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                                                                PREFACE 

The publications and manuscripts presented in this thesis constitute research activities from 2017 

to 2022, comprising several sections that are linked to the main aim of this work. That is to 

improve the estimates of soil properties, especially SOC, with the data set obtained from three 

well-known platforms [spectroscopy (in-situ), satellite (Sentinel-2) and unmanned aircraft 

systems (UAS)], using several modelling techniques and pre-treatment algorithms. Knowledge 

of soil organic matter (SOM)/SOC quality in the soil environment is an essential factor for the 

assessment of the environmental balance of organic carbon stocks. Additionally, the emersion 

of proximal and remote sensing techniques has identified mapping and monitoring of soil as 

essential applications. The entire thesis was carried out under the supervision of the Department 

of Soil Science and Soil Protection at the Czech University of Life Sciences (CZU), Prague. 

Grant providers and co-authors are acknowledged in the respective publications. 

Moreover, the thesis investigates the possibility of combining in-situ, UAS, and Sentinel-2 (S2) 

into a single dataset using data fusion approach to estimate SOC in two agricultural fields in the 

Czech Republic that are low in organic content. To the best of our knowledge, no other study 

has explored this, possibly because of its complexity. The manuscript dealing with this research 

is currently under review. In the context of this Ph.D. thesis, the above-mentioned approach did 

improve the estimate of SOC in the study field of Nová Ves nad Popelkou. This work was a 

follow-up to a previous work (Biney et al., 20201) in which the three platforms were in-depth 

compared using their individual data sets. The current work can help encourage other researchers 

to also focus on fields with low organic carbon content with the sole goal of improving SOC 

estimates because of its multiple benefits to the environment. The thesis is composed from the 

following papers: 

Biney, J. K. M., Borůvka, L., Chapman Agyeman, P., Němeček, K., and Klement, A. (2020). 

Comparison of field and laboratory wet soil spectra in the Vis-NIR range for soil organic carbon 

prediction in the absence of laboratory dry measurements. Remote Sensing, 12(18), 3082. 

Biney, J. K. M., Blöcher, J. R., Borůvka, L., and Vašát, R. (2021). Does the limited use of 

orthogonal signal correction pre-treatment approach to improve the prediction accuracy of soil 

organic carbon need attention? Geoderma, 388, 114945. 
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Biney, J. K. M., Saberioon, M., Borůvka, L., Houška, J., Vašát, R., Chapman Agyeman, P., 

Coblinski, J. A., and Klement, A. (2021). Exploring the suitability of UAS-based multispectral 

images for estimating soil organic carbon: Comparison with proximal soil sensing and 

spaceborne imagery. Remote Sensing, 13(2), 308. 

Biney, J. K. M., Vašát, R., Blöcher, J. R., Borůvka, L., and Němeček, K. (2021). Using an 

ensemble model coupled with portable X-ray fluorescence and visible near-infrared 

spectroscopy to explore the viability of mapping and estimating arsenic in an agricultural soil. 

Science of the Total Environment, 151805. 

Biney, J. K. M., Vašát, R., Bell, S, M., Kebonye, N. M., Aleš, K., John, K., and Borůvka. L. 

Prediction of topsoil organic carbon content with Sentinel-2 imagery and spectroscopic 

measurements under different conditions using an ensemble model approach with multiple pre-

treatment combinations. Soil and Tillage Research (Under revision) 

Biney, J. K. M., Borůvka, L., Klement, A., Houška, J., Červenka, J., Kebonye, N. M., and Salazar, 

D. U. Verifying the impact of fusion high-resolution simulated in-situ spectroscopy, Sentinel-2, 

and unmanned aircraft systems data into a single dataset to estimate soil organic carbon content 

in low-carbon agricultural fields. Catena (Under review). 

Additionally, other papers were added with no detailed description or discussion. These studies 

were either linked with some of the study aims or were done to improve the estimation of SOC 

in the study field. 

