
U N I V E R S I T Y OF S O U T H B O H E M I A IN Č E S K É 

B U D Ě J O V I C E 

A N D 

J O H A N N E S K E P L E R U N I V E R S I T Y 

F A C U L T Y OF S C I E N C E 

B A C H E L O R ' S TH E S I S 

Auto-Encoding Amino Acid Sequences 
with LSTM 

Supervisor: 

Univ.-Prof. Dr. Sepp HO C H R E I T E R 

(JKU) 

Co-Supervisor: 

Bernhard SCHÄFL , MSC (JKU) 

Author: 

Markus P R O M B E R G E R 

Linz, March 2022 



Bibliographical Detail 

Promberger, M . , 2022: Auto-Encoding Amino A c i d Sequences with L S T M . Bachelor Thesis, 

in English. - 56 p., Institute for Machine Learning, Faculty of Engineering & Natural Sciences, 

Johannes Kepler University, L inz , Austria 

Annotation 

In this thesis a sequence to sequence autoencoder for amino acid sequences is constructed. 

The latent representation of the autoencoder is then used to classify the amino acid sequences 

according to their animal kingdom. The data consists of sequences from three different king­

doms, mammals, fish and birds. The thesis includes the preprocessing necessary for the data, 

the construction of the sequence to sequence autoencoder and the process of classification in 

the latent space. 

Declaration 

I declare that I am the author of this qualification thesis and that in writing it I have used the 

sources and literature displayed in the list of used sources only. 

Linz , 8th March 2022 

Place, date Markus P R O M B E R G E R 



Contents 

1 Introduction 1 
1.1 Motivation 1 

1.2 Related Work 2 

2 Data and Methods 3 
2.1 Structure of Data 3 

2.1.1 Sequence Length 3 

2.1.2 k-merPlot 5 

2.2 Pairwise Sequence Alignment 5 

2.2.1 Global Sequence Alignment 7 

2.2.2 Local Sequence Alignment 9 

2.3 Clustering 10 

3 Machine Learning 13 
3.1 Data Preparation 13 

3.1.1 One-hot Encoding 13 

3.1.2 Padding 14 

3.2 Training Procedure 15 

3.2.1 Gradient Descent 16 

3.2.2 Cross-Validation 18 

3.3 Neural Networks 19 

3.3.1 Recurrent Neural Networks 20 

3.3.2 Long Short-Term Memory 21 

3.4 Autoencoder 23 

3.4.1 Sequence to Sequence Autoencoder 24 



3.4.2 Teacher Forcing 25 

3.5 Clustering of Latent Space 26 

3.5.1 K-means Clustering 26 

3.5.2 K-nearest Neighbors Clustering 27 

3.6 Visualization of Latent Space 28 

3.6.1 t -SNE 28 

3.6.2 U M A P 30 

4 Methods and Results 31 
4.1 Methods 31 

4.1.1 Preprocessing of Data 31 

4.1.2 Autoencoder 32 

4.1.3 Clustering of Latent Space 37 

4.2 Results 37 

4.2.1 Autoencoder 37 

4.2.2 Clustering of Latent Space 41 

5 Conclusion 46 
5.1 Further Possible Work 46 

5.2 Conclusion 48 

List of Figures 53 

List of Tables 55 



Abstract 

Clustering biological sequences into phylogenetic trees and assigning newly found sequences 

to previously known groups is an important task in biological research. When dealing with 

a large amount of sequences, tools from the field of bioinformatics become essential for the 

success of the research. There are well established methods for clustering sequences like ag-

glomerative clustering or maximum parsimony methods. These techniques however are not 

well suited for integrating new sequences into them, because the whole structure needs to be 

adjusted. This process is time consuming, so in order to improve it, this thesis aims at im­

plementing a technique that utilizes machine learning methods for this task. The Long Short-

Term Memory ( L S T M ) introduced by Hochreiter und Schmidhuber is the main component of 

the machine learning architecture proposed in this work. 

The proposed approach aims at creating a compressed representation, a so called code, 

of known amino acid sequences. These sequences are from three different kingdoms of ani­

mals and the code is used to assign new sequences to the kingdoms. The technique utilizes 

sequence alignment algorithms and agglomerative clustering to preprocess the data for the ma­

chine learning architecture. That architecture is a sequence to sequence autoencoder that uses 

L S T M s to process the sequences. A n autoencoder architecture is composed of an encoder 

that creates the before mentioned code from the input and a decoder that learns to recreate 

the input from that code. K-means and k-nearest neighbors classifiers are then fit to this code 

produced from the sequence to sequence autoencoder in order to classify the new sequences. 

A n independent test set is used to estimate the accuracy of the classifiers. 

With a classification accuracy of over 85% on the test set this approach could potentially 

be a way of predicting the origin of amino acid sequences or other characteristics. 



Chapter 1 

Introduction 

1.1 Motivation 

Bioinformatics is about the extraction and storage of information from biological data. Protein 

sequences offer a wide variety of possible research, one of them is the construction of phyloge-

netic trees. Phylogenetic trees show the distance between organisms often based on sequential 

data. These trees can be used for analyzing and visualizing evolutionary relationships between 

sequences or organisms. There are well established methods for generating phylogenetic trees 

like maximum parsimony methods or distance-based methods. Recent works from Sinai et. al 

[27] or Schafl [25] show that machine learning could be a valuable tool for analyzing protein 

sequences. 

Because of the potential of machine learning, this thesis focuses on developing a sequence 

to sequence autoencoder [29] for protein sequences of the hemoglobin family. For that, se­

quences from three different animal kingdoms, birds, fish and mammals, are first pairwise 

aligned and then clustered based on the distance between them. These clusters are then used 

to perform clustered cross-validation to learn a sequence to sequence autoencoder. This ma­

chine learning architecture computes a fixed size representation, called latent space or code, 

for each sequence, which may have different lengths. Having a fixed size representation of the 

sequences can be useful when trying to compare the sequences to each other. Both the encoder 

and decoder of the autoencoder are L S T M s and a dense feed-forward neural network is used 

for dimensionality reduction. The latent space between the encoder and decoder is analyzed 

using k-means [16] and k-nearest neighbors clustering with the goal that three clusters corre-

1 



2 CHAPTER 1. INTRODUCTION 

sponding to the three kingdoms can be observed in the latent space. For a visual inspection the 

dimensionality reduction techniques t -SNE [31] and U M A P [18] are used. 

1.2 Related Work 

The work from Sinai et al. [27] shows that variational autoencoders (VAE) can be used for 

estimating protein functions from the sequence. In their work a V A E with three dense layers of 

dimensionality 250 with exponential linear units ( E L U ) [2] as activation function was used to 

learn the distribution p(x, z) = p(z)p(x\z). Here z G Z are the latent variables and x G X are 

the observed sequences. Once a good distribution p(x, z) is learned, new sequences x similar 

to the ones from X can be generated. 

Sinai et al. [27] made three main observations about their results: (i) The learned prob­

ability distributions correlate well with experimental measured protein functions, (ii) When 

using a two dimensional latent variable the sequences build sensible clusters that correspond 

to the distance between the sequences, (iii) The V A E learned higher level interactions within 

the protein sequences. 

As potential future work Sinai et al. [27] suggest to use recurrent or convolutional ar­

chitectures which might outperform the used V A E . This thesis uses a traditional sequence to 

sequence autoencoder with L S T M s as recurrent neural nets for the encoder and decoder. The 

traditional autoencoder doesn't learn a distribution p(x, z) but rather computes a fixed, both in 

size and values, representation from the sequences. 



Chapter 2 

Data and Methods 

2.1 Structure of Data 

The data consists of hemoglobin related protein sequences of three different kingdoms of ani­

mals. The first group consists of mammals, the second of fish and the third group are birds. In 

total there are 736 sequences: 384 of mammals, 92 of fish and 260 of birds. Protein sequences 

consist of 20 different amino acids that can be further divided into 4 groups according to their 

chemical properties. There are 10 non-polar amino acids, 5 polar, 3 positively charged and 

2 with a negative charge. Amino acid sequences are usually stored in the FASTA [1] format, 

which is also the case for this thesis. In this format, unknown positions in the protein sequence 

are represented with an X as the 2 1 s t symbol. The codes for the amino acids are described in 

Table 2.1 according to the IUPAC-IUB rules [3]. The chemical characteristic of each amino 

acid is also described in this table. There are in general four groups of amino acids, these 

characteristics are determined by the side chain of the A A . The A A are divided into the four 

groups hydrophobic, polar uncharged, positively charged and negatively charged. 

For a first glance at the data, the sequence lengths as well as the k-mer distribution have 

been analyzed. 

2.1.1 Sequence Length 

The lengths of the sequences are mostly in the range between 141 and 143 with 682 of the 736 

sequences being in this range. These make up almost 93% of the data. 47 of the sequences are 

shorter than 141 amino acids (AAs) with the shortest being 9 A A s long. 7 of the sequences 

3 



4 CHAPTER 2. DATA AND METHODS 

Amino acid Abbreviation Chemical characteristic 
Alanine A hydrophobic 
Arginine R positively charged 
Asparagine N polar uncharged 
Aspartic acid D negatively charged 
Cysteine C polar uncharged 
Glutamine Q polar uncharged 
Glutamic acid E negatively charged 
Glycine G hydrophobic 
Histidine H positively charged 
Isoleucine I hydrophobic 
Leucine L hydrophobic 
Lysine K positively charged 
Methionine M hydrophobic 
Phenylalanine F hydrophobic 
Proline P hydrophobic 
Serine S polar uncharged 
Threonine T polar uncharged 
Tryptophan W hydrophobic 
Tyrosine Y hydrophobic 
Valine V hydrophobic 
Unknown or 'other' X no characteristic 

Table 2.1: One-letter codes of the 21 present symbols in the dataset. These include 20 amino 
acids as well as the X for unknown positions. The third column describes the chemical char­
acteristic for each amino acid. 

are longer than 143 and the longest is 250 A A s long. The means and standard deviations 

of the sequence lengths for the different kingdoms are shown in Table 2.2. The mammalian 

sequences have the lowest mean length with 138.3 and the highest standard deviation with 

17.4. This is due to the fact that 26 of the 47 sequences shorter than 141 are from this category. 

Overall the mean sequence length is 139.3 with a standard deviation of 14.9. A naive approach 

of clustering the sequences would be to cluster them according to the sequence length. If 

the means are far apart and the standard deviation is low, a statistical error bound could be 

calculated. However in this case, the means are very similar and even within one standard 

deviation the means are overlapping. For that reason a classification based on the sequence 

length is not reliable. 



2.2. PAIRWISE SEQUENCE ALIGNMENT 5 

Mean sequence lengths 
kingdom mean std 
mammals 138.3 ± 1 7 . 4 
fish 142.9 ± 1 1 . 7 
birds 139.4 ± 1 1 . 3 
all sequences 139.3 ±14 .9 

Table 2.2: Mean and standard deviation for sequence lengths for every kingdom individually 
and for all sequences. 

2.1.2 k-mer Plot 

The term k-mer in bioinformatics refers to the sub-sequences of length k of a biological se­

quence like an amino acid sequence. These k-mers can be overlapping or non-overlapping but 

the order of the elements cannot be changed. For example all possible 3-mers of the amino 

acid sequence MTHCG are MTH, THC and HCG. In general for sequences of length L there 

are (L — k + 1) overlapping and |_f J non-overlapping ones. Using these k-mers, a rough es­

timate of how similar sequences are to each other can be made by comparing the frequencies 

of the sub-sequences. In a k-mer plot this is done by plotting the frequency with which a k-

mer appears on the x-axis. The values on the y-axis show how many different k-mers appear 

x-times. For example in Fig . 2.1 for the k-mer size of 100, there are 29 k-mers that appear 22 

times within the birds data (big red peak at x = 22). 

