
BRNO UNIVERSITY OF TECHNOLOGY

Faculty of Electrical Engineering
and Communication

MASTER'S THESIS

Brno, 2017 Bc. Gábor Árva

BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

FACULTY OF ELECTRICAL ENGINEERING AND
COMMUNICATION
FAKULTA ELEKTROTECHNIKY
A KOMUNIKAČNÍCH TECHNOLOGIÍ

DEPARTMENT OF RADIO ELECTRONICS
ÚSTAV RADIOELEKTRONIKY

EMBEDDED VIDEO PROCESSING FOR SURVEILLANCE
SYSTEMS
EMBEDDED ZPRACOVÁNÍ VIDEA PRO DOHLEDOVÝ SYSTÉM

MASTER'S THESIS
DIPLOMOVÁ PRÁCE

AUTHOR
AUTOR PRÁCE

Bc. Gábor Árva

SUPERVISOR
VEDOUCÍ PRÁCE

doc. Ing. Tomáš Frýza, Ph.D.

BRNO 2017

Fakulta elektrotechniky a komunikačních technologií, Vysoké učení technické v Brně / Technická 3058/10 / 616 00 / Brno

Diplomová práce
magisterský navazující studijní obor Elektronika a sdělovací technika

Ústav radioelektroniky
Student: Bc. Gábor Árva ID: 154671
Ročník: 2 Akademický rok: 2016/17

NÁZEV TÉMATU:

Embedded zpracování videa pro dohledový systém

POKYNY PRO VYPRACOVÁNÍ:

Prostudujte dosavadní projekty/knihovny pro zpracování video signálů a počítačové vidění (např. OpenCV). Pro
vhodnou platformu rodiny ARM navrhněte řetězec pro snímání statické scény a vyhodnocování obrazu
s funkcemi pro dohledový systém vč. detekce pohybu a identifikace objektů, atd. Sestavte snímací systém
a navrhněte způsob vzdáleného ovládání systému, vč. logování událostí, vyhledávání, apod.

Oživte celý řetězec zpracování reálných video signálů a proveďte detailní testování všech funkcí.

DOPORUČENÁ LITERATURA:

[1] OpenCV: Open Source Computer Vision [online]. 2016 [cit. 2016-05-24]. Dostupné z: http://opencv.org/.

[2] Raspberry Pi [online]. Raspberry Pi Foundation, 2016 [cit. 2016-05-24]. Dostupné z:
https://www.raspberrypi.org/.

Termín zadání: 6.2.2017 Termín odevzdání: 16.5.2017

Vedoucí práce: doc. Ing. Tomáš Frýza, Ph.D.
Konzultant:

 prof. Ing. Tomáš Kratochvíl, Ph.D.
předseda oborové rady

UPOZORNĚNÍ:
Autor diplomové práce nesmí při vytváření diplomové práce porušit autorská práva třetích osob, zejména nesmí zasahovat nedovoleným
způsobem do cizích autorských práv osobnostních a musí si být plně vědom následků porušení ustanovení § 11 a následujících autorského
zákona č. 121/2000 Sb., včetně možných trestněprávních důsledků vyplývajících z ustanovení části druhé, hlavy VI. díl 4 Trestního zákoníku
č.40/2009 Sb.

ABSTRACT
This diploma thesis deals with the design of an embedded surveillance system imple-
mented on a Raspberry Pi 3 B device. The stated system includes motion and object
detection algorithms realized with OpenCV functions. The evaluated information from
the device is accessible via web server.

KEYWORDS
OpenCV, embedded surveillance system, Raspberry Pi 3 B, cascade classifiers

ABSTRAKT
Diplomová práca sa zaoberá návrhom embedded dohľadového systému, ktoré je imple-
mentované na Raspberry Pi 3 B zariadenie. Uvedený systém obsahuje algoritmy pre
detekcie pohybu a detekcie objektov, ktoré sú realizované pomocou OpenCV funkcie.
Vyhodnocené informácie sú prístupné na webový server.

KLÍČOVÁ SLOVA
OpenCV, embedded dohľadový systém, Raspberry Pi 3 B, kaskádové klasifikátory

ÁRVA, Gábor Embedded video processing for surveillance systems: master’s thesis.
BRNO: Brno University of Technology, Faculty of Electrical Engineering and Communi-
cation, Department of Radio Elektronics, 2017. 61 p. Supervised by doc. Ing. Tomáš
Frýza, Ph.D.

DECLARATION

I declare that I have written my master’s thesis on the theme of “Embedded video
processing for surveillance systems” independently, under the guidance of the master’s
thesis supervisor and using the technical literature and other sources of information which
are all quoted in the thesis and detailed in the list of literature at the end of the thesis.

As the author of the master’s thesis I furthermore declare that, as regards the creation
of this master’s thesis, I have not infringed any copyright. In particular, I have not
unlawfully encroached on anyone’s personal and/or ownership rights and I am fully aware
of the consequences in the case of breaking Regulation S 11 and the following of the
Copyright Act No 121/2000 Sb., and of the rights related to intellectual property right
and changes in some Acts (Intellectual Property Act) and formulated in later regulations,
inclusive of the possible consequences resulting from the provisions of Criminal Act
No 40/2009 Sb., Section 2, Head VI, Part 4.

BRNO .
(author’s signature)

ACKNOWLEDGEMENT

I would like to thank doc.Ing.Tomáš Frýza, Ph.D. for professional guidance, consultation,
patience and suggestions for the work.

BRNO .
(author’s signature)

ACKNOWLEDGEMENT

Research described in this master’s thesis has been implemented in the laboratories
supported byt the SIX project; reg. no. CZ.1.05/2.1.00/03.0072, operational program
Výzkum a vývoj pro inovace.

BRNO .
(author’s signature)

Faculty of Electrical Engineering
and Communication
Brno University of Technology
Purkynova 118, CZ-61200 Brno
Czech Republic

http://www.six.feec.vutbr.cz

http://www.six.feec.vutbr.cz

CONTENTS

1 Introduction 11
1.1 Surveillance system . 11
1.2 Computer vision . 12

1.2.1 OpenCV . 13
1.3 Raspberry Pi . 13

2 Design of the system 15
2.1 Hardware part . 15

2.1.1 Block scheme . 15
2.1.2 Installation of OpenCV libraries 16

2.2 Software part . 17
2.2.1 Motion detecting algorithm 17
2.2.2 Object detecting algorithm . 20
2.2.3 Cascade classifier training . 23

3 Realization of the system 26
3.1 Capturing frames . 27
3.2 Detecting motion . 29

3.2.1 Absolute difference . 30
3.2.2 Thresholding . 30
3.2.3 Erode and dilate . 31

3.3 Selecting region of interest . 32
3.4 Object detection . 35
3.5 Face detection features . 37
3.6 Saving video sequence . 39
3.7 Remote access . 40

3.7.1 Opening video files . 41
3.7.2 Listing video files . 42
3.7.3 Video player window . 44
3.7.4 Live stream . 45
3.7.5 System authentication . 46

4 Experimental results 47
4.1 Motion detection . 47

4.1.1 Testing of rectangle merge . 47
4.2 Face detection . 50

4.2.1 Comparison of two type of cascades 50

4.2.2 Effectiveness of frontal face detection 51
4.3 Hand detection . 54
4.4 Execution time of used algorithms 55

5 Conclusion 56

Bibliography 57

List of appendices 60

A Web page 61

LIST OF FIGURES
1.1 Raspberry PI model 3 B [6] . 14
2.1 Block scheme of proposed surveillance system 15
2.2 Illustration of detected motion . 17
2.3 Image procession for motion detection algorithm 18
2.4 Flowchart of motion detection . 19
2.5 The features selected by AdaBoost [8] 20
2.6 Depiction of the cascade classifiers [8] 21
2.7 Approach of Local Binary Patterns [9] 22
2.8 MB-LBP application to random faces [9] 23
2.9 Set of positive images . 24
3.1 Simplified flow chart of the surveillance firmware 26
3.2 The effect of rectangle merge . 34
3.3 Example for detected frontal face . 37
3.4 Table structure showing directory content 43
3.5 Window structure of video player . 44
4.1 Motion detection: market checkout 47
4.2 Motion detection: passing cars on a street 48
4.3 Motion detection: metro station . 49
4.4 Results of LBP face detection on average face 51
4.5 Results of LBP face detection on face with glasses 52
4.6 Results of LBP face detection on face with cap(a-d) and glasses(e-i) . 53
4.7 Results of LBP hand detection . 54

LIST OF TABLES
4.1 Computational time of used cascades 50
4.2 Computational time of program parts in ms 55

1 INTRODUCTION
This thesis deals with the design of an embedded surveillance system realized on
a Raspberry Pi 3 B minicomputer. The main part of this project focuses on the
study of selected functions used by modern surveillance systems, like basic motion
detection and algorithms used for detecting human faces. An external web-camera
captures static scenes which are used as input data for the image processing al-
gorithms. These algorithms analyze the images in real time, yielding information
about moving objects and saving the video sequence if motion has been detected.

The system also includes remote access, making possible for the user to gain
access to the embedded device through an internet connection. The remote access
makes possible to get an insight to the actual events of the surveyed area, to browse
among logged evens and to watch saved video files. The rest of the thesis is organized
as follows.

The second chapter describes the used functions in the chain of video procession,
discussing the process of motion detection in detail. Further, it deals with methods
for cascade classifier based object tracking and the training process of a custom
classifier for the detection of hands.

The third chapter deals with the design of the stated surveillance system in
details. The main parts of the system are described in separate sections and their
functions are presented with the help of commented source code parts, pseudo-codes
and flow-diagrams.

In the last chapter, the experimental results are listed, encompassing the out-
comes of the performed tests.