Biney, J. K. M., 2022. Verifying the predictive performance for soil organic carbon when 

employing field Vis-NIR spectroscopy and satellite imagery obtained using two different 

sampling methods. Computers and Electronics in Agriculture, 194, 106796.  

Demattê, J.A.M., Paiva, A.F.d.S., Poppiel, R.R., Rosin, N.A., Ruiz, L.F.C., Mello, F.A.d.O., 

Minasny, B., Grunwald, S., Ge, Y., Ben Dor, E., Gholizadeh, A., Gomez, C., Chabrillat, S., 

Francos, N., Ayoubi, S., Fiantis, D., Biney, J.K.M., Wang, C., Belal, A., Naimi, S., Hafshejani, 

N.A., Bellinaso, H., Moura-Bueno, J.M., and Silvero, N.E.Q. (2022). The Brazilian Soil Spectral 

Service (BraSpecS): A user-friendly system for global soil spectra communication. Remote 

Sensing, 14, 740.  
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1. LITERATURE REVIEW 

1.1 Soil organic carbon 

The soil is a complex matrix comprising organic and inorganic (mineral matter) materials, as 

well as water and air. In the soils, organic matter ranges from decomposed and stable humus to 

fresh particulate residues of different origins. Skjemstad et al. (1997) found that the distribution 

of these distinct organic pools in soils influences biological behaviour, nutrient availability and 

dynamics, soil structure and aggregation, and water retention capacity. Inorganic soil carbon is 

a product of both carbonic acid and the weathering of rocks in the soil, precipitating as carbonate 

minerals (Lal, 2009). The inorganic mineral fraction is defined in various classification systems 

by its particle size distribution (proportions of sand, silt, and clay) and by additional subclasses 

(Hillel and Hillel, 1998). Usually, the coarse sand particles are typically made up of resistant 

minerals like quartz and feldspar, whereas the fine particles are made up of various clay minerals 

that have weathered to varying degrees. According to Jenny (1980), this material fraction can be 

determined by the parent material, soil age, climate, relief, and landscape position (Jenny, 1980). 

Soil organic carbon (SOC) is the carbon that exists in soil organic matter (SOM) and on average 

constitutes almost 58% of SOM (Corsi et al., 2012). SOC is strongly influenced by human 

actions and environmental circumstances such as topography, geology, climate, and time 

(Walcott et al., 2009). Research has established over the years that the preservation of SOC 

concentrations is strongly associated with biological activity and agricultural productivity 

(Stockmann et al., 2013). Maintaining SOC content above critical limits for specific ecological 

and climatic zones will help to protect soil resources and maintain crop yields, thus contributing 

to global food security (Bouma and McBratney, 2013). It has been suggested that where SOC 

concentrations are reduced below some critical limit, soil nutrients and water holding capacity 

are hindered, and physical degradation is likely to occur through soil aggregate depletion and 

increased susceptibility to soil surface crusting and erosion (Amundson et al., 2015). SOC stock 

measurements allow the identification of its spatial and temporal variations as a cause and are 

an important resource for policy decisions to protect and conserve soils (Saby et al., 2008). 
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1.1.1. Role of SOC in agriculture 

SOC storage is currently one of the utmost topical research fields because of greenhouse gas 

increases, food demand enlargement and the severity of human-induced soil degradation 

(Brevik et al., 2015). The rise in SOC has a positive effect on agricultural productivity, as many 

species (insects, spiders, snails, mites, nematodes, and some mammals) and microorganisms 

(bacteria, fungi and protozoa) use SOM as food (Walcott et al., 2009). Researchers have 

identified SOC as a 'universal keystone variable' in soil quality management (Loveland and 

Webb, 2003), making it the most important indicator of soil fertility management. SOM, on the 

other hand, is a major parameter for the storage, exchange and reservoir of water and nutrients. 