From the graphs it can be observed that the birds sequences are the most similar, followed 

by the mammals. The fish are the most distinct within their group. This conclusion is based 

on the high y-values in the right region of the x-axis for the bird sequences in the high k-mer 

size plots. A high concentration around the left x-axis values shows that a lot of k-mers appear 

rarely or only once in the data. If the data would be similar, then the same k-mer would show 

up more often, leading to high y-values more to the right of the x-axis. This can be seen in the 

plot with k-mer size 100 for the bird sequences with high peaks upwards of x = 20. 

2.2 Pairwise Sequence Alignment 

Pairwise sequence alignment is needed to find similarities between two sequences by aligning 

them to each other. This can be achieved by matching similar elements in the two sequences 

and inserting gaps. A n alignment has an associated alignment score that consists of a score 



CHAPTER 2. DATA AND METHODS 

K-mer plot for various K-mer sizes 

K-mer size 5 K-mer size 20 
Al l o r g a n i s m s 

M a m m a l s 

fish 

B i rds 

* i\ I « ' | I • I l|l I I 
0 1 0 0 2 0 0 3 0 0 4 0 0 5 0 0 6 0 0 700 

K-mer f r e q u e n c y 

K-mer size 50 
Al l o r g a n i s m s 

M a m m a l s 

Fish 

Bi rds 

A l l o r g a n i s m s 

M a m m a l s 

Fish 

Bi rds 

100 150 20C 
K-mer f r e q u e n c y 

K-mer size 100 

40 60 80 
K-mer f r e q u e n c y 

2 C 
K-mer 

Figure 2.1: k-mer plot where all organisms are compared with each other with respect to a 
specific k-mer size. 

achieved by the matches between the sequences and the number of gaps inserted to align 

the elements. The scoring metric used for calculating the score of the matches can either be 

simple, e.g. +1 for match and — 1 for mismatch, or more complex, e.g. point accepted mutation 

(PAM) [4] or block substitution matrices (BLOSUM) [9]. Both PAM and BLOSUM have 

different versions that are better in certain situations. PAM100, similarly BLOSUM90, is 

suited for similar sequences, for example sequences from closely related organisms, while 

PAM250, and BLOSUM45 are rather used for sequences from distantly related organisms. 

The insertion of gaps can be used to align matches within two sequences, but the insertion 



2.2. PAIRWISE SEQUENCE ALIGNMENT 7 

of gaps is usually penalized. This is done because a gap represents a difference between the 

two sequences. If for example the only difference between two sequences is the addition of 

a single amino acid in the middle of one sequence, then without the gap penalty, the two 

sequences would have a perfect alignment score. This is not an accurate alignment score, 

because there is a difference, namely the added amino acid. This distance can be incorporated 

into the alignment by using a gap penalty. There are two different approaches for penalizing 

gaps, affine and linear gap penalty. For linear gap penalty every gap is seen as an independent 

event and there is always the same penalty for inserting a gap into the alignment. In affine 

gap penalty scenarios the opening of a gap has a different penalty than the elongation of an 

already opened one. Usually the opening is more expensive than the elongation, leading to 

longer continuous gaps instead of many short ones. The score achieved by a pairwise sequence 

alignment, taking into account the matches and mismatches as well as the amount of gaps, is 

proportional to the similarity between the two sequences. 

Pairwise sequence alignment algorithms are used for finding such alignments that maxi­

mize the previously mentioned alignment score. The original sequential order of the elements 

must be preserved. The algorithms can be divided into two classes, global and local alignment 

algorithms. While global algorithms optimize the complete alignment, local algorithms find 

matching sub-sequences between the two sequences. In the following, the most prominent 

algorithm of each class w i l l be introduced. 

2.2.1 Global Sequence Alignment 

In global sequence alignment the whole sequence a is aligned to the whole sequence b. The 

most known algorithm for this is the Needleman-Wunsch algorithm [20]. This algorithm uses 

dynamic programming in order to solve the complex problem of finding the best pairwise 

alignment. It achieves this by solving a series of smaller problems by aligning smaller sub­

sequences and combining the solutions of the sub-problems. Every possible alignment gets 

assigned a score and for the purpose of finding the best alignment, only the ones with the 

highest score are returned. In the following the Needleman-Wunsch algorithm with linear gap 

penalty d and a scoring matrix S for sequences a and b is explained. 

The Needleman-Wunsch algorithm starts by creating a matrix S with dimensions [(la + 

1) x (lb +1)] where la and lb are the lengths of the two sequences. For the initialization S(0,0) 



8 CHAPTER 2. DATA AND METHODS 

is set to zero and the first row 5(0, j) with j e [ 1 , Z & ] and column S(i, 0) with i e [ l , . . . , / a ] 

are filled with d • j and d • i respectively. Following the initialization, all matrix entries S(i,j) 

with % e [ 1 , l a ] and j e [!,...,/(,] are calculated in the following way 

The matrix 5 is filled by following the instructions given by equation 2.1. The diagonal 

move 5(z — 1, j — 1) + s(aj, 6,-) through the matrix represents a match or mismatch by adding 

the score of the scoring matrix S{ai)bj) to the previous score S(i — 1, j — 1). The value 

S(i — 1, j) — d is a vertical move and corresponds to a gap in the sequence b and S(i,j — l) — d 

is a horizontal move that shows up in the sequence alignment as a gap in sequence a. The 

maximum of these 3 values is used to fi l l the matrix 5 at the corresponding indices. 

In the example in F ig . 2.2 a gap penalty d of —8 is used, matches and mismatches are 

scored according to BLOSUMQ2. Solving for example the value of 5(2,1) = —4 is done 

by looking at the diagonal move 5(1,0) + s(a2,b1) which results in —8 + 4 = —4. The 

horizontal move 5(2,0) — d leads to—16 — 8 = —24 and the vertical move with 5(1,1) — d 

with 0 — 8 = —8. The maximum of these values is therefore the diagonal move with 5(1,0) + 

s(a2,b1) = —4, which is marked with the diagonal line. Keeping track of which of these three 

values is the maximum (visually in the form of lines) allows a construction of the optimal 

global sequence alignment by backtracking from the bottom right to the top left corner of the 

matrix 5 (as in Fig . 2.2). The alignment has a gap at the beginning of the vertical sequence a 

and ends with a gap at the end of the horizontal sequence b. The final alignment has a length 

of 11 and looks like the following: 

S(i,j) = max < 

S(i - 1, j - 1) + S (OJ , h 

S(i-l,j)-d 

S(i,j - l ) - d 

(2.1) 

- V S T V L T S K Y R 
A V G A V L T A K Y -



2.2. PAIRWISE SEQUENCE ALIGNMENT 

V S T V L T S K Y R 

0 _ 

l \ 
_ -8 _ 

\ 

_ - 1 6 _ _ -24 _ _ -32 _ _ - 4 0 _ _ -48 _ 

\ 

-56 -64 _ - 7 2 _ _-80 

1 
-8 

| \ 

-16 

\ 

\ 

) 

\ 
4 

\ 

O 
. \ 

_ - 1 5 _ 

C 
-23 

\ 
-11 _ 

\ 

-31 

_ - 1 9 _ 

v \ 

_ - 3 9 _ 

_ -27 _ 

, \ 

_ - 3 5 _ 

_ - 5 5 _ 

_ - 4 3 _ 

_ - 6 3 _ 

_ - 5 1 _ 

_-71 

_-59 

-: 4 -J 2 

\ 

\ , 
\ 

\ 
-4 

\ 
-10 

v \ 

\ 
-15 

v \ 

\ 
-21 

, \ 

\ 
-27 _ 

v \ 

_ - 3 5 _ _ - 4 3 _ 

\ 

_-51 

-: 2 -2 0 \ 1 

\ \ 
\ l 

, \ v \ 

\ o 

v \ 

\ 2 8 _ 

\ 

_ -36 _ ̂ -44 

-40 
\ 

-2 8 -: 9 \ -1 1 \ ) 

\ 

\ 
-3 _ 

\ 

\ 
_ - l l 

\ 
-17 

\ 

\ 
-22 

, \ 

\ 
-29 _ 

v \ 

_-37 

-48 -2 6 

\ 

-J 7 

\ 

-] 9 8 \ t _ 

\ 

_ -12 \ , \ , \ , 
-s 6 -4 14 

\ 

\ 5 \ .2 

\ 

-1 6 4 ) _ 

\ 

_ 1 _ _ -7 _ _ - 1 5 _ _-23 

-t A -E 2 -3 0 -22 -: 2 ] L 10 2 _ 

i s . 
_ -6 _ _-14 

-1 2 -« 0 _j 1 -3 8 0 .0 7 _ 7 _ _ -1 

-e 0 -C 8 9 -46 _^ 8 .8 -] 5 -6 7 _ 14 

A 

V 

G 

A 

V 

L 

T 

A 

K 

V 

Figure 2.2: Needleman-Wunsch algorithm showing the global alignment of two sequences. 
The red line represent the best alignment with an alignment score of 14. [30] 

2.2.2 Local Sequence Alignment 

Local sequence alignment algorithms find the best matching sub-sequences between two se­

quences. The Smith-Waterman algorithm [28] is the most prominent example for such an al­

gorithm. The Smith-Waterman algorithm works similar to the Needleman-Wunsch algorithm 

(see 2.2.1) with the difference that the values of the matrix S cannot become smaller than zero. 

So whenever the matrix entry S(i, j) would become negative, it is set to 0. Following this rule 

the matrix is filled according to Equation 2.2. 



10 CHAPTER 2. DATA AND METHODS 

S(i,j) = max < 

S(i - l,j - 1) + s(ai,bj 

S(i - 1, j) - d 

S(i,j - l ) - d 
(2.2) 

0 

Finding a sub-sequence is then done by backtracking from the highest value in S until a 

zero entry is reached. Because the highest value in S is not necessarily the bottom right corner 

and backtracking can end before hitting the top left corner, it is possible that the algorithm 

returns sub-sequences. In the example in Figure 2.3 the alignment has a length of 9, which is 

similar to the global alignment from Chapter 2.2.1 with the start and end gap not included in 

the local alignment. Having a gap at the end leads to a lower final score than not having one 

and a gap at the start is only possible i f the starting position in the matrix is negative, which 

is not possible for the Smith-Waterman algorithm. The following is the ideal local alignment 

found by the algorithm: 

Clustering is a popular method for analyzing data by grouping data points based on similarity 

or distance. Data points with a short distance between them are grouped together, they form 

clusters. One class of clustering algorithms is hierarchical clustering, which can be further 

divided into agglomerative and divisive algorithms. Agglomerative represents bottom up al­

gorithms, starting with all data points being in a separate cluster and merging them until all 

observations are in one combined cluster. Divisive algorithms on the other hand are top down, 

so they start with all data in the same cluster and splitting the groups until every observation is 

in its own cluster. 

For agglomerative algorithms there are three common approaches on how to use a dis­

tance metric between data points to merge clusters. In the following D( the distance 

V S T V L T S K Y 
V G A V L T A K Y 

2.3 Clustering 



2.3. CLUSTERING 11 

V S T V L T S K Y R 

A 

V 

G 

A 

V 

L 

T 

A 

K 

V 

0 0 

\ 
0 0 0 0 0 

\ 
0 0 0 0 

0 0 \ 
\ 

0 0 

v \ 
0 0 \ 0 0 0 

0 

N 
0 \ \ 

4 
\ 0 0 0 0 0 

0 0 

\ 
\ 0 0 0 0 

\ 
0 0 0 0 

0 

\ 
0 \ 

\ 
\ 

\ 
0 

k \ 
0 0 \ 0 0 0 

0 

\ 
\ 

4 

\ 
0 \ 

1 

\ 
\ \ 0 0 0 0 0 

0 

\ 
k  

0 \ \ 2 _ 4 0 0 0 0 

0 0 

\ 
\ 

2 

, \ 

\ 
7 

\ 

0 
1 
4 \,_ 

9 

1 

_ 9 _ _ 1 0 0 

0 0 \ \ 
\ 

0 

\,_ 
9 

1 
\ » _ 

|\ 
_ 10 _ _ 2 0 

0 0 0 0 0 \ 
\ 

1 
1 10 _ 15 7 

0 0 0 0 0 0 \ 
3 

2 15 ^ 3 0 22 

Figure 2.3: Example of Smith-Waterman algorithm. Backtracking the red line gives the opti­
mal local sequence alignment with a score of 30. [30] 

between two observations Xi and Xj from the clusters Xi and X , respectively. A(Xi,Xj) is 

called linkage or sub-set distance. 

