VYSOKE UCENI TECHNICKE V BRNE

BRNO UNIVERSITY OF TECHNOLOGY

FAKULTA INFORMACNICH TECHNOLOGH
USTAV INTELIGENTNICH SYSTEMU

FACULTY OF INFORMATION TECHNOLOGY
DEPARTMENT OF INTELLIGENT SYSTEMS

STRATEGIC GAME INMULTI-AGENT SYSTEM JASON

BAKALARSKA PRACE
BACHELOR'’S THESIS

AUTOR PRACE MATEJ LESKO
AUTHOR

BRNO 2014

VYSOKE UCENI TECHNICKE V BRNE

BRNO UNIVERSITY OF TECHNOLOGY

FAKULTA INFORMACNICH TECHNOLOGHI
USTAV INTELIGENTNICH SYSTEMU

N
k I

;/ U FACULTY OF INFORMATION TECHNOLOGY
K_

DEPARTMENT OF INTELLIGENT SYSTEMS

STRATEGICKA HRA V MULTI-AGENTNIM PROSTREDI
JASON

STRATEGIC GAME IN MULTI-AGENT SYSTEM JASON

BAKALARSKA PRACE
BACHELOR'’S THESIS

AUTOR PRACE MATEJ LESKO
AUTHOR

VEDOUCI PRACE Ing. JIRI KRAL
SUPERVISOR

BRNO 2014

Abstrakt

Tato prace se zaobird problematikou koncepce a vyvoje multi-agentni tahové strategické
hry. Prace analyzuje teorii téchto her a agentnich systému a vysledky této analyzy néasledné
zohlednuje v navrhu samotné hry. Ta implementuje kromé hernich konceptii a ovladani,
obecné uzivanych, dvé trovné kooperace umélé inteligence, mirnou a komplexni spolupraci.
Agent je v této hie hracem, ovlddajicim rizné jednotky. Hra je koncipovana tak, ze je ji
mozné rozsifit o nové druhy inteligence, pfipadné o nové herni jednotky. Zavéreéna cast
prace se soustfedi na srovnani jednotlivych trovni kooperace, na efektivitu jednotlivych
umeélych inteligenci a také na zhodnoceni efektivity implementace hry. S timto tcelem byla
vykonana série automatizovanych testu.

Abstract

This thesis describes challenges in design and development of a multi-agent turn-based
strategy game. It discusses the necessary theoretical background of turn-based strategy
games and agent based systems. These results were considerated into game concept. The
resulting game implements, apart from concepts and game control which are in common
use in nowadays turn-based strategy games, two different levels of cooperation of artificial
intelligence, as moderate as complex too. In this application an agent commands each of
its unit as a player. In addition, the game is designed in such way that it can be easily
extended with new artificial intelligences or game units. Final part of this thesis compares
these levels of cooperation and how effective artificial intelligence and application is. A
number of automated tests were performed with this purpose.

Klicova slova

Jason, AI, Multi-agentni systémy, Java, agent, strategicka hra, BDI, A* umél4 inteligence

Keywords

Jason, AI, Multi-agent systems, Java, agent, strategic game, BDI, A*, artificial intelligence

Citace

Matej Lesko: Strategic Game in Multi-Agent System Jason, bakalaiskéa prace, Brno, FIT
VUT v Brné¢, 2014

Strategic Game in Multi-Agent System Jason

Prohlaseni

Prohlasuji, ze jsem tuto bakalafskou praci vypracoval samostatné pod vedenim pana Ing.
Jitiho Krale

Matej Lesko
May 21, 2014

Podékovani

Rad bych podékoval vedoucimu bakalérské prace, panu Ing. Jifimu Krali za odbornou
pomoc a €as, ktery mné vénoval pfi tvorbé prace. Také bych rad podékoval mé rodiné za
jejich trpélivost a podporu.

(© Matej Lesko, 2014.

Tato prace vznikla jako skolni dilo na Vysokém wuceni technickém v Brné, Fakulté in-
formacnich technologii. Prdce je chrdnéna autorskym zdkonem a jeji uZiti bez udéleni
opravnéni autorem je nezakonné, s vyjimkou zakonem definovaniych pripadii.

