (1 - hzf~l 

k=l ^ ' 

fc=0 ^ ^ 

where the last line holds for |1 — hz\ < 1, i.e. for each z G B(h_1, h~v). 
The part (ii) is an immediate consequence of the definition of 8h(tn). • 

19 



The connection of the /i-Laplace transform to the theory of power series enables us to 
determine basic asymptotic properties of f(tn) from the knowledge of £{f}(z). In Chapter 
4 we are going to utilize following assertions (as usual, the symbol i1 denotes the space of 
sequences whose series are absolutely convergent). 

Proposition 1.39. Let f(tn) be such that £{f}(z) converges on i ? ( / i _ 1 , r ) , r > 0. 

(i) Ifr> h-1 then f{tn) G l1. 

(ii) If r < h~x then l i m s u p ^ ^ \f(tn) \ = oo. 

Proof. Assuming r > ft,-1, the Cauchy-Hadamard theorem implies 

1 
limsup v /l/(*n)l = T - < l > 

n—¥oo Hr 

hence f(tn) G i1. If r < hr1, the argumentation is analogous. • 

Proposition 1.40. Let g(tn) be such that g(tn) G i1. Then there exists f(tn) G i1 satisfying 
£{g}(z) • £{f}(z) = 1 */ a n d °nlv 

mi \£{g}(z)\>0. 
\z—h~1\<h~1 

Proof. The statement follows from the Wiener theorem (see [20, p. 251]) with respect 
to (1.34) characterizing the relationship between the nabla /i-Laplace transform and Z-
transform. • 

1.3 Introduction to discrete fractional calculus 

Considering the previous two sections we face the question how to establish the fractional 
calculus in the framework of the time scales theory. Unfortunately, until now this question 
has no satisfactory answer, at least not in a form exceeding a formal generalization of 
symbols. 

We briefly summarize this situation and comment some of its aspects. Then we focus 
solely on isolated time scales, where this issue has been overcome, i.e. the time scales with a 
linear graininess function, namely and its special case T = KL. We recall the relevant 
definitions and basic properties known from [18], present some original results published 
in [14,15] and derive a few useful relations related to our next investigations. 

1.3.1 Time scales definition outline 

To follow the continuous paradigm, we introduce the nabla Cauchy formula for repeated 
integration. We state its general form valid on an arbitrary time scale T. Let a, b G T and 
/ : [a,b]j —> K. be ld-continuous. We put 

a V " 7 ( t ) = / / ( r ) V r for*e[a ,6] T (1-35) 
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and define recursively 

a V - " 7 ( £ ) = \ aV-m+1f(r)Vr ( 1 .36 ) 

for m — 2 , 3 , Then we have 

Lemma 1.41. Let m G Z + , a, b G T anc? Ze£ / : [a, 6]T —> K. 6e Id-continuous. Then 

aV~mf(t)= A m _ 1 ( t , p ( r ) ) / ( r ) V r , * e [ a , 6 ] T . (1-37) 
t/ a 

Proof. This assertion can be proved by induction. If m — 1, then ( 1 .37 ) obviously holds. 

Let m > 2 and assume that ( 1 . 37 ) holds with m replaced by m — 1, i.e. 

a V - m + 1 / ( * ) = A m _ 2 ( t , p ( r ) ) / ( r ) V r . 

By the definition, the left-hand side of ( 1 . 37 ) is an integral of a V m+1f(t). We show that 

the right-hand side of ( 1 .37 ) is an integral of f* / i m _ 2 ( £ , p ( r ) ) / ( r )Vr . Indeed, it holds 

V I hm.1(t,p(T))f(r)VT= I v A m _ i ( * , p ( r ) ) / ( r ) V r = / / i m _ 2 ( t , p ( r ) ) / ( r ) V r , 

where we have employed ( 1 .18 ) and Theorem 1.23 (i). Consequently, the relation ( 1 .37 ) 

holds up to a possible additive constant. Substituting t = a we can find this additive 

constant zero. • 

Remark 1.42. In the case of delta calculus, the Cauchy formula can be derived as well. 

However, there occurs a dependence of the upper integral limit on the order of integration. 

Hence, generalizing this formula to non-integer orders causes a shift of the domain. In 

other words, the delta fractional operators are defined on different domain than the original 

function and this domain does not even belong to the considered time scale. This is one of 

the main reasons why we prefer the nabla calculus throughout this thesis. For more details 

we refer to, e.g. [ 7 , 18 ] . 

To keep consistency with the notation established by ( 1 .35 ) and ( 1 .36 ) and with the 

continuous case, we denote the usual mth nabla derivative (m 6 Z + ) by a V m , although the 

parameter a has no factual meaning here. 

Now we are in a similar position as in the Section 1.1. We have an expression for the 

mth sum of a function f(t) for m G Z + and we look for its extension to non-integer values of 

m. Following the path indicated by the continuous fractional calculus (namely Definitions 

1.1 and 1.3), the introduction of the fractional operators on time scales seems to be an easy 

task. In particular, by a generalization of ( 1 .37 ) we arrive at the expression 

aV-Vit) = f V i ( i , P(r))f(r) V r , 7 > 0 (1 .38 ) 
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for the time scales fractional integral of order 7. Thus, we propose 

<Naf(t) = t v W ( v - ( W - « ) / ( ( ) , a > 0 (1.39) 

as the time scales Riemann-Liouville fractional derivative of order a. We note, that these 

introductions appeared, e.g. in [4]. 

However, considering a general time scale T, (1.38) (and consequently (1.39)) is nothing 

but a symbolical expression. Its practical use requires a reasonable and natural extension of 

a discrete system of polynomials (hm, m G Z Q ) to a continuous system of power functions 

(hp, (3 G (—l,oo)). As discussed in Subsection 1.2.3, such extensions are available only on 

some special time scales, namely K. and (and its special cases KL, qz). 

In this thesis we deal with the discrete fractional calculus, in particular we focus on 

the time scales and KL (or their subintervals). Although our considerations do not 

cover the case of a general scale T, we will consistently use the time scale notation of main 

procedures and operations to outline a possible way out to further generalization. The 

unified notation also enables an easier comparison with the results derived on M. 

1.3.2 Fractional (q, /i)-calculus and /i-calculus 

In this subsection we discuss more closely the fractional calculus on the time scales \q,h) and 

KL, the so-called fractional (q, /i)-calculus and /i-calculus, respectively. Since the time scale 

T(q,h) is a generalization of KL, all results derived for T(g^) are also applicable to T = KL. 

For the sake of lucidity, we denote the fractional operators by a V ^ ^ or a V ^ whenever we 

refer specifically to the time scale or KL, respectively. For detailed introduction to 

the fractional (q, /i)-calculus we refer to [18]. A survey of basics of the fractional /i-calculus 

for the case of h — 1 can be found, e.g. in [29]. 

The following definitions originate in the approach described in the previous subsection. 

Consequently, many of the obtained results are not bound to the (q, /i)-calculus, but would 

be actually valid on any other time scale with the well-defined power function. 

Definition 1.43. Let 7 6 R 0

+ and a,a,b G T(g^) be such that a < a < b. Then for a 

function / : (a, b]j(qh) - ^ R w e define the fractional integral of order 7 G M + with the lower 

limit a as 

a V ( " J ) / ( 0 = f v i ( ^ W ) / W V r , t G [a,b]J(qh) n (~a,b]J(qh) (1.40) 
J a 

and for 7 = 0 we put a V ( ° , > h ) / ( t ) = /(*)• 

Remark 1.44. (i) In [18] this definition has been introduced for the case a — a. Our 

extension considers also functions which are undefined at lower limit of the integral. This 

step is motivated by the continuous case, where such functions form a significant part of 
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the fractional calculus. Moreover, it turns out that similar phenomenon appears also on 

discrete settings as we outline in Chapter 4. 

(ii) If a > a, then (1.40) can be calculated for t G [a,b]j(qh) by an ordinary integration. If 

a = a, we treat (1.40) for t G (a, b]j, h) as an improper integral of the second kind. Moreover, 

considering a > a the function f(t) is bounded on [a, b]j.qh) and therefore a V ~ 7 / ( t ) | i _ a = 0. 

The value of a V ~ 7 / ( £ ) | for a = a will be discussed in Chapter 4. 

Definition 1.45. Let a G M + and a,a,b G T ^ ) , be such that a < a < b. Then for a 

(q,h) function / : (a, b]j( 

a with the lower limit a as 

we define the Riemann-Liouville fractional derivative of order 

Remark 1.46. (i) Analogously to the continuous case (see Remark 1.4(H)), the Caputo 

fractional derivative of order a with the lower limit a is introduced as 

CaK,h)f(t) 
-([a]-a) ^fal ^ / ( O , tG[a(a),6] T ( 

(ii) To emphasize the discrete settings, the operators aV/° h) and a V ^ are called fractional 

differences instead of fractional derivatives throughout Chapters 2-4. 

To obtain a representation of fractional (q, /i)-integral more convenient for calculations, 

we expand the definition (1.40) with respect to (1.15) and (1.28). It yields 

fe=l 

5 ] ( - l ) ™ - f c ^ ( a f c ( a ) ) 
fe=i 

- 7 

n — k 

(n-k+l 
q\ 2 } / ( ^ ( a ) ) 

(1.42) 

(1.43) 

where 7 G M + , t = crn(a) and n — 1,2,.... These relations along with the definition formula 

(1.41) provide a solid tool for evaluation of fractional derivatives. Nevertheless, sometimes 

it is suitable to utilize directly an expansion of fractional derivative, in particular 

• V 5 m / ( * ) = E ^ W ) ^ - i ( ^ ( » ) . ^ " 1 ( a ) ) / ( ^ ( » ) ) 
k=l 
n 

= ^ ( - l ) - ^ - Q ( ^ ( a ) ) 
fe=i 

n — k 

(1.44) 

(1.45) 

where ct G M + \ Z + , t = an(a) and n = [a] + 1, \a] + 2,... (for more details we refer 

to [18, Propositions 1 and 3] with respect to (1.28)). If a G Z + then the lower limits of 

the sums are transformed to k = n — a which leads to known formulas for integer-order 

differences. This matter is broadly discussed in [18]. Note that the validity of (1.45) can 

be extended to a G Z + if we put 

6 0 for £, m G Z such that £ < m . 
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Remark 1.47. Obviously there is a formal agreement between formulas for fractional 

operators so we can write them jointly. For illustrative reasons, we rearrange these formulas 

on T = KL to the form of a quite familiar relation 

n—l 

k=0 
a G 

where tn = a + nh and (^) = 0 for £, m G Z + such that £ < in. 

Next, we recall some assertions presented in the author's joint paper [15]. In particular, 

we perform an extension of the power rule stated in Lemma 1.28 for fractional operators of 

(q, /i)-calculus. 

Lemma 1.48. Let 7 G R+, (5 G R \ Z~ and a,t G 6e swc/t ££ja£ £ > a. Tnen «£ £jo/ds 

Proof. Let £ = a™ (a) for some n G Z + . We have 
a V ( ; X ) M M ) = J ] ( - i r - V ( a f c ( a ) ) 

fc=i 

= ( - i f - v + v ( a ) ) £ ^ - f c H ( - n + c 

fc=l 
n—l 

= ( - 1 ) ™ - V + V ( a ) ) J 2 q k 2 - ( n - 1 ) k ~ l k + ^ 

- 7 

n — k 
(n-k+l qy 2 )hß(<Tk(a),a) 

J 9 

fc=0 

- 7 - / 3 - 1 

n — l 
= ( - 1 ) « - V + V ( a ) ) 

where we have used (1.26) on the last row. 