1. Single Linkage: 

2. Complete Linkage: 

A(Xi,Xj) = mm ^D(xi,Xj] 

A p Q , Xj) = max ^ D(xiy Xj] 

(2.3) 

(2.4) 



12 CHAPTER 2. DATA AND METHODS 

3. Group Average Linkage: 

^(Xt,XJ) = —±— J2 E D{xl)Xj) (2.5) 
LA» LA , 

Single linkage is used to ensure a minimum distance between any two clusters in the clus­

tering by using the minimum distance between two observations, as described in equation 2.3. 

This can be used in leave-one-cluster-out cross-validation, because the clusters are sure to be 

dissimilar up to a certain threshold (see Chapter 3.2.2). One drawback of single linkage is the 

so called chaining phenomenon, where on average very distinct clusters are combined because 

of single elements being close. This phenomenon can be avoided by using the complete link­

age (see equation 2.4), but this linkage distance is vulnerable to outliers and cannot guarantee 

a minimal distance between clusters. The group average linkage (see equation 2.5) also does 

not produce the chaining phenomenon and is more robust to outliers. [21] 

The selection of the distance metric D( crucial for the overall clustering algorithm. 

For this elaboration the distance associated with the pairwise identity (PID, see Equation 2.6) 

as defined in Equation 2.7 [25] was used. 

PID(a, b, A) = 100 • n*dent;f[X} (2.6) 
min(la, lb) 

d(a, b, A) = 100 - PID(a, b, A) (2.7) 

The PID function takes three arguments a, 6, A where a and b are the two sequences for 

which to compute the similarity and A is an alignment between the sequences. la and lb in 

equation 2.6 are the lengths of the two sequences a and b respectively, n«fe n ij c az(A) is the 

amount of identical elements in the alignment. If the number of identical elements in the 

alignment is equal to the length of the shorter sequence, then the fraction in the equation is 

equal to one and the overall PID is 100. If the alignment of the two sequences has no identical 

elements, the PID value is zero. This distance metric is useful for protein sequences because 

a pairwise sequence alignment (see Chapter 2.2) can be taken into account with A. 



Chapter 3 

Machine Learning 

3.1 Data Preparation 

The data consists of amino acid sequences, which cannot be fed directly into an L S T M model. 

The data has to be transformed into a mathematical representation. For this thesis the approach 

of one-hot encoding was taken (see 3.1.1), because it is a broadly used way of encoding 

categorical data. Another problem is the variable sequence lengths of the protein sequences. 

This problem is tackled by zero padding and masking the sequences (see 3.1.2). 

3.1.1 One-hot Encoding 

One-hot encoding is a commonly used method for converting categorical data, like amino 

acids, into numerical data vectors and protein sequences into matrices. It is achieved by creat­

ing a zero vector with the length of the possible values the data can take. In the case of amino 

acid sequences this would be 21, including the X character for unknown A A s . In this zero vec­

tor one position is "switched on" by setting it to 1. For example in the case of Alanine (A) only 

the position referring to this amino acid is set to 1, the remaining 20 positions in the vector stay 

at 0. This procedure is repeated for the whole protein sequence and leads to a matrix of shape 

[n x 21] where n represents the length of the sequence (see Fig . 3.1). The rows of this matrix 

correspond to the positions of the A A s in the sequence, the columns to the A A s themselves. 

13 



14 CHAPTER 3. MACHINE LEARNING 

A = [1,0, 
C = [0,1, 
T = [0, 0, 

0] 
0] 
1] 
,0] ACT = [1,0,0] [0,1 [0,0,1] 

Figure 3.1: One-hot encoding with three different amino acids. 

3.1.2 Padding 

Models like L S T M s can handle different sequence lengths i f the sequences are processed one 

at a time. Once the sequences are combined into batches, the models expect the sequences in 

the batch to be of the same length. Because this is usually not the case for biological sequences 

like proteins, the data has to be adapted. In order to deal with this problem, a common approach 

is to use zero padding. For this the shorter sequences are padded by concatenating zeros until 

they reach the length of the longest sequence in the batch (see Fig . 3.2). When using zero 

padding, it is important to mask the padded part so that it is not used for the calculations and 

to keep track of the original sequence lengths. This masking is needed because otherwise 

the model might change its prediction because of the artificially added padding. The original 

sequence lengths are needed for what is called unpadding. This process is the removal of 

the previously concatenated zeros to get the prediction for the original sequence lengths. To 

handle one-hot encoding in combination with padding, an additional position can be added to 

the possible positions described in Chapter 3.1.1. Then the corresponding position is set to 1 

for the padded part of the sequence. The padding token for the one-hot encoded part should 

then be ignored during the learning procedure of the model, because the artificially added 

characters should not contribute to the models prediction. 

Start-Of-Sequence (SOS) and End-Of-Sequence (EOS) tokens can be added to the start and 

end of the sequences respectively. In a sequence to sequence autoencoder (see Chapter 3.4.1) 

EOS tokens are needed for the encoder to know the end of the input and gives the decoder the 

possibility to terminate the prediction for the sequence. SOS tokens are used to initiate the 

prediction of the decoder together with the latent representation. The two tokens are appended 

to the sequences prior to the zero-padding described above. 



3.2. TRAINING PROCEDURE 15 

ACTG SACTGE 
AT z e r ° - p a d d i ^ SATEOO 
CG SCGEOO 
ACG SACGEO 
S ... Start-Of-Sequence 

E ... End-Of-Sequence 

Figure 3.2: Example for zero-padding where the first sequence is the longest with a length of 
four. The shorter three sequences are padded with zero until they reach the maximal length of 
four. End-Of-Sequence and Start-Of-Sequence tokens are inserted at their respective position. 

3.2 Training Procedure 

The data for a supervised machine learning project is usually split into three subsets, the train­

ing {Xtrain, Ytrain}, validation {XvaU Yvai} and test sets {Xtest, Ytest}. In supervised machine 

learning tasks the datasets consist of both the data itself X and some corresponding output 

labels Y. The goal is to find parameters W for a model g(x; W) such that it is able to map any 

datapoint x to its respective label y. The first step of the training procedure in supervised ma­

chine learning is to fit a model g(.; W) with the weights W to the training data {Xtrain, Ytrain} 

such that the loss L(Ytrain, g(Xtrain; W)) becomes minimal. A loss function is a measurement 

of difference between the prediction of the model g(x; W) and the true label y. This loss 

function depends on the nature of the data. In order to minimize the loss function, a minimiza­

tion technique called gradient descent (see Chapter 3.2.1) is often applied. The model g(.; W) 

should be able to map any datapoint to its respective label, including data that was not used for 

the training process. The validation error, or validation loss, Lvai(Yvai,g(Xvai; W)) is used to 

evaluate the model on previously unseen data. In Figure 3.3 the Bias-Variance tradeoff is de­

scribed. Optimizing the model weights W so far that they fit the training data perfectly might 

lead to the model not being able to generalize to never seen data. This is known as overfitting, 

this means the model has a high variance. High complexity of the model class can lead to the 

model overfitting the data. In the training process this can be observed when the training error 

is decreasing but the validation error is increasing. If the model is not complex enough to fit 

a mapping from an input x to a label y, it is underfitting the data which corresponds to a high 

bias. A n underfitted model has both a high training and validation error. This problem occurs 



16 CHAPTER 3. MACHINE LEARNING 

when the complexity of the model class is not high enough to fin an appropriate mapping for 

the data. A n ideal model class complexity would be in between these two regions. 

After the training procedure, a trained model is selected by comparing the trained models 

based on their performance on the validation set. For this the loss Lvai or another metric like 

the Fl-score (see Chapter 4.1.2) is calculated for the model's predictions on the validation 

set. The model with the best performance on the validation set is then taken to perform a final 

prediction on the test set {Xtest, Ytest}. It is important that the test set is not touched before this 

final evaluation to ensure an unbiased estimation of the generalization capability of the model. 

The performance of the model on the test set is a good estimate to see i f it can generalize to 

never seen data. 

model complexity 
Figure 3.3: Bias-variance tradeoff, on the left side the model is underfitting while on the right 
side it is overfitting to the data. 

3.2.1 Gradient Descent 

A loss function L(y, g(x; W) is used to calculate the error between the prediction of the net­

work g(x; W) and the true value y. With the weights W, the network g(x; W) predicts the 



3.2. TRAINING PROCEDURE 17 

label y by mapping the input x to the labels. What mathematical form this mapping takes 

depends on the nature of the data x and the labels y. The gradient SL(y<9(*'<w)) combined with 

a learning rate A is used to change the weights of the network in a way that reduces the train­

ing error. This is achieved by doing multiple steps in the opposite direction of the gradient, 

described in Equation 3.1. These steps lead to a local minimum of the loss function. 

JL(y,g(x;W)) 
wnew = w 0 i d - \ — (3.1) 

The loss function used in a machine learning task depends on the type of data and the goals. 

For categorical data like protein sequences the cross entropy loss as described in Equation 3.2 

may be used for classification. The final step for the network in case of categorical data is 

usually to map the predictions of the network y into the value range [0,1] with the softmax 

function. This is achieved by dividing the e & with the sum of the same value over all possible 

classes C in the data. This function ensures that the values are in the range [0,1] and the sum 

of the predictions is 1. Because of that the values can then be interpreted as probabilities for 

the individual classes c and the loss L(y, g(x; W)) is then calculated using these values. 

L(y, g(x; W)) = -J2 Vi M ^ i l W)) 
iex 

evi (3.2) 
9fa; w) = 

cec 



18 CHAPTER 3. MACHINE LEARNING 

Using the whole dataset for one update step can be computationally infeasible i f the dataset 

is big. For that reason stochastic gradient descent is usually used in machine learning where 

the whole dataset is split into multiple smaller mini-batches and each mini-batch is used to cal­

culate an approximation of the gradient and a step is done using this approximation. More ad­

vanced optimization techniques have been introduced. One of them is the Adam optimizer[14] 

which has been used in this work. Adam uses different effective learning rates for different 

parameters and uses estimations for the first (see Equation 3.3) and second (see Equation 3.4) 

momentum of the gradients g. The division by (1 — /3[) and (1 — f3\) respectively ensure an 

unbiased estimator of the momentum values. Both the first and second momentum contain 

exponentially averaged gradients with decay rates (5i and f32 close to 1. The update step of the 

weights wt is then performed according to Equation 3.5. e is set to 10~ 8 and is used to prevent 

a division by zero in the case the second momentum is zero. 

mt = ̂ ty* (3-3) 

^ W ± ( 1 ^ M ( 3 4 ) 
( l - # ) ^ 

wt = wt-i - A (3.5) 
y/Vt + e 

3.2.2 Cross-Validation 

Splitting into three subsets can be problematic i f the original dataset is small. If the validation 

set is small, then the validation error may not be a good representation of the generalization 

ability. A small validation set might not cover enough of the possible range of values from 

the overall data potentially leading to a biased estimator of the performance of the model. The 

evaluated model might perform worse on samples that are not in the validation set but from 

another set from the same origin that is not included in the validation set. In k-fold-cross-

validation (CV) the dataset is first split into test and training sets in order to increase as much 

of the available data into training as possible. The test set is then put aside and the training set 

is randomly subdivided into k folds. Every fold is once used as the validation set, so there are 

a total of k evaluations. The mean of these k evaluations is then used as a less biased estimator 

of the models performance. If the data in the k folds are not independent of each other the 



3.3. NEURAL NETWORKS 19 

estimate of the performance is biased. If for example the dataset consists of protein sequences 

of similar organisms, like in this elaboration, the folds might not be independent i f randomly 

split. For this reason clustered cross-validation is used for this thesis. 

