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Abstract 
This thesis summarizes the extend of research on the shear-modes loaded cracks done 

in the period of four years of doctoral studies of Ing. Stanislav Zák (Central European 

Institute of Technology, Brno University of Technology). The actual research aims 

to improve the scientific view on advanced fracture mechanics, specifically for the shear 

loading of cracks combined wi th cases when the geometry of the crack flanks and front 

doesn't match wi th widely used and standardized models. This means proposal of new 

modelling approaches of geometrically complicated cracks and description of changes 

in the local stress intensity factors along such cracks. 

Initial part of the text presents a review of current approaches in the fracture 

mechanics and numerical methods used in further research. This part emphasizes 

theoretical methods in general fracture mechanics and also specific shear modes loading, 

particularly use of the two types of specimens - a special specimen dedicated to mode II 

loading (compact-tension-shear specimen) wi th a possibility of mixed-mode I+II loading, 

and widely used cylindrical specimen wi th circumferential notch and crack which is able 

to comprehend mode II and III loading. 

The second, more extensive part of this thesis concentrates on actual evaluation 

of conditions along the real-like (tortuous) crack fronts for two types of specimens under 

the remote shear mode loading. Theoretical solution of fracture parameters for both 

mentioned specimens is compared to the experimental results obtained in the frame 

of the follow-up projects. 

The cylindrical specimen is reviewed from two points of view. The first one 

is solely about the numerical methods and the simplification of complex numerical 

models. In the second one, the influence of small asperities along the crack front on local 

fe inducement for specimens under the remote mode III loading is observed. The results 

are directly connected to the experimental measurement of mode III fatigue thresholds 

values for metallic materials where the local mode II advances of crack front 

are quantified. O n fractures in compact-tension-shear specimen various configurations 

of crack front and flanks tortuosity are investigated. The global decrease of Ka 

with increasing crack tortuosity is observed and used for correction of mode II fatigue 

threshold values of metallic materials. Furthermore, the conditions along one particular 

asperity are investigated. 

The results confirm that the shear loaded cracks (which were not described 

sufficiently so far) are affected by the crack front and flanks microstructure. Therefore, 

this work extends the knowledge on roughness-induced shielding of shear loaded cracks. 

Keywords 
compact-tension-shear specimen; crack tortuosity; cylindrical specimen; finite element 

modeling; linear-elastic fracture mechanics; shear mode loading; stress intensity factors 



Abstrakt 
Tato závěrečná práce je s h r n u t í m v ý z k u m u smykově za těžovaných trhlin, k t e rý proběhl 

v p r ů b ě h u č ty ř let doktorského studia jejich autora Ing. Stanislava Žáka (Středoevropský 

technologický institut, Vysoké učení technické v Brně) . P řed ložená práce je zaměřena na 

prohloubení znalost í v oblasti pokročilé lomové mechaniky, konkré tně pro smykové 

zatěžování t rhl in kombinované s p ř ípady geometr ických odchylek t rhl in od běžně 

používaných modelů . T o mimo j iné z n a m e n á n á v r h nových p ř í s t upů a modelů a popis 

součinitelů intenzity napě t í pro geometricky kompl ikované trhliny. 

P rvn í část p ráce je věnována sh rnu t í současných p ř í s tupů v lomové mechanice 

a dále i popisu numer ických metod, použi tých v dalších výpočtech . K r o m ě klasických 

p ř í s tupů se tato část textu zabývá i novějším v ý z k u m e m zaměř eným na smykové 

zatěžování trhl in, speciálně pro dva typy zkušebních těles - válcový vzorek s obvodovým 

vrubem a trhlinou za t ížený p r o s t ý m smykem nebo k r u t é m a C T S těleso umožňující 

zat ížení trhliny v módech I, II a t aké v jejich kombinaci I+II. 

Další část textu je zaměřena na konkré tn í výpoč ty lomových p a r a m e t r ů při použi t í 

nových modelů s kompl ikovaným čelem trhliny. Teore t ické řešení lomových p a r a m e t r ů 

pro oba výše zmíněné modely je po rovnáno s exper imentá ln ími výsledky, z ískanými 

v navazujících projektech. 

U modelu válcového vzorku je popsána možnos t z jednodušení budoucích modelů 

těles s p o d o b n ý m typem kompl ikované trhliny a současně je na n ě m popsán lokální vl iv 

zubatosti čela trhliny na indukci lokálního zat ížení v m ó d u II při globálním zat ížení 

v m ó d u III. Ty to výsledky jsou př ímo propojeny s exper imentá ln í kvantif ikací únavového 

šíření lomu při zat ížení v m ó d u III. C T S těleso je použi to k popisu v l ivu drsnosti trhliny 

na součinitele intenzity napě t í . N a tomto modelu je pozorován jak globální pokles 

hodnoty Kw při zvyšující se drsnosti trhliny, tak i lokální změny v n a m á h á n í trhliny podél 

jednot l ivých nerovnost í . 

Výsledky potvrzují , i pro dosud málo zkoumané smykové zatěžování , 

že mikrostruktura lomových ploch a čela t rhl iny m á vl iv na lomové parametry. Rozšiřují 

tak současné znalosti v oboru lomové mechaniky popisem geometr ického st ínění čela 

trhliny pro zá těžné m ó d y II a III. 

Klíčová slova 
C T S vzorek; křivolakost trhliny; l ineárně-elast ická lomová mechanika; M K P modelování ; 

smykové zá těžné módy; součinitele intenzity napět í ; válcový vzorek 
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1 Introduction 
In recent time mankind is using more modern and advanced mechanical instruments 

and gadgets each day in all kinds of industrial branches. Even the smallest devices used 

in day-to-day applications by ordinary people are becoming very complex 

and complicated. This leads (almost) to addiction on the modern technologies because 

no-one can imagine a day, even an hour without his mobile phone, computer, car, always 

accessible source of electrical energy, etc. But accidents happen and none of these devices 

are indestructible which means that time-to-time something disturb the luxury of human 

life... 

T o improve the situation two things can be done - either to simplify everything 

and go "back to roots" without use of any complicated technology or to work on refining 

the devices to increase their durability and prolong their operating life. The second resort 

seems to be more useful in our modern society and mankind is working on this approach 

for decades. 

One particular direction in improvement of mechanisms is in term of strengthening 

the materials and improving the fatigue life of modern materials. Hand to hand wi th this 

approach goes the scientific branch of the fracture mechanics. 

Fig. 1: Example of the rough crack surface (SEM image, Vojtek et al. [1]) 

As said before, work on improvement of materials reliability has been started 

a long time ago and the fracture mechanics scientific branch is no exception. Numerous 

theoretical approaches to describe fracture behavior, fatigue of materials and related 
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material properties were developed [2] starting wi th the work of Inglis and Griffith 

in early 20 t h century. Their work was broadened by other different approaches [3-5] 

(e.g. J-integral, stress intensity factors (SIFs), crack tip opening displacement 

( C T O D ) , etc.) to evaluate the fracture parameters. These approaches were used to create 

models representing at first some abstract bodies wi th cracks (2D infinite or semi-infinite 

planes wi th central crack) but they were adapted to more real-like specimens and 

geometries at a very fast pace. These models are now used as a tool to obtain some 

description of fracture by means of quantitative results for normalized experiments [6]. 

Produced models proved to be very useful when behavior of bulk materials under 

normalized conditions is investigated. For experimental testing of materials in terms 

of fracture and fatigue behavior several simplifications can be used wi th very small, 

almost insignificant impact on investigated results. However, in cases where the influence 

of microstructure of material has to be accounted for, the basic fracture mechanics models 

fail to produce satisfactory results or to describe experimentally observed phenomena. 

In more in-depth research the crack front and faces geometry cannot be assumed 

with simple, planar geometry. It has been shown [1, 7, 8] that fractures (particularly 

under the remote shear loading) exhibit geometrical changes on the microstructure level 

of the crack front and flanks which leads to crack front and flanks roughness. 

Some simple approaches to account for geometrical microstructure of cracks 

for basic loading were already created [9, 10]. Also, the crack front kinks after fracture 

advancements were introduced (e.g. by Bechtle et al. [11], Benedeti et al. [12] and Pant 

et al . [13], to account for some kind of material microstructure) but they represent only 

a simple approach in this field. 

This work aims to investigate those cases of cracked specimens where planar 

simplifications of the crack shape are not usable and where it would lead to some 

discrepancies in results. Moreover, it is aimed at those cases where the planar model 

cannot sufficiently describe observed phenomena. Especially the shear mode loaded cracks 

(when there is no mode I crack opening) can be affected by real-like geometry of the crack 

(Fig. 1) which is in fact governed by the microstructure of used material (grain size etc.) 

and crack faces and front have a tortuous shape on a micro-scale level [1, 7, 8]. 

The micro-deviations of fracture geometry lead to the local mixed-mode loading and thus 

the results are different from standard models. 

Some influence of the crack roughness has been already investigated but mainly 

for normal mode I loading [9, 10] and not for shear modes II and III and their combination 

II+III. Recent development shows that shear modes are becoming more significant thus 

this research can improve the knowledge in the field of modern fracture mechanics. 
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2 Theory - linear fracture mechanics 
Standard approach to obtain stress and strain fields around the crack front divides 

loading according to deformation of the crack into three basic types - mode I (normal 

mode), mode II (in-plane shear mode) and mode III (out-of-plane shear mode). 

Fig. 2: Loading modes 

If the crack front is curved (described by the path / t in F ig . 2), 

the three-dimensional character must be taken into account. The stress state varies along 

the crack front and, in general, it is composed of the fields corresponding to the three 

crack opening modes. The real-like crack can be solved by superposition of these three 

modes (Fig. 2). Mode I represents pure normal loading of the crack (with the opening Si) 
and modes II and III are related to pure shear loading (with the crack faces displacements 

SJI and Sm)- It was proved that fractures in objects propagate mainly in mode I and even 

if the crack is originally loaded by pure shear mode the propagation tends to divert 

to normal mode I loading [14]. This means that historically the mode I crack behavior 

and the mode I propagation is well known [6] while the shear modes II and III are 

subjected to less research. 

2.1 iî -conception 
The stress fields ahead of a crack tip in an isotropic linear elastic material can 

be written [15, 16] as: 

where cry represents the stress tensor components, r is the distance from the crack tip, 

function fij stands for dependence of the stress field on the geometry and loading type 

and it is formulated wi th use of angular coordinate (p around the crack tip and K 
is the stress intensity factor. The stress intensity factor determines a stress singularity 

at the crack t ip and can be expressed in separate form for each loading mode [15] and 

in these forms it is commonly used for calculations in the field of linear-elastic fracture 

mechanics: 

K{ (<r,a,L1) = a-^Tta • fccal (a, L1) where i = I, II, HI. (2) 
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Described stress intensity factor is defined by the stress o in the body wi th fracture, 

by the length of crack a and by the calibration function fcai which is related to length 

of crack a and to the characteristic geometrical dimension h of cracked body. 

2.2 Energetic approach 
The second commonly used method in the fracture mechanics is an energetic approach 

developed by Irwin [3, 4]. This approach is based on the energy balance of the system 

consisting of fractured body and external forces described by the elastic energy 

of fractured body Wc and the potential energy or work of external forces Wp. Their 

combination forms energy of the entire system Wc. W i t h these energies in mind Irwin 

established a crack driving force G a s a change of the energy of system Wc in dependence 

on the change of crack length a [17]: 

Fig. 3: Scheme of the crack tip opening displacement for energetic approach 

The crack driving force G can be also considered as an energy which is released 

upon the extension of crack. Whi le the crack is extended by the length 8a (Fig. 3). 

the energy Wc (the sum of 5A+ and 5A~) is absorbed by external forces F which act 

as a counterpart to the crack opening. Their energy Wp is in this case (Fig. 3) described 

by the stress component ayy and by the crack tip opening displacement Av [14] (which is 

related to the previously described stress intensity factor and the material characteristics 

- Young's modulus E and Poisson's ration JU): 

G = 
dWc 

(3) 
da 

i da 
S W p = - j < 7 y y ( x , 0 ) A v d x , (4) 

o 

Av = (5) 
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W i t h the use of energy balance and the above mentioned equations (4) and (5) 

the relation between energetic approach and the .ff-conception can be given by (this 

relation is val id only for the linear-elastic fracture mechanic conditions) [17]: 

where E' equals Young's modulus E for plane stress conditions and E' =E/(l-/u2) 

for plane strain conditions (ju stands for Poisson's ratio) and EShC!lI is the shear modulus. 

2.3 /̂-integral conception 
The third commonly used conception in the field of fracture mechanics is the J-integral 

conception. It is widely used for modeling and calculations under both linear-elastic and 

elastic-plastic conditions which can occur when materials wi th low value of yield strength 

are used [14]. For example, the .ff-conception cannot be used under such conditions. 

Nonlinear-elastic 

Fig. 4-' Nonlinear assumption of material behavior 

Rice [5] utilized the simplification of the elastic-plastic material properties -

the original stress strain curve can be substituted by the nonlinear-elastic material 

behavior (Fig. 4). B y this assumption Rice [5] could extend the standard fracture 

mechanics beyond the linear-elastic limitations. The reason was the fact that 

for the loading phase the stress-strain curve of nonlinear-elastic material behavior 

is identical to an elastic-plastic material response (Fig. 4) thus the theory of plasticity is 

in this area of interest similar to the nonlinear elasticity [17]. 

W i t h this idealization (Fig. 4) in mind the J-integral could be formulated [5] 

as an energy release rate in a cracked body: 

( 7 ) 

dA 
n = u-PA=-u*, (8) 

p 
£ / * = J A d P . (9) 
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displacement 

Fig. 5: Load-displacement curve for object with the fracture (example) 

In equation (7) the A stands for the surface of crack and the II is the potential 

energy of a cracked body, derived from the strain energy U, deformation of the body A 

and work of the external forces P (8). The energy II can be also obtained [17] 

in an integral form (9). Used parameters are described in the picture above (Fig. 5). 

Fig. 6: The crack integration path (2D example) 

W i t h use of equation (9) and for simplified 2D geometry (Fig. 6) the J-integral 

can be expressed as [14]: 

o 

where 7] are components of the vector of surface forces in perpendicular direction 

to the integration path r, Ui are the components of a vector of relative displacements. 

s stands for the length of integration path and wc is the strain energy density (cry and £y 

are the stress and strain tensor components). 

Furthermore Rice [5] proved that the J-integral itself is independent 

on the integration path (as long as it starts at one side of the crack and ends on the other, 

see F ig . 6) [9, 10]. 
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If the linear-elastic fracture mechanics conditions are met then the J-integral can 

be also decomposed to the stress intensity factors K\ (i = I, II, III) for plane strain 

conditions: 

I + JU 
{1-JU)(K? + K2

U) + K 

or for plane stress conditions: 

J = \[Kt + Kl + {\ + ii)Kl^ 

(12) 

(13) 

where JU and E stand for the Poisson's ratio and Young's modulus respectively. 

2.4 Evaluation of fracture parameters using Ansys code 
Calculations of fracture parameters described in chapters 2.1 - 2.3 are useful only 

in conjunction wi th the simplified models of fractures or they have to be adjusted to work 

with some irregularities and then these approaches are too complicated for routine use. 

Therefore, a different approach was devised - use of finite element method ( F E M ) , 

for example Ansys code. 

The accuracy of evaluated results by F E M is directly connected to appropriate 

construction of the finite element mesh. The mesh can be either very fine or it can exploit 

known qualitative properties of expected stress and strain fields in the model. The first 

approach leads to huge models wi th very long evaluation times, so it is not suitable unless 

a very fast and advanced workstation is available. O n the other hand, for modeling 

of cracks the second approach can be used very easily. The stress (strain) around 

the crack tip decreases radially from singularity at the crack tip to nominal values 

far away from the crack (as shown in formula (1)). This radial distribution can 

be matched wi th radially created finite elements mesh. 

b) 

Fig. 7: a) Example of the finite element mesh around the crack tip, b) schema of shifted 

mid-side nodes (red dots represent nodes) 

Final mesh consists of one row of wedge elements around the crack tip and radially 

enlarging standard elements (see F ig . 7 - a)). 

To enhance this type of mesh one "numerical tr ick" can be used. The quadratic 

elements (with quadratic base functions, see [18]) have evaluation node in each corner 

and also one in the middle of each side, so-called mid-side node. If this node is closer 

to one side of the element it creates numerically introduced artificial singularity and 
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if the mid-side node is exactly in lA of the side of element (see F ig . 7 - b)) the artificial 

singularity corresponds to the square-root singularity of the strain and stress field near 

the crack tip [19-21]. W i t h a well resolved F E mesh the fracture parameters can 

be evaluated using several Ansys build-in features. 

2.4.1 Contour integration method 
W i t h use of the C I N T sub-routine [18] both J-integral and /f-factors (and several other 

parameters [18]) can be evaluated. A t first a local coordinate system wi th the a;-axis 

in the direction of the crack and the y-axis in the direction perpendicular to the crack 

faces must be created and appointed to specific node at the crack tip. Then by numerical 

contour integration through the elements around the crack tip, the J-integral can 

be calculated directly [18] by formula: 

ie=l |_ 

where ne is the number of elements to be integrated, cry is the stress tensor, 

Uj is the displacement vector, wc is the strain energy density, <Sij is the Kronecker delta, 

Xi is the coordinate axis, q is referred to as the crack-extension vector, WiW is the weight 

function, and Aic is the area of the element represented by ie. Equation (14) was derived 

from standard approach by Shih [22]. 

