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ÚSTAV POČÍTAČOVÉ GRAFIKY A MULTIMÉDIÍ
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Abstrakt

Pro optimalizaci letových trajektorií ve velmi malé nadmorské výšce, terenní vlastnosti
musí být zahrnuty velice přesne. Proto rychlá a efektivní evaluace terenních dat je velice
důležitá vzhledem nato, že čas potrebný pro optimalizaci musí být co nejkratší. Navyše, na
optimalizaci letové trajektorie se využívájí metody založené na výpočtu gradientu. Proto
musí být aproximační funkce terenních dat spojitá do určitého stupne derivace. Velice
nádejná metoda na aproximaci terenních dat je aplikace víceroměrných simplex polynomů.
Cílem této práce je implementovat funkci, která vyhodnotí dané terenní data na určitých
bodech spolu s gradientem pomocí vícerozměrných splajnů. Program by měl vyčíslit více
bodů najednou a měl by pracovat v n-dimensionálním prostoru.

Abstract

For the optimization of near-of-the-earth flight trajectories the terrain data have to be taken
into account very precisely. At this, a fast and efficient evaluation of terrain data is very
important since within the optimization task the computational effort for one single cost
function evaluation has to be as small as possible. Furthermore, the trajectory optimization
is done by gradient-based optimization methods. Thus, the approximation of the terrain
data has to be continuously differentiable and also the gradients of the terrain data have
to be evaluated along with the terrain data itself. A very promising approach for the
approximation of the terrain data are multivariate splines based on the triangulations of
the approximation domain.
The aim of this master thesis was to develop a MATLAB and C++ function that evaluates
given terrain data at certain points along with the gradients of the terrain data at these
points based on multivariate splines. The function supports evaluation of multiple points
at once and is not limited to the three-dimensional data but should also be capable to
approximate the data of any dimension.
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Chapter 1

Introduction

In these days, in times of a huge expansion of the aviation industry in which also un-
manned aerial vehicles are becoming more and more common, the exact description of the
environment in which the aircraft is located, as well as a fast evaluation of the immediate
environmental condition changes is essential. The term environment description is under-
stood as a set of useful data obtained by taking measurements which are inherently discrete
and scattered. The usage of various mathematical methods for assessing a wide range of
interesting features assumes an evaluation of a continuous differentiable function. Thus,
the need to model the observed data is obvious.

In case of the near-to-earth flight trajectories optimization, the terrain data need to be
taken into account very precisely. One example can be found in the defence industry, where
cruise missiles or other air force vehicles are moving in a very low altitude. Furthermore,
due to the high speed of the aircrafts, the effort to evaluate the modelled data must be very
fast and computationally efficient.

Today, for any kind of surface modelling, the techniques based on the extremely popular
B-spines are typically used. All of them have their own strengths and weaknesses and
some of them have become widely used and are considered as finalized theories. Another
very promising approach for the approximation of the scattered data, although not very
known so far, are multivariate splines based on triangulations of an approximation domain
or simply called multivariate simplex splines. The main important properties of simplex
splines are:

• a possibility of scattered data modelling,

• an approximation can be made on an non-rectangular domain,

• modelling of data in any dimension,

• an approximation power is limited only by the complexity and the density of a trian-
gulation,

• a mathematically well defined theory,

• a computationally fast and efficient evaluation.
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Despite of all these positive features above, the applications of the multivariate simplex
splines are limited today. In the last thirty years there were many of other approaches
[13] which looked better and were preferred for some practical reasons of those times. But
today, the method of the multivariate simplex splines has found its place and is being used
more and more. This background is more discussed in the section 1.1 where also some other
interpolation methods are mentioned.

1.1 The related interpolation methods

Splines as an interpolation tool are widely used in thousands of different applications.
Especially in the computer graphics are these special polynomials useful because of the
simplicity of their implementation, their convenient and accurate evaluation, and their
ability to approximate the complex shapes through curve fitting and an interactive curve
design. In this field the B-spline and the Bézier spline are the most common and the
mathematical theories describing them are well developed [19], however, in case of modelling
the 3 or n-dimensional data the univariate splines are usually not enough. The further
generalization to n dimensions is needed. Through the years many papers [4, 6, 18] were
published trying to handle the topic of the multivariate splines and today we can see
that the result is ambiguous. The elegance and the power of the mathematical theory
of the univariate B-splines motivated the search for a true multivariate generalization of
the theory, which proved to be much more difficult than initially expected. De Boor in his
paper states:

”
The generalization of univariate polynomial interpolation to the multivariate

context is made difficult by the fact that one has to decide just which of the many of its
nice properties to preserve, as it is impossible to preserve them all“ [7].

1.1.1 The tensor product splines

The need for 2-dimensional splines rose in the field of the car industry in 1950’s, as cars made
with smooth curves and surfaces had become a trend. Mathematician Paul de Casteljau,
working for Citroën, invented the method for modelling smooth surfaces using Bernstein
polynomials defined in terms of the barycentric coordinates on rectangular and triangu-
lar patches [12]. Later Pierre Étienne Bézier working for Renault company invented his
Bézier curves and patches, those idea where similar to the previous work of de Casteljau,
and reached high popularity. The first compact and widely used method for the surface
interpolation by splines was presented in 1972 by [2] and is called The multivariate tensor
product splines, or shortly TPS, which are simple Bézier patches stitched together so they
form a continuous surface. The algorithmic representation of the TPS is simple and fast,
thus they are widely used in CAD applications, however, they cannot be used directly for
the interpolation of the scattered data for some essential reasons [1, 5]. The theory of the
TPS in not a true generalization of the univariate splines as a construction of bivariate
function is made by taking a tensor product of two univariate B-splines. In result, TPS
is good for modelling artificial data placed on a rectangular grid and because the data
obtained by taking measurements are inherently scattered for the purpose of this work it
is better to use something else.
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1.1.2 The thin plate splines

The inability of scattered data modelling by the tensor product splines method led the
search for an alternative and the answer was called The thin plate splines. This technique
was used by companies in industry, however it possesses certain limitations. The first is
that the thin plate splines have an non-local radial basis function which leads to inefficient
algorithms. Its creation and evaluation requires an evaluation of all the basis functions and
also the coefficients. The interpolation algorithms are becoming slow, inefficient and for
this reason the usability of the thin plate splines method is limited only to two dimensional
space which for some purposes may be enough. From the other side, the presence of a global
basis function is in fact a great advantage as an interpolation is smooth and differentiable
up to any order. Also the thin plate spline model has no other free parameters that would
require complicated manual tuning of the model. Everything summed up, even though the
scattered data modelling is possible, this method is inefficient and therefore may be used
only with small datasets in low dimensions. More about this topic can be found in [4].

1.1.3 The polyhedral splines

The true and mathematically elegant multivariate splines generalization was formed in the
theory of The polyhedral splines that preserves most of the convenient properties of univari-
ate splines. The polyhedral spline is formed by projecting a multi-dimensional polyhedron
like a hypercube or a simplex onto a lower dimensional plane. The value of a multivariate
polynomial at a specific location is then the volume of a slice of the polyhedron ’floating
above’ the given location. This concept is mathematically general and clear but has never
become widely used. The reason is that the polyhedral splines are simply too general. The
problem of combining polyhedrons in high dimensions to create a desired polynomial is
complex and sometimes tricky. The result are computationally inefficient algorithms, and
again as the previous methods, in these days the polyhedral splines technique is not suitable
for scattered data modelling in practical applications. The complete and rigorous concept
of the multivariate polyhedral splines theory was provided e.g. by [18].

1.2 The goals of this thesis

The idea of simplex splines is not very new, however, only few practical applications using
this method can be found these days. Therefore, the goal of this thesis is to provide a
practical implementation of a function that evaluates given terrain data at certain points
along with the gradients at these points based on the multivariate simplex splines. Although
the terrain data are obtained in a 3-dimensional space, the implemented function should
be able to approximate the data in an n-dimensional space. After the implementation is
done, the detail demonstration of the main features of a simplex spline function is provided.
Finally, the presented approach is applied on a real terrain dataset in order to demonstrate
that the terrain data modelling by simplex splines is possible and even appropriate.

In the chapter 2 the theoretical background of the simplex splines is introduced and demon-
strated by many figures and examples. Later on in the next chapter 3, the implemented
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function is tested on 3 and 4 dimensional datasets. This chapter also discusses the input
parameters of a simplex spline function and how they need to be set in order to get a high
precision of a resulting simplex spline model. In the end, all these ’know how’ are applied
on a real terrain dataset.
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Chapter 2

The multivariate simplex splines

The requirements that an ideal interpolation method would meet are an ability of the scat-
tered data modelling in n-dimensions, a well defined mathematical concept, a computation-
ally fast and efficient algorithmic implementation and flexibility, by means of an adaptation
to different scenarios. The multivariate simplex splines is just another method of multivari-
ate splines that claims to satisfy these requirements. Since now, the notion simplex splines
determine Bernstein polynomial functions defined on simplices using barycentric coordi-
nates. The multivariate simplex splines are based on triangular Bernstein-Bézier patches
invented by de Casteljau as mentioned in the section 1.1.1.

The idea is relatively simple. Geometric n-dimensional structures called simplices each sup-
port a single B-form polynomial. A B-form polynomial is a linear combination of Bernstein
basis polynomials the shapes of which are controlled by B-coefficients. The real power of
the simplex splines comes when many simplices on each of which Bernstein polynomial is
defined, are joined together. This is achieved by a special topological configuration called a
triangulation. The triangulation subdivides the scattered input n-dimensional points into
the simplices. In a valid triangulation, the simplices are allowed to meet only at their
vertices and no two simplices are allowed to overlap. This condition is very important in
order to obtain the continuity of individual Bernstein polynomials. As mentioned before,
B-coefficients fully control a local polynomial defined on a single simplex. Therefore, finding
a solution of the scattered data approximation problem on a given triangulation reduces
to finding an optimal set of B-coefficients for every B-form polynomial. A possibility to
model n-dimensional scattered data on a non-rectangular domain is a crucial behaviour.
Furthermore, the evaluation of Bernstein polynomials is much faster these days, so there is
no need to use special algorithms as e.g. de Casteljau algorithm [12].

The theoretical concept of multivariate simplex splines described in this chapter was in-
troduced by authors of [9, 6, 14, 15]. As the implemented algorithm directly follows this
theoretical background, in the following sections the rigorous mathematical concept of the
simplex splines method is provided in a very detail. In the first section 2.1 some basic def-
initions that are important in the simplex splines theory are given. As mentioned before,
the simplex spline function is always defined on a structure called the triangulation. In
the section 2.2 some types of triangulations are discussed. The triangulation introduces a
continuity problem among neighbouring polynomials. The solution in form of smoothness
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constraints is described in the section 2.3. The following section 2.4 of this chapter presents
the linear regression scheme used for the interpolation of input datasets. And finally in the
last section 2.5, the definitions of various differential operators are introduced.

Many examples that demonstrate an important behaviour discussed in the following sections
can be found in the appendix A of this thesis.

2.1 The preliminaries of the simplex splines

This section provides basic mathematical background of the simplex splines theory. In this
place, the concepts such as, the simplex in the section 2.1.1 or barycentric coordinates in
the section 2.1.2 are discussed in detail. The idea of the barycentric coordinates is used
with Bernstein polynomials 2.1.3. Bernstein polynomials are often and with multivariate
simplex splines always denoted in the B-form as can be seen in the section 2.1.4. A uniform
notation for the splines of a given polynomial degree and continuity order is defined in
a form of spline spaces 2.1.6. The coefficients of a Bernstein polynomial form a spatial
structure called the B-coefficient net or shortly B-net. The shape, orientation and other
properties of B-nets have a strong impact on a resulting simplex spline function. Therefore,
in the final section 2.1.5 of the chapter, the topic of B-nets is discussed.

2.1.1 The simplex

In geometry, a simplex is a generalization of the notion of a triangle or tetrahedron to an
arbitrary dimension. Specifically, a n-simplex is a special type of n-dimensional polytopes,
which is a convex hull of its n+1 vertices. For example, a 2-simplex is a triangle, a 3-simplex
is a tetrahedron, and a 4-simplex is a pentachoron. A single point may be considered as a
0-simplex and a line segment may be considered as a 1-simplex.

The mathematical definition of the n-simplex starts with a single point or vertex in n-
dimensional Euclidean space:

vi = (x1, x2, . . . , xn) ∈ Rn, (2.1)

where i ∈ N is a vertex index, and xi is a coordinate component in n-dimensional space.
The vertex index uniquely identifies each vertex within the set of vertices of the simplex.
These vertices need to be lexicographically ordered. Let Vt be a tuple consisting of n + 1
vertices:

Vt = (v0,v1, . . . ,vn) ∈ Rn. (2.2)

The n-simplex t can be now defined as a convex hull :

t = 〈Vt〉 ∈ Rn. (2.3)

The convex hull of any non-empty subset of the n + 1 points that define an n-simplex is
called a face of the simplex. Faces are simplices themselves. Let Vt1 be any subset of Vt
having the size m+ 1. Then from (2.3), the convex hull of Vt1 is following:

t1 = 〈Vt1〉 ∈ Rm+1,m ≥ 0. (2.4)
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Dimension n 0-faces 1-faces 2-faces 3-faces 4-faces 5-faces 6-faces 7-faces
0 1 0 0 0 0 0 0 0
1 2 1 0 0 0 0 0 0
2 3 3 1 0 0 0 0 0
3 4 6 4 1 0 0 0 0
4 5 10 10 5 1 0 0 0
5 6 15 20 15 6 1 0 0
6 7 21 35 35 21 7 1 0
7 8 28 56 70 56 28 8 1

Table 2.1: The number of faces within different simplices. Notice the structure of the
Pascal’s triangle.