- 7 • / 3 - l " 
n — k k- 1 

- 7 

n — k — 1 Jfc 

h1+ß(t, a) • 

• 
Further, we formulate the assertion dealing with the Riemann-Liouville fractional derivative 

of the power function. 

a^,h)hß(t,a) 

Corollary 1.49. Let a G R+, ß G R \ Z " and a, £ G T f e h ) 5e swc/i £/ta£ £ > a M ( a ) . T/ien 

hß_a{t,a), ß-a&{-l,...,-\a]}, 

0, ^ - a e { - l , . . . , - [ a l } . 

Proof. Lemma 1.48 implies that 

a V ( - fc)^(t, a) = „ V ™ , ( a V ( ; ( ^ - a ) ^ ( £ , a)) = a V ( ™ n w + / 3 _ Q ( £ , a). 

Then the statement is an immediate consequence of Lemma 1.28. • 
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Now, we are in a position to discuss the (q, fo)-analogue of the composition rules (1.3), 
(1.4). This matter was already studied in [18], where the authors assumed the function 
f(t) to be defined on the whole and extended the validity of (1.43) to t < a (i.e. 

7(q,h)<^(q,h)-n < 0). Consequently, the derived composition rules have a simple form aV/° W a V , . \f(t) 
a^}f(t)foY a l l a , / 3 e R . 

We choose to hold onto the Definitions 1.43 and 1.45 and not to extend the domain 
of f(t). This approach results in rules corresponding to (1.3), (1.4). We note that similar 
results were derived for the case T = Z in [29]. 

Lemma 1.50. Let a e K , /3 e M + . Then it holds 

7(q,h)<^(q%f{t) — <^{q,h) ^aV7aij{t) = aV?Jf(t) , (1.46) 

-VSw-V^/W = . V £ g / ( * ) - E °) - v S?)/ (*) La • (L47) 
3=1 

Proof. First we prove (1.46). In fact it consists of two cases differing in the sign of a. Let 

a, (3 e M+. Then 

-vS)«VfaS)^W = / ^ - i 0 , p ( r ) ) / V I ( ^ p ( « ) / W V ^ V T 

*/(V0 f L i ( i , p ( r ) ) V i ( r , p W ) V r V ^ 

/ W p w V ( - ^ V i ( t , p W ) v ^ = / W i ( * . p ( ^ ) ) / ( ^ ) v ^ = .v (-jy / J/(t), 

where we utilized the relation J*J g(r, • 0 )V0Vr = Ja* . g(r, 0 ) V r V 0 valid on an arbi­
trary time scale. 

Now we show the case of a fractional derivative applied to a fractional integral. By 
(1.41) and by the above proved rule we get 

av(g,h)a^(qjh)J \L) ~ « V(g,h)« V(g,h) aW {q,h)J \l) ~ aW {q,h)aW {q,h) J \L) ~ aW{q,h)J \l) 

which concludes the proof of (1.46). 

To verify (1.47), we start with the rule for a fractional integral of an ordinary mth 

derivative a V . ~ ^ a V ^ ^ / ( t ) (m e Z+). For that purpose, we need the relation 

h^ia),^-1^)) = z / ( a n ( a ) ) V i ( ^ n ( « ) ^ n _ 1 ( « ) ) (1A%) 

following from (1.28), and the derivative of power function 

a vA 7 (* , s ) = - V i ( * . P ( s ) ) . (!- 4 9) 
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where a V denotes the derivative with respect to the second variable (the proof analogous 

as for Lemma 1.28, compare with Remark 1.31 (ii)). Using these auxiliary results we have 

n 

k=l 

= ha.1(an(a),an-\a))aV^f(an(a)) - k_i(<7»(a), a))aV^f(t)\t=a 

n—l 

+ J2Cha-i(vn(a),o-k-\a)) - ha.1(an(a),(Tk(a)))aV^f(ak(a)) 
k=l 

n 
= ^ i / ( t 7 f c ( a ) ) ^ _ 2 ( a » ( a ) , t 7 f c - 1 ( a ) ) . V J J )

1 / ( t r f c ( a ) ) - h-i(o-n(a),a)aV^f(t)\t=a 

k=l 

= a V (

1 - a V ( 7 " )

1 / ( 0 - L-i(t,a)aV™-if(t)\t=a. 

Repeating this procedure we obtain 

m 

- V ( S ) . V ( ™ f c ) / ( t ) = a V ( ^ f fit) - ha-j(t, a) aV^f(t)\t=a . (1.50) 
3=1 

Now let a, (3 G M + . The relation (1.47) now follows from (1.46), (1.50) using the expansions 

<^(qah)<^(q,h)f^) = <^(q%) °^(q]i) °^(q,h)^ f a i l ( ^ °^(q,h)°^(q,h)^"(0 = a V ^ J J ^ a V ^ / ( t ) , 
which completes the proof. • 

Remark 1.51. (i) We can see that the technique for proving (1.46) uses only general time 

scales tools and Lemma 1.48. Hence, we proved that (1.46) is valid on every time scale with 

the well-defined power function satisfying the property of Lemma 1.48. 

(ii) Similarly, the rule (1.47) was proved for every isolated time scale where the power 

function is well-defined and the formulas (1.46), (1.48) and (1.49) hold. 

At last, we state the assertion of the utmost importance for Chapter 4. We formulate the 

relations for /i-Laplace transform of fractional operators, i.e. the analogues of (1.6), (1.7). 

These, or similar relations have been derived in [7,8] or in the author's joint paper [17]. 

Lemma 1.52. Let a , 7 G M + and let f(tn) be such that its h-Laplace transform £{f}(z) 

exists. Then it holds 

(i) £ { o V r / } ( * ) = ^C{f}(z), 

(n) £ { o V £ / } w = za£{f}{z) - E ^ o v r - 7 ( t , 
3=0 

n=0 

Proof. Since the fractional integral (1.40) is essentially a convolution, the property (i) is a 

direct consequence of Theorem 1.37 and Lemma 1.38 (i). 

The property (ii) follows from the definition formula (1.41) via the property (i) and 

Proposition 1.36 (ii). • 
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2 Basic theory of higher-order linear FdEs on T(g m 

In this chapter we deal with foundations of the theory of linear FdEs on . We recall 

that it is the most general discrete setting with well-established fractional calculus. Derived 

conclusions can be applied to T = KL (for q = 1) and T = q% (for h — 0) as well. The 

presented results were published in [15], some of them for T = hZ also in [14]. 

We introduce here some linear FdEs with the Riemann-Liouville difference operator 

and investigate their basic properties, such as the existence and uniqueness (Theorem 2.4) 

and the form of a general solution (Theorem 2.8). Further, we focus on a special two-

term equation and describe the base of its solution space by the use of eigenfunctions of 

the operator a V ^ ^ (Theorem 2.15). We show that these eigenfunctions can be taken for 

discrete analogues of the Mittag-Lemer functions. 

For the sake of simplicity, we introduce a restriction of by 

^(q,h) = & e T(q,h) ;t>a>h/(l-q)}, where a e T ( , | H ) . 

Obviously h-. is a time scale with power functions inherited from , because it holds 

%, h) = [ a , o o ) w 

2.1 An initial value problem 

In this section, we are going to discuss the linear initial value problem 

M 
J ] p N _ J + 1 ( t ) a V ( 7 4 + 1 | / ( t ) +p0(t)y(t) = 0, te ( T ( ^ ) ) k M + 1 , (2.1) 
i=i 

• W ) L . i ( . ) = ^ > j = l , 2 , . . . , [ a l , (2.2) 

where a e M + . Further, we assume that Pj(t) (j — 1,..., \a] — 1) are arbitrary real functions 
0 1 1 ( ^ , h ) ) K M + i ' Pw(t) = 1 on (T^^)kM+1 and ya_j (j = 1 , . . . , \a~]) are arbitrary real 

scalars. 

If a is a positive integer, then (2.1), (2.2) corresponds to the standard initial value 

problem (1.19), (1.20). If a is not an integer, then applying (1.44) we can observe that the 

equation (2.1) is of the general form 

n - l 

J2ak(t)y(pk(t)) = 0 , te (f^h))KM+1 , n being such that t = an(a), 
k=0 

which is usually referred to as the equation of Volterra type. If such an equation has two dif­

ferent solutions, then their values differ at least at one of the points a (a), a2 (a) , . . . , (a). 

In particular, if ao(t) ^ 0 for all t e (T? then arbitrary values of y(a(a)), 

y{a2(a)))... ,y(a^a\a)) determine uniquely the solution y(t) on {Vqh\)K\a-]+i- We show 

that the values y a - i , y a - 2 , • • • ,ya-\a], introduced by (2.2), keep the same properties. 
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Proposition 2.1. Let a G M + and y : (X® —> K. 6e a function. Then (2.2) rep­
resents a one-to-one mapping between the vectors (y(a(a)),y(a2(a)),... ,y(cr^(a))) and 

(ya-i,ya-2, •• • ,ya-\a-])-

Proof. The case a G Z + is well-known from the literature. Let a Z+. We wish to show 

that the values of y(a(a)), y(a2(a)),..., y(cr^(a)) determine uniquely the values of 

^7(q,h)y(t)\t=al^(a) ' <^{q,h)V ̂  L=<tM (a) ' " " " ' a V f e ^ ) L=<jM (a) 

and vice versa. Utilizing the relation 

« v S > w L = , M ( « ) = E ^ f f M " f c + 1 w ) V i - « ( ^ a l w ^ w " ^ 
fc=i 

following from (1.44), we can rewrite (2.2) as the linear mapping 

\a\ 
\a]-k+l (a)) = ya_j , j = l,...,\a] (2.3) 

fe=i 

where rjk = u(cr^ fc+1(a))/ij_i_Q,((T^ (a), fc(a)) are elements of the transformation 

matrix R\a-\. We show that R\a-\ is regular. Obviously, 

de t ( i ? N ) = n ^ W ) d e t ( ^ N ) 
k=l 

where 

/ h-a(o-W(a),o-W-\a)) h.a(a^(a),a) \ 

\hla-]_1_a(a^(a),a^-1(a)) ••• h ^ . ^ (a), a) ) 

To calculate det(if|-Q,]), we employ some elementary operations preserving its value. Using 

the properties 

t a (<T M ( a ) , a ' ( a ) ) - u(a^(a))hi_a_1(a^(a),ae(a)) = hi_a(a^-1(a),ae(a)) 

[i = 1, 2 , . . . , \a\ - 1, £ = 0 , 1 , . . . , \a] - 2) and 

^ _ a ( a M ( a ) , a M - 1 ( a ) ) - i / ( ^ r a l ( a ) ) ^ - a - i ( t 7 r a 1 ( a ) , a W - 1 ( a ) ) = 0, 

which follow from Lemma 1.28, we multiply the i-th row (i — 1, 2 , . . . , \a] — 1) of if|-Q-| by 

—z/(a^(a)) and add it to the successive one. We arrive at the form 

/ h_a((7W(o),(TW-i(a)) L a ( a M ( a ) , a M - 2 ( a ) ) ••• L t t ( f fM(o ) ,o ) \ 

0 

Hi M - i 
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Then we apply repeatedly this procedure to obtain the triangular matrix 

/ h.a(a^(a),a^-\a)) h-a(<TW(a),<rW-2(a)) ••• h.a(a^(a),a) \ 

0 ft1_a(^al-1(a)^W_2(fl)) ••• fei-a^W-^a)^) 

V 0 0 • • • h^-i-a(a(a),a) J 

Since hi-a(ak(a), ak-x(a)) = ^""(^(a) ) (i = 0 , 1 , . . . , \a] - 1), we get 

de t (# M ) = J]z /M- f c -«(cr f c (a)) , i.e. det(i2 [ c 
/ / fa]-fc-a+l/ fc a f e ( a ) ) ^0 . 

fe=i fe=i 

Thus the matrix i?^] is regular, hence the corresponding mapping (2.3) is one-to-one. • 

2.2 Existence, uniqueness and structure of the solutions 

As demonstrated in Subsection 1.2.2, the key notion connected to the problem of existence 
and uniqueness of solutions of dynamic equations on time scales is z/-regressivity, in partic­
ular z/-regressivity of a matrix related to the solved problem (see Definitions 1.15 and 1.16). 
We are going to follow this pattern and generalize this notion for the linear FdE (2.1). 