1.1 Surveillance system
The basic set-up of a surveillance system includes one or more cameras attached
to monitors. The purpose of these systems are to give an overview of a huge area
to the operators. Their task is to watch the monitors constantly then evaluate and
react to the actual events. Video recorders can save the output of each camera and
after an occurred incident the footage can be used as evidence. The disadvantage
of this system is that it cannot be used for preventing incidents and a lot of time
is required for finding the correct videos. The weakest element of these surveillance
systems are the human operators. Since watching the monitors for a long period of
time where nothing significant happens is a hard task and mistakes can be easily
made.

The thesis includes the design of a surveillance system for indoor use, in which
the tasks of human operators are substituted by a portable control unit equipped

11

with one or more cameras. The task of surveillance will be approached from the
human perspective which includes the following activities:

• Detecting moving objects
• Recognizing objects
• Possibly tracking object movements
To automatize these task, basic Computer Vision algorithms are modified and

applied to the real-time camera feed. The functions are provided by the open source
computer vision libraries called OpenCV. [1]

Additionally, the video sequence is saved only in cases if a corresponding event
is detected, thus saving storage space and making easier to find the desired video
footage. The controller unit is equipped with remote access, so the user can also
check the captured events, even the live feed from the camera from any distance.
The information provided by the controller unit can be further used for calling events
like triggering alarms, sending messages to the owner or calling the police. [1]

1.2 Computer vision
Humans perceive the three-dimensional structure of the world around them with
apparent ease. They can easily specify the attributes of objects, recognize people in
pictures even guess the emotions on their faces. Researchers in computer vision have
been developing mathematical techniques for recovering the shape and appearance
of objects in imagery. With them, one can track movement, rebuild 3D models of
an environment and recognize people by their face. However, despite all of these
advances, the idea about a computer that interprets images as a small child does, is
still elusive. [2]

The basic of computer vision is to describe the world in one or more images and to
specify and reconstruct its attributes, as color distribution and shape. Fortunately in
today’s digital world with the advent of powerful and affordable computing devices,
it has never been easier to create the desired imagined applications. Huge amount
of tools and libraries are offered for picture and video manipulation. For anyone
who wishes to develop his own application, the OpenCV library is a considerable
option to use.[3]

12

1.2.1 OpenCV

OpenCV stands for Open Source Computer Vision. It is an open source library
containing over 500 optimized algorithms for image and video analysis and manip-
ulation. OpenCV was introduced in 1999, since then, it has widely spread among
researchers and developers as the main development tool in computer vision. It was
originally developed at Intel to create vision-based CPU-intensive applications. The
version 1.0 was launched in 2006, which was followed by the second major release
in 2009 with OpenCV 2 that recommended new changes, like the C++ interface.

OpenCV is aimed at making computer vision accessible to programmers and
users in the area of real-time human-computer interaction. There are available de-
tailed manuals, source-code examples and tutorials which eases the work of the de-
velopers. It includes libraries for object/human/face detection, recognition, tracking
and segmentation as well as camera calibration and 2D, 3D shape reconstruction. It
has C++, C, Python, Java and MATLAB interfaces and supports Windows, Linux,
Android and Mac OS. The full list also detailed tutorials can be found on the official
website [4].

1.3 Raspberry Pi
Raspberry Pi is a miniature computer with the size of a credit card developed by
the Raspberry Pi Foundation. The main aim of this product was to create a device,
which makes the programming courses for children easier, more enjoyable and all
of this for a reasonable price. After the introduction however, this little computer
gained favor against many programmers and developers due to its cheap price and
wide range of utilization. Since the first model, which was introduced in 2012, these
microcomputers have developed more and more mainly in hardware equipment and
fortunately not in dimensions. [6]

The latest model is the third generation Raspberry PI shown in Fig 1.1, which
is available since February 2016. The dimensions of this model are 8.5 x 5.3 cm,
within this relatively small area the deice has a quad-core ARM processor with 1
GB RAM, a built-in Wireless LAN module and a long variety of ports.
For its proper function the device needs to be connected to an external power supply
rated at 5 V with a minimal current of 2 mA. As a power supply any mobile charger
can be used with higher current output than the required value, giving the Raspberry
Pi users even more freedom. The maximal power consumption is stated as 3.5 W.

13

Fig. 1.1: Raspberry PI model 3 B [6]

The Raspberry PI 3 B has the following equipment and technical properties:[6]
• f A 1.2 GHz 64-bit quad-core ARMv8 CPU
• 802.11n Wireless LAN
• Bluetooth 4.1
• Bluetooth Low Energy (BLE)
• 1 GB RAM
• 4 USB ports
• 40 GPIO ports
• Full HDMI port
• Ethernet port
• combined 3.5 mm audio jack and composite video
• Camera interface (CSI)
• Display interface (DSI)
• Micro SD card slot
• VideoCore IV 3D graphics core

All these technical parameters makes this microcomputer an appropriate choice for
this project. It has enough computational power for the manipulation of static image
frames, while with a proper camera module the system still possess small dimensions
and weight.

14

2 DESIGN OF THE SYSTEM

2.1 Hardware part
For the central control unit, the Raspberry PI 3 B was selected. Before one can start
to work on the newly bought product, an operating system have to be installed on
the device. The installation process requires an SD card and a downloaded version of
one of the free operation systems available. The image file containing the operational
system, a detailed guide for the image writing and an installation tutorial can be
all found on the Raspberry homepage: [6]. For this project the Raspbian Jessie Lite
operating system had been chosen.

2.1.1 Block scheme

The block scheme of the whole hardware part is shown in Fig. 2.1. The source code
was developed directly on the mini computer with the assistance of the connected
peripheral devices.

Fig. 2.1: Block scheme of proposed surveillance system

15

2.1.2 Installation of OpenCV libraries

For the correct function of OpenCV a few other packages have to be installed on
the device. This can be done with typing a few commands to the terminal with an
active internet connection. In the first place, the already installed packages and the
firmware of the minicomputer have to be updated.
sudo apt−get update
sudo apt−get upgrade
sudo apt−get d i s t−upgrade
sudo rpi−update

Next step is to install the build system CMake, a free distributed version control
system Git and a few other dependencies.
sudo apt−get i n s t a l l cmake g i t
sudo apt−get i n s t a l l bui ld−e s s e n t i a l

GTK development libraries used for the visualization of GUI (Graphical User Inter-
face):
sudo apt−get i n s t a l l −y l i b g t k 2 .0−dev pkg−c on f i g

The other packages needed by the OpenCV can be found among the installation
tutorials on the official OpenCV homepage [4]. The version of OpenCV libraries used
in this thesis can be downloaded through the terminal with the following commands:
cd ~/
g i t c l one https : // github . com/ I t s e e z /opencv . g i t
g i t c l one https : // github . com/ I t s e e z / opencv_contrib . g i t

As the last step, a new folder is created for the build files. After the building
process, the libraries are compiled and installed. The whole process can take up to
3 - 4 hours.
cd ~/opencv
mkdir bu i ld
cd bu i ld
sudo cmake −D CMAKE_BUILD_TYPE=RELEASE
−D CMAKE_INSTALL_PREFIX=/usr / local
−D OPENCV_EXTRA_MODULES_PATH= . . / . . / opencv_contrib /modules
−D WIHT_V4L=ON −D INSTALL_C_EXAMPLES=ON −D BUILD_EXAMPLES=ON
−D WITH_FFMPEG=OFF . .

sudo make −j 2
sudo make i n s t a l l
sudo l d c on f i g

16

2.2 Software part

2.2.1 Motion detecting algorithm

The first task is to teach the Raspberry Pi how to detect motion in the captured
video footage. There is a large amount of available algorithms on the world web
already, the only thing what limits their potential is the hardware of the processing
unit. The selected motion detecting algorithm is based on frame difference method
[5], which is the most suitable choice for a static camera system.

The main idea is to compare two frames of the video file. Since the background
is constant, the content of the frames are the same, except in the region of mov-
ing objects. The difference between these images provides information about the
location of the moving objects. The detected motion in the video sequence is then
highlighted with a rectangle drawn around it. An example for the result can be seen
in Fig. 2.2.

To detect any motion in a given video sequence, a reference image is required.
This image can be captured once containing only the scene background, or it can be
replaced continuously during the process. The actual image is taken from the real-
time camera feed what is then converted into gray-scale format showed in Fig. 2.3
(a). The reference image is then subtracted from the newly captured one, resulting
in an output picture including only the pixel values of the moving object (b).

Fig. 2.2: Illustration of detected motion

In the next step a threshold function is applied to the output image (c), setting
the intensity value of each pixel to maximum or minimum, considering a threshold
value. This image still contains pixel errors caused by inadequate light conditions or
the imperfection of the camera attributes. These errors mainly occur on the edges
of objects and in bright areas of the image. The thresholded image is further pro-
cessed and filtered by corresponding functions, resulting in image (d). The further
description of these functions can be found in the following chapters.

17

(a) Grascale frame (b) Absolute difference of frames

(c) Applied Threshold (d) Applied blur

Fig. 2.3: Image procession for motion detection algorithm

If the algorithm would use a single reference image captured at the start-up of
the system, all objects which were not present at the given time would cause a "false"
motion, regardless if they are moving at the moment or staying still. To remove this
unwanted feature, at a given time, two or more consecutive images can be selected
from the video file to apply the described process to them. The disadvantage of this
method is that the sensitivity to moving objects is highly depending on how many
frames are captured in one second. If the fps is too high, the algorithm may not
react to slow movements, but low fps degrades the quality of the video. To eliminate
this problem, the reference image is not replaced with new images, but is blended
with the actual image. This process is called linear blending, which adds the two
input images with weighted values based on the following equation:

dst = 𝛽 · 𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒_𝑖𝑚𝑔 + 𝛼 · 𝑎𝑐𝑡𝑢𝑎𝑙_𝑖𝑚𝑔 (2.1)

𝛽 = 1 − 𝛼 (2.2)

18

This modification results in an increased sensitivity for the slower motions, since
now the alpha value determines the alteration speed of the reference image. Finding
the right value is vital for the correct operation and it is highly dependent on the
actual fps. The flowchart of the whole algorithm can be found in Fig. 2.4.