Contents

1 Introduction
1.1 Goals . . . o e e e e e e e e e e
1.2 Overall Structure o v v e e e e e e e e e e e

2 Theoretical Background

2.1 Reactive Systemso e
2.2 Agent e
2.3 Multi-agent systems L Lo
2.4 The BDI Agent Model
2.5 Practical Reasoning L e

3 Turn-Based Strategies

3.1 What is TBS e e e e e e e e e e e e
3.2 Examplesof TBS o e
4 Game Design
4.1 Game Principles and Mechanicso 0oL
4.2 Game Objects o o o o e
4.3 Game Modes e e e e e e e e e e e
4.4 Game Interface e e e
4.5 Design of Artificial Intelligence
5 Implementation
5.1 Implementation in General
5.2 Implementation of AT
5.3 Implementation of Game Objects
5.4 Implementation of Interface o0
5.5 Known Bugs e
6 Experiments
6.1 Experiments Conditions 00
6.2 Onevs One v i i i i e e e
6.3 Team Play o . o e
6.4 ALl vs ALl e e e e e e e e e e e e e e e

7 Conclusion

=

NolNo BN I NG S|

11

11

15
15
16
18
19
21

25
25
29
30
31
33

34
34
35
36
37

38

A Java — Jason Interface 41
AL POICEPES - o o v v e e e e 41

A2 External ACtiONS . . v ¢ v v v v v v o e 42
A.3 Internal ACEONS . . v v v v v v v b e e 43
B CD Content 44

Chapter 1

Introduction

Playing games is an important part of personality development, mainly in early age[l].
The purpose of the most games is to teach us something and train our perception or
our communication skills. In fact some video games can be very helpful to people with
some disease like cancer, diabetes or asthma[l6]. By living in a technologically advanced
environment these concepts, used in games, were integrated into software applications, or
so called video games[13]. There are many types of video games in general and they are
divided into groups by many factors, like if they are two dimensional or three dimensional,
multiplayer or single-player, real time or turn based and alike. So there is a variety of
games, from first person action shooters to logical puzzles. This thesis will be particularly
interested in in so called turn based strategies.

A turn based strategy is a computer game, where the game environment is mostly done
as a grid, or something that looks alike, and every player, living or non-living, does his
actions only when he is on his turn. These actions can consist from everything imaginable,
but generally, it is something like controlling armies, building defence structures or using
diplomacy to achieve more peaceful solutions. However this thesis aims more for artificial
intelligence (AI) of such games than in game-play itself. From the genre can be already
determined some requirements for properties of the artificial intelligence. For example the
AT does not have to consider so much perceptions from the environment, as it is in real time
strategies on the one side, but on the other, its evaluation of actual situation is usually more
sophisticated. Like trying to evaluate future action steps of enemy and decide its action
policy according to the evaluated state. Next, units in these games are usually only game
objects controlled by a player and do not posses Al at all.

This thesis describes very similar concept chosen in developed application. Every non-
living player acts as an agent. The agent model is an event-driven execution model providing
proactive and reactive behaviour[14]. Each agent receives percepts from some environment.
In this case, the game environment is based on a grid. Cells in grid, or so called nodes, can
posses game objects like units, resources or agents bases. These percepts are perceivable by
all agents. So, agent can see all objects, nothing is hidden from him. In the implemented
game, agents share a game environment with each other and affects in same way by every
taken action. Agents are able to co-operate and act upon information from this environ-
ment. It is possible to deduce now, that game itself is actually a multi-agent system. The
code of agents is written in and interpreted by Jason|[7, 17], interpreter and programming
language.

1.1 Goals

The purpose of this thesis is to introduce a development of turn based strategy with a
focus on multi-agent artificial intelligence. The game is entitled BACHELOR WARS and is
released and available as open-source program, therefore anyone can modify it. There are
implemented three levels of artificial intelligence in actual state. The purpose is to watch
how agents with these different levels of artificial intelligence are able survive, fight and
co-operate in the game environment. Below is list of goals of this thesis:

e Design a strategic game, based on the degree of cooperation of agents. The game will
include 2 modes of cooperation: low and high cooperation. Moreover, the game will
run in 2 modes of game-play: human vs. Al and Al vs. AL

o Experiment with the game’s modes and compare the modes according to their success
rate and time complexity.

e Asgsess the results and discuss possible future development.

1.2 Overall Structure

The thesis is structured as follows: The first two chapters of this thesis provide essential
theory background for understanding the game implementation. As the main focus of the
game is the artificial intelligence, especially multi-agent systems, a brief theory can be found
in the chapter 2. Next, more specific information about turn based strategies, and its game
principles, with some brief history and examples of today games are given in the chapter 3.

Chapter 4 introduces a game design in general, used game mechanism and modes. De-
scribes a game interface and a design of artificial intelligence. Focus on implementation
details and a possible modification of game to fulfil player needs together with implementa-
tion of the game and differences from game design is discussed in chapter 5. Experiments,
used testing environment and conditions are described in 6.

In final chapter 7 is a summarization of the development, achieved results and imple-
mented game features. There is also discussion about possible optimizations and improve-
ments for this project.

Chapter 2

Theoretical Background

In this chapter, in sections 2.1 and 2.2 are briefly introduced agents and reactive systems
together with their capabilities and properties. There is a closer look at an agent oriented
development, how it differs from widely used functional approach and what are main aspects
and benefits of using agent oriented systems. In section 2.3 are discussed multi-agent
systems, what are their capabilities and how do they work. The BDI agent model is
desribed in section 2.4, together with beliefs, desires and intentions. The main focus of this
chapter is on decision making process of BDI agents in section 2.5 and BDI architecture at
general.