Definition 2.2. Let a G R+. Then the equation (2.1) is called //-regressive provided the 
matrix 

/ 0 

0 
A(t) 

1 0 

0 1 

0 \ 

0 0 
Po(t) 

0 

0 1 

-P\a]-2(t) -p\a-\-l{t) ) 

(2.4) 

is //-regressive. 

Remark 2.3. The explicit expression of the z/-regressivity for (2.1) can be read as 

1 + P\a-\-At>J(t)+Po(t>a(t) ? 0 for all t G ( T ( ^ ) ) K M + 1 . 

If a G Z + , then both these introductions agree with the definition of z/-regressivity of a 
higher order linear dynamic equation presented in Subsection 1.2.2. 

Theorem 2.4. Let (2.1) be v-regressive. Then the problem (2.1), (2.2) has a unique solu­

tion defined for all t G (^qh))K-
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Proof. The conditions (2.2) enable us to determine the values of y(a(a)),..., y(a^ (a)) 
by use of (2.3). To calculate the values of y(a^al[+1(a)), y(a^al[+2(a)))..., we perform the 
transformation 

= K ^ - ' y i t ) , t e (f^h))Kj, j = 1,2,..., \ a ] 

which allows us to rewrite (2.1) into a matrix form. Before doing this, we need to express y(t) 
in terms of w^t), . . . , wi(<r(a)). Applying o V ( J i p 0 V ( ~ ( ^ 1 _ a ) y ( * ) = (special 
case of (1.46)) and expanding the fractional difference by (1.44), we arrive at 

71—1 

V® = Kl]aMt) = — L L L ^ + J2H^\a))ha.la].1(an(a),ak-\a))w1(ak(a)), (2.5) 
^ ' k=i 

where t = an(a). Therefore the problem (2.1), (2.2) can be rewritten to the vector form 

where 

w(t) = (u>! (£ ) , . . . , w N ( £ ) ) T 

71—1 

a\q,h)w(t) =A(t)w(t) + b(t), t e ( T ( ; h ) ) K M + 1 , 

(o-M(a)) = ( | / a _ N , . . . , | / a _ i ) T , 

6(t) = (0 , . . . , 0 , -p 0 ( t ) ^ z / ( ^ ( « ) ) ^ - N - i K ( « ) ^ f c _ 1 ( « ) K ( ^ ( « ) ) 
fe=i 

and A(t) is given by (2.4). The z/-regressivity of the matrix A(t) enables us to write 

w(t) = (J - v{t)A{t))-\w{p{t)) + u(t)b(t)), t e fc))KM+1, 

hence, using the value of w(a^(a)), we can solve this system by the step method starting 
from t = c r^ + 1 ( a ) . The solution y(t) of the original initial value problem (2.1), (2.2) is 
then given by the formula (2.5). • 

Remark 2.5. The previous assertion on the existence and uniqueness of the solution can 
be easily extended to the initial value problem involving non-homogeneous linear equations 
as well as some non-linear equations. 

The final goal of this section is to investigate the structure of the solutions of (2.1). We 
start with the following notion generalizing the Wronskian (see Definition 1.18). 

Definition 2.6. Let m G Z+ and 7 G [0,1). For m functions yj : {^qA))K ->• K 
(j = 1,2, . . . ,m) we define the 7-Wronskian W1(y1,..., ym){t) for all t e ( T ? k J m as 
determinant of the matrix 

Vr(y1,...,ym)(t) = 
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Remark 2.7. Note that W^(yi,..., ym)(t) coincides for 7 = 0 with the classical Defini­

tion 1.18. Moreover, it holds W 7 ( y i , . . . ,ym)(t) = W b U V ^ j / i , . . . 

Theorem 2.8. Let functions yi(t),... ,y\a-\(t) be solutions of the ^-regressive equation (2.1) 
and let W\a-\-a(y\,... ,y^)(a^(a)) 7̂  0. Then any solution y(t) of (2.1) can be written in 
the form 

r«i 
(2.6) 

fe=i 

where c\,..., C|-Q-| are real constants. 

Proof. Let y(t) be a solution of (2.1). By Proposition 2.1, there exist real scalars ya-i, • • •, ya-\o 
such that y(t) is satisfying (2.2). Now we consider the function 

u(t) = ^2ckyk(t) 
k=l 

where the [a]-tuple ( c i , . . . , c\a-\) is the unique solution of 

/ Cl \ / 

(yi,... ,y rai)(<T | a |(a)) 

Va- \a\ \ 

ya-\a-\+i 

\ Va-l J 
The linearity of (2.1) implies that u(t) has to be its solution. Moreover, it holds 

u(t)\t=aW{a) = ya_j , j = 1, 2 , . . . , \a~] 

hence u(i) is a solution of the initial value problem (2.1), (2.2). By Theorem 2.4, it must 

be y{t) = u{t) for all t e {^(q,h))K and (2.6) holds. • 

Remark 2.9. The formula (2.6) is essentially an expression of the general solution of (2.1) 

2.3 Eigenfunctions of the Riemann-Liouville difference operator 

Our main interest in this section is to find eigenfunctions of the fractional operator aV/° ^ , 
a G M + . In other words, we wish to solve the equation (2.1) in a special form 

aVg i h )y(t) = Xy(t), A G R, t G (T?q,h))KW+1 • (2.7) 

Throughout this section we assume that the z/-regressivity condition is ensured, i.e. 

\va(t) + 1. 
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Discussions on methods for solving of FdEs are just at the beginning. Some techniques 

how to explicitly solve these equations (at least in particular cases) are exhibited, e.g. 

in [7,8,38], where a discrete analogue of the Laplace transform turns out to be the most 

developed method. 

In this section, we describe the technique not utilizing the transform method, but di­

rectly originating from the role which is played by the Mittag-Lemer function (1.8) in the 

continuous fractional calculus (see, e.g. [43]). More precisely, we introduce a (q, /i)-analogue 

of the modified Mittag-Leffler function (1.11), which satisfies under special choices of pa­

rameters a continuous analogy of the equation (2.7). Also, the form (1.11) seems to be 

much more convenient for discrete extensions than (1.8), which requires, among others, the 

validity of the law of exponents. These our results generalize and extend those derived 

in [40] and [14]. 

Definition 2.10. Let 77, 0, A G R. We introduce the (g,/i)-Mittag-Leffler function E^(t) 

by the series expansion 

00 

KP) = E A " s ) > s ^ e \ h ) , t > s . 
k=0 

It is easy to check that the series on the right-hand side converges (absolutely) if 

lAlz/^t) < 1. As it might be expected, the particular (g, /z)-Mittag-Lefner function 

n 1 

K ^ ) = U 1 _ M p k _ 1 { t ) ) , 

where n G Z + satisfies t = an(a), is the solution of the equation 

aV ( , , h ) y( t ) = Xy(t), i e ( f ( ; J K , 

i.e. it coincides with the exponential function e\(t,a) from Theorem 1.22 (ii). 

The main properties of the (q, /i)-Mittag-Leffler function are described by the following 

assertion. 

Theorem 2.11. (i) Let 7 G R + and t G {^qih))K- Then 

(ii) LetaeR+ and rjk + /3 - a { 0 , - 1 , . . . , - \ a ] + 1} for all k G Z+. Ift G (T^h)) k M + 1 

then 

^ h ) E v P ) = { 7 1 (2-8) 
| A K i a + , ( t ) , f3-ae{0,-l,...,-\a]+l}. 
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Proof. The part (i) follows immediately from Lemma 1.48. Considering the part (ii) we 

can write 

oo oo 

^(q,h)E^(t) = aV(° j fe ) ^ ^khvk+P-l(t, a) = ̂  ^k<^(q,h)Kk+/3-l(t, a) 
fc=0 fc=0 

due to the absolute convergence property. 

If k G Z + then Corollary 1.49 implies the relation 

a^{q,h)hr)k+P-l{t, o) = h^k+p-a-l {t, a) (2.9) 

due to the assumption ^ + j 5 - « ^ { 0 , - l , . . . , - [ « ] + l } . If fc = 0 then two possibilities 

may occur. If /3 — a G" {0, —1,..., — \a] +1} we get (2.9) with k — 0 which implies the 

validity of (2.8)i. If (5 — a G {0, —1,..., — [a] +1}, the fractional difference of this term is 

zero and by shifting the index k we obtain (2.8)2. • 

Remark 2.12. The assumption rjk + (5 — a G" {0, —1,..., — \a] + 1} for all k G Z+ in 

Theorem 2.11 (ii) may seem to be quite restrictive. Note that it is satisfied trivially for 

(3 G R+ and r\ + (3 > a and, as shown in the following assertion, this is the case we are 

interested in. 

Corollary 2.13. Let a G R+. Then the functions 

Kiit), P = a-\al+l,...,a-l,a (2.10) 

define eigenfunctions of the Riemann-Liouville fractional difference operator a V £ m on each 

set [<r(a),b] H (T (

a ^)) K , w/iere 6 G ( T (

a

g h ) ) K M + 1 «5 satisfying \\\i/*(b) < 1. 

Proof. The assertion follows from Theorem 2.11 (ii) by use of 77 = a. • 

Our final aim is to show that any solution of the equation (2.7) can be written as a 

linear combination of (q, /i)-Mittag-Leffler functions (2.10). 

Lemma 2.14. Let a G R+ and A G R be such that |A |z /* (a M (a)) < 1. T/ien 

r« , 

• • • .^ ,a) (^ r a 1 (a) ) = I I 1 _ A ^ ( ^ ( a ) ) ^ °-

Proof. The case [a] = 1 is trivial. For \a] > 2, we can formally write XEa

a

A

a_e(t) = Ea

a\(t) 

for all t G (^?q h ) ) = 0 , . . . , [a] — 2). Consequently, applying Theorem 2.11, the 

Wronskian can be expressed as 

W W ^ ( E & - W + 1 , E & - W + V • • .,E&)(a™(a)) = d e t ( M M (a™ (a))), 
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where 

M M ( o > l ( a ) ) ^ a l - l ( ^ r a l W ) 

Using the g-Pascal rule (1.24) we obtain the equality 

Ea

a^a\a)) - K ^ ( a ) ) K t i ( ^ W ( a ) ) = K f ' V ^ ) ) , ieZ,i>3-\a]. (2.11) 

Starting with the first row, ( ^ ) elementary row operations of the type (2.11) transform 
the matrix M^(a^(a)) into the matrix M^(a^(a)) given by 

( t f " 1 ( ' V a l ( « ) ) tf"1(8)ValW) •• 

C ( 8 V a l ( « ) ) < H ( f l ) ' V M ( a ) ) •• 

• 1 ( a ) ' A ( - W ( « ) ) ^ 

• < H - i a ) ' A ( - W ( « ) ) 

a, A 
\ "^2-fa] M( a)) #(* r a l(<0) / 

with the property det(M[-Q-|(cr^(a))) = det(M|-a](cr^l(a))). By Lemma 1.28, we have 

< i a ) ' V Q l ( a ) ) - K ^ M ( « ) ) < S A ( ^ M ( « ) ) = E?<r»{aW-\a)), i < \a] - 2 , 

tfV"1 («)) - K ^ 1 ( « ) ) < S V W («)) = 0 , t = \a] 
(2.12) 

where p G Z , p > 3 — [a] + i. Starting with the last column, using \a] — 1 elementary 
column operations of the type (2.12) we obtain the matrix 

/ i E i 1 _ 1 ( a ) V a l ( « ) ) o . . . o \ 
^ l - ( a ) , A

( a N ( a ) ) 

V 3 
a, A 
a,2-\a] M( a)) 

M , fal-l. a)) 

/ 

preserving the value of d e t ( M N ( a M (a))). Since 

oo 

< r " i ( a ) ' A ( ^ w ( a ) ) = E A f c ( ^ ^ w ( « ) ) a f e 

we can observe the recurrence 
fc=0 

1 - Az/«(aH(a)) 

d e t ( M w ( a M ( a ) ) ) = - _ x J { ( J ^ { a ) ) de t (M w _ 1 ( 0 -W- 1 ( a ) ) ) 

which implies the assertion. • 
Now we summarize the results of Theorem 2.8, Corollary 2.13 and Lemma 2.14 to obtain 

the discrete analogue of (1.12). 
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Theorem 2.15. Lety(t) be any solution of the equation (2.7) defined on [o~(a), b] fl (Y?q k , 

where b G ( T ? h\)Kia-\+i ^s satisfying \\\va{b) < 1. Then 

M 

3=1 

where c\,..., C|-Q-| a r e real constants. 

