
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ
BRNO UNIVERSITY OF TECHNOLOGY

FAKULTA INFORMAČNÍCH TECHNOLOGIÍ
ÚSTAV INTELIGENTNÍCH SYSTÉMŮ

FACULTY OF INFORMATION TECHNOLOGY
DEPARTMENT OF INTELLIGENT SYSTEMS

DETECTION OF FACIAL FEATURES FROM 3D FACE
MODEL ACQUIRED BY THE KINECT SENSOR

BAKALÁŘSKÁ PRÁCE
BACHELOR’S THESIS

AUTOR PRÁCE MICHAL DANKO
AUTHOR

BRNO 2013

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ
BRNO UNIVERSITY OF TECHNOLOGY

FAKULTA INFORMAČNÍCH TECHNOLOGIÍ
ÚSTAV INTELIGENTNÍCH SYSTÉMŮ

FACULTY OF INFORMATION TECHNOLOGY
DEPARTMENT OF INTELLIGENT SYSTEMS

DETEKCE RYSŮ OBLIČEJE V 3D SNÍMKU OBLIČEJE
POMOCÍ SENZORU KINECT
DETECTION OF FACIAL FEATURES FROM 3D FACE MODEL ACQUIRED BY THE KINECT

SENSOR

BAKALÁŘSKÁ PRÁCE
BACHELOR’S THESIS

AUTOR PRÁCE MICHAL DANKO
AUTHOR

VEDOUCÍ PRÁCE Ing. ŠTĚPÁN MRÁČEK
SUPERVISOR

BRNO 2013

Abstrakt
Obsahem této bakalářské práce je zkoumání a navrhnutí metody pro detekci rysů tváře
(nosu, očí a ůst). Detekce probíha na 3D modelech získaných pomocí přístroje Kinect.
Kromě návrhu a implementace aplikace jsou v dokumentě zahrnuty i dosažené výsledky
experimentů detekce na různych vzorcích a jejich vyhodnocení.

Abstract
The subject of this bachelor thesis is study and design of facial features detection (nose, eyes
and mouth). The detection is applied on 3D models acquired by Kinect device. Besides
the design and implementation of application, this document also includes experimenting
with the application on the set of various models and evaluation of the results.

Klíčová slova
Kinect, detekce, rysy tváře, 3D, C++, OpenCV

Keywords
Kinect, detection, facial features, 3D, C++, OpenCV

Citace
Michal Danko: Detection of Facial Features From 3D Face Model Acquired by the Kinect
Sensor, bakalářská práce, Brno, FIT VUT v Brně, 2013

Detection of Facial Features From 3D Face Model
Acquired by the Kinect Sensor

Prohlášení
Prohlasuji, že jsem tuto bakalářskou práci vypracoval samostatně pod vedením Ing. Štepána
Mráčeka.

. .
Michal Danko
May 16, 2014

Poděkování
Ďekuji svému vedoucímu práce za poskytnutí odborné pomoci a lidem, kteří mně svolili
zachytit je jako 3D modely: mé rodině, Timotejovi Gabrišovi a Matúšovi Blahovi.

c© Michal Danko, 2013.
Tato práce vznikla jako školní dílo na Vysokém učení technickém v Brně, Fakultě in-
formačních technologií. Práce je chráněna autorským zákonem a její užití bez udělení
oprávnění autorem je nezákonné, s výjimkou zákonem definovaných případů.

Contents

1 Introduction 2

2 The basics of 3D data 3
2.1 Acquisition of 3D data . 3
2.2 Representation of 3D data . 5
2.3 Processing of 3D data . 6

3 Kinect 10
3.1 Hardware . 11
3.2 Software . 12

4 Curvatures and surface 13
4.1 Mean and Gaussian curvature . 14
4.2 Surface types . 15

5 Design of application 16
5.1 Data processing . 16
5.2 Specification of surface types . 16
5.3 Detection of specific features . 17
5.4 Special cases . 20

6 Implementation 25
6.1 Used technology . 25
6.2 Facial features detecton implementation . 25
6.3 User interface . 27

7 Experiments 28
7.1 Testing detected features . 28
7.2 Testing special features . 33

8 Conclusion 34

A CD contents 37

1

Chapter 1

Introduction

People will always look for something that can make their life easier and better. One
of the things that can improve everyday life in many ways is biometrics [1]. It refers to
identification of humans by their both physical and behavorial characteristics.

In 21st century, demand for products of biometrics is rising and it has a great use in
different industries. Mostly in medicine, science, security, law department, engineering,
entertainment industry, etc. More specifically, it includes everything from touchscreen on
smart phone, through eye-detection sensor to robotics. Every year, biometrics plays a bigger
role in these departments. There are new methods, more effective and more complex devices
being invented.

One of the things that biometrics relates to is face recognition and facial features de-
tection. It is used in video surveillance systems, human computer interfaces and image
database management. Mostly used devices are especially various types of cameras, e.g.
video camera, web camera, Kinect, etc. They work with data which can be either 2D (pho-
tos) or 3D models. Nowadays, these 3D devices are affordable even for common users. The
simpler ones doesn’t cost much more than a few hundreds of dollars.

Theoretical part is divided into three chapters: The second chapter explains the basics
of the representation, acquisition and procession of 3D data. Introductory to both hardware
and software part of Kinect, the device used to acquire data set, is the subject of the chapter
three. The chapter four consists of principles of curvatures and their types, surface types
determination used in selected method for detection. The main design of application is
in the fourth chapter. Including explanation of used methods for model data processing
and facial features detection. The implementation of used methods and testing itself is
described in the chapter number five. All discussed matter, results of experiments and
ideas for improvement are summarized in the conclusion.

2

Chapter 2

The basics of 3D data

Nowadays, 3D is a widely used term. Most people know it in relation with entertainment
industry: 3D movies, special visual effects, video games, animations. However, what does
it mean?

Generally, 3D describes objects in a three-axis coordinate system. In 2D, each axis
represents height and width. And in addition to these two, 3D includes a third dimension,
depth.

Although, this concept is also related to computer graphics. The third dimension allows:

• As it was said before, the depth of object, in terms of size.

• The location of an object related to the initial coordinates (commonly [0,0,0]).

• The distance of an object from the rendered camera.

• The rotation in z-axis.

Compared to real world, 3D model can be expressed only mathematically, by a mod-
elling. Therefore, in digital space, any 3D object is represented by a 3D model.

