VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

BRNO UNIVERSITY OF TECHNOLOGY

FAKULTA STAVEBNÍ

FACULTY OF CIVIL ENGINEERING

ÚSTAV STAVEBNÍHO ZKUŠEBNICTVÍ

INSTITUTE OF BUILDING TESTING

NOVÉ POSTUPY PRO HODNOCENÍ BETONU V EXISTUJÍCÍ KONSTRUKCI

NEW PROCEDURES FOR EVALUATING CONCRETE IN EXISTING CONSTRUCTION

BAKALÁŘSKÁ PRÁCE BACHELOR'S THESIS

AUTOR PRÁCE AUTHOR Jana Juřenová

VEDOUCÍ PRÁCE SUPERVISOR

doc. Ing. Petr Cikrle, Ph.D.

BRNO 2024

Zadání bakalářské práce

Ústav:	Ústav stavebního zkušebnictví
Studentka:	Jana Juřenová
Vedoucí práce:	doc. Ing. Petr Cikrle, Ph.D.
Akademický rok:	2023/24
Studijní program:	B0732A260005 Stavební inženýrství
Studijní obor:	Konstrukce a dopravní stavby

Děkan Fakulty Vám v souladu se zákonem č.111/1998 o vysokých školách a se Studijním a zkušebním řádem VUT v Brně určuje následující téma bakalářské práce:

Nové postupy pro hodnocení betonu v existující konstrukci

Stručná charakteristika problematiky úkolu:

Porovnání různých postupů pro hodnocení betonu v existující konstrukci. Přehled zkušebních metod (přímých, nepřímých) pro zkoušení betonu v konstrukci. Využití přímých a nepřímých diagnostických metod pro stanovení charakteristické pevnosti v tlaku a pevnostní třídy betonu. Provedení řady zkoušek na jádrových vývrtech z reálné konstrukce, vyhodnocení výsledků zkoušek.

Cíle a výstupy bakalářské práce:

Teoretická část:

Přehled zkušebních metod použitých v experimentální části práce.

Rozbor postupů pro stanovení charakteristické pevnosti v tlaku betonu v konstrukci.

Experimentální část:

Popis a dokumentace vzorků betonu - minimálně 32 jádrových vývrtů z konstrukce.

Ultrazvukové měření na dlouhých vzorcích (simulace měření na konstrukci).

Zkoušky na vývrtech 1:1 a 2:1 (minimálně 100 zkušebních těles), stanovení objemové hmotnosti, rychlosti šíření UZ vlnění, dynamického modulu pružnosti, pevnosti v tlaku.

Tabelární a grafické vyhodnocení výsledků zkoušek.

Tvorba vlastního regresního vztahu pro stanovení pevnosti v tlaku betonu z rychlosti šíření impulzů ultrazvukového vlnění.

Posouzení pevnosti v tlaku betonu různými postupy pro existující konstrukce podle ČSN EN 13791.

Vzájemné porovnání jednotlivých postupů.

Seznam doporučené literatury a podklady:

Cikrle, P. a kol. NDT zkoušení ve stavebnictví. Příručka kurzu CŽV. VUT v Brně, 2010.

Balayssac, J.P., Garnier, V. Non-destructive Testing and Evaluation of Civil Engineering Structures. 1st Edition Amsterdam, ISTE Press - Elsevier, 2017.

Holický, M. Hodnocení existujících konstrukcí. 1. vydání Praha: ČVUT, 2018.

Normy ČSN EN 12504-1, ČSN EN 12504-4, ČSN 73 1371, ČSN EN 13791, ČSN ISO 13822, ČSN 730038, ČSN EN 206+A2 apod.

Termín odevzdání bakalářské práce je stanoven časovým plánem akademického roku.

V Brně, dne 30. 11. 2023

L. S.

doc. Ing. Pavel Schmid, Ph.D. vedoucí ústavu

doc. Ing. Petr Cikrle, Ph.D. vedoucí práce

prof. Ing. Rostislav Drochytka, CSc., MBA, dr. h. c. děkan

ABSTRAKT

Tato bakalářská práce se snaží rozšířit povědomí o možnosti využití ultrazvukové impulzové metody pro diagnostiku stavebních konstrukcí. Klade důraz na využití nedestruktivních metod, vyzdvihuje jejich schopnost poskytnout srovnatelné výsledky s tradičními destruktivními metodami hodnocení, a to se současnou minimalizací zásahu do konstrukce. Součástí práce je informování o postupech stanovení charakteristické pevnosti betonu v tlaku u stávajících konstrukcí, jak je definováno v normě ČSN EN 13791 aktualizované v roce 2021. Práce se zaměřuje především na kalibraci výsledků z nedestruktivního nepřímého měření s výsledky získanými destruktivně pomocí jádrových vývrtů.

KLÍČOVÁ SLOVA

beton, nedestruktivní metody, ultrazvuková impulzová metoda, jádrové vývrty, pevnost betonu v tlaku, regresní analýza

ABSTRACT

This bachelor thesis seeks to increase the awareness of the possibility of using the ultrasonic pulse method for the diagnosis of building structures. It emphasises the use of non-destructive methods, highlighting their ability to provide comparable results to traditional destructive methods of assessment, whilst minimising interference to the structure. The work includes reporting on the procedures for determining the characteristic compressive strength of concrete in existing structures as defined in EN 13791, updated in 2021. The work focuses primarily on calibrating results from non-destructive indirect measurements with those obtained destructively using core borings.

KEYWORDS

concrete, non-destructive methods, ultrasonic impulse method, core borings, concrete compressive strength, regression analysis

BIBLIOGRAFICKÁ CITACE

JUŘENOVÁ, Jana. *Nové postupy pro hodnocení betonu v existující konstrukci.* Brno, 2024. Dostupné také z: <u>https://www.vut.cz/studenti/zav-prace/detail/158380</u>. Bakalářská práce. Vysoké učení technické v Brně, Fakulta stavební, Ústav stavebního zkušebnictví. Vedoucí práce Petr Cikrle.

PROHLÁŠENÍ O SHODĚ LISTINNÉ A ELEKTRONICKÉ FORMY ZÁVĚREČNÉ PRÁCE

Prohlašuji, že elektronická forma odevzdané bakalářské práce s názvem *Nové postupy pro hodnocení betonu v existující konstrukci* je shodná s odevzdanou listinnou formou.

V Brně dne 23.5.2024

Jana Juřenová

autor práce

PROHLÁŠENÍ O PŮVODNOSTI ZÁVĚREČNÉ PRÁCE

Prohlašuji, že jsem bakalářskou práci s názvem *Nové postupy pro hodnocení betonu v existující konstrukci* zpracovala samostatně a že jsem uvedla všechny použité informační zdroje.

V Brně dne 23.5.2024

Jana Juřenová

autor práce

PODĚKOVÁNÍ

Ráda bych poděkovala vedoucímu mé bakalářské práce, doc. Ing. Petru Cikrlovi, Ph.D., za jeho laskavý přístup, odbornou pomoc i rady během tvorby práce. Děkuji, za věcné připomínky při konzultacích, poskytnuté zdroje a provedení nejen touto důležitou etapou mého studia.

Chtěla bych velmi poděkovat i panu lng. Petru Misákovi, Ph.D., za teoretické i praktické základy v oblasti statistiky, ochotu a pomoc se statistickou částí mé práce.

Dále bych ráda poděkovala panu lng. Daliboru Kocábovi, Ph.D., za pomoc při laboratorním měření.

Mé velké díky, také náleží mým blízkým a rodině, za trpělivost a oporu během celého studia.

OBSAH

1 ÚVOD	11
1.1 VÝZNAM NEDESTRUKTIVNÍCH METOD	11
1.2 AKTUALIZACE NORMY ČSN EN 13791 2021	12
1.3 CÍLE PRÁCE	13
2 TEORETICKÁ ČÁST	14
2.1 PŘÍMÉ A NEPŘÍMÉ ZKUŠEBNÍ METODY	14
2.2 ULTRAZVUKOVÁ IMPULZOVÁ METODA	15
2.2.1 Úvod a základní pojmy	15
2.2.2 Způsoby a postup měření, přístroje	15
2.2.3 Mrtvý čas, měření doby průchodu ultrazvuku a rychlost šíření impulzu	17
2.2.4 Rozměrnost prostředí a jiné faktory ovlivňující měření	18
2.3 METODA JÁDROVÝCH VÝVRTŮ	19
2.3.1 Princip metody	19
2.3.2 Odběr vývrtů a příprava zkušebních těles	19
2.3.3 Tlaková zkouška ve zkušebním lisu	19
2.4 POSTUPY STANOVENÍ CHARAKTERISTICKÉ PEVNOSTI BETONU V TLAKU PRO	
STÁVAJÍCÍ KONSTRUKCE	.20
2.4.1 Vyhodnocení pouze na základě jádrových vývrtů	.20
2.4.2 Nepřímé zkoušení s minimalizací jádrových vývrtů (bez tzv. kalibrace)	21
2.4.3 Vyhodnocení založené na kombinaci nepřímého zkoušení a zkoušek vývrtů	,
použití speciální kalibrace nepřímého zkoušení	21
2.5 STATISTIKA VYUŽITÁ V TÉTO PRÁCI	. 22
3 EXPERIMENTÁLNÍ ČÁST	.25
3.1 PŘEDSTAVENÍ EXPERIMENTU	.25
3.1.1 Plán experimentu	25
3.1.2 Popis a dokumentace jádrových vývrtů	27
3.2 ULTRAZVUKOVÉ MĚŘENÍ V LABORATOŘI – SIMULACE MĚŘENÍ NA KONSTRUKCI I	N
SITU	. 28
3.3 LABORATORNÍ ZKOUŠKY NA ZKUŠEBNÍCH TĚLESECH	.30
3.4 VÝSLEDKY A VYHODNOCENÍ PROVEDENÝCH ZKOUŠEK	35
3.4.1 Hodnocení na základních zkušebních tělesech 1:1 a 2:1	35
3.4.2 Stanovení vlivu karbonatace na příslušných tělesech	41
3.5 REGRESE CHARAKTERISTICKÉ PEVNOSTI V TLAKU A RYCHLOSTI	
ULTRAZVUKOVÉHO VLNĚNÍ	44
3.6 MOŽNÝ VLIV NÁHODNOSTI VÝBĚRU PŘI URČENÍ PEVNOSTI BETONU V TLAKU	49
3.7 STANOVENÍ CHARAKTERISTICKÉ PEVNOSTI V TLAKU POMOCÍ ULTRAZVUKOVÉH	0
MĚŘENÍ A TROJICE JÁDROVÝCH VÝVRTŮ	. 52

4 OVĚŘENÍ ULTRAZVUKOVÉ METODY IN SITU	53
5 ZÁVĚR	59
6 SEZNAMY	61
6.1 SEZNAM POUŽITÝCH ZDROJŮ	61
6.2 SEZNAM POUŽITÝCH ZKRATEK A VELIČIN	63
6.3 SEZNAM OBRÁZKŮ	65
6.4 SEZNAM TABULEK	67
6.5 SEZNAM PŘÍLOH	
7 PŘÍLOHY	

1 ÚVOD

1.1 VÝZNAM NEDESTRUKTIVNÍCH METOD PRO HODNOCENÍ STÁVAJÍCÍCH KONSTRUKCÍ

V poslední době vzrůstá význam hodnocení stávajících konstrukcí z různých materiálů v prvé řadě ze železobetonu, a to z toho důvodu, že začíná být zřejmé, že zdroje pro budování dalších nových staveb jsou do budoucna výrazně omezené. Například v České republice se toto projevuje již při získávání složek pro výrobu betonu. Problémem je uzavírání lomů a těžebních lokalit pro betonářské písky, nové se neotevírají a stávající budou již brzy vyčerpány. Další výzvou je omezení emisí vznikajících nejen při výrobě portlandského cementu. Tyto okolnosti vedou nejen ke zvýšení cen těchto materiálů, ale toto způsobuje i omezení výroby betonu.

Pro trvalou udržitelnost a ochranu životního prostředí je důležité stavět nové budovy efektivně a úsporně, a zároveň udržovat stávající obytné a průmyslové budovy i infrastrukturu. Cílem je prodloužit jejich životnost s minimálními náklady a zásahy do životního prostředí, aby vydržely nejen po dobu své prvotně plánované životnosti.

Na základě uvedeného vzrostl význam specializace ve stavebnictví, která se zabývá hodnocením existujících konstrukcí. Zvýšený zájem o diagnostiku a průzkumy železobetonových konstrukcí vedl k vydání nových norem, které odráží vývoj v oblasti zkušebních metod a přístrojové techniky. Nicméně, jejich zavádění do praxe je v České republice velmi opatrné a pomalé. Z daného důvodu se tato bakalářská práce zabývá právě novou normou pro zkoušení betonu v konstrukcích ČSN EN 13791. A také se zaměřuje na využití moderních nedestruktivních metod. Tyto metody umožňují s minimálními zásahy posoudit současný stav konstrukcí a prodloužit jejich životnost [1].

Nedestruktivní metody přinášejí řadu výhod, mezi něž patří především minimální či žádný zásah do konstrukce a opakovatelnost měření v čase. Důležité je si však uvědomit vždy možnosti dané metody a uvážit, jestli nám poskytne požadované výstupy a výsledky a zda je vůbec proveditelná na dané konstrukci. Prosazování pouze nepřímých (nedestruktivních) metod není korektní, neboť ve většině případů se bez destruktivních metod neobejdeme. Snahou je minimalizace narušení konstrukce, a proto je na uvážení kolik přímých (destruktivních) metod je opravdu nutných a vhodných [2].

Nedestruktivní metody zkoušení mají velký význam, a to nejen v oboru diagnostiky konstrukcí a staveb ale i v mnoha jiných odvětvích. Přesto je na ně pohlíženo doposud s jistou nedůvěrou, kterou si odborná veřejnost vytvořila v minulosti, kdy metody a přístroje nebyly tak propracovány jako nyní. Tomuto nepomohly ani normy přijaté po roce 2000. Poměrně negativní roli sehrála norma ČSN EN 13791 vydaná v roce 2007, která oproti původním českým normám, jež stavěly nedestruktivní metody celkem vysoko, kladla hlavní důraz na metodu jádrových vývrtů a nedestruktivní metody tak odsunula do pozadí.

Norma stanovila přísnější požadavky na vyhodnocení nepřímých metod a neposkytla dostatečné statistické nástroje k jejich vyhodnocování. Z daného důvodu byly ponechány v platnosti stávající české normy však harmonizované s evropskými, toto vedlo k menšímu využívání metod, než by si zasloužily. V roce 2020 (v anglické verzi) a 2021 (v české verzi) jsme se dočkali nového vydání normy ČSN EN 13791 a na ni poté navázala vydání dalších prováděcích norem. Norma již je zpracována na velmi dobré úrovni a reaguje i na vývoj v oblasti rozvoje nedestruktivních metod [3] [4].

Asi nejpoužívanější a nejoblíbenější nepřímou metodou jsou metody tvrdoměrné. V našem stavebnictví byly vždy hojně využívány z důvodů jednoduchosti provádění zkoušek a relativně nízkým pořizovacím nákladům přístrojů. Velkou oblibu získaly odrazové tvrdoměry typu Schmidt, které jsou v nezměněné podobě na trhu již od roku 1965, i tato metoda si však prošla v letech jistou modernizací a modifikací.

Další nedestruktivní metodu pro zkoušení betonu přímo v konstrukci je ultrazvuková metoda, u nás rovněž velmi dlouho známá. V minulosti, v 80. a 90. letech minulého století, také běžně využívaná. Bohužel po roce 1990 došlo k tlumení využívání ultrazvukové metody vlivem zastaralého přístrojového vybavení a preference jiných metod např. jádrového vrtání. Přestože v poslední době došlo k výraznému zlepšení na trhu s těmito přístroji, jako je moderní přístroj Pundit PL-200, tak u nás používáme ultrazvukovou metodu stále výrazně méně, než je tomu v jiných státech, například v Německu nebo Švýcarsku [5] [3].

1.2 AKTUALIZACE NORMY ČSN EN 13791 2021

Podle výše zmíněného prvního vydání normy ČSN EN 13791 z roku 2007, bylo velmi obtížné vyhodnocovat pevnost betonu v konstrukci na základě nedestruktivních metod. Preferována byla metoda jádrových vývrtů, uvedená norma mohla i v jistých případech nadhodnocovat pevnost betonu v tlaku zjištěnou pomocí této metody. Norma byla koncipována vyloženě pro nově betonované konstrukce a prakticky neřešila hodnocení konstrukcí existujících, což nahrazovala norma ČSN ISO 13822[4] [6].

V případě využití nedestruktivních metod norma výrazně snižovala výsledky a to požadavkem 90% bezpečnosti regresního vztahu. Charakteristická pevnost stanovená touto normou na základě nedestruktivních metod tedy vycházela výrazně méně než stanovená pomocí jádrových vývrtů. Zásadní rozdíl spočíval v tom, že původní česká norma ČSN 73 2011 nepožadovala 90% bezpečnost vztahu a výsledky po upřesnění nedestruktivních metod na zkouškách vývrtů měly stejnou váhu jako výsledky krychelných zkoušek. Proto norma (ČSN 73 2011) zůstala i nadále oblíbenou a byla využívána k vyhodnocování nedestruktivních zkoušek [4] [7].

Změny v novém vydání oproti původnímu spočívají především ve dvou odlišných postupech odvíjejících se z faktu, jakou konstrukci budeme posuzovat, konkrétně zda starší konstrukci nebo nově vybudovanou konstrukci v případě pochybností o jejím správném zhotovení. V obou postupech je například stanoven odlišný počet jádrových vývrtů potřebných pro vyhodnocení pevnosti betonu. Úvaha menšího počtu vývrtů v nově betonované konstrukci než v případě konstrukce stávající, se zdá jako správná již na první pohled. Ačkoliv i v novém vydání zůstalo základem pro hodnocení betonových konstrukcí zkoušení na jádrových vývrtech, tak přesto výrazně rozšiřuje a posiluje možnost využití nedestruktivních metod jak pro hodnocení existujících konstrukcí, tak při posouzení pevnostní třídy betonu v případě pochybností u nově betonovaných konstrukcí.

V aktualizované normě máme k dispozici tři možné postupy pro hodnocení stávajících konstrukcí: vyhodnocení pouze na vývrtech, kombinace nedestruktivních metod a vývrtů (regresní analýza neboli speciální kalibrace) a nepřímé zkoušení s minimem vývrtů, které neslouží k tzv. kalibraci. Jedná se o značné vylepšení v případě vyhodnocení s nedestruktivními metodami, kdy si každý může v podstatě vybrat, zda je použije či nikoliv a jeví se jejich vypovídající hodnota rovnocenněji než ve vydání normy v roce 2007.

Snahou bylo nastínit největší změny a posun normy k lepšímu. Po rozporuplné zkušenosti s prvním vydáním normy a zkušenostmi s jinými aktualizacemi norem se neočekávalo velké zlepšení. Nicméně aktualizace normy ČSN EN 13791 v roce 2021 kladně překvapila, má smysl si ji podrobněji projít a přivyknout si na uvedené postupy [4] [3] [8].

1.3 CÍLE PRÁCE

Cílem této bakalářské práce není pouze zvýšení povědomí o ultrazvukové metodě, ani obecně o nedestruktivních metodách, či seznámení s aktualizovanou normou ČSN EN 13791, ale rovněž poskytnutí konkrétního řešení pomocí regresní analýzy. Mezi cíle práce patří jak samotné vyhodnocení dat získaných z nedestruktivního a destruktivního měření, tak i vzájemné porovnání nejen jednotlivých postupů, ale také srovnání výstupů v rámci jedné metody s ohledem na možnou náhodnost výběru dat.

2 TEORETICKÁ ČÁST

2.1 PŘÍMÉ A NEPŘÍMÉ ZKUŠEBNÍ METODY

Pro diagnostiku stavebních konstrukcí máme již nyní k dispozici řadu metod a další se vyvíjí, proto je důležité mít aspoň základní přehled, který nám poskytne dělení těchto metod dle různých pohledů.

Nejčastější pohled na metody je dle jejich zásahu do konstrukce. Na základě tohoto kritéria rozlišujeme následující metody:

- o destruktivní
- o semidestruktivní
- o nedestruktivní

Nejen v normě ČSN EN 13791 ale také v jiných novějších předpisech se využívá pojmů nepřímé a přímé zkušební metody. S významem daných metod, nejen teoretickým, se dále blíže seznámíme.

A) Metody přímé – jejich podstatou je, že požadovanou vlastnost nebo veličinu zjišťujeme přímo, není nutný přepočet z jiné měřené veličiny. Do přímých metod řadíme především metody destruktivní např. metoda jádrových vývrtů, ale i část metod semidestruktivních např. poškození povrchu či navrtání ke zjištění hloubky karbonatace.

B) Nepřímé metody – při těchto metodách měříme veličinu, kterou musíme přepočítat pomocí kalibračního vztahu na veličinu požadovanou. Důležité je, aby mezi měřenou veličinou a veličinou výstupní existovala statisticky významná závislost. Za nepřímé metody považujeme hlavně metody nedestruktivní např. ultrazvuková impulzní metoda a tvrdoměry. I při těchto metodách může být potřebné narušit povrch, ne však zásadním způsobem (především u tvrdoměrných metod vhodné sbroušení povrchu apod.).

Nepřímé metody je však nutné pro stanovení pevnosti betonu v konstrukci doplnit metodami přímými. Určení pevnosti není možné pouze na základě nepřímých metod, ale pomocí pouze přímých metod je toto možné dle nynějších předpisů a norem. Jako vhodný postup se jeví kombinace dat získaných oběma zkušebními metodami, kdy data z přímých metod využijeme ke kalibraci nepřímého měření (viz podkapitola 8.2 [3])[9][2].

2.2 ULTRAZVUKOVÁ IMPULZOVÁ METODA

2.2.1 Úvod a základní pojmy

Před uplatněním zvolené metody v praxi je nezbytné se seznámit nejen se samotnou metodou ale i se základními používanými pojmy spojenými s ní.