For clustered C V the dataset is clustered using an appropriate clustering technique for the 

given data and task. For this thesis agglomerative hierarchical clustering with single linkage 

was used (see Chapter 2.3). Single linkage is important to ensure a minimal distance between 

the clusters to get a less biased estimate of the models performance compared to random 

splitting. One of the clusters is put aside as the test set and the remaining clusters are similarly 

used as the folds in k-fold C V . 

3.3 Neural Networks 

A popular technique in machine learning are the so called neural networks (NNs). This term 

was coined in 1943 by McCul loch and Pits [17]. Decades of research by various researchers 

lead to the many different kinds of architectures available today. This journey has been summa­

rized by Schmidhuber in 2015 [26]. For this thesis dense feed-forward neural networks (FNN) 

have been used for dimensionality reduction and recurrent neural networks (RNN), specifi­

cally L S T M s , for extracting data from sequences (see chapters 3.3.1 and 3.3.2). A n F N N 

represents a linear combination of an input vector x and a weight matrix W combined with 

a non-linear activation function a as described in Equation 3.6. Popular activation functions 

are the Sigmoid function in Equation 3.7 and the hyperbolic tangent in Equation 3.8. These 

functions are bounded between 0 and 1 and — 1 and 1 respectively. These non-linear activation 

functions are needed because otherwise multiple layers could be collapsed and expressed by 

a single calculation, this is described in Equation 3.9. A three layer network consisting of 

layers gu g2, g3 with the weights W1,W2,W3 e R I x D 1 , R D l x D 2 , R D 2 x ° respectively can be 

collapsed into a single layer with the weights W±. Fitting this matrix W± to the data can solve 

the same problems as the three individual matrices combined. 

g{x; W) = a(WTx) (3.6) 



20 CHAPTER 3. MACHINE LEARNING 

e — e — X 

tanh(x) 
ex + e —X 

(3.8) 

gs(g2(gi(x;W1);W2);W3) = W*(W?(W?x)) = (WlW2W?)x (3.9) 

The input into a feed-forward network with the dimensions x G M combined with the 

parameters W e R D x I lead to an output g(x; W) e M 7 . The dimensions Z? and I can be 

either the same or different. If they are different from each other, the linear layer can be 

used for dimensionality reduction or even an increase in dimensionality, depending on the use 

case. For example in convolutional neural networks the final classification from the output of 

the convolutional layers usually consists of feed-forward networks. If the number of features 

from the convolutional layer is higher than the number of classes in the dataset, a decrease of 

dimensionality with the F N N is needed and vice versa [8]. 

3.3.1 Recurrent Neural Networks 

A feed-forward neural network takes a data vector x and produces a prediction vector y by 

using a function g(x; W) with the parameters W and activation function a. Theoretically, 

a sequence could also be fed into a feed-forward network i f all sequence elements xt are 

combined into one vector x. This approach however is limited by the need of constant input 

size for F N N s . Therefore different lengths of sequences cannot be processed this way, because 

a new weight matrix would be needed for every different length. One approach for learning 

from sequential data with F N N s was developed in the 1980s for speech recognition. This 

architecture is called time-delay neural network [32]. For this approach an overlapping sliding 

window of fixed size is used to ensure that the input is of the same size. The idea to take 

a fixed size window restricts the network from learning dependencies that are outside of the 

window range. Because of this problem, more specialized architectures, so called recurrent 

neural networks (RNN), were developed. 

PvNNs take a sequence xt, t e [1, . . . , T ] , as input and produce an output sequence yt, 

t G [ 1 , T ] , yT is the last element in this output sequence. For every timestep t the prediction 

is based on the current input xt and the context, containing information from the previous 

timesteps. 

A n early example of a recurrent neural network is the Jordan Network [13] described in 



3.3. NEURAL NETWORKS 21 

Equation 3.10. In the Jordan Network the context, or hidden state, ht is calculated by first 

adding up the previous prediction yt-\ and the input xt, both projected by the weight matri­

ces Uh and Wh respectively. The activation function ah is then applied on the result of this 

summation. The hidden state ht is multiplied by a weight matrix Wy and the results are then 

mapped with the activation function ay which results in the prediction yt. yt is the prediction 

of the model for the timestep t based on the input at timestep t and the previous prediction yt-i-

In the Elman Network [5] described in Equation 3.11 the weighted previous hidden state 

ht-i is summed up together with the weighted input xt to calculate the hidden state ht. Similar 

to the Jordan Network an activation function ah is applied on this sum. For the prediction y the 

hidden state is weighted by a weight matrix and finally another activation function is applied. 

The most common approach of learning for these R N N s is a method called backpropaga-

tion through time (BPTT). This technique was developed by various researchers independently 

[33] [24] [19]. In B P T T the network is unfolded along the time axis, meaning that for every 

timestep t an F N N with xt and the context ht-\ as input and yt as output is constructed. These 

F N N s have the same architecture and share their weights. For the first timestep usually a zero 

vector is used as the context input. 

3.3.2 Long Short-Term Memory 

In his diploma thesis Hochreiter showed mathematically that B P T T with unfolding the network 

has a serious problem - the vanishing gradient problem [11]. The problem is that because of 

the chain rule at every timestep t the gradient of the activation function is multiplied with 

the gradient of timestep (t + 1). This becomes a problem, i f the activation functions have 

gradients that are smaller or larger than one, because repeatedly multiplying values smaller 

than 1 leads to an exponential decay, a vanishing, of the gradients. Gradient values larger 

than 1 lead to the exploding gradient problem, where, as the name describes, the gradients 

ht = (Jh(Whxt + Uhilt-i) 

yt = ay(Wyht) 
(3.10) 

ht = (Th{WhXt + Uhht-i) 

Vt = VyiWyht) 
(3.11) 



22 CHAPTER 3. MACHINE LEARNING 

get very big. Both exploding and vanishing gradients have a detrimental effect on the learning 

process. The vanishing gradient might slow down the process or even make it impossible while 

the expoloding gradient might cause the network to oscillate around a minimum and stop the 

convergence to it. This problem is not only the case with R N N s , but for every network using 

backpropagation i f there are many layers. Because for R N N s mostly the logistic function and 

the hyperbolic tangent were used, with both having gradients smaller or equal to 1, no long 

term dependencies could be learned because of the described problem. 

Hochreiter and Schmidhuber came up with a solution to this problem with the long short-

term memory ( L S T M ) in 1997 [12]. This architecture (Equations 3.12 to 3.17) solves the 

vanishing gradient problem by introducing a constant error carousel, where the derivative of 

the memory cell with respect to the previous timestep is 1. This leads to stable derivatives 

and for that reason L S T M s can learn long term dependencies. The original architecture by 

Hochreiter and Schmidhuber did not contain the so called forget gate ft in Equations 3.14 and 

For this elaboration the PyTorch (version 1.8.1) [22] version of the L S T M was used, which 

includes the forget gate as described by Gers et. al in 1999 [7]. The architecture of this specific 

L S T M model is described in equations 3.12 3.13 3.14 3.15 3.16 3.17. 

A n L S T M - c e l l has for every timestep the input xt from the sequence and two inputs from 

the previous timestep, the hidden state and the memory cell ct-i. The input gate 3.12 

and output gate 3.13 are used to control how much information is stored in the cell state and 

how much is propagated to the next timestep. The additional forget gate 3.14 is a mechanism 

that enables the cell to forget past cell memory. These gates all have the logistic function a 

which shuts the gate i f the value is 0 and opens it i f the value is 1. Equation 3.15 describes 

the cell input which is a combination of the current input xt and the previous output ht-i, 

the hyperbolic tangent is used as non-linearity. 3.16 defines the equation for the cell memory, 

where the forget gate defines the amount that is remembered and the input gate the amount 

that is newly learned. Equation 3.17 shows how the output gate limits the information flow of 

the cell memory to the output. 

3.16. 

it = aiWaXt + ba + Whiht-i + bhi) (3.12) 

ot = cr(WioXt + bio + Whoht-i + bho) (3.13) 



3.4. AUTOENCODER 23 

ft = a{WifXt + bif + Whfht-i + bhf) (3.14) 

gt = t&im(Wigxt + big + Whght_x + bhg) (3.15) 

ct = ftQ ct-i +itQ gt 
(3.16) 

,t = ot 0 tanh(c 4) (3.17) 

3.4 Autoencoder 

Autoencoders (AE) are machine learning architectures that can be used for information com­

pression and feature extraction. A n A E consists of an encoder f(x) that takes the input x and 

converts it into a latent code h like in Equation 3.18. This code h is then used by a decoder 

g(h) to try and create a reconstruction r of the original input (see Equation 3.19). Using an 

identity function for both / and g would lead to a perfect reconstruction, but this wouldn't 

be of any use. For this reason A E s have certain restrictions on the encoder, for example a 

reduction in dimensionality. With this the A E has to prioritize certain aspects of the input and 

learn a new representation of the input data. This reduction in dimensionality can be seen as a 

compression of the original data x. A E s that reduce the dimensions like that are called under-

complete autoencoders, such an architecture is depicted in Figure 3.4[8]. When the encoder 

and decoder consist of linear functions the compression is comparable to principal component 

analysis (PCA) . The difference is that P C A is a linear transformation but A E s are not limited 

to linear functions. The axis in P C A are ordered according to their contribution to the variance 

in the data, however for autoencoders there is no ordering of the axis in the latent space [15]. 

For learning how to compress the input in an A E , gradient descent is performed on a loss 

function L(x, g(f(x))) between the input x and the reconstruction g(f(x)). This loss function 

depends on the type of input x, for numerical data the mean squared error (see Equation 3.20) 

is used. The mean squared error is squared difference between the actual value Xi and the 

prediction of the autoencoder g(f(x)) averaged with the number of datapoints n in x. This 

average is computed with the arithmetic mean. For categorical data like amino acid sequences 



24 CHAPTER 3. MACHINE LEARNING 

a viable loss function is the cross entropy loss (see Equation 3.2). 

h = f(x) (3.18) 

r = g(h) 

L(x,g(f(x))) = -J2(xt-g(f(xi))y 

(3.19) 

(3.20) 

X 

X ... input 

h ... latent code 

r ... reconstruction 

h 

f(x) ... encoder 
g(h) ... decoder 

Figure 3.4: Undercomplete autoencoder structure with x being the input, f(x) the encoder, h 
the latent code, g(h) the decoder and r the final reconstruction of the input. 

3.4.1 Sequence to Sequence Autoencoder 

In the case of regular A E s the encoder and decoder are F N N s , which as mentioned in Chap­

ter 3.3.1 are not well suited for sequences. For sequential data such as protein sequences, 

sequence to sequence A E s are used [29]. Both the encoder and decoder are R N N s for these 

A E s , in this thesis L S T M s were used. The encoder L S T M processes the padded and one-hot 

encoded sequences until the last timestep where the hidden state and the cell state combined 

form the latent code. For the latent representation of an encoded sequence the hidden state of 

the last timestep is used. This latent code is then used to initialize the decoder L S T M , which 

together with the initialization and a Start-Of-Sequence token predicts the first element of the 

reconstruction. The decoder then uses its own prediction of the previous timestep as input 



3.4. AUTOENCODER 25 

to predict the next element until the length of the input sequence is reached. The end of the 

sequence is marked with an End-Of-Sequence token and i f the sequence to sequence A E is 

used for generating new sequences, the generation process ends with this token. The decoder 

L S T M s outputs have the same dimensionality as the latent code, which is most of the time 

different from the input dimensions. Because of that an F N N is used to reduce the dimen­

sionality to the original input dimensions. A sequence to sequence autoencoder architecture is 

visualized in Figure 3.5. 