Evaluation of the stress intensity factors is not so simple. They are derived from 

so-called interaction integral / which is expressed by following formula [18]: 

/ = ~l q, (a^TS, - < X - c r k A 7 ) d V 1 1 S q R d s , (15) 

where cry, £y and % are the stress, strain tensors and the displacement vector, eryaux, £y a u x 

and « i a u x are the stress, strain and the displacement of the auxiliary field and q is 

the crack-extension vector. Classical integration from formula (15) is transformed 

to numerical integration for purposes of F E M . Evaluated /-integral is then associated 

with the stress intensity factors by relation [18]: 

/ = | ; ( ^ r +K11K-) + -^-K111K-, (16) 
shear 

where K\ (i = I, II, III) are mode I, II and III stress intensity factors, / G a u x (i = I, II, III) 

are auxiliary mode I, II and III stress intensity factors, E' equals to E for plane stress 

and E/il-jj2) for plane stress (E stands for Young's modulus), JJ is Poisson's ratio 

and .Shear is shear modulus. F r o m relations (15) and (16) Ansys software can obtain values 

of the stress intensity factors v ia its internal procedures [18]. 

dq 
W e , i e A e > (14) 
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Fig. 8: Example of two integration contours A and r2 

Both procedures (calculation of the J-integral and the if-factors) uses numerical 

integration along contours r. Number of contours is adjustable, and they are always 

constructed through the closest row of the elements around the crack tip (example of two 

integration paths is in F ig . 8). 

The contour integration method is quite easy to implement in parametric 

simulations and it yields accurate results. Nevertheless, it can be used to evaluate both 

the SIFs and the J-integral, while the second mentioned fracture parameter can 

be evaluated even when the isotropic plasticity is used for material model in simulation 

(the SIFs can be evaluated only wi th assumption of linear-elasticity). For these reasons 

in calculations presented in this thesis only the contour integration method was used. 

2.4.2 Displacement extrapolation method 
The second (and original) method for evaluation of SIFs at the crack tip 

is the displacement extrapolation method [18]. This method uses analytically predicted 

deformation around the crack after loading and it finds the SIFs values according 

to the best fit of these functions through 3 or 5 points along the crack flanks. 

The interpolation functions are based on simple relations of displacements ux, Uy and 

wz [17] evaluated from all three loading modes: 

K, 
w, = • 

2E 

r (p 
cos — 

In I 2 
r - l + 2sin 

. 2 , 

K„ 
2 £ , shea r V 2jt 

sin r + l + 2cos 
v 2 J 

K, 

2E 'shear 

sin — 
2n U . 

r + l - 2 c o s 2| <P (17) 

2 £ , shear V 2jl 
cos K — \ — 2sin 2| <P 

.HI 2K, in 
^shear V 2TL 

sin 
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where Khear is the shear modulus, (p and r are the polar coordinates around the crack tip 

and K = 3 - 4JJ (plane strain) or K — (3 - j t /)/(l + / i) (plane stress) where JJ is 

the Poisson's ratio. 

To properly evaluate the coefficients K, K\ and Km the local coordinate system 

for the crack tip must be created. The origin of the new system is at the crack tip, 

the :r-axis must be parallel to crack faces and ?/-axis must be perpendicular to the crack 

faces. 

Fig. 9: Scheme of the coordinate system and evaluation nodes placement for KCALC 

subroutine for a) symmetrical (or anti-symmetrical) and b) fully modelled crack 

After the definition of correct coordinate system (Fig. 9), the new path has 

to be created using the Ansys P A T H command. It should contain 3 (for the symmetrical 

or anti-symmetrical crack) or 5 (for full crack model) nodes on the specific locations along 

the crack flanks (see numbered points in F ig . 9). 

After the characterization of evaluation nodes and coordinate system, the plane 

strain or plane stress conditions and the crack symmetry (if present) must be specified 

via K C A L C subroutine [18] and in the postprocessor unit the resulting SIFs can 

be evaluated from deformation fields around the crack tip. 

This method is simple to use, and it does not need any additional extensive 

computational time but on the other hand our comparison wi th contour integration 

method revealed that this type of SIFs evaluation is strongly dependent on exact 

locations of evaluation nodes (which is not exactly defined or described in Ansys support 

materials [18]). Also, this method provides only the SIFs as a result and is useable only 

for linear-elastic, homogenous material behavior. 
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2.4.3 Energy-release rate calculation 
This approach for evaluation of the energy-release rate is based on vir tual 

crack-closure technique ( V C C T ) . The V C C T method assumes that the energy needed 

to separate a surface (crack advancement) is the same as the energy needed to close 

the same surface. In Ansys finite element (FE) software, the basic V C C T method 

is modified and assumes further that the stress state around the crack tip does not change 

significantly for crack growth by a small amount [18]. 

A w 11 

0. 

A v 

Aw/" 

Fig. 10: Schematic of the 3D crack geometry with parameters for VCCT method 

The energy-release rate d for the 3D crack geometry for V C C T method is defined 

as [18, 23, 24]: 

1 
a =-

2AA y 

2AA 
(18) 

2AA 
RAw, 

where d, Gu and Cm represent the energy-release rate for modes I, II and III respectively, 

Au, Av and Aw are the relative displacement between top and bottom nodes of the crack 

face in the local coordinates x, y and z respectively, Rx, Ry and R£ are the components 

of reaction forces at the crack tip node and AA is the crack-extension area (all mentioned 

characterizations are visible in F ig . 10). 

Actua l evaluation of the energy-release rate is performed wi th use of C I N T 

function (already mentioned in the chapter 2.4.1), for the V C C T method the crack tip 

node component and the crack-extension direction must be specified similarly 

to evaluation of the J-integral described in the chapter 2.4.1. For the crack-extension 

direction the V C C T method requires that the F E mesh nodes are present at their exact 

direction whereas the J-integral calculation does not. 
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The V C C T method allows to obtain Gi, Ga and Gm for models with 

linear-isotropic, orthotropic or anisotropic elasticity used for material model. Under these 

assumptions the energy-release rate can be assumed as equal to the J-integral. 

2.5 Shear modes 
Despite the ini t ial importance and extensive research of the fractures loaded by normal 

mode I, the research on shear cracks started slowly wi th early works [25-27] on I+II and 

I+III mixed mode loading. Pure mode II and III loading and also combination of shear 

modes II+III were under more complex investigation later [28-30]. For the purpose 

of investigation of shear modes several specimens and loading setups were used. 

> 

o o 

-6 > 
f 

Fig. 11: Example of the three experimental setups for shear mode loading 

Two widely used specimen geometries and the experimental setups for shear mode 

loading are the Compact-Tension-Shear (CTS) specimen (Fig. 11 - a)) for pure mode II 

loading and circumferentially cracked cylindrical specimen which can be loaded by torsion 

for pure mode III loading (Fig. 11 - b)) or by shear to investigate pure modes II and III 

and mixed-mode loading II+III on one specimen simultaneously (Fig. 11 - c)). 

The C T S specimen, originally developed by Richard [31, 32], is a plate wi th crack 

with geometry very similar to the Compact-Tension (CT) specimen. For pure mode II 

loading it has to be loaded in the direction of crack (Fig. 11 - a)). W i t h the special 

gripping device this specimen can be used also for mixed mode I+II loading [33, 34]. 

The cylindrical specimen loaded by torsion (Fig. 11 - b)) allows to easily obtain 

results for pure mode III loading along the whole circumferential crack. The specimen 

itself is a cylinder wi th circumferential notch in the middle and from its t ip a crack starts 

to propagate. The loading by torque moment does not introduce any other type of loading 

thus from the global view no mode combination (or mixi ty) is present. 
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The last specimen depicted in F ig . 11 - c) was introduced and is used in a special 

experimental setup to investigate mixed-mode II+III loading (for example [7, 35, 36]). 

It uses the same cylindrical specimen as in the torsion setup (mentioned above). 

The griping device was developed to bend the specimen as a whole. But in place, where 

the crack is, the bending momentum equals zero and the only acting force is the shear 

force. Testing and modeling of this experimental setup proved that around 

the circumference of the specimen there is only mode II, III and II+III loading [7, 36-40]. 

2.5.1 CTS specimen 
As was mentioned in the chapter above, the C T S specimen was developed 

for investigation of the cracks loaded by pure mode II and mixed-mode I+II loading. 

The specimen was created wi th several requirements in mind [32]: the specimen has 

simple and compact shape, pure shear mode loading is distributed over large area 

of the specimen, the crack tip is loaded only by pure shear mode and the stress conditions 

are little affected by global geometric alterations. 

h/2 , h/2 n r r n K r 

—' »-L* '- »- a = 0.55 - 0.65«; 

c = 1.2w 

/ = 0.2™ 

h= 1.7™ 

r.= 0.075«; 

0.45™ 

0.225™ 

Ö 

0.05™ 

0.45™ 

0 0 
0 

I 

Q 
0.6w T F 

0.55™ 
I' 

1.05™ 

0.2™ 0.5™ 0.2™ 

Fig. 12: Original CTS specimen specifications [32] 
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Above mentioned specifications clearly show that the C T S specimen (Fig. 12) 

represents a good testing setup for pure mode II shear loading. 

Richard used the equation for analytical calculation of the stress intensity factor 

Kw for original C T S specimen wi th relative dimensions [32] (which was later rearranged 

by Plank and K u h n [41]) from where the K\\ can be derived: 

t 

-0.23 + 1.4- a 

w — a 

1-0.67- a 
f 

w — a 
+ 2.08 

\w—a ) 

(19) 

where F is the applied force, t is the thickness of the specimen and a and w are 

the characteristic dimensions of the specimen (see F ig . 12). 

Richard and Benitz later improved and furthermore investigated this type 

of specimen [31] and they also adjusted the loading device for mixed-mode I+II 

loading [31]. 

In more recent works L i et al. investigated fracture behavior of the C T S specimen 

under pure mode II and mixed mode I+II loading [33, 34]. They used numerical fracture 

analysis and modeled the C T S specimen as a 3D geometry thus they obtained the stress 

intensity factors values along the whole crack front. The results for pure mode II loading 

were in good accordance wi th the original Richard's work [33, 34]. 

-0.5 

-1 L 

-0.25 

#IIIn(3D) 
•iifiin(3D, pi . str.) 
»Jfn„(2D, ref. pi . str.) 

f i l l 

0 
2, 

0.25 0.5 

Fig. 13: Example of results obtained by Li et al. [33] 
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The results which are depicted in chart above (Fig. 13) are normalized stress 

intensity factor values (in accordance wi th the original Richard's idea [32]): 

as a function of normalized thickness coordinate Za which is 0 for the middle 

of the specimen and ± 0 . 5 for free surfaces of the specimen [33, 34]. 

In these works the mixed mode I+II loading and the inclined crack path were also 

investigated [34]. Among other things the results showed that the C T S specimen 

is suitable for such research of the shear mode fractures and also that on both sides 

of the specimen there is some amount of induced mode III loading (caused by Poisson's 

ration influence on the free surface of specimen [6], see F ig . 13) and also mode I loading 

for the inclined cracks [34]. Bo th phenomena were observed even when pure remote 

mode II loading was applied [33, 34]. 

K, 
where i = I, II, IE, (20) 

wb 
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2.5.2 Cylindrical specimen 
As described in the chapter 2.5, the cylindrical specimen can be used for the two types 

of experimental setups - torsion and shear loading. For both setups the same geometry 

of specimen can be used - a cylindrical bar wi th circumferential notch. The crack itself 

propagates from the tip of the notch. 

u 
. 2 

1 r 

K C J 

X 
30° 

Fig. 14: Schema of the cylindrical specimen (example dimensions) 

2.5.2.1 Torsion loading 
For pure remote mode III loading a torsion loading of cylindrical specimen is ideal. 

For pure torsion loading the specimen (Fig. 14) was clamped in a special device (Fig. 15) 

which transforms push-pull loading into torsion momentum [42]. 

\f \f 

Fig. 15: Schema of the torsion loading device [42] 
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For analytical evaluation of corresponding mode III SIF the following formula can 

be used [42]: 

i 6 r 
K„ Tta • Y,„ (21) 

where T is the loading torque, D is the outer diameter of specimen, a is the total crack 

length and Yin is a geometry factor depending on overall geometry of the specimen. 

Factor Ym can be derived from asymptotic relations introduced by Benthem and 

Koiter [43]. After appropriate adaptation the function Ym can be written as [42]: 

Ym=f 
_5 f 

l + - £ + - < f +—<f + — <f + 0.208<f 
2 8 16 128 

(22) 

Factor Ym in (22) depends only on ratio £=d/D of the inner diameter of specimen 

d (the un-cracked portion of specimen d = D - 2a) and the outer diameter of the specimen 

D and it can be used with the formula (21) wi th better than 99% accuracy [44]. 

2.5.2.2 Shear loading 
To test pure remote mode II and III and also mixed-mode II+III loading on one specimen 

simultaneously a special testing device had to be utilized [35, 36]. 

Fig. 16: Schema of the testing device for shear loading of the cylindrical specimen 

The gripping device (Fig. 16) can be easily mounted in a push-pull device 

to transform the tensile forces to simple shear loading. The specimen itself is clamped 

in the central location of the device which assures that at the central point (where 

the notch wi th crack is present) the bending momentum is exactly zero, therefore 

no superimposed mode I is present. 

Actua l distribution of modes II and III loading at the crack front around 

the specimen changes from pure mode II loading to pure mode III loading. 
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shear direction 

Fig. 17: The specimen cross-section with the corresponding loading modes 

A t the top and bottom of the specimen a pure mode II loading is present, at sides 

of the specimen a pure mode III loading is present and between these special points 

a mixed-mode II+III loading is present (Fig. 17). Loading components are functions 

of polar coordinate (j). Our previous research showed that for coordinate system with 

<j) = 0° at the top of the specimen the mode II and III SIFs follow functions cos(^) and 

sin(^) respectively [37]. 

The maximal values of K\ (at <j> = 0° and 180°) and Km (at <j> = 90° and 270°) can 

be expressed as [42]: 

4 F 
K. -4Ťt~a-Y,\ i = n , n í , (23) 

where F is the loading force, D is the specimen outer diameter, a is the total crack length 

and F are the geometrical correction factors. The actual functions of F in equation (23) 

were derived from F E M results by Horníkova et al. [37] and for dimensions 

of the specimen used in this research are expressed as [42]: 

F n = 27.7861-

and: 

Ym = 8.15575-

/ x 0.388981 
' a y 

/ \ 0.173354 

' a ^ 

(24) 

(25) 

Expressions of Fn and Ym in equations (24) and (25) are shown only as a functions 

of the crack length a. Ac tua l correction factors should be functions also of the specimen 

dimensions but for this experimental setup a val id .ff-calibration was done only for one 

size of the specimen (same as in F ig . 14) and thus the relation between geometrical factors 

and the specimen dimensions is unknown. 
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2.6 Influence of the crack front and flanks microstructure 
on the SIFs 

Material characteristics related to the fracture mechanics are derived from experimental 

results, but the data evaluation is based on elementary theory for homogenous body with 

straight planar crack. This theory generally does not account for microstructural patterns 

of the crack front and flanks. However, changes of shape of the crack front due 

to microstructural heterogeneities in material belong to toughening mechanisms [45, 46]. 

Moreover, even if the specimen is loaded by the pure remote mode loading the tortuous 

shape of crack front leads to decrease of the crack driving force caused by localized 

mixed-mode 1+11+111 loading [47, 48]. 

Influence of the crack roughness on changes of the crack driving force is called 

roughness induced shielding (RIS) [10] and it can be seen from various points of view. 

During the last decades, there have been some works submitting and solving 2D models 

of RIS [9, 49-52] but these models were far from explaining the real implications of RIS 

on the fracture behavior even for simple normal loading. 

The RIS can be observed from three points of view. The first one was the most 

investigated in past years and it is related to the crack faces interaction. When remote 

mode III loading is present, the crack faces slide on each other. If no remote mode I 

is present and crack faces are assumed to be planar, there should be no crack faces 

interaction. However, real-like cracks are rough and some mode I loading is almost always 

present in the real applications. 

Fig. 18: Example of zig-zag shaped crack under remote mode III loading 

When just a simple zig-zag shape of crack faces and pure remote mode III loading 

is assumed (see F ig . 18), crack faces start to interact, and the effect of this interaction 

is inducement of mode I loading and crack opening. These phenomena were investigated 

by several authors, for example Gross and Mendelsohn [53], V a z i r i and 

Nayeb-Hashemi [54] or Gates and Fatemi [55]. 

The second one is related to the linear crack front roughness where a zig-zag crack 

front shape (either simplified or not) is assumed, but the crack front geometrically stays 

in plane of fracture. 

mode I 
crack opening 

remote mode III loading 
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Fig. 19: Local mode II advances of the crack under remote mode III loading [56], 

Tn and Tin stand for mode II and III shear stress components 

It was proved that for serrated cracks under remote mode III loading (Fig. 19) 

there are present local mode II advances of the crack front [56] and thus the crack front 

geometry has significant impact on the crack propagation. 

In the third approach a full 3D crack model has to be employed. In this case 

a small portions of crack are assumed to be kinked in a 3-dimensional space. 