Fig. 2.4: Flowchart of motion detection

19

2.2.2 Object detecting algorithm

Motion detecting methods provide information about motions taking place in the
video footage, but they return no information about the features of the moving
object itself. The main part of this thesis deals with the problems and solutions
of object detection otherwise object tracking. The aim of these algorithms is to
recognize the predetermined database of objects in the given video sequences, or
in this case, to apply it on a real-time camera feed. In the case of a surveillance
systems, the detected objects are often faces of individuals appearing on the screen
or license plates of the passing cars. In fact, the detected object can be almost
anything and is only limited by the user’s needs.

Object detection using Haar cascades

The first algorithm for object detection included an applicated cascade of simple
classifiers. To detect the specific object in images, the first step is to learn its
features. However, working only with the intensity values of RGB pictures made the
feature calculation computationally expensive. As a result in 2001, Viola and Jones
developed a framework using the Haar-like features. They learned that feature based
classifiers learn easier from a finite quantity of data and they operate much faster
than pixel based ones [7]. The Haar features can be obtained by monitoring adjacent
rectangular areas in a detection window and summing up the pixel intensities in
each region. Then differences are calculated from the intensity sums, which are
used to categorize the subsections of the image. These rectangle features seems to
be primitive comparing to steerable feature filters, but their efficiency and speed are
compensating the deficiencies.

Fig. 2.5: The features selected by AdaBoost [8]

20

The first problem is, that the 24 x 24 pixel base resolution of these sub-windows
return an exhaustive amount of 180,000 rectangle features, however only a few of
these features can be combined to form an effective classifier. For this task, the
developers implemented a learning algorithm to their project called AdaBoost. In
the case of face detection, for which purpose this framework was originally devel-
oped, the learning algorithm selected 2 main features shown in Fig. 2.5. As last,
the classifiers are gathered into cascades. With this step, the algorithm achieves
increased detection performance with less computation time. A series of classifier
are applied to the sub-windows starting with the most simple ones, and a positive
result from these triggers the next more complex classifiers. The decision tree of the
process can be seen in Fig. 2.6. Further information and test results are available
in the literature [8].

Fig. 2.6: Depiction of the cascade classifiers [8]

21

Object detection using local binary patterns

The discovery of Local Binary Patterns allowed a more modern approach to the field
of object detection. Compared to the Haar cascade based algorithm, it scans the
input image more faster and requires less time to train a working classifier, while
the main idea remains the same. The algorithm categorizes the pixels of an image
by applying threshold function to them in a 3 x 3 sub-window with a center value.
This step is applied to each pixel of an image and the results are saved as 8 bit
binary strings or decimal values containing the LBP features. The approach of the
LBP operator is shown on Fig. 2.7.

Fig. 2.7: Approach of Local Binary Patterns [9]

The method’s scantiness manifests in the features captured in the small 3 x 3
area. These sub-windows cannot capture larger scale structures which may contain
the dominant features of the detected object. To overcome this obstacle, a new
representation was proposed by a group of Chinese engineers called Multi-scale Block
Local Binary Patters (MS-LBP). The basis remains the same so each pixel is labeled
and thresholded in the 3 x 3 sub-window with a center value considering the results
in a binary string. The histogram of these labels are then further used as a texture
descriptor. In each sub-region an average sum of image intensity is computed and
another threshold function is applied to them by the center block, resulting in a
MS-LBP process. The output images are influenced by the scale of chosen blocks:
images filtered with small scale values represents more details and micro patterns,
while big scale values reduce pixel noise and focuses more on the dominant features
of the object. In Fig. 2.8, two faces are filtered with different scales. The (a) is the
original gray-scale image, (b) is filtered by 3 x 3 MB-LBP, (c) is filtered by 9 x 9
MB-LBP and (d) is filtered by 15 x 15 MB-LBP. [9]

22

Fig. 2.8: MB-LBP application to random faces [9]

This new method is more robust then its predecessor, encoding not only micro-
structures located in the default 9 pixel area but also macro-structures of image
patterns, resulting in a more complex image representation model. The next task is
to construct a classifier from the gathered features. Due to their huge amount, these
measures contain much redundant information which have to be removed. For this
purpose a Gentle AdaBoost learning algorithm is used to select the correct features
from the many [9].

2.2.3 Cascade classifier training

The OpenCV library offers predefined cascade classifiers for face, eyes or mouth
detection. However, if one requires a working classifier to detect other objects, the
classifier needs to be trained individually. Fortunately, the OpenCV library includes
the tools and functions to generate a custom cascade classifier based on Haar or LBP
features.

The training time of a Haar cascade classifier can take up to weeks, while an
LBP classifier for the same object can be trained in a few hours. Due to this reason
an LBP cascade classifier will be trained for the detection of hands. To begin the
training, a few other functions are needed beside the available OpenCV applica-
tions. Fortunately there is an open source directory available on GitHub including
everything what is required for the training process [10]. It can be download by the
following command in the terminal:
cd ~/
g i t c l one https : // github . com/mrnugget/
opencv−haar−c l a s s i f i e r −t r a i n i n g

23

The training process itself requires a set of positive sample images including the
detected object, and a set of negative sample images containing possibly everything
except it. According to researches [11], the amount of positive and negative samples
may vary around a few thousand, however to acquire such a large amount of pictures
about and without the desired object is hard to accomplish.

The negative samples, also called background images, are taken from random
pictures omitting the detected object. Obtaining the sufficient amount of them is
a time-consuming process. One way is to gather them manually or one can extract
frames from video files and save them as separate images. In this project, the amount
of negative images is 800. Once the required number is reached, the images have
to be copied to the ./negative_images directory of the cloned repository and run
the command below, which creates a text file including the names of all negative
images. [10]
cd ~/
f i nd . / negative_images −iname " ∗ . jpg " > nega t i v e s . txt

For a good classifier, a relatively large amount of positive samples is required.
However, for this custom made classifier 100 pictures will be satisfactory including
the hands of 5 people in different position and with different backgrounds. A set
of the used positive samples are displayed in Fig. 2.9. After collecting them, the
images are copied to the ./positive_images directory and another text file is
created containing the names of all positive images.

Fig. 2.9: Set of positive images

cd ~/
f i nd . / pos i t ive_images −iname " ∗ . jpg " > p o s i t i v e s . txt

24

A specific OpenCV function, the opencv_createsamples is used to significantly
increase the number of positive samples. This function generates a large amount
of samples from the existing images by applying transformations and distortions
to them. A short script written by Naotoshi Seo combines each positive image
with a random negative image and runs them through the opencv_createsamples
function, obtaining another 1900 positive samples [11]. The process results in a
*.vec file used for the cascade training. This method is time optimal and does not
need a lot of preparations, but will never be as effective as a classifier trained with
real positive sample images.
pe r l bin / create sample s . p l
p o s i t i v e s . txt nega t i v e s . txt samples 2000
opencv_createsamples −bgco lo r 0 −bgthresh 0 −maxxangle 1 . 1
−maxyangle 1 . 1 −maxzangle 0 . 5 −maxidev 40 −w 40 −h 40 "

The Perl script above returns 100 *.vec files to the Samples directory, which
have to be merged to one file. To do so, a text document is created including the
collected file names and the mergevec.py Python script merges the *.vec files.
cd ~/
f i nd . / samples −iname ’ ∗ . vec ’ > samples . txt
python t o o l s /mergevec . py −v samples −o samples . vec

The resulting samples.vec can now be used to train the classifier. The ap-
plication for the cascade training is the newest version of opencv_traincascade
greatest compatible with the latest OpenCV version. The role of main parameters
are described in this section, a detailed description about the other parameters and
settings can be found in the official OpenCV site [12]. The number of the negative
and positive samples are specified by -nemNeg and numPos, the -w and -h gives
the sample size and the -precalcValBufSize and -precalcIdxBufSize determine
the memory size used for the training process. The combined value of the last
two parameters may not be larger than the available RAM of the computer. The
-numStages parameter gives the iteration number the training process. Small num-
ber produce a weak classifier causing a lot of false positive matches, while a large
number causes the classifier to end up over-trained and will be too selective. [11]
opencv_traincascade −data c l a s s i f i e r −vec samples . vec
−bg nega t i v e s . txt −numStages 30 −minHitRate 0 .995
−maxFalseAlarmRate 0 .5 −numPos 1800 −numNeg 1000
−w 40 −h 40 −preca l cVa lBufS i z e 256 −preca l c IdxBu fS i z e 256

−featureType LBP

The length of the whole training sequence depends on the number of samples
and stages. With the previous parameters on a Raspberry Pi 3 B model, the whole
process took 2 hours and 50 minutes.

25

3 REALIZATION OF THE SYSTEM
In this chapter one can find the described blocks located in the chain of image
procession required for the concerned surveillance system. The individual sections
include parts of source codes, pseudo-codes and flowcharts for better understanding.
The flow chart of the whole chain is shown in Fig. 3.1.

Fig. 3.1: Simplified flow chart of the surveillance firmware

26

3.1 Capturing frames
To allow the Raspberry Pi to "see" the surveyed area, an external web-camera is
connected to the device via USB port. The access to the camera is realized through
OpenCV functions, allowing to capture images into a video stream or as individuals.
Since the following algorithms are working with static scenes, the actual images
about the area are saved as separate frames. The source code parts included in this
section are forming the basis of the whole algorithm.