2.1 Reactive Systems

According to specification[4]:

Reactive systems are systems that cannot adequately be described by the
relational or functional view. The relational view regards programs as func-
tions. .. from an initial state to a terminal state. Typically, the main role of reac-
tive systems is to maintain an interaction with their environment, and therefore
must be described (and specified) in terms of their on-going behaviour. .. Every
concurrent system...must be studied by behavioural means. This is because
each individual module in a concurrent system is a reactive subsystem, inter-
acting with its own environment which consists of the other modules.

From this point reader is able to distinguish, that main difference between functional pro-
gramming and reactive systems is in input-compute-output operational structure. Moreover
for better understanding the difference, functional programs can be though off as mathe-
matical functions:

f: 1 — O (2.1)

Where I is domain of possible of inputs and O is a range of possible outputs. Difference
is that reactive systems are able to maintain a long-term, ongoing interaction with their
environment. So they do not compute some function of input and terminate as would be
done by functional system, but waits for another possible interaction. Examples of such
programs include online banking systems, operating systems, webservers, process control
systems and the like.

2.2 Agent

By agents reader can understand a more complex class of systems which is a subset of
reactive systems. So agent is an reactive system that a programmer can delegate some task
to it and system itself is able to determine, what is the best approach to achieve this task.
The name ’Agent’ was chosen, because in general, users of such systems can think of it as
active entity, or purposeful producer of actions. They are sent into environment to achieve
goals given by programmers. They want from these agents to actively pursue these goals
delegated on them by figuring out, what is the best way of accomplish these goals. So,
programmer itself does not have to tell them how to do these tasks in a low-level detail.
More precisely, agents are systems that are situated in some environment and are ca-
pable of sensing this environment via sensors(e.g. like camera, detectors...) and have
a repertoire of possible actions they are able to perform(via effectors or actuators) with
intention to modify their environment. Actual deciding what to do is achieved by manipu-
lating plans. To better understand, in figure 2.1 is shown schematic example of the agent.

Perceptors
percepts ’
Actuators

Figure 2.1: Scheme relation between agent and environment[7].

Characteristics of Agent

According to Wooldridge and Jennings|(] agents should have the following properties:
® autonomy;
e proactiveness;
e reactivity;

e social ability.

Autonomy

By autonomy is generally meant an ability of agent to decide how best to act to achieve
delegated goals upon this agent. Therefore the ability of agent to construct goals is strongly

bounded by the goals that the programmer delegated. Moreover the way in which agents
will act to accomplish their goals is bounded by the plans given by the programmer. These
plans define the ways in which agent can act to achieve its goals and sub-goals.

This functionality allows agents to put together these plans on the fly, in order to
construct more complex overall plans to achieve programmer goals. To simplify, autonomy
allows agents to act independently to achieve goals, that were delegated on them. Thus
autonomous agents are able to make independent decisions about how to achieve their
delegated goals. To simplify even more, agent actions are under its own control and are not
driven by other entities.

Proactiveness

Proactiveness means being able to exhibit goal-directed behaviour. In other words, agent
will try to achieve a particular goal delegated upon him. As a contrary could serve a Java’s
objects. Which could be considered as absolutely passive agents. Such object is essentially
passive and act only if some method is invoked on it.

Reactivity

Reactivity represents an agents ability to respond to changes in the environment. Agent
should respond to these changes with effective balance between goal-directed and reactive
behaviour. While goal-directed behaviour can be explained as execution of plan in order to
achieve a goal, reactive behaviour is a series of actions to be executed upon environmental
changes as a respond on them. For better understanding, moving to the enemy base with
intention to seize it, is an example of goal-directed behaviour while responding on support
request form ally is an example of reactive behaviour.

Social Ability

Here by social ability is meant a cooperation and coordination of activities with other
agents. Agents of Jason[7, 17] are able to communicate not only in terms of exchanging
bytes or invoking methods, but they are able to communicate on knowledge level. So they
are able to communicate their beliefs, goals and plans with each other.

2.3 Multi-agent systems

Single agent systems are rare in practice. Most of the time are used so called multi-agent
systems. In such systems each agent has its own sphere of influence. In other words, it is
a part of shared environment, that the agent is able to have influence. These spheres of
influence do not have to intersect and then this part is controlled only by one agent. If
these spheres overlaps, the environment is jointly controlled. In such the case things are
more complicated because to achieve desired outcome in the environment, agent have to
take into account how other agents in the environment will act. As can reader deduce,
this ability to delegate goals, pass percepts and alike to others is essential in multi-agent
systems. An example of such system is shown in the figure 2.2.

KEY Environment

------ Organisational relationship
Sphere of influence

Interaction

Agent

Figure 2.2: Typical structure of multi-agent system][7].