It also improves permeability, aeration, infiltration, aggregate stability and structure (Walcott 

et al., 2009). Despite the importance of SOM, its loss is a universal concern because it does not 

result only in a loss of soil quality, but further contributes to greenhouse gases (GHG) in the 

atmosphere, which leads to climate change (Zimmermann et al., 2006). With regard to the 

control of erosion, SOC contributes to the stabilization of other parts of the soil and to the 

formation of aggregates that make the soil more resistant to erosion. SOC also participates in 

the absorption of many pesticides and other xenobiotics and buffers the soil against pH changes 

(Walcott et al., 2009). Concerning its interaction with soil water, SOC increases the infiltration 

rate as well as the water-holding capacity of the soil (Walcott et al., 2009). 

1.1.2. SOC and climate change 

The Intergovernmental Panel on Climate Change reports (IPCC, 2014) stated that the CO2 level 

in the atmosphere increased from 280 parts per million (ppm) to 349 ppm for CO2 between the 

preindustrial period and 2005. As a result, the global average temperature (from 13.6 °C to 14.4 

°C) and sea level (from 15.2 cm to 22.9 cm) increased throughout the twentieth century. The 

average Arctic cover of sea ice has decreased at a rate of 2.7% per decade. For instance, between 

1850 and 2000, fossil fuel combustion was the major source of CO2 in the atmosphere, but early 

scientists proved that from the 1940s to 2009, a large amount of CO2 was released by terrestrial 

sources rather than from fossil fuels (Lal, 2009). The soil contains more than 1500 Gt of carbon 

and is known as the greatest terrestrial carbon pool (Smith, 2008). A small release of CO2 and 

CH4 from the decomposition of SOC in the atmosphere will have adverse impacts on the carbon 

cycle. 

For example, in Europe, SOC storage in farms can be approximately 20% of the global 

reduction needed during the first commitment period of the Kyoto Protocol (8% of reduction 
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between 2008 and 2012 from a 1990 base) (EU Soil Thematic Strategy, 2004). This role makes 

it a good proxy for land degradation assessment. Currently, postKyoto agreements are 

endeavouring to consider SOC in carbon trade (United Nations, 2015). However, much work 

still must be done, amid which the ability to monitor, report, and authenticate the levels of SOC 

is the most critical concern (Walcott et al., 2009). The fact that SOC may be considered in 

carbon trading is an excellent opportunity for developing countries to be involved in carbon 

trade by selling carbon credits from sustainable soil management through precision agriculture. 

1.2 Characteristics of soil spectroscopy 

Soil spectral reflectance is mainly affected by chemical determinants such as SOM, soil 

moisture, soil mineralogy, and physical structure such as particle size and surface roughness 

(Lobell and Asner, 2002; Shepherd and Walsh, 2002). Infrared spectroscopy is governed by the 

principle of radiation absorbance at molecular vibration frequencies (Soriano-Disla et al., 

2014). Soil spectral signatures are explained by the reflectance of the electromagnetic spectrum 

as a function of wavelength (Ben-Dor et al., 1997). The vibrational stretching and bending 

structures of atoms and their electronic transitions define the spectral absorption features. 

1.2.1. Remote and proximal sensing of SOC 

Many remote sensing approaches have been used to estimate SOC in the last few decades. They 

are mostly based on remote spectroscopy (multispectral and hyperspectral), satellite or airborne 

imagery, and field spectroscopy. Field spectroscopy measurements are mostly used to quantify 

SOC content within a field (on a small scale) and offer many advantages for applications such 

as precision agriculture (Barnes et al., 2003). Field spectroscopy with a long sampling interval 

is also used for the assessment of SOC temporal change over a short period of time. More 

information about the application of field spectroscopy is provided by Milton et al. (2009). In 

general, analytical spectral devices (ASDs), such as AgriSpec and Fieldspec, are mostly used 

as measuring instruments (Rossel et al., 2010). In precision agriculture, for example, ASD is 

mostly mounted on tractors (Bricklemyer and Brown, 2010) to measure soil properties. 

Field spectroscopy measurements are generally less accurate than laboratory measurements 

because of the surface roughness and moisture content (Christy, 2008; Morgan et al., 2009). 