First, an initialization is required for the camera module. The VideoCapture
function opens the default camera, then the correct resolution is set beside the
wanted frame per second ratio. The used web camera supports a maximum resolu-
tion of 640 x 480 pixels and a capture speed of 30 frames per seconds.
#de f i n e frame_width 640 ;
#de f i n e frame_width 480 ;
#de f i n e fp s 30 ;

cv : : VideoCapture cap (0) ;
cap . s e t (CV_CAP_PROP_FRAME_WIDTH, frame_width) ;
cap . s e t (CV_CAP_PROP_FRAME_HEIGHT, frame_height) ;
cap . s e t (CV_CAP_PROP_FPS, fp s) ;

The OpenCV among other features provides new data types like Matrices and
Scalars, serving as containers for the captured images. A matrix consists of a 2
dimensional field of scalar variables, containing the intensity values of the corre-
sponding pixels. The length of these scalar variables are depending on the video file
format, although, that how many channels are the format consists of. For example
an RGB image has 4 channels (Red, Green, Blue and Brightness), so the correspond-
ing Scalar has 4 assigned numbers. For the visualization of captured and processed
images, a new window has to be initialized. As a default setting, the VideoCapture
function returns the frames in RGB format. The information about the data types
were drawn from the literature [13].
cv : : namedWindow(" Captured␣ frames " , CV_WINDOW_AUTOSIZE) ;

The core of this embedded application is the infinite loop. In each loop, the
captured image is saved to the concerned matrix and the visualization window is
refreshed according to it. An additional function is called for adding the actual date
and time to the upper left corner of the image. The loop persists until a required
key is pressed.

27

f o r (; ;)
{

Mat cameraFeed ;
cap >> cameraFeed ;

//body o f the program

addDateTime ;
imshow (" Captured␣ frames " , cameraFeed) ;
i f (cv : : waitKey (10) >= 0)
{

cout << " . . . e x i t i n g " << endl ;
break ;

}
}

The addDateTime function does no more, than gathers the date and time from
the system clock. This information is then added to the image with the putText
function from the OpenCV libraries. A point have to be determined, giving the
initial x and y coordinates for the putText function.
void addDateTime (Mat &frame)
{

time_t rawtime ;
s t r u c t tm ∗ t ime in f o ;
char bu f f e r [8 0] ;

time(&rawtime) ;
t ime in f o = l o c a l t ime (&rawtime) ;

s t r f t ime (bu f f e r , 80 , "%d−%m−%y␣%I :%M:%S" , t ime in f o) ;
s td : : s t r i n g s t r (bu f f e r) ;

Point org ;
org . x = 30 ;
org . y = 30 ;
putText (frame , s t r , org , 1 , 1 , Sca l a r (0 , 0 , 255) , 1 , 7) ;
//putText (frame , s t r i ng , Point , Font Type , Scale ,
// Color Red , Thickness , l ineType)

}

28

3.2 Detecting motion
The most fundamental function of this surveillance system is the detection of basic
motions and determining their location in the video footage. The functions applied
to the image sequence are drawn from the OpenCV library, their detailed description
can be found on the official website [14].
cv : : Mat motionDetect (cv : : Mat &currImg , cv : : Mat &prevImg)
{

cv : : Mat thresImg ;
a b s d i f f (currImg , prevImg , threshImg) ;
th r e sho ld (thresImg , thresImg , 20 , 255 , 3) ;
erode (thresImg , thresImg , Mat () , Point (−1 ,−1) , 1) ;
d i l a t e (thresImg , thresImg , Mat () , Point (−1 ,−1) , 1) ;

r e turn thresImg ;
}

The described pattern works only with the intensity values of the pixels and
discards the colors. Due to this, the input image is transformed into gray-scale
format to remove the color channels and to reduce the file size of the processed
images. The cvtColor serves the desired purpose, performing the image trans-
formation based on the stated conversion code. To transform RGB to gray-scale
format, the CV_BGR2GRAY code is selected, merging the color channels into one Y
channel according to the equation below:

𝑌 = 0.299 · 𝑅 + 0.587 · 𝐺 + 0.114 · 𝐵 (3.1)

Before the algorithm could determine motion, a reference image has to be saved
to the refImg variable with the specific function. The image is copied only in the
first loop and further will be influenced by the actual image with the addWeighted
function, what simply blends the two images with weighted values. Considering
subjective experiences, the alpha parameter is set to 0.15.
cvtColor (cameraFeed , grayImg , CV_BGR2GRAY) ;
i f (re f Img . empty () == true)
{

grayImg . copyTo (ref Img) ;
}
addWeighted (grayImg , alpha , refImg , beta , 0 . 0 , prevImg)

29

3.2.1 Absolute difference

The next step is the background subtraction from the image, removing everything
what is not connected to the moving object. The absdiff function calculates the
absolute difference between two arrays, in this case between the pixel values of the
given images.

𝑑𝑠𝑡 = 𝑠𝑎𝑡𝑢𝑟𝑎𝑡𝑒(|𝑠𝑟𝑐1 − 𝑠𝑟𝑐2|) (3.2)

The output array of pixels will contain near to zero values where the two images are
identical and non-zero valued pixels in the area of motion.
a b s d i f f (currImg , prevImg , thresImg) ;

3.2.2 Thresholding

The values of these pixels may vary in a range from 0 to 255 according to the
difference between the two arrays. For separating the region of interest from the
rest of the image, a basic segmentation method, the threshold function is used.
This function performs a comparison between each pixel’s intensity value and a
predetermined threshold limit, setting the intensity value of the corresponding pixel
to maximum or minimum depending on the threshold type. The OpenCV library
supports 5 type of threshold operations including binary thresholding what is used
in this paper. The function can be expressed by the equation 3.3, which says that if
the pixel intensity value is larger than the threshold limit, then it is set to maximum
(white color), otherwise it is going to be set to black with a pixel intensity value of
0.

𝑑𝑠𝑡(𝑥, 𝑦) =

⎧⎨⎩𝑚𝑎𝑥𝑣𝑎𝑙 𝑖𝑓 𝑠𝑟𝑐(𝑥, 𝑦) > 𝑡ℎ𝑟𝑒𝑠ℎ)
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

⎫⎬⎭ (3.3)

The threshold function has the following input arguments:
• src - source image
• dst - destination image
• threshold_value - threshold limit value set to 20 by subjective experience
• max_Binary_value - the value set by the positive result of binary threshold
• threshold_type - for binary threshold the value is 0

th r e sho ld (thresImg , thresImg , 20 , 255 , 0) ;

30

3.2.3 Erode and dilate

The acquired image contains many false non-zero pixel values caused by pixel noise.
To remove these errors, additional morphological operations are applied to the pro-
cessed image. These functions are the erode and dilate used for noise removal and
for the isolation of individual elements or to join disparate ones in the image.

The erode function is applied first to the corresponding image. This function
performs a convolution of a kernel image and the input image. The kernel image
is scanned over the input image computing the minimal pixel value overlapped by
the kernel. The intensity value of the pixel located in the kernel image center is
then replaced with the minimal value. This causes the white regions of the image
to shrink and get thinner, removing the unwanted noise from the image.
erode (thresImg , thresImg , Mat () , Point (−1,−1) , 1) ;
d i l a t e (thresImg , thresImg , Mat () , Point (−1 ,−1) , 1) ;

Dilating is the twin process of eroding, while it does exactly the opposite thing.
The intensity values of the center pixels are replaced with the maximum value in
the stated region, making the white region of the image larger and thicker thus
compensating the area lost during the erosion and smoothing the contours.

The two functions have the same input argument:
• src - source image
• dst - destination image
• kernel - structuring element for the process, in the case of Mat(), a 3 x 3

rectangular structure is used
• anchor_point - the element center is set as default or by the (-1, -1) value
• iteration - the number of iteration is 1

The computational time of these operations is relatively long, therefor it can be
shortened by reducing their iteration number.

The resulting image now contains the information about the occurred motion.
The background image is usually permanent and one can assume that it does not
contain any objects of interest.

31

3.3 Selecting region of interest
The computational time required for the object detecting algorithm is directly pro-
portional to the area of the scanned image. On this basis the reduced amount of
scanned pixels decrease the required time for the detection process, increasing the
frame per second ratio of the whole system. Due to this, only those image sections
are scanned by object detection, where a motion has occurred.

The aim of the extractROI function described with the pseudo-code Alg. 3.1,
where ROI stands for region of interest, is to select and crop the interested part from
the original image by evaluating the threshold image received from the motionDetect
function. In the first place, findContours determines the contours of the present
blobs, saving their coordinates in the contours vector. As the next step, a rectangle
is calculated around each blob and their area is determined with the help of con-
tour moments. The rectangles are then sorted to filter out too small ones probably
caused by pixel errors and too big rectangles which may be caused by changing light
conditions or an unexpected motion of the camera. If a rectangle meets the specified
requirements, it’s attributes are saved to a predefined structure named rectan.
s t r u c t Rectang les {

Point pointPos [1 0 0] ;
Point t l ;
Point br ;
i n t pNumber ;
bool show ;
Mat img ;

} ;

A single moving object may consist of more blobs which are not connected. This
phenomena causes the algorithm to draw rectangles around each blob belonging to
the same object. To eliminate this problem, the rectangles located really close to
each other or overlap, are merged together. To accomplish such thing, each area
embraced by a rectangle is sampled and is further compared with the samples of
other rectangles. The pseudo-code of the algorithm can be found in Alg. 3.2.

The sampling process works the following way. If a pixel is located within the
rectangle and their x and y coordinate is dividable with sampl_freq without re-
minder value, the coordinates are saved as samples. These acquired points located
in the given rectangles are then compared with other rectangle samples. If a sam-
pled coordinate belongs to more than one rectangle, it means the area embraced by
the rectangles overlap, and are further merged together.