Ultrazvukovou impulzovou metodu průchodovou řadíme mezi nedestruktivní či nepřímé zkušební metody. Využíváme ji v diagnostice stavebních konstrukcí zejména pro zjištění rovnoměrnosti, zjištění přítomnosti trhlin nebo jiných defektů ve vnitřní struktuře materiálů a dynamických fyzikálních vlastností. Nejčastěji zkoumaným materiálem je samozřejmě ztvrdlý beton, ale lze tuto metodu využít při kontrole tuhnutí a tvrdnutí betonové směsi v čase a kontrolovat tak vývoj vlastností betonu. Spolu s přímými metodami lze ultrazvukovou metodu využít i k odhadu pevnosti betonu v tlaku [2] [9] [10].

Mezi základní pojmy patří dle ČSN 73 1371:

- <u>Rychlost impulzu</u>: Tato veličina udává rychlost šíření čela svazku vln ultrazvukového vlnění ve zkoušeném materiálu.
- <u>Frekvence ultrazvukového vlnění:</u> Tj. pracovní frekvence ultrazvukového budiče, který používáme při měření. Každý budič má pevně stanovenou jen jednu pracovní frekvenci. (frekvence využívána ve stavebnictví je v rozmezí 20 kHz-250 kHz)
- <u>Sondy</u>: Jsou základní součástí ultrazvukového přístroje. Jedna sonda slouží jako budič, který vysílá ultrazvukové vlny, a druhá jako snímač, který přijímá tyto vlny po jejich průchodu zkoušeným materiálem.
- <u>Měřící základna</u>: Pojem označuje nejkratší přímou spojnici mezi středy dotykových ploch sond zkušebního přístroje.
- <u>Rozměrnost prostředí</u>: Je důležitá vlastnost závislá na velikosti zkušebního tělesa nebo prvku v poměru k délce vln ultrazvukového vlnění [11].

2.2.2 Způsoby a postup měření, přístroje

Způsoby měření (prozvučování) existují tři základní, které se používají při ultrazvukovém měření ve stavebnictví:

 <u>Přímé prozvučování:</u> Měřící základna se dá nejlépe změřit a útlum vlnění je nejmenší, proto tento způsob by se měl využívat prioritně vždy když je to možné.
Při tomto způsobu jsou sondy umístěny proti sobě.

Při měření těles v laboratoři nebývá problémem zajistit přístupnost protilehlých stran, ale při měření přímo na části konstrukce nemusí být všechny strany přístupné a je proto nutné použít jednoho z dále uvedených způsobů prozvučování.

- <u>Polopřímé prozvučování:</u> Pokud nejsou přístupné obě protilehlé stěny, ale jsou k dispozici dvě stěny. Sondy jsou umístěny šikmo vůči sobě.
- <u>Nepřímé prozvučování</u>: Tento způsob by se měl používat nejméně, a to pouze v případě přístupnosti pouze jedné strany měřeného prvku. Sondy jsou umístěny na povrchu, což může vést k většímu útlumu vlnění [2] [11] [12].

Obrázek 1: Ukázka přímého prozvučování prvku [19]

Postup při ultrazvukovém měření zahrnuje následující kroky:

- 1. Nákres měřené konstrukce nebo tělesa s okótováním rozměrů a vyznačením umístění měřících základen, toto může být nahrazeno vhodným způsobem.
- 2. Stanovení rozměrů a je-li to možné i hmotnosti tělesa s následným výpočtem objemové hmotnosti.
- 3. Určení mrtvého času pomocí proměření pomocného tělesa z etalonu.
- 4. Měření doby průchodu ultrazvuku a zaznamenání tohoto času, který ultrazvuková vlna potřebuje k průchodu vzorkem.
- 5. Stanovení rozměrnosti prostředí dle rozměrů prozvučovaného prvku.
- 6. Vyhodnocení zkoušky a určení požadovaných veličin.

Pro měření doby průchodu ultrazvuku se používají tyto přístroje:

- S automatickým měřením doby a digitálním výstupem-v ČR častější (Tico).
- Přístroje s obrazovkou vyžadující manuální nastavení časového znaku na čelo impulsů vlny-typicky starší přístroje.
- o přístroje se zabudovaným A Scanem.

Moderní přístroje jako například Pundit PL-200, umožňují automatické i ruční měření a zobrazení A-Scanu (plošný sken konstrukce), dále jsou vybaveny funkcí pro ukládání dat, a také jsou dodávány s PC aplikací pro práci s daty [2].

2.2.3 Mrtvý čas, měření doby průchodu ultrazvuku a rychlost šíření impulzu

<u>Mrtvý čas (T_0) </u> je doba, kterou ultrazvukové vlnění potřebuje k průchodu konstrukcí sondy a vrstvy akustického vazebného prostředku (např. plastelína, gel). Mrtvý čas je třeba stanovit a všechny naměřené údaje o něj upravit.

Stanovení mrtvého času se provádí pomocí etalonu, jehož časová charakteristika (E) je přesně známa. Sondy s vrstvou vazebného prostředku použijeme ke změření doby průchodu ultrazvuku etalonem (Te).

Mrtvý čas vypočítáme pomocí rovnice:

$$T_0 = T_e - E \tag{1}$$

Všechny veličiny dosazujeme ve stejných jednotkách (např. v mikrosekundách).

<u>Měření doby průchodu ultrazvuku</u> se provádí na třech měřicích základnách, které jsou rovnoběžné s podélnou osou vzorku. Dle návodu na obsluhu přístroje změříme a zaznamenáme dobu průchodu ultrazvuku na každé měřicí základně s přesností na desetiny mikrosekundy.

<u>Rychlost šíření impulzu</u> pro každou měřenou základnu vypočítáme podle vzorce:

$$v_i = \frac{L_i}{T_i - T_0} \tag{2}$$

kde: v_i -rychlost šíření ultrazvuku [m·s⁻¹];

 L_i – délka příslušné měřící základny [m];

 T_i – naměřená doba průchodu [s];

 $T_0 - mrtvý čas [s];$

i– číslo základny.

Ze tří vypočtených rychlostí určíme střední hodnotu a zaokrouhlíme ji na jednotky $m \cdot s^{-1}$ [2].

2.2.4 Rozměrnost prostředí a jiné faktory ovlivňující měření

Rozměrnost prostředí

Rychlost šíření ultrazvuku závisí na rozměrech měřeného objektu ve vztahu k délce vlny ultrazvukového vlnění.

Délka vlny (λ_L) se vypočte podle vzorce:

$$\lambda_L = \frac{\nu_L}{f} \tag{3}$$

kde: λ_L - délka vlny [m];

 v_L – průměrná rychlost šíření ultrazvuku [m·s⁻¹];

f- frekvence použité sondy [Hz].

Prostředí může být:

• Jednorozměrné:

Pokud rozměry vzorku kolmé ke směru šíření ultrazvuku jsou menší než 0,2násobek délky vlny (λ_L), pak je rychlost šíření označena jako v_{L1} .

• Trojrozměrné:

Pokud rozměry vzorku kolmé ke směru šíření ultrazvuku jsou větší než 2násobek délky vlny (λ_L), pak je rychlost šíření označena jako v_{L3} .

o Neurčité:

Mezi jednorozměrným a trojrozměrným prostředím.

Koeficient *k* používaný např. ve vztahu pro určení dynamického modulu pružnosti v tahu a tlaku je rovněž závislý na rozměrnosti prostředí. Pro jednorozměrné prostředí je koeficient *k* roven 1, u trojrozměrného prostředí závisí na hodnotě Poissonova poměru [2].

Jiné faktory ovlivňující měření

Na měření rychlosti šíření ultrazvuku mohou mít vliv i další faktory, mezi které patří:

- Vlhkost: Může změnit rychlost šíření vlnění.
- Teplota: Má vliv na materiálové vlastnosti a rychlost šíření.
- Měřicí základna: Její délka a přesnost umístění ovlivňují výsledky.
- Tvar a velikost těles: Mohou způsobit variace v rychlosti šíření.
- Přítomnost výztuže: Ovlivňuje šíření vlnění v materiálu.
- Trhliny a dutiny: Mohou způsobit odchylky a zkreslení měření

Výše uvedené faktory uvádí norma ČSN EN 12504-4 [12].

2.3 METODA JÁDROVÝCH VÝVRTŮ

Metodou jádrových vývrtů se především zabývá norma ČSN EN 12504-1, ze které se vychází v této práci.

2.3.1 Princip metody

Metoda jádrových vývrtů je jednou ze základních destruktivních metod používaných ve stavebním zkušebnictví k hodnocení vlastností betonových konstrukcí.

Metoda se sestává několika jednotlivých kroků:

- Výběr místa odběru (vzorkovací plán);
- Jádrové vrtání;
- Označení vzorku a přepravení do laboratoře;
- Provedení laboratorních zkoušek;
- Vyhodnocení výsledků.

2.3.2 Odběr vývrtů a příprava zkušebních těles

Před odběrem vývrtů by měl být nachystán tzv. vzorkovací plán. Měly by být důkladně promyšleny místa odběrů vzorků, aby nedošlo k zásadnímu narušení konstrukce. Pokud je to možné vývrty by měly být odebírány z nejméně vyztuženého místa konstrukce (ideálně z nevyztuženého místa) a také by neměly být prováděny v blízkosti spár a hran.

Vrtání by se mělo provádět kolmo, pokud není učeno jinak. Když je to možné nejlépe se vyhnout převrtání jakékoliv výztuže, vždy se vyhnout výztuže v podélné ose vývrtu, takový vývrt totiž musí být vždy zamítnut a nahrazen tedy novým. Před vrtáním by se měl uvážit průměr i potřebná délka vývrtu. Průměr vývrtu, když lze alespoň 75 mm, v případě menšího je totiž nutné zdvojnásobit počet vzorků. Vrtání může probíhat jak za sucha (zřídka používané), tak za mokra. Po vyvrtání vývrtu se musí řádně označit, osušit hadříkem a umístit do utěsněné nádoby pro zachování vlhkosti.

U vývrtu je nutné změřit jeho průměr a délku, a také zaznamenat přítomnost výztuže. Delší vývrty se nařežou na jednotlivá tělesa a u každého tělesa či vývrtu (v případě krátkého vývrtu) se provede zbroušení povrchu nebo tzv. koncování. Samozřejmostí je označení každého tělesa. Dovolené odchylky rozměrů těles uvedeny ČSN EN 12504-1 [2] [13].

2.3.3 Tlaková zkouška ve zkušebním lisu

Zaznamenají se podmínky uložení těles před zkoušením. Uskuteční se zkoušení specifikované v normě ČSN EN 12390-3 ve zkušebním lisu, který splňuje normu ČSN EN 12390-4. Povrch tělesa i lisu musí být čistý bez jakýchkoliv nečistot [2] [13] [14] [15].

Stanoví se pevnost v tlaku každého tělesa vydělením maximálního zatížení průřezovou plochou, vypočtenou ze středního průměru a zaokrouhlí se na nejbližší desetinu MPa [2] [13].

2.4 POSTUPY STANOVENÍ CHARAKTERISTICKÉ PEVNOSTI BETONU V TLAKU PRO STÁVAJÍCÍ KONSTRUKCE

Postupy pro hodnocení uvedené níže se týkají pouze existujících konstrukcí, pro nově budované konstrukce norma ČSN EN 13791 uvádí také patřičné postupy v případě pochybností o správném provedení konstrukce, tyto však nejsou předmětem této práce.

2.4.1 Vyhodnocení pouze na základě jádrových vývrtů

Vychází se ze zkoušení základní zkušební oblasti, která má přibližně 30 m³. Toto souvisí s technologií výstavby, postupem výstavby například po jednotlivých podlažích objektů a také s růzností svislých a vodorovných nosných konstrukcí.

Odhad charakteristické pevnosti betonu v tlaku in situ běžné zkušební oblasti se stanoví pak minimálně na:

- 8 platných výsledcích zkoušek založených na vývrtech o průměru 75 mm a větším.
- 12 platných výsledcích zkoušek na vývrtech 50 mm a větším s maximálním zrnem kameniva velikosti 16 mm.

Nejprve se prověří platnost všech výsledků pevností v tlaku na konstrukci ($f_{c,is}$) získaných z vývrtů. Tyto pevnosti jsou stanovené na tělesech 2:1 nebo případně na tělesech 1:1 s následným přepočtem pomocí faktoru CLF, který je stanoven hodnotou 0,82. Hodnota CLF vychází z normy ČSN EN 206+A2 jako průměrná hodnota z poměrů válcové a krychelné pevnosti z jednotlivých pevnostních tříd [2] [3] [13] [16].

Charakteristická pevnost v tlaku v konstrukci $(f_{ck,is})$ se odhadne jako menší hodnota z:

$$f_{ck,is} = f_{c,m(n)is} - k_n s \tag{4}$$

$$f_{ck,is} = f_{c,is,lowest} + M \tag{5}$$

kde:

- $f_{c,m(n)is}$ je odhad průměru pevnosti v tlaku na konstrukci při počtu n vývrtů;
- k_n tj. koeficient kvantilu charakteristické hodnoty, který je závislý na n počtu vývrtů (viz Tabulka 6 [3]);
- s jedná se o celkovou směrodatnou odchylku a uvažuje se větší z vypočtené směrodatné odchylky nebo hodnoty odpovídající variačnímu koeficientu 8 %;
- *f_{c,is,lowest}* je nejmenší zjištěnou pevností na n vývrtech;
- *M* jedná se o hodnotu rozpětí stanovenou dle $f_{c,is,lowest}$ (Tabulka 7 [3]).

V případě malých zkušebních oblastí tvořených maximálně třemi prvky a o celkovém objemu nepřevyšujícím 10 m³, stačí odebrat alespoň tři vývrty s průměrem 75 mm a větším (nutný jeden z každého prvku). Za charakteristickou pevnost se vezme nejmenší z výsledků stanovených ze zkoušek na třech nebo více odebraných vývrtech.

$$f_{ck,is} = f_{c,is,lowest} \tag{6}$$

Při rozptylu výsledků větším než 15 % střední hodnoty je potřebné vyhledat více informací o zkoušené oblasti [2] [3].

2.4.2 Nepřímé zkoušení s minimalizací jádrových vývrtů (bez tzv. kalibrace)

Tento postup lze použít pro oblast do 30 m³ a nelze ji použít při sporu o pevnosti dodávaného betonu.

Provede se velmi důkladně proměření konstrukce nedestruktivně. Následně se ze získaných výsledků vyberou tři místa pro provedení jádrových vývrtů. Jedná se o místa s nejnižší odhadovanou pevností na základě nedestruktivního měření. Na základě výsledků ze zkoušek vývrtů se stanoví jednotlivé pevnosti ($f_{c,is}$), viz předchozí podkapitola.

Charakteristická hodnota pevnosti v tlaku se vypočte jako průměr z pevností získaných na jádrových vývrtech. Opět se musí zkontrolovat rozptyl jednotlivých hodnot od střední hodnoty, maximálně 15 % [2] [3].

Při práci s českým překladem normy ČSN EN 13791 se narazilo na jistou nesrovnalost v překladu této normy z angličtiny. U této metody, kterou upravuje podkapitola 8.3 v dané normě, by dle anglického originálu mělo být uvedeno slovo "nejnižší" (v překladu se objevuje "nižší") ve druhé větě odstavce (2): "…kde byla pomocí nepřímých metod zjištěna <u>nižší</u> pevnost v tlaku…" [3]. V anglické verzi EN: "…around location(s) with <u>the lowest</u> indirect test result…" [17].

2.4.3 Vyhodnocení založené na kombinaci nepřímého zkoušení a zkoušek vývrtů, použití speciální kalibrace nepřímého zkoušení

Základem je vytvoření vlastního regresního vztahu pro odhad pevnosti v tlaku v konstrukci na základě nepřímých zkoušek (tvrdoměrné či ultrazvukové měření).

ldeálně se nepřímá měření provádějí před odběrem vývrtů. Data z vyhodnocení těchto měření by měla být použita k výběru míst pro jádrové vývrty. Vývrty by měly pokrýt celý rozsah hodnot z nepřímých zkoušek, včetně extrémů. Provádí se raději 10 vývrtů, aby i po vyřazení odlehlých hodnot zůstalo alespoň 8 dvojic výsledků, to je minimum, které norma stanovuje.

Výsledky $f_{c,is}$ získané z vyhodnocení zkoušek na vývrtech se vynáší na osu y, výsledky příslušných nepřímých měření (tvrdost Q, rychlost UZ) na osu x. Používá se lineární regrese a norma nestanovuje, co je adekvátní vztah.

S použitím stanovené lineární regresní rovnice se všechny platné nepřímé zkušební hodnoty převedou na jejich ekvivalentní hodnoty regresní rovnice (f_{c,is,reg}), a to i v místech, kde existují skutečné výsledky jádrových vývrtů. Extrapolace vztahu je povolena maximálně o 4 MPa na obě strany.

Norma uvádí následující vzorce, které jsou platné, pokud má korelace y = a + b·x dva parametry n je počet dvojic pro odhad křivky (počet vývrtů) m je počet odhadovaných hodnot pevností (počet všech nepřímých zkoušek).

Odhad průměrné pevnosti v tlaku in situ:

$$f_{c,m(m)is} = \sum (f_{c,is,reg})/m \tag{7}$$

Obecná standardní odchylka pevnosti v tlaku v konstrukci:

$$s = \sqrt{s_c^2 + s_e^2} \tag{8}$$

Hodnoty s_e a s_c jsou dány vztahy:

$$s_e = \sqrt{\frac{\sum_{i=1}^{m} (f_{c,is,reg} - f_{c,m(m)is})^2}{m-1}}$$
(9)

$$s_c = \sqrt{\frac{\sum_{i=1}^{n} (f_{c,is} - f_{c,is,reg})^2}{n-2}}$$
(10)

Hodnota s_c je vyšší z hodnot: vypočtená z výše uvedeného vztahu nebo 2 MPa.

Vypočet efektivního počtu stupňů volnosti ze vzorce:

$$n_{eff} = \frac{[s_c^2 + s_e^2]^2}{\frac{s_c^4}{n-2} + \frac{s_e^4}{m-1}}$$
(11)

K takto určené hodnotě je potřeba přičíst 1 a zaokrouhlit na nejbližší celé číslo, jenž slouží pro stanovení hodnoty koeficientu kvantilu charakteristické hodnoty k_n z Tabulky 6 uvedené v normě ČSN EN 13791.

Následuje stanovení hodnoty $f_{c,is,lowest}$ jako menší z hodnot:

- minimum z f_{c,is}
- minimum z f_{c,is,reg}

Hodnota rozpětí M se určí na základě hodnoty $f_{c,is,lowest}$ z Tabulky 7 v normě.

Odhad pevnosti $f_{ck,is}$ se určí jako menší hodnota vypočtená ze vztahů (4) a (5) uvedených výše [2] [3] [8].

2.5 STATISTIKA VYUŽITÁ V TÉTO PRÁCI

Statistika je základní nástroj používaný ve vědeckém výzkumu k interpretaci dat a formulování závěrů. Pomáhá převádět surová data do užitečných informací, které mohou být použity k rozhodování a řešení problémů. V této práci jsou použity různé statistické metody, které se dělí na popisnou a matematickou statistiku. Tato kapitola poskytne přehled těchto metod a pojmů, které jsou klíčové pro statistickou analýzu v této studii.

Popisná statistika

Popisná statistika se zaměřuje na sumarizaci a popis dat pomocí různých nástrojů jako tabulky, grafy a číselné charakteristiky. Používá základní matematické metody k pochopení hromadných jevů a je základním stavebním kamenem pravděpodobnosti a matematické statistiky.

<u>Statistické zpracování dat</u>: Tento proces zahrnuje tři hlavní etapy: shromažďování dat, jejich zpracování a rozbor. Klíčovým aspektem je pečlivé shromažďování dat, aby byly eliminovány nežádoucí vlivy a aby byla zajištěna kvalita výstupů.

<u>Grafické zobrazení:</u> Vizualizace dat je důležitým krokem pro lepší pochopení a prezentaci dat. Mezi běžně používané grafy patří bodový graf, histogram, výsečový graf a krabicový graf.

• Histogram:

Histogram je grafické znázornění rozložení dat, které usnadňuje pochopení jejich variabilita. Data jsou rozdělena do intervalů (tříd) a nad každou třídou je vykreslen sloupec, jehož výška odpovídá četnosti hodnot v dané třídě.

Krabicový graf:

Krabicový graf (box plot) je nástroj pro vizualizaci rozložení dat. Ukazuje medián, kvartily a potenciální odlehlé hodnoty. Pomáhá rychle identifikovat symetrii a variabilitu datového souboru.

Obrázek 2: Ilustrativní ukázka krabicového grafu ve vodorovné poloze

Matematická statistika

Matematická statistika používá složitější metody k analýze dat a tvorbě závěrů na základě pravděpodobnostních modelů.

<u>5% kvantil:</u> Kvantil je hodnota, pod kterou leží určitý procentní podíl dat. 5% kvantil je hodnota, pod kterou leží 5 % dat. Tento kvantil se používá pro odhad charakteristické pevnosti betonu.

<u>Normální rozdělení:</u> Je jedno z nejčastěji používaných pravděpodobnostních rozdělení. Má tvar zvonovité křivky a je charakterizováno střední hodnotou a směrodatnou odchylkou.

<u>Logaritmicko – normální (lognormální) rozdělení:</u> Je pravděpodobnostní rozdělení, jehož logaritmus je normálně rozdělen. Používá se v případech, kdy data nemají symetrické rozložení.

<u>Náhodný výběr:</u> Je proces, při kterém každá jednotka v populaci má stejnou pravděpodobnost být vybrána do vzorku. To zajišťuje reprezentativnost vzorku a umožňuje aplikaci statistických metod.

<u>Testování statistických hypotéz</u>: je metoda rozhodování o platnosti předpokladů na základě vzorku dat. Proces zahrnuje formulaci nulové a alternativní hypotézy, výběr vhodného testu, výpočet testové statistiky a rozhodnutí na základě p-hodnoty nebo kritického regionu.

Regresní analýza

Regresní analýza je statistická metoda pro modelování vztahu mezi závislou proměnnou a jednou nebo více nezávislými proměnnými. Cílem je najít nejlepší funkční vztah, který popisuje závislost mezi těmito proměnnými [2].