However, Stevens et al. (2008) demonstrated that field spectroscopy measurements could 

provide comparable and accurate result as the laboratory measurements. All these results are 

specific to the different characteristics of the study area. Stevens et al. (2008) compared the 
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efficiency of laboratory, field, and airborne spectroscopy to predict SOC using PLSR. They 

concluded that the RMSE of the field spectroscopy was similar to that of the Walkley and Black 

method and that airborne spectroscopy was inaccurate. 

Satellites, as well as airborne sensors, can be viewed as an excellent opportunity to monitor 

SOC due to the satellite's temporal repetitiveness and broad field of view ability. Nevertheless, 

few studies have addressed the contribution of satellite images for the assessment of SOC. In 

most cases, empirical models incorporating phenomena (such as land management, clay, 

topography, and moisture) that influence the spatiotemporal dynamics of SOC as covariates are 

used (Croft et al., 2012), especially on a large scale. According to Vasques et al. (2008), satellite 

images are not always an effective tool for modelling SOC. These authors obtained an R2 of 

0.51 after the assessment of the efficiency of Hyperion sensor to predict SOC. In addition, the 

study suggests that an investigation of the EnMAP hyperspectral satellite's (a German sensor) 

capability to maintain an excellent signal to noise ratio (SNR) is needed. However, Mulder et 

al. (2011) demonstrated that optical remote sensors cover majority of the information required 

for soil application. In contrast to satellite sensors, airborne platforms have demonstrated good 

performance, with an R2 values between 0.62 and 0.97. On the other hand, Selige et al. (2006) 

developed a multivariate statistical regression to model SOC concentration using the EnMAP 

sensor and found a result of R2 = 0.89. 

Proximal soil sensing (PSS) refers to the use of field sensors to receive soil signals when the 

sensor is in contact with or near the soil (within 2 m) (Viscarra Rossel and McBratney, 1998; 

Viscarra Rossel et al., 1998; 2011). The sensors provide data on physical measures related to 

the soil and its properties. However, it is widely acknowledged that many proximal soil sensors 

are developed in the laboratory and that some (e.g., visible–near-infrared sensors) use 

calibrations derived from laboratory measurements that have been widely used to predict SOC 

content (McCarty et al., 2002). This is because they are less expensive and faster than the 

traditional methods used for the estimation of SOC. However, steps such as the collection, 

grinding, sieving, and drying of the soil, which are crucial during this process, make laboratory 

spectroscopy slightly slower than field spectroscopy measurements (Stevens et al., 2008). 

Nevertheless, the laboratory spectroscopy approach is not only the most widely used, but also 

the most accurate thanks to its high analytical precision. These measurements (lab) are 

recognized as an alternative to the traditional approach to estimating SOC content. For instance, 

the rationale for using proximal soil sensors is that although their results may not be as accurate 

as for conventional laboratory analysis per individual measurement, they facilitate the 
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collection of soil data using cheaper, simpler, and less labour-intensive techniques, which as an 

ensemble are very informative (Viscarra Rossel et al., 2011). Additionally, using field 

spectroscopy, measurements are made under field conditions; data are taken from the surface 

or within the soil profile, and information is produced almost instantly. Therefore, PSS offers 

advantages that cannot be achieved by remote sensing or laboratory analysis. 

A proximal soil sensor is said to be invasive if, during measurement, there is sensor-to-soil 

contact; otherwise, it is noninvasive. If the measurements are invasive, the sensors may be 

further described as in situ (i.e., measurements are carried out inside the soil) or ex situ (i.e., 

measurements are carried out on excavated soil, e.g., measurements on soil cores). Proximal 

soil sensors may be described as being mobile, in which case they measure soil properties while 

moving or ‘on-the-go’ (Adamchuk et al., 2004a), or they may be stationary, whereby 

measurements are made in a fixed position and possibly at different depths. A proximal soil 

sensor that produces its own energy from an artificial source for its measurements is said to be 

