
VYSOKÉ UČENI TECHNICKE V BRNE
BRNO UNIVERSITY OF TECHNOLOGY

FAKULTA INFORMAČNÍCH TECHNOLOGII
ÚSTAV INTELIGENTNÍCH SYSTÉMŮ

FACULTY OF INFORMATION TECHNOLOGY
DEPARTMENT OF INTELLIGENT SYSTEMS

STRATEGIC GAME IN MULTI-AGENT SYSTEM JASON

BAKALÁRSKA PRACE
BACHELOR'S THESIS

AUTOR PRÁCE MATEJ LEŠKO
AUTHOR

BRNO 2014

VYSOKÉ UČENI TECHNICKE V BRNE
BRNO UNIVERSITY OF TECHNOLOGY

FAKULTA INFORMAČNÍCH TECHNOLOGIÍ
ÚSTAV INTELIGENTNÍCH SYSTÉMŮ

FACULTY OF INFORMATION TECHNOLOGY
DEPARTMENT OF INTELLIGENT SYSTEMS

STRATEGICKA HRA V MULTI-AGENTNIM PROSTREDI
JASON
STRATEGIC GAME IN MULT I-AGE NT SYSTEM JASON

BAKALÁŘSKÁ PRACE
BACHELOR'S THESIS

AUTOR PRÁCE MATĚJ LEŠKO
AUTHOR

VEDOUCÍ PRÁCE Ing. JIŘÍ KRÁL
SUPERVISOR

BRNO 2014

Abstrakt
Tato práce se zaobírá problematikou koncepce a vývoje multi-agentní tahové strategické
hry. Práce analyzuje teorii těchto her a agentních systémů a výsledky této analýzy následně
zohledňuje v návrhu samotné hry. Ta implementuje kromě herních konceptů a ovládání,
obecně užívaných, dvě úrovně kooperace umělé inteligence, mírnou a komplexní spolupráci.
Agent je v této hře hráčem, ovládajícím různé jednotky. Hra je koncipovaná tak, že je jí
možné rozšířit o nové druhy inteligence, případně o nové herní jednotky. Závěrečná část
práce se soustředí na srovnání jednotlivých úrovní kooperace, na efektivitu jednotlivých
umělých inteligencí a také na zhodnocení efektivity implementace hry. S tímto účelem byla
vykonána série automatizovaných testů.

Abstract
This thesis describes challenges in design and development of a multi-agent turn-based
strategy game. It discusses the necessary theoretical background of turn-based strategy
games and agent based systems. These results were considerated into game concept. The
resulting game implements, apart from concepts and game control which are in common
use in nowadays turn-based strategy games, two different levels of cooperation of artificial
intelligence, as moderate as complex too. In this application an agent commands each of
its unit as a player. In addition, the game is designed in such way that it can be easily
extended with new artificial intelligences or game units. Final part of this thesis compares
these levels of cooperation and how effective artificial intelligence and application is. A
number of automated tests were performed with this purpose.

Klíčová slova
Jason, AI , Multi-agentní systémy, Java, agent, strategická hra, BDI , A * , umělá inteligence

Keywords
Jason, AI , Multi-agent systems, Java, agent, strategic game, BDI , A * , artificial intelligence

Citace
Matěj Leško: Strategie Game in Multi-Agent System Jason, bakalářská práce, Brno, FIT
V U T v Brně, 2014

Strategie Game in Multi-Agent System Jason

Prohlášení
Prohlašuji, že jsem tuto bakalářskou práci vypracoval samostatně pod vedením pana Ing.
Jiřího Krále

Matej Leško
May 21, 2014

Poděkování
Rád bych poděkoval vedoucímu bakalářské práce, panu Ing. Jiřímu Králi za odbornou
pomoc a čas, který mně věnoval při tvorbě práce. Také bych rád poděkoval mé rodině za
jejich trpělivost a podporu.

© Matej Leško, 2014.
Tato práce vznikla jako školní dílo na Vysokém učení technickém v Brně, Fakultě in­
formačních technologií. Práce je chráněna autorským zákonem a její užití bez udělení
oprávnění autorem je nezákonné, s výjimkou zákonem definovaných případů.

Contents

1 Introduction 3
1.1 Goals 4
1.2 Overall Structure 4

2 Theoretical Background 5
2.1 Reactive Systems 5
2.2 Agent 6
2.3 Multi-agent systems 7
2.4 The BDI Agent Model 8
2.5 Practical Reasoning 9

3 Turn-Based Strategies 11
3.1 What is T BS 11
3.2 Examples of T BS 11

4 Game Design 15
4.1 Game Principles and Mechanics 15
4.2 Game Objects 16
4.3 Game Modes 18
4.4 Game Interface 19
4.5 Design of Artificial Intelligence 21

5 Implementation 25
5.1 Implementation in General 25
5.2 Implementation of AI 29
5.3 Implementation of Game Objects 30
5.4 Implementation of Interface 31
5.5 Known Bugs 33

6 Experiments 34
6.1 Experiments Conditions 34
6.2 One vs One 35
6.3 Team Play 36
6.4 A l l vs A l l 37

7 Conclusion 38

1

A Java - Jason Interface 4 ^
41

A . l Percepts ^
A.2 External Actions ^
A.3 Internal Actions

44
B C D Content

2

Chapter 1

Introduction

Playing games is an important part of personality development, mainly in early age[l].
The purpose of the most games is to teach us something and train our perception or
our communication skills. In fact some video games can be very helpful to people with
some disease like cancer, diabetes or asthmaf .6]. B y living in a technologically advanced
environment these concepts, used in games, were integrated into software applications, or
so called video games [13]. There are many types of video games in general and they are
divided into groups by many factors, like if they are two dimensional or three dimensional,
multiplayer or single-player, real time or turn based and alike. So there is a variety of
games, from first person action shooters to logical puzzles. This thesis will be particularly
interested in in so called turn based strategies.

A turn based strategy is a computer game, where the game environment is mostly done
as a grid, or something that looks alike, and every player, living or non-living, does his
actions only when he is on his turn. These actions can consist from everything imaginable,
but generally, it is something like controlling armies, building defence structures or using
diplomacy to achieve more peaceful solutions. However this thesis aims more for artificial
intelligence (AI) of such games than in game-play itself. From the genre can be already
determined some requirements for properties of the artificial intelligence. For example the
AI does not have to consider so much perceptions from the environment, as it is in real time
strategies on the one side, but on the other, its evaluation of actual situation is usually more
sophisticated. Like trying to evaluate future action steps of enemy and decide its action
policy according to the evaluated state. Next, units in these games are usually only game
objects controlled by a player and do not posses AI at all.

This thesis describes very similar concept chosen in developed application. Every non­
living player acts as an agent. The agent model is an event-driven execution model providing
proactive and reactive behaviour[]. Each agent receives percepts from some environment.
In this case, the game environment is based on a grid. Cells in grid, or so called nodes, can
posses game objects like units, resources or agents bases. These percepts are perceivable by
all agents. So, agent can see all objects, nothing is hidden from him. In the implemented
game, agents share a game environment with each other and affects in same way by every
taken action. Agents are able to co-operate and act upon information from this environ­
ment. It is possible to deduce now, that game itself is actually a multi-agent system. The
code of agents is written in and interpreted by Jason[7, 17], interpreter and programming
language.

3

1.1 Goals
The purpose of this thesis is to introduce a development of turn based strategy with a
focus on multi-agent artificial intelligence. The game is entitled B A C H E L O R W A R S and is
released and available as open-source program, therefore anyone can modify it. There are
implemented three levels of artificial intelligence in actual state. The purpose is to watch
how agents with these different levels of artificial intelligence are able survive, fight and
co-operate in the game environment. Below is list of goals of this thesis:

• Design a strategic game, based on the degree of cooperation of agents. The game will
include 2 modes of cooperation: low and high cooperation. Moreover, the game will
run in 2 modes of game-play: human vs. AI and AI vs. AI .

• Experiment with the game's modes and compare the modes according to their success
rate and time complexity.

• Assess the results and discuss possible future development.

1.2 Overall Structure

The thesis is structured as follows: The first two chapters of this thesis provide essential
theory background for understanding the game implementation. As the main focus of the
game is the artificial intelligence, especially multi-agent systems, a brief theory can be found
in the chapter 2. Next, more specific information about turn based strategies, and its game
principles, with some brief history and examples of today games are given in the chapter 3.