The simplex t1 is called m-face of n-simplex t. The 0-faces are called vertices, the 1-faces
are called edges, the (n−1)-faces are called facets, and the sole n-face is the whole n-simplex
itself.

This fundamental property means, that simplices have a recursive structure. Moreover,
the total number of m-faces of the n-simplex can be found in the (m+ 1)th column of the
(n+ 1)th row of the Pascal’s triangle. Consequently, the number of m-faces is equal to the
binomial coefficient

(
n+1
m+1

)
. So for example, the triangle (2-simplex) contains three lines

(1-simplex) and three vertices (0-simplex). Take a look at the table 2.1. One important
face of the n-simplex t, that has a special meaning not only in the simplex splines theory
is the (n− 1)-face, usually called the edge facet and denoted as t̃. It should be clear from
the table 2.1, that any n-simplex has n+ 1 edge facets. Therefore:

t̃i = 〈Vt \ vi〉 ∈ Rn, i = 0, 1, . . . , n. (2.5)

The equation (2.5) states, that any edge facet t̃i can be implicitly defined in terms of the
single vertex vi of the n-simplex t which is not in t̃i. This observation will be important
in the definition of the continuity conditions between simplex polynomials on neighbouring
simplices. In the figure 2.1 are pictured projections of the first 15 simplices. These simplices
are regular i.e. all edge facets are of the same size.

2.1.2 The barycentric coordinates

The barycentric coordinates is a brand new concept of a coordinate system introduced
by August Ferdinand Möbius (1827), in which the location of a point is specified as the
center of a mass, or a barycenter of masses placed at the vertices of a given simplex. The
most common system recognized today is the Cartesian coordinate system that expresses
a point’s location on the plane relative to the origin – in 2D to the (0, 0). The barycentric
coordinates despite of that express the point’s location relatively to some other points on the
plane. Möbius in his work proved that any coordinate in a 2-dimensional or a 3-dimensional
Euclidean space can be described by barycentric coordinates. Furthermore, he found out
that the new coordinates system is homogeneous, which among other things means that it
is invariant to a scalar multiplication.
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41

15-simplex14-simplex13-simplex12-simplex

11-simplex10-simplex9-simplex8-simplex

7-simplex6-simplex5-simplex4-simplex

3-simplex2-simplex1-simplex0-simplex

Figure 2.12: Projections on the 2-plane of the regular simplices of dimension 0 to
15.

Figure 2.1: The projections on the 2-plane of the regular simplices of dimension 0 to 15.
This figure was taken from [9, page 41].
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As mentioned before, Möbius was concerned only about the 2 and the 3 dimensional space,
but the generalization of his idea can be easily made for an n-dimensional space. As this is
one of the basic topics in the simplex splines theory, in the following lines the mathematical
background of the general barycentric coordinates is provided along with an example where
the important behaviour is discussed.

The derivation of barycentric coordinates as proposed in [9] starts with a point x in n-
dimensional Euclidean space:

x = (x1, x2, . . . , xn) ∈ Rn. (2.6)

To express point x relative to the vertices of the n-simplex the expression (2.1) can be used
as follows:

x =
n∑

i=0

bivi, (2.7)

with vi ∈ Rn the simplex vertex and bi ∈ R scalar weights. The barymetric coordinate of
the point x is the vector of vertex weights b given by:

b = (b0, b1, . . . , bn) ∈ Rn+1. (2.8)

Notice please, that according to this definition, the barycentric coordinate of n-dimensional
point is a vector of n + 1 elements. In the following, the normalization property of b is
defined:

n∑

i=0

bi = 1. (2.9)

The example A.1 shows that weights bi represent fractions of the area1 of n-simplex, that
is according to (2.9), the area of whole n-simplex is equal to 1. Now, the first component
of b can be expressed in terms of the remaining components:

b0 = 1−
n∑

i=1

bi. (2.10)

The explicit form of the Cartesian-to-barycentric transformation can be given now.

x =
n∑

i=0

bivi

= b0v0 +
n∑

i=1

bivi

=

(
1−

n∑

i=1

bi

)
v0 +

n∑

i=1

bivi

= v0 +
n∑

i=1

(bivi − biv0)

= v0 +
n∑

i=1

bi (vi − v0)

x− v0 =

n∑

i=1

bi (vi − v0) (2.11)

1The term ’area’ is connected only with a 2-simplex of course. In 3D it is volume, etc.
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The right hand side of the last equation can be rewritten to the form of vector multiplication:

x− v0 = [v1 − v0 v2 − v0 · · · vn − v0] ·




b1
b2
...
bn


 . (2.12)

The first factor of the multiplication contains vertex coordinates of n-simplex normalized
by the coordinates of the first vertex. This useful entity is called a normalized simplex
vertex matrix and is denoted as At with t a given simplex. Now, the expression (2.12) can
be simplified by the substitution of the normalized simplex vertex matrix:

x− v0 = At ·




b1
b2
...
bn


 . (2.13)

And finally, the vector of barycentric coordinates is given by:

A−1
t · (x− v0) =




b1
b2
...
bn


 . (2.14)

The matrix At must be invertible, which is the case when vi−v0 are linearly independent.
If this condition is satisfied, the Cartesian-to-barycentric coordinate system transformation
is a linear, one-to-one transformation. This means, that any Cartesian coordinate in the
Euclidean n-plane has a unique barycentric coordinate with respect to a given n-simplex.
Moreover, it is possible to determine the position of points with respect to a given n-simplex
t. Let’s take a look at the following expressions:

∀i : i = 0 . . . n, bi ≥ 0 −→ x ∈ t (2.15)

∃i : i = 0 . . . n, bi < 0 −→ x /∈ t (2.16)

Now one of the key features provided by the barycentric coordinate system may be seen. If
a point is located within a simplex, all its barycentric coordinate components with respect
to that simplex are greater or equal to zero. On the other hand, if at least one of the
barycentric coordinate component is less than zero, point is located outside of a simplex.

In the real-world applications, the input dataset of points that is being modelled e.g. terrain
dataset, is always defined in the Cartesian coordinate system and as the simplex B-form
polynomials 2.1.4 are defined in terms of the barycentric coordinates, the input points need
to be transformed to the barycentric concept. This transportation is the first step of the
implemented algorithm. For better understanding, the behaviour of barycentric coordinates
is demonstrated by the example A.1.

2.1.3 The Bernstein basis polynomials

In the next few sections the mathematical concept of Bernstein polynomials will be de-
scribed. Bernstein polynomials are used as an interpolation function on every single simplex.
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Maybe not clear so far, however, a simplex spline function consists of a set of neighbouring
simplices on each of which a simplex polynomial is defined. The simplex polynomial is a
Bernstein polynomial, and therefore consists of Bernstein basis polynomials.

The theory of Bernstein polynomials as an approximation method is in general well known,
however, in his paper [9, section 2.2.3] C.C. Visser proposes the derivation of Bernstein
polynomials from multinomial theorem, which will turn out to be essential in a definition
of the multivariate simplex spline function.

In the beginning, the general form of the multinomial theorem is given:

(a0 + a1 + · · ·+ an)d =
∑

k0+k1+···+kn=d

d!

k0!k1! · · · kn!
ak00 a

k1
1 · · · aknn (2.17)

Let b = (b0, b1, . . . , bn) be a barycentric coordinate in Rn+1. Then from (2.17) a polynomial
of degree d ∈ N can be defined as follows:

(b0 + b1 + · · ·+ bn)d =
∑

k0+k1+···+kn=d

d!

k0!k1! · · · kn!
bk00 b

k1
1 · · · bknn . (2.18)

This expression may be simplified by introduction of a new entity called multi-index. The
multi-index k of dimension n is a tuple defined as follows:

k = (k0, k1, . . . , kn) ∈ Nn+1. (2.19)

The 1-norm and the factorial of multi-index k is then:

|k| = k0 + k1 + · · ·+ kn = d, d ≥ 0, (2.20)

k! = k0!k1! · · · kn!. (2.21)

Using equations above the multinomial form from (2.18) may be simlified:

(b0 + b1 + · · ·+ bn)d =
∑

|k|=d

d!

k!
bk (2.22)

The number of polynomial terms in the sum is determined by the number of valid permu-
tations of k. The total number of valid permutations of k for a given dimension n and
polynomial degree d is d̂ defined as follows:

d̂ =

(
d+ n

d

)
=

(d+ n)!

n!d!
. (2.23)

This expression has been proposed in [6]. The total number of valid permutations d̂ also
determines the number of free variables of the polynomial. The number d̂ has a very special
meaning in the multivariate splines theory as almost all important constants or matrices
are defined by this number.

Everything is in place to define the form of Bernstein basis polynomial:

Bd
k(b) =

d!

k!
bk (2.24)
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and further the (2.22) may be simplified as:

(b0 + b1 + · · ·+ bn)d =
∑

|k|=d

Bd
k(b), (2.25)

where the right hand side sum defines a Bernstein polynomial. As was mentioned before,
the left hand side of (2.25) represents a barycentric coordinate, which according to nor-
malization property from (2.9) is equal to one. This gives us the final expression of this
part:

1 =
∑

|k|=d

d!

k!
bk. (2.26)

In words, the total sum of all Bernstein basis polynomials is equal to one. And while the
Bernstein polynomial is used for interpolation of given n-simplex, this outcome is applied
at every location within an n-simplex.

The main point of this section was to derive the Bernstein polynomial from the multinomial
theorem. The expression from (2.22) will be used in next section, where the B-form is
introduced.

2.1.4 The B-form

The Bernstein basis polynomials of degree d form a basis for the space of polynomials
of degree less than or equal to d. In other words, Bernstein basis polynomials form a
vector space of polynomials of a given degree. This in turn means, that all Bernstein basis
polynomials of a degree d are linearly independent and therefore, any polynomial of the
degree d may be expressed as a unique linear combination of Bernstein basis polynomials.
The proof of this theorem was provided by Carl de Boor in 1986 [6]. The B-form provides
a convenient notation for the linear combination of Bernstein basis functions on a single
n-simplex.

p(x) =
∑

|k|=d

ckB
d
k(b(x)), (2.27)

with p(x) an arbitrary polynomial, b(x) = b the implicit transformation from the Cartesian
to barycentric coordinate system, and most importantly with ck control coefficients or B-
coefficients. The B-coefficients control the shape of a B-form polynomial by scaling the
individual basis functions. And consequently, there are as much B-coefficients as there are
basis polynomial terms. According to (2.23), the number of them is equal to d̂. The example
A.2 demonstrates the simple trivariate B-form polynomial along with the visualization.

2.1.5 The B-coefficient net

The spatial location of B-coefficients within a simplex is not random, but forms a structure
called B-coefficient net or shortly the B-net. The concept of B-net was widely recognized in
literature e.g. see [11, 6, 14]. The location in barycentric coordinates of a given B-coefficient
ck within an n-simplex is given by:

b =
k

d
, |k| = d, (2.28)
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which is also equal to the location of the maximum of the associated Bernstein basis poly-
nomial Bd

|k|=d(b). In the figure 2.2 the spatial location of the B-coefficients is shown.
Notice, that according to the number of the B-coefficients from (2.23), the density of the
B-net increases with higher polynomial degree. The structure of B-coefficients has an im-
portant meaning in the theory of the simplex splines as smoothness constraints between
neighbouring polynomials are defined on the B-net. This will be discussed later in the
section 2.3, however, to make an effective algorithmic implementation of the multivariate
simplex splines function, the B-coefficients and the corresponding B-net need to be ordered
in some way. Therefore, the formal orientation rule will be introduced now.

The orientation of the B-net within a simplex depends mainly on the indices of the B-
coefficients located at the simplex vertices. The vertices of all simplices in a triangulation
need to have a globally unique index. After that, every simplex can be defined by vertices
that are lexicographically sorted. De Visser in [9, definition 3] introduces a formal definition
of the orientation rule that will be repeated here. An simple example can be found in the
appendix A.3.

Definition 1 (The B-net Orientation Rule) Let every n-simplex t consist of a tuple
Vt of (n + 1) globally indexed vertices. The vertices in the set are ordered using their
indices. A new set is now introduced which consists of tuples of vertices and B-coefficients
as follows:

VB = {(cd,0,0,...,0,vp0), (c0,d,0,...,0,vp1), . . . , (c0,0,0,...,d,vpn)}, (2.29)

with p0 > p1 > pn the ordered indices. After the B-coefficients located at simplex vertices
are known, the other B-coefficients are calculated by the expression (2.28).

2.1.6 The spline spaces

An important notation that generalize a degree and a continuity order of a simplex spline
function is called a spline space. Formally, the spline space is a space of all spline functions
s of a given polynomial degree d and continuity order Cr on a given triangulation T denoted
as follows:

Srd(T ) = {s ∈ Cr(T ) : s|t ∈ Pd, ∀t ∈ T } , (2.30)

with Pd the space of polynomials of degree d. For example, S2
1 (T ) is the space of all

quadratic spline functions with continuity order C1 defined on the triangulation T .
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Figure 2.2: The spatial location of the B-coefficients within the simplex. In this case, the
B-net is of the 2-dimensional simplex polynomial for various polynomial degrees.
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Figure 2.3: Spatial locations of the B-coefficients and the B-nets orientation on three
simplices. The B-coefficients correspond to the 4th degree Bernstein polynomial.
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2.2 The triangulations

So far we talked only about the interpolation with Bernstein polynomials on a single n-
simplex. In the real world applications where many multi-dimensional scattered data need
to be interpolated, one single simplex is not enough. The power of the simplex splines theory
comes with the combination of neighbouring simplices on each of which a single simplex
polynomial is defined. The combination of the simplices means also the combination of
the simplex polynomials. The most important constraint that must be met by polynomials
defined on the neighbouring simplices is the smoothness.