2.1 Acquisition of 3D data

There are several ways how to acquire 3D data:

• Acquisition from 2D data - methods based on images, e.g. stereo photogrammetry [2].

• Acquisition from scanners - special scanning devices, e.g. structured light scanner [3].

• Acquisition of combination of previous methods.

Structured light scanner

Structured light scanner is a 3D scanning device consisting of projector and a camera
system. It projects light patterns on the target, which illuminates its 3D surface. The line of
illumination created by projection is distorted in different perspectives. This distortion can
be used to recreate the exact original 3D surface, therefore it is captured by the scanners’
camera system.

This method uses patterns, which consist of numerous narrow bands of light. It allows
to acquire multiple samples at same time. There are two most frequently used methods of

3

light projection. Infrared light, which main advantage is its non-disturbing effect. However,
the segmentation of the image and the identification of nearby stripes is more difficult. The
other method is using a visible light color camera [3].

Figure 2.1: Structured light scanner, projector and 2 cameras for avoiding obstructions [3]

4

2.2 Representation of 3D data

3D data can be represented by set of points in coordinate 3D system. This set is called point
cloud and consists of triplet of points, each representing one coordinate ([x,y,z] coordinates).
However, this representation is very simple - point cloud data files consist only from rows
with coordinates and the final model is just a set of dots. If there is not enough points,
it can be unclear, which object is that model representing. Therefore, these points are
connected into greater shapes and polygonal or triangle meshes.

Figure 2.2: 3D model of a bunny

Objects represented by mesh contain different types of mesh elements. The most basic
are vertices, points, which are used as corners. Then there are edges, created by connection
of two vertices. After that, sets of edges form faces. Finally, polygonal mesh is consisting
of coplanar sets of faces. If mesh consists of three edges, it’s called a triangle mesh and it’s
equivalent to face [4].

Figure 2.3: Polygon mesh elements, from the left: vertices, edges, faces and polygon model

5

2.3 Processing of 3D data

Due to inaccurate devices, acquired data are imperfect, often with holes, missing textures
and noise. Therefore, they need to be processed, edited to improve their quality.

This can be done by creating an application using graphic libraries, e.g. openGL,
Direct3D. Or it can be done by using one of many existing 3D model editors and application,
whom many of them are free or open source. They offer modelling, texturing, rendering
and far more ways of processing.

MeshLaB

MeshLaB, is an open source designed for visualisation and editing 3D data, available
for Linux, Windows, MacOSX and mobiles with iOS and Android. MeshLab is actively
developed by the a small group of people at the Visual Computing Lab at the ISTI - CNR
institute, a large group of university students and many developers from the rest of the
world [5].

Figure 2.4: MeshLab sample

Colour space

Also, 3D models are often transformed into 2D data, so that important information
can be extracted and subsequently used. Then they can be easily processed as images.
Images are represented in colour space. It is a model, which describes how are basic colours
represented by values. The combination of these values gives a specific colour.

The most common color space is RGB, where R stands for red, G for green and B for
blue colour. This colour model is additive, which means that with zero values colour is
black and with adding colour faction brightens.

Another colour space is CMYK, which consists of four colour values: cyan, magenta,
yellow and black (key). These values refer to four printing inks. This colour space is

6

subtractive, because the result subtracts, absorbs the some wavelengths of light. There are
many different colour spaces as YIQ, HSV, HSL, etc. [6].

Figure 2.5: Colour spaces: RGB on the left, CMYK on the right [6]

Then there is a grayscale color space, which consists only from shades of gray, or intensity
of black and white color. These images are also known as monochromatic. Because every
value of pixel of this color space carries only intensity information, it can be used to represent
the z-coordinate of 3D model.

Therefore, this grayscale image can be used as a depth map of 3D model. Depth map is
an image, which carries information about distance of surface from the observing point. It
is also known as Z-buffer, depth buffer and Z-depth. In this particular case, depth map can
be helpful in determining maximal and minimal depth values of pixels on the face. Which
helps to find approximate areas on the face, which facial features actually are in.

Figure 2.6: Example of depth map (right) created from 3D face model (left)

As said before, in order to reduce unnecessary noise and enhance their quality, data sets
are often modified. Models captured by Kinect usually contain many inaccuracies, which
need to be removed before further processing. Modification can be done by smoothing,
which means applying an approximation function on the data set. As a result, it will
separate the noise from points of the data.

There are many smoothing algorithms [7, 8, 9]. When result of smoothing can be
expressed as linear transformation to original values, the process is called linear smoothing.

7

This operation involves applying a matrix which represents the transformation and it is
known as convolution, therefore this matrix is a convolution matrix (kernel).

One of the simplest smoothing algorithms is a kernel smoother. There is defined
a smoothing window around round every point of the data set. Then there is estimated
kernel from values within the smoothing window computed by a particular function.

Gaussian blur

A common example of kernel smoother is a Gaussian blur (smoothing). As the expres-
sion says, this smoothing blurs the image using a Gaussian function. This function is used
for computing transformation applied to pixels and is defined:

P (x) =
1

σ
√

2π
e−(x−µ)

2/2σ2
(2.1)

where x (µ) is the distance in the horizontal (vertical) axis, σ is the standard deviation of
the Gaussian distribution [10].

Figure 2.7: Gaussian function in 3D

8

From Figure 2.8 is it obvious, that the rate of blur is related to the size of σ. The bigger
the σ value is, the blurrier the result will be.

Figure 2.8: Gaussian blur, from the left: without Gaussian blur, with σ = 3, with σ = 7
and with σ = 11.

Laplacian smoothing
Another smoothing algorithm is Laplacian smoothing. Every vertex is moved to new loca-
tion due to local information. Definition for the new position ni of vertex:

ni =
1

di

∑
tj∈T (v∗)

n(tj) (2.2)

where di is number of neighbours (adjacent vertices) di = |v∗i |, tj is an adjacent vertex of
triangle tj ∈ t∗j and T (v∗) is set of triangles in the neighbourhood v∗[11].

9

Chapter 3

Kinect

This chapter is based on the official Microsoft Developer Network site including Kinect [12].
Kinect is a controller device originally designed for Microsoft’s video game console Xbox
360, however, nowadays it’s available for PC too. It is an alternative to gamepads, which
offers far more possibilities of control and interactivity. This device can track full-body, it
responds to user’s movement, of course in its range. Kinect also responds to voice, which
enables control via voice commands.

Figure 3.1: Kinect device

History of Kinect

The main design of Kinect was based on reference device developed by company Prime-
Sense. They found a significantly cheaper way to build a device to tracking motion and
sensing distance from sensor. Microsoft started the Kinect project in 2007.