Chapter 4 introduces a game design in general, used game mechanism and modes. De­
scribes a game interface and a design of artificial intelligence. Focus on implementation
details and a possible modification of game to fulfil player needs together with implementa­
tion of the game and differences from game design is discussed in chapter 5. Experiments,
used testing environment and conditions are described in 6.

In final chapter 7 is a summarization of the development, achieved results and imple­
mented game features. There is also discussion about possible optimizations and improve­
ments for this project.

4

Chapter 2

Theoretical Background

In this chapter, in sections 2.1 and 2.2 are briefly introduced agents and reactive systems
together with their capabilities and properties. There is a closer look at an agent oriented
development, how it differs from widely used functional approach and what are main aspects
and benefits of using agent oriented systems. In section 2.3 are discussed multi-agent
systems, what are their capabilities and how do they work. The BDI agent model is
desribed in section 2.4, together with beliefs, desires and intentions. The main focus of this
chapter is on decision making process of BDI agents in section 2.5 and BDI architecture at
general.

2.1 Reactive Systems

According to specification [4]:

Reactive systems are systems that cannot adequately be described by the
relational or functional view. The relational view regards programs as func­
tions. . . from an initial state to a terminal state. Typically, the main role of reac­
tive systems is to maintain an interaction with their environment, and therefore
must be described (and specified) in terms of their on-going behaviour... Every
concurrent system... must be studied by behavioural means. This is because
each individual module in a concurrent system is a reactive subsystem, inter­
acting with its own environment which consists of the other modules.

From this point reader is able to distinguish, that main difference between functional pro­
gramming and reactive systems is in input-compute-output operational structure. Moreover
for better understanding the difference, functional programs can be though off as mathe­
matical functions:

Where / is domain of possible of inputs and O is a range of possible outputs. Difference
is that reactive systems are able to maintain a long-term, ongoing interaction with their
environment. So they do not compute some function of input and terminate as would be
done by functional system, but waits for another possible interaction. Examples of such
programs include online banking systems, operating systems, webservers, process control
systems and the like.

O

5

2.2 Agent

By agents reader can understand a more complex class of systems which is a subset of
reactive systems. So agent is an reactive system that a programmer can delegate some task
to it and system itself is able to determine, what is the best approach to achieve this task.
The name 'Agent' was chosen, because in general, users of such systems can think of it as
active entity, or purposeful producer of actions. They are sent into environment to achieve
goals given by programmers. They want from these agents to actively pursue these goals
delegated on them by figuring out, what is the best way of accomplish these goals. So,
programmer itself does not have to tell them how to do these tasks in a low-level detail.

More precisely, agents are systems that are situated in some environment and are ca­
pable of sensing this environment via sensors(e.g. like camera, detectors...) and have
a repertoire of possible actions they are able to perform(via effectors or actuators) with
intention to modify their environment. Actual deciding what to do is achieved by manipu­
lating plans. To better understand, in figure 2.1 is shown schematic example of the agent.

Perceptors

Actuators

Figure 2.1: Scheme relation between agent and environment [].

Characteristics of Agent

According to Wooldridge and Jennings[] agents should have the following properties:

• autonomy;

• proactiveness;

• reactivity;

• social ability.

Autonomy

By autonomy is generally meant an ability of agent to decide how best to act to achieve
delegated goals upon this agent. Therefore the ability of agent to construct goals is strongly

6

bounded by the goals that the programmer delegated. Moreover the way in which agents
will act to accomplish their goals is bounded by the plans given by the programmer. These
plans define the ways in which agent can act to achieve its goals and sub-goals.

This functionality allows agents to put together these plans on the fly, in order to
construct more complex overall plans to achieve programmer goals. To simplify, autonomy
allows agents to act independently to achieve goals, that were delegated on them. Thus
autonomous agents are able to make independent decisions about how to achieve their
delegated goals. To simplify even more, agent actions are under its own control and are not
driven by other entities.

Proactiveness

Proactiveness means being able to exhibit goal-directed behaviour. In other words, agent
will try to achieve a particular goal delegated upon him. As a contrary could serve a Java's
objects. Which could be considered as absolutely passive agents. Such object is essentially
passive and act only if some method is invoked on it.

Reactivity

Reactivity represents an agents ability to respond to changes in the environment. Agent
should respond to these changes with effective balance between goal-directed and reactive
behaviour. While goal-directed behaviour can be explained as execution of plan in order to
achieve a goal, reactive behaviour is a series of actions to be executed upon environmental
changes as a respond on them. For better understanding, moving to the enemy base with
intention to seize it, is an example of goal-directed behaviour while responding on support
request form ally is an example of reactive behaviour.

Social Ability

Here by social ability is meant a cooperation and coordination of activities with other
agents. Agents of Jason[7, 17] are able to communicate not only in terms of exchanging
bytes or invoking methods, but they are able to communicate on knowledge level. So they
are able to communicate their beliefs, goals and plans with each other.

2.3 Multi-agent systems

Single agent systems are rare in practice. Most of the time are used so called multi-agent
systems. In such systems each agent has its own sphere of influence. In other words, it is
a part of shared environment, that the agent is able to have influence. These spheres of
influence do not have to intersect and then this part is controlled only by one agent. If
these spheres overlaps, the environment is jointly controlled. In such the case things are
more complicated because to achieve desired outcome in the environment, agent have to
take into account how other agents in the environment will act. As can reader deduce,
this ability to delegate goals, pass percepts and alike to others is essential in multi-agent
systems. A n example of such system is shown in the figure 2.2.

7

Organisational relationship

Interaction ^ Sphere of influence

Agent

Figure 2.2: Typical structure of multi-agent system[7].

2.4 The B D I Agent Mode l

BDI or belief-desire-intention model was inspired by and based on model of human be­
haviour that was developed by philosophers. The idea was to model something which
humans possess naturally - some mental states. So basically these systems are computer
programs with computational analogues of beliefs, desires and intentions. Distinction be­
tween beliefs, desires and intentions[]:

• Beliefs can be described as information that agents possess about the environment.
Here is shown the similarity with human beliefs. These can be inaccurate, out of date
or wrong. As an example we could be used cpuLoad(32) to represent agent belief
about cpu load in the given environment.

• Desires represents all possible states of affairs that agent might like to accomplish.
In other words they are options for an agent. They can be considered as potential
influencers that agent may act upon. From this, it is possible to tell, that not all
agent desires can be compatible to each other. It is perfectly reasonable for rational
agent.

• Intentions can be understood as state of affairs that the agent has decided to work
towards. They can be goals delegated to the agent or may result from considering
available options for agent. Intentions itself are therefore the chosen options. After

K E Y

o

8

selecting the intention, agent is committed to it. So intention can be dropped only
if the goal is no longer achievable or the intention was fulfilled. From this can be
deduced, that intentions have three main properties. They are persistent, constraining
the future and pro-attitudes - they tend to lead to action.

2.5 Practical Reasoning

Practical reasoning is decision-making model, which underlays the BDI model. So practical
reasoning models the process of figuring out what to do. Therefore it can be considered as
reasoning directed towards actions[]. As said earlier in 2.4, BDI model is based on human
behaviour. According to Woolridge, human practical reasoning seems to consist of two
distinct activities [14]:

• deliberation - thinking on what we want to achieve;

• means-end reasoning - how we want to achieve it.

Deliberation

Deliberation process leads agent into adopting intentions (2.4). More precisely it is the pro­
cess of selecting between different possible plans. These so called applicable plans are plans,
that have their context satisfied, according to current agent's belief base. To summarize
and simplify, deliberation process means thinking on what we want to achieve.

Means-Ends Reasoning

Means-ends reasoning is the process where the question: "how we want to achieve it" is
asked. In other words, it is the process of deciding how to achieve and end, using the
available means[]. This process can be better known as planning[]. As input for this
process serve:

• A goal, or intention: something that the agent wants to achieve.

• The agent's current beliefs about the state of the environment.

• The actions available to the agent.

As an output is generated a course of action, called as plan. It is possible to think about it
as a "recipe" too. Nowadays is focus on one simple idea that has proven to be quite powerful
in practice []. This idea consist of that a programmer develops a portion of partial plans
for an agent at design time, and task for agent is to assemble these plans at runtime.
Apart from original focus in AI to assembly of a complete course of action, in which atomic
components are actions available to the agent, is this approach significantly less resource
demanding.

The Procedural Reasoning System

The Procedural Reasoning System or PRS, see the figure 2.3, is a system where agent is
equipped with a library of pre-compiled plans.

These are manually constructed by the agent programmer. Each plan in PRS have the
following components:

9

a goal - the post-condition of the plan;

a context - the pre-condition of the plan;

a body - the course of action to carry out.