2.4 The BDI Agent Model

BDI or belief-desire-intention model was inspired by and based on model of human be-
haviour that was developed by philosophers. The idea was to model something which
humans possess naturally — some mental states. So basically these systems are computer
programs with computational analogues of beliefs, desires and intentions. Distinction be-
tween beliefs, desires and intentions[7]:

e Beliefs can be described as information that agents possess about the environment.
Here is shown the similarity with human beliefs. These can be inaccurate, out of date
or wrong. As an example we could be used cpuload(32) to represent agent belief
about cpu load in the given environment.

e Desires represents all possible states of affairs that agent might like to accomplish.
In other words they are options for an agent. They can be considered as potential
influencers that agent may act upon. From this, it is possible to tell, that not all
agent desires can be compatible to each other. It is perfectly reasonable for rational
agent.

e Intentions can be understood as state of affairs that the agent has decided to work
towards. They can be goals delegated to the agent or may result from considering
available options for agent. Intentions itself are therefore the chosen options. After

selecting the intention, agent is committed to it. So intention can be dropped only
if the goal is no longer achievable or the intention was fulfilled. From this can be
deduced, that intentions have three main properties. They are persistent, constraining
the future and pro-attitudes — they tend to lead to action.

2.5 Practical Reasoning

Practical reasoning is decision-making model, which underlays the BDI model. So practical
reasoning models the process of figuring out what to do. Therefore it can be considered as
reasoning directed towards actions[7]. As said earlier in 2.4, BDI model is based on human
behaviour. According to Woolridge, human practical reasoning seems to consist of two
distinct activities[14]:

e deliberation - thinking on what we want to achieve;

e means-end reasoning - how we want to achieve it.

Deliberation

Deliberation process leads agent into adopting intentions(2.4). More precisely it is the pro-
cess of selecting between different possible plans. These so called applicable plans are plans,
that have their context satisfied, according to current agent’s belief base. To summarize
and simplify, deliberation process means thinking on what we want to achieve.

Means-Ends Reasoning

Means-ends reasoning is the process where the question: “how we want to achieve it” is
asked. In other words, it is the process of deciding how to achieve and end, using the
available means|7]. This process can be better known as planning[2]. As input for this
process serve:

e A goal, or intention: something that the agent wants to achieve.
e The agent’s current beliefs about the state of the environment.
e The actions available to the agent.

As an output is generated a course of action, called as plan. It is possible to think about it
as a “recipe” too. Nowadays is focus on one simple idea that has proven to be quite powerful
in practice[7]. This idea consist of that a programmer develops a portion of partial plans
for an agent at design time, and task for agent is to assemble these plans at runtime.
Apart from original focus in Al to assembly of a complete course of action, in which atomic
components are actions available to the agent, is this approach significantly less resource
demanding.

The Procedural Reasoning System

The Procedural Reasoning System or PRS, see the figure 2.3, is a system where agent is
equipped with a library of pre-compiled plans.

These are manually constructed by the agent programmer. Each plan in PRS have the
following components:

e a goal — the post-condition of the plan;
e a contexrt — the pre—condition of the plan;

e a body — the course of action to carry out.

‘ Interpreter I Action output

‘ Intentions

Figure 2.3: The Procedural Reasoning System (PRS)[7].

i

Sensor input

The Goal

The goal, or the post-condition of PRS plan, represents states of affairs, that stands as
output of executing this plan. To simplify the goal of PRS plan defines what the plan is
good for. In Jason, the goal can be represented as e.g. !goto(X,Y) — which indicates that
after executing its plan, agent’s position will be unified with X and Y variables.

The Context

The context defines the pre-condition of PRS plan. It defines all conditions of the environ-
ment that must be true in order for the plan to be successful. In Jason, the Context can be
represented e.g. !goto(X,Y) : noEnemyNear & canMove — this goal and its plan will be
executed only if the context is true. that means agent belief base contain beliefs noFEnemy
and canMove.

The Body

The body can be described as course of action to execute. It can be a simple list of actions
to be executed ort hanks to PRS there is possibility for a lot of richer plans to exist. As
an example can serve !goto(X,Y) : true <- !movelLeftleg; !moveRightLeg.. Where
achievement goals moveLeftLeg and moveRightLeg represents parts of the body.

10

Chapter 3

Turn-Based Strategies

In this chapter the reader will be apprised of turn-based strategies. What they are, what
is the difference between turn-based and real-time strategies and why are so popular, is
discussed in section 3.1. An examples of the past and actual famous TBS games are shown
in section 3.2, together with a brief description of artificial intelligence used in one game
from examples.