Statistické metody, a to nejen ty výše uvedené, poskytují nástroje pro analýzu a interpretaci dat. Porozumění těmto pojmům je klíčové pro správnou aplikaci statistických metod a formulaci platných závěrů. Použití popisné statistiky, grafického zobrazení a matematické statistiky umožňuje efektivní zpracování a interpretaci výsledků výzkumu [2].

3 EXPERIMENTÁLNÍ ČÁST

Získání vzorků (vývrtů) pro laboratorní zkoumání proběhlo netradičním způsobem. Zkoumané vývrty nebylo nutné přímo odebírat na konstrukci z naší strany. K dispozici se naskytly vývrty průměru kolem 65 mm pocházejících ze sloupů haly, kde je nyní těžký průmysl. Vývrty vznikly při provádění zvýšení únosnosti sloupů. Zvýšení únosnosti sloupů (viz *Obrázek 4*) bylo prováděno sevřením čtyřmi závitovými tyčemi skrz sloup a doplněním o ocelovou podpěrnou konzolou. Pro tyto tyče bylo nutné zhotovit právě čtyři vývrty na každém sloupu. Před tímto zásahem byl již proveden diagnostický průzkum a poté statický výpočet, který navrhl uvedené řešení.

Obrázek 3: Foto z provádění vývrtů [20]

Obrázek 4: Opatření pro zvýšení únosnosti sloupu [20]

3.1 PŘEDSTAVENÍ EXPERIMENTU

3.1.1 Plán experimentu

Experiment má představovat reálný postup při hodnocení konstrukce a napodobení měření na konstrukci.

Postup práce na experimentu byl následující:

1. Získání jádrových vývrtů a převezení do laboratoře;

Obrázek 5: Hromadné foto vývrtů po dovozu do laboratoře [0]

- 2. Vizuální zhodnocení vývrtů a změření jejich délek;
- 3. Prozvučení jednotlivých vývrtů ultrazvukem simulace měření na konstrukci;
- 4. Vyznačení budoucích těles na vývrtech, tělesa byla vytypována vizuálním zhodnocením a rozměřením vývrtů;
- 5. Nařezání všech vývrtů a dobroušení korundovým práškem;
- 6. Každé těleso jednotlivě zváženo, proměřeny jeho rozměry a prozvučeno ultrazvukem;
- 7. Provedení zkoušek ve zkušebním lisu a vizuální kontrola porušení těles;
- 8. Statistické vyhodnocení získaných dat.

Bylo zavedeno označení těles pro snadné a rychlé rozlišení nejen v průběhu měření a zkoušení těles, ale i pro budoucí vyhodnocení. Na první pozici ponecháno převzaté označení sloupu (např. F11) a číslo vrtu (1,2,3,4) a přidáno číselné označení zkušebního tělesa, kdy pro tělesa 1:1 jsou použita lichá čísla (1,3) a pro tělesa 2:1 sudá čísla (2,4). Celé označení daného zkušebního tělesa je například F11 4-1 (viz *Obrázek 6 a 7*).

Obrázek 6: Vývrty ze sloupu F11 po nařezaní na tělesa

Obrázek 7: Tělesa 1:1 a 2:1 ze sloupu F11

Po celou dobu experimentu byl veden laboratorní zápis a zkoušení probíhalo dle příslušných norem. Záznamy ultrazvukového měření byly také ukládány do paměti osciloskopu.

3.1.2 Popis a dokumentace jádrových vývrtů

Jádrové vývrty byly již při převzetí označeny popisovacím fixem, uvedeno bylo označení sloupu (např. A7), z kterého vývrt pochází a také označení pořadí vývrtu (1,2,3,4), toto je lehce patrné z uvedených obrázků níže. Toto označení jsme využili a později rozšířili pro označení jednotlivých těles.

Obrázek 8: Souhrnné foto vývrtů

Obrázek 9: Vývrty po prvotním vizuálním zhodnocením

Vývrty se nejprve roztřídili dle sloupů, z kterých byly odvrtány. Toto bylo důležité pro získání přehledu a určení z kolika sloupů máme k dispozici jaký počet vývrtů. Fotodokumentace vývrtů dle označení jednotlivých sloupů umístěna v příloze této práce (Příloha č.1). Zde pro ilustraci (viz *Obrázek 10*) uvedena téměř kompletní sada vývrtů ze sloupu F11, který je zároveň sloupem dilatačním. Dokonce při vrtání zůstala dřevotřísková deska na vývrtu F11- 3, která potvrzuje přítomnost dilatační spáry v tomto sloupu.

Obrázek 10: Vývrty ze sloupu F11

Zároveň se provedlo vizuální zhodnocení těchto vývrtů a vybrání vhodných vzorků pro ultrazvukové měření. Zavedlo se označení daných vzorků U1-U33.

3.2 ultrazvukové měření v laboratoři – simulace měření na konstrukci in Situ

Změření délek vývrtů s přesností na desetiny milimetru pomocí přesného posuvného měřidla s délkou 0,5 m a s vystouplými měřícími hroty a zapsání těchto hodnot bylo nezbytným prvním krokem pro budoucí vyhodnocení ultrazvukového měření.

Poté proběhlo prozvučování jednotlivých vývrtů po celé jejich délce, jako by toto prozvučování bylo prováděno na konstrukci, průběh měření je patrný z *Obrázku 11.* Samozřejmostí byla pravidelná kontrola kalibrace na etalonu a korekce pomocí úpravy vazebného materiálu v našem případě plastelíny umístěné na sondách.

Pro veškeré realizované ultrazvukové měření se používal přístroj Pundit PL-200 (od firmy Proceq) s digitálním paměťovým osciloskopem. Data získaná z měření byla jednak zapisována a jednak ukládána přístrojem do jeho paměti.

Obrázek 11: Průběh ultrazvukového měření na vývrtu F7 – 1 (U1)

U každého vývrtu bylo provedeno měření doby průchodu ultrazvuku celkem třikrát, tyto měření byla jednotlivě přepočítána na rychlost ultrazvukového vlnění a z těchto byl následně proveden průměr (viz *Tabulka 1*).

Označení zk. místa	Délka vzorku	Čas průchodu UZ T _{uz} [µs]			Rychlost UZ vlnění v ⊾ [m/s]			
		"1"	"2"	"3"	"1"	"2"	"3"	Průměr
U1	441,1	104,1	104,3	104,3	4237	4229	4229	4232
U2	430,2	110,5	109,5	109,4	3893	3929	3932	3918
U3	337,5	96,8	96,4	96,7	3487	3501	3490	3493
U4	361,2	88,7	88,9	89,4	4072	4063	4040	4058
U5	427,2	107,4	107,4	106,7	3978	3978	4004	3986
U6	387,8	100,9	101,1	100,9	3843	3836	3843	3841
U7	430,1	100,0	100,0	99,9	4301	4301	4305	4302
U8	245,7	56,4	56,6	56,6	4356	4341	4341	4346
U9	363,8	83,2	83,0	83,3	4373	4383	4367	4374
U10	415,9	106,4	106,0	105,9	3909	3924	3927	3920
U11	423,2	106,5	106,3	106,2	3974	3981	3985	3980
U12	286,5	71,9	73,1	72,4	3985	3919	3957	3954
U13	397,3	97,5	97,4	97,3	4075	4079	4083	4079
U14	377,8	103,9	103,6	103,5	3636	3647	3650	3644
U15	194,9	51,2	51,1	51,1	3807	3814	3814	3812
U16	398,8	105,3	105,8	104,4	3787	3769	3820	3792
U17	359,5	98,7	97,6	98,0	3642	3683	3668	3665
U18	320,7	77,9	77,6	77,8	4117	4133	4122	4124
U19	337,8	82,2	82,5	81,7	4109	4095	4135	4113
U20	371,9	102,3	101,6	101,3	3635	3660	3671	3656
U21	448,8	118,5	119,1	118,9	3787	3768	3775	3777
U22	337,3	83,1	83,1	82,8	4059	4059	4074	4064
U23	278,9	62,3	62,7	62,3	4477	4448	4477	4467
U24	412,2	101,7	101,4	101,7	4053	4065	4053	4057
U25	408,5	102,1	102,4	102,2	4001	3989	3997	3996
U26	294,7	79,1	78,9	78,9	3726	3735	3735	3732
U27	248	67,8	68,0	68,0	3658	3647	3647	3651
U28	410,3	103,1	103,3	102,8	3980	3972	3991	3981
U29	380	98,2	97,8	97,2	3870	3885	3909	3888
U30	385,5	104,2	103,7	104,5	3700	3717	3689	3702
U31	256	62,7	62,9	62,6	4083	4070	4089	4081
U32	294,8	81,3	80,9	81,0	3626	3644	3640	3637
U33	314,2	84,0	83,6	83,3	3740	3758	3772	3757

Tabulka 1: Přehled stanovené rychlosti ultrazvukového vlnění na 33 vývrtech

Některé vývrty byly proměřeny i napříč, ukázka výstupu z měření ultrazvukovým přístrojem je uvedena na *Obrázku 12.*

Obrázek 12: Ukázka výstupu z přístroje (vývrt D13 – 4), zleva patrná karbonatace

3.3 LABORATORNÍ ZKOUŠKY NA ZKUŠEBNÍCH TĚLESECH

Po ultrazvukovém měření následovalo naznačení budoucích těles na všechny vývrty (viz *Obrázek 13 až 16* a Příloha č.2) a popsání smluveným označením. Jelikož byli k dispozici vývrty průměru 65 mm bylo nutné zdvojnásobit počet těles. Toto bylo specifikováno pomocí interpolace mezi příslušnými hodnotami, jak udává Tabulka 4 v ČSN EN 13791 [3].

Obrázek 13: Vývrty U1 až U11

Obrázek 16: Vyznačená tělesa na vývrtech ze sloupu D13

Při manipulaci s vývrty se vizuálně jevil u některých vývrtů patrný přechod barevného odstínu betonu naznačující možnou karbonataci části, která vedla od líce sloupu (na vývrtu byly zbytky omítky) do různé hloubky u jednotlivých vývrtů (viz *Obrázek 17*). Na základě tohoto bylo uváženo jako vhodné vyčlenit tělesa s předpokladem, že jsou nejspíš zkarbonatovaná (s označením "C") pro oddělené vyhodnocení vlivu karbonatace na pevnost betonu.

Obrázek 17: Vzorek vizuálně zkarbonatovaný

Obrázek 18: Rozřezaný vzorek s fenolftaleinem potvrzujícím karbonataci

Celkem vzniklo nařezáním jádrových vývrtů 132 zkušebních těles. Obě podstavy každého tělesa se ručně zbrousili korundovým práškem, pro docílení co největší rovinnosti těles.

Obrázek 19: Většina zkušebních těles

Tělesa zvážena a změřena pro zjištění hmotnosti a rozměrů nezbytných pro budoucí vyhodnocení zkoušek. Rozměry a hmotnost těles jsou přehledně uvedeny v tabulce (*Tabulka 2*), která je doplněna i o objemovou hmotnost těles v přirozeně vlhkém stavu.

Označení tělesa		Průměr Délka		Hmotnost	Objemová hmotnost přirozená	
Sloup	Vrt-těleso	u (mm)		m _r [y]	D _r [kg/m ³]	
	2-1	63,6	63,1	442,5	2207	
	2-2	63,6	125,3	881,3	2214	
	2-3	63,7	63,3	444,9	2205	
A7	2-4	63,8	126,8	891,2	2198	
	3-1	63,7	63,8	439,5	2162	
	3-2	63,8	127,0	886,4	2183	
	3-3	63,8	63,5	436,3	2149	
	3-4	63,9	126,2	885,6	2188	
	2-1	68,2	68,5	564,6	2256	
	2-2	68,3	137,3	1140,9	2268	
	2-3	68,2	67,8	561,3	2266	
C11	3-1	63,6	63,9	478,4	2357	
	3-2	63,9	127,8	960,7	2344	
	3-3	63,9	63,8	471,6	2305	
	3-4	64,0	126,2	920,5	2267	

Tabulka 2: Zkrácená tabulka uvádějící rozměry, hmotnost a objemovou hmotnost zkušebních těles ze dvou sloupů (celá tabulka viz Příloha č. 3)

Provedlo se měření doby průchodu ultrazvuku vždy třikrát, a to na všech tělesech. Čas průchodu ultrazvuku byl opět jednotlivě přepočítán na rychlost ultrazvukového vlnění a poté proveden průměr z příslušných rychlostí (viz *Tabulka 3*).

Tabulka 3: Zkrácená tabulka uvádějící přepočet času průchodu na rychlost ultrazvukového vlnění (celá tabulka viz Příloha č. 4)

Označení tělesa		Délka vzorku	Čas průchodu UZ T _{uz} [µs]			Rychlost UZ vlnění v _L [m/s]			
Sloup	Vrt-těleso	L [mm]	"1"	"2"	"3"	"1"	"2"	"3"	Průměr
	2-1	63,1	16,2	16,2	16,3	3895	3895	3871	3887
	2-2	125,3	32,2	32,5	32,6	3891	3855	3844	3863
	2-3	63,3	16,0	16,3	16,2	3956	3883	3907	3916
	2-4	126,8	32,1	31,9	31,8	3950	3975	3987	3971
	3-1	63,8	17,5	17,3	17,4	3646	3688	3667	3667
	3-2	127,0	33,6	33,2	33,4	3780	3825	3802	3802
	3-3	63,5	16,5	16,3	16,3	3848	3896	3896	3880
	3-4	126,2	32,4	32,1	32,2	3895	3931	3919	3915
	2-1	68,5	15,8	15,8	15,8	4335	4335	4335	4335
	2-2	137,3	32,9	32,5	32,4	4173	4225	4238	4212
	2-3	67,8	15,9	15,9	15,9	4264	4264	4264	4264
C11	3-1	63,9	14,2	13,8	14,1	4500	4630	4532	4554
	3-2	127,8	27,0	26,8	26,6	4733	4769	4805	4769
	3-3	63,8	14,7	14,5	14,5	4340	4400	4400	4380
	3-4	126,2	30,5	30,4	30,5	4138	4151	4138	4142

Následně byla realizována tlaková zkouška jednotlivých těles ve zkušebním lisu. Níže zobrazena vybraná tělesa před a po provedení zkoušky.

Obrázek 20: Zkušební těleso C11 3-4 před zkouškou v lisu

Obrázek 22: Zkušební těleso C11 3-2 před zkouškou v lisu

116,9 kN

Obrázek 21: Zkušební těleso C11 3-4 po provedení zkoušky

Obrázek 23: Zkušební těleso C11 3-2 po provedení zkoušky

146,2 kN

Během zkoušek ve zkušebním lisu se objevilo několik těles s velkým zrnem kameniva, tato tělesa byla zdokumentována (*Obrázek 24 až 27*). K dispozici jsme měli vývrty o průměru přibližně 65 mm, vhodnější by byl spíše větší průměr (nejlépe 75 mm). Před zkoušením informace o použitém kamenivu a jeho zrnitosti chyběla. Norma ČSN EN 12504-1 udává, že by průměr vzorku vydělený velikostí zrna kameniva neměl být menší než 3, jinak může dojít k vlivu na výslednou pevnost. Tělesa byla i přesto vyhodnocována a je faktem, že při skutečných průzkumech se tomuto často nelze vyhnout. Ukázalo se, že vliv na pevnost velikost zrna kameniva opravdu má, dochází ke většímu rozptylu, ale vliv se dá eliminovat zvýšením počtu těles [13].

Obrázek 24: Zkušební těleso D11 2-2 s viditelnými velkými zrny kameniva

Obrázek 25: Zkušební těleso D11 4-4 s viditelnými velkými zrny kameniva

Obrázek 26: Zkušební těleso A7 3-4 s velkým zrnem kameniva nalezeným po provedení zkoušky

Obrázek 27: Zkušební těleso D11 4-4 s velkými zrny kameniva nalezenými po provedení zkoušky

Jednotlivé zkoušky vytypovaných těles s možným vlivem karbonatace byly provedeny vždy s následnou zkouškou navazujícího tělesa z vývrtu. Po provedení na každou dvojici nanesen fenolftalein indikující pH betonu pomocí odstínů fialové či růžové barvy.

Obrázek 28: Dvojice těles z vývrtu D12 – 2 vybraných pro ověření karbonatace

Obrázek 29: Dvojice těles z vývrtu E5 – 3 vybraných pro ověření karbonatace

3.4 VÝSLEDKY A VYHODNOCENÍ PROVEDENÝCH ZKOUŠEK

3.4.1 Hodnocení na základních zkušebních tělesech 1:1 a 2:1

Ultrazvukové měření je vhodné pro zjištění dynamického modulu pružnosti, jak již bylo řečeno v teoretické části práce. Proto jako první následuje tabelární zobrazení (*Tabulka 4*) jednotlivých výsledků nejen dynamického modulu pružnosti, ale také je doplněno o odhad statického modulu. Průměrně bylo dosaženo hodnot E_{cu} =32,9 GPa a E_c =25,7 GPa.

Označení tělesa		Hmotnost	Objemová hmotnost	Ry	/chlost v∟[r	UZ vlně n/s]	ění	Modul pruž. E _{cu} [GPa]	Modul pruž. E₀ [GPa]
Sloup	Vrt- těleso	m _r [g]	D _r [kg/m ³]	"1"	"2"	"3"	Prům.	dynamický	statický- odhad
	2-1	442,5	2207	3895	3895	3871	3887	30,0	23,4
	2-2	881,3	2214	3891	3855	3844	3863	29,7	23,2
	2-3	444,9	2205	3956	3883	3907	3916	30,4	23,7
	2-4	891,2	2198	3950	3975	3987	3971	31,2	24,3
A7	3-1	439,5	2162	3646	3688	3667	3667	26,2	20,4
	3-2	886,4	2183	3780	3825	3802	3802	28,4	22,2
	3-3	436,3	2149	3848	3896	3896	3880	29,1	22,7
	3-4	885,6	2188	3895	3931	3919	3915	30,2	23,5
	2-1	564,6	2256	4335	4335	4335	4335	38,2	29,8
	2-2	1140,9	2268	4173	4225	4238	4212	36,2	28,2
	2-3	561,3	2266	4264	4264	4264	4264	37,1	28,9
C11	3-1	478,4	2357	4500	4630	4532	4554	44,0	34,3
	3-2	960,7	2344	4733	4769	4805	4769	48,0	37,4
	3-3	471,6	2305	4340	4400	4400	4380	39,8	31,0
	3-4	920,5	2267	4138	4151	4138	4142	35,0	27,3

Tabulka 4: Zkrácená tabulka modulů pružnosti jednotlivých těles získaných z rychlosti ultrazvukového vlnění (celá tabulka viz Příloha č. 5)

Pro další vyhodnocení již bylo nutné rozdělit tělesa 1:1 a 2:1. Tělesa 1:1 respektive jejich pevnosti (v *Tabulce 5* označeno jako Pevnost $f_{c,1:1}$) je nutné převést pomocí faktoru CLF na pevnosti, které by odpovídali získaným pevnostem na tělesech 2:1 (v *Tabulce 6* – Pevnost $f_{c,2:1}$). Součinitel délky vývrtu (faktor CLF) je dán normou ČSN EN 13791.

Označení tělesa		Max. síla	Štíhlost	Pevni f _{c,1:1} [N	ost IPa]	Faktor	Pevnost f _{c,2:1} [MPa]	
Sloup	Vrt-těleso	I [KIN]	л [-]	jednotlivá	průměr		jednotlivá	průměr
	2-1	87,5	0,99	27,5	20.1	0,82	22,6	22.0
<u>۸</u> 7	2-3	97,9	0,99	30,7	29,1	0,82	25,2	23,9
A/	3-1	76,2	1,00	23,9	26.7	0,82	19,6	21.0
	3-3	94,4	1,00	29,5	20,7	0,82	24,2	21,ອ
	2-1	127,1	1,00	34,8	97 E	0,82	28,5	30,7
011	2-3	146,8	0,99	40,2	37,0	0,82	33,0	
UII	3-1	165,3	1,00	52,0	47.0	0,82	42,7	39,3
	3-3	140,4	1,00	43,8	47,9	0,82	35,9	
	1-1	121,2	0,99	37,9	20.2	0,82	31,1	04.0
	1-3	71,2	1,00	22,5	3U,Z	0,82	18,4	24,0
D11	2-1	119,5	1,00	37,6	37,6	0,82	30,8	30,8
	4-1	78,9	1,00	24,8	777	0,82	20,4	707
	4-3	97,6	1,00	30,6	∠/,/	0,82	25,1	۷۷,۱

Tabulka 5: Zkrácená tabulka pevností získaných na tělesech 1:1 s následným přepočtem na pevnost 2:1 (celá tabulka viz Příloha č. 6)

Tabulka 6: Zkrácená tabulka pevností získaných na tělesech 2:1 (celá tabulka viz Příloha č. 7)

Označení tělesa		Max. síla	Štíhlost	Pevnost f _{c,2:1} [MPa]		
Sloup	Vrt-těleso	F [KN]	Λ[-]	jednotlivá	průměr	
	2-2	75,5	1,97	23,8	22 5	
	2-4	74,3	1,99	23,2	23,0	
	3-2	71,0	1,99	22,2	10.1	
	3-4	51,1	1,97	15,9	19,1	
	2-2	135,4	2,01	37,0	37,0	
C11	3-2	146,2	2,00	45,6	41.0	
	3-4	116,9	1,97	36,3	41,0	
	1-2	67,5	2,00	21,1	01.0	
D11	1-4	68,2	1,98	21,5	21,3	
	2-2	50,0	2,00	15,6	15,6	
	4-2	70,1	2,00	21,9	21 5	
	4-4	67,1	1,96	21,1	21,0	
Dále je ilustrováno hodnocení pouze na základě jádrových vývrtů (*Obrázek 30 a 31*). Vyhodnocení vychází z dat tvořených pevnostmi 2:1 ($f_{c,2:1}$ níže v grafickém zobrazení f_c) jednotlivých těles. Ať už získané přímo v případě těles 2:1 nebo přepočtem s CLF v případě těles 1:1.