Sensor input

Figure 2.3: The Procedural Reasoning System (PRS)[

The Goal

The goal, or the post-condition of PRS plan, represents states of affairs, that stands as
output of executing this plan. To simplify the goal of P R S plan defines what the plan is
good for. In Jason, the goal can be represented as e.g. !goto(X,Y) - which indicates that
after executing its plan, agent's position will be unified with X and Y variables.

The Context

The context defines the pre-condition of PRS plan. It defines all conditions of the environ­
ment that must be true in order for the plan to be successful. In Jason, the Context can be
represented e.g. !goto(X,Y) : noEnemyNear & canMove - this goal and its plan will be
executed only if the context is true, that means agent belief base contain beliefs noEnemy
and canMove.

The Body

The body can be described as course of action to execute. It can be a simple list of actions
to be executed ort hanks to PRS there is possibility for a lot of richer plans to exist. As
an example can serve !goto(X,Y) : true <- ImoveLeftLeg; !moveRightLeg.. Where
achievement goals moveLeftLeg and moveRightLeg represents parts of the body.

10

Chapter 3

Turn-Based Strategies

In this chapter the reader will be apprised of turn-based strategies. What they are, what
is the difference between turn-based and real-time strategies and why are so popular, is
discussed in section 3.1. A n examples of the past and actual famous TB S games are shown
in section 3.2, together with a brief description of artificial intelligence used in one game
from examples.

3.1 What is T B S

Turn-based strategy, or TBS is a strategy game, where players take turns when playing.
Apart from real-time strategies (RTS), player has much more time to contemplate his
strategy before acting. The main difference is in the time flow. While in real-time strategies
all players share the same game time and have the same chance to react on game events,
in turn-based strategies every player has his own time flow. This game time starts when
the player takes his turn and ends with the event, saying that player already finished all
his actions.

Another difference between TB S and RTS is in game environment and its possibilities.
In TBS, the player is usually in some grid related environment. He, or his units, has exactly
defined where and in which direction is possible to go. As an example could be used a
picture from a game called Battle for Wesnoth, see figure 3.1. Due to these restrictions,
players have to think harder to find out weakness in enemy's defence, attack or in strategy
in general. As an examples can serve classic games as c/iess[ll], which is widely considered
for an ultimate turn-based strategy.

It is possible to deduce, that all these characteristic attributes makes TB S very popular.
They are ideal for long-term matches, where every step can be the last, and careful strategic
actions are prior to hotheaded ones.

3.2 Examples of T B S

After section 3.1, reader should be able to tell main characteristics of TBS and understand
difference between RTS and TBS . Therefore here are, for completeness, introduced some
examples of turn-based strategies. As representative element was chosen Sid Meier's Civi­
lization series. It is the shining example of turn-based strategies. Wi th its long history,
an addictive gameplay and a its re-playable ability this series is one of the most successful

11

Figure 3.1: Screenshot showing a Battle for Wesnoth1.

games in history. According B . Edwards this game changed the course of computer strategy
games forever [].

Civilization is a turn-based historical strategy game, where a player single-handedly
guides the development of a civilization over the course of millennium, from the stone age
to the space age. In this game each player represents the leader of a certain nation or
ethnic group (civilization). Among the main strengths of Civilization is how its designer,
Sid Meier, actually represents mysteriously accurate possible future, if the course of history
was pushed just a little bit.

No wonder that many critics recognize Sid Meier as one of the greatest software designers
in history. At that time, functions like random map generation, multiple ways to win, or up
to 15 additional computer opponents was something unbelievable. Moreover this all fitted
into only three megabytes.

His work is even more remarkable due to a fact that Meier handled most of the program­
ming on Civilization himself, even doing all of the early artwork for the game. Interesting
part is that the first version did not feature the turn-based gameplay, but a real-time model.
But the gameplay was so dull and boring, he and his companion decided to implement it
in TBS style. A figure 3.2 shows the first version of Civilization.

Nowadays the latest game from this series is Sid Meier's Civilization V, developed by
Firaxis Games [15]. This game posess entirely new game engine, with hexagonal tiles instead
of classical square one. Compared to the first version of this series, the difference is nothing

1Source: http://en.wikipedia.org/wiki/File:Battle_for_Wesnoth_0.8.5_chaotic_indexed.png

12

http://en.wikipedia.org/wiki/File:Battle_for_Wesnoth_0.8.5_chaotic_indexed.png

Figure 3.2: A world map Screenshot from the Civilization 1[5].

Figure 3.3: A Screenshot of the video game Civilization V. Starting location with one city
and one warrior unit showing3.

less than drastic. These changes are, besides much better graphics, e.g. game features like
3Source: http://en.wikipedia.org/wiki/File:Civilization_V-Screenshot.png

13

http://en.wikipedia.org/wiki/File:Civilization_V-Screenshot.png

community, modeling and multiplayer. To compare with the first version see figure 3.3.

Civilization V - A I

Civilization V has one very interesting part. The artificial intelligence(AI) is designed to
operate on four levels[12]:

• tactical - on this level are controlled individual units;

• operational - on this level AI oversees whole war front;

• strategic - A I manages whole empire;

• grand strategic - A I sets long-term goals and determines how to win a game.

Even more, every Al-controlled leader has his unique personality. It is determined by
combination of flavours. Every flavour have value on a ten-point scale. These flavours are
grouped into categories like growth, strategy, military and alike.

14

Chapter 4

Game Design

The idea at the beginning was that everything should be parametrized and therefore allowed
to be modified. Whole concept of the game is based on it. Everything was designed to
withstand unpredictable changes in the code, like new objects in the game, or new types of
AI . This is the main strength of the design of the game B A C H E L O R W A R S , that it will not
break down like a card-castle if the new element appears.

Very important fact is, that this thesis is focused on the artificial intelligence itself,
so elements like graphics, interface and other visible components are on the second place.
That is why the game look may appears very simple. The main purpose was a design of
inner elements. Of course, there was an ambition to use some powerful frameworks, but
due to odd behaviour and the high learning curve this idea was not realised.

As it already appears, designing is one of the most important processes during the
development of the game. Good game design can solve many problems before the actual
implementation of the game concept starts. This process is not only about animating units,
colours and shapes. It covers other aspects, like thinking about game mechanics and rules,
which are described in a section 4.1, game concepts like e.g. modes, which are in the section
4.3. There are other things that normal user does not even think about, like design of the
artificial intelligence, which is in section 4.5. Of course, design of the game comprehends
the look of the game interface too, like in section 4.4.

4.1 Game Principles and Mechanics

The game principles of B A C H E L O R W A R S are simple in its bases. The main purpose of
the game is to fulfill winning conditions given by chosen mode, or seize enemy's base and
therefore win the game. The game itself requires at least two active players, but no more
than four. This upper limit was set after realizing, that more active agents in the game
could do more harm than good to the gameplay, because of unfair positioning and chaotic
appearance. Design itself on the other hand is able to comprehend more that four players
without problems.

This game is different from the usual stereotype of this this genre, e.g. there are no
such things like buildings. You do not have to build barracks to buy a unit. There is no
need to build mines, or farms. You do not have to wait for unit's training to use them.
Everything is done by this way to make the game more aggressive, faster. The main aim is
that a game session lasts no longer than approximately 10 minutes. It could be understood
as the chessfll] with more players, a possibility to buy a unit and to gain resources.

15

When the game starts all players have same starting conditions. It means that amount
of knowledge and slots 1 is the same, and every base is in one of the corners. During
gameplay each AI player perceives the same game environment input. It means that it can
see knowledge resources, its allies and enemies, respectively their units and bases.

Game itself contain a game settings interface that allows user to set the mode, active
players and their level of artificial intelligence. For more info see 4.4 and 5.4. This interface
allows actually to generate a map for a game session. This map consist of an invisible grid
environment. It can be described as an invisible layout, which contain game objects. So
every object is operating within this grid, not in the classical coordinate system used in
Java's Swing [].

4.2 Game Objects

As already mentioned, the design of the game B A C H E L O R W A R S is done in the way, that
the implementation is able to withstand new elements without problems such as obstacles
(discussed later). This is thanks to an idea from object-oriented approach used in Java. The
main idea of the this design is that everything on the game map is a game object. These
approach allowed a much needed flexibility in the later implementation phases described in
5.3.