Triangulation gives a powerful method for subdividing n-dimensional objects into n-simplices.
Some properties of triangulation are explained in next sections. Firstly in the section 2.2.1,
the formal definition is provided. The simplest kinds of triangulation – regular triangula-
tions are presented in the section 2.2.2. Then in the section 2.2.3, the common method of
Delaunay triangulation is described.

2.2.1 Formal definition of the triangulation

In the most general meaning, the triangulation may be defined as a subdivision of geometric
objects into simplices. In a 2-dimensional plane it is a subdivision into triangles, hence the
name. In a formal definition, a triangulation T is a set consisting of J simplices defined as:

T =
J⋃

i=1

ti, ti ∩ tj ∈ {∅, t̃}, ∀(ti, tj) ∈ T , i 6= j (2.31)

with t̃ a k-face of the n-simplices ti and tj , with 0 ≤ k ≤ n− 1. This expression was taken
from literature [9, section 2.3.2]. Simplex t̃ also called face connects two or more n-simplices,
and its dimension is lower than n. One special case of t̃ would be with k = n− 1, when t̃ is
called edge facet as discussed in the section 2.1.1. In this case, two neighbouring simplices
share edge facet t̃, or in other words, t̃ connects two neighbouring simplices. Another special
case of t̃ is with k = 0, in which t̃ is just a single vertex. The definition (2.31) also says
that any two n-simplices of a triangulation are allowed to overlap only on their faces of
dimension lower than n or not overlap at all.

Notice, that for a given set of points there may be more than just one possible triangula-
tion and therefore triangulation have not to be necessarily unique. This gives us a need
to measure how the given triangulation is

”
good“ or

”
bad“. The objective performance

measure of the entire triangulation is required. One good approach is to count the ratio
between the radius of the circumsphere and the shortest simplex ridge. This ratio is also
called SRSC as a shortcut for Ratio radius circumsphere and shortest ridge. Without any
more discussion the formula of SRSC is given as follows:

PT =
1

J

J∑

i=1

rΘj

min |vu − vw|
, (2.32)

with rΘj the radius of the circum-hypersphere of the n-simplex tj , with t̃ an edge facet of tj
and with vu and vw vertices in the edge facet t̃. There are also many other useful metrics
but this topic goes beyond the content of this work.

19



2.2.2 The regular triangulations

The simplest forms of triangulations are so-called the regular triangulations. The construc-
tion of a regular triangulation is easy: every cell of the n-dimensional grid is filled with a
regularly triangulated n-cube. The n-dimensional grid may or may not be uniform. In the
second case the triangulated n-cube prototype has to be scaled or even rotated to fill the
grid cell. This is shown by the figure 2.4 where two possible triangulations of a square are
used. These triangulations are non-uniform but regular. The left hand side of the figure
shows maybe the simplest triangulation possible while in the right hand side, the extra
vertex is included to the middle of each cell. In the figure 2.5 the triangulated 3-cube is
pictured. This triangulation consists of six tetrahedrons that are symmetric along the ridge
of the 3-cube. All these tetrahedrons are of the same size and volume i.e. they are regular.
In the regular 3-dimensional triangulation this cube can be used for filling individual grid
cells.

A great advantage of the regular triangulation method, as was described above, is that it
avoids the generation of badly defined simplices according to the SRSC metric from (2.32).
As maybe not clear at first, the construction of a regular triangulation is not limited only
for rectangular domains. For example, the cube from the figure 2.5 can be extended in any
direction by attaching extra tetrahedrons of the same size as others.

One last note about the complexity of a implementation of a regular triangulation algorithm.
In low dimensions the calculation of a triangulation is fast, and even faster than other
kinds of triangulations e.g. Delaunay discussed in the next section. However, in higher
dimensions, more than 8th, the structure of a hypercube is becoming much more complex
and computationally ineffective.

66 Introduction to Multivariate Simplex Splines

Nonuniform Type II (64 triangles)Nonuniform Type I (32 triangles)

Figure 2.23: Nonuniform rectangular Type I (left) and Type II (right) triangulations
in two dimensions.

with rΘj
the radius of the circum-hypersphere of the n-simplex tj , with t̃j an edge facet of

tj and with vu and vw vertices in the edge facet t̃j .

2.3.3 Type I/II triangulations

The Type I and Type II triangulations are the simplest forms of triangulation. A Type I/II

triangulation is constructed by filling in the multi-dimensional cells of a grid with a single

symmetric prototype triangulation of the hypercube, or n-cube, see Figure 2.23 for a 2-

dimensional example and Figure 2.24 for a 3-dimensional example. Mara finds in [128]

that a symmetric Type I triangulation contains n! simplices:

|T | = n! (2.73)

The difference between the Type I and Type II triangulations is that the Type II uses a

single extra vertex at the center of the n-cube. Valid Type I and Type II triangulations of the

form Eq. 2.71 can only be constructed if the n-cube triangulation is symmetric along the

grid axes. In that case, the grid cells can be filled using scaled and unrotated versions of the

n-cube triangulation.

In Figure 2.25 a triangulation of the 3-cube for a Type I triangulation is shown. This

triangulation consists of six tetrahedrons and clearly is symmetric along the ridges of the

3-cube. In Figure 2.26 the Type II triangulation of the 3-cube is shown. In this case the cube

is split into six pyramids, with each pyramid consisting of two tetrahedrons.

The total number of n-simplices in the symmetric Type I/II triangulation of the n-cube

as a function of the dimension is given in Table 2.5. The values for the Type I triangulation

were obtained using Eq. 2.73.

Figure 2.4: Non-uniform regular triangulations defined on a rectangular domain. Taken
from [9, Section 2.3.3].
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67

Figure 2.24: Uniform rectangular Type I triangulation in three dimensions
consisting of 450 tetrahedrons.
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Figure 2.25: Triangulated 3-cube (left) for a Type I triangulation consisting of 6
tetrahedrons and its exploded view (right).

Figure 2.5: The regularly triangulated 3-cube (left) consisting of 6 tetrahedrons and its
exploded view (right). Taken from [9, Section 2.3.3].

2.2.3 The Delaunay triangulations

Many methods and techniques were proposed through the years to calculate a triangulation
of a discrete set of points. Every one of them has its own application but the most powerful
seems to be the Delaunay triangulation method invented by a Russian mathematician Boris
Delaunay in 1934. The most important advantage of the Delaunay triangulation is that
for any set of discrete points the outcome triangulation can be counted if points are non-
degenerate and therefore is suitable for using with simplex splines.

The formal definition of the Delaunay triangulation is usualy derived from a dual operation
called the Voronoi tessellation. The complete proof may be found in literature [17]. In a
valid Delaunay triangulation, the vertices of the n-simplex tj must be located exactly on and
only on the circum-hypersphere of tj . This is called the Delaunay condition for simplices
and says, if Θtk is a circum-hypersphere of the n-simplex tk, and Vj are the vertices of tj ,
then

Vj ∈ Θtk ⇐⇒ j = k. (2.33)

In the figure 2.6 the comparison of the Delaunay triangulation and the Voronoi tessellation
is pictured. In the triangulation the original points are connected, while the lines in a
Voronoi diagram are the equidistance points of two neighbouring vertices. The Voronoi
diagram therefore provides a graphical depiction of the closest neighbour set of a set of
vertices. This closest neighbour set can be used to create the Delaunay triangulation of the
set of vertices by constructing simplices which each contain the most compact set of n+ 1
vertices.

As can be seen, the Delaunay triangulation provides many important features and further-
more the triangulation algorithms are simple and fast with complexity O(n log n). The
Delaunay triangulation method also tends to avoid bad defined

”
skinny“ simplices, but

especially along the boundaries of the triangulation domain the problem still preserves and
optimization techniques have to be used.
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Figure 2.6: On the left hand side, the Delaunay triangulation with all the circumcirces
and their centres in red color. Connecting the centres of the circumcircles produces the
Voronoi diagram (in red) on the right hand side.

2.3 The smoothness constrains

With the triangulation the problem of continuity among neighbouring simplices is intro-
duced. The simplex spline function is by definition a piecewise defined polynomial function
with Cr continuity between its pieces. the smoothness constraints formed by continuity
conditions somehow link B-coefficients of neighbouring polynomials. These conditions are
then used as a linear equality constraint in a linear regression scheme.

This section presents mathematical formulation of the smoothness constraints and also some
consequences of their use which might not be evident at first sight. In 1979 Gerald E. Farin
in his paper [10] and later in [11] gave the statement of continuity of the polynomial pieces
across an interface between two simplices. This topic as presented in the section 2.3.1 was
later studied by many authors e.g. [14, 15, 3], however, de Visser found their formulation not
general and introduced some modifications which are summarized in 2.3.2. All continuity
conditions for all simplices of a triangulation are in the end included in a global smoothness
matrix 2.3.3.

2.3.1 Definition of continuity conditions

The continuity between the polynomial pieces of the simplex spline function are enforced
by special equations called the continuity conditions which are defined for every edge facet
shared by two neighbouring simplices. An edge facet is as mentioned in the section 2.1.1
an (n− 1)-simplex that defines the edge of the n-simplex. The number of edges of any n-
simplex is equal to n+1. As long as simplices are joined in a triangulation, the neighbouring
simplices share their edge facets between each other. As a result, any set of two joined
simplices shares one and only one unique edge facet. Now, let ti and tj be two neighbouring
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n-simplices defined as:

ti = 〈v0,v1, . . . ,vn−1,vi,j〉 ,
tj = 〈v0,v1, . . . ,vn−1,vj,i〉 . (2.34)

They share one edge facet t̃i,j given by:

t̃i,j = ti ∩ tj = 〈v0,v1, . . . ,vn−1〉 . (2.35)

It should be clear that t̃i,j is an (n− 1)-simplex as it consists of n vertices (see table 2.1).
Moreover, both simplices individually have one, and only one, unshared vertex, for ti it is
vertex vi,j and for tj it is vj,i (note that indices are not same). These vertices are called
out of edge vertices, as they do not participate on the edge facet. Formally are defined as:

ṽi,j , ṽj,i /∈ t̃i,j . (2.36)

Having (2.36), the edge facet t̃i,j can be defined also indirectly by out of edge vertices vi,j
and vj,i as following:

t̃i,j =

{
ti \ vi,j
tj \ vj,i (2.37)

An application of this observation will be shown in later section during the implementation
part.

The main reason why it is so important to obtain continuity of a given order between the
polynomial pieces of the spline function is a matching of derivatives. When directional
derivatives up to order Cr between two B-form polynomials on neighboring simplices are
equal at every point of the edge facet, the continuity of order Cr is achieved. Formally, given
the two simplices ti and tj and their edge facet t̃i,j and given the two B-form polynomials
pti and ptj associated with ti, tj respectively, the following expression must hold for all
points x in t̃i,j :

Dm
u pti(b(x)) = Dm

u ptj (b(x)), ∀x ∈ t̃i,j , m = 0, 1, . . . , r , (2.38)

with vector u a direction of derivative and b(x) the transformation from Cartesian coordi-
nate system to barycentric one. Equation (2.38) formally says what is meant by continuity
between two polynomials but does not mention how this continuity would be achieved.
As said before, smoothness constraints are expressed in a form of continuity conditions.
Continuity conditions relates B-coefficients of neighbouring B-form polynomials. The most
prevalent formulation of this

”
relation“ was provided by Awanou [3]:

ctim,...,kn =
∑

|γ|=m

c
tj
(0,...,kn)+γB

m
γ (ṽi,j), 0 ≤ m ≤ r, (2.39)

with γ = (γ0, γ1, . . . , γn) ∈ Rn a multi-index independent of k. Note, that the basis function
Bm
γ (ṽi,j) is a polynomial in terms of the barycentric coordinate ṽi,j with respect to simplex

tj . In other words, location of the point ṽi,j is not within the simplex tj and therefore at
least one of its barycentric coordinates is negative. The geometric interpretation of (2.39)
for various continuity orders C0, C1, C2 and C3 is shown in the figure 2.7. It can be seen
how subsimplices across the edge facets link B-coefficients of both sides. In the figure a
dashed lines represent the left hand side of (2.39) and a solid lines the right hand side.
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Figure 2.7: The spatial interpretation of the structure of the continuity showed for 4
different continuity orders. Three simplices ti, tj and tk are covered by 4th degree B-net.

For example, the C2 continuity condition between simplices tj and ti, plotted with blue, is

formulated for the B-coefficient c
tj
2,2,0 and involves six B-coefficients of the simplex ti which

are used in the right hand side of the expression (2.39). The single B-coefficient for which
the continuity condition is formulated, in this case c

tj
2,2,0, is called the continuity point B-

coefficient and related B-coefficients of the simplex ti are called continuity body as they
form the polynomial body of the continuity condition. The higher is the continuity order
the more B-coefficients are related together. For C0 continuity only B-coefficients located at
the edge facet are taken into the account. The figure 2.7 shows only parts of the continuity
structures for given orders. Per entire edge between simplices tj and ti the full formulation

of the C2 continuity involves continuity points c
tj
2,2,0, c

tj
2,1,1, c

tj
2,0,2 and continuity bodies

related to them. It is clear, that for different continuity orders the number of continuity
conditions is not same. In general, the total number of continuity conditions Rr for Cr

continuity depends on the dimension n, polynomial degree d, and continuity order of a
spline function and is given by following expression:

Rr =

r∑

m=0

(d−m+ n− 1)!

(n− 1)!(d−m)!
, (2.40)

This equation was introduced and proved by de Visser in [9, Theorem 5, page 111]. As the
concepts discussed above are very important for next sections some practical demonstrations
are presented by examples A.4 and A.5.

