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Abstrakt 
Tvarování elektronových svazků je perspektivní metoda, využívající elektron-fotonové inter­
akce. Blízká plazmonová pole mohou zapříčinit modulaci amplitudy a fáze procházející elek­
tronové vlny. Vytvořením analytického modelu interakce elektronu s blízkými plazmonovými 
poli lze docílit popisu cíleně vytvořených tvarovaných elektronových svazků. 

Abstract 
Electron beam shaping is a perspective method utilizing electron-photon interaction. Plasmonic 
optical near-fields modulate the amplitude and phase of traversing electron wave. By creating 
an analytical model of electron interaction with plasmonic interference patterns, it is possible 
to inspect the creation of on-demand shaped electron waves. 
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I N T R O D U C T I O N 

Electron microscopes are one of today's most powerful tools for probing into the complex 
nanoworld, on which the macroscopic properties of materials substantially depend. Electron 
microscopy helps us in many seemingly different fields of science. Its sphere of influence ranges 
from the development in material sciences, all the way to life sciences. Testing and finding new 
and useful materials that are pushing our technical capabilities forward or watching viruses and 
bacteria work, in a look for better treatments or ways to appropriate their observed behavior to 
our advantage. 

It is therefore essential to develop and improve the electron imaging technology in order to 
study various systems, nanostructures, and materials on the atomic scale, but also inspect and 
control the function of man-made lithographic structures such as transistors and other technolo­
gies relying on the processes dependent on physics on atomic level. 

One way of improving electron microscopes could be shaping the electron beam itself, i.e., 
modulating the amplitude of the beam and/or altering the phase of the electron wave. Electron 
beam-shaping is a new way how to utilize electrons for imaging beyond the limits of conven­
tional methods. Hence it came to wide attention in the last few years and it is getting the interest 
of many research groups around the world. 

The shaped electron beams (SEBs) could solve a few essential problems that occur during 
imaging in the electron microscope, e.g., aberrations. SEBs could even be capable of bringing 
totally new ways of observing the specimen depending on its unique properties, such as specific 
resonant energy levels. By utilizing certain symmetries, we may be capable of shaping the beams 
correspondingly to the material crystallographic structure, which could be useful in inspecting 
its properties and response. 

There are several methods suitable for shaping the electron beams. Each one modulates 
the amplitude and phase of the electron wave by a slightly different process. State-of-the-art 
method, which will be described in this thesis is using plasmonic optical near fields [25], specif­
ically the surface plasmon polaritons (SPPs), which are one of the main interests of research 
in nanophotonics's subfield fittingly called plasmonics. This phenomenon occurs in the case 
of coupling between free electron gas oscillations in metals, so-called plasmons, to incoming 
electromagnetic (EM) waves - photons, on a metal-dielectric interface. 

Our focus is to describe these fields and consider the conditions of their formation, propaga­
tion, and interference. If the conditions are met, SPPs may be excited on specific nanostructures 
on thin metal films. Excited SPPs interfere and, in suitable geometries, generate standing elec­
tromagnetic waves. The shape of the SPP interference pattern is determined by the geometry 
of the interference nanostructure [6]. Note that nanostructures may be relatively easily manu­
factured into desired geometries giving us a degree of freedom in creating tailored interference 
patterns. 
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Ultra-fast electron traversing structured SPP wave patterns interacts with the electric com­
ponent of the electromagnetic wave and gains or loses quanta of energy [11]. For an electron 
wave passing through perpendicularly to the film, the main contribution to the energy gains or 
losses comes from the out-of-plane component of the electric intensity (usually z component of 
electric intensity, as will be shown later on). In-plane components have a minor effect on the 
overall shape of out-coming electron wave. 

The goal of the thesis is to exploit these facts in creating an analytical model of surface 
plasmon polariton interference exited by illuminating nanostructures on a thin metal film. Then, 
the theory of electron-photon interaction will be portrayed and implemented in the model. After 
computing interfered electromagnetic fields in the interaction region we combine both theories, 
SPPs, and electron-photon interaction together, which will result in obtaining forms of shaped 
electron beams - SEBs. The computations of the model take place in MATLAB R2021b software 
environment as well as function surface plots. 
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1. O P T I C A L N E A R F I E L D S 

As we mentioned in the introduction, optical near fields can influence the amplitude and phase 
of the fast electron wave function via electron-photon interaction. This thesis focuses on elec­
trons' interaction with the plasmonic optical near fields. We will therefore describe the quanta of 
plasma oscillations in metals - plasmons, specifically so-called surface plasmons (SPs), occurring 
on the metal-dielectric interface. The coupling of SPs with photons gives rise to a quasiparti-
cle called surface plasmon polariton (SPP), which is an electromagnetic wave confined to the 
metal-dielectric boundary and will play a crucial role in the electron-photon interaction. 

We thus first have to describe the physics and theory behind surface waves and electromag­
netic waves in general. Maxwell's equations will help us to embark on a rigorous description of 
SPs and SPPs due to the electromagnetic character of these waves. 

1.1. Maxwell's equations 
Maxwell's equations in the differential form can be written as: 

V • D(r, t) = p f(r, t), (1.1) 

V -B(r , t ) = 0, (1.2) 

V X E ( r ) t ) = - ^ (1.3) 
at 

V x H ( r ) t ) = J f (r J i ) + ^ J (1.4) 
at 

where E, D are electric components of the field, H, B being magnetic components, intensity, and 
induction, respectively. p f is free charge density and J f free current density. Maxwell's equations 
have a simpler form in a vacuum. In describing electromagnetic fields in a material environment, 
however, the following additional relations apply: 

D(r,t) = e 0E(r,t) + P(r,t), (1.5) 

and 

H(r,t) = — B(r , t)-M(r , t) , (1.6) 
Mo 
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1. OPTICAL NEAR FIELDS 

where P, M are polarization and magnetization, respectively. s0 is vacuum permittivity and ju0 

vacuum permeability. Polarization describes how difficult it is to polarise the material by an 
external electric field, while magnetization describes the response to an external magnetic field. 

If e, ix is defined as dielectric function and relative permeability, respectively, we can write 
D and H in this form: 

D = e0eE, (1.7) 

B = jU0,uH. (1.8) 

The relation between electric field and current density can be expressed via Ohm's law in 
vector form: J = <TE, where a is material-dependent conductivity. With those relations, we are 
completing Maxwell's equations. 