Bases

A base in the game has a special function. Not only it represents an agent on the battlefield,
it is a spawning place for agent's units too. The design of the base, as a game object, is
simple. It is represented by a coloured curved square. The colour is the colour which is
chosen by user, or set by default. On the other hand it is used to represent the agent
in the environment, so its inner functionality is quite sophisticated. This functionality is
described in 5.3. Part of this functionality is number of variables and properties. But only
few of them is visible to the player:

• Player - the name of player, who own this base.

• Units to create - this property is signalizing, how many units is this base able to
own on the map at the same time. This property is parametrized, thus modifiable.
In the thesis and in the game also called slots.

• Killed enemies - specifies how many enemy's units were killed by units of this base.

• Income per Round - this property signalizes how much knowledge will be added
to the actual resources at the beginning of the round. This property is parametrized,
thus modifiable.

• Knowledge to use - how much knowledge resources the player is able to spare for
units.

To simplify, the base could be understood as an intelligent box, that contains all infor­
mation about agent's units, allies, income from knowledge resources, free slots and more.
To summarize - it represents a communication bridge between the agent and Jason[7, 17].

^ y slot is meant the capacity of base

16

Units

To be able to fulfill winning conditions every player has a set of available units. These units
represents a tool, which is available to act as agent commands. These units do not posses
any level of artificial intelligence.

On the other hand these game objects posses an ability to store an intentions that the
agent gave them. As already mentioned, agents have intentions (see 2.4). Units serve as
an envelope for agents to store these intentions, e.g. seize knowledge, attack on base...
Therefore agent, as a general, creates unit and deliver its intentions to this unit. When the
agent is able to manipulate with this unit again, the agent simple asks which intentions this
unit already posses and tries to identify the best choice in actual round. This is described
with other processes closely in 4.5 and 5.2. To be able to define more complex strategies
and behaviour, unit types differ between each other in their attributes, which are described
in this section.

The design of units is made in relation to the title of the game. Every unit represents
a student of the Bachelor study programme according to unit's name. This step was made
to entertain the user and the creator of the game. No deeper meaning is hidden in this
action. The unit posses animated graphical representation in a similar fashion. The idea
was to make a feeling from the game look a little bit better. For an example of one of the
units see figure 4.1.

Figure 4.1: A Third Year Student - unit from B A C H E L O R W A R S .

A creation of characteristic attributes is part of the design of the unit too. Similarly to
a base, the unit, as a class, has got huge number variables and properties, but only for few
of them is a meaning to show. These attributes are:

• ID - or so called identification number. This property is defined by a unique value,
which allows agents in the game environment determine to whom which unit belongs
to. This value is part of the NAME.

• N A M E - the name of the unit, this property is intended for living player only. It
consist of type of unit and the ID.

• H P - or hit points. This property represents how much damage the unit is able to
withstands. This unit's property is specified by finite value.

17

• A T K - attack, specify how much damage the unit can possibly cause.

• M O V - movement, specify the movement ability of the unit. To simplify this value
express how much cells in game grid can be used for movement per round.

• C O S T - this property is expressing the value of the unit. How much knowledge
resources the player needs to be able to buy this unit.

Unit is designed for two modes. According to goals (see 1.1), there are two main
designed modes. For mode Human vs. AI there is an implemented interface, which is
described at 4.4. Mode AI vs. AI has a similar interface, but without some elements,
which are necessary for the other variant. The idea of two interfaces raised after a need
to revert unit's movement, and a need to signalize that the intended action is finished.
Technical matters are discussed in 5.3.

Knowledge

At the beginning of the development, a question raised about goals of this game. What will
be considered as a source of in-game money? As many things were done having regards to
the title of the game, naming "in-game money" as knowledge is no exception.

In classic games, players usually have to mine gold, or grow food to get resources to
spare. Here the player has to seize a knowledge resource called knowledge too. So a
knowledge is a source of regular income. Every knowledge has to be seized to become the
resource. Seizing is done by units after an agent evaluates it is the best choice in actual
round, according given game conditions and actual situation on the map. Knowledge is
seized at the beginning of the following round. These objects are randomly generated on
the map.

Design of the game provides interface to change values connected with the knowledge
resources. These values are parametrized for better gameplay and testing. This interface
is described in 4.4.

Obstacles

The primary motive for obstacles, as a game objects, was a better presentation of pathfind-
ing. These game objects represent an inaccessible terrain, chunks of barriers that block the
path and therefore make the game more realistic. As a secondarily motive serves to make
game environment more interesting.

4.3 Game Modes

According to assigned specifications for this thesis (see 1.1), there are two main modes in
the game. AI vs. AI and Human vs. AI.

But besides these, game design contains modes, that are not part of the official thesis
goals. These modes were designed in order to demonstrate AI capabilities and its op­
portunistic behaviour. To be able even more distinguish differences between different AI
levels, every mode has its own winning conditions. These conditions are along with the
main constant wining condi t ions seize the enemies's bases.

These modes are:

18

• Domination - mode where the player need to dominate on the map. Rule is set to
posses at least 80% of the knowledge resources for few rounds. This value (number of
rounds) is parametrized and modifiable via interface described in 4.4. This mode is
good from the strategic point of view. There are structures on the map, that need to
be seized, hold and defended. While doing this, AI need to respond on the enemies,
their attacks. This is why is this mode as default mode as well.

• Annihilation - mode where the player has to destroy all his opponents. This means
to get to their base and survive 1 round there. This mode shows that even the weakest
player can win, if he chooses his opponents wisely. It can be considered as a mix of
two modes: domination and madness mode.

• Madness - mode where the winner is the one with X killed enemies. If the player
destroys the enemy's base, every unit of this base is killed and marked as "killed" by
the player. The X is modifiable,parametrized value. This mode aims mainly on how
an AI or a team can divide their forces and analyse the game environment.

A l l of the modes above are described from a view of the living player, but their conditions
are applied for AI or teams equally. A l l winning conditions is possible to combine with the
time limit. For time limit is considered number of rounds. The game ends after reaching
this limit. So to simplify, if the time limit is reached, the actual winning base (or team) is
considered as a winner for actual game session.

4.4 Game Interface

Every game needs to have a communication bridge between its user and the environment.
There is plenty approaches how to design an interface. Approach used for this game was
very simple. As already mentioned, the graphics was not the main goal of this thesis.
Therefore the interface is simple, with just necessary information to provide basic data
about game elements and the environment. A n overall scheme of game interface is shown
in figure 4.2. The scheme consist of:

1. Game Map - a generated area, where all fight are in progress. Its creation is modifi­
able. For implementation details see 5.1

2. Info Panel - a panel where information about chosen base/unit is shown. This panel
is also used for buying new units and confirming their actions.

3. Shopping panel - a panel, where is player able to chose which unit he wish to show
in info panel. Used when buying new units.

4. Statistical Panel - a panel, where player can see actual winning base according to the
mode with statistical properties for chosen mode. If living player is present in the
game, there is a button to mark actual round as finished.

5. Info area - an text area, used for information about actual actions on the map.

For implementation details of used interfaces see 5.4.

19

4

1

Figure 4.2: The overall scheme of game interface.

Settings Interface

As was mention in section 4.1 the game settings interface allows player set the mode, active
players and their level of AI . Apart all of this, there are options to change values determining
winning conditions, size of game grid, number of resources, called "knowledge" (see 4.2),
number of obstacles, number of free slots for each base, income per seized knowledge and
base income for every round, player's name, teams, colours and screen resolution.

A l l limitations were chosen similarly to the limitation of active players, mentioned in
4.1. These limits are high enough to allow interesting combinations of map generation and
its size together with properties, connected with bonuses for seizing. For the example see
figure 4.3.

As this information suggest, most of the game parameters are parametrized and there­
fore player is able to modify them. A l l of this effort was made with intention for easy
gameplay modifications and environment testing. For more about experiments and testing
see chapter 6.

20

Players Selection

Players

P l a y e r

S imp le Al

C losed

C losed

Max S l o t s

ran
ran
ran
ran

Team

orange

red

[b lue

[pu rp le

Hap Generation

K n o w l e d g e a m o u n t

6

Map C o l u m n s

24

A l l o w obs tac les Map R o w s

6
=o

Exit

Screen Resolution

1 3 6 6 x 7 6 8

1 6 0 0 x 9 0 0

Hode

© D o m i n a t i o n

Ann ih i l a t i on

Madness

Hode Description
DOMINATION
Mode where you have to own at least 80% of
"knowledge resources" for 3 rounds.

General Settings

Income per Round S 3
Income per K n o w l e d g e 5 J v j

Number of Rounds

Rounds to seize

Player N ickname:

P layer

S t a r t Game

Figure 4.3: The game interface for settings.