Fig. 20: Intergranular crack front ("pyramidal model" used by Pokluda et al. [10]) 

However, the crack kink angle is not uniform along the whole width of crack, 

it is changing instead (Fig. 20). In the year 2003 a statistical approach to this type 

of crack was introduced [10] for remote mode I loading. This approach accounted 

for statistical appearance of the fracture roughness and employed a method 

for quantitative interpretation of some phenomena related to RIS in metallic materials 

with use of "pyramidal model" of intergranular crack front solved analytically and 

numerically. 
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3 Aims of the thesis 
As was described in review in chapter 2.6 there is some research accounting for the crack 

front and flanks microstructure, but the knowledge aimed on the fracture mechanics 

specialized on effects caused by small structural deviances from ideal shape is poor, 

especially in the field of remote shear mode loading. Even if some simplifications are taken 

into consideration, the most of existing studies are aimed only on the basic configurations 

and normal mode I loading [10]. Research from present perspective shows that knowledge 

aimed only at normal mode loading is not sufficient in order to fully understand all 

intricacies of the fracture mechanics. Therefore, this work aims to contribute to present 

research on shear loaded fractures affected by deviances from standardized and long used 

models. Tracked and investigated deviances are mainly the geometrical abnormalities 

of the fracture geometry from generally used planar models of the crack. 

a) b) 

Fig. 21: The fracture surface morphology (two different fracture mechanisms: 

a) - trans granular, b) - intergranular) [10] 

These variances of the fracture surfaces exhibit in different forms for almost all 

fracture mechanisms. They are mainly governed by the grain structure and 

microstructural composition of real materials, such as polycrystalline metallic materials 

(e.g. iron, niobium, etc.). A s was mentioned above, these geometrical nuances are mostly 

deemed as insignificant and their influence is not evaluated. However, if the complex 

crack shape should be modeled more realistically, the microstructure could be viewed 

from several different angles. 
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Fig. 22: Schematic examples of the crack micro structure with: a) out-of-plane 

tortuosity, b) in-plane tortuosity, c) partial tortuosity with twist and kink of the crack 

Some examples of the crack micro-geometries are shown in F ig . 22 where all three 

examples are cracks where the a;-axis denotes the general crack propagation direction and 

the x-z plane is the general crack plane. Schema a) shows the crack wi th only out-of-plane 

tortuosity where the crack plane is rough along its whole length, but the crack front lies 

still in one plane parallel to the y-z plane, schema b) shows in-plane tortuosity where 

the crack flanks are ideally planar and only the crack front shows tortuosity, but st i l l 

in the plane x-z, schematic c) then shows partially rough crack wi th both kink and twist 

of the crack. In case c) the crack front can lie in one plane the same as in schema a), 

but it can also introduce some crack front tortuosity like in the schema b). Of course, 

the combination of ) and b) can be modeled too and it is closer to reality than 

the separate cases a) and b). 

The crack geometries described in paragraph above can lead to local induction 

of all loading modes I, II and III and their combination I+II+III along the crack front 

which affects resulting crack behavior and if this phenomenon occurs for example during 

some fracture toughness measurement, actual measured value obtained by standard 

methods can be affected by significant error, because present models and methods do not 

take into account these phenomena. 

Research in this thesis deals with investigation of influence of the fracture 

microstructure on SIFs for cracks subjected to shear mode loading. The aim is to find 

the relation between the crack front or the crack flanks roughness and fracture 

parameters. This relation should be investigated for remote mode II and III loading. Pure 

mode II loading can be investigated using standardized C T S specimen (Fig. 11 - a)). 

For the pure mode III loading a cylindrical torsion specimen (Fig. 11 - b)) can be used. 

Investigation of these specimens on which is this thesis aimed should bring some insight 

to shear modes behavior therefore this thesis wi l l contribute to broadening of the fracture 

mechanics theory. 
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Alongside the investigation of influence of the crack front micro-geometry 

on the fracture parameters some innovative approaches of evaluation of SIFs along 

geometrically complex fractures should be created. W i t h use of both analytical 

and numerical ( F E M ) approaches, new (more universal) mathematical models should 

be created if possible. This means both pure mode II and III loading and also 

mixed-mode II+III loading. 

Some correlation between presented models and experimental results is also 

expected. The findings obtained from numerical and analytical modelling should be used 

to correct the experimental data in terms of accounting for the crack micro-geometry. 

Moreover, the results should be compared to the research done by different authors. 
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4 Models and results 
In this work two types of mentioned specimens were investigated 

in detail - the cylindrical specimen and the C T S specimen (see chapter 2.5). 

A t first, the influence of the crack front zig-zag shape in plane of fracture 

is discussed and some model simplifications are suggested. For this purpose, 

the cylindrical specimen was modeled, and some results were used in conjunction wi th 

the experimental work of Vojtek et al. [8], done wi th the same specimen. 

The second part of this work aims at decrease of the SIFs due to the crack front 

and flanks roughness for remote mode II loading. The C T S specimen is suitable to model 

this type of the crack roughness (for mode II shear loading). The crack geometry was 

modeled to resemble the crack surfaces observed on real fractures (either wi th use 

of in-plane and out-of-plane roughness or with crack front kink and twist, see F ig . 22). 

Decrease of calculated SIFs was used for correction of the experimental threshold values 

which were than compared to the theoretical ones predicted by multiscale models. 

Part which was done within the frame of this thesis is aimed at numerical modeling 

of mentioned specimens and actual evaluation of results. Whi le these calculations were 

compared, verified and used in direct conjunction wi th the experimental data, 

the experimental work was only adopted from other authors. 

4.1 Cylindrical specimen 
The first type of investigated model was the cylindrical specimen. It allowed to look 

on things of interest for both modes II and III simultaneously, either via torsional loading 

(see chapter 2.5.2.1) or via shear loading (see chapter 2.5.2.2). Also, the cylindrical 

symmetry of specimen could be exploited since investigated crack serrations stayed 

in the plane of crack. Moreover, these models were used in conjunction wi th the real 

experiments on fatigue thresholds for mode II and III loading done by Vojtek et al. 

(e.g. [8, 36, 56]). Par t ia l ly for that purpose, two material models were used 

for the cylindrical specimen to simulate the experiments executed on the specimens made 

out of pure A R M C O iron and niobium. 
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4.1.1 Numerical model 
To obtain actual values of the SIFs along the crack front a numerical model had 

to be created. A l l used models were created solely in the Ansys software, all types 

of simulations were static-structural type wi th only linear properties taken into account. 

Several simplifications of used models had to be considered to obtain sufficiently 

precise stress and strain fields around the crack front. Also, some special techniques 

to speed-up the calculations and to obtain more precise results were used. Simplifications 

were related mainly to the geometry of the crack front (but the crack front asperities 

were evaluated in the end) and the main special technique which was used is called 

submodelling. 

The submodelling procedure consists of (usually) two-stage modelling where 

the first model (called global model) represents the whole geometry of the specimen but 

it lacks some small features which can be neglected from the point of view of the global 

deformation of the whole model. This means that one can get the stress and strain fields 

on the global level but not any fine results from small regions (for example notches 

or in this case the crack front microstructure). For the purpose of evaluation of these 

small regions of interest a particular area of the global model is subsequently modeled 

again wi th much finer F E mesh and all needed geometrical details (this new, smaller 

model is called the submodel). A s boundary conditions a displacement field from results 

of the global model is interpolated on boundary nodes of the submodel. 

Fig. 23: Example of submodelling (the global model on the left and the submodel 

on the right side, red line represents the submodel boundaries) [18] 

Suitable submodel must follow several rules. A t first the submodel boundaries 

must be in a sufficient distance from modeled detail to avoid any impact of geometry 

changes on the stress-strain fields on the boundaries [18] (for example the submodel 

boundaries should never cross any geometrical difference between global model 

and submodel). Then the modeled area (volume) of submodel must coincide with 

the same area (volume) in the global model in relative position to used global coordinate 
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system [18]. These two geometrical conditions can be seen in F ig . 23 where an example 

of fillet submodel is shown. Also, all additional boundary conditions (except 

on the submodel boundaries) must be the same on both models. 

Preparation of submodel 
L 

Global model 
1 

Pre-submodel and 
creation of rough 
crack front 

4 # Model 
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Fig. 24: Workflow of simulations of cylindrical specimen 

In al l models of cylindrical specimen, the submodelling process was done using 

the Ansys Workbench inner submodelling procedure. A special model workflow had 

to be created (Fig. 24). It consisted of both the global model and the submodel and also 

one intermediate step - the preparation of the submodel where actual geometry of rough 

crack front was created. A l l steps were connected via parametrization block, so the basic 

geometrical changes of the crack asperities could be realized by changing specific values 

and sub-sequential reruns of the whole simulation. 
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4.1.1.1 Global model 
As was briefly described in chapter 4.1.1, the global model should encompass the whole 

specimen wi th al l global boundary conditions. In this case the whole cylindrical specimen 

was modeled wi th the same dimension as was specified in F ig . 14 (chapter 2.5.2). Ac tua l 

crack in this model was emanating from the tip of the notch. 

Fig. 25: Detail of the notch root with crack (scheme, cylindrical specimen) 

Geometrically the actual crack itself in the model had a length denoted OpC which 

was the distance between the crack tip and the notch root. It represented real pre-crack 

in experiments. The total considered crack length consisted of length of the pre-crack %,c 

and also the depth of used notch an so it was a = apc + an (see F ig . 25). In used models 

of cylindrical specimen, the average precrack length was considered to be 175 um and 

the depth of notch was 6.5 mm. The last used dimension (not described in F ig . 14) was 

the notch root radius p which was 150 um. A l l these dimension were consistent with 

the real specimen and the scanning-electron-microscope (SEM) measurements 

of the crack microstructure [8]. 

Fig. 26: Modeled geometry of cylindrical specimen 
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The geometrical model of global model was created exactly according 

to the dimensions in F ig . 14 and F ig . 25 (with the description of the total crack length) 

and for better F E meshing of the whole volume it was divided into several subsections 

(see F ig . 26). The crack itself was modeled as a circumferential planar discontinuity 

in bulk of the model. No crack front asperities were included in this stage of modelling 

since on this scale they could not be modeled efficiently. 

The geometry was meshed wi th a rough F E mesh which was sufficient enough 

to describe deformation of the specimen as a whole, but still it was fine enough to describe 

displacements of whole specimen. The preciseness of the F E mesh was even more 

improved by use of the Ansys quadratic 20-nodes mesh element (SOLID 186) which uses 

quadratic base functions to approximate the displacement along its edges [18]. 

Fig. 27: FE mesh of global model (one quarter of the whole model) 

Used F E mesh was shaped on purpose to create uniform distribution of elements 

throughout the model (Fig. 27). Rougher finite elements were allowed on sides 

of the specimen where almost rigid movement of clamped sides of the specimen was 

expected. O n the other hand, even that no exact solution around the crack was either 

expected nor needed, in this stage of modeling the F E mesh was a bit finer in the region 

of the notch root and the crack to ensure that no error is introduced due to poor mesh 

quality (even on this modelling stage). 

Loading of the model was introduced to mimic the real one. For cylindrical 

specimen two types of loading schemes were used - torsional loading and pure shear 

loading. 
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A: global_model_torsion 
Static Structural 
Time: 1, s 
24.10.2017 11:51 

Fixed Support 

Moment 10000 N-mrfi 

Frictionless Support A 

0,00 20,00 40,00 (mm) 

10,00 30,00 

Fig. 28: Torsional loading of global model 

A: global model shear 
Static Structural 
Time: 1, s 
24.10.2017 11:44 

; 

Fixed Support 

Force: 5800, IM 

0,00 20,00 10,00 (mm) 

r 

k 

Fig. 29: Pure shear loading of global model 

For both loading types one side of specimen was fixed by the "Fixed Support" 

which restricts movement (displacements) in al l direction of affected nodes (surface areas 

denoted A for both loadings in F ig . 28 and Fig . 29). F ixed area was exactly the same 

as griped part of the specimen during real experiments and it simulated the real rigid 

grip. The other side of the specimen was different for each loading type. For torsional 
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loading a torque moment was introduced (surface area marked B on F ig . 28) with 

the magnitude of 10 N m for model wi th niobium as used material and 16 N m for model 

with pure iron as used material model. For shear loading a force was applied (marked B 

in F ig . 29) in the direction opposite to the y-axis and wi th magnitude of 3600 N for model 

with niobium as used material model and 5800 N for model wi th pure iron as used 

material model. Ac tua l magnitudes of the loading force and moment are insignificant 

since linear elastic simulations were used (observed SIFs are linearly dependent on 

loading and results were always normalized to loading, see following chapters) but they 

were chosen to copy the conditions during the experiments for measurement of the 

threshold values of SIFs and other related research done by Vojtek et al. (e.g. [8, 36, 56]) 

for used materials. 

Except the loading momentum or force, the second side of specimen was also 

treated wi th one additional boundary condition. For torsional loading the "Frictionless 

Support" was applied to the whole circumference of gripped part of the specimen. 

This meant that any displacement in radial direction of the cylinder was suspended and 

thus the gripped part of the specimen only rotated (from global point of view). For the 

shear loading the same area wi th force loading was needed to move as a rigid body 

in the direction of force loading (to simulate rigid behavior of the clamping device). 

This was achieved by applying coupling constraint [18] to all gripped nodes. B y applying 

the C P function all selected nodes were coupled to have the same absolute displacement 

in selected direction. This constraint denied the model to bend along the grip and thus 

no unwanted loading (e.g. mode I loading along the crack front) was present. 

The last input for this stage of simulation was the material model. Only linear 

elastic, isotropic behavior of the model was considered, and the linear constants were 

used in conjunction with the experiments done by Vojtek et al. (e.g. [8, 36, 56], 

as mentioned before) which were done on niobium and pure A R M C O iron. For niobium 

the Young's modulus E = 105 G P a and shear modulus EShC!lI = 38 G P a and for pure iron 

the moduli were E = 211 G P a and EShC!lI = 82 G P a . Because only isotropic elasticity was 

considered, the other material elastic constants were only dependent on E and Es^ 

and can be easily calculated from them (for these basic relations see e.g. [57-59]). 

When all inputs were introduced, whole simulation of the global model could 

be solved. Since there were no micro-changes in crack geometry, this model was 

calculated only once per loading regime and material model and the results from these 

four models were used as an input for subsequent submodelling. 
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0,000 15,000 30,000 (mm) 

7,5IH 22,500 

Fig. 30: Total deformation of global model (pure shear loading, F = 5800 N, 

ARMCO iron), depicted deformation is exaggerated to show the difference between 

deformed model and undeformed wireframe 

Although the global model was not fine enough to describe the stress-strain fields 

around the crack t ip, it was good enough to solve overall deformation of the specimen 

(example of deformation of pure shear specimen is in F ig . 30). The specimen deformation 

was in all cases consensual wi th expectations (pure shear or torsional loading). 
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4.1.1.2 Preparation of submodel 
In general, the submodel consists in many cases only from a small part of the global 

model which is modeled wi th much finer F E mesh. In other cases, there are some minor 

alterations in overall geometry or composition of the model in submodelling part 

(for example chamfers or fillet-like geometry e.g. [60, 61] or added small structures [62]). 

In this simulation of complicated crack geometry, the submodel introduces better 

F E mesh and also a tortuosity of the crack front which is different from simple 

circumferential line used as the crack front in the global model. 

For all simulations made on the cylindrical specimen the crack front tortuosity 

was modeled according to F ig . 31. Crack front was shaped as a uniform zig-zag line 

alteration and thus it formed teeth-like formation. The crack front was sti l l in one plane 

and no 3-dimensionality of crack front or flanks was allowed. 

Using Ansys A P D L code [18] "teeth tips" were created as keypoints at angular 

distance corresponding to 200 p i between upper tips (thus 100 um between alternating 

keypoints) and in radial distance from the center of specimen cylinder alternating 

between Rmin and Rmax (see F ig . 31). The minimal and maximal radiuses were dimensioned 

to form desired height of teeth (difference between Rmax and Rmm) and the mean value 

of used radiuses (crack tip mid-line) was always the same as overall crack length used 

in global model (see chapter 4.1.1.1 and F ig . 25). B y connecting these points by lines, 

a crack front was formed geometrically. This jagged line was used to set bounds of crack 

faces in a toroidal cutout from the global model. Created toroidal model was actually 

formed from two parts divided by the crack plane where the crack faces were created 

as two unique faces for both sides at the same location, thus creating the crack flanks. 

This procedure created geometrical model of submodel wi th jagged crack front. 

The parametrization block (see F ig . 24) provided input parameters in form of teeth height 

and distance between teeth tips. 

crack face 

Fig. 31: Schematic of crack front fine shape 
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4.1.1.3 Submodel 
Geometrical model wi th zig-zag shaped crack front created using A P D L commands 

(see chapter 4.1.1.2) was used as a template for actual submodel. 

Fig. 32: Geometry of submodel 

Geometrically the submodel was a simple toroidal ring (see F ig . 32) encompassing 

an area of the notch root and the crack wi th serrated tip. This model allowed to minimize 

the meshed volume but sti l l wi th enough space around the crack to fulfill the 

submodelling conditions [18]. 

The geometrical model was meshed wi th quadratic S O L I D 186 Ansys mesh 

elements [18]. 

0,000 0500 l.«B(nvn) 

0.750 0750 

Fig. 33: FE mesh of submodel (left, submodel ring with showed cross-section) and detail 

of mesh spacing along the crack front (right, red line represents crack front) 
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The submodel was meshed wi th fine F E mesh which was refined in area close 

to the crack front (see F ig . 33 (left)). Number of used elements was optimized to yield 

sufficiently precise results but at a low cost of calculation time and hardware 

consumption. Even wi th this in mind, used 3D model resulted in almost 2 mil l ion of mesh 

elements (approximately 7 millions of evaluation nodes) which was on the edge 

of computational capabilities of used workstation. 

This mesh was also built for good evaluation of the SIFs. A long each tooth 

serration four mesh elements were used (see F ig . 33 (right)). Because the quadratic 

elements wi th mid-side nodes were employed, nine evaluation points along each tooth 

side were available for numerical calculation of the SIFs (according to method described 

in chapter 2.4). 