Tradiční zobrazení pomocí histogramu je v prvním případě doplněno o krabicový graf a ve druhém případě o bodový graf s analýzou odlehlých hodnot pomocí Grubbsova testu. V histogramu je doplněna jednak hustota pravděpodobnosti normálního rozdělení (Gaussova křivka) a hustota pravděpodobnosti logaritmicko – normálního rozdělení, ale také jsou zde polopřímky znázorňující 95% kvantil v případě obou rozdělení a pro každé pro případ známého či neznámého variačního koeficientu. U stávajících konstrukcí se uvažuje beton jako neznámý a uvažujeme tedy neznámý variační koeficient. Se známým variačním koeficientem pracujeme u hodnocení nových betonů.

Obrázek 30: Kombinovaný graf – histogram s krabicovým grafem

Krabicový graf neidentifikuje žádnou odlehlou hodnotu. Histogram viditelně lépe kopíruje křivka logaritmicko – normálního rozdělení, toto je podpořeno tím, že p-hodnota normálního rozdělení svou hodnotou 0,007 vylučuje normální rozdělení.

Obrázek 31: Kombinovaný graf – histogram s grafickým vyjádřením Grubbsova testu

Dle Grubbsova testu také není potřeba vyřadit žádnou hodnotu jako statisticky odlehlou. V normě ČSN EN 13791 uvedeno, že lze použít jakoukoliv zavedenou metodu pro určení statisticky odlehlých hodnot. Toto platí pro normální i logaritmicko – normálního rozdělení, ale v případě normálního rozdělení je právě uvedena analýza pomocí Grubbsova testu. Norma obsahuje i tabulku kritických hodnot (G_p) pro testování staticky odlehlých hodnot na hladině významnosti 1 % [3].

Na základě provedených analýz při vyhodnocení konstrukce **pouze na základě jádrových vývrtů** lze stanovit téměř s jistotou **charakteristickou pevnost in situ** přibližně rovnu **17,8 MPa** a pevnostní třídu betonu jako **C 16/20**.

Při vyhodnocení se jevilo jako vhodné ověřit i funkčnost CLF faktoru pro přepočet pevnosti tělesa 1:1 na pevnost 2:1. Statická analýza pomocí grafického zobrazení dvou krabicových grafů (*Obrázek32*), z nichž první reprezentuje pevnosti v tlaku těles 1:1 přepočtenou na 2:1 a druhý pevnost 2:1 rovnou získanou z těles 2:1, ukazuje že přepočet pomocí CLF faktoru o hodnotě 0,82 (dle normy ČSN EN 13791) můžeme považovat za správný a lze tyto data sloučit do jednoho statistického souboru. S tímto předpokladem bylo vstupováno do vyhodnocování dat pro stanovení pevnosti v tlaku na základě jádrových vývrtů výše.

Obrázek 32: Dvojice krabicových grafů v jednom zobrazení pro porovnání datových souborů (1: pevnosti 1:1 s přepočtem na 2:1 a 2: pevnosti 2:1)

Následující tabulka uvádí zpětně dopočítané CLF faktory příslušných těles 1:1 a 2:1.

	Označení těl	esa	Peynost	Peynost	
Sloup	Vrt-těleso 1:1	Vrt-těleso 2:1	f _{c,1:1} [MPa]	f _{c,2:1} [MPa]	CLFi
	2-1	2-2	27,5	23,8	0,86
<u>۸</u> 7	2-3	2-4	30,7	23,2	0,76
A)	3-1	3-2	23,9	22,2	0,93
	3-3	3-4	29,5	15,9	0,54
	2-1	2-2	34,8	37,0	1,06
C11	3-1	3-2	52,0	45,6	0,88
	3-3	3-4	43,8	36,3	0,83
	1-1	1-2	37,9	21,1	0,56
	1-3	1-4	22,5	21,5	0,95
D11	2-1	2-2	37,6	15,6	0,42
	4-1	4-2	24,8	21,9	0,88
	4-3	4-4	30,6	21,1	0,69

Tabulka 7: Zkrácená tabulka zpětně dopočítaných CLF faktorů (celá tabulka viz Příloha č. 8)

Z jednotlivých dopočtených hodnot součinitele délky vývrtu (CLF) vytvořen níže uvedený histogram s krabicovým grafem. Na základě tohoto grafického zobrazení a uvedené p-hodnoty normálního rozdělení lze uvažovat normální rozdělení.

Obrázek 33: Kombinovaný graf k ilustraci zpětně dopočítaných CLF

V normě je umožněno použití jiné hodnoty CLF než 0,82, pokud je ověřena pomocí zkoušek [3].

Doplnění vyhodnocení o graf s lineární spojnicí (viz *Obrázek 34*). Z kterého vyplývá, že **průměrná hodnota zpětně dopočteného CLF na daném souboru je 0,843**. Další statické testy však nevyloučili správnost hodnoty 0,82 pro tento soubor.

Obrázek 34: Bodový graf s lineární spojnicí, která prokládá jednotlivé zpětně dopočtené CLF faktory

3.4.2 Stanovení vlivu karbonatace na příslušných tělesech

Pro stanovení přítomnosti karbonatace u jednotlivých těles byl použit roztok fenolftaleinu. Těleso, které vykazuje slabé zbarvení nebo nevykazuje žádné zbarvení, má pH menší než 9. Nižší pH poukazuje na karbonataci betonu.

K přirozené karbonataci dochází vlivem působení oxidu uhličitého obsaženého ve vzduchu, který reaguje s hydroxidem vápenatým (obsažen v betonu).

Karbonatace tedy prostupuje do konstrukce od povrchu, který je vystaven vzdušnému prostředí. Tato se však na vývrtu nemusí jevit rovnoměrně, důkazem může být níže uvedený vývrt s patrně šikmým zkarbonatováním (viz *Obrázek 35 a 36*), který byl pravděpodobně odebrán v blízkosti pracovní spáry, jež mohla být tohoto příčinou.

Obrázek 35: Vývrt D14 – 3 před řezem, lehce viditelná karbonatace

Obrázek 36: Vývrt D14 – 3 po řezu a nanesení fenolftaleinu prokazujícího šikmou karbonataci

Karbonatace je tedy chemický proces, který má několik důsledků. Dostatečné pH (vyšší než 9) je potřebné pro ochranu výztuže proti korozi, což je jeden z uvažovaných předpokladů při návrhu konstrukce (není-li ochrana výztuže zajištěna jinak).

Karbonatace způsobuje zvyšování pevnosti betonu od povrchu. Na tuto skutečnost je nutné myslet při zkoušení betonu. Měřením pouze na povrchu (tvrdoměry) nebo zkoušením těles odebraných jen z krátkých vývrtů nezasahujících do hloubky konstrukce může dojít k nadhodnocení pevnosti konstrukce [18].

Označení tělesa		Max. síla	Štíhlost	Pevnost	Faktor	Pevnost	Poměr
Sloup	Vrt- těleso		Λ[-]	1 c,1:1 [IVIF a]		i c,2:1 [ivi⊢ a]	UCI [-]
	1-C	130,3	1,00	41,1	0,82	33,7	100
L 11	1-3	71,2	1,00	22,5	0,82	18,4	1,00
	4-C	118,1	0,99	37,3	0,82	30,6	150
	4-1	78,9	1,00	24,8	0,82	20,4	1,00
	1-C	135,3	0,99	42,7	0,82	35,0	1 51
	1-3	89,9	0,99	28,2	0,82	23,1	1,01
010	2-C	167,5	1,00	52,6	0,82	43,1	165
	2-1	101,7	1,00	31,9	0,82	26,2	1,00
	4-C	113,7	1,00	35,7	0,82	29,3	1 / 0
	4-1	79,5	0,99	24,9	0,82	20,5	1,43
D12	3-C	127,8	1,00	40,1	0,82	32,9	1 0 0
013	3-1	95,9	1,00	30,1	0,82	24,7	1,00
55	3-C	114,0	1,01	36,8	0,82	30,2	1 75
E0	3-1	65,2	1,01	21,0	0,82	17,3	1,70
Ee	3-C	134,0	1,02	36,9	0,82	30,3	1 20
EO	3-1	97,6	1,02	26,8	0,82	22,0	1,00
E7	1-C	141,4	1,00	44,5	0,82	36,5	0.76
	1-1	185,2	0,99	58,7	0,82	48,1	0,70
E 11	4-C	103,0	0,98	32,1	0,82	26,3	0.64
	4-1	160,5	0,99	50,2	0,82	41,2	0,04
						PRŮMĚR	1,55

Tabulka 8: Tělesa zkarbonatovaná a příslušná tělesa, která navazovala ve vývrtu s dopočtem poměru CCF

Z *Tabulky 8* lze vyčíst, že vytypovaná tělesa opravdu vykazují větší pevnosti, a i pomocí fenolftaleinu bylo dokázáno, že tyto tělesa jsou pravděpodobně zkarbonatována. Uvedené přeškrtnuté hodnoty ze sloupů F7 a F11 byly vyřazeny. U obou těleso navazující obsahovalo velké zrno kameniva, které zvýšilo jejich pevnost a tímto dosahovaly vyšší pevnosti než zkarbonatovaná tělesa (ověřeno fenolftaleinem).

Po vyřazení těchto nevypovídajících hodnot bylo dosaženo **poměr**u **CC**F ve výši **přibližně 1,55**. Což znamená, že **zkarbonatovaná tělesa vykazují 1,55krát vyšší pevnost** v tomto souboru dat.

Obrázek 37: Grafické zobrazení jednotlivých poměrů CCF s lineární spojnicí

l statistická analýza pomocí testu Anova potvrdila, že statistický soubor dat získaných ze zkarbonatovaných těles se významně liší oproti souboru běžných těles. Níže uvedeno grafické zobrazení (*Obrázek 38*), které jednoduše vizuálně potvrzuje totéž. Jedná se o graf se dvěma tzv. krabicemi, krabice označená číslem 1 odpovídá zkarbonatovaným tělesům a krabice 2 těm nezkarbonatovaným.

Obrázek 38: Dva krabicové grafy v jednom zobrazení pro porovnání odlišnosti souborů dat (1: pevnosti zkarbonatovaných těles a 2: pevnosti běžných těles)

3.5 REGRESE CHARAKTERISTICKÉ PEVNOSTI V TLAKU A RYCHLOSTI ULTRAZVUKOVÉHO VLNĚNÍ

Při reálné aplikaci vyhodnocení pevnosti na základě kombinace dat z nepřímého zkoušení a dat ze zkoušení vývrtů dle normy ČSN EN 13791 by se nejprve provedlo měření ultrazvukem (nepřímé měření) ještě před odebráním vývrtů. Určitě by se také neprováděl odběr takového množství vývrtů, jaký je k dispozici v tomto případě.

Označení zk. místa	Označení vzorku Sloup-Vrt	Rychlost UZ vlnění v∟[km/s]	f _{c,is} (1:1xCLF) [N/mm²]	f _{c,is} (2:1) [N/mm²]	f _{c,is} (průměr) [N/mm²]
U1	F7-1	4,232	40,34	34,52	37,4
U2	F7-4	3,918	42,65	37,85	40,3
U3	F7-2	3,493	27,94	28,90	28,4
U4	F11-1	4,058	34,58	39,64	37,1
U5	F11-2	3,986	31,84	40,43	36,1
U6	F11-3	3,841	25,03	25,22	25,1
U7	F11-4	4,302	34,48	35,83	35,2
U8	F10-3	4,346	37,58	33,48	35,5
U9	F10-4	4,374	42,96	40,99	42,0
U10	F9-1	3,920	26,53	23,30	24,9
U11	F9-3	3,980	30,12	30,17	30,1
U12	F8-2	3,954	31,34	29,20	30,3
U13	F8-4	4,079	28,61	29,76	29,2
U14	E5-3	3,644	18,59	25,23	21,9
U15	E5-4	3,812	18,70	23,01	20,9
U16	E6-3	3,792	24,12	25,02	24,6
U17	E6-4	3,665	20,45	22,96	21,7
U18	E14-4	4,124	34,85	31,77	33,3
U19	E14-3	4,113	33,55	40,26	36,9
U20	A7-2	3,656	23,89	23,50	23,7
U21	A7-3	3,777	21,91	19,07	20,5
U22	C11-2	4,064	30,74	36,96	33,8
U23	C11-3	4,467	39,28	40,96	40,1
U24	D11-1	4,057	24,76	21,29	23,0
U25	D11-2	3,996	30,84	15,64	23,2
U26	D11-4	3,732	22,74	21,49	22,1
U27	D12-1	3,651	22,03	20,77	21,4
U28	D12-2	3,981	26,17	32,63	29,4
U29	D12-3	3,888	28,03	29,60	28,8
U30	D12-4	3,702	19,38	25,21	22,3
U31	D13-1	4,081	33,17	27,01	30,1
U32	D13-3	3,637	22,10	22,80	22,5
U33	D13-4	3,757	21,76	24,20	23,0

Tabulka 9: Souhrnná tabulka rychlosti ultrazvukového vlnění a zjištěných pevností

Tabulka 9 je tedy pouze souhrnem dat, ze kterých se bude vycházet v dalším vyhodnocení. Tabulka také slouží k uvedení jediné dané pevnosti pro konkrétní vývrt $(f_{c,is}(průměr))$, získané zprůměrováním hodnoty pevnosti z těles 1:1 přepočtené na 2:1 $(f_{c,is}(1:1xCLF))$ a hodnoty pevnosti z těles 2:1 $(f_{c,is}(2:1))$.

Prvním krokem je sestavení grafu, kde osa x je pro nepřímé zkoušky (v_L) a osa y pro pevnost v tlaku v konstrukci ($f_{c,is}$ v grafech níže označeno jako f_c). Poté se stanoví lineární regrese [2] [3].

Obrázek 39: Graf zobrazující provedenou regresní analýzu na 10 dvojicích hodnot vybraných z celého rozsahu hodnot rychlostí ultrazvukového vlnění

Obrázek 40: Graf zobrazující provedenou regresní analýzu na všech 33 dvojicích hodnot

Dále se pomocí rovnice získané lineární regresí převedou všechny hodnoty z nepřímého měření (rychlost UZ vlnění) na hodnoty pevnosti f_{c,is,reg} a to i v případě kde je k dispozici hodnota ze zkoušení vývrtů (f_{c,is}). Poté se provedou výpočty veličin dle vzorců uvedených v normě a stanoví se charakteristická hodnota pevnosti v tlaku na konstrukci (f_{c,is}) [3].

A) Pro ilustraci reálné situace je provedeno nejprve vyhodnocení při úvaze pouze 10 vývrtů získaných z konstrukce. Tato úvaha je založena na doporučení z normy, kde se doporučuje získat 10 párů výsledků zkoušek a zároveň pokrýt celý rozsah hodnot [3].

Označení zk. místo	Označení vzorku	Rychlost UZ vlnění	f _{c,is} (průměr)	f _{c,is,reg} m=33 n=10
	Sloup-Vrt	v _∟ [km/s]		[N/mm ²]
U1	F7-1	4,232		35,47
U2	F7-4	3,918		28,55
U3	F7-2	3,493		19,16
U4	F11-1	4,058		31,64
U5	F11-2	3,986		30,05
U6	F11-3	3,841		26,84
U7	F11-4	4,302	35,2	37,03
U8	F10-3	4,346	35,5	37,99
U9	F10-4	4,374	42,0	38,61
U10	F9-1	3,920		28,59
U11	F9-3	3,980	30,1	29,91
U12	F8-2	3,954		29,33
U13	F8-4	4,079		32,10
U14	E5-3	3,644	21,9	22,51
U15	E5-4	3,812		26,20
U16	E6-3	3,792		25,77
U17	E6-4	3,665		22,96
U18	E14-4	4,124		33,09
U19	E14-3	4,113		32,85
U20	A7-2	3,656	23,7	22,76
U21	A7-3	3,777		25,43
U22	C11-2	4,064	33,8	31,76
U23	C11-3	4,467	40,1	40,66
U24	D11-1	4,057		31,61
U25	D11-2	3,996		30,26
U26	D11-4	3,732		24,44
U27	D12-1	3,651	21,4	22,65
U28	D12-2	3,981		29,93
U29	D12-3	3,888		27,89
U30	D12-4	3,702		23,78
U31	D13-1	4,081		32,14
U32	D13-3	3,637	22,5	22,34
U33	D13-4	3,757		24,99

Tabulka 10: Přepočet rychlostí ultrazvuku na pevnost pomocí regresního vztahu z 10 dvojic hodnot

- \circ Jak je uvedeno v tabulce výše uvažujeme m=33 a n=10.
- Střední hodnota pevnosti v tlaku byla odhadnuta pomocí průměru z hodnot f_{c,is,reg}:
 $f_{c,m(33)is}$ = 29,07 N/mm².
- $_{\odot}$ Obecná standardní odchylka s= 5,31 N/mm² stanovená z vypočtených hodnot s_e= 4,96 N/mm² a s_c= 2 N/mm².
- Efektivní počet stupňů volnosti n_{eff} se rovná 38,7. K tomuto je potřeba přičíst 1 a zaokrouhlit na nejbližší celé číslo= 40, toto číslo slouží jako vstup do Tabulky 6 uvedené v normě ČSN EN 13791.
- \circ Koeficient kvantilu charakteristické hodnoty k_n=1,64.
- Určení hodnoty $f_{c,is,lowest}$ jako menší z hodnot: minimum z $f_{c,is}$ = 21,4 N/mm² a minimum z $f_{c,is,reg}$ = 19,16 N/mm² => $f_{c,is,lowest}$ = 19,16 N/mm².
- Hodnota rozpětí M= 3 MPa stanovená z Tabulky 7 v normě ČSN EN 13791 na základě hodnoty f_{c,is,lowest}.
- \circ První odhad pevnosti f_{ck,is} dle vzorce (4) se rovná 20,4 N/mm².
- \circ Druhý odhad pevnosti f_{ck,is} dle vzorce (5) se rovná 22,2 N/mm².
- \circ Konečný odhad pevnosti f_{ck,is} jako menší z výše uvedených odhadů (20,4 a 22,2).

Charakteristická hodnota pevnosti v tlaku na konstrukci $f_{ck,is}$ byla stanovena **20,4 MPa** (pevnostní třída betonu C **20/25**), **na základě** úvahy **10 vývrtů** odebraných z konstrukce **a 33 hodnot z ultrazvukového měření** (při použití regresního vztahu f_c = 22,06· v_L – 57,89 získaný z 10 dvojic hodnot).

B) Vyhodnocení při uvážení všech hodnot (využití všech 33 vývrtů) pomocí stejného postupu jako u předchozího hodnocení při úvaze pouze deseti vývrtů.

Označení zk. místa	Označení vzorku Sloup-Vrt	Rychlost UZ vlnění vL [km/s]	fc,is(průměr) [N/mm²]	fc,is,reg m=n=33 [N/mm²]
U1	F7-1	4,232	37,4	35,20
U2	F7-4	3,918	40,3	28,42
U3	F7-2	3,493	28,4	19,23
U4	F11-1	4,058	37,1	31,46
U5	F11-2	3,986	36,1	29,90
U6	F11-3	3,841	25,1	26,76
U7	F11-4	4,302	35,2	36,73
U8	F10-3	4,346	35,5	37,67
U9	F10-4	4,374	42,0	38,28
U10	F9-1	3,920	24,9	28,46
U11	F9-3	3,980	30,1	29,76

Tabulka 11: Zkrácená tabulka uvádějící přepočet rychlostí ultrazvuku na pevnost pomocí regresního vztahu z 33 dvojic hodnot (celá viz Příloha č. 9)

- Nyní uvažujeme m=33 a i n=33.
- \circ Střední hodnota pevnosti v tlaku-f_{c,m(33)is}= 28,94 N/mm².
- \circ Obecná standardní odchylka s= 6,45 N/mm², s_e= 4,86 N/mm² a s_c= 4,25 N/mm².
- Efektivní počet stupňů volnosti= 62,1 (n= 63).
- \circ Koeficient k_n= 1,64.
- Určení hodnoty f_{c,is,lowest} jako menší z hodnot: 20,49 N/mm² a 19,23 N/mm² => f_{c,is,lowest}= 19,23 N/mm².
- Stanovená hodnota rozpětí M= 3 MPa.
- \circ První odhad pevnosti f_{ck,is} dle vzorce (4) se rovná 18,4 N/mm².
- \circ Druhý odhad pevnosti f_{ck,is} dle vzorce (5) se rovná 22,2 N/mm².
- Konečný odhad pevnosti f_{ck,is} jako menší z výše uvedených odhadů (18,4 a 22,2).

Charakteristická hodnota pevnosti v tlaku na konstrukci $f_{ck,is}$ = 18,4 MPa (pevnostní třída betonu C 16/20), při hodnocení s 33 vývrty z konstrukce a ultrazvukového měření (při použití regresního vztahu f_c = 21,61· v_L – 56,24).

Pro srovnání je níže uveden graf lineární regrese doplněný o kalibrační křivku. Jedná se o vizuální interpretaci požadavku 90% bezpečnosti, který byl v původní normě ČSN EN 13791 z roku 2007 [4].

Obrázek 41: Grafická ilustrace požadavku 90% bezpečnosti regresního vztahu

3.6 MOŽNÝ VLIV NÁHODNOSTI VÝBĚRU PŘI URČENÍ PEVNOSTI BETONU V TLAKU

Náhodnost vzniká při výběru míst budoucích vývrtů a tato můžeme mít vliv jednak při dá se říct slepém vrtání (metoda jádrových vývrtů), ale i při upřesnění polohy vývrtů pomocí nepřímých metod.

V normě ČSN EN 13791 při vyhodnocení na základě kombinace dat, je dán požadavek pokrytí celého rozsahu hodnot z nedestruktivního měření včetně extrémů. Tento požadavek je doplněn o potřebu získání 10 párů výsledků zkoušek, tedy provedení deseti jádrových vývrtů. Norma sice uvádí, že lze vytvořit regresi na základě pouze 8 dvojic, ale doporučuje prvotně opravdu získat 10, nechává tak prostor pro možné vyřazení odlehlých hodnot. Požadavek pokrytí celého rozsahu hodnot i s extrémy si může každý přehodnotit dle svého uvážení. Tedy právě zde vzniká vliv možné náhodnosti výběru na budoucí určení pevnosti betonu [3].