32

Algorithm 3.1: Extracting region of interest
1 i n i t i a l i z e rect_counter f o r 0 ;
2 i n i t i a l i z e MIN_BLOB_AREA f o r 50∗50 ;
3 i n i t i a l i z e MAX_BLOB_AREA f o r frame_width∗ frame_height / 1 . 5 ;
4 i n i t i a l i z e vec to r f o r contours ;
5

6 f i n d contours in matrix MD_img
7 i n i t i a l i z e vec to r o f r e c t a n g l e s boundRect f o r the s i z e o f contours
8

9 f o r i 0 to s i z e o f contours
10 compute r e c t a n g l e around contours [i] and save to boundRect [i]
11 compute moments o f contours [i]
12 compute area o f r e c t a n g l e
13 i f area > MIN_BLOB_AREA and area < MAX_BLOB_AREA
14 o b j e c t i s found
15 save top− l e f t and bottom−r i g h t po int o f the rec tan [rect_counter]
16 s e t rec tan [rect_counter] . show to true value
17

18 sample the area o f the r e c t a n g l e
19 f o r r rec tan top− l e f t po int y to
20 bottom−r i g h t po int y coord ina te
21 increment sample_freq
22 f o r c rec tan top− l e f t po int x to
23 bottom−r i g h t po int x coord ina te
24 increment sample_freq
25 r ec tan [rect_counter] . pointPos [p_counter] . y i s r
26 r ec tan [rect_counter] . pointPos [p_counter] . x i s c
27 increment p_counter
28 endfor
29 endfor
30 increment rect_counter
31 e l se
32 o b j e c t i s not found
33 e n d i f

The next part of this function merges together the rectangles which share a
common area, or those closer to each other than the half of sampl_freq value.
Sampled rectangles also have an assigned attribute called show with true default
value. The function gradually compares the sample values and in the case of a
match the corresponding rectangles are merged, modifying the top-left and bottom-
right point of the first one to cover both areas. Further, the second rectangle is
disabled by setting their show attribute to false value thus telling the algorithm to
discard it.

Algorithm 3.2: Algorithm for rectangle merging
1 i n i t i a l i z e over lap to t rue
2 while over i s t rue or over lap counter < 10
3 f o r a 0 to rect_counter
4 f o r b a+1 to rect_counte
5 i f a != b and rectan [a] and r e c t a [b] show i s t rue
6 f o r c 0 to number o f samples o f r ec tan [a]
7 f o r d 0 to number o f samples o f r ec tan [b]
8 i f r ec tan [a] c sample c o o r d i n a t e s are equal to
9 r ec tan [b] d sample c o o r d i n a t e s

33

10

11 over lap i s t rue
12 f i n d the l e s s e r x coord inate f o r top− l e f t po int
13 f i n d the l e s s e r y coord inate f o r top− l e f t po int
14 f i n d the b i g g e r x coord ina te f o r bottom−r i g h t po int
15 f i n d the b i g g e r y coord ina te f o r bottom−r i g h t po int
16

17 resample the area o f the r e c t a n g l e
18 s e t rec tan [b] show parameter to f a l s e
19 e n d i f
20 endfor
21 endfor
22 e n d i f
23 endfor
24 endfor
25 endwhi le
26

27 f o r a 0 to rect_counter
28 i f r ec tan [a] show parameter i s t rue
29 draw r e c t a n g l e around area
30 save the image o f r e c t a n g l e
31 e n d i f
32 endfor

The effect of the rectangle merge process is shown in Fig. 3.2, where the left
picture represent the evaluated threshold image, the center picture represents the
display of detected motions without merging the rectangles and the right picture
shows the image with merged rectangles.

Fig. 3.2: The effect of rectangle merge

The result of this function is a set of images representing individual moving
objects in the video sequence. These images are also used as input data for the

34

object detecting algorithm instead the whole image from the camera feed, thus
decreasing the region of interest. To highlight these motions for the users, also a
red rectangle is drawn around each of them. Further test results of the algorithm
are shown in the Experimental results chapter.

3.4 Object detection
In this paper, LBP based Cascade Classifiers are utilized for the detection of frontal
face and hands. The OpenCV library already contains ready to work cascade clas-
sifiers, inter alia, for the detection of frontal faces, eyes and mouth. Additionally
a custom classifier is trained and included to the project for the detection of open
hands and palms. The behavior of this classifier is described further in this paper.

The core source code for the object detecting function was drawn from an
OpenCV tutorial available on the official OpenCV website [15]. Further in this
section, the source code of face detection is thoroughly described.

At first, the location of the XML files have to be saved as strings to the cor-
responding global variables. These files are then loaded with the loadCascades
function, returning an error message in the case of missing or wrong files.
St r ing face_cascade_name =
" Cascades / lbpca s cade_f ron ta l f a c e . xml " ;
Ca s c ad eC l a s s i f i e r face_cascade ;
i n t loadCascades (void)
{

i f (! face_cascade . load (face_cascade_name))
{

cout << " Error ␣ load ing ␣ f a c e ␣ cascade " << endl ;
r e turn −1;

}
}

Since the execution time of the cascade classifier based detection process is highly
dependent on the size of the scanned image and the minimal detection window
size of the algorithm, the input image is scaled down with an integer value. The
command performing the object detection based on the loaded classifier, is the
detectMultiScale function. It scans the input image for the desired object, which
in the case of successful detection are then returned as a vector of rectangles defined
as faces.

35

bool f aceDetec t (cv : : Mat inp_img , cv : : Point st_pt ,
cv : : Point &p_tl , cv : : Point &p_br)

{
const i n t s c a l e = 3 ;
cv : : Mat gray_img ;
// trans form input image to gray−s c a l e format
cvtColor (inp_img , gray_img , CV_BGR2GRAY) ;
// r e s i z e input image
cv : : Mat resized_gray_img (

cvRound (gray_img . rows / s c a l e) ,
cvRound (gray_img . c o l s / s c a l e) ,
CV_8UC1) ;

cv : : r e s i z e (gray_img , resized_gray_img ,
resized_gray_img . s i z e ()) ;

s td : : vector<Rect> f a c e s ;
// scan input image f o r f a c e s
face_cascade . de t e c tMu l t iS ca l e (resized_gray_img ,

f ace s , 1 . 1 , 2 ,
0 , S i z e (2 0 , 2 0)) ;

f o r (s i z e_t i = 0 ; i < f a c e s . s i z e () ; i++)
{
// obta in top− l e f t and bottom−r i g h t po int o f f a c e

p_tl . x = st_pt . x + f a c e s [i] . x∗ s c a l e ;
p_tl . y = st_pt . y + f a c e s [i] . y∗ s c a l e ;
p_br . x = st_pt . x + (f a c e s [i] . x + f a c e s [i] . width)∗ s c a l e ;
p_br . y = st_pt . y + (f a c e s [i] . y + f a c e s [i] . he ight)∗ s c a l e ;

}
i f (f a c e s . s i z e () > 0)
{

cout << " Face␣ detec ted . . . " << endl ;
r e turn true ;

}
re turn f a l s e ;

}

Once the detection is complete, the algorithm checks the number of faces. If
it’s size is larger than 0, that means the detection was successful and at least one
face was detected in the image. With the help of the st_pt, what determines the
top-left point of the ROI window in the base image, the function also returns the
position of the detected faces. The coordinates are then used in the main function
to draw rectangle around the face, showing their actual position. Fig. 3.3 shows an
example image for a detected face.

If the number of detected faces reach at least one, the detectFace function
returns a true value and leaves a message in the terminal. One can gain more
information about the described function on the website of the stated tutorial.

36

Fig. 3.3: Example for detected frontal face

3.5 Face detection features
As it was mentioned, the function for object detection requires a relatively long time
for scanning the input image, keeping the whole algorithm busy. The extractROI
function’s purpose is to limit the attention of the object detecting algorithm to
regions of interest based on the ongoing motions, reducing the overall area size what
needs to be scanned. As a result, the algorithm is not searching for faces until
something moves before the camera. This kind of solution is effective in terms of
computational time, however it may not be suitable for every situation. For example,
a man is approaching towards the camera and stops a few meters before it. The
system could detect his face in motion, but since the person is not moving, the
algorithm stops and misses the potential to capture the closest images about him.

The problem is solved by the following way. The regions of interest selected by
the extractROI function are one by one scanned for faces. An additional structure
is defined, where the information about the detected faces are saved to, including
their position in the actual image. If a new face is found, the algorithm searches for
a free slot in the structure and saves the required information about it. This process
is thoroughly described in Alg. 3.3

Algorithm 3.3: Detect faces in extracted ROI
1 f o r q to number o f r e c t a n g l e s
2 d e t e c t f a c e in a c t u a l r ec tan [q]
3 i f f a c e i s detec ted
4 i n i t i a l i z e over lap to f a l s e
5 while s l o t o f dFaces [o] i s not f r e e
6 increment o
7 endwhi le
8 sample the area o f r ec tan [q]
9

10 f o r t 0 to s i z e o f face_memory
11 i f s l o t o f dFaces [t] i s occupied
12 f o r c to number o f samples o f dFaces [q]

37

13 f o r d to number o f samples o f dFaces [q]
14 i f dFaces [t] c sample c o o r d i n a t e s are equal to
15 dFaces [t] d sample c o o r d i n a t e s
16 dFaces [o] s l o t i s not occupied
17 s e t over lap to t rue
18 e n d i f
19 endfor
20 endfor
21 e n d i f
22 endfor
23

24 i f over lap i s t rue
25 s e t dFaces [o] occupied parameter to t rue
26 s e t dFaces [o] top− l e f t po int to rec tan [q] top− l e f t po int
27 s e t dFaces [o] bottom−r i g h t to rec tan [q] bottom−r i g h t po int
28 copy image o f r e c t a n g l e to dFaces [o] img matrix
29 e n d i f
30 e n d i f
31 endfor

An additional part of the code Alg. 3.4 enables to track an appeared face contin-
uously after it is detected. The position of this face is loaded and the area is further
scanned in the next iteration of the infinite loop. This allows to observe the given
face regardless the person is moving or not. In the case if the face is found in the
next iteration too, the position of the corresponding face is refreshed and the loop
goes on until the face is present. When the mentioned face disappears, their slot in
the structure is released, allowing new face to occupy it.