D: submodel s 
Imported Cut 
Time: 1, s 
Total 
Unit: mm 
22.11.2017 10:46 

0,012672 M a x 
0,012407 
0,012143 
0,011878 
0,011614 
0,011349 
0,011084 
0,01082 
0,010555 
0,010291 M i n 

Fig. 34-' Example of imported boundary constraints (shear specimen) 

The submodel boundary conditions were applied according to the Ansys 

submodelling procedure guidelines [18]. A l l faces of the submodel which were used as cut 

boundaries (in the cylindrical specimen model all outer faces except notch root radius 

were used) were appointed for submodelling in the Ansys Workbench Mechanical 

window. When the submodel was connected wi th results from the global model 

in simulation project overview (Fig. 24), the preprocessor in the submodel simulation 

loaded results from the global model and it automatically made interpolation 

of displacements from the global model to nodes at the cut boundaries on the submodel 

(Fig. 34). 
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D: submodel shear 
Equivalent Stress 2 
Type: Equivalent (von-Mises) Stress 
Unit: MPa 
Time: 1 
22.11.2017 10:34 

1,000 (mm) 

Fig. 35: Example of resulting equivalent (von-Mises) stress in submodel (shear 

specimen, place of mixed-mode II+III loading) 

Results obtained from the submodel simulations of the cylindrical specimen 

fulfilled the expectations. The stress-strain singularity at the crack tip seemed 

to be described sufficiently wi th used F E mesh and resulting stresses for alternating crack 

front geometry (Fig. 35) showed changes along each serration. The maximum equivalent 

(von-Mises) stress was for shear specimen in place where pure mode III loading was 

present which was in good agreement wi th previous researches (for example [40, 63, 64]). 

Moreover, results of the model wi th torsional loading showed ideal rotational symmetry 

as was expected because of the same symmetry of geometry and loading. 

Besides the stress-strain fields SIFs were also calculated for all variants of models. 

These variants included mentioned two types of loading (torsion and shear) and two 

material models ( A R M C O iron and niobium, according to Vojtek et al., e.g. [8, 36, 56]) 

with respect to the absolute values of loading momentum and force which were different 

for both material models (as mentioned in the chapter 4.1.1.1). Despite the fact that the 

different linear elastic material properties of two used materials should not change the 

absolute values of SIFs (they are independent on the Young's modulus and the Poisson's 

ratio), due to different values of loading momentums and forces the differences between 

SIFs for A R M C O iron and niobium were expected. 

In general, the resulting fracture parameters were obtained for models wi th various 

roughnesses of crack front and also for models wi th straight crack front for verification 

of used models and methods and also for further results processing. 
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Fig. 36: Resulting SIFs (raw data) for cylindrical specimen with straight crack front 

loaded by pure shear 

20 
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- - K - niobium 
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Fig. 37: Resulting SIFs (raw data) for cylindrical specimen with straight crack front 

loaded by torsion 

Resulting SIFs for models wi th the straight crack front loaded by pure shear 

(Fig. 36) and loaded by torsion (Fig. 37) are depicted as a function of angle coordinate 

0 (the same as depicted in F ig . 17 - left) where 0° and 180° is for the top and the bottom 

of the specimen respectively and 90° is for the side of the specimen. Depicted results are 

only for half of the specimen (for 0 from 0° to 180°). 

It is clearly visible that for both specimens the resulting SIFs from simulations 

with A R M C O iron as a material model are higher values than the ones where niobium 

was set as the material model. This is not due to mismatch between materials, 

but it is caused by different amplitudes of loading used for different material models 
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(SIFs are only functions of the geometry and loading, see chapter 2.1) and this 

phenomenon was expected. 

Results for the shear specimen (Fig. 36) show strong dependence of Ku and Km 

on the angular position <j> around the specimen and that mode I SIF is literally zero along 

the whole crack front due to pure shear loading. A t the top and bottom of the specimen 

there is a spot where pure mode II loading is present and on the sides of the specimen 

there is a place wi th pure mode III loading. A l l other parts of the crack front are under 

mixed mode loading which was expected (see chapter 2.5.2.2). This is also in very good 

agreement wi th our previous research [40, 64], where it was proved that for the cylindrical 

specimen under remote shear loading the K\ is a cosine function of angular position <j> 

and Km is a sinus function of <j>: 

Kll(0) = Kll(0 = W)-cos{<l>), 
(26) 

Km{0) = Kll{0 = 9O°)-sm{0). 

Present results for shear specimen (Fig. 36) follow these functions (26) very well. 

Results of the specimen loaded by torsion show, again in good agreement with 

expectations, that for this type of specimen and loading only pure mode III loading 

is present along the whole crack front and modes I and II diminished. 

Results obtained from calculations wi th the rough crack front differ for each crack 

front configuration and they are discussed in following chapters. 
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4.1.2 Researched variants (cylindrical specimen) 
As was mentioned above, the crack front tortuosity in models of cylindrical specimen was 

considered to be only in-plane, no out-of-plane roughness or kinking of the crack front 

was allowed. Aside this constriction, it was decided that only uniform crack front 

asperities wi l l be included in these models. 

W i t h i n the frame of these constrictions two types of models were investigated. 

The first one aimed at description of simplification possibilities of these models and 

the second one was more closely connected to the research aimed at shear mode fatigue 

crack propagation and the influence of the crack front microstructure on crack 

propagation. 

4.1.2.1 Possible model simplification 
Finite element models of specimens wi th cracks wi th complicated crack front 

geometry require finer mesh discretization due to constantly changing crack front and 

therefore, numerous unpredictable changes in stress-strain field around crack front. 

The use of this complicated F E mesh and the fact that such simulations must be almost 

always modeled as 3D models makes simulations of fractures (which are complicated 

on their own) even more hardware- and time-consuming. This fact makes any valid 

simplification of such model a very valuable step in simulations of such cracks. Research 

on this problem was published by the author of this thesis in [65] and some of the 

presented results were already shown in that paper. 

Besides standard steps for efficient modelling (for example submodelling, efficient 

F E mesh sizing etc.) a geometry simplification was considered while modelling 

the cylindrical specimen. Since overall crack front geometry was even, and crack front 

asperities oscillated around one mean crack length, the simplification in terms 

of modelling only one particular part of the crack front (area of interest) wi th geometrical 

asperities and the rest simplified was one option to decrease calculation time and 

hardware severity. So, the basic premise of this type of model simplification was to model 

only a small area of interest wi th representative crack front asperities and the rest 

of the crack front could be simplified and thus meshed wi th coarse F E mesh. 

To get quantitative description of usability of neglecting the crack front 

microstructure in some parts of model the F E M simulation of cylindrical specimen with 

shear loading was used (chapters 4.1.1.1 - 4.1.1.3). The main idea was to compare 

the resulting SIFs in areas of interest obtained from model where full crack front was 

modelled wi th zig-zag asperities with model which had only some number of crack front 

teeth around the of interest. 
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I I I 
Fig. 38: Scheme of full and simplified models (two variants) 

The difference between full and simplified models can be seen in F ig . 38 where 

two types of simplified models are shown. Since the number of modeled teeth around 

the area of interest was one variable for modelling and the symmetry of the model was 

needed to be preserved the simplified model had to be divided into two groups - one with 

odd number of teeth and the second wi th even number of teeth. Each simplified model 

was compared wi th corresponding full model wi th the same characteristic dimensions 

of teeth. 

Observed results were the local SIFs values along the crack front. Because both 

model types in this study contained crack front asperities it was obvious that the SIFs 

values should differ from ones obtained for smooth crack front (see F ig . 36). 

-80 -60 -40 -20 0 20 40 60 
4> I degrees 

Fig. 39: Oscillation of local mode II SIF along the crack fronts of full and simplified 

models (example) 

39 



-80 -60 -40 -20 0 20 40 60 80 
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Fig. 40: Oscillation of local mode III SIF along the crack fronts of full and simplified 

models (example) 

Because of negligibility of mode I SIF only local fo and h values were observed 

(examples of results are on F ig . 39 and F ig . 40 respectively). Local values of fe and h 

show similar mean progressions as global ones (Fig. 36) but the results for rough crack 

oscillates a bit due to zig-zag geometry of crack front. This also means that even in places 

where there were pure modes II or III on the specimen wi th straight crack front 

(see F ig . 36) for the specimen wi th rough crack local induced modes creates local modes 

mixi ty . These oscillation patterns are quite similar for both model types in area 

of interest, but they obviously differ in areas where is the simplified crack front 

(in the model wi th less teeth). 

To quantitatively describe the difference between full and simplified model 

the relative difference 8k was calculated as follows: 

8k = M * > - W M | . 1 0 0 o/o, (27) 
KmW) 

where h, MI((/>) and k, simpie(̂ ) are the respective values of local SIFs in modes i = 2 or 3. 

The difference was calculated for both modes wi th use of several numbers of teeth 

in simplified model (n = 1-^7; each simulations had beside the n number of teeth 

one half-tooth on each side to create a transition to smooth crack front - see F i g . 38 right 

side) and for location of global pure mode II loading (0 = 0°) and pure mode III loading 

U = 90°). 
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Fig. Jf.1: Resulting Ska for area of interest in: a) 0°, b) 45° and c) 90° 
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90 92 
4> J degrees 

Fig. 42: Resulting 5fe for area of interest in: a) 0°, b) 45° and c) 90° 
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Resulting relative differences for local mode II (Fig. 41) and mode III (Fig. 42) 

SIFs are depicted wi th zebra-like gray pattern. Each gray or white strip corresponds 

to one facet on the crack front (one half of tooth, one gray and one white strip 

combination forms one tooth, the zebra-like pattern corresponds to one depicted 

in F ig . 38). 

It is obvious that for both fe and results and for a l l investigated areas of interests 

the simplified model wi th n — 1 gives unacceptable difference between full and simplified 

models even for modeled tooth. Results from models wi th larger n show more acceptable 

difference lower than 1%. 

Closer look on results for n > 2 suggests that core teeth (for example for n = 4 

core teeth are the second and the third ones etc.) give very accurate, almost identical 

results as full model and the side teeth facets and the transition facets show difference 

increasing wi th the distance from center of area of interest. 

The sum of presented results confirms that, for the investigated types of serrated 

crack fronts and loading, the local SIFs are influenced only by the close surroundings 

of investigated area. To get results identical wi th those obtained for the continuously 

serrated crack front, only a small portion of the serrated crack front (in the area 

of interest) is needed to be modeled and the rest can be simplified (replaced by smooth, 

averaged crack front). The lowest undisrupted area corresponds to that in between 

the two regular teeth framed on sides by the transition asperities, excluding these two 

side teeth - the lowest n should be 3 for case where only one tooth is investigated. This 

means that the fine mesh in the F E modeler can be assigned only to such a small region 

at the serrated crack front and the rest of the specimen can be meshed in a much coarser 

manner. This simplification leads to faster calculation times and less 

hardware-demanding simulations. 
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4.1.2.2 Zig-zag crack front - mode III crack propagation 
Description of micro-mechanisms of crack propagation under remote mode III loading 

is rather difficult. There have been some attempts to describe this type of crack 

propagation qualitatively (by observation of fractographical patterns) but more 

quantitative approach was used only in recent years by Vojtek et al. [66] wi th use 

of numerical simulations. These simulations in [66] were created by the author of this 

thesis and they are presented in this chapter. 

Fig. 43: Local mode II crack advances for remote mode III loading 

From fractographical studies it was deduced that serrated crack front under 

remote mode III loading exhibits local mode II crack propagation (Fig. 43) due 

to geometrically induced local mode II loading. This was observable especially 

for materials wi th coplanar shear mode crack growth ( B C C metals). This type 

of microstructural geometry of crack front was modeled wi th use of F E model described 

in the chapter 4.1.1 where local mode II loading was compared wi th global mode III 

loading of the cylindrical specimen. 

,, , . , , tooth spacing tooth height h - *i 

Fig. 44: Schema of crack front asperities 

The F E model was in this case adapted to simulate different crack teeth 

(asperities) angles. The spacing between crack front teeth was set fixed at 200 um and 

the tooth height was changing from 5 um to 65 um. These values were adjusted 

by scripted function to ensure that the number of teeth is a whole number around 

the circumference of specimen. The results were then parsed by the asperity angles which 

were calculated from actual teeth dimensions and ranged from 3.35° to 41.65°. 

Resulting SIFs were evaluated at 9 points along each tooth serration where 

the last one evaluation node of one tooth face was also the first one of the next tooth 

face. To describe the influence of local mode II inducement for remote mode III loading 

a ratio of local to remote Km was investigated on both torsional and pure shear loaded 

specimens (for shear specimen a place wi th global mode III loading around <j> = 90° was 

investigated) and for both material models - A R M C O iron and niobium. 
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Fig. 45: Example of resulting ratio kg/Km for serrations with asperity angle 17.19° 

Resulting ratio fa./Km (Fig. 45) is very consistent for both loading types if one 

take into account that pure mode III loading on the shear specimen is present only very 

close to <j> = 90°. Bo th material models give qualitatively the same results of locally 

induced mode II SIF but there is a very small difference between them. Since SIFs does 

not depend on the Young's modulus of used material model (see chapter 2.1), there 

should be no difference. However, closer look to calculations, paper [6] and our previous 

work [64] showed that actual local mode II inducement is dependent on Poisson's ratio 

of used material model. F r o m Young's and shear moduli (E and K h e a r respectively) for 

linear elastic, isotropic type of material model actual Poisson's ratio /u can be obtained: 

fi = — 1. (28) 
2^shear 

Since the Young's and shear moduli of material models used in presented simulation were 

known (see chapter 4.1.1.1), the Poisson's ratio for niobium is 0.38 and for A R M C O iron 

it is 0.29 (according to formula (28)). This difference influences the lateral contraction 

of material and therefore local inducement of mode II SIF is slightly different for both 

models. This difference increases wi th larger crack front asperities and it vanishes 

for a straight crack. Since both model types were treated separately, there wi l l be no 

other comparison between them. 

Actua l observed results were at location of remote mode III loading at one crack 

front tooth facet. A s was mentioned before, on one facet there were 9 evaluation nodes 

to obtain local SIFs. 
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Fig. 46: Positions and numbering of evaluation nodes along the crack front serration 

(only odd numbers are shown) 

Evaluation points were distributed evenly between the tooth peak and valley 

where node No. 1 is situated in a place wi th smallest overall crack length (tooth peak) 

and node No. 9 is in the place wi th largest crack length (tooth valley) - see F ig . 46, area 

with red lines pattern represents un-cracked material and area above zig-zag line 

represents the crack faces. 

4 5 6 
evaluation node no. 

Fig. 47: Resulting kg/Km for one tooth facet - iron material model 

4 5 6 
evaluation node no. 

Fig. 48: Resulting fa/Km for one tooth facet - niobium material model 
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Evaluated ratios of fa./Km along one tooth facet in charts above (Fig. 47 

for A R M C O iron and F ig . 48 for niobium) are depicted as functions of numbering 

evaluation nodes along one tooth facet (see F ig . 46) for all different asperity angles. Nodes 

number 1 and 9 are excluded since they are on the edge of the asperity and during 

the computation of SIFs exact direction of the crack could not been deduced for proper 

numerical evaluation of the local values of SIFs (see chapter 2.4). 

A slight shift between two material models is obvious if both charts are compared 

and it complements the difference found in F ig . 45. This difference is increasing with 

larger asperity angles and it vanishes when only straight crack is assumed. A s was 

mentioned above this difference points towards the explanation that different Poisson's 

ratio and thus different lateral contraction of material changes the mode II inducement 

if the crack is under remote mode III loading. 

The second thing visible in charts above is that for small asperities (from used 

datasets wi th teeth angles 3.35°, 6.20° and 11.80°) the local component of induced mode 

II loading is constant along the whole tooth facet. But for larger asperity angles the fa 

component tends to increase in area of the tooth peak (evaluation node No. 1, place with 

the smallest total crack length). It seems that the stress concentration at this spot and 

the loading of tooth peak is higher than in other areas of the crack front and thus the 

crack propagation should start there instead of different place along the crack front 

asperity. 

The last but most obvious and expectable qualitative result is that wi th higher 

asperity angle the local mode II SIF increases. 

For comparison of experimentally measured threshold values of mode II and III 

SIFs wi th numerical results a maximal value of ratio fa/Km was evaluated for both 

materials and all used asperity angles. Moreover, to demonstrate the overall state 

of the mode II inducement an averaged value (through one facet) was calculated too. 

' . - - ° ' ' ' 
' ~ 

-o Iron - average values 
-•- Niobium - maximal values 
-» Niobium - average values 

0 5 10 15 20 25 30 35 40 45 
asperity angle / degrees 

Fig. 49: Maximal and averaged values of ratio fa/Km 
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Resulting maximal and averaged values of the ratio fa./Km (Fig. 49) are 

complemented by the dotted lines which represent experimentally measured threshold 

ratios Afe, effith/Aifm,eff th and mean asperity angles for used materials obtained from 

fractography images (blue dotted lines for A R M C O iron and red dotted lines 

for niobium). Measured ratios of effective mode II and mode III thresholds and mean 

asperity angles are 0.59 and 25° respectively for A R M C O iron and 0.71 and 26° 

respectively for niobium [56, 67, 68]. Point in which each of the two types of dotted lines 

cross represents experimental equivalent to numerically modeled results. 

Comparison of experimentally measured angles and effective threshold ratios with 

numerical models show a very good agreement. It showed that even with relatively small 

asperity angles at the in-plane pre-crack front the local induced mode II loading 

(and hence mode II crack propagation mechanisms) can contribute to propagation 

of crack under remote mode III loading. Therefore, this numerical model helped with 

quantitative description of mode III crack propagation assisted by mode II mechanism. 
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4.2 CTS specimen 
As a second template for numerical modeling the C T S specimen was used. Ac tua l model 

was created in accordance wi th work of L i et al. [33, 34] (as described in chapter 2.5.1). 

The C T S specimen was chosen because it is widely used in experiments related 

to the remote mode II loading and obtained results can be easily compared wi th research 

conducted by other authors. Also, the use of its relatively simple geometry is suitable 

for this type of research. A t last when the C T S specimen is used, it can be easily adjusted 

for mixed mode I+II loading [31-34]. 

4.2.1 Numerical model 
To create a numerical model of experiment the Ansys software was used (the same 

as for cylindrical specimen, see chapter 4.1 and its subchapters). The general idea was 

to create a numerical model which can evaluate SIFs functions along the crack front 

for both standard model of fractured specimen and also for specimen with tortuous crack 

front and flanks. To achieve this, whole modeling process (and Ansys project hierarchy) 

had to be divided into several sub-steps, each one containing the crit ical part 

of the solution process. 