We conclude this chapter by an illustrating example. 

Example 2.16. Consider the initial value problem 

aVg i h )y(*) = Xy(t), a 3(a) < £ < an(a), 1 < a < 2, 

a V ( 5 , h ) ^ ) L = f 7 2 ( a ) = 2 / a - l : 

where n is a positive integer given by the condition |A|z/*(an(a)) < 1. By Theorem 2.15, 

its solution can be expressed as a linear combination 

y(t) = c1Ea

a

x

a_1(t) + c2E^a(t). 

The constants ci , C2 can be determined from the system 

V2_a{Ea

a^_1)Ea

a

x

a){a\a)) • ( C l \ = ( Va~2 

\ c 2 J \ ya-i 

with the matrix elements 

Vu = V22 

"12 

i'21 

( l - A i / ° ( < r ( a ) ) ) ( l - Az/ a(a 2(a))) 
[2}qv{a{a)) + {[a}q-[2}q)\^\a{a)) 

( 1 - A z / « ( a ( a ) ) ) ( l - A z / a ( c r 2 ( a ) ) ) : 

[ c ^ A ^ - X a ) ) 
(1 - \ua(a(a)))(l - Az/«(a 2(a))) ' 

By Lemma 2.14, the matrix V2_a(Ea

a'x_l: Ea

ai)(a2(a)) has a nonzero determinant, hence 
applying the Cramer rule we get 

ya-2v22 - ya-iv12 

C l 

C-2 

W ^ E ^ E ^ a ^ a ) ) 
ya-ivn - ya-2v21 

W ^ E ^ E ^ a ^ a ) ) -

Now we make a particular choice of the parameters a, a, A, ya-i and ya-2 and consider 

the initial value problem in the form 

K8

h)y(t) = ~ly(t), as(l)<t<an(l), 

i V ^ ) 2 / ( t ) | f = C T 2 ( 1 ) = - 1 , 

i v h > ( * ) l ^ ( i ) = 1 " 
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where n is a positive integer satisfying z/(<rn(l)) < 3 5 / / 9 . If we take the time scale of integers 

(the case q — h — 1), then the solution y(t) of the corresponding initial value problem takes 

the form 

y(t) 5 ^ 1 3 
fc=0 V 

n;=i(j + i-8fc-o.2) 

0 - 2 ) ! 15 ^ V 3 
k=0 v 

n;=i( j + i-8fc+o.8) 

0 - 2 ) ! 

for t = 2 , 3 , . . . . Similarly we can determine y(t) for other choices of q and / i . For com­

parative reasons, Figure 1 depicts (in addition to the above case q — h — 1) the solution 

y(t) under particular choices q = 1.2, h — 0 (the pure g-calculus), g = 1, h = 0.1 (the pure 

/i-calculus) and also the solution of the corresponding continuous (differential) initial value 

problem. 

• q=h=1 
• q=1.2, h=0 
• q=1,h=0.1 

~ ~ continuous 

Figure 1: a — 1. 1, A = - i = - 1 , y, a - 2 
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3 Qualitative analysis of a scalar linear FdE on T = Z 

In this chapter we utilize the time scale of integers, i.e. T = Z. We note that a possible 
extension of the following results to T = KL with arbitrary h > 0 is only a technical matter. 
We prefer the standard difference case due to close relations of studied problems to some 
parts of the qualitative theory of difference equations. 

We investigate here stability and asymptotic properties of the linear FdE 

where 0 < a < 1, A ^ l are real scalars. 
By Theorem 2.15 we can write the solution of (3.1) via discrete Mittag-Leffler functions 

as y(t) = cE®'a(t) where c is a real constant. However, the asymptotic behaviour of E%*(t) 
has not been described yet, even though the role of this function in discrete fractional 
calculus was discovered in several papers (see, e.g. [9,40] and [14,15]). Moreover, the 
validity of this solution representation is restricted only for (3.1) with |A| < 1. On this 
account, this result does not seem to be suitable for the qualitative analysis of (3.1). 

Hence, we choose a different approach. We consider (3.1) in the form of a Volterra 
equation of convolution type (see Section 2.1). This enables us to analyze its properties, 
in particular stability (Theorem 3.10) and asymptotics (Corollary 3.17), by use of tools 
standardly employed in the qualitative investigation of Volterra difference equations. At 
the end of this chapter we show that the Volterra equation originating from fractional 
calculus provides an interesting perspective on some recent observations on the qualitative 
theory of Volterra difference equations. A l l the presented results come from [16]. 

First we introduce a Volterra form of (3.1) which will be studied in the sequel. To agree 
with the notation used in the theory of difference equations, we denote the independent 
variable by n instead of t throughout this chapter. 

Proposition 3.1. Let 0 < a < 1 and A ^ 1. Then y(n) is the solution of (3.1) if and only 
if x(n) = y(n + 1) is the solution of 

Proof. Rewriting the Riemann-Liouville operator in (3.1) by (1.45) for q — h — 1, we have 

a

h=ly{t) = Xy(t), £ = 2 , 3 , . . . , 

x n = 0 ,1 , . . . . 

Rearranging the terms in this equation we arrive at 

fe=i 
which after replacing n by n + 2 and setting x(n) = y(n + 1) turns into (3.2). • 
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Remark 3.2. The existence and uniqueness of the solution is guaranteed since the v-
regressivity of (3.1) is ensured due to the assumption A ^ 1. If it is not satisfied, then (3.1) 
admits only the identically zero solution via the starting value y(l) — 0. If y(l) ^ 0, then 
(3.1) has no solution. 

3.1 Some preliminaries on Volterra difference equations 

The equation (3.2) belongs to an important class of difference equations known as the 
Volterra difference equations of convolution type. Their general form is 

n 

x(n+ 1) = ^a(n-j)x(j), n = 0 ,1 , . . . , (3.3) 
3=0 

where in our case we have 

« W = i 4 t U I ) - " = 0 ' 1 < 3 ' 4 ) 

We recall some relevant stability definitions for the equation (3.3). First we mention 
standard definitions of stability and asymptotic stability adapted to the linear case. 

Definition 3.3. Consider (3.3) along with the initial condition x(0) = 0O- Then (3.3) is 
said to be 

(i) stable if for any real <po there exists e > 0 such that the corresponding solution x(n) 
of (3.3) satisfies \x(n)\ < e for all n G Z+; 

(ii) asymptotically stable if x(n) —> 0 as n —> oo for any real 4>o-

Remark 3.4. The notion of stability and asymptotic stability for the FdE (3.1) is defined 
quite analogously due to Proposition 3.1. 

The relevant stability results concerning (3.3) involve also the stronger notions of uni­
form stability and uniform asymptotic stability. Their introductions require to consider an 
arbitrary (finite) number of initial values. The following definitions are taken from [25]. 

Definition 3.5. Consider (3.3) with the initial conditions x(k) = 4>k (k — 0 , 1 , . . . , m), m 
being arbitrary non-negative integer. Then (3.3) is said to be 

(i) uniformly stable if for any e > 0 there exists 8 = d~(e) > 0 such that if <ftk are reals 
with \(f>k\ < 5, k — 0 , . . . , m, then the corresponding solution x(n) of (3.3) satisfies 
\x(n)\ < e for all n G Z + , n > m; 

(ii) uniformly asymptotically stable if it is uniformly stable and if there exists r\ > 0 such 
that, for any e > 0 there is TV = N(e) G Z + such that if <pk are reals with \<pk\ < 77, 

k — 0 , . . . , m, then \x(n) \ < e for all n G Z + , n > m + N. 
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A very effective method for stability analysis of (3.3) is the ^-transform method. We 
recall that the ^-transform of a sequence u : Z Q —> M , is a complex function given by 

oo 
u{z) = Z{u}(z) = J2u(k)z-k., 

where z is a complex number for which this series converges absolutely. It is known that 
Z-transforms can be used to solve the linear Volterra convolution equation (3.3) and find 
its stability or asymptotic stability conditions by analyzing the roots of the associated 
characteristic equation 

z-a(z) = 0, (3.5) 

where a(z) is the ^-transform of a(n) (for more details we refer to [23]). We recall here the 
result which is the most relevant for our next study. 

Theorem 3.6 ([25, Theorem 2]). Consider the equation (3.3). Then the following state­
ments are equivalent: 

(i) (3.3) is uniformly asymptotically stable; 

(ii) all the roots of the characteristic equation (3.5) lie inside the unit disk, i.e. 

z — a(z) 7̂  0 for all \z\ > 1; 

(hi) x(n) G d1 for any solution x(n) of (3.3). 

3.2 Stability analysis 

We start with the formulation of an explicit necessary and sufficient condition for the 
uniform asymptotic stability of the Volterra equation (3.2). Then we discuss the asymptotic 
stability and stability of this equation, and summarize obtained results to present the 
asymptotic stability condition for the original FdE (3.1). 

Theorem 3.7. Let 0 < a < 1 and A ^ 1. Then (3.2) is uniformly asymptotically stable if 
and only if 

A < 0 or \>2a. (3.6) 

Proof. By Theorem 3.6, we have to set up the corresponding characteristic equation (3.5) 
and analyze the location of its roots with respect to the unit disk. 

Taking the ^-transform of (3.4) and using the binomial theorem we get 
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for all z G C with \z\ > 1. Consequently, the characteristic equation (3.5) becomes 

z + 
1 - A 

1 - - ] - 1 
z 

0 (3.7) 

and, applying Theorem 3.6, the equation (3.2) is uniformly asymptotically stable if and 
only if 

1 + 
1 - A 

1 - - ] - 1 
z 

^ 0 for all \z\ > 1 (3.J 

(3.9) 

We analyze (3.9) with respect to A. First, let A < 0. Then, obviously, (3.9) has no root 
zr, hence the condition (3.8) is satisfied trivially. Further, let A > 0 (we recall that A ^ 1). 
Then 

The nonzero roots zr of the characteristic equation (3.7) satisfy 

1 • A. 

r 1 - AV« 

is the unique nonzero (real) root of the characteristic equation (3.7). To satisfy (3.8), we 

have to require 

A 1 / a > 2 , i.e. A > 2 a . 

The assertion is proved. 

Lemma 3.8. Let 0 < a < 1 and A = 0. Then (3.2) is asymptotically stable. 

Proof. Let x(z) be the ^-transform of a solution x(n) of (3.2), i.e. 

oo 

x(z) = ̂ 2x(k)z~k • 

By the well-known shift property and convolution property (see, e.g. [23]), 

n 

Z{x{n + l)}(z) = zx{z) — zx(0) and z i a(n — j)x(j)\(z) — a(z)x(z) 
3=0 

The application of the Z-transform to both sides of (3.2) with A = 0 then yields 

x(0) 

• 

(3.10) 

x(z) 
( i - i ) " ' 

Further, by the binomial theorem 

oo 

x\z) — XI 
k=0 

—a 
k 

k 

fc=0 
^ ( o ) E ( - 1 ^ 

—a 
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and comparing this relation with (3.10), we have 

-a 

n 
x(n) = x ( 0 ) ( - l ) n . (3.11) 

Consequently, the binomial asymptotic relation (1.30) implies the asymptotic property 

x{n) —> 0 as n —> oo for any initial value x(0). • 

Lemma 3.9. Let 0 < a < 1 and 0 < A < 2a, A ^ 1. ITien f&jg,) «5 no£ sfaft/e. 