The formulation of the continuity conditions from (2.39) is valid as long as the orientation
of the B-nets of two neighbouring simplices is very specific, which is the orientation of the
B-nets of ti and tj from the figure 2.7. This kind of orientation is called maximum degree
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symmetric orientation and requires, that the B-coefficient with highest lexicographical sort-
ing order, i.e. cd,0,...,0, should be located at the out of edge vertex. The problem raises due
to the fixed position of the 0 and m constants within the multi-indices of the B-coefficients
in (2.39). An incompleteness of the expression (2.39) is demonstrated by the example A.6.

2.3.2 The reformulation of continuity conditions

As was shown in the previous section, the formulation of the continuity conditions from
(2.39) is not general, and works only in some special situations which are usually not
achievable. The main problem is about the indexing scheme of B-coefficients that produces
invalid results. Therefore some new rules need to be introduced to this indexing scheme.
De Visser [9] provides one solution that is relatively easy to implement and works in any
number of dimensions. This new formulation of continuity conditions is based on insights
gained from the graphical interpretation of the continuity conditions from the figures 2.7
and A.4.

In the beginning some observations should be noticed. First of all, it can be seen from the
figure 2.7 that for a globally indexed B-net, the location of the constant in the multi-index
(i.e. the m and 0) need to be the same as the location of the single non-zero value in the
multi-index of the B-coefficient located at the out of edge vertex. In (2.39) the location of
the constants m and 0 in multi-indices is fixed at the first position and for B-coefficients
cti4,0,0, and c

tj
4,0,0 associated with out of edge vertices the single non-zero value is also located

at the first position. To determine the location of the non-zero value in the multi-index
of the B-coefficient at the out-of-edge vertex the index function based on the global vertex
indexation is introduced as follows:

ρ(vi) = (n+ 2)−
i∑

j=0

kj ,

{
kj = 1 if vj ∈ Vt
kj = 0 if vj /∈ Vt (2.41)

This expression simply gives the order of the vertex within simplex set Vt with respect
to global vertex index. Now, when there is a way to determine the position of the single
non-zero value in multi-indices the tuple function M(w, k) can be defined as follows:

M(m, k) =




(w, k0, k1, . . . , kn−1),
(k0, w, k1, . . . , kn−1),
(k0, k1, . . . , w, kn−1),
(k0, k1, . . . , kn−1, w)


 , |Mi(w, k)| = d−m+ w (2.42)

where the ith multi-index is given by Mi(w, k). Letting w = m, M(w, k) produces all
posible multi-indices of the continuity point B-coefficients, while if w = 0 then M(w, k) +
γ produces all possible multi-indices of the continuity body B-coefficients. De Visser in
[9, Example 14, page 116] provides some step-by-step examples which demonstrate how
are multi-indices actually generated. In this thesis a practical algorithm 1 is proposed
that can be directly implemented, however, one more definition or re-definition of the
expression (2.39) needs to take a place:

ctiMρ(vi,j)
(m,k) =

∑

|γ|=m

c
tj(
Mρ(vj,i)

(0,k)+γ
)Bm

γ (vi,j), 0 ≤ m ≤ r, (2.43)
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with Cr continuity between simplices,Mρ(•)(•) the tuple function from (2.42) and Bm
γ (vi,j)

the Bernstein basis polynomial in terms of the barycentric coordinate of vi,j with respect
to tj . The proof of this expression can be found in [9, Theorem 6, page 118].

2.3.3 The estimation of the smoothness matrix

The algorithm 1 implements an estimation of the so-called smoothness matrix. The smooth-
ness matrix contains all continuity conditions for all edge facets shared by the simplex pairs
in a triangulation. Each row of the smoothness matrix H represents a single continuity
condition from (2.43) equated to zero:

− ctiMρ(vi,j)
(m,k) +

∑

|γ|=m

c
tj(
Mρ(vj,i)

(0,k)+γ
)Bm

γ (vi,j) = 0, 0 ≤ m ≤ r. (2.44)

Formulation of all continuity conditions in a matrix form leads to the following expression:

Hc = 0. (2.45)

The dimension of the smoothness matrix is:

H ∈ R(E·Rr)×(J ·d̂), (2.46)

with E the total number of shared facets in a triangulation, with J the number of simplices,
with Rr from (2.40) and d̂ from (2.23).

An estimation of the smoothness matrix is proposed by the algorithm 1. In the following,
this algorithm will be discussed step by step. The input of the algorithm is a valid triangu-
lation T ∈ RJ×nand a continuity order Cr. It is assumed that every row in the triangulation
T represents a tuple of vertices of a single simplex. These vertices are ordered according
to a global indexation rule.

The algorithm 1 starts with the allocation of the smoothness matrix H, the dimensions
of which are specified by (2.46). After that, on the line 2 of the algorithm, the function
edgeAttachments is called. This function finds all possible simplex edges in the triangula-
tion T that are shared by two neighbouring simplices. These simplex pairs are then returned
and saved in the variable AT . In the next part of the algorithm, the continuity conditions
are calculated per-continuity order i.e. continuity conditions C0 are calculated for all edge
facets, then the continuity conditions of order C1 again for all edges, etc. For that purpose,
two consecutive loops are used. The first one listed on the line 3 is running through the
continuity orders, while the second one on the line 4 iterates over all simplex pairs in the set
AT . Now, the continuity conditions of a given order m for an edge facet between simplices
ti and tj need to be calculated. Firstly, the out-of-edge vertex vi,j is found. This is done
by the function outofedgeV ertex(ti, tj) listed on the line 5. This function simply applies
the symmetric set difference operator on an input simplex pair. The symmetric operator ∆
of two sets A, B is defined as follows:

A∆B = (A \B) ∪ (B \A). (2.47)

The notation of out-of-edge vertices is the same as in (2.37). The simplex pair defines two
out-of-edge vertices, one for every simplex, so the result is a pair of the vertices.
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Algorithm 1 The estimation of the smoothness matrix H

Require: T , Cr
1: H ∈ R(E·Rr)×(J ·d̂)

2: AT = edgeAttachments(T )
3: for m = 0 . . . r do
4: for all simplex pairs p = (ti, tj) ∈ AT do
5: (vi,j ,vj,i) = outofedgeVertices(ti, tj)
6: Cpoint = ctiMρ(vi,j)

(m,k), |Mρ(vi,j)(m, k)| = d

7: Cbody = c
tj
Mρ(vj,i)

(0,k)+γ , |Mρ(vj,i)(0, k)| = d−m, |γ| = m

8: h ∈ RJ ·d̂
9: for all continuity point cp ∈ Cpoint do

10: Get associated continuity body cb ∈ Cbody
11: Find index in H matrix for cp and indices for cb
12: h[icpoint] = −1
13: h[icbody] = [Bm

γ (vi,j)]
14: end for
15: H(end) = h
16: end for
17: end for

Everything is in order to calculate the continuity conditions as were defined in (2.43). A
note must be made at this point as the values of B-coefficients are not know yet. The
smoothness matrix does not contain B-coefficients values but rather the multipliers based
on the continuity conditions, see (2.45). Therefore, only the location of every B-coefficient
within the globally indexed B-net is needed. As long as the orientation rule from the
section 2.1.5 is used, the location of every B-coefficient is unambiguously determined by
its multi-index. This index is then used in the smoothness matrix. In each row of the
smoothness matrix H, every single B-coefficient of a global B-net is represented exactly by
one element. The dimensionality of a single row of the smoothness matrix then is h ∈ RJ ·d̂.

On the line 6 of the algorithm, the B-coefficients of the continuity point are estimated.
The tuple function from (2.42) together with the index function (2.41) will generate all
possible valid multi-indices. On the next line the situation is quite different. The tuple
and the index function are also used but they do not produce directly valid multi-indices
of the continuity body B-coefficients, and they even can not, as the sum of all elements of
the multi-index is in this case equal to (d−m). By the definition from (2.20), the 1-norm
of the multi-index must be equal to the polynomial degree d. Therefore, an independent
multi-index permutation γ is introduced. The number of the continuity body B-coefficients
for a single continuity point depends directly on the total number of valid permutations |γ|.

Having both, the continuity point B-coefficients as well as the continuity body B-coefficients,
the corresponding position in the row vector h can be found. From (2.44) can be observed
that the continuity point is a negative which corresponds to the line 12 of the algorithm.
On the line 13, the continuity body B-coefficients are scaled by Bernstein basis polynomial
or vice versa. This corresponds to the right hand side of the (2.43). The polynomial order
of the Bernstein polynomial is equal to the actual continuity order m and is defined in
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Cr conditions non-zero elem. elements ×106 spareness
C0 3 680 7 360 ≈ 28 97.4 %
C1 6 624 17 216 ≈ 51 96.6 %
C2 8 832 28 352 ≈ 68 95.8 %
C3 10 304 38 784 ≈ 79 95.1 %

Table 2.2: Some important characteristics of the smoothness matrix. The spline space
assumed in all four cases is Sr4(T512)

terms of the barycentric coordinate vi,j with respect to the simplex tj . After all, the row
vector h is pushed into the end of the resulting smoothness matrix H.

In the figure 2.8 the smoothness matrices for C2 and C3 continuities of the spline function of
the polynomial degree 4 are plotted. In these graphs every non-zero element of the smooth-
ness matrix is visualized by a blue dot. The stripes from the top to the bottom correspond
to the individual continuity conditions of a given order. The left hand side figure 2.8(a)
shows three big stripes. The first at the top represents the continuity contritions of the
order C0, the second one in the middle is for continuity order C1, and the third one for the
order C3. Each stripe consists of two lines. This is caused by the index distance between
the simplices in a row of the smoothness matrix. The right hand side of the figure 2.8 shows
the same situation but now the continuity conditions are defined up to the order C3 and
therefore four big stripes are present. As can be seen in the table 2.2, the spareness factor
of the smoothness matrix is very high and is slightly decreasing with higher continuity or-
der. In the table also some other important values are shown. From the left it is the total
number of continuity condition i.e. the number of rows of the smoothness matrix, then
the number of non-zero elements of the smoothness matrix, and finally, the total number
of all elements in the smoothness matrix, which is in these cases equal to tens of millions.
After the smoothness matrix is known, it is used as a linear equality constraint in linear
regression scheme, therefore H needs to be of full rank. As Lai and Schumaker observed
in [15] the rank deficiency of H is caused by some redundant continuity condition that are
easily produced even for small and simple triangulations and low continuity orders. How-
ever, the construction of a smoothness matrix of a full rank is not a trivial task. Especially
during the implementation part this step would be critical, therefore some optimizations
are needed.

In the figure 2.9 the spline function of 4th degree for various continuity orders is shown. The
objective function that is being approximated is well known as the Mexican Hat function.
The figure shows the effect of the smoothness. One important behaviour that need to be
recognized is a global smoothing effect caused by the continuity conditions. With increasing
continuity order the global smoothing effect is more and more significant. By comparing C0

and C3 this behaviour is evident. As a result, with higher continuity order of the simplex
spline function, the approximation power of the function is decreasing while a smoothing of
the function is getting stronger. The first two C0 and C1 continuous splines approximate
the objective function quite sufficiently, values of the C3 spline are much out of the range
as there are fewer degrees of freedom available.
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(a) The smoothness matrix H3 ∈ R8 832×7 680 of the
spline function s3 ∈ S2
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(b) The smoothness matrix H4 ∈ R10 304×7 680 of
the spline function s4 ∈ S3

4 (T512)

Figure 2.8: The visualization of the smoothness matrices of two different continuity orders.
This figure was plotted by spy function in MATLAB.
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(a) Spline function s1 ∈ S0
4 (b) Spline function s2 ∈ S1

4

(c) Spline function s3 ∈ S2
4 (d) Spline function s4 ∈ S3

4

Figure 2.9: The simplex spline function of various degree. The input dataset X contains
|X | = 10 000 points.
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2.4 A linear regression scheme

After the triangulation and the smoothness matrix are known, all B-coefficients of all B-form
polynomials defined on every simplex need to be calculated. In this section, the generalized
linear regression scheme for estimation of B-coefficients is provided. This regression form
allows the formulation of B-form basis polynomials of the simplex spline function in a form
of a standard regression matrix. The smoothness matrix then acts as an linear equality
constraint. This method was proposed by authors of [8]. However, as the mathematical
concept of this problem is very complex only some important parts had been chosen.

2.4.1 The linear regression using B-form polynomial

In this section the formulation of a standard linear regression scheme using the B-form
polynomials is introduced. It is assumed that the dimension, the triangulation and the
spline space of the problem are already known according to the previous sections as well as
the input dataset of all observations. All observations are in a form of vector-scalar pairs,
where the vector defines input parameters of the spline function while the response of the
function or the output is defined by the scalar value. For example, an input dataset of a
terrain data approximation problem contains two elements of latitude and longitude in a
vector part while the scalar value gives the altitude. Note that the number of elements in
a vector part of a pair is always equal to the dimension less one.