Preparation of submodel 
1 

Global model 
.1. 

Creation of rough surfaces 
Pre-submodel 
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Fig. 50: Workflow of simulations of CTS specimen 

It is obvious that for the C T S specimen a much more complex simulation structure 

(Fig. 50) than for cylindrical specimen (Fig. 24) was used. Bo th methods - submodelling 

and A P D L programing wi th full parametrization - were used in this type of model. The 

basic idea of these procedures is the same as for cylindrical specimen - see chapter 4.1. 

The control part of the whole simulation is the parametrization block. This is 

the part where all input data should be inserted into the evaluation process. Through 

the parametrization block user can specify the dimensions of the C T S specimen, 
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the magnitude of loading force and parameters related to creation of the rough crack 

front and flanks. 

This part of numerical simulation makes it usable for several geometrical and 

loading configurations. It also connects all parts of the simulation and ensures to keep 

whole model consistent. 

4.2.1.1 Global model 
The global model of C T S specimen represented the whole body of specimen with 

no simplifications - a full 3D model had to be used because of planned crack front and 

flanks complications. 

O €> O 

Fig. 51: Scheme of geometry of CTS specimen used for simulations 

The overall geometry of the specimen (Fig. 51) is almost the same as original C T S 

specimen (presented by Richard [31]). Ac tua l dimensions were used according to work 

by L i et al. [33, 34] (large specimen) and experimental setup which was used 

in conjunction of these simulations [69] (small specimen). 
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Table 1: Dimensions of CTS specimen models (in millimeters) 

Small specimen Large specimen 

a 22 60 

b 25.2 54 

c 51.2 108 

(I, 8 15 

h 68 145 

t 4 10 

w 42 90 

Dimensions a, t and w (beside the others) written in Table 1 are the main 

(governing) dimensions - the analytical solution of SIFs is dependent on them. 

The global model of numerical simulation was geometrically created the same 

for both small and large specimens, but obviously wi th different dimensions. 

10,00 30.00 

Fig. 52: Geometry of model of CTS specimen (small) 

The whole geometry of model of the C T S specimen is shown in F ig . 52. 

Because of the overall 3-dimensionality of simulation, no simplification could be used 

in this model. Several lines dividing the model are also visible in F ig . 52. The whole 

geometry was divided into (roughly) quarters whereas the "center-point" of these 

quarters lies on the crack front. This is one way how to model a crack - the whole model 

was divided in this way and then it was reconnected in the F E mesh along all coincident 

planes except the two of them which formed the crack flanks. The other division 

of the geometry model which is visible in F ig . 52 is a small rectangle surrounding 

the crack tip. This rectangle encompasses the area wi th finer F E mesh to capture 

stress-strain singularity around the crack front as good as possible on the level 

of the global model. 
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10,00 30,00 

Fig. 53: FE mesh on global model 

F E mesh used for the global model of the C T S specimen met the conditions usual 

for this type of modelling. The mesh consisted of quadratic SOLID186 3D mesh elements 

for better description of larger stress and strain gradients [18] which were expected in this 

type of model (mainly in the notch and crack area). The F E mesh density was good 

enough to describe the deformation of the whole specimen. The area where larger strain 

gradients were expected was meshed wi th much finer F E mesh (see darker area around 

notch tip in F ig . 53). Nevertheless, even such a fine mesh is not enough for the crack 

modelling purposes. A higher level of refinement of F E mesh would lead to accurate 

model but on the other hand the hardware demands of such model and the computational 

time would be much larger (presented model was created to fully use hardware capacity 

of employed computer). This problem was solved via usage of the submodelling (see next 

two chapters). 

10,00 moo 

Fig. 54-' Shear loading of global model of CTS specimen 
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The loading of the global model was consistent wi th original experimental C T S 

specimen setup (see chapter 2.5.1). Only the case of pure remote mode II loading was 

used and no mixed-mode I+II loading was evaluated (even that it is possible wi th this 

type of specimen to create remote I+II loading [31]). The remote mode II loading was 

achieved by fixing the bottom row of clamping holes (Fig. 54 - boundary condition B 

marked by blue color) and by force-loading of upper row of clamping holes in rc-axis 

direction (Fig. 54 - boundary condition A marked by red color). To avoid unwanted 

twisting of the specimen (which can occur if this type of force-loading is used) an Ansys 

A P D L command C P was used to couple the deformation of all nodes subjected to applied 

force. This command fixed all mentioned nodes together in such a way that the upper 

clamping holes moved together the same way as they were clamped in a rigid mount. 

The magnitude of the loading force was set for both small and large models to 1000 N . 

Since SIFs are linearly dependent on loading force, observed results were in all cases 

normalized to loading so the magnitude of force had no impact on results at al l . 

The material models used in this case were different for small and large models. 

Only linear elasticity of material models was considered, and it was described 

by the Young's modulus E = 105 G P a for small model and E = 210 G P a for large model 

and the shear modulus EShC!lI = 38 G P a for small model and Poisson's ratio JJ = 0.3 

for large model. The material model for smaller specimen is the same as material model 

of Niobium used for cylindrical specimen (see chapter 4.1) and the material model 

for larger specimen represents standard structural steel (material properties obtained 

from Ansys material database). For the large model one additional modification 

of material properties was used - an artificial material model was created wi th the same 

elasticity modulus as structural steel but wi th Poisson's ratio set to 0. This artificial 

model was created to see the influence of lateral contraction of the model on observed 

SIFs for cracks under the remote mode II loading. Since SIFs are generally not dependent 

on the material properties the difference between small and large model should 

be negligible. However, the calculations for cylindrical specimen showed some differences 

due to lateral contraction for remote mode III loading (see chapter 4.1) hence for further 

research in that direction more types of material models should be used. 

Results obtained from the global model of the C T S specimen were not accurate 

enough to determine exact values of SIFs. However, they should be good enough 

to determine if it represents the remote mode II loading well and if there is no gross error 

in input parameters and conditions. 
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A: global_model 
Total Deformation 
Type: Total Deformation 
Unit: mm 
Time: 1 
2.1.2018 15:06 

_ 0,015474 Max 
^ 0,013755 

0,012036 
0,010316 
0,0085969 
0,0068775 
0,0051582 
0,0034388 
0,0017194 
OMin 

0,000 15,000 30.000 (mm) 

7.500 22.500 

Fig. 55: Contour plot of total deformation of small CTS specimen (with undeformed 

wireframe, visible deformation is exaggerated 260-times) 

The total deformation of modeled specimen (Fig. 55) follows used boundary 

conditions. The bottom of the specimen stays fixed in place and the upper part slides 

to the side, but all the gripping holes moves together as they were fixed in a rigid clamp. 

This causes the specimen to shear exactly as was needed to produce the remote mode II 

loading. 

Fig. 56: Equivalent (von-Mises) stress around the crack front, side view 

(the cross-section point of black lines denotes the crack tip) 
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The stress field around the crack front (Fig. 56) wi th its singularity point 

at the crack tip confirms that the crack itself is under the mode II loading. The shape 

of stress contours looks like an infinity sign wrapped around the crack tip which 

is consistent wi th linear-elastic fracture mechanics ( L E F M ) theory [17]. The only 

exception is the light-blue contour in the left of the picture which is close to the notch 

tip and it seems that this one was influenced by the notch root effect. 

Fig. 57:Equivalent (von-Mises) stress around the crack front, iso-surfaces 

through-thickness of the specimen 

The through-thickness view on the equivalent (von-Mises) stress (Fig. 57) also 

shows the free-surfaces effect along the sides of the specimen and the difference between 

plane stress and plane strain conditions. The expected change of the stress field 

at the sides of the specimen [6, 70] is visible even in the rough global model. However, 

the free-surfaces effect influences only a small area at the sides of the specimen and it has 

insignificant effect on the core of the specimen [6]. 

The inner iso-surfaces (Fig. 57 - light-green to red) show signs of insufficiently 

fine F E mesh for a detailed description of the crack parameters by their very rough and 

dissymmetrical shape which is not even close to theoretical one. This proves that 

a submodelling procedure wi th much finer F E mesh is needed even to capture the real 

stresses and strains around the smooth crack front. 

Overall , the global model meets the requirements needed for submodelling and 

it can be used for further modelling. Furthermore, in the case of C T S specimen the overall 

crack length was the same for all variants and only crack microstructure was alternated 
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in submodel. This means that for all simulations of each model only one global model 

(one representing the small specimen and the other one representing the large specimen) 

could be used which saved the precious computational time. 

4.2.1.2 Preparation of submodel 
The next part of numerical process was submodelling. A s was described above, the global 

model was not accurate enough to precisely evaluate the stress-strain fields around the 

crack front and also to include fine structure of the crack front (which is the subject 

to this research). To solve this problem a new, finer model had to be prepared. 

This model was smaller in comparison wi th the global model (volumetrically) and it was 

formed from a small portion of C T S specimen around the crack. The principle of using 

this smaller model as a submodel is the same as was for the cylindrical specimen 

(see chapter 4.1) but the process of creation of the submodel was slightly different. 

0.500 1.500 

Fig. 58: "Prototype" of submodel 

For the C T S specimen models a fully modifiable crack front and flanks were planed 

so the creation and parametrization of it could not be done as easily as for cylindrical 

specimen. 

A t first a so-called prototype of submodel was created simply by extracting a piece 

of geometrical model around the crack from the global model. This geometry was 

furthermore prepared for finer F E mesh at the vicini ty of the crack by dividing its volume 

to several parts (Fig. 58). 
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0,500 1,500 

Fig. 59: Example of meshed "prototype" of submodel 

As one can see in F ig . 59 the plates directly connected to central plane (which 

formed the crack flanks) were meshed wi th a very fine F E mesh. A t the top and bottom 

of that volume a transition area was created and meshed wi th free 3D volume mesh. 

This transition area and then the outermost volumes wi th much rougher F E mesh had 

only one purpose - to reduce the overall mesh elements count to minimize the calculation 

time and hardware demands. 

Mesh elements size in the submodel was connected to the parametrization block 

(see simulation flow-chart in F ig . 50) to always achieve the same number of mesh 

elements along any crack front asperity. 

Fig. 60: Transition of real crack surface (3D stereophotogrammetry in SEM on the left 

by Vojtek et al. [56]) to simplified model (on the right) 
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The prototype of submodel contained sti l l only straight and flat crack which was 

changed in the next step via Ansys A P D L commands to move nodes on the crack flanks 

to change the shape of modeled crack front and flanks to represent the real-like crack 

shape as much as possible (see F ig . 60). The whole A P D L commands block was created 

to be able to model the most complicated variant of the crack front and flanks with 

asperities in all directions created in a pseudo-random manner. Each complication 

of the crack front and flanks could be than disabled to change the model complexity. 

with several constraining factors (Fig. 61) governed by general parametrization. 

The dimensions of length of the rough portion of the crack sr and distance between 

roughness peaks r z were set as constants defined in the parametrization block 

(the distance r z was in meshing process divided into four mesh elements). Other two 

roughness parameters r x and ry were set by a maximum value (amplitude) and for each 

crack flank kinking (segment) it was multiplied by a random number from -1 to 1 which 

was controlled by a key randomizing parameter. This randomization part could 

be disabled and changed to create alternating crack front peaks wi th r x or ry alternating 

from 1-times their amplitude to -1-times their amplitude. In that way a uniform zig-zag 

crack front shape could be formed. Moreover, by setting one of used amplitudes (either 

in x or y direction) to 0 p i the tortuosity in the respective direction could be disabled. 

The actual shifting of used mesh nodes was done by combination of numerical 

matrix edits and actual A P D L commands. A t first, to create a procedure for changing 

the node positions, the pivotal vectors of r x and ry for all roughness peaks were created 

(with use of rows of random numbers or alternating amplitudes as was described 

in a paragraph above) and then they were mapped (by linear interpolation) to all node 

positions on the facets between crack roughness peaks. Resulting two matrices were 

composed of values representing the new positions of nodes in respective axis directions 

and they were applied as a shift of all nodes of crack front and flanks. This action 

provided desired tortuous shape of crack which could have inherently random character 

defined at maximum by five parameters (s r, r x, r y, r z and the randomizing parameter). 

y 

Fig. 61: Schema of fully rough crack front 

For the most complicated variant the tortuous crack front and flanks were created 
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0.075 0.225 

Fig. 62: Example of randomly generated crack front and flanks 

Resulting F E model wi th shifted mesh nodes had to be converted back 

to volumetric model via Ansys buil t- in converter (finite element modeler, see F ig . 50). 

After conversion from the simple mesh to complete model the submodel was finally 

created wi th user-specified tortuous crack front and flanks (Fig. 62). The actual 

randomness and complexity of tortuosity could be modified (as was described above) 

to suit the actual research purpose. 
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4.2.1.3 Submodel 
After creation of fully parametric procedure to create any type of crack tortuosity 

(within the boundaries described in chapter 4.2.1.2) the actual submodel could 

be prepared and used to calculate desired results. 

E: final_submodel 
Imported Cut Boundary Constraint 
Time: 1, s 
All 

Unit: m m 
4.1.2018 13:42 

0,00923958 P 

0,00886913 
0,00849868 
0,00812823 
0,00775778 
0,00738733 
0,00701688 : 
0,0066| 
0,00627598 
0,00590553 Min 

0.50C 1.500 

Fig. 63: Example of cut boundary constraints on submodel of CTS specimen 

The loading of the submodel was applied in conjunction wi th standard 

submodelling procedure [18]. Resulting displacements from global model were 

interpolated to boundary mesh nodes of the submodel (example in F ig . 63). The boundary 

nodes were actually all mesh nodes on boundaries (cut-out faces) of the submodel, where 

it was cut from the global model geometry. 

The material model properties had to be the same as for global model to carry 

out correctly the submodelling. 

As a result from submodel, the stress and strain fields (much more precise than 

from global model) could be extracted and moreover, the submodel was fine enough 

to obtain resulting SIFs along the crack front. 
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: final submodel 
Equivalent Stress 
Type: Equivalent (vo 
Unit: MPa 
Time: 1 
4.1.2018 14:18 

0,250 0,750 

Fig. 64-' Equivalent (von-Mises) stress, CTS specimen, submodel with straight crack, 

side of the specimen (plane stress conditions) 

E: final submodel 
Equivalent Stress 
Type: Equivalent (v 
Unit: MPa 
Time: 1 
4.1.2018 14:19 

0,250 0,750 

Fig. 65: Equivalent (von-Mises) stress, CTS specimen, submodel with straight crack, 

center of the specimen (plane strain conditions) 
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The equivalent (von-Mises) stress field around the crack front is qualitatively 

consistent wi th the analytical theory (e.g. [17]) and the shape of isolines close to the crack 

front is similar to infinity sign (see F ig . 64 and F ig . 65) as predicted from L E F M theory 

(e.g. [6, 17]). These results prove that the used model is val id for the mode II crack 

modelling. The difference between plane stress and plane strain condition on free surfaces 

of specimen (Fig. 64) and in the bulk of specimen (Fig. 65) respectively are also clearly 

visible. This shows that current model is able to comprehend this phenomenon too. 

E: final submo 
Equivalent Stress 
Type: Equivalent (von-Mises) Stress 
Unit: MPa 
Time: 1 
4.1.2018 14:30 

0,000 0,500 1,000 (mm) 

0,250 0,750 

Fig. 66: Equivalent (von-Mises) stress along the crack front (iso-surfaces) 

Actua l transition between the plane stress and the plane strain conditions 

is clearly visible on visualization of iso-surfaces of the equivalent (von-Mises) stress along 

the straight crack front (Fig. 66). 

Besides the stress and strain fields the SIFs could be also evaluated. A s was 

mentioned above, the raw SIFs are linearly dependent on loading force and also on overall 

geometry of the specimen. To get comparable results the raw data were normalized 

according to following formula: 

K. 
K, where i = I, H, IE, 

w-1 

(29) 

where F is the loading force and w, t and a are the geometrical dimensions of the specimen 

(see Table 1). For all depictions of SIFs results for C T S specimen along the crack front 

also the position at the crack front was normalized to unit length - the sides 

of the specimens are ± 0 . 5 and the center of the specimen have 0 coordinate. 
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Fig. 67: Normalized SIFs for CTS specimen (small) with straight crack front 

Normalized results for the small specimen wi th straight crack front confirm 

validity of used model. The resulting SIFs are as were expected for remote mode II 

loading. Mode I SIF is vir tually 0 (the maximal value of normalized Kin is 8.8 • 10~4 which 

is deeply below the other two SIFs). Mode II SIF is on the other hand the dominant one 

and the mode III SIF exhibit slight increase (in absolute values) towards the sides 

of the specimen but overall it is stil l much lower than mode II SIF. The local changes 

in Kiin and Km,n towards the free surfaces of the specimen were also expected and 

described by e.g. Pook [6] as a free surface effect caused by lateral contraction of material. 

In the end, the results for the straight crack from used model are in a very good 

agreement wi th results obtained by L i et al. [33]. 
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I I —approach by Plank and Kuhn 
(i) numerical results - specimen with notch 

- - (ii) numerical results - specimen without notch 
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-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 
normalized position along the crack front 

0.3 0.4 0.5 

Fig. 68: Comparison of numerical and analytical approach for CTS specimen 
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Numerical results for the C T S specimen wi th straight crack were also compared 

to analytical approach introduced by Plank and K u h n [41]. Absolute value of Kn for C T S 

specimen can be obtained by analytical formula (19) (in chapter 2.5.1). Evaluated value 

of Kn corresponds to 2D model of the C T S specimen and for geometry of the small 

specimen and loading used in numerical simulation the actual result can be seen in F ig . 68 

as a red straight line. This value was compared at first wi th raw results from numerical 

model of standard notched specimen - the Kn progression along the crack front is visible 

in F ig . 68 as a green line (i). It is clear that there is a significant difference between 

analytical model and numerical model of real 3D notched specimen. Because of this 

the second model of C T S specimen wi th straight crack front was created in Ansys 

software. New model did not include notch, but it had the crack of a full-length a instead 

(see F ig . 51). Results of this model are depicted in F ig . 68 as a blue dashed line (ii). 