1.1.1. Wave equations 
Following equations express the wavelike behavior of electric and magnetic fields. By apply­
ing curl on equations (1.3) and (1.4) and using the constitutive relations (1.5) and (1.6), we 
retrieve: 

1 d2E d fdP \ 
V x V x E + ^ ^ = - ^ ( ^ + J f + V x M J . (1.9a) 

1 d2H fdV\ 1 d2M 

Similarly for magnetic field: 

V x V x H + ^ = V x J ' + V x U T J - ^ ' 0.*» 
where c = 1 / je0n0 is the speed of light in vacuum. Equations. (1.9a) and (1.9b) can be 
simplified using vector calculus identity 

V x V x A = V ( V • A) - V 2 A . 

We consider variation of polarization and magnetization with time to be negligible, as well as 
p f = 0, J f = 0. Furthermore, if we include dielectric function e and relative permeability ju, 
provided that it varies insignificantly in space relative to the used light wavelength, we get: 

9 ead2E 
c 2 at2 

and 
v 2 H — 

c 2 dt2 
V 2 H - ^ ^ ? = 0. (1.10b) 
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1.1.2. Boundary conditions 
Since we will be discussing electromagnetic waves on surfaces, it is desirable to describe fields 
on the boundary between two different media. Discontinuity of materials implies the existence 
of certain boundary conditions, which the electromagnetic fields follow. By using divergence 
(Gauss-Ostrogradsky) theorem and Stokes' theorem one gets Maxwell's equations in integral 
form, which are more suitable for this problem: 

(1-11) 

(1.12) 

- ^ J / B - d S , (1.13) 

i> H-dl = I{+^- f f D - d S , (1.14) 
Ids d t J

S

J 

where Q f is free charge closed by any Gauss's surface S and I{ are free currents passing through 
any surface S bounded by a closed loop dS. 

By constructing a cylinder of equal bases reaching from one medium to another with its 
height approaching zero and applying it to (1.11), we get the following relation [12]: 

n - ( D 1 - D 2 ) = a f , (1.15) 

where D l 5 D 2 are electric induction in region 1 and 2. n is defined as unit normal vector of 
surface S pointing from medium 1 to medium 2. af is free surface charge density. Eq. (1.15) 
tells us that perpendicular components of D follow: 

Dl~D^=a{. (1.16) 

Analogously with (1.12) we get: 

n - ( B 1 - B 2 ) = 0, B{-B^ = 0. (1.17) 

In the case of (1.13) and (1.14), we construct a closed loop of rectangular shape, with its two 
sides parallel to the interface, reaching from one material to another with neglecting height. 

n x ( E 1 - E 2 ) = 0, E ^ - E 2 ' = 0 , (1.18) 

n x ( H 1 - H 2 ) = K F, H ! - H 2 ' = K F , (1.19) 

where K F is free surface current density. EJ1, H|' are components parallel to the interface. 
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1. OPTICAL NEAR FIELDS 

1.2. Electromagnetic response of metals 
Metals are a specific type of material with so-called metallic bonding of atoms. According to 
the free electron model (or Drude model), positively charged nuclei of atoms generate the rigid 
lattice, whereas valence electrons are delocalized and move freely through the bulk of the metal 
[16]. We call all the electrons in the bulk the conduction electron gas or electron sea. 

The optical response of metals is described by complex relative permittivity, also called di­
electric function e. Moreover, in the case of magnetic material we capture its magnetic response 
in the relative permeability ju. 

Now let's take a closer look at the electron behavior in metal. Generally, the motion of 
electrons in the bulk of the metal is very chaotic, meaning that all sorts of interactions occur, 
such as Coulomb interaction between electrons, scattering on the atoms in the lattice, etc. This 
motion of an individual electron would be very difficult to describe. We thus need to simplify 
the problem. 

It turns out that one can depict this system of electrons with a classical statistical view. We 
assume that the electrons, of effective mass m, move freely until they scatter on average once 

per time T , which also characterizes collision frequency y = —, which can be related to an 
T 

effective damping rate. This whole system creates an electron sea, which is responsive to an 
external electric field E(t) and for which we can write an equation of motion: 

m — + mT—Y = -eE(t) , (1.20) 
a tz at 

where r(t) is a displacement of electron. Provided that the driving electric field E is harmonic, 
that is E(t) oc e~lcot, where co is angular frequency, solution for (1.20) is 

r( t)= - 6 -E(t). (1.21) 
m{co2 + ijco) 

Electron displacement contributes to polarization as P = — net, where n is the charge carrier 
density so we get: 

2 
ne P(0 = -E(t), (1-22) 

which via Eq. (1.5) leads to: 

D(t) = e„ 1 - 2A_- E(t), (1-23) \ co2 + rf<x> 

where cop = ne2/(ms0) is called the plasma frequency. Comparing Eq. (1.23) to Eq. (1.7) 
provides an expression for a frequency-dependent dielectric function 

e{co) = l- — g . (1.24) 
CO + IJCO 
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1.3. Plasmons and surface plasmon polaritons 
By definition, plasmons are quasiparticles representing quanta of collective charge density oscil­
lations [20]. Special role have surface plasmons, which appear on the interface between metal 
and dielectric. 

SPPs are electromagnetic waves traveling along a metal-dielectric interface, evanescently 
decaying in the perpendicular direction to the interface, with propagation lengths up to tens of 
micrometers [2]. Because they arise from the coupling of light to charge oscillations, they have 
few unique properties, which will be apparent from their dispersion relation (Fig. 1.2). 

1.3.1. Surface waves - Electromagnetic field components 
From now on, we assume non-magnetic media, i.e. ju = 1, therefore B = JJL0H. Relations for 
surface waves can be derived from EM field component relations, which can be expressed from 
Eqs. (1.3) and (1.4): 

9HZ dHy . dEz dEy 

= — icoe0eEx, — — = — ICO[JL0Bx, (1.25) 

—ico£0eE , — — — = — ico[JL0B , (1.26) 

dy dz 

dHx dHz 

dz dx 

dHy 8HX 

dx dy 

dy dz 

dEx 

dz dx 

dEy dEx 

dx dy 
= -icos0sEz, — — = -ico^0Bz. (1.27) 

dx dy 

Additionally, we will describe the surface waves with the help of wave equations (1.10a), (1.10b). 
The assumption of harmonic dependence of the fields E(r, t) = E(r)e~lcot yields the Helmholtz 
equations: 

V 2 E + k 2 eE = 0, (1.28a) 

V 2 H + k2

QeU = 0, (1.28b) 

where k0 = co/c is free-space photon dispersion relation. 