In general, the elements of a vector-scalar pair (x(i), y(i)) are related as:

y(i) = f(x(i)) + r(i), i = 1, 2, . . . N , (2.48)

with f an unknown function and r(i) a residual term. Now, given a triangulation consisting
of J simplicies and given polynomial degree d, an unknown function f can be substituted
by already well known simplex spline function as follows:

y(i) =
J∑

j=1

∑

|k|=d

c
tj
k B

d
k(b(i)) + r(i), (2.49)

with b(i) = b(x(i)) the barycentric coordinate of x(i) with respect to the simplex tj . For
a single datapoint x(i) expression (2.49) is evaluated with respect to every simplex in a
triangulation. Eventually we want to find a value of (2.49) only with respect to the simplex
in which the point x(i) is located. In order to obtain a per-simplex interpolation scheme,
a simplex membership operator δx,Tj need to be introduced:

δx,Tj =

{
1 if x ∈ Tj
0 if x /∈ Tj (2.50)

with x an arbitrary point and with Tj a jth simplex of a triangulation. Expression (2.50)
returns 1 if data point x is located within a simplex Tj . This membership function is now
included into (2.49) which leads to following:

y(i) =

J∑

j=1


δx,Tj

∑

|k|=d

c
tj
k B

d
k(b(i))


+ r(i). (2.51)
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The expression (2.51) is an entirely valid linear regression structure, however, a matrix
formulation is more usual. For that, a vector formulation of a dth degree B-form polynomial
from (2.27) is derived in following lines. Firstly, a vector of lexicographically sorted basis
polynomial terms of a simplex tj is:

Bd
tj (i) =

[
B
d,tj
k (b(i))

]
|k|=d

∈ R1×d̂. (2.52)

Using expression (2.52) the full triangulation basis function vector is defined as follows:

Bd(i) =
[
Bd
t1(i),Bd

t2(i), . . . ,Bd
tJ

(i)
]
∈ R1×J ·d̂, (2.53)

with J the number of simplices of a triangulation. The per-simplex diagonal matrix form
of a membership operator is defined as:

Dtj (i) =
[(
δx,Tj

)
q,q

]d̂
q=1
∈ Rd̂×d̂. (2.54)

The block diagonal full-triangulation data membership matrix D(i) for a single observation
is a matrix with Dtj (i) blocks on the main diagonal:

D(i) =
[(
Dtj (i)

)
j,j

]J
j=1
∈ R(J ·d̂)×(J ·d̂). (2.55)

Using all these equations together, the matrix form of a B-form simplex spline function for
a single observation i defined on a complete triangulation is:

P (b(i)) = Bd(i) ·D(i) · c, (2.56)

with c the lexicographically sorted B-coefficient and with P (b(i)) an arbitrary B-form poly-
nomial. Another assumption can be made, let X(i) be a single row in the full-triangulation
resression matrix for all observations as follows:

X(i) = Bd(i) ·D(i) ∈ R1×J ·d̂. (2.57)

The expression (2.56) can be rewritten as:

y(i) = X(i) · c + r(i). (2.58)

And now the final step is:
Y = Xc + r ∈ RN×1, (2.59)

that is a well-known formulation of the linear regression scheme. There are many methods
to solve (2.59), however, most used is a standard least square estimator.

2.4.2 The equality constrained least squares estimator

The outcome of the previous section was a formulation of a simplex spline function in a
form of the linear regression scheme. In this section an estimator that can be used to solve
the linear regression model is described. As there are equality constraints in the form of the
smoothness matrix, the so-called linear equality-constrained least squares (LSE) approach
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needs to be used. This optimization method is well known in literature [16, Chapter 20].
The following lines will provide a short mathematical concept of LSE.

In the beginning, the p-norm of a vector x need to be introduced as follows:

‖x‖p =

(∑

i∈N
|xi|p

) 1
p

, p ≥ 1. (2.60)

With LSE is used the case of p = 2 which is also called the Euclidean norm or the Euclidean
distance. Now, the LSE problem can be stated as follows:

min
c
‖Xc−Y‖2 subject to Hc = 0, (2.61)

with dimensions assumed as follows:

Y ∈ RN×1,X ∈ RN×(J ·d̂),H ∈ R(E·Rr)×(J ·d̂),0 ∈ R(E·Rr)×1. (2.62)

In the following will be assumed that n = J · d̂ and p = E ·Rr. It is important to mention,
that the expression (2.61) has one unique solution if and only if the smoothness matrix is
of a full rank i.e. rank(H) = p.

From the literature, the estimation of the vector c of regression coefficients, or in this case
of B-coefficients starts by calculating the QR-factorization of H>:

H> = Q

[
R
0

]
with Q ∈ Rn×n,R ∈ Rp×p,0 ∈ R(n−p)×p, (2.63)

where the matrix Q is an orthogonal (unitary) matrix while the matrix R is upper triangular
and non-singular. The QR-decomposition method also introduces following expressions:

AQ = [A1A2] , (2.64)

Q>c =

[
y
z

]
. (2.65)

After the substitution this gives:

Hc =

(
Q

[
R
0

])>
c =

[
R>0

]
Q>c =

[
R>0

] [y
z

]
= R>y. (2.66)

Using the formulation QQ> = I:

Xc = (XQ)
(
Q>c

)
=
[
A1A2

] [y
z

]
= A1y + A2z. (2.67)

So the problem becomes:

min ‖A1y + A2z−Y‖2 subject to R>y = 0, (2.68)

with y determined directly from the equality constraints, and then inserted into the LSE
problem as follows:

min ‖A2z− (Y −A1y) ‖2. (2.69)
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This leads to the final expression in this part giving the vector z which can be used to find
the answer. Using (2.65):

c = Q

[
y
z

]
. (2.70)

The implementation of LSE estimator can be found for example in MATLAB Optimiza-
tion toolbox. The function is named lsqlin and provides many features e.g inequality
constraints, bound constraints, etc.

2.5 The basic operations with simplex splines

The multivariate simplex spline theory as defined in the previous chapters is truly an
effective approximation tool. In this section some basic operations with the simplex spline
will be presented. For the purpose of this thesis the differential operators are especially
important, however, many other e.g. sums, integrals or inner products of the B-form
polynomials can be found in literature [15, 9].

In the first section, the concept of de Casteljau recursion in introduced. The important
structure in the definitions of the differential operators on the B-form polynomials is the
so-called de Casteljau one-step matrix derived in the section 2.5.3. In the final section 2.5.4,
the one-step matrix is used in the definition of differential operators such as the directional
derivative, the gradient, Laplacian and the divergence.

2.5.1 The De Casteljau algorithm

The De Casteljau algorithm is a recursive method to evaluate polynomials in Bernstein
form named after its inventor Paul de Calsteljau. The algorithm was invented in 1959 when
the computing performance of computers of that times was very low. The De Casteljau
algorithm was widely used in many areas of industry and research. Today, however, the
performance of computers reached the level when it is faster to evaluate the Bernstein
polynomial directly through ALU of a processor. Despite of this, many operations on the
simplex splines are defined with the use of the De Casteljau algorithm concept and therefore
some basics of this method are presented.

A B-form polynomial can be expressed in terms of the mth de Casteljau iteration as follows:

p(b) =
∑

|k|=d−m

c
(m)
k (b)Bd−m

k (b), (2.71)

in which the B-coefficient of iteration m is related to the B-coefficient of iteration m− 1 as
follows:

c
(m)
k (b) =

∑

|γ|=1

bγc
(m−1)
k+γ (b),m ≤ d, (2.72)

with c
(0)
k (b) = ck and with bγ = bγ0bγ1 . . . bγn a first order polynomial defined in terms of

the barycentric coordinate b. The final value of the polynomial at the evaluation point b is
c

(d)
0 (b), which is the last iteration of de Casteljau algorithm. For the practical demostration

of the de Casteljau recursion see A.7.
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2.5.2 A multi-degree formulation of the de Casteljau recursion

The de Casteljau recursion in a multi-degree form was presented in [9, 8]. Now the derivation
of this form will be repeated here as this topic is essential for the calculation of derivatives
of the multivariate simplex spline function.

The polynomial basis function Bd
k(b) from (2.24) can be expanded as follows:

Bd
k(b) = b0Bk0−1,k1,...,kn(b) + b1Bk0,k1−1,...,kn(b) + · · ·+

+ bnBk0,k1,...,kn−1(b), |k| = d

=
∑

|γ|=1

bγB
d−1
k−γ(b), (2.73)

with γ = (γ0, γ1, . . . , γn) a multi-index dependent of k as follows:

|γ| = d− |k|. (2.74)

In general, for any degree m ≤ d a single basis function term is:

Bd
k(b) = Pmγ (b)Bd−m

k0−m,k1,...,kn(b) + Pmγ (b)Bd−m
k0,k1−m,...,kn(b) + · · ·+

+ Pmγ (b)Bd−m
k0,k1,...,kn−m(b)

=
∑

|γ|=m

Pmγ (b)Bd−m
k−γ (b), (2.75)

with the mth degree basis function Pmγ (b) defined as follows:

Pmγ (b) =
m!

γ!
bmγ . (2.76)

This formulation produces also polynomial terms with negative multi-indices that are by
definition equal to zero as follows:

Bd−m
k−γ (b) = 0 if l ∈ (k − γ) ∧ l < 0. (2.77)

After substitution of (2.75) into (2.27) we have following expression:

p(b) =
∑

|k|=d


ck

∑

|γ|=m

Pmγ (b)Bd−m
k−γ (b)


 . (2.78)

This expression still produces negative multi-indicise, however, letting |k| = d − m the
reformulation is possible as follows:

p(b) =
∑

|k|=d−m

∑

|γ|=m

ck+γP
m
γ (b)Bd−m

k (b). (2.79)

Finally, the multi-degree de Casteljau algorithm, which relates the B-coefficients of intera-
tion q with those of iteration m+ q is:

c
(q+m)
k (b) =

∑

|γ|=m

Pmγ (b)c
(q)
k+γ(b), q ≥ 0, (2.80)

with c
(0)
k (b) = ck. This theorem was proposed and proved in [9].
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2.5.3 A one-step de Casteljau matrix

The definition of a derivative of the simplex spline function requires one more concept
that is discussed in the following paragraphs. The one-step matrix form of the algorithm
generalizes the de Casteljau algorithm and is defined in a matrix form. The de Casteljau
matrix is a function of degree m, which reduces a set of B-coefficients of a degree d into a
set of B-coefficients of degree d−m, is defined as follows:

Pd,d−m(b) ∈ Rd̂
∗×d̂, (2.81)

with d̂∗ the total number of basis function terms for degree d−m and dimension n:

d̂∗ =
(d−m+ n)!

(d−m)!n!
. (2.82)

The de Casteljau matrix has the following structure:
[
Pd,d−m(b)

]
i(k),i(θ)

= Pmθ−k(b), |θ| = d, |k| = d−m, (2.83)

with i(k) and i(θ) index functions for the rows and columns of Pd,d−m(b) respectively. The
index function i(k) for the rows and the index function i(θ) for the columns are defined as
follows:

i(k) =
∑

|γ|=d−m

1, γ ≤ k, |k| = d−m (2.84)

i(θ) =
∑

|γ|=d

1, γ ≤ θ, |θ| = d. (2.85)

In his paper [9] De Visser demonstrated the calculation of the one-step de Casteljau matrix
by an easy example. As this part is essential in many basic calculations with simplex splines
the demonstration example is provided by A.8.

2.5.4 The directional derivatives of the B-form polynomials

As will be shown now, the de Casteljau matrix provides a very elegant and simple formu-
lation of the directional derivatives of B-form polynomials. This concept was well explored
by [15].

The directional derivative is defined for a differentiable function f(x) with x ∈ Rn and for
a directional vector u ∈ Rn. Now, at the point x the directional derivative can be written
as:

Duf(x) =
d

dt
f(x + tu), (2.86)

with both coordinates x and u in the Cartesian form. The transformation of a single
point from the Cartesian coordinate system to the barycentric system was discussed in the
section 2.1.2, and works well. However, the same transformation of a directional vector u
will not work. Instead of that, the simple definition of the vector can be used. Let x1 and x2
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be two points in Euclidean space Rn. After the transformation of them to the barycentric
system the directional vector in barycentric coordinates is defined as follows:

b(u) = a = b(x2)− b(x1) ∈ Rn+1, (2.87)

with b(x) the transformation from Cartesian coordinate system to barycentric one.

From the literature, the mth derivative of the B-form polynomial p(b) in the direction u
can be stated as follows:

Dm
u p(b) =

d!

(d−m)!
Bd−m(b)Pd,d−m(a) · ctj , (2.88)

with Pd−m(a) the de Casteljau matrix from (2.83) of degree d to d−m expressed in terms
of the directional barycentric vector a = b(u), with Bd−m(b) the vector form of the basis
polynomials, and with ctj the vector of B-coefficients for a single simplex tj .

The theorem (2.88) was proved by de Visser in his paper [9, Theorem 4, page 103] where
an easy to reproduce example can be found as well.

After the derivation of the B-form polynomial is known, the formulation of other differential
operator is very easy as the formal definition can be used.

The gradient of a spline function is given by:

∇p(b(x))ti =
(
D1
x1p(b(x))tj , D

1
x2p(b(x))tj , . . . , D

1
xnp(b(x))tj

)
(2.89)

=dBd−1(b) ·
(
Pd,d−1(a1) · ctj ,Pd,d−1(a2) · ctj , . . . ,

Pd,d−1(an) · ctj
)
,

with a1, . . . ,an the barycentric directional vectors along the axis respectively.

The Laplacian operator is defined as follows:

∆p(b(x))ti =
(
D2
x1p(b(x))tj , D

2
x2p(b(x))tj , . . . , D

2
xnp(b(x))tj

)
(2.90)

=
d!

(d− 2)!
Bd−2(b) ·

(
Pd,d−2(a1) · ctj ,Pd,d−2(a2) · ctj , . . . ,

Pd,d−2(an) · ctj
)
.