Následující grafické zobrazení (*Obrázek 42*) ukazuje několik možností výběru jádrových vývrtů na základě ultrazvukového měření, konkrétně jednotlivé regresní křivky vybraných párů hodnot ze statistického souboru 33 dvojic (pevnost z vývrtu a rychlost ultrazvuku).

Obrázek 42: Odlišnost různých regresních křivek při náhodném výběru ze stejného souboru dat

Jednotlivé křivky jsou barevně odlišeny a očíslovány dle legendy v obrázku výše.

- 1. Vybrány 4 nejmenší hodnoty v_L , 2 náhodné mezilehlé hodnoty a 4 největší hodnoty. Regresní vztah: f_c = 22,06· v_L -57,89
- 2. 5 minimálních a 5 maximálních hodnot jen ilustrace, jelikož toto nesplňuje požadavek daný normou na zahrnutí celého rozsahu hodnot. Regresní vztah: f_c = 22,66· v_L -60,45
- 3. 3 minimální, 4 náhodné průměrné hodnoty a 3 maximální Regresní vztah: f_c = 22,18· v_{\perp} -57,72
- 4 nejmenší hodnoty, 3 náhodné mezilehlé a 4 největší Regresní vztah: f_c= 21,72· v_L -56,90
- 5. 3 minimální, 5 náhodných mezilehlých a 3 maximální hodnoty Regresní vztah: f_c = 23,36· v_L -64,20
- 6. 5 hodnot minimálních, 1 náhodná průměrná a 5 maximálních hodnot Regresní vztah: f_c = 23,34· v_L -63,60
- 7. 5 nejmenších, 5 náhodných mezilehlých a 5 největších hodnot Regresní vztah: f_c = 21,79· v_L -57,08
- 8. 6 minimálních, 3 náhodné mezilehlé a 6 největších hodnot Regresní vztah: f_c = 22,43· v_{\perp} -60,73
- 9. 4 minimální, 7 náhodně vybraných hodnot mezilehlých a 4 maximální Regresní vztah: f_c = 18,68· v_L -45,94
- 10. Všech 33 dostupných hodnot Regresní vztah: fc= 21,61· vL -56,24

Minimální či nejmenší hodnoty v rámci křivek 1 až 8 jsou uvažovány s vyloučením absolutního minima 3,493 km/s.

Za povšimnutí v uvedeném grafu (*Obrázek 42*) stojí křivka označená číslem 9, která reprezentuje výběr celkem patnácti vývrtů (4 nejmenší hodnoty, 7 náhodně vybraných mezilehlých hodnot a 4 největší hodnoty). Do této křivky byla zahrnuta úplně nejmenší hodnota naměřené rychlosti ultrazvuku (3,493 km/s) a je patrně vidět, že při vyšších rychlostech ultrazvuku by tato křivka mohla podhodnocovat ve srovnání s ostatními křivkami. Bohužel vyřazení dané hodnoty se nepodařilo podložit provedenými statistickými testy. Křivka č. 10 pak představuje regresní křivku ze všech 33 dvojic hodnot.

Dále uvedený histogram v kombinaci s krabicovým grafem (*Obrázek 43*) je zde poskytnut k zamyšlení a uvědomění, že při náhodném odběru jádrových vývrtů (neupřesněném nepřímými metodami) se můžeme setkat s velmi odlišnými daty tudíž i konečným výsledkem. Jenom při náhodném výběru 10 vývrtů z 33 dostupných vývrtů existuje téměř neuvěřitelných 92 561 040 možných kombinací (*Obrázek 43* uvádí jednu z těchto kombinací s $f_{ck,is}$ rovnou 32,5 MPa). V praxi, kdy přistupujeme k celé konstrukci tedy vzniká téměř nekonečně mnoho možností a v hodnocení konstrukce se můžeme značně mýlit.

Obrázek 43: Graf ilustrující jeden možný náhodný výběr 10 vývrtů

Uvedený fakt může být možným důkazem vhodnosti využití destruktivní metody jádrových vývrtů v kombinaci s nepřímými metodami, které s výhodami (nenarušení konstrukce, opakovatelnost měření) můžou zvýšit důvěryhodnost posouzení konstrukce.

3.7 STANOVENÍ CHARAKTERISTICKÉ PEVNOSTI V TLAKU POMOCÍ ULTRAZVUKOVÉHO MĚŘENÍ A TROJICE JÁDROVÝCH VÝVRTŮ

Vedle možností použití buď pouze jádrových vývrtů anebo využití kombinace nepřímé metody a vývrtů s tzv. kalibrací je v normě ČSN EN 13791 uvedena ještě i třetí možná metoda pro vyhodnocení odhadu pevnosti na stávající konstrukci. Jedná se o způsob určení pevnosti s minimalizací jádrových vývrtů konkrétně na tři vývrty v rámci jednoho zkušebního místa do 30 m². Využívá se především nepřímého měření, které ukáže na místa budoucího vrtání. Při tomto způsobu však není požadavek na pokrytí celého rozsahu naměřených hodnot, ale je stanoveno odebrat jádrové vývrty z míst s nejnižší pevností v tlaku (odhadnuté z nepřímého měření) [3].

Označení zk. místa	Označení vzorku Sloup-Vrt	Rychlost UZ vlnění v∟[km/s]	f _{c,is} (průměr) [N/mm²]
U3	F7-2	3,493	28,4
U14	E5-3	3,644	21,9
U32	D13-3	3,637	22,5

Tabulka 12: Tělesa s nejnižší rychlostí UZ vlnění pro vyhodnocení na základě tří vývrtů

Ze souboru 33 vývrtů byly vybrány právě tři s nejnižší naměřenou rychlostí ultrazvukového vlnění, jak objasňuje tabulka (*Tabulka 12*). Za pevnost v tlaku konstrukci se vezme střední hodnota určená z $f_{c,is}$ těchto vývrtů. Tato se rovná přibližně 24,3 MPa. Musí se však zároveň ověřit, že jednotlivé výsledky se liší od střední hodnoty maximálně o 15 %. Tento požadavek nesplňuje z výše uvedených hodnot zkušební místo U3.

Jelikož již dříve v této práci byli vzneseny jisté pochybnosti o hodnotě 3,493 km/s, bylo provedeno nové vyhodnocení, které následuje níže, nezahrnující tuto hodnotu.

Při vyřazení nejnižší hodnoty a nahrazení další v pořadí, co se týče minimálních hodnot (viz *Tabulka 13*) vychází střední hodnota rovna 21,9 MPa a i požadavek odlišnosti maximálně 15 % je u všech hodnot splněn.

Označení zk. místa	Označení vzorku Sloup-Vrt	Rychlost UZ vlnění vL [km/s]	fc,is(průměr) [N/mm²]
U14	E5-3	3,644	21,9
U27	D12-1	3,651	21,4
U32	D13-3	3,637	22,5

Tabulka 13: Tělesa s nejnižší rychlostí UZ vlnění po vyřazení absolutního minima pro vyhodnocení na základě tří vývrtů

Charakteristická pevnost v tlaku betonu f_{ck,is} byla stanovena přibližně na 21,9 MPa, což odpovídá pevnostní třídě betonu C 20/25, při vyhodnocení na základě ultrazvukového měření a 3 jádrových vývrtů.

4 OVĚŘENÍ ULTRAZVUKOVÉ METODY IN SITU

V průběhu zpracovávání této bakalářské práce se naskytla příležitost použití ultrazvukové metody v rámci diagnostiky jiné, avšak podobné halové konstrukce. Konkrétně se také jednalo o diagnostiku betonových sloupů haly. Sloupy byly vyrobeny jako staveništní prefabrikáty betonované naležato od jednoho konce formy ke konci druhému, tímto vznikly šikmé pracovní spáry.

Provedlo se ultrazvukového měření všech sloupů řad s pracovním označením 1, 4 a 7. Každý sloup se proměřil na třech místech (označení níže v tabulkách 1,2,3).

Obrázek 44: Ultrazvukové měření sloupu D7 [20]

Sloup	Délka	Čas průc	hodu UZ vl	n T _{uz} [µs]	Ry	chlost U	Zvlnění	v ∟[m/s]
		"1"	"2"	"3"	"1"	"2"	"3"	Průměr
B1	407	115,3	112,0	112,8	3530	3634	3608	3590
C1	406	106,9	106,7	106,5	3798	3805	3812	3810
D1	409	112,5	109,3	109,2	3636	3742	3745	3710
E1	408	118,2	113,9	113,3	3452	3582	3601	3540
F1	406	108,6	109,0	108,6	3738	3725	3738	3730
G1	405	108,4	111,9	112,7	3736	3619	3594	3650
H1	400	109,7	106,5	107,3	3646	3756	3728	3710
1	407	103,6	104,2	104,4	3929	3906	3898	3910
J1	408	105,8	106,0	105,7	3856	3849	3860	3860
Průmě	r řady 1							3723

Tabulka 14: Přepočet času ultrazvukových vln průchodu pro měřené sloupy řady 1

Sloup	Délka	Čas průc	hodu UZ vli	n T _{uz} [µs]	Ryc	chlost UZ	Z vlnění v	/ ∟ [m/s]
	"1"	"2"	"3"	''1''	"2"	"3"	Průměr	
B4	400	106,3	109,4	109,2	3763	3656	3663	3690
C4	400	109,0	109,1	108,8	3670	3666	3676	3670
D4	400	108,9	106,5	107,0	3673	3756	3738	3720
E4	400	108,7	108,9	110,0	3680	3673	3636	3660
F4	400	108,6	115,0	114,2	3683	3478	3503	3550
G4	400	120,8	121,4	121,4	3311	3295	3295	3300
H4	400	110,4	110,1	109,7	3623	3633	3646	3630
4	399	124,2	121,5	118,2	3213	3284	3376	3290
J4	399	118,8	117,6	117,7	3359	3393	3390	3380
Průměr ř	ady 4					3543		

Tabulka 15: Přepočet času ultrazvukových vln průchodu pro měřené sloupy řady 4

Tabulka 16: Přepočet času ultrazvukových vln průchodu pro měřené sloupy řady 7

Sloup	Délka	Čas průchodu UZ vln T _{uz} (µs)			Rychlost UZ vlnění v _L [m/s]			
		"1"	"2"	"3"	"1"	"2"	"3"	Průměr
B7	405	112,4	119,2	119,3	3603	3398	3395	3470
C7	405	119,2	119,6	117,9	3398	3386	3435	3410
D7	407	145,3	131,4	130,8	2801	3097	3112	3000
E7	400	111,2	110,8	109,9	3597	3610	3640	3620
F7	405	112,4	116,3	116,2	3603	3482	3485	3520
G7	406	117,4	118,4	117,6	3458	3429	3452	3450
H7	407	114,0	117,1	122,2	3570	3476	3331	3460
17	406	110,4	111,8	112,9	3678	3631	3596	3640
J7	404	119,6	121,2	119,1	3378	3333	3392	3370
Průměr ř	ady 7							3438

Při měření se narazilo na sloup D7, který vykazoval nízkou rychlost ultrazvukového vlnění. Tento sloup se důkladně změřil v rozměřeném a narýsovaném rastru (viz *Obrázek 45*). Než však k tomuto proměření došlo již byl odebrán jádrový vývrt z tohoto sloupu. Po proměření sloupu se však ukázalo, že provedený vývrt pochází z části sloupu, kterou určil ultrazvuk jako část s nejnižší rychlostí vlnění čili i předpokládanou nejnižší pevností. Nebylo tedy nutné odebírat i další vývrt z daného sloupu (D7). Toto měření potvrdilo i šikmé pracovní spáry vzniklé způsobem betonáže (patrné na *Obrázku 46*).

Obrázek 45: Příprava rastru pro ultrazvukové proměření sloupu D7 [20]

Obrázek 47: Průběh ultrazvukového vlnění sloupem D7 [20]

Obrázek 46: Plošný sken sloupu D7

Obrázek 48: Zobrazení plošného skenu v terénu přímo na displeji přístroje [20]

Mezitím proběhlo v objektu odebrání jádrových vývrtů i některých dalších sloupů. Vývrty byly označeny řádně uloženy a převezeny do laboratoře. V laboratoři se vytvořila tělesa z jednotlivých vývrtů, která byla následně podrobena zkoušce ve zkušebním lisu. Tabulka níže uvádí dosaženého zatížení v lisu (maximální síla F) na tělesech z provedených vývrtů a následný přepočet na pevnosti.

Sloup	Vývrt	Průměr d [mm]	Výška h [mm]	Max. síla F [kN]	Štíhlost λ [-]	Pevnost f _{c,1:1} [MPa]	Faktor CLF [-]	Pevnost f _{c,2:1} [MPa]
						jednotlivá		jednotlivá
E 1	1	73,9	76,3	99,0	1,03	23,1	0,82	18,9
	2	73,9	74,4	100,3	1,01	23,4	0,82	19,2
C1	1	73,8	74,7	124,5	1,01	29,1	0,82	23,9
61	2	73,8	74,4	112,9	1,01	26,4	0,82	21,6
ГЛ	1	73,8	74,4	120,2	1,01	28,1	0,82	23,0
C4	2	73,8	74,7	115,8	1,01	27,1	0,82	22,2
דח	1	73,8	74,9	39,3	1,01	9,2	0,82	7,5
	2	73,8	74,4	32,6	1,01	7,6	0,82	6,2
	1	73,8	75,2	121,7	1,02	28,5	0,82	23,3
	2	73,8	74,4	85,8	1,01	20,1	0,82	16,4

Tabulka 17: Pevnosti získané z provedených vývrtů, pro využití dále v regresní analýze

<u>Vyhodnocení pomocí kalibrace dat z nepřímého měření na datech z 10 vývrtů</u> (podkapitola 8.2.1 v ČSN EN 13791):

 Vytvoření regresního vztahu z 10 vývrtů a rychlostí ultrazvukového měření. Vývrty byly odebrány, aby pokrývaly celý rozsah hodnot naměřených ultrazvukem, byly provedeny přesně v místech konstrukce, kde proběhlo prozvučování.

Obrázek 49: Regresní křivka z 10 dvojic hodnot f_{c,2:1} a v_L

- Pomocí rovnice získané lineární regresí se převedou všechny hodnoty rychlosti UZ vlnění na hodnoty pevnosti f_{c,is,reg} a to i v případě kde je k dispozici hodnota ze zkoušení vývrtů (f_{c,is}).
- Uvažujeme m=27 a n=10.
- Střední hodnota pevnosti v tlaku byla odhadnuta pomocí průměru z hodnot f_{c,is,reg}: f_{c,m(27)is}= 20,27 N/mm².
- Obecná standardní odchylka s= 4,49 N/mm² stanovená z vypočtených hodnot s_e= 4,02 N/mm² a s_c= 2 N/mm².
- Efektivní počet stupňů volnosti= 33,7 (n= 35).
- \circ Koeficient kvantilu charakteristické hodnoty k_n= 1,64.
- Určení hodnoty $f_{c,is,lowest}$ jako menší z hodnot: minimum z $f_{c,is}$ = 6,25 N/mm² a minimum z $f_{c,is,reg}$ = 8,7 N/mm² => $f_{c,is,lowest}$ = 6,25 N/mm².
- Hodnota rozpětí M=1 MPa stanovená z Tabulky 7 v normě ČSN EN 13791 na základě hodnoty f_{c,is,lowest}.
- $\circ~$ První odhad pevnosti $f_{ck,is}$ dle vzorce (4) se rovná 12,9 N/mm².
- \circ Druhý odhad pevnosti f_{ck,is} dle vzorce (5) se rovná 7,3 N/mm².
- \circ Konečný odhad pevnosti f_{ck,is} jako menší z výše uvedených odhadů (12,9 a 7,3).

Charakteristická hodnota pevnosti v tlaku na konstrukci $f_{ck,is}$ = 7,3 MPa při hodnocení s 10 vývrty z konstrukce a ultrazvukového měření na 27 místech (při použití regresního vztahu f_c = 20,36· v_L – 52,39).

Vyhodnocení pomocí kalibrace dat z nepřímého měření na datech z vývrtů po vyřazení statisticky odlehlých hodnot ze sloupu D7:

Norma ČSN EN uvádí, že někdy lze vytvořit dobrou korelaci i na základě pouze 8 dvojic hodnot. Bylo provedeno tedy nové vyhodnocení, kde se vyřadily dvě statisticky odlehlé hodnoty právě ze sloupu D7, které následuje níže.

 Vytvoření regresního vztahu z 8 vývrtů a rychlostí ultrazvukového měření (viz Obrázek 50)

Obrázek 50: Regresní křivka při úvaze 8 dvojic hodnot

- Převedení všech hodnot rychlosti UZ vlnění na hodnoty pevnosti f_{c,is,reg} pomocí vytvořeného regresního vztahu
- Uvažujeme m=26 a n=8.
- Střední hodnota pevnosti v tlaku byla odhadnuta pomocí průměru z hodnot f_{c,is,reg}:
 f_{c,m(27)is}= 20,43 N/mm².
- \circ Obecná standardní odchylka s= 4,01 N/mm² (s_e= 3,48 N/mm² a s_c= 2 N/mm²).
- Efektivní počet stupňů volnosti= 31,1 (32).
- Koeficient kvantilu charakteristické hodnoty k_n= 1,73.
- Určení hodnoty $f_{c,is,lowest}$ jako menší z hodnot: minimum z $f_{c,is}$ = 16,5 N/mm² a minimum z $f_{c,is,reg}$ = 14,4 N/mm² => $f_{c,is,lowest}$ = 14,4 N/mm².
- Hodnota rozpětí M= 2 MPa stanovená z Tabulky 7 v normě ČSN EN 13791 na základě hodnoty f_{c,is,lowest}.
- První odhad pevnosti f_{ck,is} dle vzorce (4) se rovná 14,0 N/mm².
- \circ Druhý odhad pevnosti f_{ck,is} dle vzorce (5) se rovná 15,4 N/mm².
- Konečný odhad pevnosti f_{ck,is} jako menší z výše uvedených odhadů (14,0 a 15,4).

Charakteristická hodnota pevnosti v tlaku na konstrukci $f_{ck,is}$ = 14,0 MPa odpovídajicí pevnostní třídě betonu C 12/15 při hodnocení s 8 vývrty z konstrukce a 26 hodnotami z ultrazvukového měření (při použití regresního vztahu f_c = 21,53· v_L – 56,39).

Sloup D7 se opravdu významně statisticky liší a není vhodné jej zařazovat do společného vyhodnocení. Tento sloup se bude řešit odděleně a navrhne se jeho zesílení pravděpodobně ocelovou bandáží.

5 ZÁVĚR

Cílem této práce bylo seznámit se s novým vydáním normy ČSN EN 13791 z roku 2021 a poskytnout konkrétní řešení pomocí jednotlivých postupů pro vyhodnocení existujících konstrukcí. K tomuto účelu byl záměrně využit stejný soubor dat, aby bylo možné provést vzájemné porovnání postupů.

Při vypracovávání této práce byly analýzou souboru vývrtů (či těles) různými postupy v rámci normy ČSN EN 13791 dosaženy následující výsledky:

- <u>Vyhodnocení pouze na základě jádrových vývrtů:</u>
 Charakteristická pevnost betonu v tlaku= 17,8 MPa, což odpovídá pevnostní třídě betonu C16/20.
- <u>Vyhodnocení s důkladným ultrazvukovým proměřením, pomocí něhož se vybralo</u>
 <u>10 vývrtů pro vytvoření vlastního regresního vztahu</u> z 10 dvojic hodnot, které pokrývají celý rozsah:
 Charakteristická pevnost betonu v tlaku stanovena jako 20,4 MPa a odpovídající pevnostní třídě C20/25.
- <u>Stanovení pomocí vytvořeného regresního vztahu ze všech 33 dvojic hodnot</u> <u>ultrazvukového měření a zkoušek vývrtů:</u> Charakteristická pevnost betonu v tlaku= 18,4 MPa, dle ní pevnostní třída C16/20.
- <u>Pomocí ultrazvukového měření a trojice jádrových vývrtů (bez regrese):</u>
 Charakteristická pevnost betonu v tlaku= 21,9 MPa a stanovená pevnostní třída betonu je C20/25.

Prověřili jsme i variabilitu při výběru dvojic do regresní analýzy. Variovali jsme nejen pomocí odlišných počtů extrémních a průměrných hodnot v rámci celkového počtu deseti uvažovaných hodnot, což je stanovený ideální počet dle normy, ale také jsme provedli různé variace s vyšším počtem hodnot. Prokázalo se, že jednotlivé regresní křivky mají podobný smysl orientace a liší se přibližně o 2 MPa na obě strany, až na výjimky. Jako významný faktor se ukázalo absolutní minimum z daných hodnot (rychlost UZ vlnění 3,493 km/s), které má značný vliv nejen na regresní křivku, ale i na konečný výsledek.

Dále je patrné, že nejvyššího výsledku se dokázalo pomocí postupu se třemi (za vhodnější se uvádí někdy 4) uvažovanými vývrty, jejichž místa odběru byla stanovena podrobným ultrazvukovým měřením jako místa s nejnižšími rychlostmi UZ vlnění.

Postup s regresí jsme prověřili i na druhém případě analýzy podobné konstrukce (viz kapitola 4 této práce), kde se také potvrdilo, že ultrazvuková metoda prokazuje dostatečně významnou statistickou závislost pro stanovení pevnosti betonu v tlaku. Řešení této konstrukce navíc ukázalo i další výhody spojené s ultrazvukovým měřením. Například snadné nalezení nerovnoměrností nebo anomálií betonového prvku nebo konstrukce při důkladném prozvučení betonu.

Závěrem je vhodné zmínit, že daná norma nabízí různé postupy pro hodnocení existujících betonových konstrukcí, které mohou být opravdu efektivně využity v praxi. Tato práce měla přispět i k lepšímu pochopení jednotlivých postupů a také se snažila o ilustraci případného vlivu vybraného postupu na výsledné hodnocení charakteristické pevnosti betonu v konstrukci.