Proof. Let x(z) be the Z-transform of the solution x(n) of (3.2) given by (3.10). Analo­

gously as in the previous proof, we get 

: i - A)X(O) 

( i - i r - A 

Setting w = 1/z and considering (3.10), (3.12) we can write 

(1 - A)x(0) 
'1 - w)a - A 

^x(k)wk. (3.13) 
fc=0 

The function on the left-hand side of (3.13) has the (unique) pole 

wr = l-X1/a e ( -1 ,1) . 

Consequently, the series on the right-hand side of (3.13) has the radius of convergence 

R < 1. By the Cauchy-Hadamard theorem, 

1 
limsup \ / |x(n) | = — > 1, 

hence (3.2) is not stable. • 

To summarize this section, we reformulate some of its results for the FdE (3.1). Consid­

ering this equation, we are interested especially in its asymptotic stability. Proposition 3.1, 

Theorem 3.7 and Lemma 3.8 imply the following assertion. 

Theorem 3.10. Let 0 < a < 1 and A ^ 1. Then (3.1) is asymptotically stable if 

A < 0 or \>2a. (3.14) 

Remark 3.11. The condition (3.14) for the asymptotic stability of (3.1) is close to be not 

only sufficient, but also necessary. It remains to discuss the asymptotic stability of (3.1) 

with A = 2a, which is still an open problem. 
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3.3 Asymptotic analysis 

In this section, we precise some of the stability results derived in the previous part. In 
particular, we consider the asymptotic stable case, when the solutions x(n) of (3.2) are 
tending to zero as n —> oo, and describe the exact rate of their decay. A n asymptotic result 
concerning the non-stable case will be derived as well. 

First we note that a preliminary information on the decay rate of the solutions of (3.2) 
follows immediately from Theorems 3.6 and 3.7. 

Corollary 3.12. Let 0 < a < 1 and let either A < 0 or A > 2a. Then 

x(n) G t (3.15) 

for any solution x(n) of (3.2). 

To obtain a precise description of asymptotics of (3.2), we employ the following general 
result, which is due to Appleby et al. [6]. For any finite r > 0, the authors introduced a 
class W(r) of real-valued weight sequences 7(71) by the requirements 

7(71) > 0, 7 i = l , 2 , . . . , lim . . = - , y^l(k)r~k < oc 
n^foo 7 (7 l ) T 

and 

lim lim s u p — - 7(n - j)j(j) 1=0. 

We reformulate here the scalar version of the relevant result (originally proved for vector 
Volterra difference equations), which describes the asymptotics of a solution x(n) of (3.3) 
in terms of an appropriate sequence 7(71) G W(r). 

Theorem 3.13 ([6, Theorem 3.2]). Suppose that, for some sequence 7(71) G W(r), there 
exists the finite limit 

a(n) 
L = hm 

and let 

^2 \a{k)\r~k~1 < 1. (3.16) 
fc=0 

Then the solution x(n) of (3.3) satisfies 

l i m ^ M = / f x ( ° ] N 9 , where S = V a{k)r-k~l. (3.17) 
r w o o 7 ( n ) r ( l - 5 ) 2 ^ v 

fc=0 
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This assertion turns out to be very useful in analysis of asymptotic properties of (3.2). 
It implies 

Corollary 3.14. Let 0 < a < 1 and |1 - A| > 1. Then 

x(n) a(l — X) . . . 
" r ^ y = M ° 3.18 

for any solution x(n) of (3.2). 

Proof. Consider the equation (3.2), i.e. the Volterra convolution equation (3.3) with coef­

ficients given by (3.4). We put r = 1 and introduce the decreasing sequence 

7 (n) = n " ( 1 + a ) , n = l , 2 , . . . . 

As it was remarked in [6], n~(1+a^> E W(l) provided 0 < a < 1. We verify the validity of 
assumptions of Theorem 3.13 and, in particular, specify the values of L and S. The first 
calculation employs the asymptotic property (1.30). Using this we can write 

lim 
( a ) 
Vn+l/ 1 - A n-wo n-V+a) (1 - A)r(-Qj) ' 

Discussing (3.16), we need to sum the infinite series J2T=o l a (^)l- We have 

h—n 1 1 h—n \ 1 / I A| 
(3.19) 

fc=0 1 1 fc=0 

by use of the binomial theorem. Consequently, (3.16) holds. Analogously we get 
oo 1 

S = J2<k) = — 
k=0 

The property (3.18) now follows from (3.17) by use of T( l — a) — — aT(—a). • 

A 

Remark 3.15. The assumptions of Corollary 3.14 do not cover the cases A = 0 and 
2a < A < 2, when the equation (3.2) is asymptotically stable as well. If 2a < A < 2 then 
Corollary 3.12 provides at least a partial information on the behaviour of the solutions of 
(3.2), namely the asymptotic property (3.15). However, this property is no longer valid if 
A = 0, because the corresponding Volterra equation (3.2) is not uniformly asymptotically 
stable. Fortunately, earlier we have derived the exact form of the solutions x(n) of (3.2) 
with A = 0 via the relation (3.11). Then, using (1.30), we can easily get the following 
asymptotic result. 

Corollary 3.16. Let 0 < a < 1 and A = 0. Then 

x(n) 1 . , lim — E E - = Wo 
M o o n - ( i - a ) Y(a) 

for any solution x(n) of (3.2). 
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We conclude this part by the summary of the derived asymptotic results and their 
reformulation for the FdE (3.1). 

Corollary 3.17. Let 0 < a < 1 and let either A < 0 or A > 2. Then 

K\ 1 
as n —> oo, = y(l) if A = 0 . 

yW ~ 1 K 2 a ( l - A) 
—— as n —> oo, = 2/(1) otherwise 
n1+a XZT{1 — a) 

for any solution y(n) of (3.1). 

Now we turn our attention to the unstable case. Recently, Atici and Eloe [9] analyzed 
the closed form of the solutions of (3.1) based on discrete Mittag-Leffler functions and 
proved that i f l / 2 < a < l and 0 < A < 1, then y(n) —> oo as n —> oo for any solution y(n) 
of (3.1) with w(l) > 0 (in our notation). We employ our approach based on analysis of the 
corresponding Volterra difference equation (3.2) to obtain a slightly stronger result. 

Theorem 3.18. Let 0 < a < 1, 0 < A < 1 and let x{n) be a solution of (3.2) with x(0) > 0. 
Then 

\1/ax(0) , , x(0) , „ 
<<n)<- - , n = l , 2 , . . . . (3.20) ( l - A V a ) n V 7 ( 1 - A V « ) 

Proof. First we introduce the function 

v ' ( i — A1/")™ 

defining the solution of the Volterra convolution equation with infinite delay 

n 

v{n + l)= n = 0 , l , . . . , (3.21) 
j = - o o 

where 

°<"> = T 3 i ^ + 1 J > ° . » = o , i , . . . . 

Rewrite (3.21) as 

n 

v(n + 1) = ^ a(n ~ J)VU) + 9(n), 
3=0 

where g(n) = Yljl-ooa(n ~ ))V(J) > 0- Using the variation of constants formula (see, 
e.g. [25]) we have 

^ TO —1 
u(n) = x(n) + —— x(n -J - l)9{j) • (3-22) 
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Since x(n) is positive, (3.22) implies 

x(n) < v(n), n — 1,2,... , 

which proves the right inequality of (3.20). 

Further, it follows from (3.22) that 

- ^ y - 1J x(n - 1) + x(n - j - 1) V#(j) 

Since 

^ {-iy-k f a + l 

we get 

Vv(n) < x(n) + px(n — 1), where p — ^ . . — 1. (3.23) 
x{U) 

Using the binomial theorem we can verify that 

_ \1+1la - (1 + a )A 1 / Q + a  
P ~ ( 1 - A ) ( 1 - A V « ) " 

We show that p < 0, i.e. 

F Q (A) = A 1 + 1 / a - (1 + a ) A 1 / a + a > 0 

for all 0 < a < 1 and 0 < A < 1. Indeed, we have 

FJ0) = a>0, FQ(1) = 0 and F'(X) = ^ J l l A 1 / a ( l - A" 1 ) < 0 

for all such values of ct and A. Consequently, we can neglect the last term in the inequality 
(3.23) to obtain 

„ , , X^ax(0) 
Vu(ra) = ; < sc(ra), n = l , 2 , . . . . 

v ' (1 \l/a\n x ' 1 

The left inequality of (3.20) is proved. • 

Remark 3.19. A reformulation of this asymptotic result for the FdE (3.1) is analogous as 
in Corollary 3.17. 
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3.4 A connection to some recent results 

Our stability investigation of (3.2) was based on analysis of the roots of the corresponding 
characteristic equation and their location with respect to the unit disk. In general, this 
direct approach is not practical just because of difficulties connected with the localization of 
the roots of a complex function resulting from the utilized ^-transform method. Therefore, 
the following explicit criterion for the asymptotic stability of (3.3) is usually applied (for 
other types of stability conditions we also refer to [35]). 

Theorem 3.20 ([23, Theorem 6.18]). Suppose that a(n) does not change sign for n G 1*Q 
and 

E 
n=0 

a n < 1 (3.24) 

Then (3.3) is uniformly asymptotically stable. 

Ti l l lately, it was an open question whether or not (3.24) is also necessary for the uniform 
asymptotic stability (or asymptotic stability) of (3.3). Only recently, Elaydi et al. [24] have 
constructed a class of equations (3.3) that violate the condition (3.24), but they are still 
asymptotically stable. 

We discuss the strictness of (3.24) with respect to the Volterra equation (3.2). First 
notice that sgn(a(n)) = sgn(l — A) for all n, i.e. a(n) does not change sign (we still assume 
0 < a < 1). Furthermore, 

E 
n=0 

a n 
1 

Al 

(see (3.19)). Hence, applying (3.24) to (3.2) we get |1 — A| > 1, which is a weaker result 
than (3.6) yields. More precisely, if 2a < A < 2, then Theorem 3.7 implies the uniform 
asymptotic stability of (3.2), although (3.24) does not hold. Actually, using (3.2) we can 
show something more, namely that the condition (3.24) is not necessary for the uniform 
asymptotic stability of (3.2) even if we consider it in a weaker form 

E 
n=0 

a n < M, M > 0 being large enough. 

Example 3.21. Let M > 0 be arbitrary. Choose a and A such that 

0 < a < 1 and 2a < A < 1 + 1 / M . 

Then, by Theorem 3.7, the equation (3.2) is uniformly asymptotically stable, but 

1 
E 
n=0 

a n A - l 
> M. 
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Similarly, using (3.2) we can construct another appropriate counterexamples related to 
some of open problems posed in [23]. 

Besides this contribution to the stability theory of Volterra difference equations, we can 
observe some other specific qualitative properties of the FdE (3.1). It concerns, e.g. the 
asymptotic stability property of (3.1) with A = 0 and arbitrary 0 < a < 1 (see Lemma 3.8). 
This result does not agree with the limit (trivial) case a — 1, when (3.1) is stable, but not 
asymptotically stable. 

On the other hand, the qualitative behaviour of the FdE (3.1) with A = 0 is qualitatively 
different from the behaviour of (3.1) with other values of A corresponding to the asymptotic 
stable case (A < 0 or A > 2a). Firstly, the decay rate of the solutions is lower than that 
for A < 0 and A > 2a (see Corollaries 3.12 and 3.17). Secondly, the asymptotic stability 
property for A = 0 is not uniform. 