active. It is passive when it uses the sun's or earth's radiation, which occurs naturally. When a 

physical method is used to calculate the target soil property, then the proximal soil sensor is 

said to be direct, but if the measurement is a proxy and the inference has a pedotransfer function, 

then the proximal soil sensor is indirect (Viscarra Rossel et al., 2011). When measurements are 

made indirectly, the target property must be predicted from sensor measurements by calibrating 

them (using sensor measurements as well as soil samples obtained and analysed in the 

laboratory). In this case, it will require a calibration sampling design that optimizes property (or 

feature) space coverage. Ideally, the sampling would also cover geographical space such that 

the calibrations involve landscape position and other location-induced phenomena. De Gruijter 

et al. (2010) describe geographic and property space sampling for fine-resolution soil mapping 

using proximal soil sensors, and Adamchuk et al. (2011a) compare designs for mobile PSS that 

consider geographic and property space, field boundaries, and other transition zones. 

1.2.2. Visible and near-infrared spectroscopy 

Researchers' interest in the use of visible-near-infrared (vis–NIR) diffuse reflectance 

spectroscopy in soil science has grown over the past decade (Stenberg et al., 2010) since the 

use of this technique has many advantages. It is non-destructive, requires a minimum number 

of samples to be prepared, and involves no hazardous chemicals. Measurements take only a few 

seconds, and several soil properties can be estimated from a single scan. In addition, the 
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technique allows flexible measurement configurations and in situ as well as laboratory-based 

measurements (Viscarra Rossel et al., 2006). 

Reflectance spectra in the visible (400–800 nm) and near-infrared (800–2500 nm) regions are 

the result of interactions between the radiating energy and the bonds (molecules) of soil 

constituents. In the visible region, the high energy of the radiation causes transitions of electrons 

between molecular orbits with different energy levels (Miller, 2001). With lower radiation 

energy, corresponding to longer wavelengths, the absorption of energy occurs due to vibrations 

in molecular bonds. Absorption in the NIR region is due to overtones and combinations of 

fundamental vibrations in the mid-infrared region. The absorbed energy quanta are bond 

specific but are also influenced by the chemical matrix and environmental factors such as 

functional group size, adjacent molecules, and hydrogen bonds (Miller 2001). It allows 

recognition of a number of molecules that can contain the same bond form. With decreasing 

intensity and increasing overtone order, the same molecule can give rise to several overtone and 

combination bands over the NIR field. Because of this, small or large, overlapping absorption 

features can characterize the NIR region. Soil diffuse reflectance is also affected by soil physical 

properties associated with particle size and surface structure, as well as water films on the soil 

surface. 

The Vis-NIR region provides valuable information about organic and inorganic soil material, 

and both clay minerals and soil organic matter, which are essential soil constituents, have well-

recognized absorption characteristics in this field. Water has a strong influence on the spectra, 

with some dominant specific bands of absorption near 1400 and 1900 nm, along with weaker 

bands in other parts of the spectra (Liu et al., 2002). However, the scattering is more forwards-

directed with a water film on soil particles, and moist soils appear darker than dry ones 

(Sherman and Waite, 1985). The mineral part of the soil generally accounts for half the volume 

of the soil (Schulze, 2002), while the pores with water and air account for the remaining half. 

It has significant characteristics in the Vis-NIR spectrum, both in terms of surface properties 

affecting the degree of scattering and absorption. Absorption in the visible region is mainly 

related to iron-containing minerals such as hematite and goethite, which exhibit strong 

absorption bands between 400 and 660 nm (Sherman and Waite, 1985). All minerals also 

exhibit absorption bands close to 900 nm (880 and 930 nm, respectively, for hematite and 

goethite) but have almost no absorption features at longer wavelengths (Clark et al., 1990). 
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1.2.3. Past and current role of Vis-NIR in soil science 

Over the last few decades, a significant number of approaches have been proposed to predict 

soil properties with Vis-NIR spectroscopy. Total organic carbon estimation is potentially the 

most common, followed by clay content and soil N, because of their possible predictive success 