1.4. SPPs on the interface of two media 
To describe the SPPs on the interface, we first need to define the geometry. We divide the space 
into two separate regions at z = 0 with dielectric in z > 0 and metal in z < 0. We consider wave 
propagating parallel with the x axis. 

There are two possible polarizations of the wave. The TE polarization is transversal electric 
with electric components ( 0 , £ y , 0 ) and magnetic components (Hx,0,Hz). The second polariza-
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1. OPTICAL NEAR FIELDS 

tion is TM - transversal magnetic, where nonzero components are Hy for the magnetic field and 
EX,EZ for electric. It can be shown that SPPs cannot exist in TE polarization (Appendix 3.3.2), 
we will thus calculate with TM polarization only. Due to the geometry of propagation and TM 
polarization (1.25) can be simplified as 

1 dHy 
Ex = -i (1.29a) 

cos0s OZ 

1 dHy 

Ez = i - A (1.29b) 
coe0e ox 

SPPs are confined to the interface, evanescently decaying in the z direction. The solution for 
such a wave therefore is: 

Hy=A^k*x-°Jt)e±az, (1.30) 

where kx is the x component of wavevector, A amplitude and a is the decay coefficient. 
± denotes solution for z > 0, which leads to e~az and for z < 0, for which we use e+az. 

Using Eq. (1.30) and adding EX,EZ components from (1.29), we obtain expressions describ­
ing fields in both regions I and II denoted by index r = 1,2, respectively. We assign et and at to 
each region, AX,A2 are amplitudes. In the z > 0 half-space, we have i = 2, and electromagnetic 
field described as: 

Hn(z, t) =A2eiik*x-°Jt)e-a2Z, (1.31) 

E"(z, t) = iA2^—a2ei{k^x-cot)e-a2Z, (1.32) 
x oie0e2 

EH(z, t) = -A2—r^e^~^)e-a2Z_ q 
coe0s2 

For the other half-space, where z < 0 and i = 1, we find 

Hy{z, t) =A1ei[k*x-cot)eaiZ, (1.34) 

E}(z,t) = -iA1—^—aie[k*x-cot)eaiZ, (1.35) 
X COSQS-^ 

E\Z, t) = - A i — ^ e i ( f c * * - w t ) e a i Z . (1.36) 
z cos0e1 
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In Fig. 1.1 we can see magnetic component of SPP in vacuum z > 0 on metal z < 0. 

-1 -0.5 0 0.5 1 

x[\im\ 

Figure 1.1: SPP normalized component of intensity Hy on single vacuum-metal interface. 
Frequency co = 3 • 10 1 5 rad • s - 1 , plasma frequency for gold cop = 1.37 • 10 1 6 rad • s - 1 and 
r = 7 .14-10 1 3 rad-s _ 1 . 

Solutions for SPPs in TM polarization do exist. However, certain conditions must be fulfilled. At 
z = 0 according to Eq. (1.19) H11 must be continuous in the case of zero surface current density 
that implies condition for amplitudes, i.e., A1 = A2. Moreover the electric components E 1 1, due 
to Eq. (1.18), give us the condition: 

a9 a, 
— - = — . (1.37) 

e2 £i 

Because Re{a; > 0} for both media, the only possible solution is that e2 > 0 is a dielectric and 
the second medium has Ref^} < 0, which is satisfied by metals. And last but not least, the 
dispersion relation for wave vector can be obtained using Eq. (1.28b): 

a2

2 = k2

x-k2

0e2, (1.38a) 

a2 = k2-k2

o£l. (1.38b) 

If we substitute the relations (1.38) into Eq. (1.37) we get the dispersion relation (Fig. 1.2): 

1 2 . (1.39) 
e1 + e2 
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1. OPTICAL NEAR FIELDS 

0 0 .5 1 1.5 2 

kxc/cop 

Figure 1.2: Dispersion relation of SPP from Eq. (1.39) is represented by black curve below cop. 
Black curve above cop represents so-called Brewster mode. The blue line describes the dispersion 
relation of light. Odd and even modes describe the dispersion in the case of Eqs. (1.52), (1.51). 
Here we do not consider any damping i.e. Imf^} = 0. 

In the limit of large kx, Eq. (1.39) can be rewritten with the use of Eq. (1.24) and assuming 
negligible damping (y —> 0). The characteristic frequency of surface plasmon therefore can be 
expressed as 

cop 

cosp = -—?=. (1.40) 
A/1 + £ 2 
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1.5. SPPs in a thin film 
Now we move on to a more complex geometry. We take an infinite metal film, with confinement 
in the z axis. We assume the thickness 2a in z direction, which should be in order of few 
tens of nanometers, because later on we will be considering electrons passing through the film, 
which requires films around tens of nanometers in thickness. Otherwise, the electrons would 
significantly deviate from their original path [15]. The center of the coordinate system is in the 
middle of the film, which is surrounded by a vacuum or dielectric on both sides. 

Furthermore, for simplicity of the model, we assume that the medium in the region III 
and medium in the region II (see Fig. 1.3) are the same, i.e. e3 = e2, which also implies 
a3 = a 2 . Description of time dependence was counted for with the term capturing harmonic 
time variation e~lcot, but for better readability from now on, we look at the time t = 0, while 
keeping in mind that time dependence can always be added to the equations. 

/ / £ 2 

Figure 1.3: Air/metal/air model, the thickness of the film is 2a. The origin of z is in the middle 
of the film. 

The electromagnetic components of SPPs will be very similar in form to the previous case with 
one interface. Note that two SPPs arise at each adjacent boundary in the case of two interfaces. 
Moreover, these SPPs are coupled, and one depends on the other. 

For region J, that is — a < z < a, there are going to be contributions from SPPs from each 
boundary of the film due to coupling [20]. The first one decaying in z and the second in — z: 

Hl

y = Ceik*xeaiZ + De i f c ^e" a i Z , (1.41) 

E1 = -iC—^—a^e^ + iD—^—a^e-^, (1.42) 
cos0s3 coe0e1 

E1 = C—^e

ifc*xeaiZ + D—^—e i f c x X e~ a i Z . (1.43) 
z cos0e1 cos0e1 
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1. OPTICAL NEAR FIELDS 

In the half-space above the metallic film/slab (z > a, region III), the electromagnetic field is 
expressed as: 

H"1 =Aeik*xe-a3Z, (1.44) 

EIH = iA-- - -<-3 
coeQe3 

a i k x X e - a 3 z (1.45) 

Ein = _A—*_eiMe-a3«f 

CO£0£3 

while below the film/slab (z < —a, region II), we obtain 

Hn _ ß e i f c ,x e a 2 Z ; 

ikxx a2z 

0C2 

(1.46) 

(1.47) 

(1.48) 

E" =-B——elfc*xe° 
cos0s2 

(1.49) 

Using the continuity of Hy and Ex on boundaries, we get a system of linear equations for complex 
amplitudes A,B,C,D: 

f e~a3a 0 _ & a i a -e~aia \ (A} 

{a3/e3)e-a*a 0 B 0 

0 e - a 2 a _ e - a i a _ & a i a C 0 

V o \dJ W 

(1.50) 

Furthermore in the computational model we will set A as an unit of amplitude and express 
other amplitudes B,C,D in terms of A This helps us better fit the model to experimental data 
of illumination strength, which directly determines the intensities. 