After years of solving many issues, Kinect was finally introduced in 2010 and official
launch date was set on November 4, 2010. In the beginning, Kinect was exclusively designed
for video game console Xbox 360, so there Kinect couldn’t have been used on any other
platform.

However, company PrimeSense released their open source software framework OpenNI
in December 2010. Later, in 2011, Microsoft announced and later released Kinect software
development kit for Windows.

10

Setting up a Kinect

1. Place the Kinect on a stable surface with low probability of falling down or getting
damaged. It is reasonable to avoid putting the Kinect near devices which vibrate or
make noise and placing it in direct sunlight. Keep it in environment with temperature
between 5 and 35 ◦C and do not manually tilt the Kinect sensor, angle of its camera
is controlled by software.

2. Install the proper software. If you want to develop applications for Kinect, you
can download and install the official software Windows SDK, additionally Developer
Toolkit or unofficial libfreenect from OpenKinect project. Software will be described
in the second section.

3. Plug in your Kinect sensor. Connect its power supply to a power socket. Then connect
Kinect to your PC’s USB port. Wait for PC to identify the device.

3.1 Hardware

Kinect consists of these main components: RGB camera, 3D depth sensor (IR emitter and
IR depth sensor), microphone array and motorized tilt.

Figure 3.2: Main components of Kinect device

• RGB camera is a color sensor, which is used to capture color of models in RGB
color space. The color is stored in a 1280x960 resolution.

• 3D depth sensor consists of IR emitter and IR depth sensor. IR emitter projects
an infra red light beams. These beams consist of irregular patterns of infra red dots.
Whereas IR emitter emits IR beams, the depth sensor reads the reflected beams
and afterwards reconstructs accepted information into a depth image. Depth image
contains information of distance between sensor and an object. This enables the
device to capture 3D models.

• Microphone array is an array of four microphones which captures the sound. These
four microphones can record audio, find the direction and location of sound source.
Besides it can more or less reduce the noise coming from the surrounding. Conse-
quently it extends the distance that can the device capture sound from.

11

• Motorized tilt is automatically moves up and down. It is controlled by an applica-
tion software, so it is advised not to tilt it manually. The sensor tilts down to find
the floor and afterwards up to find the players.

3.2 Software

Kinect for Windows SDK

This official software includes API and tools for developing Kinect applications for
Microsoft Windows in C++, C# and Visual Basic. In addition to SDK, the Developer
Toolkit provides more resources, full source code examples and a tool Kinect Studio, which
is for recording and playing back depth and color data [13].

Libfreenect

It’s an open source driver for Kinect for PC, supporting operating systems Windows,
Linux, Mac OS X. This driver is developed by open community of people, who are enthu-
siastic about creating a suite of applications for Kinect hardware. It includes wrappers for
Python, C++, C#, Java, javascript, Lisp and more [14].

OpenNI

OpenNI is an open source framework used for the development of 3D sensing middleware
libraries and applications. It was developed by company PrimeSense in November 2010.
Today, OpenNI community provides tools, resources, tutorials and support for those, who
want discover, develop and distribute all the possibilities it offers [15].

12

Chapter 4

Curvatures and surface

Because, the most of methods for face recognition and facial features detections are directly
related to curvatures of particular object surfaces, some basics of curvatures in geometry
are necessary.

The curvature measures how fast a curve is changing direction at a given point. Which
means that sharply bended curve has large curvature, while straight line has 0 curvature.
This is related to direction of tangent vectors of curve. The bigger the curvature is, the
more the direction of tangent vector changes.

Therefore, curvature can be formally defined:

κ = ‖d
−→
T

ds
‖ (4.1)

where
−→
T is the unit tangent and s is the arc length.

This information can be used to determine curvature from osculating circle of curve.

Figure 4.1: Osculating circle with radius r

The derivation of the formula for circle proves that curvature equals inverted value of
circle’s radius [16].

κ =
1

r
(4.2)

Curvature showing amount of curve’s bending at a given point in the direction of its
normal vector is known as normal curvature.

13

Unlike 2D curve, 3D surface cannot be described by only one curvature. Two of these
normal curvatures, the maximum and minimum, are called principal curvatures. First one
determines the rate of maximal bending of the surface and the tangent direction, whilst
the second characterizes the rate of minimal bending. According to Euler’s formula, the
rate of surface bending along any tangent direction at one point is determined by these two
curvatures.

Figure 4.2: A curved surface in 3D space, where R1 and R2 are planes of principal curva-
tures [17]

4.1 Mean and Gaussian curvature

All formulas and picture are from [16]. Mean curvature is defined as the arithmetic mean
of principal curvatures:

H =
1

2
(κ1 + κ2) (4.3)

where κ1 and κ2 are principal curvatures. Mean curvature is an extrinsic measure, which
means that it locally describes the curvature depending on its embedded surface.

Gaussian curvature is defined as the mean value of principal curvatures:

K = κ1 · κ2 (4.4)

where κ1 and κ2 are principal curvatures. Whereas mean curvature depends on particular
embedding, the value of Gaussian curvature depends only on distances that are measured
on the surface. Therefore it is an intrinsic measure.

14

4.2 Surface types

The values of Gaussian (K) and mean (H) curvatures can be used to classify the type of
the specific surface. Classification is determined by signs of these values, nevertheless there
are special cases, when these measures can have zero value. There are different situations
which can occur depending on the curvatures’ values:

1. K > 0. This is the case when the principal curvatures have the same sign. The
surface is bending away from its tangent plane in all tangent directions at one point
p. This point p is called an elliptic point of the surface. There are two possibilities
depending on the sign of the mean curvature:

(a) H < 0. This surface looks like a peak.

(b) H > 0. Surface has form of a pit.

The type with 0 mean value doesn’t exist in this case.

2. K = 0. In this case, if the only one principal curvature is zero, the point p is called
a parabolic point. Otherwise, when both principal curvatures have zero value, the
point p is a planar point to the surface.

(a) H < 0. This surface is classified as a ridge.

(b) H = 0. Both principal curvatures are zero, this surface is flat.

(c) H > 0. This type of surface is called a valley.

3. K < 0. The signs of the principal curvatures are opposite at point p. This point is
known as a hyperbolic point of the surface.

(a) H < 0. This kind of surface is a saddle ridge.

(b) H = 0. In this case, the surface is minimal.