6 SEZNAMY

6.1 SEZNAM POUŽITÝCH ZDROJŮ

- [1] HOLICKÝ, Milan. *Hodnocení existujících konstrukcí*. Praha: Česká technika nakladatelství ČVUT, 2018. ISBN 978-80-01-06523-5.
- [2] CIKRLE, P. a kol. *NDT Zkoušení ve stavebnictví. Příručka kurzu CŽV.* Brno: Ústav stavebního zkušebnictví, FAST VUT, 2024.
- [3] ČSN EN 13791 Posuzování pevnosti betonu v tlaku v konstrukcích a v prefabrikovaných betonových dílcích. 2021.
- [4] ČSN EN 13791 Posuzování pevnosti betonu v tlaku v konstrukcích a v prefabrikovaných betonových dílcích. 2007.
- [5] CIKRLE, Petr a Ondřej ANTON. Vývoj nedestruktivních metod pro zkoušení betonu od roku 1990. *Časopis Beton*. 2015, (3), 3-7.
- [6] ČSN ISO 13822 Zásady navrhování konstrukcí Hodnocení existujících konstrukcí.
 2014.
- [7] ČSN 73 2011 Nedestruktivní zkoušení betonových konstrukcí. 2012.
- [8] CIKRLE, Petr, Dalibor KOCÁB, Petr MISÁK a Sabina HÜBLOVÁ. Zásadní změny v posuzování betonu v konstrukcích podle nového vydání ČSN EN 13791. *Časopis Beton*. 2020, (3), 46-50.
- [9] BILČÍK, Juraj a Vladimír PRIECHODSKÝ. Hodnotenie a diagnostika betónových konštrukcií. Časopis Beton. 2014, (3), 3-8.
- [10] CIKRLE, Petr, Dalibor KOCÁB a Ondřej POSPÍCHAL. Zkoušení betonu ultrazvukovou impulsovou metodou. *Časopis Beton*. 2013, (3), 74-79.
- [11] ČSN 73 1371 Nedestruktivní zkoušení betonu Ultrazvuková impulzová metoda zkoušení betonu. 2011.
- [12] ČSN EN 12 504-4 Zkoušení betonu v konstrukcích Část 4: Stanovení rychlosti šíření ultrazvukového impulsu. 2021.
- [13] ČSN EN 12 504-1 Zkoušení betonu v konstrukcích Část 1: Vývrty Odběr, vyšetření a zkoušení v tlaku. 2021.

- [14] ČSN EN 12390-3 Zkoušení ztvrdlého betonu Část 3: Pevnost v tlaku zkušebních těles. 2020.
- [15] ČSN EN 12390-4 Zkoušení ztvrdlého betonu Část 4: Pevnost v tlaku Požadavky na zkušební lisy.
- [16] ČSN EN 206+A2 Beton Specifikace, vlastnosti, výroba a shoda. 2021.
- [17] EN 13791 Assessment of in-situ compressive strength in structures and precast concrete components. 2020.
- [18] Karbonatace betonu. In: *Časopis Beton* [online]. [cit. 2024-05-24]. Dostupné z: https://www.ebeton.cz/pojmy/karbonatace-betonu/
- [19] In: Screening Eagle Technologies [online]. [cit. 2024-05-24]. Dostupné z: https://media.screeningeagle.com/thumbnail/media/ProductGallery/Pundit%20 200/3996/imagethumb_3996_productMainImage/Pundit%20200_gallery_image_02.f630ccd a.png
- [20] CIKRLE, Petr. Fotoarchiv.

6.2 SEZNAM POUŽITÝCH ZKRATEK A VELIČIN

apod.	a podobně	
CCF	poměr karbonatace	
CLF	součinitel délky vývrtu	
č.	číslo	
ČR	Česká republika	
d	průměr vzorku	
Dr	objemová hmotnost stanovená při přirozené vlhkosti prvku	
E _{cu}	dynamický modul pružnosti	
Ec	statický modul pružnosti	
F	maximální síla	
fc,is,lowest	nejmenší zjištěná pevnost	
fc,is,reg	pevnost získaná přepočtem pomocí regresního vztahu	
fck,is	charakteristická pevnost betonu v tlaku	
$f_{c,m(n)is}$	odhad průměru pevnosti v tlaku na konstrukci při počtu n vývrtů	
f c,1:1	pevnost betonu stanovená na tělese/tělesech 1:1	
f c,2:1	pevnost betonu stanovená na tělese/tělesech 2:1	
fc,norm,zn	pevnost betonu při normálním rozdělení pravděpodobnosti a známém variačním koeficientu	a
$f_{c,norm,nezn}$	pevnost betonu při normálním rozdělení pravděpodobnosti a neznámém variačním koeficientu	а
$f_{c,lognorm,zn}$	pevnost betonu při lognormálním rozdělení pravděpodobnosti a známém variačním koeficientu	a
fc,lognorm,nezn	pevnost betonu při lognormálním rozdělení pravděpodobnosti a neznámém variačním koeficientu	a
GPa	gigapascal	
h	výška	
k_n	koeficient kvantilu charakteristické hodnoty	

km/s	kilometr za sekundu
kN	kilonewton
L	délka vzorku
λ	štíhlost
Μ	hodnota rozpětí stanovená dle <i>f c,is,lowest</i>
m	metr
mm	milimetr
m/s	metr za sekundu
m _r	hmotnost
MPa	megapascal (=N/mm²)
např.	například
neff	efektivní počet stupňů volnosti
příp.	případně
S	obecná směrodatná odchylka
Sc	zbytková směrodatná odchylka odhadovaných hodnot pevnosti
Se	směrodatná odchylka všech odhadovaných hodnot pevnosti
tzn.	to znamená
T _{uz}	čas/doba průchodu ultrazvukového vlnění
UZ	ultrazvuk/ultrazvukové
VL	rychlost ultrazvukového vlnění

6.3 SEZNAM OBRÁZKŮ

Obrázek 1: Ukázka přímého prozvučování prvku [19]	16
Obrázek 2: Ilustrativní ukázka krabicového grafu ve vodorovné poloze	23
Obrázek 3: Foto z prováděnívývrtů [20]	25
Obrázek 4: Opatření pro zvýšení únosnosti sloupu [20]	25
Obrázek 5: Hromadné foto vývrtů po odvozu do laboratoře [20]	26
Obrázek 6: Vývrty ze sloupu F11 po nařezání na tělesa	26
Obrázek 7: Tělesa 1:1 a 2:1 ze sloupu F11	26
Obrázek 8: Souhrnné foto vývrtů	27
Obrázek 9: Vývrty po prvotním vizuálním zhodnocení	27
Obrázek 10: Vývrty ze sloupu F11	27
Obrázek 11: Průběh ultrazvukového měření na vývrtu F7-1 (U1)	28
Obrázek 12: Ukázka výstupu z přístroje (vývrt D13-4), zleva patrná karbonatace	30
Obrázek 13: Vývrty U1 až U11	30
Obrázek 14: Naznačená tělesa na vývrtech ze sloupu F14	30
Obrázek 15: Vyznačená tělesa na vývrtu ze sloupu D12-1	30
Obrázek 16: Vyznačená tělesa na vývrtech ze sloupu D13	30
Obrázek 17: Vzorek vizuálně zkarbonatovaný	31
Obrázek 18: Rozřezaný vzorek s fenolftaleinem potvrzující karbonataci	31
Obrázek 19: Většina zkušebních těles	31
Obrázek 20: Zkušební těleso C11 3-4 před zkouškou v lisu	33
Obrázek 21: Zkušební těleso C11 3-4 po provedení zkoušky	33
Obrázek 22: Zkušební těleso C11 3-2 před zkouškou v lisu	33
Obrázek 23: Zkušební těleso C11 3-2 po provedení zkoušky	33
Obrázek 24: Zkušební těleso D11 2-2 s viditelnými velkými zrny kameniva	34
Obrázek 25: Zkušební těleso D11 4-4 s viditelnými velkými zrny kameniva	34
Obrázek 26: Zkušební těleso A7 3-4 s velkým zrnem kameniva nalezeným po prove	edení
zkoušky	34
Obrázek 27: Zkušební těleso D11 4-4 s velkými zrny kameniva nalezenými po prove	edení
zkoušky	34
Obrázek 28: Dvojice těles z vývrtů D12-2 vybraných pro ověření karbonatace	35
Obrázek 29: Dvojice těles z vývrtu E5-3 vybraných pro ověření karbonatace	35
Obrázek 30: Kombinovaný graf - histogram s krabicovým grafem	37
Obrázek 31: Kombinovaný graf – istogram s grafickým vyjádřením Grubbsova testu.	38
Obrázek 32: Dvojice krabicových grafů v jednom zobrazení pro porovnání dato	vých
souborů (1: pevnosti 1:1 s přepočtem na 2:1 a 2: pevnosti 2:1)	39
Obrázek 33: Kombinovaný graf k ilustraci zpětně dopočítaných CLF	40

Obrázek 34: Bodový graf s lineární spojnicí, která prokládá jednotlivě zpětně dop	očítané
CLF faktory	40
Obrázek 35: Vývrt D14-3 před řezem, lehce viditelná karbonatace	41
Obrázek 36: Vývrt D14-3 po řezu a nanesení fenolftaleinu prokazujícího	šikmou
karbonataci	41
Obrázek 37: Grafické zobrazení jednotlivých poměrů CLF s lineární spojnicí	43
Obrázek 38: Dva krabicové grafy v jednom zobrazení pro porovnání odlišnosti soub	orů dat
(1: pevnosti zkarbonatovaných těles a 2: pevnosti běžných těles)	43
Obrázek 39: Graf zobrazující provedenou regresní analýzu na 10 dvojicích	hodnot
vybraných z celého rozsahu hodnot rychlostí ultrazvukového vlnění	45
Obrázek 40: Graf zobrazující provedenou regresní analýzu na včech 33 dvojicích	hodnot
	45
Obrázek 41: Grafická ilustrace požadavku na 90% bezpečnosti regeresního vztah	u 48
Obrázek 42: Odlišnosti různých regresních křivek při náhodném výběru ze s	tejného
souboru dat	49
Obrázek 43: Graf ilustrující jeden možný náhodný výběr 10 vývrtů	51
Obrázek 44: Ultrazvukové měření sloupu D7 [20]	53
Obrázek 45: Příprava rastru pro ultrazvukové proměření sloupu D7 [20]	55
Obrázek 46: Plošný sken sloupu D7	55
Obrázek 47: Průběh ultrazvukového vlnění sloupem D7 [20]	
Obrázek 48: Zobrazení plošného skenu v terénu přímo na displeji přístroje [20]	
Obrázek 49: Regresní křivka z 10 dvojic hodnot fc,2:1 a vL	
Obrázek 50: Regresní křivka při úvaze 8 dvojic hodnot	

6.4 SEZNAM TABULEK

Tabulka 1: Přehled stanovené rychlosti z ultrzvukového vlnění na 33 vývrtech
Tabulka 2: Zkrácená tabulka uvádějící rozměry, hmotnost a objemovou hmotnost
zkušebních těles ze dvou sloupů (celá tabulka viz Příloha č.3)
Tabulka 3: Zkrácená tabulka uvádějící přepočet času průchodu na rychlost
ultrazvukového vlnění (celá tabulka viz Příloha č. 4)
Tabulka 4: Zkrácená tabulka modulů pružnosti jednotlivých těles získaných z rychlosti
ultrazvukového vlnění (celá tabulka viz Příloha č. 5)
Tabulka 5: Zkrácená tabulka pevností získaných na tělesech 1:1 a následným přepočtem
na pevnost 2:1 (celá tabulka vit Příloha č. 6)
Tabulka 6: Zkrácená tabulka pevností získaných na tělesech 2:1 (celá tabulka viz
Příloha č. 7)
Tabulka 7: Zkrácená tabulka zpětně dopořítaných CLF faktorů (celá tabulka vit Příloha č. 8)
Tabulka 8: Tělesa zkarbonatovaná a příslušná tělesa, která navazovala ve vývrtu
s dopočtem poměru CLF
Tabulka 9: Souhranná tabulka rychlosti ultrazvukového vlnění a zjištěných pevností 44
Tabulka 10: Přepočet rychlostí ultrazvuku na pevnost pomocí regeresního vztahu z 10
dvojic hodnot
Tabulka 11: Zkrácená tabulka uvádějící přepočet rychlostí ultrazvuku na pevnost pomocí
regresního vztahu z 33 dvojic hodnot (celá tabulka viz Příloha č. 9)
Tabulka 12: Tělesa s nejnižší rychlostí UZ vlnění pro vyhodnocení na základě tří vývrtů 52
Tabulka 13: Tělesa s nejnižší rychlostí UZ vlnění po vyřazení absolutního minima pro
vyhodnocení na základě tří vývrtů
Tabulka 14: Přepočet času ultrazvukových vln průchodu pro měřené sloupy řady 1 53
Tabulka 14: Přepočet času ultrazvukových vln průchodu pro měřené sloupy řady 1 53 Tabulka 15: Přepočet času ultrazvukových vln průchodu pro měřené sloupy řady 4 54
Tabulka 14: Přepočet času ultrazvukových vln průchodu pro měřené sloupy řady 1 53 Tabulka 15: Přepočet času ultrazvukových vln průchodu pro měřené sloupy řady 4 54 Tabulka 16: Přepočet času ultrazvukových vln průchodu pro měřené sloupy řady 7 54

6.5 SEZNAM PŘÍLOH

PŘÍLOHA č.1: Fotodokumentace vývrtů dle jednotlivých sloupů
PŘÍLOHA č.2: Fotodokumentace prozvučovaných vývrtů
PŘÍLOHA č.3: Shrnutí naměřených rozměrů a hmotností jednotlivých těles s doplněním přirozené objemové hmotnosti těles75
PŘÍLOHA č.4: Přepočet času průchodu na rychlost ultrazvukového vlnění u jednotlivých těles
PŘÍLOHA č.5: Výpočet modulů pružnosti na tělesech
PŘÍLOHA č.6: Vypočtené pevnosti v tlaku těles 1:1 s přepočtem na pevnost 2:1
PŘÍLOHA č.7: Vypočtené pevnosti v tlaku těles 2:1
PŘÍLOHA č.8: Zpětně dopočítané clf faktory příslušných těles 1:1 a 2:1
PŘÍLOHA č.9: Přepočet pevnosti pomocí regresního vztahu pro 33 dvojic výsledků

7 PŘÍLOHY

Číslování obrázků a tabulek odpovídá číslování v práci.

PŘÍLOHA č.1: Fotodokumentace vývrtů dle jednotlivých sloupů

Obrázek 51: Fotodokumentace vývrtů ze sloupu A7

Obrázek 52: Fotodokumentace vývrtů ze sloupu C11

Obrázek 53: Fotodokumentace vývrtů ze sloupu D11

Obrázek 54: Fotodokumentace vývrtů ze sloupu D12

Obrázek 55: Fotodokumentace vývrtů ze sloupu D13

Obrázek 56: Fotodokumentace vývrtu ze sloupu D14

Obrázek 57: Fotodokumentace vývrtů ze sloupu E5

Obrázek 58: Fotodokumentace vývrtů ze sloupu E6

Obrázek 59: Fotodokumentace vývrtů ze sloupu E14

Obrázek 60: Fotodokumentace vývrtů ze sloupu F7

Obrázek 61: Fotodokumentace vývrtů ze sloupu F8

Obrázek 62: Fotodokumentace vývrtů ze sloupu F9

Obrázek 63: Fotodokumentace vývrtů ze sloupu F10

Obrázek 10: Vývrty ze sloupu F11

PŘÍLOHA č.2: Fotodokumentace prozvučovaných vývrtů

Obrázek 13: Vývrty U1 až U11

Obrázek 64: Vývrty U12 až U22

Obrázek 65: Vývrty U23 až U33

PŘÍLOHA č.3: Shrnutí naměřených rozměrů a hmotností jednotlivých těles s doplněním přirozené objemové hmotnosti těles

Označ	iení tělesa	Průměr	Délka	Hmotnost	Objemová hmotnost přirozopá
Sloup	Vrt-těleso	d [mm]	L [mm]	m _r [g]	D _r [kg/m ³]
	2-1	63,6	63,1	442,5	2207
	2-2	63,6	125,3	881,3	2214
	2-3	63,7	63,3	444,9	2205
	2-4	63,8	126,8	891,2	2198
	3-1	63,7	63,8	439,5	2162
	3-2	63,8	127,0	886,4	2183
	3-3	63,8	63,5	436,3	2149
	3-4	63,9	126,2	885,6	2188
	2-1	68,2	68,5	564,6	2256
	2-2	68,3	137,3	1140,9	2268
	2-3	68,2	67,8	561,3	2266
C11	3-1	63,6	63,9	478,4	2357
	3-2	63,9	127,8	960,7	2344
	3-3	63,9	63,8	471,6	2305
	3-4	64,0	126,2	920,5	2267
	1-C	63,5	63,8	453,9	2246
	1-1	63,8	63,0	464,7	2307
	1-2	63,8	127,8	940,8	2303
	1-3	63,5	63,3 437,8		2184
	1-4	63,6	125,9	875,0	2188
11	2-1	63,6	63,5	473,1	2345
	2-2	63,8	127,9	922,2	2255
	4-C	63,5	62,6	466,4	2353
	4-1	63,6	63,8	442,3	2182
	4-2	63,8	127,9	888,6	2173
	4-3	63,7	63,9	444,8	2184
	4-4	63,7	124,9	883,0	2218
	1-C	63,5	62,8	445,6	2241
	1-1	63,6	63,8	446,5	2203
	1-2	63,8	127,8	885,7	2168
	1-3	63,7	62,8	437,8	2187
 12	1-4	63,8	126,6	895,7	2213
	2-C	63,7	63,8	482,0	2371
	2-1	63,7	63,6	459,4	2267
	2-2	63,8	127,8	925,1	2264
	3-1	63,6	63,9	461,8	2275
	3-2	63,8	127,4	913,8	2244

Tabulka 2: Tabulka uvádějící rozměry, hmotnost a objemovou hmotnost zkušebních těles ze všech sloupů

Označ	ení tělesa	Průměr	Délka	Hmotnost	Objemová
Sloup	Vrt-těleso	d [mm]	L [mm]	m _r [g]	hmotnost přírozená D _r [kg/m³]
	3-3	63,8	62,5	455,5	2280
	3-4	63,7	127,6	920,9	2265
	4-C	63,7	63,9	462,5	2271
	4-1	63,7	63,3	445,8	2210
	4-2	63,8	127,7	897,9	2199
	4-3	63,8	64,1	445,2	2173
	4-4	63,8	127,7	912,8	2236
	1-1	63,6	63,9	472,2	2326
	1-2	63,8	127,8	915,5	2241
	1-3	63,7	62,6	448,8	2250
	1-4	63,7	127,4	929,6	2290
	3-C	63,7	63,8	458,8	2256
	3-1	63,7	63,4	447,6	2215
D13	3-2	63,9	127,8	888,2	2167
	3-3	63,7	62,9	434,1	2166
	3-4	63,5	126,7	890,1	2218
	4-1	63,8	63,9	453,2	2218
	4-2	63,9	128,1	908,1	2211
	4-3	63,8	63,6	445,5	2191
	4-4	63,6	126,3	888,5	2214
	3-C	62,8	63,6	443,5	2251
	3-1	62,8	63,3	430,8	2197
	3-2	62,9	127,1	846,2	2143
	3-3	62,9	63,8	426,2	2150
E5	3-4	62,9	127,7	864,5	2179
	4-1	62,8	63,2	428,8	2190
	4-2	62,9	127,6	865,7	2183
	4-3	62,9	63,5	433,5	2197
	4-4	62,9	126,2	868,4	2214
	3-C	68,0	69,2	571,4	2274
	3-1	68,1	69,2	549,1	2179
	3-2	68,9	137,7	1120,5	2182
E6	3-3	68,7	67,8	551,6	2195
	3-4	68,9	137,7	1137,1	2215
	4-1	68,9	67,5	552,1	2194
	4-2	68,9	137,6	1105,1	2154
	3-1	63,7	62,6	464,2	2327
	3-2	63,8	127,8	937,0	2293
F14	3-3	63,6	63,4	471,5	2341
	4-1	63,6	63,5	463,2	2296
	4-2	63,8	127,5	926,0	2272
	4-3	63,6	63,5	463,2	2296

Označ	éení tělesa	Průměr	Délka	Hmotnost	Objemová
Sloup	Vrt-těleso	d [mm]	L [mm]	m _r [g]	hmotnost prirozená Dr [kg/m³]
	4-4	63,7	125,7	918,3	2292
	1-C	63,6	63,7	455,1	2249
	1-1	63,4	62,7	456,5	2306
	1-2	63,1	127,9	917,1	2293
	1-3	63,5	63,2	448,4	2240
	1-4	63,6	125,5	887,3	2225
F7	2-1	63,5	63,0	441,6	2213
	2-2	63,6	123,2	859,0	2195
	4-1	63,7	63,1	457,0	2273
	4-2	63,5	127,6	913,8	2261
	4-3	63,7	62,5	453,3	2276
	4-4	63,7	127,6	925,3	2275
	2-1	63,5	63,5	458,8	2281
	2-2	63,8	127,7	927,5	2272
F8	2-3	63,5	63,2	449,2	2244
	2-4	63,8	126,5	894,0	2211
	4-1	63,7	63,2	448,5	2227
	4-2	63,8	127,8	896,2	2194
	4-3	63,6	63,6	450,8	2231
	4-4	63,6	126,2	885,9	2210
	1-1	63,7	62,8	446,7	2232
	1-2	63,8	127,0	908,2	2237
	1-3	63,7	63,9	456,0	2239
F9	1-4	63,8	127,6	913,5	2239
	3-1	63,6	64,3	456,6	2235
	3-2	63,7	127,9	905,3	2221
	3-3	63,6	63,8	466,5	2302
	3-4	63,7	127,0	911,7	2253
	3-1	63,5	63,1	464,7	2325
	3-2	63,5	126,0	927,7	2325
	3-3	63,0	62,7	461,2	2360
F10	3-4	63,3	127,6	928,7	2313
	4-1	63,5	63,2	464,2	2319
	4-2	63,5	127,3	923,0	2289
	4-3	63,4	63,0	469,1	2359
	4-4	63,5	128,2	937,9	2310
	1-1	63,9	63,1	450,7	2227
	1-2	63,9	127,2	913,3	2239
F11	1-3	63,9	63,1	461,7	2282
F11 -	1-4	64,0	127,0	916,6	2244
	2-1	63,8	64,0	447,9	2189
	2-2	63,9	127,7	907,0	2215