12 



1.5.1. Coupled SPP modes 
Boundary conditions with wave equations also give necessary conditions for coupled surface 
plasmon polaritons on both interfaces. We get two eigenmodes from solving det(M) = 0, where 
M is 4 x 4 matrix from Eq. (1.50): 

tanh(a1a) = - ^ 1 , (1.51) 
axe2 

tanh(axa) = - — , (1.52) 
a2s1 

which represent two modes for SPPs, odd and even functions, respectively (See Fig. 1.4). In odd 
parity Ex is odd function and Hy,Ez are even functions (odd/even notation in correspondence 
with [20]). 
Using 

a{ = y/kx-k2

0eh (1.53) 

Eqs. (1.51) and (1.52) can be rewritten as functions of kx. The equations are then solved for 
kx, numerically, yielding dispersions of SPP modes, (for purposes of this Thesis, it was solved 
with the help of MATLAB R2021b f so lveO function, Fig. 1.2): 

r i \ ei\ k2

v — kj.e2 

tanh [ajkl-klej + V = ° = 0, (1.54) 
e2\kx — kQe1 

and 

( i » Sn \ l ^0^1 

q V

/ / cg - / c 0

2

g l )+ V x =0 . (1.55) 

In the limit a —> oo, from Eqs. (1.51), (1.52) we get the expression we obtained earlier for an 
SPP at a single interface (1.37). 

We may also define the propagation length of SPP, which is determined by the imaginary part 
of kx and represents the length from the origin of SPP to the point where the intensity decays 
to 1/e multiple of its original intensity [2]: 

L = \—. (1.56) 
2lm{kx} 
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1. OPTICAL NEAR FIELDS 

0 1 2 3 4 5 

x[\im] 

Figure 1.4: Surface plasmon polaritons at vacuum-metal-vacuum setup. Color scale shows 
normalized intensity Hy of even and odd mode, for the film thickness of 60 nm, frequency 
co = 3 • 10 1 5 rad • s - 1 , plasma frequency of gold cop = 1.37 • 10 1 6 rad • s - 1 , and "damping ex­
pressed by y = 7.14 • 10 1 3 rad • s - 1 . 
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1.5.2. SPP excitations 
Due to the mismatch in the wavevector of SPPs and light (see Fig. 1.2), SPPs cannot be ex­
cited by light on the plain metal-air interface. SPPs are also bound to the surface and do not 
propagate perpendicularly to the interface. Non-triviality of the excitation requires special con­
figurations such as methods involving total internal reflection [27]. Excitation of SPPs may also 
be achieved by illuminating certain nanostructures, which means, that incident light on these 
nanostructures is converted into SPPs [23]. Methods, which use nanostructure illumination, 
are more appropriate for our use since the sources of SPPs happen to be nanostructures such as 
grating, grooves, and slits in thin metal films, which are easier to implement into the analytical 
model. 

Particularly the efficiency of groove SPP excitations can furthermore be tuned by the geom­
etry of the groove itself [23]. We can thus consider these nanostructures as valid and tunable 
sources of SPPs, if illuminated, and use them in the analytical model by defining their position, 
therefore defining the coordinates of the SPP source. 

Figure 1.5: Scheme of SPP excitation on the groove. Incident plane electromagnetic wave 
excites SPP at the groove, which then propagates outwards, while bound to the surface. Note, 
that SPPs propagate in both directions off of the groove, though we will be interested in the 
one, that propagates towards the interference region . 
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2 . I N T E R F E R E N C E M O D E L O F 

S U R F A C E P L A S M O N P O L A R I T O N S 

2.1. Surface wave sources 
The basic groundwork of plasmonic near fields has been set for us to move on to the description 
of the interference of SPPs. In the model, the source of SPPs is defined via its coordinates and 
the amplitude of an outgoing surface wave. 

The length of grooves or slits, which can be sources of SPPs, is a characteristic dimension and 
long relative to their other dimensions. It is, therefore, suitable for the model to consider arising 
SPPs as plane waves, under the limit of long enough sources of SPPs and consideration, that the 
outgoing plane wave covers the whole desired interference region. This way, the diffraction on 
the edges of the source is not going to affect the interference in this region. 

For SPPs in the metal film, we will use the odd mode, represented by Eq. (1.52), because 
of the longer propagation length of this mode (1.56) [2]. But it is possible to change the char­
acteristics in the computation according to our specific needs or potential future experimental 
setup. 

2.2. Interference of Ez fields 
Interference of multiple SPPs can be described as a total sum of all contributions from each 
source. SPP field components are described by a set of relations: (1.41)-(1.49). We will mainly 
focus on Ez components since those are essential in describing electron-photon interaction, 
which will be discussed later. It is also important to note that interference of the SPPs prop­
agating in opposite directions gives rise to standing waves [6]. Since the interference will occur 
on theXY plane, wavevector kx will further be split into new x component kx and y component 
ky based on the direction of propagation of each source on the XY plane, i.e. the expression 

eikxx transforms into el(-k*x+kyy\ we additionally define K = ^kj + kj. The z component of 
electric intensity can be described in all three regions III, /, II, respectively: 

EIH{x, y, z) = —A———e'^^^e-"32, (2.1) 
coe0e3 

El{x,y,z) = ( C e a i Z + De- a i Z )—— e

i { k '* x + k ' y y \ (2.2) 
z coe0e1 

Eu{x,y,z) = —B———e^k'xx+k'y

y^ea2Z. (2.3) 
coe0e2 
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2. INTERFERENCE MODEL OF SURFACE PLASMON POLARITONS 

As was stated, the total value of Ez in one point in space is the sum of contributions from 
each source, the sum is separate for each region (R = III, / or / ) , we also define x}•, = x — x0, 
Yj = y — y0, where x0, y0 are coordinates of the SPP source center. Corresponding wavectors 
will be denoted kxj and fcyj 

source j 

The intensities of the SPP risen at the coordinates of the groove can also be adjusted. The 
adjustment happens via the settings of amplitudes from Eq. (1.50), in order to correspond to 
experimental data of illumination strength. 