Our last remark concerns an algebraic decay of the solutions y(n) of (3.1) such that 
|1 —A| > 1. By Corollary 3.17, its order is equal to 1+a, which is the same as in Theorem 1.5 
for the corresponding F D E . This resemblance, as well as the asymptotic stability region 
(3.14) indicate that the FdEs derived from (3.1) could be a very suitable tool for numerical 
approximations of the underlying F D E . We discuss this connection in more details in the 
next chapter. 
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4 Qualitative analysis of a vector linear FdE on T = hZ 

As we mentioned in the Introduction, the development of numerical methods for solving of 

FDEs is one of propulsion powers of the discrete fractional calculus. One of the simplest 

numerical methods, a generalization of the well-known Euler method, consists of reduction 

of involved functions to 

T = hZ+ = {tn =nh; n e Z + } , h > 0 (4.1) 

and replacing of the continuous fractional operators by the corresponding discrete ones. 

Obviously, every definition of discrete fractional difference induces its own method. For an 

illustration we refer to methods described in [22,44], whose basic properties were studied, 

e.g. in [37]. 

The subject of this chapter is closely related to the qualitative analysis of a numerical 

method utilizing the fractional difference given in Remark 1.47. This method, a generaliza­

tion of the backward Euler method, was proposed in [33], where its convenience for solving 

of initial value problems with fractional-order initial conditions was discussed. Its appli­

cation to the boundary value problems representing anomalous diffusion was introduced 

in [32]. 

The results presented in this chapter originate from the paper [17] and some of them can 

be viewed as a vector extension of the main results of the previous chapter. However, while 

proof techniques employed in Chapter 3 utilize tools from the theory of Volterra equations, 

assertions presented in this chapter are derived by original direct methods. 

We study the qualitative properties of a system of linear FdEs on the time scale (4.1). 

We show, among others, that the discrete system can retain the key qualitative properties 

of the underlying continuous one regardless of the discretization stepsize (this property 

of backward discretizations is well-known for a — 1 and we wish to confirm it also for 

0 < a < 1). Further, we discuss relationships between the qualitative properties of studied 

fractional systems on T = RQ and T = hZ^ with respect to changing h. In particular, we 

formulate Theorem 4.11, representing a direct discrete counterpart to Theorem 1.5, using 

the /i-Laplace transform proof tool. 

4.1 Problem formulation and its solution 

We are going to discuss some basic qualitative properties of the fractional difference system 

oV£y(t„) = Ay(tn), 0 < a < 1, n = 1, 2 , . . . , (4.2) 

where A is a d x d constant matrix with real entries, y{tn) is <i-vector. Note that we use the 

same symbols for vector and scalar quantities and their actual meaning will become clear 

from the context. 
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It can be expected that the stability and asymptotic properties do not depend on the 

form of initial conditions. The technique presented in Chapter 2 suggests oV^ _ 1 | / ( t n ) | 

as the starting value, but utilizing the /i-Laplace transform implies a different approach. 

Indeed, by Lemma 1.52 (ii) the initial condition is assumed to take the form 

o V r 1 y ( * „ ) | n = 0 = y 0 , y0eRd, (4.3) 

which requires some additional comments. Suppose that the solution of (4.2), (4.3) is 

a function given on T = hZ^. Then Definition 1.43 (as discussed in Remark 1.44(H)) 

automatically implies the zero value of (4.3), i.e. oV^ _ 1 | / ( t n ) | = 0. Now assume that the 

solution of (4.2), (4.3) has the domain hZ+, i.e. its value at point t0 = 0 is undefined. Then 

Definition 1.43 does not assign any value to the symbol oV^ _ 1 | / ( t n ) | and the fractional 

difference oV^y(tn) is not defined for n — 1 (see Definition 1.45). Thus, the case, when 

the system (4.2), (4.3) is considered for n — 1, does not seem to be covered. However, we 

have to keep in mind that Definition 1.45 discusses a stand-alone function f(t) given by 

its values, while the solution of the initial value problem is specified via its properties. In 

particular, a prescription of the initial condition by (4.3) provides an additional information 

allowing to interpret (4.2) even for n — 1. Indeed, the sequential expanding of (1.41) yields 

for (4.2), (4.3) 

oK~ly(tn)\n=l ~ oK~ly(tn)\n=0 = hAy(h), 

which utilizing (4.3) and expanding the first term by (1.43) for q = 1 leads to 

y(t1) = ha-1(I-haA)-1y0. (4.4) 

This relation defines (under the regularity assumption of the matrix / — haA) a one-to-one 

mapping between y0 and y(h) (and by extension oV^~1y(tn) | = 1 ) - Summarizing this, in the 

frame of Riemann-Liouville approach we shall study the initial value problem (4.2), (4.3), 

where the meaning of (4.2) for n — 1 and the meaning of (4.3) are specified via (4.4). 

Remark 4.1. (i) In the time scales theory the initial conditions are not usually prescribed 

at right-scattered minimum of a time scale, but at a "sufficiently distant" point with respect 

to the order of the equation (see Subsection 1.2.2). However, utilizing the ideas outlined 

above we can construct a one-to-one mapping between the conventional conditions and 

the conditions at right-scattered minimum on an arbitrary time scale for every ^-regressive 

fractional initial value problem. 

(ii) The initial condition (4.3) is a formal discrete analogy of (1.14). We recall that any 

nonzero choice of xo in (1.14) implies unboundedness of the solution x(t) of (1.13) in a 

neighbourhood of zero. Hence, the solutions of both continuous and discrete initial value 

problem are not defined at zero. 
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Now, we discuss a condition guaranteeing the existence and uniqueness for (4.2), (4.3). 

If a = 1 then this condition can be expressed via //-regressivity of A (see Definition 1.15). 

This property can be extended to 0 < a < 1 as follows. 

Definition 4.2. A matrix function A : T —> Rdxd is called //"-regressive if 

det(J - va[t)A[t)) ^ 0 for all teTK. (4.5) 

Remark 4.3. (i) Considering u[t) ^ 0, the matrix function A[t) is //"-regressive if and 

only if the function ua~1(t)A(t) is //-regressive. 

(ii) We are interested in the case of a constant matrix A on the time scale T = KLQ , i.e. 

(4.5) reduces to a single inequality det(J — haA) ^ 0. 

Proposition 4.4. Let A be va-regressive. Then the initial value problem (4-2), (4-3) has 

a unique solution. 

Proof. The proof is a matrix analogue to the proof of Proposition 3.1. Thus, due to the 

invertibility of I — haA, the system (4.2) can be written as 

y ( W i ) = (I- h-A)-1 E ( - l ) n " J ( n + i ) ' » = 1> 2, • • • , 

which is the Volterra difference system of convolution type with starting vector y{t\) 

uniquely given by (4.4). 

The existence and uniqueness of the solution of the initial value problem (4.2), (4.3) 

now follows from its equivalence with this Volterra system. • 

In this chapter, we utilize the /i-Laplace transform (1.33) for qualitative analysis of (4.2). 

Nevertheless, it can serve also as a useful tool for finding the solution of the initial value 

problem (4.2), (4.3). Doing this, we recall the /i-Mittag-Leffler function in the matrix form 

oo 

where all eigenvalues X(A) are assumed to lie inside B(0, h~v) (see, e.g. [9]). 

Remark 4.5. If this definition is applied to a scalar case (d = 1, matrix A replaced by a 

scalar A), it coincides with Definition 2.10 for q — 1 and s — 0. 

Proposition 4.6. It holds 

C{E^}{z)=z^{zH-A)-\ 
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Proof. Lemma 1.38 (i) and related definitions imply 

oo oo 
fc-1 C{E^}(z) = J2hE*ß(tk)(l - hzf-1 = / > £ £ ^ ' W i ( 4 , 0 ) ( l - hz) 

k=l k=l j=0 

oo 

3=0 3=0 3=0 

where the last equality is true if all eigenvalues X(A) lie in B(0, \z\v). The restrictions on 

the complex parameter z guarantee that there exists a positive radius of convergence. • 

Theorem 4.7. Assume that all eigenvalues X(A) lie inside B(0,h~a). Then the initial 

value problem (4-2), (4-3) has the unique solution given by 

y(tn) = E*a(tn)y0. 

Proof. Applying the backward /i-Laplace transform to both sides of (4.2), using the initial 

condition (4.3) and Lemma 1.52 (ii), we get 

£{y}(z) = (zaI-A)-1y0. (4.6) 

The statement now follows from Proposition 4.6 with respect to the uniqueness of the h-
Laplace transform and the uniqueness of the solution y(tn) of (4.2), (4.3) guaranteed by 

Proposition 4.4. • 

In the continuous case, the representation of solutions for (1.13) via standard Mittag-

Leffler functions is well known (see [43, p. 137]), as well as the asymptotic behaviour of 

these special functions (see [43, p. 29]). Then such a solution representation can provide 

the key tool for stability analysis of (1.13) (see [45]). 

Contrary to this continuous case, the asymptotic behaviour of /i-Mittag-Leffler functions 

is unknown even in the scalar case (see Chapter 3). Besides, the solution representation 

involved in Theorem 4.7 can be utilized only for system (4.2) with the matrix A having all 

its eigenvalues inside B(0, h~a) (note that this condition becomes trivial in the continuous 

case). Consequently, the above mentioned method of stability investigations of the frac­

tional differential system (1.13) does not seem to be convenient in the discrete case, hence 

considering the difference systems (4.2) we shall proceed differently. Although the technique 

performed in the previous chapter, utilizing of the theory of Volterra difference equations, 

can be applied in the vector case too, we introduce another approach based mostly on the 

fo-Laplace transform. 

To supplement the previous discussion, we note that it is possible to describe asymptotics 

of corresponding /i-Mittag-Lemer functions as a by-product of our results introduced bellow. 
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4.2 Stability and asymptotics 

This section formulates and comments a discrete analogue of Theorem 1.5. First we intro­

duce the stability notions for (4.2). 

Definition 4.8. The fractional difference system (4.2) is said to be 

(i) stable if and only if for any y0 G M.d there exists K > 0 such that the solution y(tn) of 

(4.2), (4.3) satisfies ||y(*„)ll < # for all ra = 1,2,...; 

(ii) asymptotically stable if and only if for any y0 G M.d the solution y(tn) of (4.2), (4.3) 

satisfies ||y(£ n)|| 0 as n —> oo. 

Our stability analysis of (4.2) is based on the investigation of the /i-Laplace transform 

of the solution £{y}(z), in particular regarding its series expansion (see Subsection 1.2.4). 

On that account, we recall the following general result which turns out to be useful in the 

next procedures (see, e.g. [26, p. 144-146]). 

Lemma 4.9. Let F(z) be a complex function analytic at zo G C. Then the radius of 

convergence of its power series (centered at zo) equals to the distance between zo and the 

nearest singular point of F(z). 

Before we formulate the main theorem of this section, we introduce the following pre­

liminary assertion. 

Proposition 4.10. Let y(tn) be a solution of (4-2), (4-3) and let R be the set of all roots 

of the equation 

(i) Ifmm\z-h 1\>h 1 , then y(tn) G i1. 

(ii) Ifmm\z — h~x\ < h~l, then (4-2) is not stable. 