Algorithm 3.4: Further detect face in the area of previously detected faces
1 f o r q to s i z e o f face_memory
2 i f dFaces [q] i s occupied
3 d e t e c t f a c e in the dFaces [q] img
4 i f f a c e i s detec ted
5 s e t dFaces [q] occupied parameter to t rue ;
6 r e f r e s h the top− l e f t po int o f dFaces [q] by the detec ted f a c e
7 r e f r e s h the bottom−r i g h t po int o f dFaces [q] by the detec ted f a c e
8 resample the area o f dFaces [q]
9 copy image o f the detec ted f a c e to dFaces [q] img matrix

10 e l se
11 s e t dFaces [q] occupied parameter to f a l s e
12 resample the area o f dFaces [q] with z e r o s
13 e n d i f
14 e n d i f
15 endfor

After a new face is detected, their position is compared with other faces listed in
the structure. If the position of a new face is identical or overlap with an already
enlisted face, that means they are identical and the found one is already observed
by the algorithm. In every other case the newly detected face belongs to a new
person, creating an individual profile in the structure and saving the information
about them.

38

Algorithm 3.5: Show faces
1 f o r q to s i z e face_memory
2 i f dFaces [q] i s occupied
3 draw r e c t a n g l e around f a c e
4 e n d i f
5 endfor

Alg. 3.5 includes a pseudo-code part, which is responsible to show the detected
faces on the screen, drawing rectangles around each of them.

3.6 Saving video sequence
To ignore the uneventful parts of the processed video, the Raspberry focuses only
on video sequences where a motion was detected. A detected motion triggers the
saving process introduced in Alg. 3.6, making a copy of the actual camera feed and
saving them as a video file. The video saving feature is active while an object is in
motion and persists 5 more seconds after the last motion was detected. The main
function includes a constructor initialized for the video writing with the attributes
of the output video file including its size, fps and video codec. The MJPG code stands
for a motion-jpeg codec.
video_name = " Videos /Motion0 . av i " ;
VideoWriter oVideo (video_name ,CV_FOURCC(’M’ , ’ J ’ , ’P ’ , ’G’) ,

fps , S i z e (frame_width , frame_height) , t rue) ;

To separate the video footage based on the time and date of detected motions,
new files are created for different events. However, to do not distinguish really
close events, a 5 seconds control period is added after each one. After the detected
motion ceases, the algorithm continues to save the captured images as a video file
for 5 more seconds. If a new motion is detected under this time period, the video
saving continues.

The control period is realized through the incrementation of save_counter vari-
able after the video saving begun. While the motion is still active, the variable is
reset in each loop. If the motion stops and the control period runs down, the actual
video is released and the next detected motion entails the creation of a new video
file.

Algorithm 3.6: Algorithm for video file saving
1 i f motion was detec ted
2 i f openNewFile i s t rue
3 generate new name f o r v ideo f i l e
4 c o n s t r u c t o r f o r new video f i l e
5 s e t openNewFile to f a l s e
6 e n d i f
7 s e t saveVid to t rue

39

8 s e t save_counter to 0
9 e n d i f

10 i f saveVid i s t rue
11 save_counter ++
12 add captured frame to video f i l e
13 i f save_counter > 5 times f p s
14 r e l e a s e v ideo f i l e
15 s e t saveVid to f a l s e
16 s e t openNewFile to t rue
17 s e t save_counter to zero
18 e n d i f
19 e n d i f

The videoNameGenerator() function’s only purpose is to create an individual
name for each video returning them to the main function.
void videoNameGenerator (&videoName)
{

char name_buffer [5 0] ;
s t a t i c char video_counter = 0 ;
s t r i n g format = " . av i " ;
video_counter++;
s p r i n t f (name_buffer , " Videos /Motion%d" , video_counter) ;
videoName = name_buffer + format ;

}

3.7 Remote access
This section deals with the design and realization of remote access to the embedded
surveillance system, which ensures a permanent insight to the actual events. This
kind of access allows the user to reach the system from any place where an internet
connection is available.

The remote access to the Raspberry Pi is realized by a web server installed on
the device. This server hosts a simple web page displaying the actual information,
allowing the users to browse and watch saved videos or take a look to the actual
events through a live stream.

The Apache 2 web server had been chosen to host the described web page. The
official Raspberry homepage [16] contains a detailed installation manual of the web
server and others tools like PHP and MySQL, which are also required for building
the web page. After the installation is complete, a default HTML file appears in the
following location:
/var /www/html/ index . html

40

3.7.1 Opening video files

The first feature of the web page is to play videos saved by the surveillance system,
which are captured in the case of detected motions. Since the OpenCV library
can save the files only in .avi format, the videos have to be converted into .mp4,
what is one of the formats supported by HTML. To accomplish such conversion,
FFmpeg [17] is installed on the device, which is a free software project specialized
for handling multimedia data. With the help of this program the conversion process
can be executed directly with a single terminal command.

The Raspbian Jessie operational system is based on Debian Linux version 8,
which not supports the installation of FFmpeg through a single terminal command.
Because of this, the program was installed on the Raspberry Pi following an instal-
lation tutorial [18]. The only change was made in the configuration part, where the
–enable-shared prefix has to be removed, because it caused the program to crash on.
. / c on f i gu r e −−enable−gpl −−enable−postproc −−enable−swsca l e

−−enable−a v f i l t e r −−enable−l ibmp3lame −−enable−l i b v o r b i s
−−enable−l i b t h e o r a −−enable−l i bx264 −−enable−l i b s p e ex
−−enable−pthreads −−enable−l i bopen jpeg −−enable−l i b f a a c
−−enable−nonf ree

The conversion tool is now installed and it has to be run each time a new video
file is saved by the surveillance application. The C++ source code part responsible
for saving the video files is completed with the following rows.
s t a t i c char captCounter=0;

s p r i n t f (command , " ffmpeg␣−y␣− i ␣Videos /Motion%d . av i ␣−pr e s e t
u l t r a f a s t ␣ ~ / . . / . . / var /www/html/ v ideos /Capture%d .mp4" ,
captCounter , captCounter) ;
captCounter++;

system (command) ;

This part runs the corresponding command in the terminal each time a new
video file is saved. The converted video file is at the same time moved to a new
folder, where the HTML file has access to it.

41

3.7.2 Listing video files

Separate events captured by the surveillance system are saved as individual video
sequences. The converted videos are moved to the var/www/html/videos directory
what has to be inspected to list it’s content on the web page. A short php script
developed with the help of PHP 5 tutorial available on [19] does all the work. The
function examines all existing files in the given directory, saving their name, file size
and the date of their last modification.
1 <?php
2 func t i on g e tF i l e L i s t ($d i r)
3 {
4 // array to hold re turn value
5 $ r e t v a l = array () ;
6 // open po in t e r to d i r e c t o r y and read l i s t o f f i l e s
7 $d = @dir ($d i r) or d i e (" g e tF i l e L i s t : ␣ Process ␣ f a i l e d ! ") ;
8 whi l e (f a l s e !== ($entry = $d−>read ())) {
9 // sk ip hidden f i l e s
10 i f ($entry [0] == " . ") cont inue ;
11 i f (i s_readab le (" $d i r $en t ry "))
12 {
13 $ r e t v a l [] = array
14 (
15 "name" => " $d i r$ent ry " ,
16 " s i z e " => f i l e s i z e (" $d i r $en t ry ") ,
17 " lastmod " => f i l emt ime (" $d i r$ ent ry ")
18) ;
19 }
20 }
21 $d−>c l o s e () ;
22
23 re turn $ r e t v a l ;
24 }
25 ?>

The information gathered about the video files are listed in a constructed table
among two images in the row. Clicking on these images calls a specific javascript
function depending on the clicked image. The event is either playing the selected
video file or to delete it from the directory and from the table.

42

1 <?php
2 $ d i r l i s t = g e tF i l e L i s t (" . / v ideos / ") ;
3 f o r each ($ d i r l i s t as $ f i l e)
4 {
5 i f (! preg_match (" /\ .mp4$/ " , $ f i l e [’name ’])) cont inue ;
6 echo "<tr>\n" ;
7 echo "<td><img␣ s r c=\"img/play . png \" ␣width=\"64\"
8 ␣␣␣␣ a l t =\"Image \" ␣ on c l i c k=\" p l ayF i l e (t h i s)\"></td>\n" ;
9 echo "<td>{ $ f i l e [’ name ’]}</ td>\n" ;
10 echo "<td>{ $ f i l e [’ s i z e ’]}</ td>\n" ;
11 echo "<td>" , date (’ r ’ , $ f i l e [’ lastmod ’]) , "</td>\n" ;
12 echo "<td><img␣ s r c=\"img/ d e l e t e . png \" ␣width=\"64\"
13 ␣␣␣␣ a l t =\"Image \" ␣ on c l i c k=\" d e l e t e F i l e (t h i s)\"></td>\n" ;
14 echo "</tr >\n" ;
15 }
16 ?>

The structure of the table can be seen on Fig. 3.4.