Unit Interface

Bases and units share very similar information panel, but for units there is more options to
show, following the mode AI vs. AI or Human vs. AI .

• AI vs. AI - in this mode, chosen unit shows only properties that are described in
4.2. No other options are available.

• Human vs. AI - here are more options to show according to actions (for implemen­
tation details see 5.4):

— buying - Visible basic properties and a button buy.
— selecting unused living player's unit - Visible basic properties and two

buttons.

1. cancel button;
2. done button.

— selecting used living player's unit or enemy - Same as for variant AI vs.
AI.

4.5 Design of Artif icial Intelligence

According to goals (see 1.1), the game should contain 2 levels of A I . Low and high co­
operation level. In the game are integrated 3 levels of artificial intelligence:

21

• Simple AI;

• Medium AI;

• Advanced AI .

Simple AI can be considered as a root for design of Medium and Advanced AI . The main
goal was to re-use as much behaviour as possible. Therefore Medium A I inherits from
Simple AI and adds some characteristic behaviour of its own. A n analogical technique was
used for Advanced AI and Medium AI too.

Every AI posses basic behaviour patterns. These are used at the beginning of the unit
creation. During this action agent perceives actual situation on the battlefield. According
to this situation and chosen mode (see 4.3) stores basic intentions to the unit. These are:

• add seize enemies's bases to the intention map of the unit;

• according to the mode one of these intentions are stored into the intention map, in
an order, given by specification of the chosen mode:

— add nearest free2 knowledge;
— add nearest free enemy's unit;
— add nearest enemy's unit.

These can be called as persistent intentions. Because they are stored in a particular unit
during whole its existence, t i l l the intention is not reached or the unit is dead. Intentions in
general does not have to be accomplished by originally chosen unit. It is because of changing
environment. Every level of AI has got a opportunistic behaviour, this means that if there
is some game object in the area of influence of some unit, that was not originally in the
intention map of this unit, it is added to the intention map as its new intention.

Another interesting part of AI design is that modules representing AI levels can be
replaced for their modified versions, or the new one. Game itself does not contain any
interface to add new modules representing another AI levels. But the game design and the
implementation allows such things with only a few manual steps. At the beginning the
idea was that user could be able to add new AI through some interface. Due to certain
circumstances this interface was not implemented, but whole design and the implementation
was lead to allow such a thing.

A l l A I levels can operate in two states. The first one could be called standalone state.
In this state A I does not have any allies, thus it does not need to communicate with other
agents. On the other hand, there is a state that could be called co-operation state. In this
state is AI capable of team play, which plays very important part in the game. Except
the Simple AI , other AI levels are capable of co-operation. Wi th this purpose a simple
communication A P I was created. Part of this communication is an agreement about a role.
Currently there are two implemented team roles for agents:

• seizer - tries to seize 80% of nearest knowledge resources on the map and only a few
units are used for defence or attacking. Seizer role is a preparation in order to achieve
better economical status and therefore to be able buy better units after some time as
an attacker.

• attacker - tries to attack the enemy's and get attention. Only about 20% of attack
power is used to seize knowledge resources.

2 B y free is meant a knowledge that was not already assigned to another owned unit.

22

Mode play

These actions below are performed for units without any intention in their intention map.
They are same whether AI is in the team or not. There are subtle nuances for medium and
advanced AI level, but the core action is the same. A diversity in actions happens during
gameplay thanks to the changing game environment.

• Domination

1. seize nearest free knowledge;

2. attack nearest free enemy's unit;

3. attack nearest enemy's unit;

• Annihilation

1. attack nearest free enemy's unit;

2. seize nearest free knowledge;

3. attack nearest enemy's unit;

• Madness

1. attack nearest free enemy's unit;

2. attack nearest enemy's unit;

3. seize nearest free knowledge.

Simple A I

The simple AI posses basic behaviour for every action in the game. This means e.g. if the
agent perceives a knowledge, it tries to seize it. It acts similarly in a matter of enemy's
unit too. This behaviour could be described as "animal impulses", because this AI level
does act as an unpredictable entity. Despite its randomized actions it is able to behave
opportunistically. It means e.g that in actual round, thanks to changes in the environment,
is able to seize some knowledge, with an unit, that was originally assigned somewhere else.

Unit creation

Whether in team or not, simple AI acts in same way during units creation. AI perceives
actual affordable units and randomly chooses them for creation t i l l there are no affordable
units, or there are no available slots to fill.

Team Play

AI is capable to distinguish friendly and unfriendly agents - this means their units and
bases. So it will not attack friendly units, just will ignore them. No real communication
proceeds between allies. For example they steal a knowledge resources between each other.
This level of A I just can not comprehend, that it could be better to leave it to its friendly
owner.

23

M e d i u m A I

At this level AI posses some interesting abilities. The main difference against Simple AI is
that this level of A I is able to communicate with its allies. As already mentioned, for this
purpose a simple communication A P I was created. Medium AI is able to use only some of
this "common language", therefore is able to co-operate with allies, which are able to use
common language. This level differs from Simple AI in an ability to make an agreement on
the role with other allies.

Unit creation

For standalone state, or state without allies, is behaviour of Medium AI same as behaviour
of Simple A I.

The difference occurs when is Medium AI in co-operation state. Unit are created ac­
cording to the role. Seizer is trying to buy a units which can travel to greater distance.
Attacker is trying to buy a units that are able give better damage.

Team Play

Apart of Simple AI, there is the role deciding, its alternation among other allies and a
resources agreement. This means seizer marks which resources are in its interest and at­
tackers have the rest. The role is designed to change in regular intervals, to prevent one
sided domination of ally.

Advanced A I

Main difference between Medium AI and Advanced AI is in an advanced battleground
analysis. This level of AI is designed to try to predict an enemy's ambush and act. This is
thanks to dividing a game environment into four sectors. AI is able to ask for a coordinated
attack and the asked AI can give a negative answer.

Unit creation

Advanced A I is able to calculate best combination of affordable units for actual round. This
differs according to actual chosen role, or situation. This designed approach solves some
weaknesses inherited from Medium AI. Thanks to this designed approach, AI is much more
adaptable to threats or opportunities.

Team Play

The main difference is in communication pattern, which is now more dynamic. The agent is
capable of analysis of its environment and asks its allies for coordinated attack. The other
agent according to its analysis is capable of negative or positive answer.

24

Chapter 5

Implementation

In this chapter will be briefly described some selected implementation problems of B A C H E ­
L O R W A R S . This chapter is not meant as a detailed description of the whole game or its
source code. It just briefly describe some interesting parts of implementation. At first,
reader will be introduced into implementation in general in a section 5.1. In this section
some interesting parts from whole game are discussed, like implementation of pathfinding
and alike. In section 5.2 are briefly introduced interesting parts and problems connected
with AI implementation. Later in section 5.3 are described implemented objects in the
game and some of their interesting parts. Interface implementation and its functionality is
described in section 5.4. Last part of this chapter, section 5.5, is devoted to known problems
in the game.

5.1 Implementation in General

As already mentioned in chapter 4, the game is implemented in such fashion that its context
is easily extensible and modifiable. Whole design and implementation was done with idea of
interfaces that allow adding new units to the game, and new levels of artificial intelligence.
Because some problems connected with implementation details and alike, these was not
implemented. But it would be shame not to highlight the effort given to this idea. This e.g
suggest that it is possible to create a new unit very easily. Actually implementing whole
new unit is matter of few lines of code, therefore it could be proposed as future extension.
The same applies for possible future extension of interface for adding new AI levels.

A l l implemented classes contains available A P I for their instances. During implementa­
tion a great effort was given into maximized usage of inheritance and object composition.
Thanks to this approach any object is perceived similarly to black box. As great example
can serve a class Node, which represents a cell of the game grid. This class has an A P I
which allows adding and retrieving any game object, for implemented objects it has some
user-friendly optimizations.

Implementation in general is thread-safe. This means that an access to the shared
variables is synchronized. This implementation step was done after realizing, that Jason
uses another threads and they call methods from commonly used GameEnvironment class.
This and other important class dependencies are shown in figure 5.1.

25

Figure 5.1: Higher abstraction example of the implementation scheme.

Node

This class is interesting not only for possibility of adding unknown game objects. Even if
its implementation was not so hard, it can be considered together with a class GameMap as
backbone of the game. Its functionality consists of generating game grid or implementing
pathfinding too. Proper functionality of this class is necessary for every action in the game.