The divergence operator:

div p(b(x))ti =
(
D1
x1p(b(x))tj +D1

x2p(b(x))tj + · · ·+D1
xnp(b(x))tj

)
(2.91)

=dBd−1(b) ·
(
Pd,d−1(a1) · ctj + Pd,d−1(a2) · ctj + . . .+

+ Pd,d−1(an) · ctj
)
.
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Chapter 3

The numerical experiments with
the simplex splines

In this section some essential properties of multivariate simplex splines are demonstrated
by various numerical experiments. The accuracy of the interpolation by simplex splines
depends on many factors. For example, in the section 2.3.3 was written that the approxi-
mation power of the simplex splines is decreasing with higher continuity order. This is in
general very much true, however, not always the case. The polynomial degree can be set
to higher value to increase the precision of the interpolation as well as higher number of
elements in input dataset can provide better precision. Also the different number of sim-
plices in the triangulation may have a positive or a negative effect. In all these cases, the
estimation of the resulting simplex spine function or also so-called the training process takes
non-zero amount of time. The computational cost depends on many factors and sometimes
may become critical.

The algorithm used in following experiments was implemented in MATLAB, therefore the
results, especially the computational time, must be understood in the context of this pro-
gramming language. It is true that the implementation in a different low-level language
would provide different characteristics and in fact better (faster) results. However, the eval-
uation of the simplex spline function model needs to be as fast as possible. Therefore, this
part of the algorithm was implemented in C++ and is highly optimized for computational
speed.

In the beginning, some methods are proposed in the section 3.1 for assessing the quality of
the multivariate simplex spline models. These methods provide a unified testing tool of the
spline functions and are used in the following sections. An interpolation of a simple bivariate
function is presented in the section 3.2. In this section the parameters are described that
need to be set before any training process of the simplex spline model as well as their effects
on the resulting model.

One of the most important features of the multivariate simplex splines is the ability of data
approximation in an n-dimensional space. The visualization of the 4 and higher dimensional
simplex spline function is a tricky task, however, in the section 3.3, the interpolation of a
tri-variate simplex spline function is shown. With higher polynomial degree the estimation
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of the simplex spline function is becoming slower and therefore, some complexity issues are
also discussed in this section. Later, in section 3.4 the topic of the terrain data modelling
is discussed and demonstrated on a real terrain dataset.

3.1 Model quality assessment

To compare the precision of the simplex splines models, the objective comparative method
needs to be introduced. In this section some simple but powerful techniques are described.

As the linear regression scheme from 2.4 is used to interpolate input dataset it is possible
to asses the quality of the simplex spline model directly by the residue r from (2.59) which
leads to the following expression:

r = Y −Xc. (3.1)

The model residual analysis is the analysis of the difference between the observations and the
spline model output at the same locations. To statistically measure the varying magnitude
of the residual, the root mean square (RMS) method can be used. The formulation of RMS
for this case is as follows:

RMS(r) =

√√√√ 1

N

N∑

i=1

r2
i , (3.2)

with N = J · d̂ the total number of B-coefficients of simplex spline function and ri the scalar
value of a residue at location defined by the corresponding B-coefficient.

Another useful metric for assessment of the global quality of a spline model is based on the
variances of all B-coefficients in a spline function. At the first in this method the variances
of all B-coefficients located in each single simplex are estimated. After that, the mean of
all these variances is calculated as follows:

V ar(c) =
1

J

J∑

i=1

var(ci), (3.3)

with J the number of the simplices in the triangulation and ci the vector of B-coefficients
for a simplex i. This method will be used to analyse the dependency of B-coefficients in
various spline spaces.

3.2 The interpolation of bivariate function

Using the multivariate simplex splines as an approximation tool, the accuracy of the mod-
eled data and the interpolation speed are affected by many factors. In the following list the
most important factors are mentioned:

• the total number of the elements of the input dataset,

• the degree of the polynomials defined on every simplex,
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• the continuity order between adjoining polynomials,

• the number of the simplices of the triangulation.

In this section, all these parameters will be analysed very closely to get a good overview of
the simplex splines method.

In the beginning, the section 3.2.1 provides the formulation of an objective function. The
objective function is then used to generate the input dataset. In the following sections
3.2.2, 3.2.3 and 3.2.4, the input parameters and their impact on a resulting spline model
are discussed step-by-step.

3.2.1 The objective function

The behaviour of the multivariate simplex splines will be in this case demonstrated on a
very simple Mexican hat function defined as follows:

O(x1, x2) = sinc

(
h ·
√(x1

π

)2
+
(x2

π

)2
)

with sinc(x) =
sin(x)

x
, (3.4)

and with h = 5 the scale factor. This function is suitable for this example as the difference
of the approximation in various spline spaces is significant and the 1st and the 2nd order
derivatives are in general well known. In the figure 3.1 the objective function O is plotted
along with its first and second order derivatives. The first row 3.1(a) shows a projection to
the 2-dimensional plane while the values of the function are represented by different colors.
The contours of the function are clearly visible in this figure. The second row 3.1(b) shows
usual 3-dimensional visualization.

In the following, all input datasets are generated by the uniform random number generator.

3.2.2 Effects of the triangulation

The shape and the number of simplices of the triangulation have a strong impact on a
resulting simplex spline model. First of all, all simplices of the triangulation should be
well-defined as was described in the section 2.2.1. In order to obtain a good accuracy of the
approximation on a badly-defined simplex, a simplex polynomial must be of a high degree
– in general the degree must be much higher than it would be with a well-defined simplex.
This is mainly caused by the fact, that in order to obtain good approximation on a sliver
simplex, the associated simplex polynomial needs more available degrees of freedom and
therefore needs to be of a higher degree.

Another important task is to find out an optimal number of simplices of a triangulation.
The number of simplices can affect the speed of the training process as well as the quality
of a simplex spline model itself. The higher number of simplices of a triangulation, the
longer it takes to approximate an input dataset. However, in some cases more simplices
may increase an accuracy of a simplex spline model. In the figure 3.2 three simplex spline
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(a) Projection from 3 to 2 dimensional plane.

(b) 3D visualization

Figure 3.1: Objective Mexican hat function O (3.4). From the right hand side the original

function followed by the first order
dO

dx
and the second order

d2O

dx2
derivatives.

functions of the same spline space S0
2 are plotted. The only difference between these spline

functions is a number of simplices of the triangulation they are defined on. Each simplex is
interpolated by a 2nd degree polynomial i.e. quadratic function. The input dataset which
contains 1 000 randomly generated elements, is visualized by red dots. The first triangu-
lation T8, 3.2(a), contains 8 simplices. Every simplex contains enough input points so the
system from (2.59) is overdetermined, however, the approximation is not very accurate.
Simplices of the triangulation are relatively large and as all of them are interpolated by
pieces of a quadratic function, some shapes of the Mexican hat function cannot be suffi-
ciently modeled. Therefore, in order to obtain higher accuracy of the simplex spline model
from the figure 3.2(a)(b), more degrees of freedom of simplex polynomial must be available,
thus, the higher polynomial order of the simplex spline function is needed.

Second row of the figure 3.2 shows the same case as the previous one, but the triangulation
T32 consists of 32 simplices. Four time more quadratic polynomial pieces participate on the
resulting simplex spline model, so the accuracy of the spline function is much higher what
corresponds with the observation 3.2(d). In the last case 3.2(e)(f) the triangulation T128

contains again 4-times more simplices than the previous one and the same pattern of the
observation is still followed. Now the resulting simplex spline function 3.2(f) consists of
128 quadratic polynomial pieces, therefore the shape of the model is much more accurate
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according to the objective function from (3.4).

It could seem, that in order to increase an exactness of the simplex spline model, increasing
the number of simplices of a triangulation would be enough. In the example from 3.2 it
is very much true, however, not always the case. As was mentioned before, to interpolate
an input dataset by the linear least square estimator from (2.61) the system has to be
overdetermined to find an approximate solution, that means the number of points within
every simplex has to be greater than or equal to the number of independent variables of an
interpolation polynomial. In the multivariate simplex splines theory, independent variables
of a polynomial are well known B-coefficients. The number of them was defined by (2.23),
in this case d̂ = 6. If this condition is not satisfied, resulting model will become unstable as
the one from the figure 3.3. It can be seen that many simplices do not contain any points
of the input dataset, so the corresponding polynomials are not bounded by any value, but
by continuity conditions across the edges only. The result 3.3(b) is clearly useless.

In the table 3.1 some observed values for the different kinds of metrics are listed. The
first column represents triangulations from figures 3.2 and 3.3 with the total number of
simplices of a triangulation denoted as J . The second column shows the precision of each
simplex spline model. The best precision of a model was obtained for the triangulation T128

while the worst for the triangulation T512. This corresponds with observations from the
figures 3.2 and 3.3. In the third column a relative number of points within every simplex is
listed. This number is calculated as the number of points of the input dataset, in this case
|X | = 1 000, divided by the number of simplices J . As mentioned before, the 2nd degree
simplex spline function consists of quadratic polynomial pieces, therefore, at least two d̂ = 6
points within each simplex are needed. In the case of T512 this condition is corrupted. The
last column simply shows the computational time needed to train a spline model. It can
be observed, that with the increasing number of simplices of the triangulation the time
spent by training process of the model is growing rapidly. This is caused mainly by the
smoothness matrix. The more simplices of the triangulation, the more continuity conditions
need to be calculated. The smoothness matrix is then much larger and the estimation of
B-coefficients by the least squares takes more computational time.

Triangulation TJ RSM |X |/J time
T8 0.0820 125.00 0.1120
T32 0.0442 31.25 0.3689
T128 0.0083 7.81 4.0941
T512 1.6364 1.95 77.3013

Table 3.1: Overview of some useful metrics for different triangulations TJ , with J the
number of simplices of a triangulation.
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(e) Triangulation T128 (f) s3 ∈ S0
2 (T128)

Figure 3.2: Demonstration of simplex splines models defined on triangulations with dif-
ferent number of simplices. In this figure all simplex spline function are of 2nd degree and
of 0 continuity order.
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(a) Triangulation T512 (b) s4 ∈ S0
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Figure 3.3: Unstable simplex spline function. Simplices of the triangulation T512 do not
contain enough input points. In this case the minimal number of points contained by each
simplex is d̂ = 6.

3.2.3 Effects of the polynomial degree

The values of the input dataset are interpolated on every single simplex by a piece of
a polynomial function, therefore, a whole simplex spline function is a piecewise defined
polynomial. A degree of a simplex spline function determines a degree of all polynomial
pieces that are associated with every simplex. The higher the degree of a polynomial
function, the more degrees of freedom are available to interpolate points of the input dataset
and higher precision of the approximation is obtained. In the figure 3.4 the simplex spline
function for various polynomial degrees is shown. Note, that the triangulation remains the
same in all four cases as well as the input data set |X | = 10 000. In the first plot 3.4(a),
the interpolation is made only by simple planes as the degree is set to 1. In next two
plots 3.4(b), 3.4(c) the simplex spline model is getting more and more accurate. And
finally, the plot 3.4(d) with polynomial degree 7 shows the simplex spline model having the
error value very low.

While the polynomial degree is increasing, the computational time required to train the
simplex spline model is increasing as well. This fact is shown in the figure 3.5 by the blue
line. The red line of the same plot shows the RMS of the residue for different polynomial
degrees. Note that the logarithm was used to scale the plots.

3.2.4 Effects of the smoothness

So far the continuity order was always supposed to be equal to zero, therefore, the continuity
of the simplex spline function was enforced only across the simplex edges. In this section,
the effects of the continuity conditions on a resulting spline model will be explained in a
very detail.
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(a) Spline function s1 ∈ S0
1 (T32) (b) Spline function s2 ∈ S0

2 (T32)

(c) Spline function s3 ∈ S0
3 (T32) (d) Spline function s4 ∈ S0

7 (T32)

Figure 3.4: Simplex spline function of various polynomial degree. The input dataset X
contains |X | = 10 000 points.

Recalling back from the chapter 2.3, the smoothness constraints in a form of continuity
conditions link B-coefficients across a shared edge of two neighbouring simplices. The
number of B-coefficients involved in a definition of a continuity conditions depends on a
continuity order Cr (2.40). If the derivatives up to the given order of a simplex spline
function are required, continuity conditions have to be used. For example, a simplex spline
function of the continuity order C0 is differentiable up to order 0, that is, the continuity of
a original function is satisfied. This is the case of all functions in the figures 3.2 and 3.4.
Clearly, these functions are continuous, but the first order derivative is discontinuous and
therefore the function is not differentiable. A spline function of the C1 continuity order is
then differentiable up to the order 1, a function of continuity order C2 up to the order 2,
etc.

A powerful method for visually inspecting the continuity of a simplex spline function is
based on the divergence operator defined in (2.91). A visualisation of the divergence vector
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Figure 3.5: Computational time (red) and resulting RMS of the residue (blue) of the
simplex spline model for various polynomial degrees.

field may show some discontinuities that do not need to be apparent from a normal surface
plot. In the left hand plots of the figure 3.6 three simplex spline functions differing only in
continuity order are shown. The right hand side plots of the same figure show the visual-
ization of a divergence vector field of each function. Beginning from the top, plots 3.6(a)(b)
represent the simplex spline model of the continuity C0. The surface plot 3.6(a) looks quite
smooth and any discontinuities are not clear. The divergence operator 3.6(b), otherwise,
shows strong discontinuities that coincide with simplex edges. The second row of the same
figure shows the similar situation with the continuity order equal to C1. It can be seen
in 3.6(d), that isolines are smoother which corresponds with higher continuity order. De-
spite of that, very small discontinuities that again coincide with simplex edges still remain.
As the expression from (2.43) is correct, the reason of this strange behaviour is inaccuracy
of computer calculations. Especially round-off errors may have a strong impact on a result
of a computation. The last two plots 3.6(e) and 3.6(f) represent the simplex spline function
of C2 continuity order. The discontinuities across the simplex edges are almost gone, while
the precision of the interpolation is still good.