Encoder FNN 

reconstruction 

I 

Latent 
code LSTM *• LSTM > >- LSTM Latent 
code LSTM LSTM ** LSTM 

I 
Xi 

! 
x 2 

I 
X T 

I 
<sos> 

I 
X i / X j X(T-l) / X(T-l) 

Input sequence Decoder 

Figure 3.5: Scheme of a sequence to sequence autoencoder with an L S T M for encoder and 
decoder. The encoder takes the original sequence [xi,XT] and the latent code is both the 
hidden state and the cell state at the last timestep. The hidden state is used as the representation 
of the encoded sequence. The decoder takes in a Start-Of-Sequence token (<SOS>) and then 
uses its own predictions [xi, ...,X(T-i)} or in case of teacher forcing the original sequence 
[xi, ...,X(T-I)] to create the reconstruction [xi,xT\-

3.4.2 Teacher Forcing 

The decoder of the sequence to sequence autoencoder utilizes its own previous prediction to 

predict the next element in the sequence. This means that it is depending on its own ability 

to reconstruct the input. If the decoder is not able to produce an accurate prediction at the 

beginning of the sequence the following inputs for the decoder w i l l also be inaccurate. This 

could lead to the decoder not being able to learn how to predict the correct sequence. This 

problem can be tackled with an approach called teacher forcing, which was already discussed 

in the context of R N N s by Williams and Zisper [34]. The idea is to use the ground truth to 

keep the predictions of the network close to the truth speeding up the process of learning how 



26 CHAPTER 3. MACHINE LEARNING 

to reconstruct the input. For this thesis teacher forcing is implemented by using the original 

sequence element xt as input for the decoder instead of the prediction xt. The choice whether 

or not to perform teacher forcing is done with a fixed probability PTF, described in Equation 

3.21. 

Vt, (ht,ct) 
L ST'Mdecoder ( x t _ i ; (ht-i, Ct-i)) if TF = False 

L ST Mdecoder (xt-i; (ht-i,ct-i)) if TF = True 

P(TF = True) = PTF 

(3.21) 

3.5 Clustering of Latent Space 

The latent space, the code between the encoder and decoder, is the autoencoder's internal 

representation of the input. Because of the dimensionality reduction of undercomplete au-

toencoders, certain features from the input might be lost in the process of the compression. 

The dimensionality reduction can however also compress the information and create a more 

information dense representation of the input. This compression is comparable to principal 

component analysis (PCA) when the encoder and decoder are linear functions [15]. However 

the encoder and decoder in a sequence to sequence autoencoder are not linear and therefor the 

representation is also more complex. In the case of categorical data, like protein sequences, 

the input needs to be converted into a numerical representation before it can be analyzed by 

algorithms like k-means or k-nearest neighbors. A sequence to sequence autoencoder is used 

in this work to convert the amino acid sequences into numerical representations. Specifically 

the last hidden state of the encoder L S T M clustered with both the k-means algorithm [16] as 

well as the k-nearest neighbors algorithm. 

3.5.1 K-means Clustering 

The k-means algorithm is an iterative algorithm that forms k clusters from the data in the 

following three steps. 

I. Initialization of k random clusters [ C i , . . . , Ck] with means m ? , . . . , m°k 



3.5. CLUSTERING OF LATENT SPACE 27 

II. Assigning all datapoints [x0,..., Xj] to the cluster Ci with the nearest mean m-

xn e C\ if \\xn-ni\\2 < \\xn — m j | | 2 V j e { [ 1 , . . . , fc] \ i) 

III. Calculating new means [ m * + 1 , . . . , m^.+1] of the clusters by dividing the sum of the values 

in the clusters by the number of members \C\\ 

Steps two and three are repeated until the clusters no longer change or another stop con­

dition is reached. The above steps describe the algorithm with one dimensional data. The 

algorithm can be used for higher dimensional data as well , the distances as well as the calcu­

lation of the means would need to be adapted to the higher dimensionality. 

One difference between k-means clustering and the hierarchical clustering algorithms de­

scribed in Chapter 2.3 is the need of a fixed number of cluster centers. This needs prior knowl­

edge or assumptions about the data. Because there are three different groups of organisms in 

the data, k-means with three centers was used for the analysis of the latent space. The k-means 

implementation of scikit-learn (version 0.24.1) [23] was used in this thesis. 

3.5.2 K-nearest Neighbors Clustering 

The idea of the k-nearest neighbors algorithm dates back all the way to 1951 when F ix E . and 

Hodges J. L . introduced a non-parametric classification approach that is now known as the 

k-nearest neighbor rule [6]. K-nearest neighbors clustering is one of the simplest supervised 

classifiers to implement and works in a straightforward way. In the first step the datapoints 

from the training set are stored together with their labels. The unknown datapoints from a test 

set are then classified individually. For this a distance measure is needed, usually the Euclidean 

distance (see Equation 3.22) is taken for continuous variables. The unknown datapoint is then 

assigned to the most common class in the k points that are closest to it, its k-nearest neighbors. 

d(x, y) = yf (x i - yi)2 + (x2 - y2)2 H h (xn - yn)2 (3.22) 



28 CHAPTER 3. MACHINE LEARNING 

3.6 Visualization of Latent Space 

Because k-means clustering and k-nearest neighbors operate without dimensionality reduction, 

they are not well suited for visual analysis. For visual inspection of high dimensional spaces a 

wide variety of techniques have been developed that aim at decreasing dimensionality. There 

are certain problems connected with the reduction of the dimensions. In an n-dimensional 

space, it is possible to have n+1 points that are mutually equidistant. This cannot be repre­

sented in a two dimensional space, this problem is known as the crowding problem [31]. There 

are two different categories of dimensionality reduction techniques, one that aims towards 

maintaining pairwise distance structure in between all data points and another that prioritize 

local distances over global distances [18]. 

t-distributed stochastic neighbor embedding (t-SNE) by van der Maaten and Hinton [31] is 

considered the state-of-the-art algorithm for dimensionality reduction for visualization. It is 

based on stochastic neighbor embedding (SNE) by Hinton and Roweis [10]. The reduction 

in S N E is achieved by calculating the conditional probability p^ of datapoint Xi to choose Xj 

as its neighbor in the high dimensional space, see Equation 3.23. The low dimensional coun­

terpart to pj\i is the conditional probability with the low dimensional points %)i and tjj, see 

Equation 3.24. If the low dimensional mapping from Xi and Xj to yi and yj is correctly mod­

eled, then the probabilities p^ and wi l l be equal. Using the Kullback-Leibler divergence 

as an objective (Equation 3.25), S N E aims to find a low dimensional representation that mini­

mizes this divergence. In the case of t -SNE, for the high dimensional space a Gaussian density 

function and for the low dimensional space a Student's t-distribution with 1 degree of freedom 

centered around xif is used to calculate the low dimensional representation. V i a gradient de­

scent the objective is minimized, which leads to the distribution in the low dimensional space 

being close to the one in the high dimensional space, preserving similarities between points. 

3.6.1 t-SNE 

Pj\t 
E , \\Xi — Xu \ \ \ 

i 

exp( 
(3.23) 

Qj\i 
exp(- \\yj -yj\\ ) 

(3.24) 
Ek&exp(\\Vi -Vk\\ ) 



3.6. VISUALIZATION OF LATENT SPACE 29 

C = J2KL(Pt\\Qt) = J2J2ml°9— (3-25) 



30 CHAPTER 3. MACHINE LEARNING 

3.6.2 UMAP 

Uniform manifold approximation and projection ( U M A P ) by Mclnnes et. al [18] is another 

suitable technique for dimensionality reduction for the sake of visualization. This algorithm 

is based on Riemannian geometry and algebraic topology. The first step for the U M A P al­

gorithm is to construct a fuzzy topological representation of the high dimensional data based 

on simplicial complexes and Riemannian geometry. The next step is to create a low dimen­

sional representation and to optimize it such that it is as close to the high level representation 

as possible. This is achieved with stochastic gradient descent. In their paper Mclnnes et. al 

[18] demonstrate that the U M A P algorithm's benefit over t -SNE is that it is scalable to large 

datasets and it is better at conserving global differences. 



Chapter 4 

Methods and Results 

4.1 Methods 

4.1.1 Preprocessing of Data 

Clustered cross-validation with agglomerative hierarchical clustering using the distance asso­

ciated with the PID (see Chapter 2.3) was used as the training procedure of the autoencoder 

for this thesis. For calculating the distance with PID, a sequence alignment is needed. For 

that purpose both local and global sequence alignments (see Chapter 2.2) on all sequences 

combined as well as the three kingdoms separated were compared. 

Although the sequences for this thesis tend to be of a similar size, a few outliers in sequence 

length caused problems when using global sequence alignment. For that reason local sequence 

alignment using the Smith-Waterman algorithm was used. Because the sequences are from the 

hemoglobin family, and therefore closely related, BLOSUM90 was used as the scoring matrix. 

To avoid having many gaps in the alignment, an affine gap penalty with a penalty of 5 for 

opening and 2 for extending a gap was applied. 

The aligned sequences were used to calculate the PID and then the corresponding distance. 

This distance was then taken to perform agglomerative hierarchical clustering with single link­

age. Aligning and clustering all sequences together lead to clusters containing only one of the 

three kingdoms. This is to be expected because the evolutionary distance between kingdoms 

is bigger than the distance within the kingdoms. The fact that each cluster only contains one 

kingdom is not optimal for clustered cross-validation because each cluster is not a good rep­

resentation of the whole population. For that reason a stratified sampling approach was taken 

31 



32 CHAPTER 4. METHODS AND RESULTS 

where the data was first divided into the three subgroups given by the kingdoms. These three 

subgroups were then separately aligned and 6 clusters were formed using agglomerative hierar­

chical clustering with single linkage. The PID values were chosen in a way that two conditions 

are met. (i) The number of clusters should not be big, because the bigger this number, the more 

clusters with a single member are formed, (ii) The mean size of the clusters should be small 

because with only a few big clusters, no separation can be achieved. A good estimate for a 

PID value, that satisfies these two conditions is the point of intersection visualized in Figuer 

4.1. For both the mammals and birds a PID of 90% and for the fish 75% was used to create 6 

clusters. This ensures that the distance between the clusters is at least 10% and 25% respec­

tively. One cluster of each kingdom was put aside as test set which lead to 139 of the 736 total 

sequences. The remaining 5 clusters were used as the subset for the clustered C V . 

The sequences from the 6 clusters were further processed by converting them to [n x 24] 

one-hot encoded matrices, where n is the length of the sequences. The 24 possible values 

consist of the 20 amino acids and the unknown token X, as well as Start-Of-Sequence and End-

Of-Sequence tokens and a padding index for ignoring the predictions of the network in the 

padded region of the input sequences. For zero-padding and later unpadding the sequences, 

the module torch.nn.utils.rnn from PyTorch (version 1.8.1) [22] was used. This library, in 

combination with the module torch.nn.rnn, provides an efficient implementation for dealing 

with different sequence lengths. 

For loading the data and the creation of mini-batches, the DataLoader class of the Py Torch 

(version 1.8.1) [22] library was utilized. The number of sequences in these mini-batches, the 

so called batch size, is a hyperparameter for the learning process of the A E model and part of 

the hyperparameter search described in Chapter 4.1.2. 