Pathfinding

The A * Algorithm[10] used for the evaluating of the shortest path is a little bit modified.
It is because of instances of class Unit. Basically it work in two modes:

• do not ignore units;

• ignore units.

This is due to implementation issue, when the environment changes are on such level, that
path, which normally exists, is not available due to actual unit's composition on the game
map. In figure 5.2 is shown the problem, when the classic A * can not find a path to the
target. When such problem appears the search algorithm switch itself from mode "do not
ignore units", into mode "ignore units". In figure 5.3 is visible an ideal solution for this
particular problem. This "ideal" solution is partially used, because of flag ignore units.
The final solution in figure 5.4 hints, that as result is used ideal path till ignored units
appears. This is possible thanks to cohesion of nodes in a particular found path and a path
representation. For this representation is used Java's LinkedList. For better optimization,
the Manhattan distance evaluation is used.

26

Target • Unit • Path Chosen Unit

Figure 5.2: A n example of problem, when A * can not find a path.

Target • Unit • Path Chosen Unit

Figure 5.3: A n example of ideal path solution.

Game M a p

Game map is represented by the most important class in the implementation, GameMap. It is
the game environment for players. It posses all informations about units, bases, knowledge
resources and obstacles. It connects all informations so much needed for battleground
analysis, statistics and gameplay itself. A n example of the actual game is shown in figure
5.5.

GameMap is interesting due to another functionality too. It posses a method for base and
unit creation. It interconnects data from class GameSettings into object representation
together with connection of agent and its base. Apart from that, GameMap represents a
battleground of the game B A C H E L O R W A R S , and it is a main entrance for the user of the

27

Target • Unit • Path Chosen Unit

Figure 5.4: A n example of the final solution, used for a particular unit.

Figure 5.5: Gameplay of domination mode.

game too. Therefore GameMap allows an interaction with every object in the game. This is
thanks to already described nodes and an ability of each object to detect if user clicks on
its shape.

This ability is used for object with meaning for it. Like bases and units. Knowledge
resources and obstacles can react for player actions too, but for them this ability in final
game has no meaning.

Another interesting part on the GameMap is an ability to draw unit's influence. This
means, that for chosen unit is drawn its moving options and attack distance. A n example
is shown in figure 5.6.

28

Figure 5.6: Example of area of influence.

5.2 Implementation of A I

Actually implemented AI levels (see 4.5) are stored in ./src/asl/. The main effort during
the implementation of A I was to inherit as much already implemented behaviour as possible.
Therefore basic behaviour is common for every level.

Every action that agent can do in the environment needs to be done in its turn. As
mentioned in 3.1, the main difference between RTS and TB S games is in time flow. Time
flow between 2 players in TBS is relatively simple. Players are taking their turn after each
other. More problematic is a game, where can be N players. This particular problem was
solved by reacting on +!can_act belief addition. This belief is extremely important. T i l l
this belief is not added, agent is in "hibernated" state.

The most important class for agent communication with environment is GameEnv class.
In this class are methods, representing behaviour of external actions like update_percepts
or do_intention_if .possible. GameEnv can be understood as the main entrance for com­
munication with game environment and its objects. Another way how to communicate is
trough internal actions, which are described in appendix A.3. From the point of communi­
cation there are three levels, in which an agent can operate:

• the agent understands no communication (Simple AI, Medium AI, Advanced AI);

• the agent understands simple communication (Medium AI, Advanced AI);

• the agent understands more advanced communication (Advanced AI).

This means, that team members are operating between each other with their common
language. While team where is Medium and Simple AI do not co-operate at all, because
they do not understand each other, team composed from Medium and Advanced AI can
co-operate with the simple communication.

Simple A I

This level of artificial intelligence differs from Medium Advanced one by an inability to
communicate with allies. Main difference is visible e.g. on an achievement goal ! agree_-
with.allies, which just does not exist in this level of A I . Without this goal, Simple AI
just marks its start and continue with ! check_action(AgentID).

29

M e d i u m A I

Medium AI differs from Advanced AI in a way of communication with its allies and an usage
of some goals, like ! getMostMovableUnit and alike. From the view of implementation is
more interesting the communication between allies. Here is this communication used for
and an agreement which one from the alliance will be seizer and attacker and for role
alternation.

At the very beginning every agent asks its allies for an evaluation of their distance
from the base to the knowledge resources. This value represents the sum of such distances.
According this sum, agent can find out which role is best for him. Then this roles are
alternating among allies in static way. This means that every 5 round roles are changed.

Changing the roles is is done between agent in that way, that actual seizer tells the
next one you will be seizer during next change. The next seizer is randomly picked from
attackers. This is done be adding a belief imSeizer(Pos, Mark). The meaning of this
is to prevent one sided strategy and buying stereotype. As already described, seizer role
is weak against attacker, but attacker has slower units. It is good to change this roles to
gather more flexible sort of units.

Medium A I without team is not different from the Simple A I . This is because the
unpredictable behaviour of Simple AI has proven as very effective.

Advanced A I

The main difference from Medium AI without the team is the ability compute best combi­
nations of affordable unit according to the situation on the map. This means if AI posses
weak units, it will try to buy the best combination of units for available knowledge. This
combinations are computed through internal actions.

Another main difference is that it tries predict an enemy's attack and tries defend itself
from it. This is possible thanks to dividing a game map into sectors. In every sector
is computed enemy's threat. According this computation is evaluated which enemy is
probably trying to assault base and which enemy is not so secured against the attack.

In the matter of team play, Advanced AI is able to change buying pattern and be
more adaptable. So this means that apart Medium AI seizer, Advanced AI evaluates the
possibility of attack. If its result is threat, Advanced AI will produce combinations of
affordable units according their attack ability.

5.3 Implementation of Game Objects

Every object in the game inherits its base properties from a class named as GameObject.
This class purpose is, in a matter of abstraction, an encapsulation of bunch of nodes into
a shape. This shape can react and be displayed if required. Because of huge flexibility
of this game and modification possibilities, every new modelled class should inherits from
GameObject. By this action will be secured backward compatibility with the game en­
vironment. For compatibility with Jason[7, 17], every GameObject shloud be able to be
represented as a list.

Units

Class Unit is an extended representation of GameObject class. Its main role and design
is explained in 4.2. Here are discussed some specific implementation details, which were

30

chosen as interesting.
Units are necessary elements for B A C H E L O R W A R S . They represent a tools used for

interaction between an agent (see 2.2) and the environment. They can be perceived as
intention boxes, because of intention map implemented into them. This is represented by
HashMap<GameObject, Intention>, where GameObject is a target object on the map and
Intention is an action intended to the object. Actually supported actions for game objects
on the map are:

• K I L L ;

• SEIZE.

These actions represents basic actions on the map. It is possible to construct more complex
intentions from them, e.g. action S U P P O R T . SUPPORT could be composed as:

1. get target object;

2. get intention map of this target;

3. copy from this map into the intention map of chosen unit.

This actions would copy K I L L and SEIZE intentions of target unit and therefore actual
chosen unit could be tagged for same goals by agent. For actual game proportions these
basic actions are enough and no more complex actions are used.

Another interesting part is connected with graphics. Every object in the game is graph­
ically represented on the game map. And the sequence of objects painted on the map
matters. So, e.g. if the base would be painted later than unit, unit would be hidden by
newly painted base. This problem raised when a knowledge resources (see 4.2) were seized.
Player could not see which knowledge is seized and where. The problem was solved by a
white little circle in the bottom right corner of the unit. This signalize that actual unit
is seizing a particular knowledge. Same problem appeared for units which were tagged as
unused. Every unused unit is tagged by a black little circle in the upper left corner of the
unit.

Another interesting thing is that units are comparable. They are compared by price,
so the more valuable unit is the more expensive one. This ability is heavily used in some
internal actions, which detailed description can be found in appendix A.3.

Bases

Base, as described in 4.2, is a bridge between Jason's agent and game environment. They
are represented by a Base class. Every base has its owner, which is individual agent in
Jason and its type. Type represents the level of AI used for this base. These types are
described in 4.5.

5.4 Implementation of Interface

At the beginning the l ibGDX[] was used. But due to some implementation problems
connected with Jason[7, 17] and a lack of knowledge, this idea was not realized. Therefore
all visual components are based on graphic capabilities of primary Java's GUI toolkit -
Swing[]. Their design is described in 4.4. As was already mentioned, the main purpose of
thesis is AI and therefore graphical representation was not the primary goal.