2.3. Interference geometries 
Created SPP interference patterns are dependent on the specific geometry of the interference 
structure which we refer to as surface plasmon interference device (SPID) [4] [5] and we may 
thus design the SPP patterns accordingly to this fact. It is desirable to respect specific symmetri­
cal arrangements of SPIDs such as hexagonal, square, etc. It will come useful later in modulating 
desired forms of SEBs. 

Slits / Grooves 

Interference region 
Figure 2.1: Possible interference structure representing square arrangement. 

In the model, the coordinate system origin is in the middle of the thin film, which is parallel to 
theXY plane, analogous to 1.3. 

Fig. 2.2 shows the function of the model in detail, grooves are sources, which are defined by 
a) distance (radius) r away from the center, b) angle 6 between the line, from origin to groove 
center, and x axis. And c) by their length I, which in projection towards the center covers the 
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interference region. The interference region is in the center. Note that this figure shows only 
one of the possible arrangements and all of the factors (number of grooves, length I, distance 
r, angle 9) are adjustable to a form for creating the desired interference patterns. 

2.4. Resulting patterns 
Figures 2.3 - 2.6 show SPP interference from different geometries of SPID, which result in two-
dimensional periodic patterns, which have characteristic features in correspondence to the SPID 
geometry. That might be useful in creating tailored SEBs with these specific patterns, for exam­
ple, hexagonal for the study of materials, whose structure shows such symmetry. 

SPPs are here represented by Ez component right at the film surface in the region III (Fig. 
1.3), i.e. z = a. 

All of the setups use these same parameters: film thickness 2a = 60 nm, frequency co = 
3 • 10 1 5 rad • s - 1 , plasma frequency for gold cop = 1.37 • 10 1 6 rad • s - 1 , scaling amplitude of A = 
1.5 • 10 4 V - m - 1 and distance from the center of r = 27 [xm. On the right side of each interference 
pattern there is an image, which represents the nanostructure from which the SPPs were excited. 

We start by constructing a SPID with square symmetry. It is clear, that in this model we see a 
form of a standing wave made as a sum of four contributions from each SPP source. Analogously, 
triangular (equilateral triangle) and hexagonal SPIDs are created. 

Lastly, we will discuss the possibility of shifting individual sources slightly away from their 
original position in the distance r. As we can see in Fig. 2.6, by moving two opposite sources of 
the hexagon further from the center, we can achieve a distinct interference pattern, unlike the 
previous pattern with hexagonal symmetry (Fig. 2.5). In this case, the two opposite sources 
were moved from their previous distance of r to 1.05r. Al l sorts of different on-demand patterns 
can be produced using this method. 

Interference region 
Figure 2.2: Function of the interference model in hexagonal geometry. 
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2. INTERFERENCE MODEL OF SURFACE PLASMON POLARITONS 

?/[|J.m] o 

-2.5 

EZ[V • m 

::::::: 
xlO 

H:HH, n 
-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 

Figure 2.3: £ z t o t component of SPR Interference in square symmetry. 

-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 

x[\xm] 
Figure 2.4: Ez t o t component of SPR Interference in symmetry of equilateral triangle. 
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-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 

x[\xm] 
Figure 2.6: £ z t o t component of SPE Interference in hexagonal symmetry with shifted sources. 
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3 . E L E C T R O N B E A M S H A P I N G 

3.1. Electron-photon interaction 
To shape an electron beam means to modulate its amplitude and alternate its phase via electron-
photon interaction, which in inelastic interaction consists of gaining or losing quanta of energy 
in traversing through the optical field. In Fig. 3.1 elastic and inelastic interactions are depicted. 
In traversing through near-field the electron may undergo multiple of these interactions each 
with some probability, which will be discussed later in 3.2.2. 

Electron-photon coupling via interaction has many potential applications, one of which is in 
the technique called photon-induced near-field electron microscopy. In this thesis, the focus is 
targeted on exploiting electron-photon interaction features in creating tailored electron beams 
(SEBs). 

Inelastic interactions 

absorption emission 
space 

time time 

Elastic interaction 

space 

time 

Figure 3.1: Electron-photon interaction both elastic and inelastic, depicted in Feynman diagrams 
[7], e~ as an electron and y as a photon. Portrayed inelastic interactions results in the electron 
gaining (absorption) or losing (emission) a quantum of light energy hco. 

23 



3. ELECTRON BEAM SHAPING 

3.1.1. Free electron wave function 
Before describing the evolution of an electron wave function in an optical field, we start with 
a wave function xp of an electron in free space. Such wave function must be a solution of a 
Schrodinger equation: 

Q 
H 0^(r, t) = ift—^(r, t), (3.1) 

a t 

where r is space vector, H 0 = —(ft2/(2me))V2 is free space Hamiltonian, ft reduced Planck's 
constant and m e the mass of the electron. 

The solution of Eq. (3.1) would be in a form of a plane wave, but such wave function would 
not be normalizable, due to the Heisenberg uncertainty principle. It is thus required to describe 
electron wave function as a wavepacket with normalizable envelope function g, wavevector q 0 

and coe is its angular frequency: 

V>(r, t) = g(r, t)e-i^et-q0r)- ( 3 _ 2 ) 

3.1.2. Interaction Hamiltonian 
The following sections use theoretical background and relations, that come mostly from Refs. [ 19, 
25, 11, 8, 26, 21]. We implement the interaction Hamiltonian into the Schrodinger equation, 
which will be enriched by a term for electron-photon interaction. Previous Schrodinger equation 
(3.1) is modified into: 

Q 
H^(r, t) = ift—^(r, t), (3.3) 

at 

where the Hamiltonian H for (V • A) = 0, can be expressed as: 

H = — (-iftV - qAf + q ip = -—V2 + ^ - A • V + ^ — + q <p, (3.4) 
2m e 2m e m e 2m e 

where A is optical vector potential, ip scalar potential and q is in our case elementary charge 
q = —e. The Hamiltonian (3.4) can be divided into free space Hamiltonian H 0 from (3.1) and 
interaction Hamiltonian H x as H = H 0 + H1. H x can furthermore be simplified using the Weyl 
(temporal) gauge (A0 = ip = 0) and by neglecting the term q 2 A 2 / (2m e ) since when considering 
the interaction of electrons with an optical near field, it is much smaller than other contributions 
and it becomes 

ieft 
H 1 = A - V . (3.5) 

m e 

To further simplify our problem, we will assume the interaction with monochromatic light with 
a well-defined frequency co. Vector potential can then be approximated as [26] 