4.1.2 Autoencoder 

The sequence to sequence autoencoder in this thesis consists of an L S T M as encoder and 

an L S T M combined with a dense feed-forward neural network as decoder. To build the au­

toencoder architecture, the implementations of L S T M s as well as the F N N from the Py Torch 

(version 1.8.1) [22] library are utilized. 

The encoder LSTMe maps the one-hot encoded and padded amino acid sequences S into 

the latent code H (see Equation 4.1). S is a three dimensional tensor with the length of 

the padded sequences I, the batch size b and the 24 possible values for the one-hot encoding 



4.1. METHODS 33 

Mean cluster size vs number of clusters for organism 1 

mean_c lus ters ize 
n u m b e r c lusters 

Mean cluster size vs number of clusters for organism 2 

m c a n c l u s t e r s i z e 
n u m b e r c lus ters 

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 
c l u s t e r t h r e s h o l d (%PID) 

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 
c l u s t e r t h r e s h o l d (%PID> 

Mean cluster size vs number of clusters for organism 3 

mean_c lus ters ize 

n u m b e r c lusters 

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 
c l u s t e r t h r e s h o l d (%PID) 

Figure 4.1: Comparison between mean cluster size and number of sequences per cluster. The 
clusters are formed with the PID specified on the x-axis, the y-axis show the number of sam­
ples. 

described in Chapter 4.1.1 as dimensions. H contains both the hidden state h as well as the 

cell state c, both of them are matrices with the batch size b and the latent dimension d as the 

dimensions. The values of h and c are from the last timestep of the input sequence, for padded 

sequences this is the last non-padded timestep. For timestep 1 in the encoding process c 0 and 

h0 (see Equations 3.12 to 3.16) are zero matrices. 

H — LSTMe(S; (h0,Co)) 

S e 0 , l l x b x 2 4 , H e R 2 x b x d (4.1) 

h 0 , c 0 e 0 b x d 



34 CHAPTER 4. METHODS AND RESULTS 

The code H is used as the initial hidden state and cell state combined with an SOS token 

for the decoder LSTMd to start the decoding process (see Equation 4.2). Because the output 

of the decoder L S T M yt has the dimensionality of the latent code, an F N N is used to change 

the dimensionality to 24 to match the original input. The output of the F N N st is then used as 

the prediction of the network at the current timestep t. For predicting the next amino acid, the 

output as well as the hidden and cell state from the previous timestep are used (see Equation 

4.3). With a certain fixed probability pTF teacher forcing was done where the amino acid 

from the original sequence S is used instead of the prediction of the decoder (see Equation 

3.21). Both the latent dimension d as well as the teacher forcing probability PTF are important 

hyperparameters and part of the hyperparameter search. 

y1,(h1,c1) = LSTMd(SOS; H) 

s i = FNN{y\) (4.2) 

y i e Rbxd, s i e R b x 2 4 

yt, (ht, ct) = LSTMd{st-i\ {fh-i, Q - i ) ) 

st = FNN(yt) (4.3) 

& e Rbxd, st e R b x 2 4 

The PyTorch (version 1.8.1) [22] implementation of the Adam optimizer [14] combined 

with the multiplicative learning rate scheduler StepLR (see Figure 4.2) was used for the train­

ing procedure. This learning rate scheduler multiplies the learning rate A of the optimizer with 

the number 7 after a fixed number of epochs. The learning rate A, 7 and the number of epochs 

for each learning rate update were part of the hyperparameter search. 

Finding good parameters for the mentioned hyperparameters was done, as previously de­

scribed, with clustered cross-validation (see Chapter 3.2.2). As an approach for hyperparame­

ter search a mixture of grid search and manual search was chosen. Grid search is a generally 

applicable and exhaustive search with predefined parameter value combinations. The model 

is trained with all of these combinations and compared given some evaluation metric. Man­

ual search, on the other hand, is more tuned towards a specific problem and non-exhaustive. 

The parameter values are chosen with experience or prior knowledge about the task and the 



4.1. METHODS 35 

Reduction of learning rate with mult ipl icat ive scheduler 

Figure 4.2: Percent reduction of the learning rate with an multiplicative learning rate scheduler. 
The step size is set to 30 and the 7 to 0.6 

model is trained with these values and the performance is compared. In this elaboration, the 

grid search was used to get an estimate for good hyperparameter values for the batch size, the 

latent dimension and the learning rate A. The manual search was applied to find good values 

for A, the step size and 7 of the learning rate scheduler and the probability for teacher forcing 

PTF (see Equation 3.21). 

To compare the performances of the hyperparameter settings the Fl-score (Fl) was used, 

which is the harmonic mean between the precision and the recall (see Equation 4.4). The 

recall, or true positive rate (TPR), is the ratio between the number of predicted amino acids 

that match the original A A , the true positives (TP), and the total number of this A A in the 

original sequence (P). Precision, or positive predictive value (PPV), is the number of true 

positives divided by the sum of TP and the number of times when the predicted A A does not 

match the original A A . In order to determine the values TP, P and FP an approach called one-

versus-rest was taken. With this approach, a prediction for an A A either matches the original 

A A (TP), or the prediction does not match and is counted as a false positive (FP). A higher 

Fl-score means a better performance of the hyperparameter setting. 



36 CHAPTER 4. METHODS AND RESULTS 

TPR 

PPV 

F! = 

TP 
~P~ 

TP 
TP + FP 

2 

(4.4) 

TPR-1 + PPV-1 

The value ranges for the grid search are shown in Table 4.1.2. The results of the grid 

search can be summarized like the following. A run with batch size 32 is faster to finish than 

with batch size 8 but has a worse performance after the same amount of epochs. Also the 

performance for batch size 8 was slightly better than 32. For the latent dimension the highest 

one with 512 had the best performance out of tested values. Increasing this value further 

would likely increase the Fl-score but would decrease the amount of reduction in space. For 

the learning rate A the values 0.001 and 0.0001 outperformed the higher learning rate of 0.01 

but between the two values the performance was comparable. 

hyperparameters values 
batch size 8, 16, 32 

latent dimension 8, 16, 32, 62, 128,256,512 
learning rate A 0.01, 0.001, 0.0001 

Table 4.1: Values for hyperparameter grid search. 

After getting an estimate for good values for the batch size, the latent dimension and the 

learning rate a manual search to further optimize the learning rate, the hyperparameters of the 

learning rate scheduler and the probability for teacher forcing was performed (see Table 4.1.2. 

The batch size and latent dimension were fixed to 8 and 512 respectively for this procedure. 

It was first discovered, that a teacher forcing probability of 0%, so no teacher forcing, was 

performing the best. This is probably due to the output of the autoencoder not being one-hot 

like the original sequence. For the learning rate scheduler two different value combinations 

were taken, a high step size combined with a low 7 and vice versa. A low step size with 

small 7 leads to a too fast decay of the learning rate which hinders the learning process and too 

large values only have a minor impact on the learning process. In the end the best values for the 

learning rate scheduler were a step size of 30 and a 7 of 0.6. The best performing model during 

the clustered C V had a learning rate of 0.0005. This model with the previously described 



4.2. RESULTS 37 

parameters had an average Fl-score over the 5 folds of 0.684 with a standard deviation of 0.02 

and was the best after 200 epochs of training. 

hyperparameters values 

learning rate 
0.0001, 0.0003, 0.00045, 0.0005, 

learning rate 
0.00055, 0.00075, 0.001 

teacher forcing 0, 0.1,0.2, 0.5,0.75 
step size 20, 25, 30, 35, 50, 75 

7 0.1, 0.3, 0.5, 0.6, 0.7, 0.75, 0.8, 0.9 

Table 4.2: Values for manual hyperparameter search. 

4.1.3 Clustering of Latent Space 

For the clustering of the latent space, both algorithms k-nearest neighbors and k-means (see 

Chapter 3.5) were used to cluster the latent space, both on the cell state and on the hidden 

state. The implementations of the scikit-learn library (version 0.24.1) [23] were taken for 

both approaches. For the k-means algorithm 3 cluster centers were assumed, corresponding 

to the different kingdoms of animals. This algorithm performed poorly on the data at hand, 

presumably because of some outliers in the data and the vulnerability of the k-means algorithm 

against these outliers. The k-nearest neighbors algorithm with is more robust towards outliers 

and for that reason it was also applied for the task with k — 5. 

For the visualization U M A P [18] and t -SNE [31] were used. Both the hidden state h as 

well as the cell state c were visualized. 

4.2 Results 

4.2.1 Autoencoder 

The best hyperparameter values found through the search were a learning rate of 0.0005, a 

batch size of 8, a latent dimension of 512, teacher forcing probability of 0. The values for 

the learning rate scheduler were a 7 of 0.6 and a stepsize of 30. On the 5 training sets the 

models with these parameter settings had an average Fl-score of 0.690 with a standard devia­

tion of 0.203. On the validation sets the average Fl-score was 0.684 with a standard deviation 

of 0.209. In Table 4.3 the performance of the 5 models on their respective validation set is 



38 CHAPTER 4. METHODS AND RESULTS 

described. The numbers for Labels, Predictions and True positives are summed up, the value 

in Fl -score is averaged over the 5 folds. The amino acid with the most predictions and the 

most appearances in the data is alanine A, the models reach an average Fl-score of 0.655 on 

Alanine. The lowest Fl-score on an amino acid is isoleucine with 0.369 and the highest is 

arginine with 0.868. A potential interpretation of the different Fl-scores is that the chemical 

property of the A A has an impact on the model's ability to reconstruct the input. The A A 

with the lowest Fl-score is isoleucine, which is part of the hydrophobic group see Table 2.1. 

Arginine, the most common amino acid in the data, is also part of this group. The low differ­

ence in chemical properties could mean that positions with arginine and isoleucine are more 

variable between the sequences of the different animals, for example an arginine could be re­

placed with an isoleucine in the evolutionary process. The amino acids with a high Fl-score, 

like arginine and histidine are in the positively charged group. The properties of this group 

are highly different than the hydrophobic group, because of that they could be essential for the 

protein function and might not be easily substituted by another A A . This could lead to the po­

sitions with arginine being very similar in the different sequences from the different animals. 

The End-Of-Sequence token has a high Fl-score of 0.903 with 556 correctly predicted out of 

597. 



4.2. RESULTS 39 

Class Labels Predictions 
True 

positives 
Fl-score 

A 11222 14026 8285 0.655 
R 1928 1745 1596 0.868 
N 1861 1597 1205 0.700 
D 4990 4455 3771 0.798 
C 945 575 509 0.672 

Q 1461 814 608 0.529 
E 2679 2282 1483 0.598 
G 5099 3739 2969 0.672 
H 5356 6526 4929 0.828 
I 1994 1128 592 0.369 
L 9430 10292 7662 0.776 
K 6741 6847 5872 0.864 
M 1518 1094 1014 0.776 
F 4275 3540 2918 0.746 
P 3513 3546 2917 0.826 
S 5907 6371 4205 0.684 
T 4613 3858 2902 0.684 
W 420 479 261 0.512 
Y 2049 2303 1843 0.847 
V 7172 7980 5615 0.742 
X 69 0 0 0 
SOS 0 0 0 0 
EOS 597 642 556 0.903 
Padding 0 0 0 0 

Table 4.3: Predictions of the model with the best performing hyperparameter settings on the 
validation sets in cross-validation. First column represents the one letter code of the amino 
acids plus the Start-Of-Sequence and End-Of-Sequence as well as the Padding token. The 
second column are the true labels in the data summed up over the 5 folds, followed by the 
predictions of the 5 models and the true positives. The Fl-score is averaged over the 5 folds. 