(c) H > 0. This surface is called a saddle valley.

Figure 4.3: Types of surfaces [18]

15

Chapter 5

Design of application

The subject of this thesis is the detection of these facial features: nose, eyes and mouth.
These features will be detected on a set of 50 models generated by a Kinect acquisition
application.

Before detecting any of the features, the model data must be loaded from the input file.
Models are represented and stored in Wavefront OBJ (.obj) files. Afterwards, the loaded
data must be processed, so it can be used for detection.

There exists many methods for detection of facial features, so in one of the following
chapters will be described the chosen method.

After performing the detection itself, the results will be presented to the user.

5.1 Data processing

The points in mesh are spread in every direction in different distances from each other,
so it wouldn’t be easy to estimate their curvatures. And even then, the results could be
rather inaccurate. In order to prevent that, the mesh is transformed into a depth map.
This depth map is basically a matrix, in which the distance between every pair of points
in x-axis and y-axis is equal. This allows to determine curvatures at a given point by
estimating it’s value in point’s horizontal and vertical direction. 3D model consists from
vertices and faces, which connects them. Vertices are taken from 3D model and put into
depth map. And remaining empty point in depth map are filled by creating points using
interpolation of neighbouring points (explained in Section 2.3).

Of course, acquired data aren’t in perfect quality and contain noise. That could be
solved by applying the Gaussian blur on the set of points. Or a different approach could be
used - take more than only two neighbours from vertical and horizontal direction and esti-
mate curvature from them. Because the library OpenCV already includes an implemented
Gaussian blur, this is the applied approach how to eliminate incorrect results in this part.

5.2 Specification of surface types

The following method is used to determine curvatures: the principal curvature is computed
as the perpendicular distance between the given point and line crossing his two adjacent
points. As a result are given two curvatures, minimal and maximal. Gaussian and mean
curvatures are gained by applying the minimal and maximal curvatures to their formulas.

16

5.3 Detection of specific features

The method of detecting facial features is based on using the surface type at each point.
This idea is based on [19, 20]. Every facial feature has a specific shape. In relation to its
shape it is obvious, which surface type needs to be look for in order to find the demanded
facial feature. Of course, due to models imperfection, some of the types of surfaces might
be interpreted incorrectly. To prevent this problem, there can be set regions, which the
searched feature is probably in. For example, it can be assumed that nose is in the middle
of the face or mouth is in the lower third of the face.

Another possibility is to set limit, after which the looking for the specific value of the
feature will be terminated, e.g. if the face isn’t upside-down, the mouth will always be
under the nose.

Figure 5.1: Face depthmap with detected facial features, left and right sides of face are
considered from the user’s perspective

5.3.1 Nose detection

The detection of nose consists of detecting nose tip, nose sides and the bottom of nose. The
nose tip is considered as the most important element, because it helps to detect some other
features. The detection of nose tip and it’s area is the easiest, because nose is often the
most salient and most visible part of the human face. Therefore, there are many ways and
methods to locate this feature.

Nose tip

The first step to get y-coord of nose tip is to take the highest z-value of every row
(y-axis) and therefore create a profile curve. This curve shows the highest and the deepest
point on face. After that, a median value is taken from every of these rows, which creates
a median curve. This will show the extreme points compared to other points of the same
row. And finally a difference between these two curves, profile and median. Result is shown
in Figure 5.2. Nose is far more high than wide, so the nose tip will be the most significant

17

point in this curve. However, face can be turned to one side, face model can be a bad
quality or the person can have smaller nose and this can result in an incorrect y-coord. To
prevent any of these cases, there is set a region of probable nose tip occurrence.

Figure 5.2: Graph of getting nose tip y-coord: profile curve is blue, median green and
difference brown

The detection of x-coord of nose sides and nose bottom as well as all x-coordinates is
based on a different approach, which is related to surface types. According to the shape of
nose, the searched type of surface is peak. X-coord of nose tip is found by searching the
biggest density of peaks in the row with already detected y-coord.

Nose sides and nose bottom

These parts of nose are located through the position of nose tip, if successfully detected.
In this design, the nose sides are meant as the nose area boundary near the nose tip.
Therefore, as the y-coordinate of nose sides is directly used the y-coordinate of the nose
tip. Both nose sides have this coordinate the same, because in some cases it could be
confused with the bottom of nose or it could be difficult to explicitly see it in the result.
The second coordinate is determined by looking for first more significant presence of the
valley surface type. Because of searching for both sides, the valley is being looked for in
both directions, left and right.

The nose bottom is the ending part of nose, it’s vertically on the same line with the
nose tip. Its x-coordinate corresponds to nose tip’s. Again, this approach was chosen due
to its easy readability. So unlike the nose sides, in the nose bottom case it’s needed to find
y-coord. This is done by a vertical search for the last nose peak location. This search starts
under the nose and continues downwards.

5.3.2 Eyes detection

Eyes can be located thanks to its’ special profile. Because of the eye balls, the sensor is not
able to capture the most of the eye pits. Despite this fact, it is enough to detect pit surface

18

type in the area of eyes. This area is the most significant area containing pits on the whole
face, as shown in Figure 5.3.

Figure 5.3: Depth map with highlighted eyes areas containing pits

Eyes are detected by four points, every one of them has the same y-coordinate and they
describe: left corner of left eye, right corner of left eye, left corner of right eye and right
corner of right eye (from viewer’s perspective). The y-coord of the eyes is found by counting
pits in each row of depth map. The index of row with the biggest pit count is set as the
y-coordinate.

In this case, there are detected pairs of points, where one point is the beginning of eye
and the second its end. In the depth map, these two points are corners of the cluster of
pits. So search begins in the left part of face and continues horizontally till the end on the
right. In the default scenario, face is looking straightforward. Consequently, there has been
set two borders: left in the first quarter and right in the third quarter, because eyes should
be somewhere in this area. The process of left corner of left eye consists of looking for the
first more significant occurrence of pits. Right corner is assumed to be in the end of cluster
of pits, so it searches for the first point, which is not a pit. This method is also used for the
right eye, but in the reversal way. Search starts on the right corner and continues to find
the left corner. However, as seen in Figure 5.3, this cluster has many points, which are not
considered as pits. To solve this, there has been a preset minimum length of eye to avoid
unrealistically short eye due to precocious end of cluster.

5.3.3 Chin detection

The chin detection is a subsidiary part of this application. It is used to detect mouth. Chin
is the bottom border of region, where mouth is looked for.