Fig. 3.4: Table structure showing directory content

43

3.7.3 Video player window

To play the selected video file on the web page, a window has to be constructed with
specific parameters. The dimensions of the window are the same as the video files
and the source of the video is set to zero by default. The figure showing the video
player window can be seen on Fig. 3.5
1 <video width=" 640 " he ight=" 480 " cont ro l s >
2 <source id=" videoSource " s r c=" " type=" video /mp4">
3 Your browser does not support the video tag .
4 </video>

Clicking on the correct image showing a play button located in the table calls
an event, changing the source of the video player. The javascript function simply
copies the video file name located in the table next to the image, and uses it as a
link to the video.
1 func t i on t e s t (element)
2 {
3 v i d e oT i t l e = $ (element) . parent () . next () [0] . innerText ;
4 $ (element) . next ()
5 $ ("#videoSource ") . a t t r (" s r c " , v i d e oT i t l e) ;
6 $ ("#divVideo ␣ video ") [0] . load () ;
7 }

Fig. 3.5: Window structure of video player

44

3.7.4 Live stream

Adding a live stream window to the web page would require additional space. A
window is created with the same dimensions as the video player, but with a different
identification name. Also a button is added above the window, what simply calls
a javascript function responsible to change the display attribute of the video player
window and the live stream window. This means pressing this button would hide
the element for video playing and show the element for live streaming, and another
press of the same button would exchange the effect. The window structure is shown
in Fig. 3.5
1 func t i on ObjToggle () {
2 var x = document . getElementById (’ videoDiv ’) ;
3 var y = document . getElementById (’ streamDIV ’) ;
4 i f (x . s t y l e . d i sp l ay === ’ none ’)
5 {
6 x . s t y l e . d i sp l ay = ’ block ’ ;
7 y . s t y l e . d i sp l ay = ’ none ’ ;
8 }
9 e l s e
10 {
11 x . s t y l e . d i sp l ay = ’ none ’ ;
12 y . s t y l e . d i sp l ay = ’ block ’ ;
13 }
14 }

The video sequences saved by the Raspberry Pi do not contain any audio chan-
nels. Since these video files are just arrays of captured frames, the live streaming
feature could be realized by saving the actual image to the HTML directory each
time a new frame is captured. The image is then displayed in the window, refreshing
it’s content when the image is overwritten. The javascript function responsible for
refreshing the image can be seen below:
1 func t i on i n i t ()
2 {
3 var canvas = document . getElementById (" canvas ") ;
4 var context = canvas . getContext (" 2d ") ;
5 img = new Image () ;
6 img . onload = func t i on ()
7 {
8 canvas . s e tAt t r i bu t e (" width " , img . width)
9 canvas . s e tAt t r i bu t e (" he ight " , img . he ight)
10 context . drawImage (th i s , 0 , 0) ;
11 } ;
12 r e f r e s h () ;
13 }

45

14
15 func t i on r e f r e s h ()
16 {
17 img . s r c = ur l + " ? t=" + new Date () . getTime () ;
18 setTimeout (" r e f r e s h () " , r e f r e s h I n t e r v a l) ;
19 }

3.7.5 System authentication

The Apache 2 web server can be used to restrict the access to sections of the site,
setting up a basic authentication process to prevent unauthorized users reach the
web page. This can be done as described in the following tutorial [20]. To authenti-
cate users, the web server requires a password file containing user names and their
assigned passwords. The file can be created with the next command in the terminal:
sudo htpasswd −c / e tc /apache2 / . htpasswd admin

After this command, the web server automatically asks to supply and confirm a
password for the specific user. As the next step, the apache configuration file has
to be modified and the password protection has to be added to the virtual host file.
The default virtual host file is then edited to ask for a password if a user tries to
reach the restricted directory.
sudo nano / e tc /apache2/ s i t e s −enabled/000− de f au l t . conf

The virtual host file has the following content after editing:
<Virtua lHost ∗:80>

ServerAdmin webmaster@localhost
DocumentRoot /var /www/html
ErrorLog ${APACHE_LOG_DIR}/ e r r o r . l og
CustomLog ${APACHE_LOG_DIR}/ ac c e s s . l og combined

<Direc tory " /var /www/html ">
AuthType Bas ic
AuthName " Re s t r i c t ed ␣Content "
AuthUserFile / e t c /apache2 / . htpasswd
Require va l id−user

</Directory>
</VirtualHost>

Once the file is saved and closed, the apache server has to be restarted. With the
next start-up the directory is password protected.
sudo s e r v i c e apache2 r e s t a r t

46

4 EXPERIMENTAL RESULTS

4.1 Motion detection

4.1.1 Testing of rectangle merge

The following section gives an insight to the behaviour of the used motion detection
algorithm and it’s features. The functions are applied to several video surveillance
recording, highlighting the indicated motions in them and showing the difference
between the algorithm with and without the rectangle merge feature. The video
examples include moving people in a metro station, passing cars on a street and
customers at market checkout [21] [22].

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Fig. 4.1: Motion detection: market checkout

47

Since the thresholded image of a moving object can consists of more blobs, the
ROI selecting algorithm will sense them as individual objects, splitting them into
more parts. This effect is significant on close objects, because the camera can
perceive more details about them. Complex objects with stronger contours cause
the threshold function to return more blobs.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Fig. 4.2: Motion detection: passing cars on a street

48

This feature is corrected with an additional function, what merges together rect-
angles with common areas. The results are shown in the following figures. The left
image in Fig. 4.1, Fig. 4.2 and Fig. 4.3 always show the threshold image from
the motion detection algorithm, the center image shows the detected motions with
rectangle merge and the right image shows the detected motions without the feature.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Fig. 4.3: Motion detection: metro station

49

4.2 Face detection

4.2.1 Comparison of two type of cascades

To acquire more experience in the field of object detection, the section also contains
the comparison of two cascade classifiers: one with Haar features and one with local
binary patterns. The OpenCV libraries include both classifiers for the detection
of faces, which are compared in terms of computational time required for scanning
an input image. It also contains an experiment testing the effectiveness of face
detection based on the position and complexity of one face. Table 4.1 contains the
computational times used by the detectMultiScale function for scanning images
with given sizes.

Tab. 4.1: Computational time of used cascades

Resolution 640 x 480 Based on ROI
Comp. Time min max avg min max avg

[milliseconds]
Haar classifier 91 140 115.5 1.5 33 17.3
LBP clasifier 20 48 34 0.3 9 4.7

Based on the measured results, the object detection algorithm using LBP cascade
classifiers is 3 times faster than the Haar features based one.

50

4.2.2 Effectiveness of frontal face detection

Considering the results from the previous measurement, the LBP classifier is selected
and further observed. In the next step, the effectiveness of the classifier is tested.
A given face is tilted to several position while the result from the classifier is observed.
The result images are shown in Fig. 4.4.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 4.4: Results of LBP face detection on average face

51

The same procedure is repeated with adding new components to the same face,
making it more complex and difficult to detect. These modifications are including
facial hair, glasses (Fig. 4.5), a cap or all of them (Fig. 4.6).

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 4.5: Results of LBP face detection on face with glasses

52

In the case a person is wearing glasses, the results show that the detection returns
a negative value, if the angle between the face and the camera is larger than 45 °.
The same rule applies if a person wears a cap, however, the detector shows better
results if the person’s head is tilted up or down. If one is wearing both glasses and a
cap, the algorithm detects the person’s face only if he looks straight to the camera.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 4.6: Results of LBP face detection on face with cap(a-d) and glasses(e-i)

53

4.3 Hand detection
This section deals with the testing of custom trained classifier for open hand and
palm detection. The information about the training process can be found in the
section Cascade classifier training. The amount of original positive samples
used for the training process was relatively small, including only 100 images of
open hands in different position. The number of positive samples was artificially
increased, however, using these kind of positive samples resulted in a classifier with
lesser quality. This means it returns false positive results in the area of complex
background, or return negative result if the color of the detected hand and the
background is similar. The testing database includes a set of images about a given
hand tilted to several angles in various distances.

(a) (b) (c)

(d) (e) (f)

Fig. 4.7: Results of LBP hand detection

Obtaining at least 2 000 - 3 000 real positive samples about open hands would
significantly increase the quality of the classifier. Such hand detector could be used
for example in a system which could recognize the hand gestures of the sign language.
An open hand shown to the camera would act as an initialization gesture, locating
the position of the observed hand.

54

4.4 Execution time of used algorithms
This section includes a measurement of the required computational time of used al-
gorithms and functions on the Raspberry Pi 3 B. The used algorithms for motion and
object detection were originally designed to work effectively on personal computers
with higher computational power than mini-computers like Raspberry Pi. Because
of this, the project was also dealing with the optimization of these algorithms and
functions. Table 4.2 includes the measured execution time of the listed algorithms,
functions and program parts, showing the slowest and fastest parts of the system,
also the overall FPS.

Tab. 4.2: Computational time of program parts in ms

Computation time in ms min avg max
Image capture + conversion to grayscale 5 8 13
Motion detection 20 25 30
ROI selection and extraction 3 6 10
Face detection depending on the area of ROI 3 15 30
Video saving 20 30 40
Hand detection 30 40 60
Sum without HD 51 84 123
Overall FPS 8 12 16

The Raspberry Pi 3 B processes an average of 10 frames per second when all
functions are active including the hand detection. Deactivating additional features
like hand or face detection further increases the speed of the system to a maximum
of 15 FPS, enabling only features responsible for motion detection and video saving.
Increasing the number of detected objects in parallel would further slow down the
system, with 2-3 FPS for each classifier.

55

5 CONCLUSION
This master thesis was dealing with with the design and realization of an embedded
surveillance system for in-door usage. The system was optimized to work effectively
on the Raspberry Pi 3 on-board mini-computer, including features and functions
commonly used in modern camera systems like motion and object detection, and
also recording video files in the case of a detect events.

The project includes a self developed source code for a new approach to the
frame difference based detection method. Since the basic method separates the
detected objects in motion into more parts due to the problem described in section
Selecting region of interest, the extracted regions of interest could not serve
as input images for the object detecting algorithm. The newly added algorithm
merged together these parts belonging to the same object, making possible to extract
these image parts and feed them to object detecting algorithm. With this method,
the area scanned by face detection could be shrinked into these regions of interest,
instead of the whole picture from the camera feed, thus reducing the execution time
and increasing the speed of the system.

On top of the assignment, the thesis also describes how to train a classifier for
the detection of any desired object. In this case, the tracked objects were hands and
palms. The purpose of this custom trained classifier was experimental, however it
could be used as basis for a system recognizing hand gestures of the sign language.