31

Shopping panel

Shopping panel, or class GamePanel, represents a container comprised of objects that rep­
resents units available to buy. During the designing was not exactly set how many units
will be available. According to the flexibility and the modifiability of the game, this panel
is able to posses units that are not in actual portfolio of this game. Implementation resizes
the visible units's avatars, this means that if the number of units is incremented or lowered
the panel can adapt its visual representation.

Statistical Panel

Statistical panel, or class StatisticalPanel, purpose is to show the user actually winning
agent by terms given by chosen mode, described in 4.3. So it context is changing according
to the mode. User can see an actual best seizer, killer or conqueror. Except these statistic,
the user can see actual round and time.

When the living user is present as player in the game, the button end round appears.
Its function is to fire event, that player finished all his action for actual round and the next
player can act. If player has some unit chosen to do action, this unit is set to it's original
place.

Info Panel

This panel consist is represented by more classes. Each is shown with different information
and after different event. Here is discussed UnitlnfoPanel class. It has one interesting
implemented ability. As it is shown in the figure 5.6, player chosen some unit. This
actions fires event, where Unitlnf oPanel shows, except unit properties, two buttons. These
buttons are:

• cancel - Reverts the actual unit position to the original one for actual game round.

• done - Marks the actual unit as already used. This means a black mark is removed and
unit is no longer selectable for actual round. Its functionality is done, by attacking
an enemy too.

Another functionality appears, whe player wants to buy a new unit. During such event
are shown basic atributes of such unit and a button buy. Its functionality is according to
unit's cost and the base's available knowledge. So it will not be possible to buy the unit
without enough resources.

32

5.5 Known Bugs

Game is relatively stable, but it can happen that during initialization of the game environ­
ment graphical interface will not show up and only small coloured square is visible in the
middle of the screen. If this happens, restart of the application is necessary.

As was already described in 5.3 and in 4.2, game objects are selectable. To prevent
concurrent modification, while a living player is playing, he is not able to click on game
objects during AI actions. This functionality is disabled when he dies, or was not playing
at all. During game session without living player, response from game map is not ideal.
User has to click on desired object more times than once. This bug does not prevent any
important functionality. It is more "cosmetic" bug than functional.

Another problem is connected with game screen positioning. Every time game starts,
it is not centred, but aligned to the right corner. This bug is just cosmetic bug and do not
prevent any functionality.

The last known problem is connected with map generation. There is a small chance to
generate obstacles that will be hindering the path to a knowledge resource. The source of
problem is the generator of positions, based on random numbers. Wi th a higher number of
obstacles and the smaller map, the probability of appearance is higher.

33

Chapter 6

Experiments

In this chapter are discussed experiments performed with purpose to compare each level of
artificial intelligence. The conditions of experiments are discussed in section 6.1. Exper­
iment with one vs. one scheme is descibed in section 6.2. In a section 6.3 is discussed a
team play and its result. This result shows if the agent's role coordination through commu­
nication is more effective than an approach without communication or not. The all vs. all
scheme is discussed in section 6.4, which demonstrates how effective is randomized unit's
buying against computed one.

6.1 Experiments Conditions
A l l experiments were run with default settings characteristic for every mode. These common
settings were:

Map: 24 x 24
Knowledge Amount: 6
Obstacles Amount 6
Income per Round 10
Income per Knowledge 5
Number of Rounds INF

Apart from these, special settings for mode Domination and Madness were used:

• Domination - rounds to seize - 3;

• Madness - kills to win - 25.

This can raise questions about how valid could be such experiments, if there are no stable
conditions for repetitions. Actually the described experiments have stable parameters like
number of knowledge resources or obstacles on the map, but their position is totally random.
By these random positions, the most realistic behaviour can be achieved. Tests with extreme
combinations of resources and obstacles, such as all resources generated very close to the
one particular player, were not counted into results. A l l tests were run on a machine with
following specification:

34

Model: ThinkPad t420
OS: Fedora 19
C P U : Intel Core i5 - 2540M C P U 0 2.60GHz x 4
R A M : 8 G B 1067 M H z DDR3
G P U : Intel H D Graphics
HDD: HitachiTravelstar Z7K320 320 G B
Java: 1.7.0_55
Java V M : 24.51b03 (mixed-mode)
Jason: Jason 1.4.0 a

In a matter of time complexity the results are heavily dependable on the generated
environment. Wi th default settings the game session usuallylasts about 35 seconds in
testing mode. In normal mode, the duration of game session is around 2-5 minutes. The
maximum measured value was 3 minutes in testing mode. This was due to very evenly
forces and knowledge income. The lowest measured value was 12 seconds.

6.2 One vs One

In this test Advanced level of artificial intelligence played against Medium one. Together
AI players played 100 matches during this test. Simple AI was not included in this test due
to already mentioned behaviour of Medium AI in 5.2. Test proves, that improved ability
of Advanced AI to choose best affordable combination is working. The result is visible in
figure 6.1.

1 VS 1

100 matches

g

• Domination Mode
• Annihilation Mode

Madness Mode

Advanced AI Medium AI

Figure 6.1: Results of one vs. one test.

35

6.3 Team Play

This experiment was performed with team vs. team scheme. According to game design 4.1,
no more that 4 players are on the game map in the same time. To ensure same conditions
for every team, two vs. two scheme was chosen. Together AI players played 100 matches
during this test. Test shows interesting results. While Advanced AI is clear winner, the
comparison between Medium AI and Simple A I shows that random unit picking is quite
effective. This is due to predictable scheme of buying of Medium AI . It will choose always
the best affordable unit (not combination), Simple AI has more mixed unit base, therefore
is more flexible in some situations. Results are shown in the figure 6.2.

2 vs. 2

100 matches

80

70

h L II
60

50
• Domination Mode
• Annihilation Mode

Madness Mode

20

10

0
Medium AI Simple AI Simple AI

Advanced AI Advanced AI Medium AI

Figure 6.2: Results of team play test.

36

6.4 A l l vs A l l

The last experiment consist of all vs. all scheme. This experiment was chosen to compare
behaviour of single Advanced AI in a game environment where is more opponents to fight,
but no team player available. To ensure same test conditions, base position on the map
was rotated. This was done due to position in the corner of the map. There is bigger
probability defending itself against two opponents at the same time. The results shows
clear domination of Advanced AI in Domination mode and Annihilation mode, which is
thanks to intelligent unit picking. The Madness mode shows, that the random picking is
almost as effective as the intelligent one in the matter of killing. The Medium AI and the
Simple AI were put together, although they are on the same level without team player,
because of the cosmetic matter of graph generation.

Results are shown in the figure 6.3. For better explanation of these results Domination
Mode can be used. The blue bar represents results of each AI in Domination Mode with
win ratio from 100 matches:

• Advanced A I - 54

• Medium AI - 34

• Simple AI - 12

all vs. all

100 matches

60

g 30
i

20

40

50

10

0

• Domination Mode
• Annihilation Mode

Madness Mode

Ad\anced AI Medium AI Simple AI

Figure 6.3: Results of all vs. all test.

37

Chapter 7

Conclusion

The main goal of this thesis was a creation of a fully functional turn-based strategy game
featuring two different levels of the artificial intelligence. The game should contain two
main modes - Human vs. AI mode and AI vs. AI mode. As the reader could see
through chapters, this goal was successfully accomplished. The game has fully functional
interface with options to set players according these specifications, together with their level
of artificial intelligence.

Even more, the game B A C H E L O R W A R S is capable to generate randomized maps with
many options including position of bases, colours of players, income per resource and income
per round and alike. If it would be not enough, there are implemented three modes for
better demonstration of capabilities of AI levels. A l l of this is not combined with only two
different levels of AI , but three, with different capabilities.

To test this artificial intelligence, series of experiments was performed. Their results
clearly shows, that Advanced AI is more capable than others and its more adaptable ap­
proach is more effective. In the other hand, an ability of Simple AI to survive and win in
battles one vs. one and all vs. all, mainly in the Madness mode is surprising. This shows,
that randomized picking of unit is almost as effective as the best combination picking in
the given round. Apart from this, as expected, the co-operating agents are more effective
than agents without co-operation.

As possible future enhancement a creation of interfaces for unit and AI addition could be
proposed. There is plenty of space for AI optimizations and enhancements too. Game itself
could be extended by diplomacy and knowledge transactions between agents. Addition of
new hexagonal grid environment could enhance game possibilities and bring new interesting
results into account.