Proof. Let A be similar to a Jordan canonical form, i.e. there exists an invertible matrix 

P such that A = PJP-1, where J = d iag(J i , . . . , Js) and Je are Jordan blocks of order 

re (£ = 1, . . . , s ) . Further, let \i(A) be eigenvalues of A, let fcj G Z + be their algebraic 

multiplicities and pi G Z + geometric multiplicities [i = 1,... ,m). The Laplace transform 

of y(tn) is 

by virtue of (4.6). The matrix (zaI — J) 1 is a block matrix. The number of blocks 

corresponding to \i(A) is Pi and their form is given by the upper triangular matrix 

det(zaI-A) = 0. (4.7) 

£{y}(z) = (zaI - A) y0 = P~\zaI - J^Py, (4.8) 

/ (za - Xi(A))~l (za - Xt(A))-2 ... (z° - \(A))-r< \ 

0 {zP-XiiA))-1 ... (za - \i{A))-r<+1 

(4.9) 

V o o (z" - A,(^)) - i / 
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where rq (q — 1,... ,pi) is the size of the block. On this account, each component of £{y}(z) 

is formed by a linear combination of the rational functions occurring in (4.9), hence R is 

the set of all poles of £{y}(z) because of 
m 

det(zaI - A) = det(zaI - J) = ]J{za - \i{A))k>. 
i=l 

Since the case a — 1 is elementary, we further consider 0 < a < 1. Then £{y}(z) has a 

singular point at zero due to the presence of power function za in (4.8). 

(i) If mmz£R \z — h_1\ > h - 1 , then the radius of convergence of £{y}(z) is r = h~x by 

use of Lemma 4.9. Further, as we have already observed, each component of y(tn) is a linear 

combination of functions Uij(tn) such that £{uij}(z) = (za—\i(A))~i (j = 1,..., rq), where 

fq is the maximal size of blocks (4.9) corresponding to \i(A). To prove the statement (i) it 

is enough to show that Uij(tn) G i1. 

First let j — I. We define the auxiliary functions gi : hZ+ —> C as 

9i{tn) = h-a-i(tn,0) - \i(A)5h(tn) . 

where Sh(tn) is given in Lemma 1.38. Lemma 1.38 imply that £{gi}(z) = za — Xi(A). Since 
OO OO / \ 

n=l n=2 ^ ' 

= h-a-\l + \l-haK{A)\): 

it holds gi(tn) e i 1 . Moreover, £{gi}(z)-£{uiA}(z) = 1 and \£{gi}(z)\ > 0 on c L B ^ " 1 , h'1). 

Proposition 1.40 then yields u^i(tn) G i1. 

Now let j > 1. In virtue of Theorem 1.37 we have 

Uij(tn) = (lij i * • • • * UiA)(tn) . 
v v ' 

jx 

Since the convolution of two elements of i1 is again an element of i1 (see [34, pp. 89-91]), 

the property Uij(tn) G d1 follows from the induction principle. 

(ii) If min^ e ^ \z — h_1\ < h - 1 , then the radius of convergence is less than h~x for at least 

one of components of £{y}(z). By Proposition 1.39 (ii), the system (4.2) is not stable. • 

Let C = (cij) be a matrix. By the symbol \C\ we shall understand the matrix given by 

\C\ = (\cij\). Further, we introduce the regions 

S„„ = {, 6 C ; | A r g W | > f or \z\ > ^ c „ S « ( ^ ) } 

and the interior of its complement in C 

Ua,h = {zeC; |Arg(z)| < ^ and \z\ < ^ cos* ( ^ | ^ ) } . 

Using this notation we have 
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Theorem 4.11. Let the matrix A be va-regressive, 0 < a < 1 and let y(tn) be the solution 
of (4.2), (13). 

(i) If all eigenvalues X(A) satisfy X(A) G Sa^, then y(tn) G i1, hence (4-2) is asymptot­
ically stable. Moreover, if all eigenvalues of the matrix \{I — ̂ A)-1] lie inside the 
open unit disk, then each component ofy(tn) tends to zero like 0(n~^ 1 + a^) as n —> oo. 

(ii) If there exists an eigenvalue X(A) such that X(A) G Ua,h, then (4-2) is not stable. 

Proof. We have observed that the set R of all roots of (4.7) consists of complex values 
such that zf = Xi(A) (i — 1,... ,m). Then 

N a e x p ( j a A r g ( ^ ) ) = \Xi(A)\exp (j Arg(A;(,4))) , j = \ / = l . 

Since for all complex values z it holds Arg(z) G (—n,n], the roots Zi exist provided 
Arg(Aj(yl)) G (—an,an}. Assuming this we arrive at 

Zi = \Xi(A)\" exp j 
• Arg(A,(^))N 

Further, we show that the conditions \zi — h 1\ > h 1 and Xi(A) G Sa^ are equivalent. 
Indeed, 

W j l ) | i « p ( i * 5 i ^ ) - f t - ' | > f t -

occurs if and only if 

| A , ( A ) | i > ? c o S ( ^ < M ^ ) ) . ( 4 . 1 0 ) 

If |Arg(Ai(i4))| > <f, then (4.10) is satisfied trivially. If |Arg(A*(,4))| < <f, then (4.10) is 

equivalent to |Aj(A)| > | ^ cos" ( A r g ^ ^ A ^ ) . Summarizing this, Xi(A) G Sa^h. 
The stability part of Theorem 4.11 (i) now follows from Proposition 4.10 (i). Analo­

gously, Proposition 4.10 (ii) implies the assertion of Theorem 4.11 (ii). 

Now we derive the asymptotic estimate formulated in Theorem 4.11 (i). Doing this, we 

investigate (4.2) in its equivalent form 

y(tn+1) = J2M(tn-Hi)y(tj), where M(tn) = ( - l ) " " 1 ^ ) ( I - O ) " 1 

j=l v / 

(see the proof of Proposition 4.4). Using the asymptotic property of the power function 

(1.29) we can verify the existence of a finite limit 

h m ^ = ^ -M-h«A)-\ 
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hence we can apply [6, Theorem 3.2]. In particular, if all eigenvalues of the matrix 

E iMo«)i = E(- 1)"" 1 ( j i ( J - h a A r l \ = i(J -
n=l n=l ^ ' 

lie inside the unit disk, then the direct application of [6, formula (15)] yields that y ( t n ) / n ~ 1 _ Q 

tends to a non-trivial limit 

(J - (J - h°A)"1)-^—M - haA)-\l - (J - haA)~l)~ly{ti). 
1 (1 — a) 

To simplify this limit value we note that 

(I-(I- ^A)-1)-1^ - ^A)-1 = -hraA-x, 

hence 

l i m = vTT~ r(—haA + (I - haA)-lhaA)-ly(tl) n^oon 1 a 1 (1 — a) 

-(h~2aA-2 - h-aA-l)y{h). 
F(l-a 

Notice that thus we have derived a slightly stronger asymptotic result than that formu­

lated in Theorem 4.11. • 

Remark 4.12. An alternative expression of the asymptotic stability region Sa^h can be 

provided by 

•>a,h {z e C ; z = h-a{l-w)a,w e C,\w\ > l} (4.11) 

(analogously we can rewrite Ua,h)- Equivalence of both expressions can be shown by use of 

some elementary calculations in the complex plain. 

Utilizing (4.11) we can directly verify that if all eigenvalues of the matrix / i a A ) _ 1 | lie 

inside the open unit disk, then all eigenvalues of A lie inside Sa^h. Indeed, let all eigenvalues 

of |(J — haA)~1\ lie inside the open unit disk. Then the same is true for all eigenvalues 

of (J — haA)~1, i.e. all eigenvalues of I — haA lie outside the unit disk. Equivalently, all 

eigenvalues \(A) satisfy |1 — ha\(A)\ > 1. Considering the form of Sa^h given by (4.11), we 

write X(A) = h-a(l-w)a, i.e. ha\(A) = (l-w)a. It remains to show that \ l-(l-w)a\ > 1 

implies \w\ > 1, or equivalently, |1—ua\ > 1 implies |1—u\ > 1. This can be proved via direct 

calculations. Thus, we have verified that the supplementary condition of Theorem 4.11 (i) 

actually poses a restriction of the asymptotic stability region Sa^h-

Remark 4.13. Theorem 1.5 implies that the asymptotic stability region Sa of the differen­

tial system (1.13) is given by Sa = {z G C ; |Arg(z)| > ^ } . We can see that Sa C Sa^ for 

any 0 < a < 1 and any h > 0. Moreover, by Theorem 4.11, the discretization (4.2) preserves 

the decay rate of the exact solutions (at least in a part of asymptotic stability region Sa,h)-
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These facts indicate that (4.2) as a very convenient tool for numerical approximations of the 

fractional differential system (1.13). In particular, the property Sa C Sajh, when asymptotic 

stability region of the continuous system (1.13) is a subset of the corresponding discrete 

one for any h > 0, is in numerical analysis usually referred to as A-stability of a given 

numerical method. Consequently, the method originating from (4.2), which is essentially 

the backward fractional Euler method, is A-stable when applied to (1.13). 

It is also interesting to observe the dependence of Sajh on parameters a and h (in 

particular, when a —> 1~ and h —> 0 + ) . The Figures 2 and 3 depict these situations 

(regions Sa^ lie outside the corresponding boundary curves). 

Figure 2: Dependence of the stability do- Figure 3: Dependence of the stability do­

main on the parameter h for a — 0.6 main on the parameter a 

Remark 4.14. If we consider the scalar case (with the matrix A replaced by the scalar 

A), then Theorem 4.11 describes the asymptotic behaviour of the /i-Mittag-Leffler function 
Ea^(tn) provided -h~a < A < 0. 

Theorem 4.11 does not solve the stability problem when some of eigenvalues A (A) lie 

on the stability boundary. The following assertion demonstrates that all stability variants 

are possible in such the case. 

Theorem 4.15. Let the matrix A be va-regressive, 0 < a < 1, let A has the zero eigenvalue 

\\{A) = 0 and let all its nonzero eigenvalues belong to Sajh- Denote f G Z + the maximal 

size of the Jordan block corresponding to \\(A). 

(i) If f < a - 1 , then (4-2) is asymptotically stable. Moreover, each component of all 

solutions y(tn) of (4-2) tends to zero like 0(nra~r) as n —> oo. 

(ii) If f = a - 1 , then (4-2) is stable, but not asymptotically stable. 

(hi) If f > a - 1 , then (4-2) is not stable. 

•56 



Proof. Let p\ be the geometric multiplicity of the zero eigenvalue \i{A) = 0. Analyzing 
(4.8) and (4.9) we can see that £{y}(z) contains (in addition to terms corresponding to 
Xi(A) G Sa:h discussed in the proof of Proposition 4.10) the power functions z~a,..., z~ra. 
Lemma 1.38 (i) implies that the eigenvalue \\{A) = 0 contributes to the form of y(tn) by 
terms ha_i(tn, 0 ) , . . . , hfa-\(tn, 0). A l l the assertions of Theorem 4.15 now result from the 
limit property of power functions 

hßnß 

lim hß(tn, 0) = lim 
n—¥oo riß + i) 

following from the asymptotic expansion (1.29). • 

Remark 4.16. The case (i) never occurs when a — 1. Similarly, the case (ii) may occur 
only when a is reciprocal of a positive integer. Finally, if f = 1, i.e. when algebraic and 
geometric multiplicities of the zero eigenvalue are equal, then (4.2) is asymptotically stable 
for all a G (0,1) and y(tn) = 0 ( n a _ 1 ) as n —> oo for any solution y(tn) of (4.2). 
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5 A possible extension of fractional calculus to general 
time scales 

In this chapter we abandon the study of FdEs on time scales with linear graininess and turn 

our attention to a wider problem, namely establishing of the fractional calculus in the frame 

of the time scales theory. As outlined in Chapter 1, there were recently some attempts to 

resolve this issue. 

The approach presented in [10] for the case of the delta calculus is not entirely general 

since it is applicable exclusively on time scales, where the Laplace transform can be utilized 

(see Remark 1.34). The suggested definition of the fractional integral rewritten for the 

nabla case takes the form (in our notation) 

0V-y(t) = £-1{z^£{f}(z)}(t). (5.1) 

Obviously, for further calculations it requires to perform an inverse Laplace transform, 

which may not be an easy task. 