One can see that these new results are very close to the analytical model. This fact points 

out to a conclusion that analytical model assumes none or insignificant influence 

of the notch in the specimen, but the full 3D numerical model of the notched specimen 

shows small but noticeable influence of the notch on SIFs for this type of the specimen 

geometry. When no notch is introduced to the numerical model the results of analytical 

and numerical approach are almost similar. 

The other difference between analytical and numerical models is the sudden 

increase in Kn at the sides of the specimen. This is because of lateral contraction 

of the specimen and because of the influence of the free surface of the specimen [6] which 

cannot be accounted for in the 2D analytical model. 

Nevertheless, the notch influence and side effect have no impact on evaluated 

results from numerical models - all results from models wi th geometrically modified crack 

front and flanks were always compared wi th the numerical model with straight crack 

which was notched too which eliminates its influence on results used as ratios. 
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Fig. 69: Example of normalized SIFs for CTS specimen (small) with rough crack front 
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If some crack front roughness is introduced to the model, observed SIFs changes 

on the local level. A s can be seen in F ig . 69, the global (or mean) progression of SIFs 

along the tortuous crack front (in this case wi th random crack front asperities 

distribution) follows the same rules as for the straight crack in similar specimen. 

K i n is very close to 0, Kn,n is st i l l dominant and Km,n follows the trend wi th increase close 

to sides of the specimen. O n the other hand, all three SIFs exhibit oscillations and local 

peaks related to each geometrical asperity. Even mode I SIF in some places (especially 

on the sides of the specimen) reaches the local value comparable to mode II SIF. 

Also from the global view, mode II and III SIFs exhibit decrease of their mean 

progressions in comparison wi th results from the straight crack (for example in F ig . 67 

the function of Kn,n for the straight crack front is around the 1.25 value but the same 

SIF for rough crack front on F ig . 69 oscillates around value 1). 

4.2.1.4 Methods for results processing 
Unlike the cylindrical specimen, for the C T S specimen there were more researched 

variants and the results processing was for almost al l of them the same. In general, 

two methods were used - local view on local fa, fa and fa along one distinct crack front 

asperity and a description of influence of the crack roughness on mean progression 

of the SIFs along the crack front. 

The results evaluation along one particular crack front asperity is based 

on the same principle as was used in chapter 4.1, thus the evaluation of ratios 

of significant local SIFs fan (where i = 1, 2 or 3) at a point on crack front to applied SIF 

Aj, n (where j = I, II or III, obviously for C T S specimen under remote mode II loading 

in subsequent chapters j = II) was used. The evaluation points for this ratio should 

always be along one particular asperity but their exact location wi l l be described 

in respective chapter below, where the actual results are processed. 

The second method for results processing is rather more complicated. If results 

from the standard planar model of the crack are compared wi th results from the model 

with any kind of tortuous crack front (e.g. comparison of results in F ig . 67 and F ig . 69) 

one can see that mean value of function of the local SIFs fan (where i = 1, 2 or 3) along 

the tortuous crack front is different than the same results function for the standard crack 

front. It seems that the mean value of results from rough crack front are a kind of shifted. 

For the quantification of this shift of results a method based on function interpolation 

was devised. 
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Fig. 70: Schematic explanation of method for obtaining the quotient Qi 

The described shift of results is schematically depicted in F ig . 70. Results obtained 

from standard, planar model can be described by a function Kin(z) which can be easily 

analytically formulated (black line in F ig . 70). This function corresponds to global loading 

of the specimen wi th simple, planar crack. O n the other hand, results from model with 

tortuous crack front are a set of local values fc,n along the whole crack front (schematically 

described by green jagged line in F ig . 70). If this set of result points is interpolated 

by a function which is a Q-multiple of function Ki,n(z), the coefficient Qi actually 

quantifies the ratio between (a sort of) mean value of results from the rough crack and 

results from planar model of crack and thus it describes the decrease of global SIF value. 

To obtain the quotient Qi for any needed crack loading mode only a linear least square 

method interpolation [71] was performed on respective datasets and function K^{z) wi th 

use of the Mat lab code. 
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4.2.2 Researched variants (CTS specimen) 
To describe the crack front and flanks roughness influence on the crack behavior and 

propagation, several things have to be accounted for. In the case of the remote mode II 

loading a complex approach was employed by looking at the crack geometry from several 

points of view. 

A t first the in-plane (similar to one described for remote mode III loading, 

see chapter 4.1.2.2) and out-of-plane crack roughnesses were researched separately to see 

their individual contribution to changes in crack parameters. Then these two types 

of the crack micro-geometries were combined and investigated together. 

The next stage involved a real-like model of crack front and flanks involving 

portion of the crack which was planar and small part wi th rough surface introducing 

both crack tilt and twist. This (or similar) type of the crack front and flanks geometry 

was observed during the S E M fractography on mode II crack after fatigue tests [56]. 

Also, some ini t ial attempts to describe the decrease of mode II SIF caused by tilted 

and twisted crack wi th roughness in the direction of crack path (sort of in-plane crack 

roughness) were done using the ratio of remote Kn,n and local values of fe,n 

for microstructurally rough crack front. 

4.2.2.1 Uniform crack roughness (decrease of global SIFs) 
As was described in previous chapters, the crack front and flanks geometry is planar 

in min imum of real-life cases. In fact, the observations of cracks and pre-cracks 

morphology showed significant in-plane and out-of-plane roughness of the crack 

geometry [7, 72]. A s was mentioned in chapter 4.1, small changes in crack front and 

flanks micro-geometry affects overall SIFs progressions along the crack front. In this case 

a uniform distribution of crack front asperities along the fracture in small C T S specimen 

(see Table 1 in chapter 4.2.1.1) loaded in pure remote mode II were investigated. 

Fig. 71: Examples of modeled crack tortuosity: a) in-plane; b) out-of-plane; c) combined 

The crack micro-geometry was modeled in three different types. The parametric 

model described in chapter 4.2.1 was adapted to create uniform distribution of asperities 

according to the following conditions (where for better description a coordinate system 

with rc-axis parallel to the crack-length direction, the y-axis perpendicular to crack faces 

and the z-axis parallel to the crack front tangent was established). A t first the in-plane 

tortuosity was modeled (Fig. 71 a)) where the crack front followed the zig-zag shaped 

path but the crack itself wi th crack front stayed in x-z plane. Each crack tooth was 
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described by angle y/, which was the same for a l l teeth along the crack front and varied 

from 11.2° to 43.6°. The second investigated type of crack front tortuosity was 

out-of-plane roughness (Fig. 71 b)) characterized by the zig-zag morphology only 

in the y-z plane (factory-roof-like morphology) wi th all asperities characterized 

by angle co which varied from 14.0° to 26.6°. The third configuration of modeled crack 

geometry was the combination of two previous cases (Fig. 71 c)) characterized by both 

asperity angles. The range of angles yi and co was chosen to correspond wi th the naturally 

occurring range of crack front and flanks roughnesses. 

b) 

A A A A a. a, /\ aJ a r V \ ' \T\ V \ 

-0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 
normalized position along the crack front 

-0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 
normalized position along the crack front 

- Mode I (straight crack) 
-Mode I (tortuous crack) 
- Mode II (straight crack) 
-Mode II (tortuous crack) 
- Mode III (straight crack) 
-Mode III (tortuous crack) 

-0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 
normalized position along the crack front 

Fig. 72: Examples of difference between SIFs for straight and rough crack: a) in-plane 

tortuosity (y/ = 11.2°); b) out-of-plane tortuosity (co = 14-0°); c) combination of two 

previous cases 

Local changes of SIFs along the crack front caused by different types of modeled 

crack micro-geometries are clearly visible in F ig . 72. F ig . 72 a) shows that, in the case 

of in-plane tortuosity, the component k\ exhibits only very small local oscillations with 

zero mean value along the whole crack front, i.e. it practically does not differ from that 

for the straight crack front. The components fa and fa oscillate wi th much higher 

amplitudes and their mean values also change along the crack front which represents 

a rather significant difference comparing to the results for the straight crack front. 

In the case of the out-of-plane roughness (Fig. 72 b)), the local fa-values are more 

pronounced particularly at crack-front points adjacent to free surfaces (specimen sides). 

On the contrary, the values of fa and fa components are almost unaffected and coincide 

with those for the straight front. The combination of both types of roughness (Fig. 72 c)) 

shows differences of all three local SIFs from those of the plane (straight) crack, 

but slightly less significant when compared to previous types [73]. 

The change of mean functional values of SIFs from rough cracks is visible 

for al l investigated cases. This change can be described by quotient Qi (for description 
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of Qi see chapter 4.2.1.4). Only mode I SIF was omitted from evaluation of Qi, because 

in all cases fa oscillates around the 0 M P a • m m 1 / 2 , hence the quotient Qi would 

be nonsensical. 

Fig. 73: Quotient Qn as a function of both asperity angles y/ and co 

Fig. 74: Quotient Qui as a function of both asperity angles if/ and co 

The change in global (mean) values of SIFs was quantified by quotients 

Qn (Fig. 73) and Qm (Fig. 74) as functions of angles y/ and co. Obviously, both mode II 

and III SIFs at the rough crack front are decreasing wi th increasing angles yi and co 

(increasing roughness) due to the geometrical shielding effect. The decrease of the mode II 

SIF values is much more influenced by the in-plane tortuosity than by the out-of-plane 

roughness, while the mode III SIF values decrease more rapidly and in a similar rate 

for both if/ and co angles. A s shown in F ig . 73 and F ig . 74, the results for both Qn and 

69 



Qm could be approximated by a quadratic surface function of angles y/ and co, as a very 

good fits quantified by the R-square value higher than 0.98. Obviously, the point [0; 0; 1] 

corresponding to the straight crack front and the smooth crack flanks, belongs to this 

surface function. The results obtained for global SIFs can be utilized to correct 

experimental values of mode II effective fatigue thresholds in metallic materials obtained 

under the assumption of smooth precracks. According to F ig . 73, for example, 

the reduction of the measured threshold values in A R M C O iron and niobium should 

be around 15% since the in-plane mean angles of pre-crack fronts measured in these 

materials were if/ = 25°. However, this correction is just a rough prediction since 

the out-of-plane roughness characteristic angle was not determined for mentioned 

pre-cracks by the time of completion of this thesis. 

4.2.2.2 Uniform crack roughness (one particular asperity) 
A more detailed view of the results (Fig. 72) reveals that, in the case of the C T S specimen, 

a true pure mode II loading state at the straight crack front occurs only in the middle 

part of the specimen (see also [34] or [6]). The rest of the crack front has to be considered 

to be loaded by mixed mode 11+111. Due to this fact, the crack front asperity at the exact 

center of the specimen was picked for the evaluation of detailed local loading modes along 

one elementary tooth (asperity). 

Fig. 75: Example of node numbering along one crack front asperity (in-plane serrated 

crack, top view, only odd-numbered nodes are showed) 

The portion of model around the crack front was uniformly discretized by a fine 

F E mesh. Each crack asperity along the crack front (in all modeled crack configurations) 

was modeled wi th nine nodes from which the first and the last one was shared by the 

previous or the next asperity, respectively - see F ig . 75. This means that for each 

elementary crack front serration nine evaluation points for obtaining local SIFs were 

available but the first and last one had to be omitted, since the crack front direction 

could not be well defined there. The omitted nodes at the sharp edges of the elementary 

crack front tooth are denoted by numbers 1 and 9. The node No. 1 lies at the top 

of the jagged line and the node No. 9 is in the outermost groove of the material. 

In the further description of the numerical results only the nodes No. 2 - 8 wi l l be utilized 

for evaluation of the local SIFs. 

In the above-mentioned evaluation nodes along an asperity in the center portion 

of the specimen the ratios of fa/Ku and fa/Ku were evaluated for in-plane and out-of-plane 

roughness, respectively, and for all selected values of the angles if/ and co. 

uncracked material 
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Fig. 77: Normalized values of local ki along one crack asperity (out-of-plane roughness) 

Local values of the ratio h/Ku along the half-tooth show an expected increase 

with an increasing angle if/ for the in-plane roughness (Fig. 76). In addition, the ratios 

fa/Kn for if/ higher than 26.0° tend to exhibit an increase towards the evaluation node 

No. 2, which is more pronounced for the highest asperity angle 43.6°. This node lies, 

according to F ig . 75, at the innermost part of the crack tooth where the crack length 

is the smallest, but the stress concentration is the highest due to the effect of the asperity. 

The increase of local mode III SIF towards the node No. 2 is in a qualitative agreement 

with the results for local fe obtained for a serrated crack front loaded by remote mode III, 

which were described similarly in terms of the ratio ha/Km in chapter 4.1.2.2 where 

the cylindrical specimen was examined [73]. 
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On the other hand, the ratio h/Ku for cracks wi th out-of-plane roughness (Fig. 77) 

is very small. This ratio should be even zero along the entire out-of-plane tooth according 

to a simple stress tensor transformation method (for more information on stress tensor 

transformation method please see following chapter 4.2.2.3). It means that the small 

tensile and compressive stresses are just local perturbations resulting from a more 

accurate numerical analysis describing the full complexity of 3D model. 

4.2.2.3 Tilted and twisted crack segments 
The other type of the crack front and flanks tortuosity is the complex 3D crack front tilt 

and twist. In this case almost whole crack from the notch tip is considered planar, 

but in the area close to the crack front the crack starts to deviate from its planar shape 

to both upper and bottom directions. 

Two approaches, which are presented in this chapter, were already published by 

the author of this thesis in [74]. 

Modeled shape (Fig. 78) was created using almost all C T S model parametric 

functions. Two crack teeth parameters ry and n were used as well as the tilt length sr 

(see chapter 4.2.1.2, F ig . 61). The tilt length was set constant to length of 80 p i through 

all simulations of this type and the crack teeth amplitudes varied to create cracks with 

different roughnesses. Ac tua l heights of the crack front teeth were then created randomly 

by multiplication of the amplitude ry by a random number between +1 and -1 and 

the distance between each crack front tooth r z was set to 20 um. These values correspond 

to the crack front and flanks microstructure on real cracked specimens. The overall 

geometry used for this research variant was the small specimen. 

Crack surface 

Crack front 

Fig. 78: Schema of tilt and twist of crack front and flanks 
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p.: so 

Fig. 79: Detail of tortuous crack front in FE model 

The numerical model of the crack wi th random distribution of crack front 

asperities is almost the most complex model which was used in this particular research. 

However, a simplified analytical-based model could be used for the same purpose. 

To evaluate the influence of different crack front tortuosity on the fracture roughness 

(for very high-strength steels) under remote mode I loading an analytical solution based 

on stress tensor transformations was used by Pokluda et al. [10]. Hereafter, this simplified 

approach was adopted for the remote mode II loading. 

Analyt ica l model uses simplified geometry (Fig. 80) where only area between 

adjacent teeth peaks is considered. This model uses periodicity thus the teeth 

are considered the same along the whole crack front instead of statistical distribution 

of crack teeth geometry in F E model. The model geometry is defined by the facet 

(asperity) width dm and the crack length which is divided into two parts - smooth portion 

of the crack wi th length of a and portion wi th crack front which is t i l ted and twisted 

at the same time and is defined by length A a. T o compare this model wi th the numerical 

Fig. 80: Simplified model of tortuous crack geometry 
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one these dimensions were set to match. The crack facet width dm was 20 um, length 

of the tortuous part of the crack A a was 80 p i and the overall crack length a + A a was 

set to 22 mm. The symmetrical kink and twist of the crack front are defined by angles a 

and fi respectively. The twist angle fi can be calculated from linear roughness RL of the 

crack front evaluated either from numerical model or from the real crack front subjected 

to stereophotogrammetrical fractography in the S E M : 

/3 = cos~l (30) 

F rom the F ig . 80 it is clearly visible that the kink angle a is a function 

of the position along the crack front. However, the maximal kink angle am can be 

evaluated from the twist angle and model characteristic dimensions: 

"<*m-tan 
oc„. tan 

2Aa 
(31) 

If one assumes the stress tensor T a components around the crack front [17] 

for the remote mode II loading for the plane strain conditions, smooth and long crack, 

normalized to external loading and overall crack and specimen geometry and with 

Poisson's ratio /u: 

. (a^ 
ct = - s i n — 

{2 
2 +cos — 

(3a) 
•cos — I 2 J 

yy 

(a) (3a) 
sin — •cos — •cos — U J U J U J 

°"zz = -2 / / sin (32) 

xy 

(a^ 
1-sin 

(a^ (3a) 
cos — 1-sin — •sin — u , 1 2 J 

a = o = o , 
xz yz ' 

the former stress tensor T 0 can be transformed to a new coordinate system related 

to elements of the inclined crack facet. This transformation leads to new stress tensor T a *: 

T* = L T -L, (33) 

where L is the matrix of direction cosines for double rotation of tensor coordinate system 

(rotated according to kink and twist angles a and fi respectively): 

L - L x - L z -
1 0 0 
0 cos(yff) -sin(yff) 
0 sin(yff) cos(yff) 

cos(a) - s i n ( a ) 0 
sin ( a ) cos ( a ) 0 

0 0 1 
(34) 
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F r o m equations (32) - (34) the SIFs normalized to global loading Kn can be derived as 

components of transformed tensor T a *: 

kJK^ "•a 2 ,2 ' 

^21KR T o l > 2 , 

k31KR ~ T o 2 > 3 . 