The model with the best hyperparameters was trained on the whole training data, which 

are the 5 CV-folds combined, and then tested on the test set. On the training data this model 

achieved an average Fl-score of 0.694 with a standard deviation of 0.189. This is slightly 

higher than the Fl-score average for the training sets during C V . Table 4.4 shows the labels 

of the data, the total number of predictions, the true positives and the Fl-score per class for 

the model on the test data. The Fl-score is in general lower than the values for the validation 



40 CHAPTER 4. METHODS AND RESULTS 

sets in C V . The mean Fl-score is 0.426 with a standard deviation of 0.145. The highest F l -

score is Lysine with 0.551, the lowest one is Isoleucine with 0.161. These results support the 

previously stated interpretation, that the chemical group the A A belongs to has an impact on 

the ability of the network's ability of reconstruction. The End-Of-Sequence token is again the 

highest Fl-score for any token with 0.662. 

Class Labels Predictions 
True 

positives 
Fl-score 

A 2383 3117 1310 0.476 
R 509 422 235 0.505 
N 578 416 146 0.294 
D 1191 1003 536 0.489 
C 203 109 50 0.321 

Q 504 241 96 0.258 
E 675 485 184 0.317 
G 1069 933 441 0.441 
H 1154 1492 700 0.529 
I 422 250 54 0.161 
L 2298 2477 1205 0.505 
K 1472 1625 853 0.551 
M 355 230 154 0.526 
F 1031 796 413 0.452 
P 802 842 431 0.524 
S 1451 1506 671 0.454 
T 1051 797 384 0.416 
W 157 110 69 0.517 
Y 496 516 252 0.498 
V 1472 1922 824 0.486 
X 4 0 0 0 
SOS 0 0 0 0 
E O S 139 127 88 0.662 
Padding 0 0 0 0 

Table 4.4: Predictions of the model with the best performing hyperparameter settings on the 
test set. First column represents the one letter code of the amino acids plus the Start-Of-
Sequence and End-Of-Sequence as well as the Padding token. The second column are the true 
labels in the test set, the third are the number of predictions and the fourth the true positives. 
The fifth column is the Fl-score of the model for each class. 



4.2. RESULTS 41 

4.2.2 Clustering of Latent Space 

The latent space was clustered using both k-means and k-nearest neighbors classifiers. For 

this the classifier was fit to the training data and evaluated with the validation set for each fold 

in the cross-validation. For the final model the same process was applied to the training data 

and the test data. This was done for the latent variable h from Equation 3.17 as well as the 

cell state c from Equation 3.16. The complete data set is unbalanced with more than 4 times 

as many sequences of mammals than of fish. Because of that, the balanced accuracy metric 

from the scikit-learn library (version 0.24.1) [23] was taken to assess the performance of the 

clustering. This metric ACCb is calculated by averaging the recall TPRC for each class c 

over the number of total classes \C\ (see Equation 4.5. For the cross-validation the k-means 

algorithm with 3 centers achieved a balanced accuracy of 0.423 on the training data and 0.380 

on the validation sets on the latent variable h, averaged over the 5 folds. On the cell state c the 

balanced accuracy is lower with 0.352 on the training data and 0.308 on the validation sets. 

This balanced accuracy score is low and an issue is that there are folds where the algorithm 

only predicts one class, which yields a balanced accuracy of | . A possible explanation of this 

low balanced accuracy and the dominant prediction of one class is that the k-means algorithm 

is not robust towards outliers. Although the sequences are very similar to each other, some 

of them are very different. For example there is one sequence in the data that has a length of 

9 and this sequence is sometimes isolated in one of the three clusters and or in a cluster with 

very few members. To overcome the problem with outliers, the more robust k-nearest neighbor 

classifier was applied on h and c. This classifier achieved a mean balanced accuracy score of 

0.975 and 0.977 on the training sets and 0.942 and 0.949 on the validation data for variable h 

and c respectively. Tables 4.5 and 4.6 show the values described above. 

E TPRC 

ACCb = c e C (4.5) 

For the final model the latent variables c and h were classified for both the training and 

the test set. On the test data the balanced accuracy for the k-means algorithm on the latent 

variable h was 0.255 and on the training data it was 0.371. For the clustering of the cell state 

c the balanced accuracy on the training set was 0.363 and 0.317 on the test set. Again this bal­

anced accuracy score is low and near the | accuracy for predicting only 1 class. The balanced 

accuracy on the training set for k-nearest neighbors is 0.986. The predictions for the classifier 



42 CHAPTER 4. METHODS AND RESULTS 

Algorithm Training 
fold 1 

Training 
fold 2 

Training 
fold 3 

Training 
fold 4 

Training 
fold 5 

Folds 
average 

k - N N h 0.987 0.945 0.980 0.982 0.983 0.975 
k - N N c 0.995 0.974 0.987 0.977 0.977 0.982 

k-means h 0.620 0.388 0.395 0.368 0.346 0.423 
k-means c 0.276 0.373 0.398 0.372 0.341 0.351 

Table 4.5: Balanced accuracy scores for the k-nearest neighbor (k-NN) and the k-means algo­
rithms on the latent variable h and the cell state c. The values depicted are from the 5 training 
sets from the 5 CV-folds individually and the average of these 5 sets. 

Algorithm Validation 
fold 1 

Validation 
fold 2 

Validation 
fold 3 

Validation 
fold 4 

Validation 
fold 5 

Folds 
average 

k - N N h 0.831 0.971 0.956 0.977 0.977 0.942 
k - N N c 0.871 0.955 0.966 0.977 0.977 0.949 

k-means h 0.476 0.320 0.301 0.333 0.470 0.380 
k-means c 0.191 0.294 0.270 0.333 0.455 0.308 

Table 4.6: Balanced accuracy scores for the k-nearest neighbor (k-NN) and the k-means algo­
rithms on the latent variable h and the cell state c. The values depicted are from the 5 validation 
sets from the 5 CV-folds individually and the average of these 5 sets. 

on the variable h can be viewed in the confusion matrix in Table 4.2.2. Of the 597 training 

sequences only 10 of them were wrongly classified. On the test set the classifier predicted 101 

of the 139 correct. 30 of the bird sequences were wrongly classified as fish. These wrong pre­

dictions lead to the relatively low balanced accuracy of 0.672. The classifications on the cell 

state c are shown in Table 4.2.2. Again the classification of the training set has a high balanced 

accuracy of 0.981 with 11 wrong classifications. However on the test set the balanced accuracy 

is higher with 0.864 and 126 correct predictions. 

Figure 4.3 shows a visualization of the cell state c from Equation 3.16 for the final model 

on both the training and test set. Both U M A P [18] and t -SNE [31] are represented in the 

graphs. Every point in the scatter plot corresponds to a sequence of the dataset. There is a 

clear separation visible between the kingdoms in all four plots. This clear separation could 

explain the high balanced accuracy for the k-nearest neighbor classifier. Figure 4.4 shows the 

visualization of the latent variable h of the final model for both the training data and the test 

data. The points are not as well separated as for the cell state plots. This might be an indication 

as to why the classifier on the test set had a lower balanced accuracy. 



4.2. RESULTS 43 

Predictions Predictions 

o 

u 
15 
3 

M F B 

M 304 0 3 

F 0 70 0 

B 6 1 213 

Training set 

ir. 
CJ 
; / : 
J~. 

cd 
U 

< 

M F B 

M 73 3 1 

F 0 18 4 

B 0 30 10 

Test set 

Table 4.7: Confusion matrix for the k-nearest neighbor classifier on the latent variable h. 

Predictions 

o 
c/J 

u 

a 

M F B 

M 305 0 2 

F 0 69 1 

B 5 3 212 

Training set 

Predictions 

o 
J~. 

U 
15 

u 
< 

M F B 

M 73 4 0 

F 0 18 4 

B 7 0 33 

Test set 

Table 4.8: Confusion matrix for the k-nearest neighbor classifier on the cell state c for the final 
model. 



44 CHAPTER 4. METHODS AND RESULTS 

Visualization of the cell memory of the final model on training and test data 

t-SNE for training set t-SNE for test set 
• Mammals 
• fish 

Birds 

15 -
• Mammals 
• Fish 

Birds 

10 -

5-

Q-

-5 

-L0 -

* 

• 

• 
t . 

' 

r 
-40 -20 0 2D 

UMAP for training set 

-2C -10 0 10 

UMAP for test set 

20 

• Mammals 
• fish 

Birds 
15 -

* Mammals 
* fish 

Birds 
• 

* 

• • 10 -

1 
** • 

$ 

5-

0-

-5 - i ft* 
L0 -5 0 5 10 15 20 25 30 -5.0 -2.5 0.0 2.5 5.0 7.5 10.0 12.5 

Figure 4.3: t -SNE and U M A P visualizations for the cell state c of the final model. Visualized 
are the cell states of both the training and test set. 



4.2. RESULTS 45 

Visualization of the variable h of the final model on training and test data 

t-SNE for training set t-SNE for test set 

40 -

• Mammals 
• Fish 

Birds 
30 

• Mammals 
• fish 

Birds 

20 

D-

* 
Y 

a 

< 

* 

20 

lfl 

• *• 
**!• • 

-2E 

-K ; >' 
-1C 

-2C J t 

• 
• 

-60 -40 -2C O 20 40 

UMAP for training set 

-L0 -5 0 5 10 15 

UMAP for test set 

2l 

20 

• Mammals 
• fish 

Birds 
10 

• Mammals 
• fish 

Birds 

in 

<• * 
t 

e 

*• 
i 

5 

0-

0 

-5 

-1C 

-IE 

l 

• 

-10 

• 

m 

-20 -10 0 10 20 -SO -2.5 0 0 2.5 5.0 7.5 100 125 150 

Figure 4.4: t -SNE and U M A P visualizations for the latent space variable h of the final model. 
Visualized are the latent spaces of both the training and test set. 



Chapter 5 

Conclusion 

5.1 Further Possible Work 

The first part of this elaboration is the data preprocessing and the training procedure for the 

sequence to sequence auto encoder. A variety of approaches are possible to extend this part in 

further research. For the data preprocessing an encoding technique other than one-hot encod­

ing could be beneficial. One-hot encoding assumes an equal distance between the classes in 

the sequence. This does not take into consideration the nature of amino acids, as they are not 

equidistant to each other. The use of a trained embedding layer could increase the overall per­

formance of the model. This could potentially also decrease the dimension of the latent code 

because the embedding layer can decrease the dimensionality of the input. Lower dimensional 

representations need less space for storage, which could be interesting for bigger datasets. A n ­

other potentially beneficial approach for encoding might be the use of distance matrices like 

PAM or BLOSUM, as they take into account the natural distances between the amino acids. 

A comparison between the one-hot encoding used in this elaboration, an embedding layer and 

a distance matrix could prove to be fruitful for the performance of the model. 

The number of sequences for the task in this thesis is 736, which is small for a machine 

learning task. This problem is partially tackled by the usage of the clustered C V approach. 

Adding more sequences of all three kingdoms would most certainly improve the results. Espe­

cially adding sequences of the least prominent kingdom, the fish kingdom with 93 sequences, 

could increase the overall performance. Also the balanced accuracy for the clustering of the 

latent space might improve with a more balanced dataset. 

46 



5.1. FURTHER POSSIBLE WORK 47 

Multiple approaches are thinkable to potentially improve the training procedure used in 

this elaboration. For example increasing the number and the range of hyperparameters in the 

grid search described in Chapter 4.1.2 would be one point to start. A potential addition to this 

search could be different learning rate schedulers and optimizers. 

A n interesting finding during the hyperparameter search is that the best performing teacher 

forcing probability is 0%, so to not use teacher forcing at all. One hypothesis why that is the 

case is the output of the decoder, that is again used for prediction, is not one-hot encoded. For 

teacher forcing the original sequence is used as input and in this case, the used token is one-hot 

encoded. This difference between the input appears to have a disruptive effect on the training 

of the decoder. One possible way to overcome this is to convert the output of the decoder 

into one-hot vectors by e.g. setting the maximum value of the output to 1 and the remaining 

positions to 0. When using an embedding layer or a distance matrix, like described above, 

this would need to be taken into considerations for the teacher forcing as well . Most likely 

the output of the decoder would need to first be converted into a single prediction and then 

converted by the embedding layer or the distance matrix. 