(Viscarra Rossel et al., 2006). Some other frequently reported properties also include SOM, 

minerals, soil texture (clay, silt, and sand content), nutrients, water, pH, extractable P, K, Fe, 

Ca, Na, Mg, and CEC (Stenberg et al., 2010). Some literature has also shown moisture content 

to be one of the most accurately measured properties with excellent accuracy in the NIR region 

(Chang et al., 2001; Mouazen et al., 2006a). This can be attributed to the presence of a clear 

water absorption band at 1450 nm in the second overtone region, resulting in a wide correlation 

of approximately 1450 nm. 

1.3 Data fusion 

According to Durrant-Whyte (2001), data fusion is a method that incorporates knowledge from 

several different sources to provide a coherent and detailed summary of the system or process 

of interest. Data fusion is of particular importance in any application where large amounts of 

data need to be combined, fused and distilled to obtain information of appropriate quality and 

integrity on which to make decisions. Data fusion is used in many military systems, civilian 

surveillance and monitoring tasks, process control, and information systems. Data fusion 

methods are particularly important in all of these applications as they drive towards autonomous 

systems.  

Several approaches are used to perform data fusion, which are normally categorized as levels, 

including a simple combination of the original data (Viscarra Rossel et al., 2006; Ji et al., 2019) 

(level 1), a simple combination of selected spectral features (Xu et al., 2019b) (level 2), a 

combination of the measurement results (O’Rourke et al., 2016) (level 3) and many other levels. 

The combination of the measurement results, also referred to as model averaging (Horta et al., 

2015), involves the combination of the different model outcomes to obtain a better outcome. 

This improves the estimation accuracy and reduces the possibility of aberrant measurements 

(O’Rourke et al., 2016; Chen et al., 2019). However, its accuracy could decline in fields with 

low values of soil properties under consideration. In theory, automated data fusion processes 

allow for the combination of critical measurements and information to provide knowledge of 

sufficient wealth and integrity to formulate and execute decisions autonomously. 
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 2. HYPOTHESES AND AIMS 

Paper 1: Comparison of field and laboratory wet soil spectra in the vis-NIR range for soil 

organic carbon prediction in the absence of laboratory dry measurements 

Hypothesis: Field collection of spectra or laboratory spectra measurement on naturally wet soil 

samples for SOC prediction can provide a fast alternative to laboratory dry soil sample 

measurement with comparable accuracy. 

Aim: This study aims to compare field and naturally acquired lab-wet spectral datasets for the 

prediction of SOC using their raw and pre-treatment states. The study also determined which 

of these datasets could be more suitable in the absence of a lab-dry measurement or when a 

quicker analysis is required to estimate SOC. 

Paper 2: Does the limited use of orthogonal signal correction pre-treatment approach to 

improve the prediction accuracy of soil organic carbon need attention? 

Hypothesis: Applying the wrong type or applying a pre-processing method that is too severe 

to vis-NIR spectroscopy data can result in the removal of valuable information or even the 

introduction of unwanted variation, thereby affecting prediction accuracy. 

Aim: This research aims to verify orthogonal signal correction (OSC) effectiveness in terms of 

the predictive accuracy of SOC against nine most commonly used pre-treatment methods for 

both VIS and vis-NIR spectra. 

Paper 3: Exploring the suitability of UAS-based multispectral images for estimating soil 

organic carbon: Comparison with proximal soil sensing and spaceborne imagery 

Hypothesis: Although spectroscopy under proximal sensing remains one of the best approaches 

to accurately predict SOC, spectroscopy's limitation to estimating SOC on a larger spatial scale 

remains a concern. It is believed that for the efficient quantification of SOC content on a larger 

scale, the use of remote sensing approaches with spectral indices is a viable option. 