As mentioned in the chapter 2.3 and then demonstrated by the figure 2.9, with increasing
continuity order the approximation power of a simplex spline function is being reduced. This
effect is the consequence of the loss of degrees of freedom of interpolation polynomial caused
by continuity conditions. Another, more exact visualization of this behaviour is provided
by the figure 3.7(a). In order to get a better overview, a number of simple spline models
in various spline spaces were trained. By words, there are 5 different continuity orders
together with 10 different polynomial degrees that makes 40 various spline spaces. Note
please, in the figure, the plot of the continuity order Cr starts always from the polynomial
degree d = r + 1. The y-axis represents the residual RMS. It can be seen that while the
polynomial degree is increasing, the residual RMS is being reduced and converges to the
zero value, as expected. From the graph 3.7(a) also another important observation can be
made. In order to obtain a good accuracy of approximation, the continuity order Cr and
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polynomial degree of the simplex spline function d should satisfy the condition as follows:

d− r > 3. (3.5)

For example, the residual RMS of the spline model S1
d in the figure 3.7(a) is decreasing

rapidly for d = 2 . . . 4. For higher d > 4 polynomial degrees, however, the residual error is
slowly getting close to zero.

Another useful measurement of the quality of a simplex spline model was proposed by
(3.3). The figure 3.7(b) shows the mean of variances of all B-coefficients located in each
simplex of the spline function. The spline spaces are the same as in the previous case.
According to the graph, the mean variance of B-coefficients for low polynomial degrees
depends heavily on the continuity order. For higher degrees though, the variances are more
and more stable. This can be explained as follows. After the polynomial degree of simplex
spline function is high enough to interpolate input dataset with very low error the shape of
the function remains the same also for even higher degrees and therefore, for a given degree
d the variance of B-coefficients remains the same regardless of the continuity order as long
as the condition from (3.5) is satisfied.

47



(a) Spline function s1 ∈ S0
5 (T32)

x
1

x
2

 

 

−2 −1 0 1 2

−2

−1

0

1

2

−15

−10

−5

0

5

10

(b) div s1

(c) Spline function s2 ∈ S1
5 (T32)

x
1

x
2

 

 

−2 −1 0 1 2

−2

−1

0

1

2

−15

−10

−5

0

5

10

(d) div s2

(e) Spline function s3 ∈ S2
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Figure 3.6: Three simplex spline functions of variout continuity order Cr and visualisation
of associated divergence operators. Note, the isolines are smoother with higher continuity
order.
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Figure 3.7: The residual RMS and mean variances of B-coefficients for various spline
spaces.
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3.3 Interpolation in higher dimensions

The theory of the multivariate simplex splines can be used as an interpolation tool in
any number of dimensions. The higher dimensional problems are found in many areas of
industry. For example, observed aerodynamic or thermodynamic data often span to the
fourth or higher dimension. The dimensionality of a problem determines the number of
input variables of the interpolation polynomial e.g. 4-dimensional input dataset needs to
be approximated by the simplex spline function of three variables that represent first three
dimensions while the output of the function represents the fourth dimension. In these days,
visualization of data of four dimensions is not as straightforward as the visualization of
any surface for example. One convenient way of showing 4-dimensional data, or also the
so-called volume data, on a screen is shown in this section. Along with that, approximation
of a simple function of three variables is presented.

3.3.1 Experiment setup

For the numerical experiment 10 000 data points X = {(x1, x2, x3) ∈ R3} on the interval
〈−2, 2〉 were generated using a uniform random number generator. The response values
for each triple were generated by the simple first order derivative of 3-variate Gaussian as
follows:

O(x1, x2, x3) = x1e
−x21−x22−x23 . (3.6)

The Delaunay triangulation was then applied on a 3-dimensional grid. The grid forms a
cube while all generated data points are located inside this cube. In the figure 3.8 the
triangulation of the 3-dimensional grid with resolution 2 is shown. Data points X were
dropped for better visualization in this figure, however, as all point of the set X were
generated on the interval 〈−2, 2〉 they must be located inside the grid from the figure 3.8.

3.3.2 Experiment results

To interpolate the dataset X through the response values from (3.6) the equality constrained
least squares estimator as proposed in the section 2.4.2 was used. Two simplex spline models
in the spline spaces s1 ∈ S0

4 (T48) and s2 ∈ S3
4 (T48) were trained during this experiment. In

both cases the triangulation T48 remained the same as in the figure 3.8. The plot of S0
4 is

shown in the figure 3.9. In this figure a slice plane takes on colouring based on the values
of the simplex spline function in the region where the slice is positioned. The first plot
of the figure 3.9(a) shows only one single plane along the axis x1 and x2, while the third
component x3 is equal to the constant 0. In other plots the slices are always visualized in
different positions to get a better overview of the simplex spline function shape. Red colors
are corresponding with higher values of the simplex spline function while the blue colors
with lower values. It should be clear from the figure, how the maxima and the minima of
the function are distributed in space and that first order derivative of the 3-variate Gaussian
would look similar.

The another figure 3.10 shows the second trained simplex spline function s2. The point
of this figure is to show the global smoothing effect caused by the continuity order. The
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Figure 3.8: Demonstration of the Delaunay triangulation T48 of the 3-dimensional grid.
The Delaunay triangulation, by definition, does not need to be regular and therefore this
one is non-regular and contains 48 simplices. The resolution of the grid is 2.

difference between the polynomial degree and the continuity order is in this case equal to
1. The minima and the maxima are not so strong as in the figure 3.9 and some deviations
are present across the domain edges. This corresponds with figure 2.9(d) where the same
pattern can be observed.
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(a) (b)

(c) (d)

Figure 3.9: The simplex spline function s1 ∈ S0
4 (T48). The input data |X | = 10 000 set

was generated by the 3-variate function from (3.6).
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(a) (b)

(c) (d)

Figure 3.10: The simplex spline function s2 ∈ S3
4 (T48). The input data is the same as

in 3.9. As the difference between polynomial degree and continuity order is very low the
smoothness effect caused by the continuity conditions is obvious.
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3.4 Approximation of terrain data

The multivariate simplex splines are indeed the real and powerful interpolation tool. In
this section an application of this approach is demonstrated on a dataset consisting of the
real terrain data. It should be clear now how the resulting simplex spline model can be
tuned by different input parameters.

The following example starts with the experiment setup 3.4.1 where mentioned parameters
are chosen and then in the section 3.4.2, the resulting models are analysed.

3.4.1 Experiment setup

The input dataset Xt in this experiment consists of 20000 triples where the first two values,
latitude and longitude, represent a point and the third value, altitude, represents response
value. All points are randomly distributed in the space and form a rectangular region with
intervals, lat ∈ 〈47.15 ◦, 47.50 ◦〉 and long ∈ 〈11.15 ◦, 11.50 ◦〉. The figure 3.11 shows the
input dataset Xt together with the triangulation T98. The Delaunay triangulation method
was used to calculate this triangulation. Notice strong irregularities of the triangulation
grid. As mentioned many times, the Delaunauy triangulation does not have to be regular.
In the multivariate simplex spline theory the shape of a triangulation is in general not
so important as long as all simplices are well defined. As the terrain data are of three
dimensions the resulting simplex spline function sτ will be bivariate:

alt = sτ (lat, long) ∈ Srd(T98), (3.7)

with the output value alt the altitude. The generalized least square estimator from 2.4.2
was used to train individual simplex spline functions. Again as in previous examples,
the simplex spline function was trained in various spline spaces; for each continuity order
Cr = 0 . . . 4 and the degree d = (r + 1) . . . 10. Together it makes 40 different spline spaces
Srd(T98).

3.4.2 Model analysis

After the coefficients of the simplex spline function are estimated, associated residues rep-
resenting the difference between interpolated and observed values are available. The model
residual analysis is performed using the theory of the section 3.1.

In the figure 3.12(a) the RMS of the residue is plotted. It is clear, that with higher poly-
nomial degree of the simplex spline function, the total residue is decreasing and slowly
converges to the ideal zero value. Although the speed of convergence is slower, the pattern
of the plot is basically the same as the one from 3.7(a). It is important to say, that in
demonstration examples of the section 3.2, as well as of the section 3.3, very simple objec-
tive functions were used. High precision interpolation of the input dataset was obtained
even with low polynomial degrees of the spline function. In this case however, the input
dataset consists of measured terrain data which are highly non-linear. It is hard or even not
possible, due to the time complexity, to interpolate input dataset with such a high precision
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Figure 3.11: The input dataset Xt consisting of 20 000 points (red) and the Delaunay
triangulation T98 consisting of 98 simplices (blue).

as in 3.4(d) for example. That is the reason why in 3.7(a) the residue is more-less zero for
7th degree and in the figure 3.12(a) it is not even for 10th degree.

The right hand side plot 3.12(b) shows the mean variance of B-coefficients of the spline
function. Note please, that for a better visualization the logarithm function was used in
this case to scale individual plots. Interestingly, the variance of B-coefficients is increasing
with higher polynomial degree. This is caused, as already mentioned, by highly non-linear
input dataset. From the figure 3.7(a) can be observed that after the polynomial degree
is high enough the B-coefficients variance remains the same for all continuity orders. In
this case however, for the degree equal to 10 the difference of the variance for various
continuity orders is still significant, therefore the simplex spline function of a higher degree
need to be used. High polynomial degree implies the inevitable price in the form of the
time complexity. The plot 3.13 shows the computational time spent by the training process
of the simplex spline function. It is clear that with higher polynomial degree the time
complexity is growing rapidly as well as with increasing continuity order. For example,
training of the spline function S4

10 takes more than twice more time than of the function
S0

10. This is caused mainly by the size of the smoothness matrix, which is much larger for
the continuity order C4, see 2.2.

In the figure 3.14 the simplex spline function sτ ∈ S2
6 is pictured. The rugged terrain
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Figure 3.12: The residual RMS for various spline spaces (a) and the mean variance of
B-coefficients (b).

1 2 3 4 5 6 7 8 9 10
0

100

200

300

400

500

600

d

ti
m

e
[s

]

 

 

S 0
d

S 1
d

S 2
d

S 3
d

S 4
d

Figure 3.13: The time complexity of the training process is rapidly growing with increasing
polynomial degree as well as with the continuity order.

surface can be seen together with the contour plot below. Isolines (black) represent points
with the same altitude. In the next figure 3.15, gradients of the function sτ are pictured
as introduced in 2.5.4. In this figure the color of the plot represents the magnitude of the
gradient. Peaks and valleys are coloured with blue which corresponds to gradients of low
value. On the other hand, at slopes where the altitude is changing rapidly the red color is
dominant.

It may be also interesting to analyse the smoothness using the divergence operator as
proposed in the section 3.2.4. The result is pictured in the figure 3.16. In this figure are
again areas with low gradients coloured by blue while the slopes are coloured by the red. It
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Figure 3.14: Example of terrain data approximation. Simplex spline function sτ ∈ S2
6

together with the contour plot below.

can be seen that all isolines are nicely smooth and continuous what corresponds with the
second continuity order. Also the structure of the triangulation is not visible, as it was in
the figure 3.6. All this implies the good precision of the approximation even up to the 2
order derivative.
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Figure 3.15: Visualization of gradients of the simplex spline function sτ ∈ S2
6 . The surface

takes colouring based on the gradients magnitudes.
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Figure 3.16: Visualization of the divergence vector field of the spline function sτ ∈ S2
6 .

The smooth isolines (black) represent high smoothness of the simplex spline function.
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Chapter 4

Conclusions

The aim of this thesis was to introduce the multivariate simplex splines theory into the
framework of the terrain data interpolation.

The theoretical background of the simplex splines was provided in the chapter 2. This
part was based mainly on the papers of de Visser [9] and Lai & Schumaker [15] where
the concept of multivariate simplex splines is fully introduced together with some practical
applications. The idea of the theory is relatively old, but was never widely used. The
concept of the B-form polynomials defined in terms of barycentric coordinates on many
simplices is dated back to Farin and to de Boor, to the mathematicians who published first
papers on this topic in 1980s. Their definitions were in general correct, but for practical
usage some reformulations are needed. This is the case of B-net orientation rule discussed
in the section 2.1.5 as well as the smoothness constrains 2.3.2. The estimation of the
smoothness matrix can be considered as the critical part of the implemented algorithm
as the calculation takes a lot of computational time. Therefore, in the section 2.3.3 the
practical algorithm was proposed. Finally, the formulation of the simplex spline function
in the form of the linear regression model was derived in 2.4, that allows to use well known
linear equality-constrained least squares estimator for calculation of the B-coefficients 2.4.2.

The multivariate simplex splines are truly a general interpolation and approximation tool.
In the chapter 3 many numerical experiments were presented that aimed to demonstrate
the behaviour of this method more closely. Input parameters having a strong impact on the
resulting simplex spline model were described in individual sections. In the final section of
this thesis the interpolation of the terrain dataset was presented. It was proved that the
simplex spline theory provides an effective tool for terrain approximation by a continuous
function, resulting to the models of a high precision.

The application of the implemented algorithm is obvious. As many approaches for the data
analyses are based on various differential methods that require the continuous model, the
implemented function can be used as a part of these systems. It should be clear by now,
that the simplex splines have very strong potential in many different areas. As all important
parts of the theory are defined in an n-dimensional space e.g. the B-form polynomials, the
triangulation, the linear regression, the concept works easily in any number of dimensions.
Moreover, the B-form polynomials provide very elegant formulation of many mathematical
operations as can be seen in the section 2.5. It is also important to mention, that one of
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the main advantages of the multivariate simplex splines is the scattered data modelling as
the triangulation can be calculated on a domain of any shape.