3.1 What is TBS

Turn-based strategy, or TBS is a strategy game, where players take turns when playing.
Apart from real-time strategies (RTS), player has much more time to contemplate his
strategy before acting. The main difference is in the time flow. While in real-time strategies
all players share the same game time and have the same chance to react on game events,
in turn-based strategies every player has his own time flow. This game time starts when
the player takes his turn and ends with the event, saying that player already finished all
his actions.

Another difference between TBS and RTS is in game environment and its possibilities.
In TBS, the player is usually in some grid related environment. He, or his units, has exactly
defined where and in which direction is possible to go. As an example could be used a
picture from a game called Battle for Wesnoth, see figure 3.1. Due to these restrictions,
players have to think harder to find out weakness in enemy’s defence, attack or in strategy
in general. As an examples can serve classic games as chess[l 1], which is widely considered
for an ultimate turn-based strategy.

It is possible to deduce, that all these characteristic attributes makes TBS very popular.
They are ideal for long-term matches, where every step can be the last, and careful strategic
actions are prior to hotheaded ones.

3.2 Examples of TBS

After section 3.1, reader should be able to tell main characteristics of TBS and understand
difference between RTS and TBS. Therefore here are, for completeness, introduced some
examples of turn-based strategies. As representative element was chosen Sid Meier’s Civi-
lization series. It is the shining example of turn-based strategies. With its long history,
an addictive gameplay and a its re-playable ability this series is one of the most successful

11

 EndTurn |

Figure 3.1: Screenshot showing a Battle for Wesnoth®.

games in history. According B. Edwards this game changed the course of computer strategy
games forever|[5].

Civilization is a turn-based historical strategy game, where a player single-handedly
guides the development of a civilization over the course of millennium, from the stone age
to the space age. In this game each player represents the leader of a certain nation or
ethnic group (civilization). Among the main strengths of Civilization is how its designer,
Sid Meier, actually represents mysteriously accurate possible future, if the course of history
was pushed just a little bit.

No wonder that many critics recognize Sid Meier as one of the greatest software designers
in history. At that time, functions like random map generation, multiple ways to win, or up
to 15 additional computer opponents was something unbelievable. Moreover this all fitted
into only three megabytes.

His work is even more remarkable due to a fact that Meier handled most of the program-
ming on Civilization himself, even doing all of the early artwork for the game. Interesting
part is that the first version did not feature the turn-based gameplay, but a real-time model.
But the gameplay was so dull and boring, he and his companion decided to implement it
in TBS style. A figure 3.2 shows the first version of Civilization.

Nowadays the latest game from this series is Sid Meier’s Civilization V, developed by
Firazis Games[15]. This game posess entirely new game engine, with hexagonal tiles instead
of classical square one. Compared to the first version of this series, the difference is nothing

1Source: http://en.wikipedia.org/wiki/File:Battle_for_-Wesnoth_0.8.5_chaotic_indexed.png

12

http://en.wikipedia.org/wiki/File:Battle_for_Wesnoth_0.8.5_chaotic_indexed.png

— BB isx

Figure 3.2: A world map screenshot from the Civilization 1[5].

()

A UAIT WERDS ORDERS

Figure 3.3: A screenshot of the video game Civilization V. Starting location with one city
and one warrior unit showing?.

less than drastic. These changes are, besides much better graphics, e.g. game features like

3Source: http://en.wikipedia.org/wiki/File:Civilization_V _screenshot.png

13

http://en.wikipedia.org/wiki/File:Civilization_V-Screenshot.png

community, modding and multiplayer. To compare with the first version see figure 3.3.

Civilization V - Al

Civilization V has one very interesting part. The artificial intelligence(AI) is designed to
operate on four levels[12]:

e tactical — on this level are controlled individual units;

e operational — on this level Al oversees whole war front;

e strategic — Al manages whole empire;

e grand strategic — Al sets long-term goals and determines how to win a game.

Even more, every Al-controlled leader has his unique personality. It is determined by
combination of flavours. Every flavour have value on a ten-point scale. These flavours are
grouped into categories like growth, strategy, military and alike.

14

Chapter 4

Game Design

The idea at the beginning was that everything should be parametrized and therefore allowed
to be modified. Whole concept of the game is based on it. Everything was designed to
withstand unpredictable changes in the code, like new objects in the game, or new types of
Al This is the main strength of the design of the game BACHELOR WARS, that it will not
break down like a card-castle if the new element appears.

Very important fact is, that this thesis is focused on the artificial intelligence itself,
so elements like graphics, interface and other visible components are on the second place.
That is why the game look may appears very simple. The main purpose was a design of
inner elements. Of course, there was an ambition to use some powerful frameworks, but
due to odd behaviour and the high learning curve this idea was not realised.

As it already appears, designing is one of the most important processes during the
development of the game. Good game design can solve many problems before the actual
implementation of the game concept starts. This process is not only about animating units,
colours and shapes. It covers other aspects, like thinking about game mechanics and rules,
which are described in a section 4.1, game concepts like e.g. modes, which are in the section
4.3. There are other things that normal user does not even think about, like design of the
artificial intelligence, which is in section 4.5. Of course, design of the game comprehends
the look of the game interface too, like in section 4.4.