A * — Ee~icot - —E*eicot, (3.6) 
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where * denotes a complex conjugate. By inserting Eq. (3.6) to Eq. (3.5) we get following 
form of the Hamiltonian: 

H 1 = — — ( e " w E - v-e i c o t E*- v). (3.7) 
meco 

3.1.3. Modified electron wave function 
In our geometry the electron moves along the z axis hence we can express momentum fiq0 = 
(0,0, ftq0), h~q0 = y/2meE0 £ 0 / ( 2 m e c 2 ) and electron kinetic energies to be narrowly spread 
and peaked around energy E0. Eigen-energies of narrowly distributed wavevectors q in free 
space satisfy: 

H 0 e i q r = £ q e i q r . (3.8) 

£ q can be approximated £ q fa £ 0 +ftv(q z —q 0 ) , where v = ( f t q 0 / m e ) ( l + £ 0 / ( m e c 2 ) ) is the electron 
velocity, relativistically corrected due to the ultra-fast regime. Energy exchanges between the 
electron and light can only happen by transmitting quanta of energy i.e. in multiples of h~co. 
The wave function has now different energy distribution around £ 0 + Ch~co. We also state H0 fa 
£ 0 — ftv(qz — q 0). Because of the geometry involved, where the beam is parallel to z axis, we 
state V —> Under these approximations electron wave function may consist of two parts for 
fast evolving wave function of central momentum q 0 and slowly evolving 4>: 

Plugging Eq. (3.9) in Eq. (3.3), and considering Eq. (3.7) with the approximation stated above 
yields: 

(3.10) 

Solution for Eq. (3.10) is not as straightforward (obtained from [26],[11]), with v = (0,0, v): 

^(r , t ) = 0 o ( r - v t ) e - , 8 + , 8 ^ (3.11) 

where 4>0 is an initial state of the wave function before the interaction and 23 is 

ev r / / I • 1 

25(r,t) = — dt E(r + vt -vt,t )e~lcot. (3.12) 
J —oo 

25 



3. ELECTRON BEAM SHAPING 

For field E(x,y ,z) changing in time insignificantly over the course of the interaction for slowly 
evolving 4>, thus is a function only of (r), it is possible to rewrite 23 as: 

9S(r,t) = /3(r)e k 0 ( z / v - t ) , (3.13) 

where 

/3(r) = i ^ I dz'EAx,y,z')e-icoz'/v. (3.14) ftco 
-oo 
TOO Using Jacobi-Anger expansion eiusind = 2 ^ - o o ^ n ( u ) e i n 9 f ° r function e < B + < B* (Appendix 3.3.2) 

yields: 

e _ « B + ( B * = ^ ^ ^ I ^ B D e 1 ^ - ^ ) , (3.15) 
c 

which furthermore after substitution of Eq. (3.13) equals to 

Y^Jc(2\P\ ) e i C a r ^ e

i C ^ z / v - t \ (3.16) 
c 

where Jc are first kind Bessel functions of t-th order and arg(—/3) is argument of complex number 
-15. 
For simplicity we can confine /3-dependent terms from (3.16) into coefficient 

/ , ( ^ ) = J , ( 2 | ^ | ) e i r a r ^ ) (3.17) 

and with fc the Eq. (3.11) transforms to 

4>{r, t) = 0 o ( r - v t ) ^ e i ^ z / v - t ) / r ( ^ ( r ) ) . (3.18) 

Eq. (3.18) will be a crucial element of the description of shaped electron beams created via 
the interaction with plasmonic near-fields. The implementation into the model involves both 
electron wave function and surface plasmon polaritons and will be discussed in the next portion 
of the thesis. 
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3.2. Implementation 

3.2.1. /3 coefficient 
Now we combine the theory of near-fields and electron-photon interaction. The plasmonic 
interference gives forms of electric fields confined at the thin film, which defines an interaction 
volume for the electron-photon interaction. Since the electric is evanescent in the z direction, 
the interaction volume is defined with respect to this exponential decay. 

The integral in (3.14) will converge in — oo and oo. In reality, however, has finite limits 
—zmin,zmax due to the space limitation of the experiments. W i t h X Y plane they define an effec­
tive interaction volumex x y x (zmin +zmax) as shown in Fig 3.2. But data from the model show 
that Ez decays rapidly in short distances (compared to electron trajectory) perpendicular to the 
film. In the limits, Ez decays to zero, it therefore has zero contribution to /3. We can thus count 
with the argument of the integral in —zmin, zmax as zero. 

Zmax 

Z 

Figure 3.2: Interaction volume defined as x x y x (zmin + zmax) 

The integral in (3.14) is, in this approximation, no longer dependent on z; hence /3(x,y) is a 
function of x, y only, and it is possible to evaluate its value for each point in XY plane. We take 
electric fields from Eqs. (2.1)-(2.3). And divide contributions to /3 into three regions (III, I, II), 
correspondingly to the expressions for the electric field in these regions. 
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3. ELECTRON BEAM SHAPING 

The total /3(x, y) consists of contributions of a sum of all three regions as well as a sum of 
interfered fields (2.4). R±um are denoting integration limits for each region R. We also use 
previously defined Xj, y;- from (2.4) and corresponding wavevectors. 

hco t-r1 ^—1 . 

R source j J 

where f5R for each region R and source j is: 

dzEz,j(xj>yj>z)e (3.19) 

K 

cos0s3 

j(.kxjXj+kyjyj)e-a3z p-iwz /v (3.20) 

f Q 

/3 7(x,y) = — dz ' f ce" 1 2 ' +De- a i Z " ) 
} hco v ; 

»i(fci:jJCj+fcyjyj)p-iW2 /v (3.21) 

K 

cos0e2 

(3.22) 

With the assumption of integral argument value in —zmin, zmax as 0. (3.20)-(3.22) can be eval­
uated as 

K 
hco2 e0s3(a3 +ico/v) 

(3.23) 

e Ke^kx-ixi+ky-'y'^ ( e a^ a i _ i^ v- ) — e

_ a ( a i _ i & V v ) e-a(aa+ia>/v) _ -aCĉ +uo/v)' 
C :— : + D -7la>2 eo^! 