Aim: This study aims to evaluate and compare the capabilities of unmanned aircraft systems 

(UASs) for the monitoring and estimation of SOC with those obtained from spaceborne 

(Sentinel-2) and proximal soil sensing (field spectroscopy measurements) on an agricultural 

field with a low SOC content and to verify the effect of soil and vegetation indices. The spatial 

SOC distribution map is also computed for the various sensors used in reference to the 

laboratory SOC measured values. 
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Paper 4: Using an ensemble model coupled with portable X-ray fluorescence and visible near-

infrared spectroscopy to explore the viability of mapping and estimating arsenic in an 

agricultural soil 

Hypothesis: The ensemble model will perform at least better than each of the separate 

techniques in terms of appropriately utilizing all the available data. 

Aim: The study aims to compare the ensemble model (PLSR, SVM, Cubist, and random forest) 

to each of the calibration techniques in terms of prediction accuracy of As content using pXRF 

and field spectroscopy data in an agricultural field with no history of contaminants. Other 

components [e.g., soil organic carbon (SOC), Mn, S, soil pH, Fe] that are known to influence 

As levels in the soil were also retrieved to assess their correlation with soil As. 

Manuscript 5 (under review):  Prediction of topsoil organic carbon content with Sentinel-2 

imagery and spectroscopic measurements under different conditions using an ensemble model 

approach with multiple pre-treatment combinations. 

Hypothesis: Acquiring spectral data normally under different measurement conditions could 

introduce artefacts that reduce SOC prediction accuracy. Ensemble approach combining the 

differently measured data can eliminate these artefacts and improve the prediction accuracy. 

The results of several comparative studies based on these predictive calibration techniques used 

alone were inconsistent so far. 

Aim: The main aim is to predict the SOC across the three agricultural fields with both proximal 

and remote sensing data using the ensemble model. The effectiveness of the developed model 

on regional scale dataset is also explored. 

Manuscript 6 (under review): Verifying the impact of fusion high-resolution simulated in situ 

spectroscopy, Sentinel-2, and unmanned aircraft systems data into a single dataset to estimate 

soil organic carbon content in low-carbon agricultural fields. 

Hypothesis: The fusion of high-resolution spectroscopy data with both UAS and S2 datasets 

into a single dataset could help improve the predictive performance of SOC. 

Aim: This study aims to systematically compare the individual and combined abilities of in 

situ, UAS, and S2 sensors for estimating the content of SOC in two different agricultural fields 

with different soil types. Specifically, middle-level fusion techniques (fusion of in situ, UAS, 

and S2 data among each other after variable importance selection using the Boruta algorithm) 
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were used. The spatial distribution map for both individual and fused approaches are also 

computed. 

3. METHODOLOGY 

 

3.1. General study areas 

Three agricultural sites within the Czech Republic were used for the study project. These 

include Brumovice (90 ha, 48°96′ N; 1688′ E), a village in the Břeclav District of the South 

Moravian Region, located at an elevation of 210 meters on a gentle slope of the Chřiby hills 

approximately 6 kilometers southeast of Klobouky u Brna. Údrnice, 52 ha (50°21′ N; 15°15′ E) 

in Jičín district with a mean altitude of 269 m, and Nová Ves nad Popelkou, 22 ha (50°31′ N; 

15°24′ E) in central Bohemian region with a mean altitude of 185 m a.s.l. These areas were 

representative of soilscapes, which were homogenous and comparable in terms of terrain 

characteristics, land management, and climatic conditions (Schmidt et al., 2010). According to 

the World Reference Base (WRB) for soil resources (IUSS Working Group WRB, 2014), the 

original soil type in Brumovice was Haplic Chernozem on loess, which due to erosion changed 

into Regosol (steep part) and colluvial soil (foot slope and the tributary valley), Chernozems 

and Luvisols on loess for Údrnice, while for Nová Ves nad Popelkou, the soil is characterized 

mainly as Cambisols on sedimentary rocks. The three study areas are shown in figure 1 below. 