4.1 Game Principles and Mechanics

The game principles of BACHELOR WARS are simple in its bases. The main purpose of
the game is to fulfill winning conditions given by chosen mode, or seize enemy’s base and
therefore win the game. The game itself requires at least two active players, but no more
than four. This upper limit was set after realizing, that more active agents in the game
could do more harm than good to the gameplay, because of unfair positioning and chaotic
appearance. Design itself on the other hand is able to comprehend more that four players
without problems.

This game is different from the usual stereotype of this this genre, e.g. there are no
such things like buildings. You do not have to build barracks to buy a unit. There is no
need to build mines, or farms. You do not have to wait for unit’s training to use them.
Everything is done by this way to make the game more aggressive, faster. The main aim is
that a game session lasts no longer than approximately 10 minutes. It could be understood
as the chess[!1] with more players, a possibility to buy a unit and to gain resources.

15

When the game starts all players have same starting conditions. It means that amount
of knowledge and slots' is the same, and every base is in one of the corners. During
gameplay each Al player perceives the same game environment input. It means that it can
see knowledge resources, its allies and enemies, respectively their units and bases.

Game itself contain a game settings interface that allows user to set the mode, active
players and their level of artificial intelligence. For more info see 4.4 and 5.4. This interface
allows actually to generate a map for a game session. This map consist of an invisible grid
environment. It can be described as an invisible layout, which contain game objects. So
every object is operating within this grid, not in the classical coordinate system used in
Java’s Swing][9].

4.2 Game Objects

As already mentioned, the design of the game BACHELOR WARS is done in the way, that
the implementation is able to withstand new elements without problems such as obstacles
(discussed later). This is thanks to an idea from object-oriented approach used in Java. The
main idea of the this design is that everything on the game map is a game object. These
approach allowed a much needed flexibility in the later implementation phases described in
5.3.

Bases

A base in the game has a special function. Not only it represents an agent on the battlefield,
it is a spawning place for agent’s units too. The design of the base, as a game object, is
simple. It is represented by a coloured curved square. The colour is the colour which is
chosen by user, or set by default. On the other hand it is used to represent the agent
in the environment, so its inner functionality is quite sophisticated. This functionality is
described in 5.3. Part of this functionality is number of variables and properties. But only
few of them is visible to the player:

e Player — the name of player, who own this base.

o Units to create — this property is signalizing, how many units is this base able to
own on the map at the same time. This property is parametrized, thus modifiable.
In the thesis and in the game also called slots.

e Killed enemies — specifies how many enemy’s units were killed by units of this base.

e Income per Round - this property signalizes how much knowledge will be added
to the actual resources at the beginning of the round. This property is parametrized,
thus modifiable.

¢ Knowledge to use — how much knowledge resources the player is able to spare for
units.

To simplify, the base could be understood as an intelligent box, that contains all infor-
mation about agent’s units, allies, income from knowledge resources, free slots and more.
To summarize — it represents a communication bridge between the agent and Jason[7, 17].

!By slot is meant the capacity of base

16

Units

To be able to fulfill winning conditions every player has a set of available units. These units
represents a tool, which is available to act as agent commands. These units do not posses
any level of artificial intelligence.

On the other hand these game objects posses an ability to store an intentions that the
agent gave them. As already mentioned, agents have intentions (see 2.4). Units serve as
an envelope for agents to store these intentions, e.g. seize knowledge, attack on base...
Therefore agent, as a general, creates unit and deliver its intentions to this unit. When the
agent is able to manipulate with this unit again, the agent simple asks which intentions this
unit already posses and tries to identify the best choice in actual round. This is described
with other processes closely in 4.5 and 5.2. To be able to define more complex strategies
and behaviour, unit types differ between each other in their attributes, which are described
in this section.

The design of units is made in relation to the title of the game. Every unit represents
a student of the Bachelor study programme according to unit’s name. This step was made
to entertain the user and the creator of the game. No deeper meaning is hidden in this
action. The unit posses animated graphical representation in a similar fashion. The idea
was to make a feeling from the game look a little bit better. For an example of one of the
units see figure 4.1.

Figure 4.1: A Third Year Student - unit from BACHELOR WARS.

A creation of characteristic attributes is part of the design of the unit too. Similarly to
a base, the unit, as a class, has got huge number variables and properties, but only for few
of them is a meaning to show. These attributes are:

e ID — or so called identification number. This property is defined by a unique value,
which allows agents in the game environment determine to whom which unit belongs
to. This value is part of the NAME.

¢ NAME - the name of the unit, this property is intended for living player only. It
consist of type of unit and the ID.

e HP - or hit points. This property represents how much damage the unit is able to
withstands. This unit’s property is specified by finite value.