(35) 

For the evaluation of global influence of crack front roughness on the mode II SIF 

a ratio of fe/Kn as a function of angles a and /? can be expressed as: 

k2/Ka{a,ß) = 

l + c o s 2 ^ ) 

1 • ( a 

1-sin — I 2 
sin 

J 

^3a^ 
V ^ J. 

( a 
•cos — 

^ 2 J 

+ 
(3a~\ . [ 

cos — + sin I 2 J { .2 J 

cos(2a)-cos(/?) + 

sin (2a) • [ ! - / / s in 2 (/?)]. 

(36) 

Equation (36) mathematically describes the local mode II SIF component along 

the serrated crack front (or its one asperity) and it can be easily used to assess it wi th 

known values of RL, dm and Aa. For the global point of view averaged value of the ratio 

kijKw along the crack front can be evaluated by following formula: 

k2/Ka= 
2öL 

in 

j" k2/ K n(a,ß)da. (37) 

Similarly to this approach, Zhang and W a n g [75] tried to describe the local SIFs 

along the crack wi th asymmetric kink combined wi th crack twist: 

^Zhang.Wang ^.Cotterell, Rice 
•cos 

£ Z h a n g , W a n g _ ^Cotterell , Rice _ QQ^ (ß) , (38) 

i zjiang, wang _ i 
3 — 1 

Cotterell, Rice cos(/?)-sin(/?), 

where they intended to improve basic equations for the kinked crack obtained 

by Cotterell and Rice [76]: 

1 
j^. Cotterell, Rice 

i Cotterell, Rice 
2 

3 cos 
'a^ 

sin -

V 2 y 

fa^ 

( 3a 
+ cos — I 2 

K.-1 sin 
. (3a^ 

+ sin — I 2 

\2 
+ sin I 2 J •Kl+- cos + 3 cos ̂

3a^ 

v ^ J 

(39) 

where K and i i j i stand for general remote mixed-mode I+II loading SIFs. If only pure 

remote mode II loading is assumed, the K = 0 M P a • m 1 / 2 and thus the first part of both 

expressions in (39) disappears. W i t h that in mind the kiCotteiel1'Rice and feu'rM1"""' can .Cot terel l , Rice a n d ^ 2

C o t t e r d l . R i c e 

be normalized to Kn loading and used for evaluation of normalized local SIFs for kinked 
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and twisted crack by formula (38). However, comparison of approaches (38) and (37) 

shows that both ways of evaluation of local SIFs give slightly different results. 

The difference may be caused by slightly different type of kink and twist used by Zhang 

and W a n g [75] and also due to some (in quoted paper not sufficiently described) 

simplifications in [75]. Because of these ambiguities and better resemblance of used model 

(Fig. 80) only the approach based on simple stress tensor transformations (equations 

(30) - (37)) wi l l be used in this research. 

Above mentioned approaches (analytical and numerical) can be compared wi th 

each another and also, they can be used to evaluate the decrease of mode II SIF caused 

by the crack front tortuosity. The decrease of relevant SIF can be described by the ratio 

fa/Kn from analytical model (see formula (37)) or by the quotient Qu obtained from 

numerous numerical simulations of similar crack configuration (coefficient Qn describes 

the ratio of local values of ku along the tortuous crack front and function Kn(z) along 

the straight crack front, actual method of obtaining of Q\ for any crack mode SIF was 

described in chapter 4.2.1.4). For this type of loading the coefficient Qu and ratio fa/Kn 

describe the same ratio so they can be directly compared. 

In the numerical model a statistical distribution of the crack front asperities was 

employed wi th fixed values of crack geometry dimensions (according to F ig . 80) dm = 20 

um, A a = 80 p i and a + Aa = 22 mm. These fixed values were also used for analytical 

model. The only difference in used geometries of the crack front and flanks is that 

for numerical model a different height of each crack front tooth was used along the crack 

front and for each statistical pass of calculations. The only restriction was to keep the 

geometry wi th desired mean linear crack front roughness RL. T W O variants of such a 

statistical set of numerical models were evaluated wi th final mean RL at 1.078 and 1.261. 

The analytical model was than adjusted to match values of dm, Aa and overall crack 

length and the angles a,„ and /? were consecutively evaluated from mentioned RL values 

with use of equations (31) and (30) respectively. 

Table 2: Evaluated ratios of mode II SIF and comparison of used models 

RL,I = 1.078 RL,2 = 1.261 

hijKu (analytical model) 0.9270 0.7912 

Qii (numerical model) 0.8981 0.7588 

Relative deviation between models 3.12 % 4.10 % 

There is a good agreement between analytical and numerical models. Despite 

the difference in terms of uniform contra statistical distribution of the crack front 

asperities the relative deviation between the two averaged ratios is for both crack front 

roughnesses under 5 %. 

If we consider the results in Table 2, the experimentally measured effective fatigue 

threshold SIFs can be corrected if the real linear roughness of pre-crack front is estimated. 

Previously measured fatigue threshold of mode II crack propagation was evaluated 

by Vojtek et al. for the polycrystalline A R M C O iron and cyclic ratio R — 0.1 and it was 
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quantified as AKnth,es = 1.5 M P a - m 1 / 2 [77]. The linear roughness of pre-cracks in broken 

specimens was evaluated by stereophotogrammetrical analysis of S E M data and it was 

calculated to be RL, F C ~ 1.2 (by averaging several typical crack topologies). If both 

numerical and analytical models are taken into account, the geometrical shielding can 

be calculated by linear interpolation from fc/Kn (analytical model): 

K I Ka (RUFe) = k2l Ka (Rul) + (RUFe -Rul)-
RU2~RUl (40) 

= 0.9270 + (1.2 -1.078) ° - 7 9 1 2 ° - 9 2 7

 = 0 . 8 3 6 5 , 
v ' 1.261-1.078 

and from Qn (numerical model): 

e n K , 2 ) - G i i ( ^ , i ) 
G n K , F e ) = G n K , l ) + ( ^ , F e - ^ , l ) -

(41) 

:0.8981 + ( l . 2 - 1 . 0 7 8 ) Q - 7 5 8 8 - Q - 8 9 8 1

 = 0 .8052 , 
v ' 1.261-1.078 

where RL, I is the lower and RL, 2 is the higher calculated fracture roughness (see Table 2). 

W i t h use of evaluated correction factors (formulas (40) and (41)) the experimentally 

measured value of AKmh,es decreases to 1.25 M P a - m 1 / 2 wi th use of analytical model and 

even to value of 1.21 M P a - m 1 / 2 wi th use of more precise, numerical model. 

The corrected value of AKmh, es can be compared wi th theoretical value 

Kiie = 0.7 M P a - m 1 / 2 , related to the emission of dislocations in the cracked iron single 

crystal, obtained from multiscale quasi-continuum models [78], but wi th respect 

to research of dislocation models of fatigue crack propagation by Riemelmoser et al. [79] 

it must be kept in mind that dislocation models give results 1.3 times lower than 

the experimental measurement. W i t h use of the 1.3 factor and geometrical correction 

by the results of numerical model of tortuous crack the measured mode II threshold value 

is decreased to AKmh, eg, e = 0.93 M P a - m 1 / 2 , which is closely approaching the theoretical 

threshold. This evaluated correction of experimental threshold value (by the geometry 

of crack front) can connect the experiments wi th theoretically predicted numbers 

by multiscale models. 
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4.2.2.4 Fully random crack front 
The last investigated type of the crack front tortuosity was combination 

of kinked/twisted crack (see chapter 4.2.2.3) wi th in-plane tortuosity. This particular 

type of simulation was created to look into the influence of fully random crack front 

shape. Moreover, two types of material models were used here to check the influence 

of material parameters (mainly Poisson's ratio /u and respective lateral contraction 

of material). Presented results are the summarization of gradual research on this topic 

which was progressively published by the author of this thesis in several journal papers 

(see e.g. [38, 39, 80, 81]). 

This crack shape was achieved by use of all parameters in the simulation according 

to F ig . 61 in chapter 4.2.1.2. For this type the large specimen was used. The tilt length 

sr was set to be constant to 1 m m and the crack tortuosity parameter r z was constant 

for each simulation along the crack front too. The other two parameters r x and ry were 

again randomly distributed along the crack front and thus they formed different crack 

front shapes for each simulation. 

Used two material models were both linear-elastic wi th the same Young's modulus 

.Ebut wi th different Poisson's ratio /u which was set to 0.3 (as for iron and other metallic 

materials) in standard material model and to 0 (to diminish the lateral contraction 

of material) in so-called artificial material model. 

Evaluated results from the large specimen wi th above described geometry were 

again all three SIFs along the crack front which were normalized to loading and specimen 

geometry (according to equation (29) in chapter 4.2.1.3). A t first, the difference between 

two used material models was quantified by comparison of the results from model wi th 

standard planar crack. 

2 

- l 1 ' ' ' ' ' ' ' ' ' 1 

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5 
normalized position along the crack front 

Fig. 81: Comparison of resulting normalized SIFs for standard and artificial material 

model (straight, planar crack) 
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F r o m the comparison of two material models for simulation wi th planar crack 

(Fig. 81) one can see some differences between results, despite the fact that generally 

the material model should not affect resulting SIFs. Obviously for both cases mode I SIF 

is negligible, for artificial material model it is 0 along the whole crack front and 

for standard material model the Kin exhibits small increase towards the sides 

of the specimen but the increase is stil l insignificant in comparison wi th other SIFs. 

On the other hand, the mode II SIF is for both cases dominant (as expected). Standard 

material model exhibits a slight increase of Kn,n at the sides of specimen which 

is consistent wi th results obtained from small specimen (see F ig . 67 in chapter 4.2.1.3) 

and free surface effect reported by Pook [6], where the artificial material model, lacking 

the lateral contraction of material, shows completely constant value of mode II SIF. 

A small difference between mean values of mode II SIFs progressions of standard and 

artificial model can be explained by overall change in specimen deformations due to use 

of force loading combined wi th differences in material models. Nevertheless, the difference 

between mean values of Kn,n for both models is negligible - less than 4%. The greatest 

difference between the two models is in the mode III SIF. One can see that while standard 

material model shows increase of Km,n towards the sides of the specimen up to value 

of approximately one thi rd of Kn,n (again consistently wi th findings summarized 

by Pook [6]), the simulation wi th artificial material model excludes the mode III at a l l . 

This shows that wi th C T S specimen only center portion of the crack front is under pure 

mode II loading (even wi th remote mode II loading) for real-like materials (depending 

on Poisson's ratio). 

normalized position along the crack front 

Fig. 82: Relative difference between mode II and III SIFs (straight crack, standard 

material model) 
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The percentual representation of the ratio km,n to fai,n (Fig. 82) for used model 

configuration (large C T S specimen geometry and JJ = 0.3) the mode III SIF indeed 

exhibits increase more than 30% of mode II SIF at the sides of the specimen. But at one 

fourth of the specimen thickness (normalized position ±0 .25) the relative difference is 

decreased to 10% and decreasing towards 0 difference in the middle of the specimen. 

Moreover, the Kn,n for standard model is almost along the whole crack front constant and 

thus it can be used for purposes of this research. 

Each result set of actual statistically rough crack fronts was characterized 

by surface roughness Rs: 

where Sr is the surface area of crack flanks of rough crack and S is the surface area 

of the projection of rough crack flanks to x-z plane. The surface roughness according 

to equation (42) was used instead of previously used linear roughness RL because this 

crack front type is tortuous in all directions and surface roughness better describes 

the tortuosity of the crack. 

W i t h known values of SIFs for standard planar model the results from modified 

model wi th tortuous crack geometry can be compared wi th them. The results comparison 

was made wi th use of quotient Q (where i = II and III for respective modes, for detailed 

description of coefficient Q\ see chapter 4.2.1.4) The significant values were for mode II 

SIF (Qn), because the value of Ki>n was oscillating around 0 value for both used material 

models thus the coefficient Q\ equaled for all cases 1. The other evaluated quotient was 

Qui for mode III SIF, but only for simulations wi th standard material model because wi th 

use of artificial material model with JJ = 0 the Km,n oscillated around 0 value and 

no reasonable values of Qm could be evaluated wi th use of artificial material model. 

(42) 

l 
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Fig. 83: Coefficient Qn as a function of crack flanks roughness Rs 
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Fig. 84'- Coefficient Qui as a function of crack flanks roughness Rs 

Obtained coefficients Qu and Qm as functions of crack roughness Rs are depicted 

in F ig . 83 and F ig . 84 respectively, whereas the results from artificial and standard 

material models for Qn are differentiated by red star signs and green circles respectively, 

but as can be seen in F ig . 83 both models give similar results so in the next processing 

the results from both models are treated collectively. The full blue line in each chart 

represents the interpolation of data-points Qu(Rs) or Qm(Rs) by a power-law function: 

Qi(Rs) = Ai-R^Bi+Ci; where i = II or HI. (43) 

The coefficients of simple interpolation function (43) had to be constrained to let 

the actual interpolation function satisfy the condition Qi(Rs = 1) = 1, which leads 

to used function: 

Q(Rs) = Ai-R^Bi+l-Ai; where i = H or III, (44) 

where only two independent fitting coefficients A and B\ are present. 

The constrained function (44) was used for interpolation of results for the mode II 

(both standard and artificial model combined) and mode III loading wi th use of least 

square method built in the Mat lab code [71]. The blue dashed lines limit the 99% 

confidence interval obtained by used interpolation method. Interpolation coefficients 

alongside wi th R-square parameter of each interpolation are shown in a table below. 

Table 3: Interpolation coefficients 

A R 2 

mode II 0.2914 23.13 0.9533 

mode III 0.5606 23.26 0.5272 
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As was mentioned before, resulting coefficients Qn for standard and artificial 

models are very close to each other which shows that lateral contraction and the side 

effect on the C T S specimen have very small, almost insignificant impact on observed 

changes of the mode II SIF. After such observation, both result sets from simulations 

with standard and artificial material model were joined together. 

Resulting coefficients Qn and Qm show significant decrease of averaged mode II 

and mode III SIFs along the tortuous crack fronts wi th increase of the crack flanks 

roughness. This result is in good agreement wi th theory describing roughness-induced 

shielding which was observed and investigated for mode I loading (e.g. [9, 10, 49-52]). 

Moreover, this phenomenon is in consistence wi th previous findings from models wi th 

simpler crack front and flanks geometries described in chapters above. These results 

for completely randomized crack front shape show that the decrease corresponds 

to power-law function of crack flanks roughness Rs (44). The power-law function fit 

for Qii(Rs) is very good (as is quantified by its R-square in Table 3) and also the 99% 

confidence bounds in F ig . 83 are quite narrow. This points out to a very small scattering 

even if used input parameters are randomly distributed. The Qm(Rs) on the other hand 

shows large scattering (wide 99% confidence bounds) and a mediocre quality of function 

fit. Large variance of the Qm results can be caused by higher sensitivity of mode III 

on small changes in the crack front and flanks geometry and also by higher oscillation 

of local fe,n components around their mean functional value. 

It is interesting that both interpolation functions (mode II and III) have almost 

the same B\ coefficient. This points out that the rate of decrease of both mean Ka and 

Km is the same. Also constructed function for mode II shows signs of some convergence 

to crit ical value of Qn,c where the mean value of K\ is not dependent on crack flanks 

roughness Rs. The same observation can be seen for mode III. The critical values can be 

theoretically obtained as a horizontal asymptotes of used interpolation functions. The 

function (43) can be rewritten to a rational form: 

Qi(Rs)= C i ' A { R l + 1 ; wherei = no r I I I , (45) 
A Rs' 

in which obviously the degrees of numerator and denominator are the same. For such 

a type of function (exactly as in (45) and wi th the same degrees of numerator and 

denominator) the horizontal asymptote equals coefficient G [82]. According to equation 

(44) the coefficient G equals to 1 - A thus the horizontal asymptotes of used functions 

are dependent only on coefficient A which is different for each mode. If one assumes that 

used interpolations are correct, then the critical values Qa,c and Qm,c should be 0.7083 

and 0.4394 respectively, whereas the critical value of Qn, c is more important 

due to the fact that the mode II loading is applied and evaluated. This means that in case 

of similar crack front and flanks geometry (as in F ig . 79) even for very high values of Rs 

the mean value of mode II SIF should not decrease below 70% of applied Ka, app-
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5 Conclusions 
During P h . D . research presented in this dissertation thesis new modelling approaches 

were used for a description of fracture behavior of cracks wi th rough crack flanks and 

tortuous crack fronts. Several phenomena related to geometrically induced shielding 

for shear modes loading were described and some of them were applied in relation 

to experimental measurement of fatigue threshold values for metallic materials. 

The research results were gradually published in scientific journals and presented 

on national and international conferences. For a better comprehension of research 

outputs, the conclusions discussed in this chapter wi l l be referenced to each respective 

publication (or presentation) listed in chapter 8 (indicated by a roman numeral in square 

brackets), where actual findings were published. 

Research described in this dissertation thesis confirmed the influence of crack front 

microstructure and it extended the knowledge about geometrical shielding on shear 

modes where it was not investigated as much as for loading mode I. For this purpose, 

two types of specimens were investigated - cylindrical specimen and C T S specimen. 

Modeled loading regimes were only shear modes (both II and III) and a new aspect was 

introduced to specimens' models - crack front and flanks tortuosity. 

For the cylindrical specimen two distinct phenomena were investigated. The first 

one was related to simplifications of complicated numerical models of fractures wi th 

complex shapes. Performed calculations revealed that it is not necessary to model 

the whole specimen wi th tortuous crack front, but one can model in detail a very small 

part of the crack around the place of interest, but in the rest of the model the crack front 

and flanks can be modeled as a simplified plane without influencing desired results. 