To summarize, this thesis achieved the original goals and proved, that it is possible
to create a turn-based strategy game in Java and Jason using multi-agent approach. The
game is an open-source project, thus it is free to use and available for modification.

38

Bibliography

[1] Cassie L A N D E R S . Early Childhood Development from Two to Six Years of Age.
ht tp: / /www.talkingpage .Org /ar t ic012.html#PLAY. The Talking Pages [online],
2013- 04-05 [cit. 2014-05-17].

[2] G H A L L A B and Dana N A U and Paolo T R A V E R S O . Automated Planning: Theory and
Practice: The Morgan Kaufmann Series in Artificial Intelligence. Morgan
Kaufmann, C A , 2004. 978-1558608566.

[3] Z E C H N E R . L i b G D X . h t tp : / / l ibgdx.badlogicgames .com/ , c 2013-. [online], [cit.
2014- 05-17].

[4] A . P N U E L I . Specification and Development of Reactive Systems. In Information
Processing 86, pages 845-858, North-Holland, 1986. IFIP.

[5] Benj E D W A R D S . The History of Civilization, http://www.gamasutra.com/view/
fea tu re /129947/ the_h i s to ry_of_c iv i l i za t ion .php , 2007 [cit. 2014-05-14].

[6] Michael W O O L D R I D G E and Nicholas R. J E N N I N G S . Intelligent agents: Theory and
practice. The Knowledge Engineering Review, 10(2):115-152, 1995.

[7] R. H . B O R D I N I , J . F. H U B N E R , and M . W O O L D R I D G E . Programming Multi-Agent
Systems Using Jason. John Wiley & Sons Ltd. , 2007. ISBN 978-0-470-02900-8.

[8] O R A C L E C O R P O R A T I O N . The Java Tutorials:About the J F C and Swing,
h t t p : / / d o c s . o r a c l e . c o m / j a v a s e / t u t o r i a l / u i s w i n g / s t a r t / a b o u t . h t m l ,
c 1995-2014. [online], [cit. 2014-05-16].

[9] O R A C L E C O R P O R A T I O N . The Java Tutorials:Getting Started with Graphics.
h t t p : / / docs .o r ac l e . com/ j avase / t u to r i a l / 2d /bas i c2d / index .h tml , c 1995-2014.
[online], [cit. 2014-05-15].

[10] W I K I P E D I A . A * search algorithm — Wikipedia, The Free Encyclopedia, h t t p : / / e n .
wikipedia.org/w/index.php?tit le=A*_search_algorithm&oldid=608822944,
2014. [online], [cit. 2014-05-17].

[11] W I K I P E D I A . Chess — Wikipedia, The Free Encyclopedia.
ht tp: / /en.wikipedia.org/w/index.php?t i t le=Chess&oldid=607641486, 2014.
[online], [cit. 2014-05-14].

[12] W I K I P E D I A . Civilization v — Wikipedia, The Free Encyclopedia, h t tp :
/ / en .wik ipedia .org /w/ index .php?t i t l e=Civ i l iza t ion_V&oldid=608332404,
2014. [online], [cit. 2014-05-14].

39

http://www.talkingpage.Org/artic012.html%23PLAY
http://libgdx.badlogicgames.com/
http://www.gamasutra.com/view/
http://docs.oracle.com/javase/tutorial/uiswing/start/about.html
http://docs.oracle.com/javase/tutorial/2d/basic2d/index.html
http://en
http://en.wikipedia.org/w/index.php?title=Chess&oldid=607641486

[13] W I K I P E D I A . Video game — Wikipedia, The Free Encyclopedia.
http:/ /en.wikipedia.org/w/index.php?ti t le=Video_game&oldid=607784112,
2014. [online], [cit. 2014-05-14].

[14] Michael W O O L D R I D G E . An Introduction to MultiAgent Systems. John Wiley & Sons
Ltd. , 2002. ISBN 0-471-49691-X.

[15] W W W pages. Firaxis Games, h t tp : / /www. f i r ax i s . com/ , 1997. [online], [cit.
2014-05-14].

[16] W W W pages. Video Games Help Patients and Health Care Providers,
ht tp:/ /unews.Utah.edu/news_releases/
v ideo-games-help-pat ien ts -and-heal th-care-providers / , 2012-09-19. [online],
[cit. 2014-05-11].

[17] W W W pages. Jason | a Java-based interpreter for an extended version of
AgentSpeak. h t tp : / / j a son . sourceforge .ne t / , [online], [cit. 2014-05-11].

40

http://en.wikipedia.org/w/index.php?title=Video_game&oldid=607784112
http://www.firaxis.com/
http://unews.Utah.edu/news_releases/
http://jason.sourceforge.net/

Appendix A

Java — Jason Interface

Jason[7, 17] has two main approaches to be able communicate with game environment. The
first one is through external actions and percepts and the other is through internal actions.
In this chapter are briefly introduced methods and percepts, that agents perceive and can
use.

A . l Percepts

A l l percepts that agents perceive are obtained through external action update.percepts.
Here are these percepts briefly described together with its functionality:

• actualKnowledge(int) - how much 'money' the agent posses;

• freeSlots(int) - how many units can be actually created;

• maximumSlots (int) - the upper limit of number of units that agent can create;

• agentlD(int) - an ID set to agent by the application;

• mode (int) - a representation of the actual game mode (Domination, . . .) ;

• f ightingPower (int) - a fighting power of the agent for the actual round;

• movingCapability(int) - a moving capability of the agent for the actual round;

• round(int) — the actual game round;

• team(list) - list of team players with their names, e.g. ['Medium AI 1', 'Simple

AI 2'].

41

A.2 External Actions

External actions are actions that usually modificate an environment in some way. Internally
they are represented by atoms. If an standalone atom is found in a body of agent's plan,
environment tries to execute it as action. Here are listed all external actions actually
supported by implemented GameEnv class:

• update_percepts - updates percepts for all agents in game environment;

• create_unit(AgentID, Type - creates unit according to Agent ID and type of the
chosen unit;

• mark.done - remove actual active agent from list of active agents and adds belief
can_act for next one;

• mark_start - by this action agent will seize occupied knowledge resources and bases;

• move (UnitID, [X, Y] - unit with given ID will perform movement on given coordi­
nates;

• do_intention_if .possible (UnitID, TargetID - unit will try perform any action
from intention map (see 4.5 and 5.3 on a particular target.

42

A.3 Internal Actions

Internal actions are actions that run internally within an agent rather than change the envi­
ronment. These actions should not change an environment. They could be understand like
actions, that helps to gather informations about environment. The during develomplemt
these internal actions were created:

• jason.addIntention(UnitID, TargetID, Type);

• jason.getAffordableUnits(AgentID, ListOfUnits);

• jason.getAffordableUnitGroups(AgentID, ListOfCombinations);

• jason.getAffordableUnitGroupsByAtkStrategy(AgentID, ListOfCombinations);

• jason.getAffordableUnitGroupsByDefenseStrategy(AgentID, ListOfCombinations);

• jason.getAffordableUnitGroupsByMovStrategy(AgentID, ListOfCombinations);

• jason.getEnemyBases(AgentID, ListOfBases);

• jason.getEnemyUnitInReach(UnitID, EnemyUnit);

• jason.getFriendlyUnitInReach(UnitID, FriendlyUnit);

• jason.getKnowledgeInReach(UnitID, Knowledge);

• jason.getKnowledgeDistance(AgentID, Distance);

• jason.getNearest(UnitlD);

• jason.getNearestEnemy(UnitID, EnemyUnit);

• jason.getNearestFreeEnemy(UnitID, EnemyUnit);

• jason.getNearestFreeKnowledge(UnitID, Knowledge);

• jason.getNearestFriendlyUnit(UnitID, EnemyUnit);

• jason.getSortedIntentions(UnitID, ModelD, ListOfIntentions);

• jason.getSortedIntentionsByDistance(UnitID, ModelD, ListOfIntentions);

• jason.getSortedIntentionsByMode(UnitID, ModelD, ListOfIntentions);

• jason.getUsableUnits(AgentID, ListOfUnits);

• jason.hasIntention(UnitlD);

• jason.isEmpty(x,y);

• jason.setRole(AgentID, Role).

43

Appendix B

CD Content

Directory Content
src/

src/asl/
src/java/

pics/
l ib /

bin/build.xml
Jason-1.4.0a/

tex/
tex/fig

Source code of the application
Source code of the environment

Source code of agents
Images used in the application

Third-party libraries used in the application
Necessary for the compilation of the application
Version of Jason used during the development

Source code of this thesis
Figures used in this thesis

44