17

e ATK - attack, specify how much damage the unit can possibly cause.

e MOV — movement, specify the movement ability of the unit. To simplify this value
express how much cells in game grid can be used for movement per round.

e COST - this property is expressing the value of the unit. How much knowledge
resources the player needs to be able to buy this unit.

Unit is designed for two modes. According to goals (see 1.1), there are two main
designed modes. For mode Human vs. AI there is an implemented interface, which is
described at 4.4. Mode AI vs. Al has a similar interface, but without some elements,
which are necessary for the other variant. The idea of two interfaces raised after a need
to revert unit’s movement, and a need to signalize that the intended action is finished.
Technical matters are discussed in 5.3.

Knowledge

At the beginning of the development, a question raised about goals of this game. What will
be considered as a source of in-game money? As many things were done having regards to
the title of the game, naming “in-game money” as knowledge is no exception.

In classic games, players usually have to mine gold, or grow food to get resources to
spare. Here the player has to seize a knowledge resource called knowledge too. So a
knowledge is a source of regular income. Every knowledge has to be seized to become the
resource. Seizing is done by units after an agent evaluates it is the best choice in actual
round, according given game conditions and actual situation on the map. Knowledge is
seized at the beginning of the following round. These objects are randomly generated on
the map.

Design of the game provides interface to change values connected with the knowledge
resources. These values are parametrized for better gameplay and testing. This interface
is described in 4.4.

Obstacles

The primary motive for obstacles, as a game objects, was a better presentation of pathfind-
ing. These game objects represent an inaccessible terrain, chunks of barriers that block the
path and therefore make the game more realistic. As a secondarily motive serves to make
game environment more interesting.

4.3 Game Modes

According to assigned specifications for this thesis (see 1.1), there are two main modes in
the game. Al vs. AI and Human vs. AL

But besides these, game design contains modes, that are not part of the official thesis
goals. These modes were designed in order to demonstrate Al capabilities and its op-
portunistic behaviour. To be able even more distinguish differences between different Al
levels, every mode has its own winning conditions. These conditions are along with the
main constant wining condition — seize the enemies’s bases.

These modes are:

18

e Domination — mode where the player need to dominate on the map. Rule is set to
posses at least 80% of the knowledge resources for few rounds. This value (number of
rounds) is parametrized and modifiable via interface described in 4.4. This mode is
good from the strategic point of view. There are structures on the map, that need to
be seized, hold and defended. While doing this, Al need to respond on the enemies,
their attacks. This is why is this mode as default mode as well.

e Annihilation — mode where the player has to destroy all his opponents. This means
to get to their base and survive 1 round there. This mode shows that even the weakest
player can win, if he chooses his opponents wisely. It can be considered as a mix of
two modes: domination and madness mode.

e Madness — mode where the winner is the one with X killed enemies. If the player
destroys the enemy’s base, every unit of this base is killed and marked as “killed” by
the player. The X is modifiable,parametrized value. This mode aims mainly on how
an Al or a team can divide their forces and analyse the game environment.

All of the modes above are described from a view of the living player, but their conditions
are applied for Al or teams equally. All winning conditions is possible to combine with the
time limit. For time limit is considered number of rounds. The game ends after reaching
this limit. So to simplify, if the time limit is reached, the actual winning base (or team) is
considered as a winner for actual game session.

4.4 Game Interface

Every game needs to have a communication bridge between its user and the environment.
There is plenty approaches how to design an interface. Approach used for this game was
very simple. As already mentioned, the graphics was not the main goal of this thesis.
Therefore the interface is simple, with just necessary information to provide basic data
about game elements and the environment. An overall scheme of game interface is shown
in figure 4.2. The scheme consist of:

1. Game Map — a generated area, where all fight are in progress. Its creation is modifi-
able. For implementation details see 5.1

2. Info Panel — a panel where information about chosen base/unit is shown. This panel
is also used for buying new units and confirming their actions.

3. Shopping panel — a panel, where is player able to chose which unit he wish to show
in info panel. Used when buying new units.

4. Statistical Panel — a panel, where player can see actual winning base according to the
mode with statistical properties for chosen mode. If living player is present in the
game, there is a button to mark actual round as finished.

5. Info area — an text area, used for information about actual actions on the map.

For implementation details of used interfaces see 5.4.

19

Figure 4.2: The overall scheme of game interface.

Settings Interface

As was mention in section 4.1 the game settings interface allows player set the mode, active
players and their level of AL. Apart all of this, there are options to change values determining
winning conditions, size of game grid, number of resources, called “knowledge” (see 4.2),
number of obstacles, number of free slots for each base, income per seized knowledge and
base income for every round, player’s name, teams, colours and screen resolution.