In fact, for sufficient accuracy of resulting SIFs along any asperity on crack front only 

one or two additional asperities have to be modeled on each side of the region of interest 

[V, XVII I ] . This finding can help in acceleration of calculations of future models of cracks 

wi th tortuous front where only a small portion of actual fracture is investigated. 

The second thing related to the cylindrical specimen in this research was actual 

quantification of local influence on crack propagation under remote mode III loading. 

It was shown that for in-plane zig-zag shaped crack fronts the induced local along each 

asperity is strongly dependent on actual asperity angle - mode II inducement increases 

with higher asperity angles and for angles larger than 15° the induced is not constant 

along the whole crack tooth but it increases towards the crack tooth peak. Comparison 

of numerically modeled ratios of h/Km wi th experimentally measured ratios of fatigue 

threshold values for modes II and III (when related to correct mean asperity angles 

measured by S E M on real pre-cracks) showed that modeled ratios of fc/'Km corelates wi th 

threshold values well and thus the local mode II crack advances under remote mode III 

loading could be quantified [VI, X , X V I ] for A R M C O iron and Niobium. 

For the C T S specimen under remote mode II loading the influence of several crack 

front and flanks roughnesses were investigated. Using only numerical F E models 
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a decrease of mean h(z) value in comparison wi th applied Kn, a p p was quantified 

by quotient Qu for in-plane and out-of-plane crack roughness and also for their 

combination. This quantification revealed that the in-plane crack front tortuosity has 

much larger influence on the mode II SIF decrease than the out-of-plane tortuosity 

[VIII, X X ] . Overall decrease of mode II SIF can be used to correct experimentally 

measured values of SIFs if the real crack asperity mean angles are known. The same 

simulations were used to investigate local modes inducement along one particular 

asperity. For in-plane crack front tortuosity qualitatively the same result as for cylindrical 

specimen was observed, but wi th locally induced in relation to global Ku [VIII, X X ] . 

On the other hand, for the out-of-plane tortuosity, despite no obvious reason, mode I SIF 

was induced along each particular crack front asperity. Closer observation of this 

phenomenon showed that the small amount of induced h can be clarified - small tensile 

and compressive stresses were just a local perturbation resulting from accurate numerical 

model and they have no direct connection to crack front rotation [VIII, X X ] . 

The last step in modelling of complex crack front shape was to create model where 

only a small portion of crack length is rough, and the rest is planar. This corresponds 

to experimentally observed crack morphologies where part of a crack was created 

ultra-fine and planar on purpose but the rest, after some shear crack propagation, 

exhibited some roughness. For the investigation of this type of shear cracks both 

numerical and analytical models wi th combination of crack front kink and twist were 

introduced. Analy t ica l model included several simplifications, but the numerical model 

included random crack front shape (governed by mean RL-value). Comparison of both 

approaches led to the conclusion that both approaches can describe the decrease of mean 

value very well. In fact, the resulting coefficients Qu were used to correct experimentally 

measured fatigue threshold value for A R M C O iron (measured under the assumption 

of straight crack front) and to corelate the threshold value wi th theoretical multiscale 

quasi-continuum models [VII]. Moreover, overall decrease of mean values of SIFs for this 

type of crack front and flanks geometry was quantified and related to crack geometrical 

shielding effect [III-V, XII I , X I V , X V , X V I I ] . One particular part of presented research 

showed that the decrease of mean value of fe(^) wi th increasing crack front and flanks 

roughness is independent on a l l linear material properties (despite the fact that 

the Poisson's ratio influences overall progression of Ku and Km)-

In conclusion, advances in presented research helped mainly in the path 

for correction of experimentally measured SIFs to the real crack front microstructure 

for remote shear loading. Newly used coefficient Q\ can be used for such correction when 

the actual crack front and flanks roughness is known. In addition, new models of shear 

cracks (statistical approach in F E models and one new analytical model) enable new 

possibilities in this branch of research. These new models can be used in further research 

in correlation wi th more experimental results. Furthermore, the same approach as was 

used here in F E modelling can be extended for different, more complicated crack flanks 

geometries and even create models as exact copies of S E M observed crack morphologies. 
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7 Nomenclature 
A P D L Ansys parametric design language 

B C C body centered cubic 

C T compact tension 

C T O D crack tip opening displacement 

C T S compact tension shear 

F E finite element 

F E M finite element method 

L E F M linear elastic fracture mechanics 

RIS roughness induced shielding 

S E M scanning electron microscope 

SIF stress intensity factor 

V C C T vir tual crack closure technique 

A surface of the crack 

J4 + ( _ ) energy needed to close the crack faces 

Ai independent fitting coefficient for i-th loading mode (i = I, II, III) 

Aia area of the ie-th element 

B specimen thickness 

Bi independent fitting coefficient for i-th loading mode (i = I, II, III) 

G independent fitting coefficient for i-th loading mode (i = I, II, III) 

D outer diameter of the specimen 

E Young's modulus 

E' generalized Young's modulus 

Shea r shear modulus 

F external force loading 

G crack driving force for i-th loading mode (i = I, II, III) 

/ interaction integral 

J J-integral 

K stress intensity factor for i-th loading mode (i = I, II, III) 

Kimx auxiliary stress intensity factor for i-th loading mode (i = I, II, III) 

K a p p applied stress intensity factor for i-th loading mode (i = I, II, III) 

Kin normalized stress intensity factors for i-th loading mode (i = I, II, III) 

L matrix of direction cosines 

Li characteristic dimension of cracked body for i-th loading mode (i = I, II, III) 

P work of external forces 

Qi quotient describing the change of mean functional value of crack SIFs for i-th 

loading mode (i = I, II, III) 

Qu crit ical value of coefficient Qi for i-th loading mode (i = I, II, III) 

Ri components of reaction forces (i = x, y, z) 
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Rh linear roughness 

RL, Fe real crack front roughness for A R M C O iron 

i ?max maximal distance of the crack tip from the center of the cylindrical specimen 

(zig-zag shape) 

i ? m m minimal distance of the crack tip from the center of the cylindrical specimen 

(zig-zag shape) 

Rs surface roughness 

S surface area of the projection of rough crack flanks to x-z plane 

SR surface of crack flanks (rough crack) 

T loading torque 

Ti components of the vector of surface forces 

T a stress tensor 

T a * transformed stress tensor 

U strain energy 

We elastic energy 

Wp work of external forces 

Wc energy of the system 

Yi crack geometry factor for i-th loading mode (i = I, II, III) 

a crack length 

On depth of the notch 

apc pre-crack length 

b C T S specimen gripping holes span (horizontal) 

c C T S specimen gripping holes span (vertical) 

d inner diameter of the specimen 

dg diameter of the C T S specimen gripping hole 

dm crack front asperity width 

/ auxiliary dimension of C T S gripping holes position 

fij correction function for stress field around the crack tip (i, j = x, y, z) 

h C T S specimen height 

fcai ./^-calibration function 

k local stress intensity factors for i-th loading mode (i = 1, 2, 3) 

^Cot te re i i , Rice } o c a } stress intensity factors by Cotterell and Rice [76] for i-th loading mode 

(i = 1, 2, 3) 

h, MI local stress intensity factors for i-th loading mode (i = 1, 2, 3) for model wi th 

fully modelled crack front roughness 

km normalized local stress intensity factors for i-th loading mode (i = 1, 2, 3) 

k, simple local stress intensity factors for i-th loading mode (i = 1, 2, 3) for model wi th 

simplified crack front roughness 
^ z h a n g , Wang } o c a } stress intensity factors by Zhang and W a n g [75] for i-th loading mode 

(i = 1, 2, 3) 
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n number of modeled teeth 

ne number of integrated elements (numerical integration) 

q crack extension vector 

r distance from the crack tip 

r g radius of the C T S specimen gripping hole 

n crack front roughness parameters for i-th direction (i = x, y, z) 

s length of the integration path 

sr length of rough portion of the crack 

t thickness of modelled specimen 

Ui components of a vector of relative displacements (i = x, y, z) 

u?ux auxiliary components of a vector of relative displacements (i = x, y, z) 

Ui' crack displacement for j - t h loading mode (j = I, II, III) in i-th direction 

(i = x, y, z) 

w characteristic dimension of the specimen 

wc strain energy density 

Wm, weight function 

zn normalized thickness coordinate 

r integration path 

I T path of the crack front 

A deformation of the cracked body 

AJ4 crack extension 

A a length of t i l ted part of crack 

A i ^ e f f t h i-th mode effective threshold stress intensity factor value (i = I, II, III) 

Afc, effth local i-th mode effective threshold stress intensity factor value (i = 1, 2, 3) 

Au (v, w) relative displacement of the crack face in the x, y and z directions respectively 

17 potential energy of the cracked body 

a crack front kink angle 

am maximal crack front kink angle 

ft crack front twist angle 

Si crack faces displacement for i-th loading mode (i = I, II, III) 

(Sij Kronecker delta 

£ij strain tensor components (i, j = x, y, z) 

£ i j a u x auxiliary strain tensor components (i, j = x, y, z) 

(j) polar coordinate around the cylindrical specimen 

K Kolosov's constant 

JU Poisson's ratio 

£ ratio of specimen diameters 

p notch root radius 

cry stress tensor components (i, j = x, y, z) 
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oij a u x auxiliary stress tensor components (i, j = x, y, z) 

Ti relevant shear stress components for i-th loading mode (i = II, III) 

(p angular coordinate around the crack tip 

y/ crack front asperity angle (in-plane roughness) 

co crack front asperity angle (out-of-plane roughness) 
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8 Author's outputs and activities related to doctoral 
studies 

Published papers and conference contributions were aimed at the topic of fracture 

mechanics, especially at the shear modes loading. A l l publications and outputs presented 

in this chapter are closely related to the topic of author's dissertation thesis and were 

published during his P h . D . studies (journal papers [I] and [II] and a conference 

contribution [XII] are related to the ini t ial research of the standard fracture mechanics 

models and were not mentioned in this thesis, however, models of specimens with 

complicated fracture geometry originated from this research). Moreover, the conference 

contribution [XIX] was not related to the description of complicated crack fronts, but 

the research was done during the doctoral studies and it was related to the similar 

subject - the notch influence on the SIFs. This research is (by the time of competition 

of this thesis) being summarized in a paper [XI] which wi l l be send for review. 

Some conferences contributions listed in this section were not strictly presented 

by author of this thesis at respective conference, but all of them were part of his research. 

Author of this thesis presented the results on conferences [XIII, X V , XVII ] by himself. 

Moreover, the contribution for the conference in Verona, Italy [XX] is in preparation 

(by the time of completion of this thesis) and it wi l l be presented by the author himself. 

Other author's activities were closely related to the P h . D . studies in terms 

of getting new and different experiences and of course the fulfillment of the study 

obligations. 

8.1 Papers in scientific journals 
[I] Horníkova J . , Sandera P . , Žák S. and Pokluda J . : Specimens for Simultaneous 

Mode II, III and II+III Fatigue Crack Propagation: Elasto-Plastic Solution 

of Crack T i p Stress-Strain Field . Advanced Materials Research 891-892 (2014). 

pp. 1585 - 1590. ISSN: 1022-6680, W O S : 000337767700245 

[II] Žák S., Horníkova J . , Sandera P . and Pokluda J . : Verification of Linear 

Dependence of Plastic Zone Size on J-integral for Mixed-mode Loading. 

Appl ied Mechanics and Materials 751 (2015). pp. 15 - 20. ISSN: 1660-9336 

[III] Horníkova J . , Žák S. and Sandera P . : Numerical Fracture Analysis of Compact 

Tension Shear (CTS) Specimens wi th Tortuous Crack Fronts. Key Engineering 

Materials 665 (2016). pp. 77 - 80. ISSN: 1013-9826 

[IV] Žák S., Horníkova J . and Sandera P . : Stress Intensity Factors for Rough 

Cracks Loaded in Mode II. Solid State Phenomena 258 (2017). pp. 310 - 313. 

ISSN: 1012-0394 
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[V] Žák S., Horníkova J . and Šandera P . : Shear Mode Stress Intensity Factors 

for Serrated Crack Fronts. K e y Engineering Materials 754 (2017). 

pp. 214 - 217. ISSN: 1662-9795 

[VI] Vojtek T. , Žák S. and Pokfuda J . : O n the Connection between Mode II and 

Mode III Effective Thresholds in Metals. Frat tura ed Integrita Strutturale 41 

(2017) . pp. 245 - 251. ISSN: 1971-8993 

[VII] Žák S., Horníkova J . , Sandera P . , Vojtek T . and Pokfuda J . : Determination of 

Local Stress Intensity Factors at Microstructurally Tortuous Crack Fronts 

under Remote Mode II Loading. Procedia Structural Integrity 7 (2017). 

pp. 254 - 261. ISSN: 2452-3216 

[VIII] Žák S., Horníkova J . , Sandera P . , Vojtek T . and Pokluda J . : Stress Intensity 

Factors at In-plane and Out-of-plane Tortuous Crack Fronts under Remote 

Mode II Loading. Fra t tura ed Integrita Strutturale (2018). accepted (in print). 

ISSN: 1971-8993 

[IX] Horníkova J . , Sandera P . , Žák S. and Pokluda J . : Stress Intensity Factors 

for Cracks Emanat ing from a Notch under Shear-mode Loading. 

K e y Engineering Materials (2018). accepted (in print). ISSN: 1662-9795 

[X] Vojtek T. , Žák S. and Pokluda J . : The Quantitative analysis of intrinsic 

mode III fatigue thresholds in bcc metals. International Journal of Fatigue 

(2018) . accepted (in print). D O I : 10.1016/j.ijfatigue.2018.04.022 

[XI] Žák S., Sandera P . , Horníkova J . and Pokluda J . : The critical depth of mode II 

and III cracks emanating from circumferential U-notches in round bars. 

Engineering Fracture Mechanics (2018). in preparation 

8.2 Contributions on national and international 
conferences 

[XII] Žák S., Horníkova J . , Sandera P . and Pokluda J . : Verification of Linear 

Dependence of Plastic Zone Size on J-integral for Mixed-mode Loading. 

Presented on: "Applied Mechanics, Materials and Manufacturing". 

K r u n g Thep 2014 

[XIII] Žák S. and Horníkova J . : Effects of Crack-Flanks Roughness in the Vic in i ty of 

Crack Front. In: Obrusn ík A . , Fo j tů M . , Pejovič J . , Hudcová K . , Sieberová M . 

(Eds.) "CEITEC PhD Retreat". C E I T E C . Valt ice 2015. p. 127. 

I S B N : 978-80-210-7825-3 
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[XIV] Horníkova J . , Žák S. and Šandera P . : Numerical Fracture Analysis of Compact 

Tension Shear (CTS) Specimens wi th Tortuous Crack Fronts. 

In: M . H . Al iabadi (Ed.) "Fracture and Damage Mechanics 14". Budva 2015 

[XV] Žák S., Horníkova J . and Sandera P . : Stress Intensity Factors for Rough 

Cracks Loaded in Mode II. In: P . Sandera (Ed.) "Materials Structure & 

Micromechanics of Fracture (MSMF8)". V u t i u m , Brno 2016. p. 218. 

I S B N : 978-80-214-5357-9 

[XVI] Vojtek T. , Žák S. and Pokluda J . : O n the Connection between Mode II and 

Mode III Effective Thresholds in Metals. In: "Characterisation of Crack Tip 

Fields". Bonifacio 2017 

[XVII] Žák S., Horníkova J . , Sandera P . , Vojtek T . and Pokluda J . : Determination of 

Local Stress Intensity Factors at Microstructurally Tortuous Crack Fronts 

under Remote Mode II Loading. In: S. Beretta, G . Nicoletto (Eds.) "3rd 

International Symposium on Fatigue Design and Material Defects". Politecnico 

Milano. Lecco 2017. p. 30 

[XVIII] Žák S., Horníkova J . and Sandera P . : Shear Mode Stress Intensity Factors for 

Serrated Crack Fronts. In: M . H . Al iabadi (Ed.) "Fracture and Damage 

Mechanics 16". Florence 2017 

[XIX] Horníkova J . , Sandera P . , Žák S. and Pokluda J . : Stress Intensity Factors for 

Cracks Emanat ing from a Notch under Shear-mode Loading. In: M . H . 

Al iabadi (Ed.) "Fracture and Damage Mechanics 17". Sevilla 2018 

[XX] Žák S., Horníkova J . , Sandera P . , Vojtek T . and Pokluda J . : Stress Intensity 

Factors at In-plane and Out-of-plane Tortuous Crack Fronts under Remote 

Mode II Loading. In: "Crack Paths". Verona 2018 
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8.3 Other 
Author of this thesis during his internship at the Fraunhofer Institute in Dresden, 

Germany (from beginning of October 2015 to the end of November 2015 and from 

the October 2016 to the end of January 2017) wrote several technical reports 

about the simulation and research on S R A M cell behavior under thermally induced 

deformation. Outputs of the research at the Fraunhofer Institute were also author's 

contribution on the final presentation of results to industrial partners. 

Results from research which was done during the internships are also planned 

to be published in some kind of scientific journal alongside the experimental results 

obtained by Fraunhofer Institute researchers. However, many of the results of this 

research are considered "top-secret" (according to legal terms of the Institute) and cannot 

be further discussed. 

Other, similar research at the Fraunhofer Institute was done by the author during 

his part-time job at the institute (until the end of June 2018) in the frame of project 

between Fraunhofer I K T S and T E S C A N . However, this research was done 

for the industrial partners of the Fraunhofer Institute and thus there is no chance 

for any publication (since the research was again deemed to be "top-secret"). 

Beside the publication and research activities, author of this thesis also got many 

experiences from the university environment by the means of teaching activities - regular 

teaching of the course 4 P P - Strength of Materials at the Facul ty of Mechanical 

Engineering (Brno Universi ty of Technology), by tutoring the students at mentioned 

faculty and by organizing the international conference Materials Structure 

& Micromechanics of Fracture ( M S M F 8 ) in 2016. 
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