The multivariate simplex splines could find its place also in some parts of computer graphics.
The linear regression provides very effective approximation tool as the minimal number
of points within every simplex is equal to the number of free variables of an interpolation
polynomial. The number of points required for complex polygonal models could be possibly
smaller. Moreover, the real-time approximation is very actual these days. In order to obtain
fast real-time implementation the modification of the least square estimator is needed. All
of these ideas and many others will be subject to the future researches.
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Appendix A

Demostration examples

Example A.1 Given a 2-simplex, that is a triangle, with vertices A =
(
1, 1

2

)
, B = (4, 1)

and C = (2, 3). We want to find barycentric coordinates of point X =
(
2, 3

2

)
with respect

to the 4ABC.
Firstly, the At matrix from (2.14) need to be constructed:

At = [B−A C−A]

=

[[
4
1

]
−
[

1
1
2

] [
2
3

]
−
[

1
1
2

]]

=

[
3 1
1
2

5
2

]
.

After inverting matrix At, we can find last two elements of b:
[
b1
b2

]
= A−1

t · [X−A]

=

[
0.3571 −0.1429
−0.0714 0.42861

]
·
[

1
1

]

=

[
0.2143
0.3571

]
.

And finally, after using (2.10):

b = (1− (b1 + b2) , b1, b2)

= (0.4286, 0.2143, 0.3571) .

All components of the barycentric coordinate vector b are greater than zero, thereby, the
point X is located within the 2-simplex ABC.

As mentioned before, every component of the barycentric vector b defines a subarea of the
given 2-simplex ABC. In the figure A.1 the 4ABC and point X are pictured. The first
component of the barycentric vector b, b0 = 0.4286 corresponds to the area of 4XBC, the
second component b1 = 0.2143 to 4XCA and, the third component b2 = 0.3571 to 4XAB.
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Figure A.1: Triangle ABC and location of point X.

Finally, the barycentric coordinates of vertices of4ABC are A = (1, 0, 0), B = (0, 1, 0), C =
(0, 0, 1). Point G placed in the center of mass of 4ABC has coordinates G =

(
1
3 ,

1
3 ,

1
3

)
as

areas of all subtriangles must be same.

Example A.2 Demonstration of a trivariate third degree Bernstein polynomial. The B-
form of any trivariate polynomial is given by (2.27):

p(x) =
∑

|k|=3

ckB
3
k(b(x)), (A.1)

where b(x) = b is transformation from Cartesian system to barycentric one. Notice please,
that the input point x contains only two elements, but as the Bernstein polynomial is of
three variables the third input value is obtained from the transformation b(x). According to
(2.26) the B-form may be expanded as follows:

p(x) =
∑

|k|=3

ckB
3
k(b(x))

=c300B
3
300(b) +

c210B
3
210(b) + c201B

3
201(b) +

c120B
3
120(b) + c111B

3
111(b) + c102B

3
102(b) +

c030B
3
030(b) + c021B

3
021(b) + c012B

3
012(b) + c003B

3
003(b)

=c003b
3
0 + c2103b20b1 + c2013b20b2 + c1203b0b

2
1 + c1116b0b1b2 +

c1023b0b
2
2 + c030b

3
1 + c0213b21b2 + c0123b1b

2
2 + c003b

3
2

To visualize every individual Bernstein basis polynomial B3
k(b(x)) defined in terms of the

barycentric coordinates a corresponding 2-simplex need to be given. Consider a very simple
set X3 of three points and the 2-simplex t according to (2.3):

X3 = {(−1,−1), (−1, 1), (1,−1)} ,
t = 〈X3〉 .
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In the figure A.2 is plotted by red line the 2-simplex t with vertices from the set X3. All plots
in this figure show Bernstein basis polynomials B3

k(b). The sum of these polynomial is equal
to 1 at every lcoation within the simplex t as was mentioned in the end of the section 2.1.3.
This concept is called partition of unity of the polynomial basis and is demonstrated in the
figure A.3.

Example A.3 (The B-net Orientation Rule) Determine the orientation of B-nets of
three simplices ti = 〈va, vb, vc〉, tj = 〈vb, vc, vd〉, tj = 〈vc, vd, ve〉 with vertices globally sorted
as follows:

va > vd > vb > vc > ve.

Using the expression (2.29), it is easy to determine B-coefficients located at every vertex.
The result is figured in 2.3. Spatial locations of other B-coefficients are calculated using
(2.28) always with respect to the associated simplex.

Example A.4 The total number of continuity conditions for a Cr continuity is given
by (2.40). In this example all 4 continuity orders as shown in the figure 2.7 are considered
for n = 2 and d = 4.

For C0 continuity we have:

R0 =
5!

1!4!
= 5. (A.2)

Five continuity conditions are required for the C0 as all B-coefficients laying in the edge
facet are involved.

For C1 continuity we have:

R1 =
1∑

m=0

(4−m+ 2− 1)!

(2− 1)!(4−m)!
= 5 + 4 = 9. (A.3)

A fundamental observation should be noticed at this point. Let’s consider the line through
locations of B-coefficients cti1,3,0, cti1,2,1, cti1,1,2 and through cti1,0,3. This line is clearly parallel
to the edge facet t̃i,j. Every B-coefficient lying in this line together with every B-coefficient
located in the edge facet t̃i,j is subject to a single continuity condition see the figure A.4.
For higher continuity orders this pattern is followed. In general there are d + 1 parallel
planes of dimension d− 1. The proof of (2.40) is based on this observation.

For completeness, the continuity orders C2 and C3 require:

R2 =
2∑

m=0

(4−m+ 2− 1)!

(2− 1)!(4−m)!
= 5 + 4 + 3 = 12,

R3 =
3∑

m=0

(4−m+ 2− 1)!

(2− 1)!(4−m)!
= 5 + 4 + 3 + 2 = 14

continuity conditions.

Example A.5 According to (2.39) the parts of continuity conditions up to order C2 for
the edge facet t̃i,j between ti and tj and for continuity points cti0,0,4, cti1,1,2, c

tj
2,2,0 from the

figure 2.7 will be derived.
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Figure A.2: Visualization of the individual Bernstein basis polynomials B3
k(b) defined on

a single 2-simplex that is plotted by the red line.
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Figure A.3: Demonstration of the partition of unity property. The Bernstein polynomial
is the same as in the previous figure i.e.

∑
|k|=3B

3
k(b).
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Figure A.4: The spatial interpretation of continuity conditions C1 on a Bernstein polyno-
mial of degree 4. There are 4 continuity points (dashed line) and corresponding continuity
bodies (solid line). Together it makes 9 continuity conditions.

For C0 continuity at cti0,0,4 we have:

γ ∈ {(0, 0, 0)}.

For this case there is only single continuity condition:

cti0,0,4 =
∑

|γ|=0

c
tj
(0,0,4)+γB

0
γ(va)

= c
tj
(0,0,4)

For C1 continuity at cti1,1,2 we have:

γ ∈ {(1, 0, 0), (0, 1, 0), (0, 0, 1)}.

The C1 continuity condition then is:

cti1,1,2 =
∑

|γ|=1

c
tj
(0,1,2)+γB

1
γ(va)

= c
tj
(1,1,2)B

1
1,0,0(va) + c

tj
(0,2,2)B

1
0,1,0(va) + c

tj
(0,1,3)B

1
0,0,1(va).

At last, for C2 continuity at point c
tj
2,2,0:

γ ∈ {(2, 0, 0), (1, 1, 0), (1, 0, 1), (0, 2, 0), (0, 1, 1), (0, 0, 2)}.
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and continuity condition then is:

c
tj
2,2,0 =

∑

|γ|=2

cti(0,2,0)+γB
2
γ(vd)

= cti(2,2,0)B
2
2,0,0(vd) + cti(1,3,0)B

2
1,1,0(vd) + cti(1,2,1)B

2
1,0,1(vd)+

+ cti(0,4,0)B
2
0,2,0(vd) + cti(0,3,1)B

2
0,1,1(vd) + cti(0,2,2)B

2
0,0,2(vd).

A quick look at the figure 2.7 will show that calculated results are truly valid and therefore it
is possible to estimate Cr continuity conditions between simplices ti and tj by using (2.39).
However, there are cases when this expression fails and resulting continuity body for given
continuity point is wrong. One example is the edge facet t̃j,k between tj and tk. This
observation is demonstrated by the example A.6 together with a short discussion. The
solution of this problem will be subject to the following sections.

Example A.6 Demonstration of incompleteness of expression of continuity conditions
from (2.39) as it holds only for specific orientation of the B-nets between adjoined sim-
plices. In this example the continuity conditions between tk and tj from the figure 2.7 is
calculated and invalid results will be proved.

Given C0 continuity (cyan color) at ctk0,4,0 we have single multi-index permutation, m = 0:

γ = (0, 0, 0).

According to the (2.39) the C0 continuity condition then is:

ctk0,4,0 =
∑

|γ|=0

c
tj
(0,4,0)+γB

0
γ(ve)

= c
tj
0,4,0

which is not a valid result as c
tj
0,4,0 is not located at the edge facet t̃k,j.

In another case with continuity C3 at ctk1,0,3 valid multi-indices are, m = 1:

γ ∈ {(1, 0, 0), (0, 1, 0), (0, 0, 1)}

The C3 continuity order now is:

ctk1,0,3 =
∑

|γ|=3

c
tj
(0,0,3)+γB

3
γ(ve)

= c
tj
1,0,3B

1
1,0,0(ve) + c

tj
0,1,3B

1
0,1,0(ve) + . . .

which is totally wrong as the second right hand term already contains a B-coefficient index
that is not at the edge facet t̃k,j, and the number of B-coefficients in continuity body is 3
while according to the (2.40) it must be 9 as was demonstrated by example A.4.

Example A.7 In this example, iterations of de Casteljau algorithm are demonstrated by
evaluating a trivariate B-form polynomial of degree d = 3 at the barycentric coordinate
b = (b0, b1, b2). The B-form polynomial is therefore same as the one from A.2.
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Using (2.71), the iteration of the de Casteljau algorithm are:

p(b) =
∑

|k|=3

ckB
3
k(b)

=
∑

|k|=2

c
(1)
k (b)B2

k(b)

=
∑

|k|=1

c
(2)
k (b)B1

k(b)

=c
(3)
000(b)

Now, expansion of all B-coefficients of every iteration according to (2.72) is given. Note,
that in (2.72) is the multi-index permutation |γ| = 1 therefore for all iterations this set is
equal to:

γ ∈ {(1, 0, 0), (0, 1, 0), (0, 0, 1)}.

Expansion of c(1)
k (b) with k ∈ {(2, 0, 0), (1, 1, 0), (1, 0, 1), (0, 2, 0), (0, 1, 1), (0, 0, 2)}:

c
(1)
200(b) = b0c300 + b1c210 + b2c201

c
(1)
110(b) = b0c210 + b1c120 + b2c111

c
(1)
101(b) = b0c201 + b1c111 + b2c102

c
(1)
020(b) = b0c120 + b1c030 + b2c021

c
(1)
011(b) = b0c111 + b1c021 + b2c012

c
(1)
002(b) = b0c102 + b1c012 + b2c003

For c(2)
k (b) and for k ∈ {(1, 0, 0), (0, 1, 0), (0, 0, 1)} we have:

c
(2)
100(b) = b0c

(1)
200(b) + b1c

(1)
110(b) + b2c

(1)
101(b)

c
(2)
010(b) = b0c

(1)
110(b) + b1c

(1)
020(b) + b2c

(1)
011(b)

c
(2)
001(b) = b0c

(1)
101(b) + b1c

(1)
011(b) + b2c

(1)
002(b)

And finally, the last iteration c
(3)
k (b) with k ∈ {(0, 0, 0)} is:

c
(3)
000(b) = b0c

(2)
100(b) + b1c

(1)
010(b) + b2c

(2)
001(b).

It is easy to check now, that after substitution c
(1)
k (b) and c

(2)
k (b) to c

(3)
k (b) the result is

exactly the same as from A.2.

Example A.8 Construction of the de Casteljau one-step matrix is demonstrated by this
example using expression from (2.83). The de Casteljau matrix P3,1(b) reduces a set of
B-coefficients of degree d = 3 to degree d−m = 1, such that m = 2. The bivariate B-form
polynomial if defined in terms of barycentric coordinate b = (b0, b1).

In this case we have for multi-index k:

k ∈ {(1, 0), (0, 1)}, |k| = d−m.
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The index function i(k) from (2.84) for the rows of P3,1(b) therefore has the following
values:

i(1, 0) = 1, i(0, 1) = 2.

The valid values for the multi-index θ are:

θ ∈ {(3, 0), (2, 1), (1, 2), (0, 3)}, |θ| = d,

with which the index function i(θ) from (2.85) for the columns of P3,1(b) has following
values:

i(3, 0) = 1, i(2, 1) = 2, i(1, 2) = 3, i(3, 0) = 4.

Expanding row and column indices generated by i(k) and i(θ), and calculating the multi-
index of the corresponding polynomials, we get:

i(k) i(θ) θ k θ − k Pmθ−k(b)

1 1 (3, 0) (1, 0) (2, 0) P 2
2,0(b)

1 2 (2, 1) (1, 0) (1, 1) P 2
1,1(b)

1 3 (1, 2) (1, 0) (0, 2) P 2
0,2(b)

1 4 (0, 3) (1, 0) (−1, 3) 0
2 1 (3, 0) (0, 1) (3,−1) 0
2 2 (2, 1) (0, 1) (2, 0) P 2

2,0(b)

2 3 (1, 2) (0, 1) (1, 1) P 2
1,1(b)

2 4 (0, 3) (0, 1) (0, 2) P 2
0,2(b)

By rewriting the table values to matrix form the following result is obtained:

P3,1(b) =

[
P 2

2,0(b) P 2
1,1(b) P 2

0,2(b) 0

0 P 2
2,0(b) P 2

1,1(b) P 2
0,2(b)

]
.
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