The y-coordinate is index with highest density of peaks in the first sixth of face. And
the x-coordinate is the same as nose tip’s.

5.3.4 Mouth detection

Mouth detection is the most difficult part, because compared to other features, mouth is
almost flat. Additionally, the shape of mouth changes the most of all features with the
different facial expressions. When has the face model captured yawning, mouth is the

19

largest area with highest pit density. However with the sticking tongue out, it is one of
the highest regions on the face and contains peaks. These special cases are discussed in
the Section 5.4. In the text below, it is expected to have a face without any special facial
expression.

Mouth region is defined by nose bottom and chin vertically, with the first quarter and
third quarter horizontally. Surface types are not very significant in this area and their
density differs with every person. The y-coordinate is found the same way how nose tip’s
(in Subsection 5.3.1) with different region for looking for the maximum difference between
profile and median curve. This method has been chosen, because it does not need surface
types.

The second coordinate detection however uses surface types. Because of mouth’s in-
significant shape, the searched surface type can differ in this case. When the search ends
with an unsatisfying result, it continues with different surface type. It starts with valleys,
in case of a failure it repeats the process with peaks instead of valleys. If even this did not
end with a satisfying result, pits are used as the searched surface type. The order of these
three types has been set on the results of experimenting with probability. The detection
itself starts in the x-coordinate of nose tip and continues left or right direction, depending
on the mouth corner, and looks for the first appearance of the surface type in already known
y-index.

Figure 5.4: Graph of getting mouth y-coord

5.4 Special cases

In the previous sections it is assumed that 3D face model is looking directly into camera,
has casual facial expression and anything isn’t covering the face. However, a lot of models
are not as good as in this case. The subject might be distracted, wearing glasses, yawning,
etc. All of this can have impact on model’s quality and lower the chance of successful
detection. In the acquired set of 3D models, the facial features detection is influenced by
several factors: face rotation, facial expression and various accessories on face. Some factors

20

change the shape of particular features, which can lead to unsuccessful detection.
This application has been designed to handle several of these possibilities: face rotation

to the left/right and a few facial expressions.

5.4.1 Turned face

When model isn’t looking directly into camera, there are two other cases handled in this
application: turn to left and right. Looking upwards and downwards is not considered,
because it isn’t as influencing as looking to left or right - it doesn’t require rotation of neck.

Figure 5.5: Model of face turned to the right (smoothed for a better visibility)

As seen in Figure 5.5, face rotation to right changes the layout of features on face:

• Nose is out of its original middle position.

• Mouth is also in slightly different position.

• Right eye is less visible and therefore more difficult to detect.

• Basically whole main axis nose-mouth-chin is moved to right.

The measure of these changes is related to how much the face is rotated. The solution
to this situation is to change the regions of probable location for each feature, e.g. nose tip
won’t be expected in the middle of face, but the space between middle and right border of
face.

Previous items applies also to left rotation, of course with orientation to left.

5.4.2 Special features

Glasses

First special case occurs when model is wearing glasses. Glasses slightly decrease pit
count in the eyes area and increase the count of peaks. So this case can be detected by
counting peaks near eyes and check if this value exceeds a preset limit.

21

Figure 5.6: Compared pit areas above eyes with glasses (left) and without glasses (right)

Smile

If Kinect has captured smiling person, it results with pits in mouth corners comparable
to pits detected near eyes. Eyes area should contain the most pits. To distinguish smile
from eyes, the location with highest pit density is taken. If is this area located under nose
tip, it is considered smile and if above the nose, area is treated as eyes region. In case of
smiling face, application looks for region with second highest pit amount.

Figure 5.7: Depth map with highlighted eyes and smile areas containing pits

To detect smile, it must be wide enough. The corners of smiling mouth must have
higher density of pits than eyes. Otherwise, the smile won’t be detected.

22

Opened mouth

In this case, face has an opened mouth. It leads to pit area like with smile, but it is one
bigger region.

Figure 5.8: Face depth map with widely opened mouth

To detect an opened mouth, detection could simply focus on pits. However, it’s not that
easy. Vertices, which were in OBJ file too deep, weren’t saved into depth map. Because of
this, only pit areas, which are significant, will be right under the lips, which is not enough.
This method had to be replaced with another using profile curve from nose tip detection
(Section 5.3.1). Similar method is used, the region, which the detection will be applied for,
is from the face bottom to the bottom of nose. In this area will be located lowest point,
with highest difference with the Z-value of nose tip. If is this difference greater than preset
limit, mouth on this face model is opened.

Figure 5.9: Graph of profile curve with opened mouth

23

Tongue

The last special feature is the tongue. If person is sticking the tongue out, it creates
another high feature on face.

Figure 5.10: Face depth map with tongue sticking out

In this case, the mouth can be located by looking for peaks. Also, it can be located by
similar method as in previous paragraph. In this case, application won’t look for lowest,
but highest point in area approximately between chin and nose bottom. If this point is
only slightly lower or even higher than nose tip, face captured on this model is sticking its
tongue out.

Figure 5.11: Graph of profile curve with tongue

24

Chapter 6

Implementation

This chapter describes facial features detection application implementation details, which
are based on design from previous chapter. The application is creating for Windows and
Linux OS. As programming language was chosen C++ and Qt framework, mainly because
of OpenCV’s support and author’s experience with this language. In the sections below
will be described used technology and classes.

6.1 Used technology

OpenCV
This open source library was used because of many reasons. This library focuses on image
processing, which is necessary in creating 2D depth map from original 3D model and vice
versa. Also, it includes basic image treatment functions (blurring, brightness, etc.). Last
but not least, this library is cross-platform, runs on Windows, Mac OS X and Linux.

Libfreenect
Libfreenect is used to acquire data from Kinect, more information in Section 3.2.

QCustomPlot
Graphs shown in this thesis are made by QCustomplot, Qt C++ widget focusing on making
2D plots, graphs and charts.

6.2 Facial features detecton implementation

6.2.1 Depth map class

Depth map and every function related to it is represented by class Depthmap. This class
consists of two main members: DepthMatrix and CurvatureMatrix, both are 2D matrices
(type cv:Mat). DepthMatrix stores 64-bit floating-point Z-values of depth map points.
And CurvatureMatrix is used to store surface type of every point in the depth map, which
is represented by 32-bit signed integer value. The process of creating depth map from 3D
model is implemented in method createMap.