Označ	éení tělesa	Průměr	Délka	Hmotnost	Objemová
Sloup	Vrt-těleso	d [mm]	L [mm]	m _r [g]	nmotnost prirozena Dr [kg/m³]
	2-3	63,8	63,4	455,9	2249
	2-4	63,9	127,3	914,1	2239
	3-1	63,4	63,2	441,6	2213
	3-2	63,7	126,6	883,4	2190
	3-3	63,5	63,4	454,4	2263
	3-4	63,9	126,6	898,6	2213
	4-C	63,9	62,7	455,0	2263
	4-1	63,8	63,0	465,7	2312
	4-2	63,9	128,0	946,4	2306
	4-3	63,9	62,9	453,2	2247
	4-4	63,9	126,4	900,8	2222

PŘÍLOHA č.4: Přepočet času průchodu na rychlost ultrazvukového vlnění u jednotlivých těles

Označ	ćení tělesa	Délka vzorku	Čas	průchod T _{uz} (µs)	lu UZ		Rychlos v L	st UZ vlné [m/s]	ění
Sloup	Vrt-těleso	L [mm]	"1"	"2"	"3"	"1"	"2"	"3"	Průměr
	2-1	63,1	16,2	16,2	16,3	3895	3895	3871	3887
	2-2	125,3	32,2	32,5	32,6	3891	3855	3844	3863
	2-3	63,3	16,0	16,3	16,2	3956	3883	3907	3916
	2-4	126,8	32,1	31,9	31,8	3950	3975	3987	3971
	3-1	63,8	17,5	17,3	17,4	3646	3688	3667	3667
	3-2	127,0	33,6	33,2	33,4	3780	3825	3802	3802
	3-3	63,5	16,5	16,3	16,3	3848	3896	3896	3880
	3-4	126,2	32,4	32,1	32,2	3895	3931	3919	3915
	2-1	68,5	15,8	15,8	15,8	4335	4335	4335	4335
	2-2	137,3	32,9	32,5	32,4	4173	4225	4238	4212
	2-3	67,8	15,9	15,9	15,9	4264	4264	4264	4264
C11	3-1	63,9	14,2	13,8	14,1	4500	4630	4532	4554
	3-2	127,8	27,0	26,8	26,6	4733	4769	4805	4769
	3-3	63,8	14,7	14,5	14,5	4340	4400	4400	4380
	3-4	126,2	30,5	30,4	30,5	4138	4151	4138	4142
	1-C	63,8	15,2	14,8	15,5	4197	4311	4116	4208
	1-1	63,0	16,2	16,1	16,1	3889	3913	3913	3905
	1-2	127,8	31,1	31,0	31,3	4109	4123	4083	4105
	1-3	63,3	16,8	16,7	16,5	3768	3790	3836	3798
	1-4	125,9	33,4	33,4	33,4	3769	3769	3769	3769
D11	2-1	63,5	13,4	13,3	13,2	4739	4774	4811	4775
	2-2	127,9	33,7	33,7	33,6	3795	3795	3807	3799
	4-C	62,6	15,3	15,4	15,1	4092	4065	4146	4101
	4-1	63,8	16,0	16,1	16,2	3988	3963	3938	3963
	4-2	127,9	33,0	33,3	33,0	3876	3841	3876	3864
	4-3	63,9	17,4	17,2	17,1	3672	3715	3737	3708
	4-4	124,9	34,4	33,2	33,2	3631	3762	3762	3718
	1-C	62,8	15,8	16,0	16,0	3975	3925	3925	3942
	1-1	63,8	16,9	16,8	16,9	3775	3798	3775	3783
	1-2	127,8	35,0	35,1	34,9	3651	3641	3662	3651
	1-3	62,8	16,6	16,5	16,6	3783	3806	3783	3791
רנח	1-4	126,6	35,5	36,6	36,7	3566	3459	3450	3492
	2-C	63,8	15,3	15,3	15,2	4170	4170	4197	4179
	2-1	63,6	15,7	15,8	15,7	4051	4025	4051	4042
	2-2	127,8	31,7	31,8	31,5	4032	4019	4057	4036
	3-1	63,9	16,4	16,7	16,5	3896	3826	3873	3865
	3-2	127,4	34,1	33,9	33,7	3736	3758	3780	3758

Tabulka 3: Tabulka uvádějící přepočet času průchodu na rychlost ultrazvukového vlnění

Označ	ení tělesa	Délka	Čas	průchod Tuz (us)	u UZ	Rychlost UZ vlnění v, [m/s]			
Sloup	Vrt-těleso	L [mm]	"1"	יט <u>י</u> נµ3] יי2יי	"3"	"1" "2" "3" Průn			
	3-3	62.5	14.4	14.3	14.2	4340	4371	4401	4371
	3-4	127.6	31.9	31.9	31.8	4000	4000	4013	4004
	4-C	63.9	15.4	15.5	15.5	4149	4123	4123	4132
	4-1	63.3	16.5	16.4	16.4	3836	3860	3860	3852
	4-2	127.7	33.0	33.1	33.0	3870	3858	3870	3866
	4-3	64.1	18.4	18.3	18.5	3484	3503	3465	3484
	4-4	127.7	31.9	32.4	31.9	4003	3941	4003	3983
	1-1	63.9	14.6	14.6	14.4	4377	4377	4438	4397
	1-2	127.8	32.2	31.6	31.8	3969	4044	4019	4011
	1-3	62.6	15.3	15.2	15.2	4092	4118	4118	4109
	1-4	127.4	33.0	32.8	32.6	3861	3884	3908	3884
	3-C	63.8	15.7	15.7	15.5	4064	4064	4116	4081
	3-1	63.4	16.6	16.4	16.5	3819	3866	3842	3843
D13	3-2	127.8	36.7	36,6	36.6	3482	3492	3492	3489
	3-3	62,9	16,4	16.7	16,5	3835	3766	3812	3805
	3-4	126,7	34,1	34,0	33,9	3716	3726	3737	3726
	4-1	63,9	16,4	16,5	16,5	3896	3873	3873	3881
	4-2	128,1	34,9	34,5	34,8	3670	3713	3681	3688
	4-3	63,6	17,2	17,1	17,2	3698	3719	3698	3705
	4-4	126,3	33,4	33,4	33,4	3781	3781	3781	3781
	3-C	63,6	16,3	16,0	15,6	3902	3975	4077	3985
	3-1	63,3	17,4	17,4	17,4	3638	3638	3638	3638
	3-2	127,1	36,2	36,0	35,6	3511	3531	3570	3537
	3-3	63,8	17,6	17,8	17,9	3625	3584	3564	3591
E5	3-4	127,7	33,8	34,2	33,5	3778	3734	3812	3775
	4-1	63,2	17,6	17,4	17,4	3591	3632	3632	3618
	4-2	127,6	34,5	34,5	34,4	3699	3699	3709	3702
	4-3	63,5	17,6	17,5	17,4	3608	3629	3649	3629
	4-4	126,2	35,3	35,2	35,1	3575	3585	3595	3585
	3-C	69,2	17,5	17,1	16,8	3954	4047	4119	4040
	3-1	69,2	18,3	18,2	18,3	3781	3802	3781	3788
	3-2	137,7	37,4	37,1	37,1	3682	3712	3712	3702
E6	3-3	67,8	18,4	18,2	18,3	3685	3725	3705	3705
	3-4	137,7	37,4	37,0	36,9	3682	3722	3732	3712
	4-1	67,5	18,5	18,5	18,6	3649	3649	3629	3642
	4-2	137,6	38,6	38,5	38,5	3565	3574	3574	3571
	3-1	62,6	14,3	14,4	14,4	4378	4347	4347	4357
	3-2	127,8	30,3	30,6	30,4	4218	4176	4204	4199
F14	3-3	63,4	14,8	14,9	14,8	4284	4255	4284	4274
	4-1	63,5	15,0	15,0	15,1	4233	4233	4205	4224
	4-2	127,5	31,1	31,2	31,1	4100	4087	4100	4095
	4-3	63,5	15,8	16,2	16,1	4019	3920	3944	3961

Označ	čení tělesa	Délka vzorku	Čas	průchod Tuz [us]	u UZ	Rychlost UZ vlnění v∟ [m/s]			
Sloup	Vrt-těleso	L [mm]	"1"	"2"	"3"	"1"	"2"	"3"	Průměr
	4-4	125,7	30,0	29,8	29,8	4190	4218	4218	4209
	1-C	63,7	15,6	15,2	15,8	4083	4191	4032	4102
	1-1	62,7	14,0	13,7	13,7	4479	4577	4577	4544
	1-2	127,9	29,2	29,2	28,8	4380	4380	4441	4400
	1-3	63,2	15,2	15,4	15,6	4158	4104	4051	4104
	1-4	125,5	31,1	30,9	30,8	4035	4061	4075	4057
F7	2-1	63,0	15,3	15,3	15,2	4118	4118	4145	4127
	2-2	123,2	30,4	30,6	30,5	4053	4026	4039	4039
	4-1	63,1	14,8	14,9	14,5	4264	4235	4352	4283
	4-2	127,6	34,4	34,1	34,1	3709	3742	3742	3731
	4-3	62,5	15,5	15,3	15,2	4032	4085	4112	4076
	4-4	127,6	30,3	30,3	30,1	4211	4211	4239	4221
	2-1	63,5	14,8	14,8	14,6	4291	4291	4349	4310
	2-2	127,7	39,5	39,8	36,6	3233	3209	3489	3310
	2-3	63,2	15,2	15,1	15,3	4158	4185	4131	4158
	2-4	126,5	30,1	30,2	30,4	4203	4189	4161	4184
	4-1	63,2	15,2	15,4	15,3	4158	4104	4131	4131
	4-2	127,8	30,9	30,9	30,7	4136	4136	4163	4145
	4-3	63,6	15,0	15,1	15,0	4240	4212	4240	4231
	4-4	126,2	31,3	30,4	30,7	4032	4151	4111	4098
	1-1	62,8	15,9	15,7	15,8	3950	4000	3975	3975
	1-2	127,0	31,3	31,2	31,2	4058	4071	4071	4066
	1-3	63,9	15,8	15,6	15,4	4044	4096	4149	4097
F9	1-4	127,6	31,9	32,0	31,9	4000	3988	4000	3996
	3-1	64,3	15,8	15,9	16,2	4070	4044	3969	4028
	3-2	127,9	32,4	32,8	32,8	3948	3899	3899	3915
	3-3	63,8	14,8	14,7	14,6	4311	4340	4370	4340
	3-4	127,0	31,8	31,7	31,6	3994	4006	4019	4006
	3-1	63,1	14,8	14,5	14,5	4264	4352	4352	4322
	3-2	126,0	29,0	29,2	28,9	4345	4315	4360	4340
	3-3	62,7	14,2	14,0	14,1	4415	4479	4447	4447
F10	3-4	127,6	29,0	29,1	28,9	4400	4385	4415	4400
	4-1	63,2	13,5	13,5	13,4	4681	4681	4716	4693
	4-2	127,3	28,8	28,8	28,7	4420	4420	4436	4425
	4-3	63,0	13,9	13,7	13,8	4532	4599	4565	4565
	4-4	128,2	27,7	27,9	27,6	4628	4595	4645	4623
	1-1	63,1	15,8	15,3	15,5	3994	4124	4071	4063
	1-2	127,2	31,5	31,1	31,0	4038	4090	4103	4077
F11	1-3	63,1	15,0	15,0	14,7	4207	4207	4293	4235
	1-4	127,0	32,1	31,9	32,0	3956	3981	3969	3969
	2-1	64,0	16,4	16,4	16,3	3902	3902	3926	3910
	2-2	127,7	32,5	32,3	32,3	3929	3954	3954	3945

Označ	čení tělesa	Délka vzorku	Čas průchodu UZ T _{uz} [µs]			Rychlost UZ vlnění v ∟ [m/s]				
Sloup	Vrt-těleso	L [mm]	"1"	"2"	"3"	"1"	"2"	"3"	Průměr	
	2-3	63,4	14,8	14,5	14,6	4284	4372	4342	4333	
	2-4	127,3	29,9	29,8	29,6	4258	4272	4301	4277	
	3-1	63,2	16,1	16,3	16,4	3925	3877	3854	3885	
	3-2	126,6	33,0	32,7	32,4	3836	3872	3907	3872	
	3-3	63,4	15,3	15,2	15,4	4144	4171	4117	4144	
	3-4	126,6	32,2	32,1	32,1	3932	3944	3944	3940	
	4-C	62,7	15,4	15,4	15,0	4071	4071	4180	4108	
	4-1	63,0	14,4	14,5	14,1	4375	4345	4468	4396	
	4-2	128,0	27,9	28,0	27,9	4588	4571	4588	4582	
	4-3	62,9	14,0	14,0	14,1	4493	4493	4461	4482	
	4-4	126,4	33,2	33,0	32,7	3807	3830	3865	3834	

PŘÍLOHA č.5: Výpočet modulů pružnosti na tělesech

Ozn těl	ačení esa	Hmotnost	Objemová hmotnost	Rychlost UZ vlnění v∟ [m/s]			ění	ĸu	Modul pruž. E _{cu} [GPa]	Modul pruž. E₅ [GPa]
Sloup	Vrt- těleso	m _r [g]	D _r [kg/m³]	"1"	"2"	"3"	Prům.		dynamický	statický- odhad
	2-1	442,5	2207	3895	3895	3871	3887	0,78	30,0	23,4
	2-2	881,3	2214	3891	3855	3844	3863	0,78	29,7	23,2
	2-3	444,9	2205	3956	3883	3907	3916	0,78	30,4	23,7
۸7	2-4	891,2	2198	3950	3975	3987	3971	0,78	31,2	24,3
	3-1	439,5	2162	3646	3688	3667	3667	0,78	26,2	20,4
	3-2	886,4	2183	3780	3825	3802	3802	0,78	28,4	22,2
	3-3	436,3	2149	3848	3896	3896	3880	0,78	29,1	22,7
	3-4	885,6	2188	3895	3931	3919	3915	0,78	30,2	23,5
	2-1	564,6	2256	4335	4335	4335	4335	0,78	38,2	29,8
	2-2	1140,9	2268	4173	4225	4238	4212	0,78	36,2	28,2
	2-3	561,3	2266	4264	4264	4264	4264	0,78	37,1	28,9
C11	3-1	478,4	2357	4500	4630	4532	4554	0,78	44,0	34,3
	3-2	960,7	2344	4733	4769	4805	4769	0,78	48,0	37,4
	3-3	471,6	2305	4340	4400	4400	4380	0,78	39,8	31,0
	3-4	920,5	2267	4138	4151	4138	4142	0,78	35,0	27,3
	1-C	453,9	2246	4197	4311	4116	4208	0,78	35,8	27,9
	1-1	464,7	2307	3889	3913	3913	3905	0,78	31,7	24,7
	1-2	940,8	2303	4109	4123	4083	4105	0,78	34,9	27,2
	1-3	437,8	2184	3768	3790	3836	3798	0,78	28,4	22,1
	1-4	875,0	2188	3769	3769	3769	3769	0,78	28,0	21,8
 11	2-1	473,1	2345	4739	4774	4811	4775	0,78	48,1	37,5
	2-2	922,2	2255	3795	3795	3807	3799	0,78	29,3	22,9
	4-C	466,4	2353	4092	4065	4146	4101	0,78	35,6	27,8
	4-1	442,3	2182	3988	3963	3938	3963	0,78	30,8	24,1
	4-2	888,6	2173	3876	3841	3876	3864	0,78	29,2	22,8
	4-3	444,8	2184	3672	3715	3737	3708	0,78	27,0	21,1
	4-4	883,0	2218	3631	3762	3762	3718	0,78	27,6	21,5
	1-C	445,6	2241	3975	3925	3925	3942	0,78	31,3	24,4
	1-1	446,5	2203	3775	3798	3775	3783	0,78	28,4	22,1
	1-2	885,7	2168	3651	3641	3662	3651	0,78	26,0	20,3
	1-3	437,8	2187	3783	3806	3783	3791	0,78	28,3	22,1
D12	1-4	895,7	2213	3566	3459	3450	3492	0,78	24,3	18,9
	2-C	482,0	2371	4170	4170	4197	4179	0,78	37,3	29,1
	2-1	459,4	2267	4051	4025	4051	4042	0,78	33,3	26,0
	2-2	925,1	2264	4032	4019	4057	4036	0,78	33,2	25,9
	3-1	461,8	2275	3896	3826	3873	3865	0,78	30,6	23,9

Tabulka 4: Tabulka modulů pružnosti jednotlivých těles získaných z rychlosti ultrazvukového vlnění

Ωzn	ačení			R۱	vchlast	117 viné	šní		Modul	Modul
těl	esa	Hmotnost	Objemová		v, Ir	n/sl			pruž.	pruž.
	14.4	m _r [g]	hmotnost					ĸu	E _{cu} [GPa]	E₀ [GPa]
Sloup	vrt- těleso		D _r [kg/m ^s]	"1"	"2"	"3"	Prům.		dynamický	staticky- odhad
	3-2	913.8	2244	3736	3758	3780	3758	0.78	28.5	22.2
	3-3	455.5	2280	4340	4371	4401	4371	0.78	39.2	30.6
	3-4	920,9	2265	4000	4000	4013	4004	0.78	32.7	25.5
	4-C	462,5	2271	4149	4123	4123	4132	, 0,78	34,9	. 27,2
	4-1	445,8	2210	3836	3860	3860	3852	0,78	29,5	23,0
	4-2	897,9	2199	3870	3858	3870	3866	0,78	29,6	23,1
	4-3	445,2	2173	3484	3503	3465	3484	0,78	23,7	18,5
	4-4	912,8	2236	4003	3941	4003	3983	0,78	31,9	24,9
	1-1	472,2	2326	4377	4377	4438	4397	0,78	40,5	31,6
	1-2	915,5	2241	3969	4044	4019	4011	0,78	32,4	25,3
	1-3	448,8	2250	4092	4118	4118	4109	0,78	34,2	26,7
	1-4	929,6	2290	3861	3884	3908	3884	0,78	31,1	24,2
	3-C	458,8	2256	4064	4064	4116	4081	0,78	33,8	26,4
	3-1	447,6	2215	3819	3866	3842	3843	0,78	29,4	23,0
D13	3-2	888,2	2167	3482	3492	3492	3489	0,78	23,7	18,5
	3-3	434,1	2166	3835	3766	3812	3805	0,78	28,2	22,0
	3-4	890,1	2218	3716	3726	3737	3726	0,78	27,7	21,6
	4-1	453,2	2218	3896	3873	3873	3881	0,78	30,1	23,5
	4-2	908,1	2211	3670	3713	3681	3688	0,78	27,1	21,1
	4-3	445,5	2191	3698	3719	3698	3705	0,78	27,1	21,1
	4-4	888,5	2214	3781	3781	3781	3781	0,78	28,5	22,2
	3-C	443,5	2251	3902	3975	4077	3985	0,78	32,2	25,1
	3-1	430,8	2197	3638	3638	3638	3638	0,78	26,2	20,4
	3-2	846,2	2143	3511	3531	3570	3537	0,78	24,1	18,8
	3-3	426,2	2150	3625	3584	3564	3591	0,78	25,0	19,5
E5	3-4	864,5	2179	3778	3734	3812	3775	0,78	27,9	21,8
	4-1	428,8	2190	3591	3632	3632	3618	0,78	25,8	20,1
	4-2	865,7	2183	3699	3699	3709	3702	0,78	26,9	21,0
	4-3	433,5	2197	3608	3629	3649	3629	0,78	26,0	20,3
	4-4	868,4	2214	3575	3585	3595	3585	0,78	25,6	20,0
	3-C	571,4	2274	3954	4047	4119	4040	0,78	33,4	26,1
	3-1	549,1	2179	3781	3802	3781	3788	0,78	28,1	21,9
	3-2	1120,5	2182	3682	3712	3712	3702	0,78	26,9	21,0
E6	3-3	551,6	2195	3685	3725	3705	3705	0,78	27,1	21,1
	3-4	1137,1	2215	3682	3722	3732	3712	0,78	27,5	21,4
	4-1	552,1	2194	3649	3649	3629	3642	0,78	26,2	20,4
	4-2	1105,1	2154	3565	3574	3574	3571	0,78	24,7	19,3
	3-1	464,2	2327	4378	4347	4347	4357	0,78	39,8	31,0
E14	3-2	937,0	2293	4218	4176	4204	4199	0,78	36,4	28,4
	3-3	471,5	2341	4284	4255	4284	4274	0,78	38,5	30,0