All limitations were chosen similarly to the limitation of active players, mentioned in
4.1. These limits are high enough to allow interesting combinations of map generation and
its size together with properties, connected with bonuses for seizing. For the example see
figure 4.3.

As this information suggest, most of the game parameters are parametrized and there-
fore player is able to modify them. All of this effort was made with intention for easy
gameplay modifications and environment testing. For more about experiments and testing
see chapter 6.

20

Players Selection Screen Resolution Mode
Players Max Slots Team
¥) 1024 x 768 ©® Domination
1. Player v 6|7 orange Vv J S 1366 x 768
. Annihilation
2 [SimpleAl v 6|2 [red 2l 1B 1600 x 900
Madness
3, Closed v .
Mode Description
4, Closed v . DOMINATION
Mode where you have to own at least 80% of
"knowledge resources” for 3 rounds.
Map Generation .
General Settings
Income per Round =
Knowledge amount Map Columns P 10,
6 24 Income per Knowledge 5
Number of Rounds o "
Rounds to seize B :
Allow obstacles Map Rows Player Nickname:
24
Player
Exit Start Game

Figure 4.3: The game interface for settings.

Unit Interface

Bases and units share very similar information panel, but for units there is more options to
show, following the mode AI vs. AI or Human vs. Al

e Al vs. AI — in this mode, chosen unit shows only properties that are described in
4.2. No other options are available.

e Human vs. AI — here are more options to show according to actions (for implemen-
tation details see 5.4):

— buying — Visible basic properties and a button buy.

— selecting unused living player’s unit — Visible basic properties and two
buttons.
1. cancel button;
2. done button.

— selecting used living player’s unit or enemy — Same as for variant AT vs.
AL

4.5 Design of Artificial Intelligence

According to goals (see 1.1), the game should contain 2 levels of Al. Low and high co-
operation level. In the game are integrated 3 levels of artificial intelligence:

21

e Simple Al
e Medium Al
e Advanced AL

Simple AI can be considered as a root for design of Medium and Advanced AI. The main
goal was to re-use as much behaviour as possible. Therefore Medium AI inherits from
Simple AI and adds some characteristic behaviour of its own. An analogical technique was
used for Advanced Al and Medium Al too.

Every Al posses basic behaviour patterns. These are used at the beginning of the unit
creation. During this action agent perceives actual situation on the battlefield. According
to this situation and chosen mode (see 4.3) stores basic intentions to the unit. These are:

e add seize enemies’s bases to the intention map of the unit;

e according to the mode one of these intentions are stored into the intention map, in
an order, given by specification of the chosen mode:

— add nearest free? knowledge;
— add nearest free enemy’s unit;

— add nearest enemy’s unit.

These can be called as persistent intentions. Because they are stored in a particular unit
during whole its existence, till the intention is not reached or the unit is dead. Intentions in
general does not have to be accomplished by originally chosen unit. It is because of changing
environment. Every level of AT has got a opportunistic behaviour. this means that if there
is some game object in the area of influence of some unit, that was not originally in the
intention map of this unit, it is added to the intention map as its new intention.

Another interesting part of AI design is that modules representing Al levels can be
replaced for their modified versions, or the new one. Game itself does not contain any
interface to add new modules representing another Al levels. But the game design and the
implementation allows such things with only a few manual steps. At the beginning the
idea was that user could be able to add new AI through some interface. Due to certain
circumstances this interface was not implemented, but whole design and the implementation
was lead to allow such a thing.

All AT levels can operate in two states. The first one could be called standalone state.
In this state AI does not have any allies, thus it does not need to communicate with other
agents. On the other hand, there is a state that could be called co-operation state. In this
state is Al capable of team play, which plays very important part in the game. Except
the Simple AI, other AI levels are capable of co-operation. With this purpose a simple
communication API was created. Part of this communication is an agreement about a role.
Currently there are two implemented team roles for agents:

e seizer — tries to seize 80% of nearest knowledge resources on the map and only a few
units are used for defence or attacking. Seizer role is a preparation in order to achieve
better economical status and therefore to be able buy better units after some time as
an attacker.

e attacker — tries to attack the enemy’s and get attention. Only about 20% of attack
power is used to seize knowledge resources.

2By free is meant a knowledge that was not already assigned to another owned unit.

22

Mode play

These actions below are performed for units without any intention in their intention map.
They are same whether Al is in the team or not. There are subtle nuances for medium and
advanced Al level, but the core action is the same. A diversity in actions happens during
gameplay thanks to the changing game environment.

o Domination

1. seize nearest free knowledge;
2. attack nearest free enemy’s unit;

3. attack nearest enemy’s unit;
o Annihilation

1. attack nearest free enemy’s unit;
2. seize nearest free knowledge;

3. attack nearest enemy’s unit;
e Madness

1. attack nearest free enemy’s unit;
2. attack nearest enemy’s unit;

3. seize nearest free knowledge.

Simple Al

The simple