Filling the remaining empty spots proceeds in method fillDepthmap, where is imple-
mented a parallel algorithm for rasterization [21]. This algorithm uses edge function, which

25

determines whether the point is to the left or to the right from the edge or exactly on the
line of the triangle. Edge function is defined [21]:

E(x, y) = (x−X)δY − (y − Y)δX (6.1)

where x, y are point coordinates, X, Y are vector coordinates and δX, δY are increment
values for each iteration. This algorithm traverses the triangle from the bottom to top,
from left to right and evaluates the depth values for every point inside the triangle by
linear interpolation of triangle vertices. The distances from each triangle vertex serve as
weight:

z = zAwA + zBwB + zCwC (6.2)

where z is depth of points inside triangle, zA, zB, zC are depths of triangle vertices and wA,
wB, wc are weights (distances between point and triangle vertices).

This class also includes the process of determining surface types in method curvaturesType.
Firstly, there are estimated principal curvatures for every point. Then are computed Gauss
and mean curvatures and finally from them determined surface types.

6.2.2 Detection class

Detecting facial features is represented by class Recognition, which includes methods for
detection of particular features. List of members storing the coordinated of features:

• Nose: noseY, noseBotY, noseX, noseRightX, noseLeftX.

• Eyes: eyesY, eyesLeftX, eyesLeftX2, eyesRightX, eyesRightX2.

• Mouth: mouthY, mouthLeftX, mouthRightX.

• Chin: chinY, chinX.

This class includes instance of class Depthmap depthmap and triggers the creation of
depth map in member function depthMap. The process of detection starts will method
detectFeatures, which sequentially detects all features by calling these methods: findNoseTip,
findEyes, findChinTip and findMouth.

6.2.3 Special cases

Special features are located before and during the regular features detection. The class
dedicated to special features is named SpecialFeatures. This class basically consists
of member functions findSpecialFeatures and setSpecialFeatures. First one deter-
mines, whether the face contains opened mouth, tongue or neither of these. The second
initiates the special features values. Other features, face direction, smile and glasses, are
found during detecting the regular features and set in this class later. The members used
to store bool value true or false are: glassesEyes, smileMouth, openedMouth,

tongueMouth, and member with one of these string values Normal, Left or Right is
named directionFace.

26

6.3 User interface

The user can access and control the application through the graphical user interface (GUI).

Figure 6.1: Graphical user interface of application

The GUI is divided into three part according to their purpose:

1. The first is menu bar, which offers manipulation with input and output files (load,
save, exit), showing and hiding specific elements of GUI and other actions.

2. The second part is the part showing the name, depth map image of loaded 3D model
and detected features on this image.

3. The last are boxes, which describe results of the detection. Results are explained in
text and graphically by icons. The icons as well as special and missing features boxes
can be optionally hidden. Missing features can be added to report, which could be
be later used in the diagnosis of results.

There is also implemented testing of results. Testing buttons are in default hidden, so
user can access them through menu bar. This will enable manual setting position for each
facial feature. Afterwards, the evaluated results will be written to output.

27

Chapter 7

Experiments

Designed and afterwards implemented application was tested on the set of 50 3D models
acquired with Kinect. The 3D models were obtained by capturing six different persons with
various facial expressions.

The experimenting consists from two parts. Calculating the percentage of successfully
detected facial feature for whole set. Second part is found out, whether the special features
were recognized properly.

The testing set was consisting from detection results and manually set features in their
correct position. This was done through implemented function for setting point directly on
image by left-clicking. Every click was for each feature in a specific order.

7.1 Testing detected features

The results were compared to manually set facial features on model depth maps. Com-
parison consisted from calculating the distance between points detected by application and
manually set points into correct positions:

∆x = |x(detected)− x(correct)|
∆y = |y(detected)− y(correct)|

∆ =
√

∆x+ ∆y

(7.1)

Based on difference, the results were divided into three groups according to their accu-
racy. Every group has a difference limit, which every result complies with. Difference values
were preset in order to divide results into three groups, where each of them has enough
samples to create statistics. The three groups depending the results quality are [22]:

• Good - the accuracy of results belonging to this group is satisfying. Detected facial
features are successfully detected, approximately near their correct position.

• Bad - these results are less satisfying, but still for the most part are correct. Most of
samples have, despite the classification name, solid quality.

• Ugly - results in this group are, simply put, failed attempts for detection. The cir-
cumstances for successful detection were very low in these 3D models.

28

Good results

Figure 7.1: Example of manually set result (left) and good result (right)

In the results belonging to this group was the overall difference below 75 points. Samples
belonging in this group are considered with a good quality. The inaccuracy in some cases
may not be even visible or it might just slightly differ from correct positions. This groups
consists of 20 results with the highest detection success.

Figure 7.2: Graph showing average difference for each feature in good results

As seen in Graph 7.2, the most problematic feature to recognize, was the left side of
mouth. Furthermore, mouth was the feature with the biggest average difference between
the manually set points and detected. Left and right mouth side together have the highest
average difference than other features. It was mainly because the mouth has the biggest

29

area of probable location and it is also the most divergent feature. On the other hand, the
nose tip was most successfully detected feature.

The highest standard deviation is in the case of left eye detection, however it’s still low
enough, because all standard deviation values scale from 2 to 5 pixels.

Bad results

Figure 7.3: Example of manually set result (left) and bad result (right)

The overall difference limit was under 120 pixels. 20 results were considered as bad. In
majority of samples, one detection has partially failed. One of features wasn’t found, was
absolutely out of it’s correct position or most of detected features were too distant from
their manually set location.

Figure 7.4: Graph showing the average difference for each feature in bad results

30

Similarly like in previous group, mouth ended up with the biggest average difference and
the nose with the lowest. However, in contrast with good group, the standard deviation
is highest in the mouth case. The inaccuracy of mouth was drastically higher, average
difference of left side of mouth is 52% higher more than in the group with good results.

This group contains most of special features and cases, where mouth is difficult to be
recognized accurately.

Ugly results

Figure 7.5: Example of manually set result (left) and ugly result (right)

Any result with difference higher than 120, was classified as ugly. This group consists
of 10 samples, mostly with missing features or with more features too distant from correct
position.

Figure 7.6: Graph showing the percentage of total difference for each feature in ugly results

There could be a few reasons: because of their low quality, too complicated combination
of facial expressions or excessively rotated face. Some of results in this group might have

31

too low quality, therefore suggestion is to discard them from the set of 3D models. Or in
the worst case, there must be used another approach to detect features on these models.