^ J / ( x , y ) = - B 
K 

Hco2 e0e2(a2

 — ico/v) 

a a — icu/v 

»i(fcjcjJCj+fcy,;y;)p-a(a2-iC0/v) 

—a : — ico/v 
(3.24) 

(3.25) 

The sum of integrals from (3.19), after the evaluation of the integrals, transforms into a sum 
over (3.23)-(3.25): 

P(x,y) = Yi 2 ( 3 " 2 6 ) 

R source j 
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3.2.2. fe dependence 

1 

0.5 

R e { / , } 
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-0.5 
0 0.5 1 1.5 2 

Figure 3.3: Bessel dependence of Re{/ r} in a random point [x ,y ] . Bear in mind that these 
graphs change along x,y. /3 is generally complex and can even be negative, but it always 
shows Bessel dependence. 

Since /3(x,y) does not depend on z, j>(/3(x,y)) does not depend on z either, and it thus only 
changes in theXY plane. e"w ( z / v _ t )/f(^(r)) in Eq. (3.18) give an x , y dependent 2D map of 
the interaction for specific z and time t. If we take a closer look at 

we find that its magnitude for every £ is following first kind Bessel function of f-th order. I 
represents the number of quanta electron has received via the interactions, and |/f(/3)|2 acts 
like a probability of electron gaining energy Chco. Moreover, for the probability of the sum of 
all orders, we have: 

Because electrons will have different energies after the electron-photon interaction, it is suitable 
to use EELS (electron energy-loss spectroscopy) to study energy distribution of the electrons in 
the beam. Some interesting features of electron energy distribution may occur due to the Bessel-
function dependence. As we see in Fig. 3.3, if /3 —> 0, the highest contribution comes from f0, 
that means almost no interaction was involved at /3 —> 0, that is due to the very weak electric 
field involved; therefore almost no interaction comes into play, and electrons pass through the 
interaction volume undisturbed. As we move towards higher values of /3, other contributions 

fc(l5)=Jc(2\f5\)eiCa^\ 

(3.27) 
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3. ELECTRON BEAM SHAPING 

play a more significant role. Especially in the section where the value of f0 starts approaching 
zero, we see that fx is significant, which means that within this configuration of factors defining 
this particular /3, we would detect a high percentage of electrons with energy representing one 
photon energy quantum gain or loss. 

Our interest will now transfer to variables that are affecting /3 and are inherently controlled 
by experimental setup, that is, a dependence on the intensity of the illumination, which is, in 
the case of the model, represented by scaling amplitude A. The next variable is the light energy, 
and lastly, electron speed v and the film thickness 2a, which vary the outcome of the integrals 
inEq. (3.19). 

In terms of thickness, we try to use film as thin as possible. Otherwise, the electron beam 
could be heavily affected by interaction with the bulk of the metal. In ultra-fast electron regime 
and thin film (tens of nm), we assume a minor influence of the bulk. The easiest one of the 
variables to change is the light intensity. The energy of the photons is also easy to control. The 
limitations we might have is using light of very high frequencies, that is X-ray regime, with hard-
to-get sources. The experimental setup would also have to be adjusted due to safety reasons. 

Figs. 3.4 and 3.5 show the dependence of / 0 , / i on light energy and amplitude A representing 
light intensity. Implicitly expressed intensity is not used, because every setup (Figs. 2.3-2.6) and 
interference results in different values of intensity. Scaling amplitude A, on the other hand, is 
set in the computation and very easily adjustable to correspond to experimental data, hence it 
is used instead. 

For low energies of light, we see fast-changing / 0 , / i when moving towards high intensities. 
This behavior is very sensitive to slight changes in the setup and, therefore, not very suitable for 
experiments. It is thus appropriate to stay above 1 eX corresponding to wavelength A = 1240 nm 
(near-infrared regime). In the model will we use light from the visible spectrum. 

3.2.3. Contrast function 
Contributions of fc of higher order \t\ > 0 will result in higher probabilities of interaction and 
have an effect on the so-called contrast function, which is a relation between the maximum and 
minimum peaks of the electron wave, we can define contrast function as: 

C = F m a x ~ F m i n , (3.28) p i p ' 
r max ~ r m i n 

We define | 0 O £ , e ^ ^ / ^ t o ) ! 2 = F(x,y,z, t) ranging within ( F m i n , F m a x ) in value, which 
we then insert in (3.28) 

Contrast function plays an important role as a property of SEB and will represent the mag­
nitude of wave function shaping i.e. high contrast means strong modification and vice versa. 

This value is important because a certain situation may occur when we get the shaped beam 
after the interaction, but it might have insignificant contrast. Therefore, it would, in reality, be 
difficult to measure and analyze. We thus have to pay attention to the variables which affect 
the contrast. Those will be the same variables, which /3 depends on. 
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Scaling amplitude A [V • m 1 ] 

Figure 3.4: Real part of f0 as a function of intensity represented by amplitude A and photon 
energy. 

0 1 2 3 4 5 

Scaling amplitude A [V • m 1 ] 

Figure 3.5: Real part of fx as a function of intensity represented by amplitude A and photon 
energy. 
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3. ELECTRON BEAM SHAPING 

3.3. Resulting shaped electron beams 
The process of creating SEBs is based on the theoretical description above. In the description 
and calculation of the shaped electron wave function, the starting point will be the previously 
derived Eq. (3.18). 

For simplicity, we assume 4>0 is a constant representing a plane wave across the whole in­
teraction volume and does not change its form due to diffraction, since the interaction length 
is small in comparison to distances from the electron source to the metal film. We bear in mind 
that 4>0 can be modified. 

Figure 3.6: We see the arrangement of traversing electron wave. The trajectory of electrons is 
set parallel to z-axis, and we state that wave function 4>(r,t) changes only due to the electron-
photon interaction and does not change its shape due to diffraction across the interaction vol­
ume. 

3.3.1. Amplitude modulation 
Figs. 3.7-3.9 show results in the form of shaped electron beams in correspondence to interfered 
plasmonic near field 2.3-2.6. We set the time as t = 0 after the electron leaves the interaction 
volume and will no longer interact, that is the point where we display the wave function. We, 
therefore, do not inspect the change in z. Electron velocity is v = 0.778c, which is an electron 
with 300 keV of kinetic energy. Metal film thickness 2a = 60 nm. Used metal is gold with 
plasma frequency cop = 1.37 • 10 1 6 rad • s - 1 . Sources in r = 27 [xm illuminated by light with 
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frequency co = 3 • 10 1 5 rad • s - 1 , which corresponds to energy of 1.95 eV Scaling amplitude A and 
therefore the light intensity will be stated below each figure since we will later observe the effect 
the modification of amplitude A has. The plots show real and imaginary parts of 4>(x,y, t = 0) 
in units of 4>0. 