In [4] the author claims, among others, to develop the nabla fractional calculus on time 

scales, but in this context it concerns only a formal introduction of a fractional integral 

of order larger than one (special case of (1.38)). However, there are stated (without any 

deeper discussion) some conditions which should be satisfied by the power functions of 

non-negative orders. Namely, the power functions are introduced as coordinatewise ld-

continuous functions hp : T x T —> M (/3 > 0) such that 

hp+i(t, s) = J hp(r, S)VT , ho(t, s) = 1 (5.2) 

for all s, t G T provided TK = T. Furthermore, the equation 

t 
hv(t, p(r))hp(T, s ) V r = hv+p+1(t, s) (5.3) 

is assumed to be valid for rj, (5 > 0 and for all s, t G T such that s < t. 

Our research, performed in the previous chapters, motivates us to improve this approach 

and provide some new perspectives, relations and comments on this matter. In particular, 

we give arguments for the essential importance of (5.3) and propose its extension enabling 

us to define fractional integrals of all positive orders. Further, we outline a connection 

between this approach and (5.1). 

The reasoning 

As discussed in Subsection 1.2.3, any key relation nor property determining the power 

functions on an arbitrary time scale has not been properly established yet. We mentioned 

the exponential function and the polynomials as examples of time scales introductions of 
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the particular functions. Both the exponential function and polynomials belong to the 

fundamental elements of the classical mathematical analysis due to their characteristic 

properties. The corresponding time scales generalizations are required to play an analogous 

role, therefore they are introduced via these properties, i.e. the exponential function as the 

solution of a certain initial value problem (see (1.21)) and the polynomials as the result 

of a repeated integration of the unit function (see (1.22), (1.23)). In the case of power 

functions, it is questionable to determine their necessary characteristic property in the 

frame of classical analysis. On the other hand, the power functions form the very nature 

of the fractional calculus. Hence, we believe that the unifying principle for power functions 

should be derived from their role in fractional calculus. 

Obviously, the importance of power functions in fractional calculus originates in its 

presence in the formula for fractional integral (1.38). However, this fact itself cannot serve 

as a base for a definition of power functions. In many ways, power functions in fractional 

calculus supply the position of polynomials in classical mathematical analysis. Thus, it 

seems reasonable to expect that the key relation determining the characteristic features of 

power functions is given by a generalization of (1.22), (1.23). While the former relation 

remains unchanged, the latter one is transformed into 

sV~^hfj(t,s) = h/3+1(t,s), 

i.e. 

hp+1(t,s) = ! V i ( t , p ( r ) ) ^ ( r , s ) V r , / 3 > - l , 7 > 0 . (5.4) 

J s 

Obviously, this formula coincides with (5.3) with wider range of parameters rj,(3 > —1. 

However, (5.4) is not introduced just formally. If we analyze basic relations of fractional 

calculus in both continuous and (q, /i)-calculus versions, we find that (5.4) often poses as 

a unifying element of the corresponding proofs. Indeed, the validity of (5.4) induces, e.g. 

the unitary form of the composition rules (see Remark 1.51). It is also responsible for the 

special properties of the time scale Mittag-Leffler functions defined by 
oo 

provided the series converges (compare with (1.11) and Definition 2.10). In particular, it 

enables us to introduce a time scale analogy of Theorem 2.11 and its subsequent results. 

Apart from the fractional calculus viewpoint, functions satisfying (5.4) automatically meet 

other demands naturally put on power functions. In particular, it is easy to show that 

polynomials are a special case of such the power functions and that (5.2) 1 and its differential 

counterpart V/i,g(t,s) = h/3-i(t,s) ((3 > 0) hold. 

An introduction of the power functions of negative orders yields a few curious con­

sequences regarding the time scales theory. In particular, the power functions h-^it, s) 
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(0 < 7 < 1) have the domain (with respect to t) (s, OO)T , i.e. the value of h/3(s,s) is not 

a real number, but they have to be integrable on [s, oo)j. Indeed, the convolution relation 

(5.4) supplied with ho(t,s) = 1 (s,t e T) gives 

/i 7 _i(s, p ( r ) ) / i_ 7 ( r , s ) V r = 1. (5.5) 

This formula cannot be correct for «_ 7 (s,s) e M, because Definition 1.11 would imply the 

zero result. On the other hand the power functions of positive orders can be written as 

hj3(t,s) = f' /ijg_i(r, S ) V T , therefore the negative-order power functions have to be inte­

grable. Consequently, it is impossible to determine the values hp(s,s) ((3 > 0). Thus, we 

add another natural condition for the power functions, namely 

^ ( s , s ) = / V i ( r , 5 ) V r = 0, 0 < (3 < 1. (5.6) 
J s 

To the author's knowledge, functions satisfying (5.5) and (5.6) are not well-established 

in the time scales theory yet. Nevertheless, this proposal agrees with features of rTT^Y 

on T = R and is closely related to the work presented in [38], where a similar behaviour 

was studied at the limit point of T = qz. It seems that our considerations lead to an 

introduction of a class of singular functions in the frame of the time scales theory, but their 

further investigation exceeds the range of this thesis. 

The Laplace transform 

In [10], the power functions hp(t,s) were proposed as the inverse Laplace transform of 

z _ / 3 _ 1 . We show that our definition implies the same result at least for /3 G Q, /3 > — 1. For 

the sake of simplicity we demonstrate it only for functions of the type hj__1(t, 0) (w € Z + 

w 

and w > 2). Let T be such that the Laplace transform can be applied. The previous 

investigation enables us to write 

(hi_1*---*hi_1)(t,0) = 1. 
— — 

ir x 

Utilizing £{l}(z) = z 1 (see Proposition 1.36 (i)) and Theorem 1.37, we apply the Laplace 

transform on this relation and arrive at 

( r i / ^ M ) } ^ = ^ 

which yields £ { « j _ _ 1 ( - , 0)}(z) = z~™. In virtue of this relation we can construct the Laplace 
w 

transform of every power function of rational order and arrive at 

£ { M - , 0 ) } ( z ) = ^ - \ / 3 > - l 

which agrees with [10]. 
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The final proposal and additional comments 

Based on the former discussion, we suggest to define the power functions hp(t, s) ((3 > — 1) 
in the frame of the time scales theory as a family of functions satisfying 

(hp * h7)(t, s) = hp+1+l(t, s), t > s, (3,j >-1, (5.7) 

ho(t,s) = l, t>s, (5.8) 

hp(t,t) = 0, 0<(3<1, (5.9) 

where s, t e T and (hp * h^)(t, s) = f* hp(t, p(r))/i 7(r, s ) V r by extension of Definition 1.32. 
It was outlined above that the system of the conditions (5.7)-(5.9) implies many prop­

erties and assertions regarding the fractional calculus as well as basic properties of power 
functions themselves. Moreover, these conditions are consistent with the definitions pre­
sented in [4,10]. 

This proposal provides many directions for the future research. Besides a construction 
of precise proofs of various properties and finding power functions on particular time scales, 
it is especially important to perform an analysis of existence and uniqueness for the system 
of conditions (5.7)-(5.9). The introduction of power functions of negative orders opens the 
discussion on the notion of singular functions on time scales. Finally, establishing of the 
set of conditions satisfied by power functions on every time scale brings a possibility to 
incorporate entirely the fractional calculus into the time scales theory. 
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Conclusions 

This doctoral thesis concerns with the fractional calculus on time scales, in particular with 

the FdEs on the time scale and its special cases. 

The necessary theoretical background, such as basics of continuous fractional calculus, 

the time scales theory and discrete fractional calculus, is summarized in Chapter 1. It also 

contains some original preliminary results regarding the power functions in (q, /i)-calculus, 

the /i-Laplace transform and properties of fractional operators on the time scale (we 

especially refer to (q, /^-version of the power rule established in Lemma 1.48). 

Author's main results are presented in Chapters 2-4. The contributions to the field can 

be summarized into the following points: 

• Basic theory of linear FdEs on - Basic properties were introduced for a quite 

general linear initial value problem. In particular, the existence and uniqueness was 

discussed (Theorem 2.4) and the form of a general solution was given (Theorem 2.8). 

• Eigenfunctions of the fractional difference operator on T^th) - The (q, h)-

version of the Mittag-Leffler function was established (Definition 2.10) which enabled 

to introduce eigenfunctions of the Riemann-Liouville fractional difference operator 

(Corollary 2.13). Their relation to the solution of a linear two-term FdE was discussed 

(Theorem 2.15). 

• Qualitative theory - The stability and asymptotic properties of a scalar linear 

two-term FdE on T = Z were investigated employing a connection to the Volterra 

difference equations theory (Theorem 3.10 and Corollary 3.17, respectively). A vector 

analogue of these assertions considering the underlying set T = KL was proven via 

the properties of /i-Laplace transform of the solution (Theorem 4.11). 

The thesis is concluded by Chapter 5 which outlines a possible way of an extension of 

the fractional calculus to the time scales theory. This proposal implies some interesting 

consequences regarding the time scales theory and generates many other open questions 

providing many challenges for the future research. 

We believe that the main results of this doctoral thesis upgraded the theory of discrete 

fractional calculus in several directions and thus contributed to its further development. 

In particular, the foundations of the theory of FdEs in (q, /i)-calculus were established and 

the qualitative theory of FdEs in /i-calculus was extended. Moreover, there were brought 

up some ideas contributing to discussions on some open problems in the theory of Volterra 

difference equations and the time scales theory. 

Apart from the possible usage of our results in further theoretical development, our work 

can be employed in numerical analysis of FDEs and therefore, by an appropriate extension, 

62 



used in many applications. It was pointed out that our approach to discrete fractional h-
calculus can be taken as a discretization resulting in the backward fractional Euler method. 
Hence, especially the qualitative investigations of the vector initial value problem on KL 
is, among others, closely related to the numerical analysis of the corresponding continuous 
initial value problem. 
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List of Symbols 
Z the set of integers 

Z + the set of positive integers 

Z g the set of non-negative integers 

Z g the set of non-positive integers 

Q the set of rational numbers 

K. the set of real numbers 

C the set of complex numbers 

B(z0,r) an open ball with center z0 G C and radius r (see p. 19) 

A (A) an eigenvalue of the matrix A 

T a general time scale (see p. 8) 

TK the truncation of a time scale T (see p. 9) 

T(q,h) the underlying set of (q, /i)-calculus (see p. 8) 

T? hs the restriction of \q,h) (see p. 27) 

KL the set {..., -2h, h, 0, h,2h,...} (see p. 8) 

qz the set {..., q~2, g - 1 , 1 , q,q2,...} (see p. 8) 

a the forward jump operator (see Definition 1.6) 

p the backward jump operator (see Definition 1.6) 

fj, the forward graininess function (see Definition 1.8) 

v the backward graininess function (see Definition 1.8) 

Arg(z) the principal argument of z G C 

[•] the ceiling function (see p. 5) 

F(z) the Euler Gamma function (see p. 4) 

EVip the classical Mittag-Leffler function (see (1.8)) 

E°'p the discrete Mittag-Leffler function (see Definition 2.10) 

E^p the matrix Mittag-Leffler function (see p. 50) 

hp time scales power function of order f3 (see Definition 1.26) 

e.f time scales exponential function (see (1.21)) 

d1 the space of summable sequences 

f * g the convolution of / and g (see Definition 1.32) 

/ ~ g asymptotic equivalence of / and g (see p. 16) 

aDa fractional derivative or integral (see Definitions 1.1 and 1.3) 

a V a time scales fractional derivative or integral (see p. 20-22) 

<^{qh) fractional difference or sum in (q, /i)-calculus (see Definitions 1.43 and 1.45) 

a V£ fractional difference or sum in /i-calculus (see p. 22) 

£{f}(z) the generalized Laplace transform of / (see Definition 1.33) 

Z{f}(z) the Z-transform of / (p. 38) 
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