According to Graph 7.6, in the most results the worst detected feature there was one
of the mouth sides. However, in some cases, right eye wasn’t detected at all, what resulted
into a huge difference. Therefore, the least successful in this group was the detected of right
eye.

On the contrary, nose points had the lowest differences. In average they didn’t exceed
9 pixels.

Majority of model results classified as ugly, were facing to the right side. Because of
this, in these locations wasn’t found enough pits to successfully detect eyes. This explains
the undetected right eye in several depth maps.

Overall results

In this paragraph, results will be summarized overall for all groups. Nose remained best
results in all groups. Nose as a whole is the most successfully detected feature, specifically
nose tip and nose right side had the lowest average difference, both under 4 pixels. Regard-
ing the eyes, right corners of both eyes were detected more accurately than the left corners.
Mouth ended up worst of all features, it’s left side to be specific. It reached almost 18 pixels
average difference value. Standard deviations of left and right mouth corners were almost
as high as their mean value. However, the detection failed the most times in the case of
left corner of right eye, where it had not been detected at all.

Figure 7.7: Graph showing the percentage of total difference for each feature overall

As undetected features considered, there were three cases left part of right eye wasn’t
detected. Additionally, there was one sample, in which mouth detection failed. All of there
four results are belonging to group with ugly quality.

These experiments showed, that considering face looking directly onto camera, mouth
is almost in every case the most difficult feature to be successfully and accurately located.

32

The second most problematic issue, was determining position of right eye, when face was
turned to the right. None of samples captured person looking to the left, however it is
suspected, that it would have similar result - difficult detection of left eye.

7.2 Testing special features

This section will summarize testing of the special features recognition described in Subsec-
tion 6.2.3. All implemented special features were tested: face direction, smiling, opened
mouth, glasses and tongue. There were total 50 3D models to be processed, 6 of them had
different face direction than normal - all of them had right direction. According to Table
7.1, this recognition had 100% success. Right face direction was present only in bad and
ugly groups, all of good quality results faces were looking directly into camera.

Table 7.1: Table with results of testing special features detection

There were 9 models with glasses, 2 of them wasn’t successfully detected, resulting into
4% undetected glasses. Every failed glass recognition resulted into classifying detection as
a bad quality. The ugly group, however, doesn’t contain any face model with glasses.

Smiling face had been captured on 6 3D models, where four of them were correctly
detected, two weren’t detected at all and other two were incorrectly detected on models,
where they shouldn’t had been. Both occurrences of incorrectly determined smile were in
samples with ugly quality.

Opened mouth had the highest rate of all false negative results. Nonetheless, there
was none wrong detection of opened mouth on model where it isn’t present. Mostly, if the
mouth wasn’t correctly treated as opened, it led into result’s bad quality.

And finally, 5 of 50 models had face with sticking tongue out. Four of them were
correctly located. Three detections showed tongue on wrong models. Although, in the
good quality group, the tongue was mostly successfully found.

As the experiments show, incorrectly detected special feature on sample, where it is not
present, has bigger impact on result’s quality than missing special feature. Special features
occurred in the experiments overall 39 times. Successfully detected were 25, which is 64%,
the number of false negative results is 9 (23%) and false positive results were in 5 cases,
presenting 13% overall.

The results of experiments have confirmed, that mouth is the most difficult feature to
detect. All special cases related to mouth had the lowest success rate. The mouth has the
largest area, where it might be located and every facial expression changes the presence of
surface types and depth values near mouth far more radically than other features.

33

Chapter 8

Conclusion

The main goal of this bachelor thesis was to implement an algorithm for facial features
detection from 3D models obtained with Kinect sensor. The result of design and imple-
mentation of this algorithm is an application, which detects main facial features: nose, eyes,
mouth and additionally chin.

The quality of database acquired by Kinect wasn’t highest and many models included
various face expressions, so the results were expected to be rather inaccurate. To improve
the success rate, especially of the mouth detection, there were besides regular features
additionally implemented some more specific special cases, which have occurred in obtained
samples. This part extends the original thesis assignment in order to improve the detection
accuracy. These special features were face direction, several of facial expressions (smile,
yawn or sticking the tongue out) and finding whether is the captured person wearing glasses.

On both feature types were used similar methods to prove that they can be used for
this matter. Applied method was using surface types combined with expected location of
these types according to natural shape of these features.

The results were for experimental purpose quite satisfying. But in real world, of course,
the results using detection need to be as accurate as possible, so there is room for improve-
ment. By further experimenting there could be set better threshold values, implemented
more complex versions of algorithms and structures. Also, there can be added more tools
to edit or manipulate with depth maps or detection results.

34

Bibliography

[1] A. Jain, R. Bolle, and S. Pankanti, “Biometrics: Introduction to biometrics (chapter
1).” http://link.springer.com/content/pdf/10.1007%2F0-306-47044-6_1.pdf,
1996. ISBN 978-0-306-47044-8 [online].

[2] P. Vincent Tao, “Article: 3d data acquisition and object reconstruction for aec/cad.”
[online] http://www.directionsmag.com/articles/
3d-data-acquisition-and-object-reconstruction-for-aeccad/123668.
Accessed: 2013-10-22.

[3] Štěpán Mráček, J. Váňa, R. Dvořák, M. Drahanský, and S. Yanushkevich, 3D and
Thermo-Face Fusion, New Trends and Developments in Biometrics, Dr. Jucheng
Yang(Ed.). InTech, 2012. ISBN 978-953-51-0859-7.

[4] M. Botsch, L. Kobbelt, M. Pauly, P. Alliez, and B. Lévy, “Polygon mesh processing.”
[online] http://books.google.cz/books?hl=sk&lr=&id=8zX-2VRqBAkC, 2010.
ISBN 978-1-56881-426-1.

[5] “Meshlab.” http://sourceforge.net/apps/mediawiki/meshlab/index.php
[online], 2012. Accessed: 2013-10-22.

[6] G. Leparmentier, “Manipulating colors in .net - part 1.” [online] http:
//www.codeproject.com/Articles/19045/Manipulating-colors-in-NET-Part,
2007. Accessed: 2014-03-22.

[7] Q. Fang and D. Boas, “Tetrahedral mesh generation from volumetric binary and
grayscale images.” [online]
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5193259, 2009.
ISBN 978-1-4244-3932-4.

[8] D. Vartziotis and J. Wipper, “The geometric element transformation method for
mixed mesh smoothing.” [online]
http://link.springer.com/article/10.1007/s00366-009-0125-6, 2009.
ISSN 1435-5663.