The second part is the clustering of the latent space. During the clustered C V the k-nearest 

neighbor classifier have a high balanced accuracy on both the validation and the training sets 

with over 95%. For the final model the classifier of the latent space had a worse balanced 

accuracy on the test set with 67% and 86% on the latent variable h and the cell state c respec­

tively. The visualization in Figure 4.4 shows that the points in the training set seem to be quite 

similar as there is no clear separation between them. Different classification algorithms might 

improve this accuracy. 



48 CHAPTER 5. CONCLUSION 

5.2 Conclusion 

A n approach of using a sequence to sequence autoencoder on amino acid sequences and clus­

tering the latent representation of the A E was described with this elaboration. The thesis con­

tains not only the machine learning model but also the data preprocessing necessary to handle 

the available hemoglobin sequences and the clustering of the latent space. The reconstruction 

of the sequences through the autoencoder was presented and evaluated using the Fl-score, 

achieving a decent performance. The classification of the latent space was rather successful 

with a balanced accuracy of more than 85%. This demonstration could lead to the autoen­

coder being used on a wider field of applications. For example predicting the functionality 

or other characteristics of unknown proteins by clustering them in the latent code could be a 

potential usage of the technique. In conclusion, the approach proved to be fruitful and could 

open the door for more machine learning applications in the field of biological research and 

bioinformatics. 



Bibliography 

[1] Ncbi blast website, h t t p s : / / b l a s t . n c b i . nlm. n i h . g o v / B l a s t . c g i ?CMD= 
Web&PAGE_TYPE=BlastDocs&DOC_TYPE=BlastHelp. Accessed: 2022-03-07. 

[2] Djork-Arne Clevert, Thomas Unterthiner, and Sepp Hochreiter. Fast and accurate deep 

network learning by exponential linear units (elus). arXiv preprint arXiv:1511.07289, 

2015. 

[3] I U P A C - I U B Comm. A one-letter notation for amino acid sequences, tentative rules. 

Biochemistry, 7(8):2703-2705, 1968. 

[4] M Dayhoff, R Schwartz, and B Orcutt. 22 a model of evolutionary change in proteins. 

Atlas of protein sequence and structure, 5:345-352, 1978. 

[5] Jeffrey L Elman. Finding structure in time. Cognitive science, 14(2): 179-211, 1990. 

[6] Hodges J .L. F ix E . Discriminatory analysis, nonparametric discrimination: Consistency 

properties. Technical Report 4, 1951. 

[7] F A . Gers, J. Schmidhuber, and F. Cummins. Learning to forget: continual prediction 

with lstm. In 7999 Ninth International Conference on Artificial Neural Networks ICANN 

99. (Conf. Publ. No. 470), volume 2, pages 850-855 vol.2. I E E E Press, 1999. 

[8] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. M I T Press, 2016. 

[9] Steven Henikoff and Jorja G Henikoff. Amino acid substitution matrices from protein 

blocks. Proceedings of the National Academy of Sciences, 89(22): 10915-10919, 1992. 

[10] Geoffrey Hinton and Sam T Roweis. Stochastic neighbor embedding. In NIPS, vol­

ume 15, pages 833-840. Citeseer, 2002. 

49 



50 BIBLIOGRAPHY 

[11] Sepp Hochreiter. Untersuchungen zu dynamischen neuronalen Netzen. PhD thesis, Tech­

nische Universität München, 1991. 

[12] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computa­

tion, 9(8): 1735-1780, 1997. 

[13] Michael I Jordan. Attractor dynamics and parallelism in a connectionist sequential ma­

chine. In Artificial neural networks: concept learning, pages 112-127. I E E E Press, 1990. 

[14] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv 

preprint arXiv:1412.6980, 2014. 

[15] Said Ladjal, Alasdair Newson, and Chi-Hieu Pham. A pea-like autoencoder. CoRR, 

abs/1904.01277, 2019. 

[16] James MacQueen et al. Some methods for classification and analysis of multivariate 

observations. In Proceedings of the fifth Berkeley symposium on mathematical statistics 

and probability, volume 1, pages 281-297. Oakland, C A , U S A , 1967. 

[17] Warren S McCul loch and Walter Pitts. A logical calculus of the ideas immanent in 

nervous activity. The bulletin of mathematical biophysics, 5(4): 115-133, 1943. 

[18] Leland Mclnnes, John Healy, Nathaniel Saul, and Lukas Großberger. Umap: Uniform 

manifold approximation and projection. Journal of Open Source Software, 3(29):861, 

2018. 

[19] Michael Mozer. A focused backpropagation algorithm for temporal pattern recognition. 

Complex Systems, 3, 1995. 

[20] Saul B Needleman and Christian D Wunsch. A general method applicable to the search 

for similarities in the amino acid sequence of two proteins. Journal of molecular biology, 

48(3):443-453, 1970. 

[21] Frank Nielsen. Hierarchical clustering. In Introduction to HPC with MPI for Data Sci­

ence, pages 221-239. Springer, 2016. 



BIBLIOGRAPHY 51 

[22] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory 

Chanan, Trevor Killeen, Zeming L i n , Natalia Gimelshein, Luca Antiga, Alban Des-

maison, Andreas Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, 

Sasank Chilamkurthy, Benoit Steiner, L u Fang, Junjie Ba i , and Soumith Chintala. Py-

torch: A n imperative style, high-performance deep learning library. In Advances in Neu­

ral Information Processing Systems 32, pages 8024-8035. Curran Associates, Inc., 2019. 

[23] F. Pedregosa, G . Varoquaux, A . Gramfort, V. Michel , B . Thirion, O. Grisel, M . Blon-

del, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A . Passos, D . Cournapeau, 

M . Brucher, M . Perrot, and E . Duchesnay. Scikit-learn: Machine learning in python. 

Journal of Machine Learning Research, 12:2825-2830, 2011. 

[24] A J Robinson and Frank Fallside. The utility driven dynamic error propagation network. 

University of Cambridge Department of Engineering Cambridge, M A , 1987. 

[25] Bernhard Franz Schäfl. A n lstm-based approach for coiled-coil domain prediction. Mas­

ter's thesis, Universität L inz , 2018. 

[26] JÄ'/ärgen Schmidhuber. Deep learning in neural networks: A n overview. Neural Net­

works, 61:85-117,2015. 

[27] Sam Sinai, Eric Kelsic, George M Church, and Martin A Nowak. Variational auto-

encoding of protein sequences. arXiv preprint arXiv:1712.03346, 2017. 

[28] Temple F Smith, Michael S Waterman, et al. Identification of common molecular subse­

quences. Journal of molecular biology, 147(1): 195—197, 1981. 

[29] Ilya Sutskever, Oriol Vinyals, and Quoc V Le . Sequence to sequence learning with neural 

networks. arXiv preprint arXiv: 1409.3215, 2014. 

[30] Greg Tucker-Kellogg. Optimal pairwise sequence alignment, dynamic programming ma­

trix visualisation, 2016. [Online, accessed 07-July4-2021]. 

[31] Laurens Van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. Journal of 

machine learning research, 9(11), 2008. 



52 BIBLIOGRAPHY 

[32] Alex Waibel, Toshiyuki Hanazawa, Geoffrey Hinton, Kiyohiro Shikano, and Kevin J 

Lang. Phoneme recognition using time-delay neural networks. IEEE transactions on 

acoustics, speech, and signal processing, 37(3):328-339, 1989. 

[33] Paul J. Werbos. Generalization of backpropagation with application to a recurrent gas 

market model. In Neural Networks, pages 339-356. Elsevier, 1988. 

[34] Ronald J Williams and David Zipser. A learning algorithm for continually running fully 

recurrent neural networks. Neural computation, l(2):270-280, 1989. 



List of Figures 

2.1 k-mer plot where all organisms are compared with each other with respect to 

a specific k-mer size 6 

2.2 Needleman-Wunsch algorithm showing the global alignment of two sequences. 

The red line represent the best alignment with an alignment score of 14. [30] 9 

2.3 Example of Smith-Waterman algorithm. Backtracking the red line gives the 

optimal local sequence alignment with a score of 30. [30] 11 

3.1 One-hot encoding with three different amino acids 14 

3.2 Example for zero-padding where the first sequence is the longest with a length 

of four. The shorter three sequences are padded with zero until they reach the 

maximal length of four. End-Of-Sequence and Start-Of-Sequence tokens are 

inserted at their respective position 15 

3.3 Bias-variance tradeoff, on the left side the model is underfitting while on the 

right side it is overfitting to the data 16 

3.4 Undercomplete autoencoder structure with x being the input, f(x) the encoder, 

h the latent code, g(h) the decoder and r the final reconstruction of the input. 24 

3.5 Scheme of a sequence to sequence autoencoder with an L S T M for encoder 

and decoder. The encoder takes the original sequence [x-y,XT] and the la­

tent code is both the hidden state and the cell state at the last timestep. The 

hidden state is used as the representation of the encoded sequence. The de­

coder takes in a Start-Of-Sequence token (<SOS>) and then uses its own 

predictions [xy,£(T-I)] or in case of teacher forcing the original sequence 

[x-y,X(r-y)\ to create the reconstruction [x-y,XT] 25 

53 



54 LIST OF FIGURES 

4.1 Comparison between mean cluster size and number of sequences per cluster. 

The clusters are formed with the PID specified on the x-axis, the y-axis show 

the number of samples 33 

4.2 Percent reduction of the learning rate with an multiplicative learning rate sched­

uler. The step size is set to 30 and the 7 to 0.6 35 

4.3 t -SNE and U M A P visualizations for the cell state c of the final model. Visual­

ized are the cell states of both the training and test set 44 

4.4 t -SNE and U M A P visualizations for the latent space variable h of the final 

model. Visualized are the latent spaces of both the training and test set 45 



List of Tables 

2.1 One-letter codes of the 21 present symbols in the dataset. These include 20 

amino acids as well as the X for unknown positions. The third column de­

scribes the chemical characteristic for each amino acid 4 

2.2 Mean and standard deviation for sequence lengths for every kingdom individ­

ually and for all sequences 5 

4.1 Values for hyperparameter grid search 36 

4.2 Values for manual hyperparameter search 37 

4.3 Predictions of the model with the best performing hyperparameter settings on 

the validation sets in cross-validation. First column represents the one letter 

code of the amino acids plus the Start-Of-Sequence and End-Of-Sequence as 

well as the Padding token. The second column are the true labels in the data 

summed up over the 5 folds, followed by the predictions of the 5 models and 

the true positives. The Fl-score is averaged over the 5 folds 39 

4.4 Predictions of the model with the best performing hyperparameter settings on 

the test set. First column represents the one letter code of the amino acids plus 

the Start-Of-Sequence and End-Of-Sequence as well as the Padding token. The 

second column are the true labels in the test set, the third are the number of 

predictions and the fourth the true positives. The fifth column is the Fl-score 

of the model for each class 40 

4.5 Balanced accuracy scores for the k-nearest neighbor (k-NN) and the k-means 

algorithms on the latent variable h and the cell state c. The values depicted are 

from the 5 training sets from the 5 CV-folds individually and the average of 

these 5 sets 42 

55 



56 LIST OF TABLES 

4.6 Balanced accuracy scores for the k-nearest neighbor (k-NN) and the k-means 

algorithms on the latent variable h and the cell state c. The values depicted are 

from the 5 validation sets from the 5 CV-folds individually and the average of 

these 5 sets 42 

4.7 Confusion matrix for the k-nearest neighbor classifier on the latent variable h. 43 

4.8 Confusion matrix for the k-nearest neighbor classifier on the cell state c for the 

final model 43 