Ozn těl	ačení esa	Hmotnost	Objemová hmotnost	Ry	/chlost v∟[r	UZ vlně n/s]	ění	ĸu	Modul pruž. E₀ [GPa]	Modul pruž. E₅ [GPa]
Sloup	Vrt- těleso	m _r [g]	D _r [kg/m ³]	"1"	"2"	"3"	Prům.		dynamický	statický- odhad
	4-1	463,2	2296	4233	4233	4205	4224	0,78	36,9	28,8
	4-2	926,0	2272	4100	4087	4100	4095	0,78	34,3	26,7
	4-3	463,2	2296	4019	3920	3944	3961	0,78	32,4	25,3
	4-4	918,3	2292	4190	4218	4218	4209	0,78	36,5	28,5
	1-C	455,1	2249	4083	4191	4032	4102	0,78	34,1	26,6
	1-1	456,5	2306	4479	4577	4577	4544	0,78	42,9	33,4
	1-2	917,1	2293	4380	4380	4441	4400	0,78	40,0	31,2
	1-3	448,4	2240	4158	4104	4051	4104	0,78	34,0	26,5
	1-4	887,3	2225	4035	4061	4075	4057	0,78	33,0	25,7
F7	2-1	441,6	2213	4118	4118	4145	4127	0,78	33,9	26,5
	2-2	859,0	2195	4053	4026	4039	4039	0,78	32,2	25,1
	4-1	457,0	2273	4264	4235	4352	4283	0,78	37,5	29,3
	4-2	913,8	2261	3709	3742	3742	3731	0,78	28,3	22,1
	4-3	453,3	2276	4032	4085	4112	4076	0,78	34,0	26,5
	4-4	925,3	2275	4211	4211	4239	4221	0,78	36,5	28,5
EQ	2-1	458,8	2281	4291	4291	4349	4310	0,78	38,1	29,8
	2-2	927,5	2272	3233	3209	3489	3310	0,78	22,4	17,5
	2-3	449,2	2244	4158	4185	4131	4158	0,78	34,9	27,2
	2-4	894,0	2211	4203	4189	4161	4184	0,78	34,8	27,2
	4-1	448,5	2227	4158	4104	4131	4131	0,78	34,2	26,7
	4-2	896,2	2194	4136	4136	4163	4145	0,78	33,9	26,5
	4-3	450,8	2231	4240	4212	4240	4231	0,78	35,9	28,0
	4-4	885,9	2210	4032	4151	4111	4098	0,78	33,4	26,0
	1-1	446,7	2232	3950	4000	3975	3975	0,78	31,7	24,8
	1-2	908,2	2237	4058	4071	4071	4066	0,78	33,3	26,0
	1-3	456,0	2239	4044	4096	4149	4097	0,78	33,8	26,4
F9	1-4	913,5	2239	4000	3988	4000	3996	0,78	32,2	25,1
	3-1	456,6	2235	4070	4044	3969	4028	0,78	32,6	25,5
	3-2	905,3	2221	3948	3899	3899	3915	0,78	30,6	23,9
	3-3	466,5	2302	4311	4340	4370	4340	0,78	39,0	30,4
	3-4	911,7	2253	3994	4006	4019	4006	0,78	32,5	25,4
	3-1	464,7	2325	4264	4352	4352	4322	0,78	39,1	30,5
	3-2	927,7	2325	4345	4315	4360	4340	0,78	39,4	30,7
	3-3	461,2	2360	4415	4479	4447	4447	0,78	42,0	32,8
F10	3-4	928,7	2313	4400	4385	4415	4400	0,78	40,3	31,4
	4-1	464,2	2319	4681	4681	4716	4693	0,78	46,0	35,9
	4-2	923,0	2289	4420	4420	4436	4425	0,78	40,4	31,5
	4-3	469,1	2359	4532	4599	4565	4565	0,78	44,2	34,5
	4-4	937,9	2310	4628	4595	4645	4623	0,78	44,4	34,7
F11	1-1	450,7	2227	3994	4124	4071	4063	0,78	33,1	25,8
	1-2	913,3	2239	4038	4090	4103	4077	0,78	33,5	26,1

Ozn těl	Označení tělesa Hmotnost m, [o]		Objemová hmotnost	Ry	/chlost v∟[r	UZ vlně n/s]	éní	ĸu	Modul pruž. E _{cu} [GPa]	Modul pruž. E₀ [GPa]
Sloup	Vrt- těleso	m _r [y]	D _r [kg/m³]	"1"	"2"	"3"	Prům.		dynamický	statický- odhad
	1-3	461,7	2282	4207	4207	4293	4235	0,78	36,8	28,7
	1-4	916,6	2244	3956	3981	3969	3969	0,78	31,8	24,8
	2-1	447,9	2189	3902	3902	3926	3910	0,78	30,1	23,5
	2-2	907,0	2215	3929	3954	3954	3945	0,78	31,0	24,2
	2-3	455,9	2249	4284	4372	4342	4333	0,78	38,0	29,6
	2-4	914,1	2239	4258	4272	4301	4277	0,78	36,9	28,7
	3-1	441,6	2213	3925	3877	3854	3885	0,78	30,1	23,5
	3-2	883,4	2190	3836	3872	3907	3872	0,78	29,5	23,0
	3-3	454,4	2263	4144	4171	4117	4144	0,78	35,0	27,3
	3-4	898,6	2213	3932	3944	3944	3940	0,78	30,9	24,1
	4-C	455,0	2263	4071	4071	4180	4108	0,78	34,4	26,8
	4-1	465,7	2312	4375	4345	4468	4396	0,78	40,2	31,4
	4-2	946,4	2306	4588	4571	4588	4582	0,78	43,6	34,0
	4-3	453,2	2247	4493	4493	4461	4482	0,78	40,6	31,7
	4-4	900,8	2222	3807	3830	3865	3834	0,78	29,4	22,9

PŘÍLOHA č.6: Vypočtené pevnosti v tlaku těles 1:1 s přepočtem na pevnost 2:1

Označení tělesa		Max. síla	Štíhlost f _{c,1:1}		ost 1Pa]	Faktor	Pevnost f _{c,21} [MPa]	
Sloup	Vrt-těleso		л [-]	jednotlivá	průměr	<u>ССГ [-]</u>	jednotlivá	průměr
A7	2-1	87,5	0,99	27,5	20.1	0,82	22,6	22.0
	2-3	97,9	0,99	30,7	29,1	0,82	25,2	23,9
	3-1	76,2	1,00	23,9	267	0,82	19,6	21.0
	3-3	94,4	1,00	29,5	20,7	0,82	24,2	21,9
	2-1	127,1	1,00	34,8	275	0,82	28,5	30,7
C11	2-3	146,8	0,99	40,2	37,0	0,82	33,0	
	3-1	165,3	1,00	52,0	47.0	0,82	42,7	20.0
	3-3	140,4	1,00	43,8	47,9	0,82	35,9	39,3
	1-1	121,2	0,99	37,9	20.2	0,82	31,1	24.0
	1-3	71,2	1,00	22,5	30,2	0,82	18,4	24,0
D11	2-1	119,5	1,00	37,6	37,6	0,82	30,8	30,8
	4-1	78,9	1,00	24,8	777	0,82	20,4	227
	4-3	97,6	1,00	30,6	27,7	0,82	25,1	22,7
	1-1	81,1	1,00	25,5	26.0	0,82	20,9	22.0
	1-3	89,9	0,99	28,2	26,9	0,82	23,1	∠∠,U
D12	2-1	101,7	1,00	31,9	31,9	0,82	26,2	26,2
	3-1	84,0	1,00	26,4	34.2	0,82	21,7	28.0
	3-3	134,0	0,98	41,9	34,2	0,82	34,4	20,0
	4-1	79,5	0,99	24,9	23.6	0,82	20,5	19,4
	4-3	71,4	1,00	22,3	23,0	0,82	18,3	
	1-1	136,9	1,00	43,1	105	0,82	35,3	33.2
	1-3	120,5	0,98	37,8	40,0	0,82	31,0	50,2
210	3-1	95,9	1,00	30,1	27.0	0,82	24,7	221
	3-3	75,9	0,99	23,8	27,0	0,82	19,5	22,1
	4-1	92,3	1,00	28,9	26.5	0,82	23,7	21.0
	4-3	77,4	1,00	24,2	20,0	0,82	19,9	21,0
	3-1	65,2	1,01	21,0	227	0,82	17,3	18.6
5	3-3	75,5	1,01	24,3	~~,/	0,82	19,9	10,0
	4-1	76,5	1,01	24,7	22.0	0,82	20,3	19.7
	4-3	65,0	1,01	20,9	22,0	0,82	17,2	10,7
	3-1	97,6	1,02	26,8	201	0,82	22,0	2/1
E6	3-3	118,7	0,99	32,0	23,4	0,82	26,3	24,1
	4-1	93,0	0,98	24,9	24,9	0,82	20,5	20,5
	3-1	136,9	0,98	43,0	100	0,82	35,2	33 6
	3-3	123,5	1,00	38,9	40,9	0,82	31,9	0,00
	4-1	119,2	1,00	37,5	40 5	0,82	30,8	24.0
	4-3	150,8	1,00	47,5	42,0	0,82	38,9	34,0
F7	1-1	185,2	0,99	58,7	49,2	0,82	48,1	40,3

Tabulka 5: Tabulka pevností získaných na tělesech 1:1 s následným přepočtem na pevnost 2:1

Označení tělesa		Max. síla	Štíhlost	Pevnost f _{c,1:1} [MPa]		Faktor	Pevnost f _{c,21} [MPa]	
Sloup	Vrt-těleso		∧ [-]	jednotlivá	průměr	<u>С</u> ГГ [-]	jednotlivá	průměr
	1-3	125,8	1,00	39,7		0,82	32,6	
	2-1	107,9	0,99	34,1	34,1	0,82	27,9	27,9
	4-1	170,1	0,99	53,4	E2 0	0,82	43,8	40.0
	4-3	161,4	0,98	50,6	5Z,U	0,82	41,5	42,0
	2-1	124,8	1,00	39,4	38,2	0,82	32,3	21.2
ЕО	2-3	117,3	1,00	37,0		0,82	30,4	୰୲୰
	4-1	122,4	0,99	38,4	24.0	0,82	31,5	20 6
	4-3	99,7	1,00	31,4	34,9	0,82	25,7	28,6
	1-1	105,1	0,99	33,0	32,4	0,82	27,0	26,5
	1-3	101,1	1,00	31,7		0,82	26,0	
гэ 	3-1	109,4	1,01	34,4	36,7	0,82	28,2	30,1
	3-3	124,0	1,00	39,0		0,82	32,0	
	3-1	131,6	0,99	41,6	45,8	0,82	34,1	37,6
E10	3-3	156,2	1,00	50,1		0,82	41,1	
	4-1	190,5	1,00	60,2		0,82	49,3	42.0
	4-3	140,9	0,99	44,6	52,4	0,82	36,6	43,0
	1-1	132,3	0,99	41,3	40.0	0,82	33,8	246
	1-3	138,2	0,99	43,1	42,2	0,82	35,3	34,0
	2-1	106,2	1,00	33,2	20.0	0,82	27,2	21.0
F11	2-3	142,1	0,99	44,4	30,0	0,82	36,4	31,8
	3-1	79,4	1,00	25,2	20 5	0,82	20,6	25.0
	3-3	113,7	1,00	35,9	30,5	0,82	29,4	20,0
	4-1	160,5	0,99	50,2	42.0	0,82	41,2	24 E
	4-3	108,7	0,98	33,9	42,0	0,82	27,8	34,5

PŘÍLOHA č.7: Vypočtené pevnosti v tlaku těles 2:1

Označ	ení tělesa	Max. síla	Štíhlost	Pevnost f₅	, _{2:1} [MPa]	
Sloup	Vrt-těleso	F [KN]	λ[-]	jednotlivá	průměr	
	2-2	75,5	1,97	23,8	225	
	2-4	74,3	1,99	23,2	23,5	
A/	3-2	71,0	1,99	22,2	10.1	
	3-4	51,1	1,97	15,9	19,1	
	2-2	135,4	2,01	37,0	37,0	
C11	3-2	146,2	2,00	45,6	/10	
	3-4	116,9	1,97	36,3	41,0	
	1-2	67,5	2,00	21,1	213	
	1-4	68,2	1,98	21,5	21,0	
D11	2-2	50,0	2,00	15,6	15,6	
	4-2	70,1	2,00	21,9	21.5	
	4-4	67,1	1,96	21,1	21,0	
	1-2	85,8	2,00	26,8	20.8	
	1-4	47,0	1,98	14,7	20,0	
	2-2	104,3	2,00	32,6	32,6	
D12	3-2	81,2	2,00	25,4	29.6	
	3-4	107,7	2,00	33,8	25,2	
	4-2	70,9	2,00	22,2		
	4-4	90,3	2,00	28,2	20,2	
	1-2	85,6	2,00	26,8	27.0	
	1-4	86,8	2,00	27,2	2,70	
D13	3-2	62,7	2,00	19,6	22.8	
	3-4	82,5	2,00	26,1		
	4-2	69,3	2,00	21,6	24.2	
	4-4	85,1	1,99	26,8	,_	
	3-2	82,6	2,02	26,6	25.2	
E5	3-4	74,2	2,03	23,9		
	4-2	88,9	2,03	28,6	23.0	
	4-4	54,1	2,01	17,4		
	3-2	89,0	2,00	23,9	25.0	
E6	3-4	97,6	2,00	26,2		
	4-2	85,6	2,00	23,0	23,0	
	3-2	128,7	2,00	40,3	40,3	
E14	4-2	101,0	2,00	31,6	31.8	
	4-4	101,8	1,97	31,9		
	1-2	134,9	2,03	43,1	34.5	
F7	1-4	82,3	1,97	25,9		
	2-2	91,8	1,94	28,9	28,9	

Tabulka 6: Tabulka pevností získaných na tělesech 2:1

Označení tělesa		Max. síla	Štíhlost	Pevnost f _{c,2:1} [MPa]		
Sloup	Vrt-těleso	F [KN]	Λ[-]	jednotlivá	průměr	
	4-2	123,4	2,01	39,0	27.0	
	4-4	117,1	2,00	36,7	37,9	
	2-2	97,3	2,00	30,4	20.2	
	2-4	89,4	1,98	28,0	23,2	
	4-2	101,7	2,00	31,8	20.0	
	4-4	88,0	1,98	27,7	23,0	
	1-2	69,8	1,99	21,8	223	
	1-4	79,2	2,00	24,8	23,3	
	3-2	110,4	2,01	34,6	30.2	
	3-4	81,9	1,99	25,7	00,2	
	3-2	96,6	1,98	30,5	33.5	
E10	3-4	114,7	2,02	36,4	00,0	
	4-2	139,5	2,00	44,0	/10	
	4-4	120,1	2,02	37,9	41,0	
	1-2	135,2	1,99	42,2	20.6	
	1-4	119,4	1,98	37,1	00,0	
	2-2	120,3	2,00	37,5	40,4	
⊑1 1	2-4	139,0	1,99	43,3		
	3-2	73,5	1,99	23,1	25.2	
	3-4	87,8	1,98	27,4	20,2	
	4-2	144,6	2,00	45,1	35.8	
	4-4	85,2	1,98	26,6	0,00	

PŘÍLOHA č.8: Zpětně dopočítané CLF faktory příslušných těles 1:1 a 2:1

Označení tělesa			Poypost	Poypost	
Sloup	Vrt-těleso 1:1	Vrt-těleso 2:1	f _{c,1:1} [MPa]	f _{c,2:1} [MPa]	CLFi
	2-1	2-2	27,5	23,8	0,86
	2-3	2-4	30,7	23,2	0,76
	3-1	3-2	23,9	22,2	0,93
	3-3	3-4	29,5	15,9	0,54
	2-1	2-2	34,8	37,0	1,06
C11	3-1	3-2	Pevnost $f_{c,11} [MPa]$ Pevnost $f_{c,21} [MPa]$ 27,5 23,8 30,7 23,2 23,9 22,2 23,9 22,2 23,9 22,2 23,9 22,2 23,9 22,2 23,9 22,2 23,9 22,2 23,9 22,2 23,9 22,2 23,9 22,2 34,8 37,0 43,8 36,3 37,9 21,1 22,5 21,5 37,6 15,6 37,6 15,6 24,8 21,9 30,6 21,1 25,5 26,8 24,8 21,9 31,9 32,6 441,9 33,8 24,9 22,2 23,8 26,1 30,1 19,6 24,9 22,2 30,1 19,6 24,9 23,0 24,2 26,8 20,9 1,4 28,9 <td< td=""><td>45,6</td><td>0,88</td></td<>	45,6	0,88
	3-3	3-4		36,3	0,83
	1-1	1-2	37,9	21,1	0,56
	1-3	1-4	22,5	21,5	0,95
D11	2-1	2-2	37,6	15,6	0,42
	4-1	4-2	24,8	21,9	0,88
	4-3	4-4	30,6	Pevnost f.::::::::::::::::::::::::::::::::::::	0,69
	1-1	1-2	25,5	26,8	1,05
	1-3	1-4	28,2	14,7	0,52
	2-1	2-2	31,9	vnost [MPa]Pevnost f _{6,21} [MPa]CLF;27,523,80,8630,723,20,7623,922,20,9329,515,90,5434,837,01,0652,045,60,8843,836,30,8337,921,10,5622,521,50,9537,615,60,4224,821,90,8830,621,10,6925,526,81,0528,214,70,5231,932,61,0226,425,40,9641,933,80,8124,922,20,8922,328,21,2643,126,80,6237,827,20,7230,119,60,6523,826,11,0924,226,81,1121,026,61,2624,323,90,9824,728,61,1620,917,40,8326,823,90,8932,026,20,8224,923,00,9233,040,30,9437,531,60,8447,531,90,67	
D12	3-1	3-2	26,4	25,4	0,96
	3-3	3-4	41,9	33,8	0,81
	4-1	4-2	24,9	22,2	0,89
	4-3	4-4	22,3	28,2	1,26
	1-1	1-2	43,1	26,8	0,62
	1-3	1-4	37,8	27,2	0,72
010	3-1	3-2	30,1	19,6	0,65
	3-3	3-4	23,8	26,1	1,09
	4-1	4-2	28,9	21,6	0,75
	4-3	4-4	24,2	26,8	1,11
	3-1	3-2	21,0	26,6	1,26
	3-3	3-4	24,3	23,9	0,98
	4-1	4-2	24,7	28,6	1,16
	4-3	4-4	20,9	17,4	0,83
	3-1	3-2	26,8	23,9	0,89
E6	3-3	3-4	32,0	26,2	0,82
	4-1	4-2	Pevnost f _{c,11} [MPa] Pevnos f _{c,21} [MP 27,5 23,8 30,7 23,2 23,9 22,2 29,5 15,9 34,8 37,0 52,0 45,6 43,8 36,3 37,9 21,1 22,5 21,5 37,6 15,6 37,6 15,6 37,6 15,6 37,6 15,6 37,6 26,8 24,8 21,9 30,6 21,1 25,5 26,8 28,2 14,7 31,9 32,6 24,9 22,2 24,3 25,4 41,9 33,8 24,9 22,2 30,1 19,6 24,9 22,2 30,1 19,6 24,3 23,9 24,3 23,9 24,4 26,8 21,0 26,8 24,7 28,6 <td>23,0</td> <td>0,92</td>	23,0	0,92
	3-1	3-2	43,0	40,3	0,94
E14	4-1	4-2	37,5	31,6	0,84
	4-3	4-4	47,5	31,9	0,67
	1-1	1-2	58,7	43,1	0,74
F7	1-3	1-4	39,7	25,9	0,65
	2-1	2-2	34,1	28,9	0,85

Tabulka 7: Tabulka zpětně dopočítaných CLF faktorů

Označení tělesa			Peynost	Peynost		
Sloup	Vrt-těleso 1:1	Vrt-těleso 2:1	f _{c,1:1} [MPa] f _{c,2:1} [MPa]		ULFi	
	4-1	4-2	53,4	39,0	0,73	
	4-3	4-4	50,6	36,7	0,73	
	2-1	2-2	39,4	30,4	0,77	
	2-3	2-4	37,0	28,0	0,75	
F8	4-1	4-2	38,4	31,8	0,83	
	4-3	4-4	31,4	27,7	0,88	
	1-1	1-2	33,0	21,8	0,66	
E0	1-3	1-4	31,7	24,8	0,78	
F9	3-1	3-2	34,4	34,6	1,01	
	3-3	3-4	39,0	25,7	0,66	
	3-1	3-2	41,6	30,5	0,73	
E10	3-3	3-4	50,1	36,4	0,73	
	4-1	4-2	60,2	44,0	0,73	
	4-3	4-4	44,6	37,9	0,85	
	1-1	1-2	41,3	42,2	1,02	
	1-3	1-4	43,1	37,1	0,86	
	2-1	2-2	33,2	37,5	1,13	
 11	2-3	2-4	44,4	43,3	0,98	
	3-1	3-2	25,2	23,1	0,92	
	3-3	3-4	35,9	27,4	0,76	
	4-1	4-2	50,2	45,1	0,90	
	4-3	4-4	33,9	26,6	0,78	

PŘÍLOHA č.9: Přepočet pevnosti pomocí regresního vztahu pro 33 dvojic výsledků

Označení zk. místa	Označení vzorku Sloup-Vrt	Rychlost UZ vlnění v⊾ [km/s]	f _{c,is} (průměr) [N/mm²]	fc,is,reg m=n=33 [N/mm²]
U1	F7-1	4,232	37,4	35,20
U2	F7-4	3,918	40,3	28,42
U3	F7-2	3,493	28,4	19,23
U4	F11-1	4,058	37,1	31,46
U5	F11-2	3,986	36,1	29,90
U6	F11-3	3,841	25,1	26,76
U7	F11-4	4,302	35,2	36,73
U8	F10-3	4,346	35,5	37,67
U9	F10-4	4,374	42,0	38,28
U10	F9-1	3,920	24,9	28,46
U11	F9-3	3,980	30,1	29,76
U12	F8-2	3,954	30,3	29,19
U13	F8-4	4,079	29,2	31,90
U14	E5-3	3,644	21,9	22,51
U15	E5-4	3,812	20,9	26,12
U16	E6-3	3,792	24,6	25,70
U17	E6-4	3,665	21,7	22,95
U18	E14-4	4,124	33,3	32,87
U19	E14-3	4,113	36,9	32,63
U20	A7-2	3,656	23,7	22,75
U21	A7-3	3,777	20,5	25,37
U22	C11-2	4,064	33,8	31,57
U23	C11-3	4,467	40,1	40,29
U24	D11-1	4,057	23,0	31,43
U25	D11-2	3,996	23,2	30,10
U26	D11-4	3,732	22,1	24,40
U27	D12-1	3,651	21,4	22,64
U28	D12-2	3,981	29,4	29,78
U29	D12-3	3,888	28,8	27,78
U30	D12-4	3,702	22,3	23,75
U31	D13-1	4,081	30,1	31,94
U32	D13-3	3,637	22,5	22,34
U33	D13-4	3,757	23,0	24,94

Tabulka 11: Tabulka uvádějící přepočet rychlostí ultrazvuku na pevnost pomocí regresního vztahu z 33 dvojic hodnot