[9] D. Vartziotis, T. Athanasiadis, I. Goudas, and J. Wipper, “Mesh smoothing using the
geometric element transformation method.” [online]
http://www.sciencedirect.com/science/article/pii/S0045782508000996,
2008. ISSN 3760-3767.

[10] M. Nixon and A. S. Aguado, “Feature extraction & image processing.” [online]
http://www.itu.dk/courses/SIGB/F2011/untitled%20folder/Reading/

35

http://link.springer.com/content/pdf/10.1007%2F0-306-47044-6_1.pdf
http://www.directionsmag.com/articles/3d-data-acquisition-and-object-reconstruction- for-aeccad/123668
http://www.directionsmag.com/articles/3d-data-acquisition-and-object-reconstruction- for-aeccad/123668
http://books.google.cz/books?hl=sk&lr=&id=8zX-2VRqBAkC
http://sourceforge.net/apps/mediawiki/meshlab/index.php
http://www.codeproject.com/Articles/19045/Manipulating-colors-in-NET-Part
http://www.codeproject.com/Articles/19045/Manipulating-colors-in-NET-Part
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5193259
http://link.springer.com/article/10.1007/s00366-009-0125-6
http://www.sciencedirect.com/science/article/pii/S0045782508000996
http://www.itu.dk/courses/SIGB/F2011/untitled%20folder/Reading/RelatedBooks/FeatureExtraction&Imageprocessing.pdf
http://www.itu.dk/courses/SIGB/F2011/untitled%20folder/Reading/RelatedBooks/FeatureExtraction&Imageprocessing.pdf

RelatedBooks/FeatureExtraction&Imageprocessing.pdf, 2008.
ISBN 978-0-12372-538-7.

[11] H. Badri, M. E. Hassouni, and D. Aboutajdine, Kernel-Based Laplacian Smoothing
Method for 3D Mesh Denoising. Springer Berlin Heidelberg, 2012.
ISBN 978-3-642-31253-3.

[12] Microsoft, “Kinect for windows sensor.” [online]
http://msdn.microsoft.com/en-us/library/hh855355.aspx. Accessed:
2014-03-26.

[13] Microsoft, “Kinect sdk.” [online]
http://msdn.microsoft.com/en-us/library/hh855347.aspx. Accessed:
2014-03-26.

[14] OpenKinect, “Openkinect project - libfreenect.” [online] http://openkinect.org/.
Accessed: 2014-03-26.

[15] OpenNI, “Openni.” [online] http://www.openni.org/about/. Accessed: 2014-04-10.

[16] Y.-B. Jia, “Curvature, gaussian curvature.” [online]
http://www.cs.iastate.edu/~cs577/handouts.html, 2013. Accessed: 2014-03-22.

[17] J. Zimmerberg and M. M. Kozlov, “How proteins produce cellular membrane
curvatures.” [online]
http://www.nature.com/nrm/journal/v7/n1/box/nrm1784_BX1.html, 2005.
ISSN 1471-0072.

[18] F. Crosilla, D. Visintini, and F. Sepic, “Reliable automatic classification and
segmentation of laser point clouds by statistical analysis of surface curvature values.”
[online]
http://link.springer.com/content/pdf/10.1007%2Fs12518-009-0002-4.pdf,
2009. ISSN 1866-9298 [print], ISSN 1866-928X [online].

[19] M. P. Segundo, C. Queirolo, O. R. P. Bellon, and L. Silva, Automatic 3D facial
segmentation and landmark detection (pages 431-436). 14th International Conference
on Image Analysis and Processing, 2007. ISBN 978-0-7695-2877-9 [print].

[20] K. Chang, W. Bowyer, and P. Flynn, Multiple Nose Region Matching for 3D Face
Recognition under Varying Facial Expression. IEEE Transactions on Pattern
Analysis and Machine Intelligence (Volume:28, Issue: 10), 2006. ISSN 0162-8828.

[21] J. Pineda, “A parallel algorithm for polygon rasterization.” [online]
http://dl.acm.org/ft_gateway.cfm?id=378457&ftid=73749&dwn=1&CFID=

339058548&CFTOKEN=91557720, 1988. ISBN 0-89791-275-6.

[22] P. J. Phillips, J. R. Beveridge, B. A. Draper, G. Givens, A. J. OToole, D. S. Bolme,
J. Dunlop, Y. M. Lui, H. Sahibzada, and S. Weimer, “An introduction to the good,
the bad, & the ugly face recognition challenge problem.” [online]
http://www.nist.gov/itl/iad/ig/upload/05771424.pdf, 2011.
ISBN 978-1-4244-9140-7.

36

http://www.itu.dk/courses/SIGB/F2011/untitled%20folder/Reading/RelatedBooks/FeatureExtraction&Imageprocessing.pdf
http://www.itu.dk/courses/SIGB/F2011/untitled%20folder/Reading/RelatedBooks/FeatureExtraction&Imageprocessing.pdf
http://msdn.microsoft.com/en-us/library/hh855355.aspx
http://msdn.microsoft.com/en-us/library/hh855347.aspx
http://openkinect.org/
http://www.openni.org/about/
http://www.cs.iastate.edu/~cs577/handouts.html
http://www.nature.com/nrm/journal/v7/n1/box/nrm1784_BX1.html
http://link.springer.com/content/pdf/10.1007%2Fs12518-009-0002-4.pdf
http://dl.acm.org/ft_gateway.cfm?id=378457&ftid=73749&dwn=1&CFID=339058548&CFTOKEN=91557720
http://dl.acm.org/ft_gateway.cfm?id=378457&ftid=73749&dwn=1&CFID=339058548&CFTOKEN=91557720
http://www.nist.gov/itl/iad/ig/upload/05771424.pdf

Appendix A

CD contents

Attached CD contains:

• application source code and libraries

• Doxygen documentation

• manual with basic instructions

• database containing 50 3D models acquired with Kinect

• set of manually set features on 50 depth maps used for testing

• LATEX and PDF versions of this document

37

	Introduction
	The basics of 3D data
	Acquisition of 3D data
	Representation of 3D data
	Processing of 3D data

	Kinect
	Hardware
	Software

	Curvatures and surface
	Mean and Gaussian curvature
	Surface types

	Design of application
	Data processing
	Specification of surface types
	Detection of specific features
	Special cases

	Implementation
	Used technology
	Facial features detecton implementation
	User interface

	Experiments
	Testing detected features
	Testing special features

	Conclusion
	CD contents