Because the video procession requires relatively lot of computation power, one of
the hardest task was to optimize the system to work with a proper frame per second
ratio on the Raspberry Pi. The system in it’s final state can process 12 frames per
second when all functions are active except the hand detection, the execution time
required for the individual features and function are listed in Tab. 4.2.

The remote access enables the user to edit and browse among saved video files
and to take a look at the actual events seen by the Raspberry Pi. The web page
which makes possible the above mentioned function can be reached only within local
host.

The designed system could be used as a compact surveillance system for home
usage. The camera installed above an entrance could warn the residents if some-
one was coming. With additional effort the system could be trained to recognize
individual faces of the users allowing them access to the house automatically.

56

BIBLIOGRAPHY
[1] SOMHORST, Maarten. Multi-camera video surveillance system Master’s the-

sis [online]. 2012 [cit. 8.10.2016] Available from URL: <http://www.kbs.twi.
tudelft.nl/docs/MSc/2012/Somhorst/thesis.pdf>.

[2] SZELISKI, Richard. Computer Vision: Algorithms and Applications Electronic
version, 2010 Springer Available from URL: <https://szeliski.org/Book/>.

[3] LAGANIERE, Robert. OpenCV 2 Computer Vision Application Programming
Cookbook. Published by: Packt Publishing Ltd. May 2011, 287 p, ISBN 978-1-
849513-24-1

[4] Open Source Computer Vision. [online]. 2006 [cit. 11.10.2016] Available from
URL: <https://www.opencv.org/>.

[5] SINGALA, Nishu. Motion Detection Based on Frame Difference Method In-
ternational Journal of Information and Computation Technology 2014 [on-
line]. [cit. 20.11.2016] Available from URL: <http://www.ripublication.
com/irph/ijict_spl/ijictv4n15spl_10.pdf>.

[6] RASPBERRY PI FOUNDATION. [online]. 2016 [cit. 10.10.2016] Available
from URL: <https://www.raspberry.org/>.

[7] Haar-like features Wikipedia article [cit. 1.11.2016] Available from URL:
<https://en.wikipedia.org/wiki/Haar-like_features/>.

[8] VIOLA, Paul and JONES, Michael. Rapid Object Detection using a Boosted
Cascade of Simple Features Accepted Conference on Computer Vision and Pat-
tern Recognition 2001 [online]. [cit. 1.11.2016] Available from URL: <https:
//www.cs.cmu.edu/~efros/courses/LBMV07/Papers/viola-cvpr-01.pdf>.

[9] Shengcai Liao, Xiangxin Zhu, Zhen Lei, Lun Zhang, and Stan Z. Li. Learning
Multi-scale Block Local Binary Patters for Face Recognition Center for Bio-
metrics and Security Research and National Laboratory of Pattern Recognition
2007 [online]. [cit. 2.11.2016] Available from URL: <http://www.cbsr.ia.ac.
cn/users/lzhang/papers/ICB07/ICB07_Liao.pdf>.

[10] Ball, Thorsten. Train Your Own OpenCV Haar Classifier Coding Robin 2013
[online]. [cit. 10.11.2016] Available from URL: <http://coding-robin.de/
2013/07/22/train-your-own-opencv-haar-classifier.html>.

[11] Seo, Natoshi. Tutorial: OpenCV haartraining (Rapid Object Detection With
A Cascade of Boosted Classifier Based on Haar-like Features) Tutorial

57

http://www.kbs.twi.tudelft.nl/docs/MSc/2012/Somhorst/thesis.pdf
http://www.kbs.twi.tudelft.nl/docs/MSc/2012/Somhorst/thesis.pdf
https://szeliski.org/Book/
https://www.opencv.org/
http://www.ripublication.com/irph/ijict_spl/ijictv4n15spl_10.pdf
http://www.ripublication.com/irph/ijict_spl/ijictv4n15spl_10.pdf
https://www.raspberry.org/
https://en.wikipedia.org/wiki/Haar-like_features/
https://www.cs.cmu.edu/~efros/courses/LBMV07/Papers/viola-cvpr-01.pdf
https://www.cs.cmu.edu/~efros/courses/LBMV07/Papers/viola-cvpr-01.pdf
http://www.cbsr.ia.ac.cn/users/lzhang/papers/ICB07/ICB07_Liao.pdf
http://www.cbsr.ia.ac.cn/users/lzhang/papers/ICB07/ICB07_Liao.pdf
http://coding-robin.de/2013/07/22/train-your-own-opencv-haar-classifier.html
http://coding-robin.de/2013/07/22/train-your-own-opencv-haar-classifier.html

[online]. [cit. 10.11.2016] Available from URL: <http://note.sonots.com/
SciSoftware/haartraining.html>.

[12] Open Source Computer Vision.Cascade Classifier Training [online]. [cit.
8.11.2016] Available from URL: <http://docs.opencv.org/trunk/dc/d88/
tutorial_traincascade.html>.

[13] Open Source Computer Vision.Core modules [online]. 2006 [cit. 11.11.2016]
Available from URL: <http://docs.opencv.org/2.4/modules/core/doc/
core.html>.

[14] Open Source Computer Vision.Image processing [online]. 2006 [cit. 11.11.2016]
Available from URL: <http://docs.opencv.org/2.4/modules/imgproc/
doc/imgproc.html>.

[15] Open Source Computer Vision.Cascade Classifier [online]. 2014 [cit.
12.11.2016] Available from URL: <http://docs.opencv.org/2.4/doc/
tutorials/objdetect/cascade_classifier/cascade_classifier.html>.

[16] Raspberry Pi Learning Resources Build A Lamp Web Server With WordPress
[online]. [cit. 20.11.2016] Available from URL: <https://www.raspberrypi.
org/learning/lamp-web-server-with-wordpress/>.

[17] FFmpeg A complete, cross-platform solution to record, convert and stream audio
and video. [online]. [cit. 18.04.2017] Available from URL: <https://ffmpeg.
org>.

[18] AssetBank Installing Ffmpeg on Debian GNU/Linux Version 8.0 (Jessie) [on-
line]. [cit. 18.04.2017] Available from URL: <https://www.assetbank.
co.uk/support/documentation/install/ffmpeg-debian-squeeze/
ffmpeg-debian-jessie/>.

[19] W3Schools PHP 5 Tutorial [online]. [cit. 19.04.2017] Available from URL:
<https://www.w3schools.com/php/default.asp>

[20] DigitalOcean How To Set Up Password Authentication with
Apache on Ubuntu [online]. [cit. 19.04.2017] Available from
URL: <https://www.digitalocean.com/community/tutorials/
how-to-set-up-password-authentication-with-apache-on-ubuntu-14-04>.

[21] Advanced Video and Signal based Surveillance [online]. [cit. 30.03.2017]
Available from URL: <http://www.eecs.qmul.ac.uk/~andrea/avss2007_d.
html>.

58

http://note.sonots.com/SciSoftware/haartraining.html
http://note.sonots.com/SciSoftware/haartraining.html
http://docs.opencv.org/trunk/dc/d88/tutorial_traincascade.html
http://docs.opencv.org/trunk/dc/d88/tutorial_traincascade.html
http://docs.opencv.org/2.4/modules/core/doc/core.html
http://docs.opencv.org/2.4/modules/core/doc/core.html
http://docs.opencv.org/2.4/modules/imgproc/doc/imgproc.html
http://docs.opencv.org/2.4/modules/imgproc/doc/imgproc.html
http://docs.opencv.org/2.4/doc/tutorials/objdetect/cascade_classifier/cascade_classifier.html
http://docs.opencv.org/2.4/doc/tutorials/objdetect/cascade_classifier/cascade_classifier.html
https://www.raspberrypi.org/learning/lamp-web-server-with-wordpress/
https://www.raspberrypi.org/learning/lamp-web-server-with-wordpress/
https://ffmpeg.org
https://ffmpeg.org
https://www.assetbank.co.uk/support/documentation/install/ffmpeg-debian-squeeze/ffmpeg-debian-jessie/
https://www.assetbank.co.uk/support/documentation/install/ffmpeg-debian-squeeze/ffmpeg-debian-jessie/
https://www.assetbank.co.uk/support/documentation/install/ffmpeg-debian-squeeze/ffmpeg-debian-jessie/
https://www.w3schools.com/php/default.asp
https://www.digitalocean.com/community/tutorials/how-to-set-up-password-authentication-with-apache-on-ubuntu-14-04
https://www.digitalocean.com/community/tutorials/how-to-set-up-password-authentication-with-apache-on-ubuntu-14-04
http://www.eecs.qmul.ac.uk/~andrea/avss2007_d.html
http://www.eecs.qmul.ac.uk/~andrea/avss2007_d.html

[22] YouTube HD-SDI 1080P Hi Definition Megapixel Security Camera and Super
Market Checkout Sample 1 [online]. [cit. 30.03.2017] Available from URL:
<https://www.youtube.com/watch?v=-8zyEwAa50Q>.

59

https://www.youtube.com/watch?v=-8zyEwAa50Q

LIST OF APPENDICES

A Web page 61

60

A WEB PAGE

61

	Introduction
	Surveillance system
	Computer vision
	OpenCV

	Raspberry Pi

	Design of the system
	Hardware part
	Block scheme
	Installation of OpenCV libraries

	Software part
	Motion detecting algorithm
	Object detecting algorithm
	Cascade classifier training

	Realization of the system
	Capturing frames
	Detecting motion
	Absolute difference
	Thresholding
	Erode and dilate

	Selecting region of interest
	Object detection
	Face detection features
	Saving video sequence
	Remote access
	Opening video files
	Listing video files
	Video player window
	Live stream
	System authentication

	Experimental results
	Motion detection
	Testing of rectangle merge

	Face detection
	Comparison of two type of cascades
	Effectiveness of frontal face detection

	Hand detection
	Execution time of used algorithms

	Conclusion
	Bibliography
	List of appendices
	Web page