-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 -2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 

x[\xm] x[\im] 

Figure 3.7: SEB created on square geometry SPID. Contrast C = 0.947, amplitude A = 3 • 10 4 V-
m _ 1 resulting in peak intensity Ez = 4 • 10 7 V • m _ 1 

. J — — ^ — 

-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 -2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 

x[\im] x[\xm] 

Figure 3.8: SEB created on equilateral triangle geometry SPID. Contrast C = 0.763, amplitude 
A = 3 • 10 4 V • m" 1 resulting in peak intensity Ez = 3.3 • 10 7 V • m" 1 

33 



3. ELECTRON BEAM SHAPING 
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x[\xm] x[[im] 

Figure 3.9: SEB created on hexagonal geometry SPID. Contrast C = 0.828, amplitude A = 
3 • 10 4 V • m" 1 resulting in peak intensity Ez = 6 • 10 7 V • m" 1 
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Figure 3.10: SEB created on hexagonal geometry SPID with shifted sources analogous to 2.6. 
Contrast C = 0.880, amplitude A = 3-10 4 V - m " 1 resulting in peak intensity Ez =4.7-10 7 V - m " 1 
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In Figs. 3.11, 3.12 SEB created on hexagonal geometry SPID has its (p decomposed into in­
dividual contributions from f0 up to f3, since those are the most influential, real parts of fc 

shown. Contrast of (p is C = 0.828, amplitude A = 3 • 10 4 V • m _ 1 resulting in peak intensity 
Ez = 6 • 10 7 V • m" 1 
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3. ELECTRON BEAM SHAPING 

In Figs. 3.13, 3.14 show SEBs created on hexagonal symmetry SPID, illuminated by different 
light intensities. It is apparent, that for higher intensities (and therefore /3), orders of \t| > 0 
gain in significance. We can see that with increasing light intensity contrast increases as well. 
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3.3.2. Phase modulation 
Now we take a closer look at the phase modulation of cp(x,y, t = 0). The change of phase is 
dependent on the /3, thus also dependent on intensity. Same setup of constants v, 2a, cop,r,co 
as in 3.3.1 is used. Phases of 4> from 3.13, 3.14 are displayed, i.e. for amplitudes mentioned 
below the figures. As we see in Figs. 3.15, 3.16, for lower intensities the phase falls in only 
small intervals, whereas high intensities result in phase modulation interval (—n, n). 

arg( <j>{x, y)) arg( (p(x,y)) 

Figure 3.15 
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(a) 4>(x, y) phase, peak intensity Ez = 20 • 1 0 7 V • m - 1 (b) (j)(x, y) phase, peak intensity Ez = 40 • 1 0 7 V • m - 1 

Figure 3.16 
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S U M M A R Y 

The thesis was focused on obtaining a theoretical description of shaped electron beams. SEBs 
are created via electron-photon interaction, where the photons are, in the case of this thesis, 
represented by plasmonic optical near-fields. In correspondence to the theory, an analytical 
model of the interaction was developed and used in depicting shaped electron wave functions. 
The model itself was designed and analyzed in MATLAB R2021b software environment. 

The core subject of Chapter 1 was the general description of electromagnetic waves and 
the electromagnetic response of metals in the presence of optical fields. The response is repre­
sented by a dielectric function, which was obtained from the Drude model of free electrons. We 
discussed the possibility of bounding light to the metal-dielectric interface, which gives rise to 
surface plasmon polaritons. We described SPPs on one interface and then in the case of a thin 
metal film, where coupled modes of SPP occur. This chapter also involved the discussion about 
the conditions of SPP excitation. 

In Chapter 2, we focused on the interference of SPPs on a thin metallic film. The surface 
plasmon interference device was modeled and gave us specific SPP interference patterns. These 
SPP patterns were later used as an example for SEB formation in 3.3.1. 

The main matter of the thesis, the electron-photon interaction, was described in Chapter 3. 
We got the forms of the interaction Hamiltonian, which represents the interaction and then used 
it in the Schrodinger equation. That gave us the form of the electron wave function, which is 
dependent on the strength and shape of the Ez component of the SPPs. Then we discussed the 
properties of the wave function, which were confined in /3 coefficient. /3 has direct impact on 
\fc | 2 , the probability of electron gaining Chco of energy. These probabilities then determine the 
amplitude and phase modulation level as shown in sections 3.3.1 and 3.3.2, which show the 
final results of the model. 

SEBs might have a wide variety of applications, although, to this day, not many experiments 
have been conducted. Therefore, this theoretical background, findings, and the model could 
have an important role in predicting the results of potential future experiments. 
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A P P E N D I X 

TE - polarity 
Here we show that SPPs cannot exist in TE polarity [20]: For TE polarity applies: 

fill — ^QKKX-OJÍ) &-a2z 

y 

E1 = A1ei^kxX~ŮJt^eaiZ 

—n„ ^pWxX-ut) e - a 2 

jU0l<x> 

H1 = —A1—-—(a1)ei(fc**_&Jt)eaiZ 

x jU0i(x) 

If we use the boundary condition for continuity of Ey, which yields A1 =A2, and for continuity 
of Hx we see that with no free currents involved: 

A1(a1 + a2) = 0 

That only has trivial solution A1 = 0, since both Reia^ > 0 and Reia^ > 0, therefore SPPs do 
not exist in TE polarization. 

Jacobi-Anger expansion 
Jacobi-Anger expansion from https: / /en. wikipedia. org/wiki/JacobiyoE2yo800/o93Anger_expaiisioii 

oo 
e ius ine = ^ Jn(u)eine 

n=—oo 

We proove for 
e-<B+<B* _ e-i2|<B|sinarg(-<B) 

which satisfies Jacobi-Anger expansion (3.15) since for us the sum is symmetrical around 0. 
Arguments of the exponential function above are equal for a complex number z and its complex 
conjugate z*: 

—z + z* = \z\elip — \z\e~lip = \z\(— cos ip — isin ip + cos ip — i sin ) = —i2|z| sin ip 

-z = | z |e i a r g ( - z ) ip = arg(-z) 
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L I S T O F A B B R E V I A T I O N S 

EM Electromagnetic 

TM Transversal Magnetic 

TE Transversal Electric 

SP Surface Plasmon 

SPs Surface Plasmons 

SPP Surface Plasmon Polariton 

SPPs Surface Plasmon Polaritons 

SPID Surface Plasmon Interference Device 

SEB Shaped Electron Beam 

SEBs Shaped Electron Beams 

PINEM Photon-Induced Near-Field Electron Microscopy 
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