 

                               Figure 1. The geographical position of the study areas 
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3.2. Soil sampling 

Although over 350 soil samples were initially proposed to be collected from the three study 

areas, only 241 of these samples were collected. This includes 111 samples from Údrnice (June 

of 2019) and 130 samples from Nová Ves nad Popelkou (May of 2019) (figure 2) from the 

topsoil (0–20 cm) within a regular grid covering the study area. The 241 sampling points were 

created using a GeoXM (Trimble Inc., Sunnyvale, California, USA) receiver with an accuracy 

of 1 m before the field visit. For the Brumovice site, 98 samples collected for a previous study 

were used. Regarding the field size and the chosen sampling algorithm (Pimstein et al., 2011; 

Ramirez et al., 2014), the selected sample sizes have sufficient coverage of the predictor space, 

which is a suitable indicator of the population to which the models will be applied. Although 

the emphasis was on measuring and analysing field and laboratory dry spectra, wet spectra were 

also considered for comparison between the field and dry measurement approaches using only 

Nová Ves and Údrnice study sites. 
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Figure 2. Location of sampling points at Nová Ves nad Popelkou (A), Údrnice (B) and Brumovice (C) 

3.3. Spectroscopy data sets 

For the study sites located in Nová Ves and Popelkou and Údrnice, the study analysed three 

spectroscopy data sets, and the best of the three were used for further analysis. These datasets 

include field, laboratory dry and laboratory wet spectra. For the lab-wet, for instance, its 

measurement is influenced mainly only by moisture content because most of the other 

conditions that affect spectral measurement are manipulated in the laboratory. Nevertheless, 

field data under Vis-NIR measurements are susceptible to external environmental factors, such 

as temperature, soil moisture and soil structural factors, transient changes in weather conditions 

during measurement, noise, vegetation cover, illumination sources and variations in 

illumination due to clouds and wind. The laboratory dry measurement under laboratory-

controlled conditions is noted for its reliable prediction of soil organic carbon (SOC) compared 

to field and wet spectra. This is because a standardized protocol is used; see, e.g., Romero et al. 

(2018) and Ben Dor et al. (2015). Nevertheless, other issues, such as spectrometer instability, 

illumination source, detector output, and sample preparation, may persist in the laboratory 

environment. 

3.4. Measurement of field and laboratory spectra and SOC analysis. 

The spectral reflectance of soil samples for the different Vis-NIR approaches was measured 

using an ASD Field Spec III Pro FR spectroradiometer (ASD Inc., Denver, Colorado, USA) 

across the 350–2500 nm wavelength range. The spectroradiometer spectral resolution was 2 nm 

for the region of 350–1050 nm and 10 nm for the region of 1050–2500 nm. The spectrometer 

was standardized using a Spectralon® panel (Lab-sphere, North Sutton, New Hampshire, USA) 

with 99% reflectance preceding the first scan and after every six measurements (Shi et al., 

2016). For each sample, we collected four spectral measurements, and the average of these 

measurements was used. The field spectra were measured in the field from four different 

positions around each of the sampling points. For soil heterogeneity, samples for laboratory 

analysis were also collected from each of these positions while the field measurement was 

underway. It was placed into a well-labelled bag and transported to the laboratory for further 

analysis. Immediately upon reaching the laboratory, spectra readings were taken, and the 

average of four replicates was used as the wet spectra. After air drying for two weeks, the 
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samples were gently crushed and sieved (2 mm) before being analysed (ISO 11464:2006) and 

the laboratory dry spectra were measured. All collected soil samples were also chemically and 

physically analysed using standard laboratory procedures under a constant laboratory 

temperature of 20 °C. SOC was measured as total oxidized carbon using a wet oxidation 

approach (ISO1998.14235). This process utilized the dichromate redox titration approach and 

was accomplished in two different substeps (Skjemstad et al., 2008). That is, the samples were 

first oxidized with K2Cr2O7 and the solution was then potentiometrically titrated with ferrous 

ammonium sulphate. However, for the Brumovice site, the spectra and SOC had already been 

measured, and the data for only the laboratory dry spectra were used. 

3.5. Remote sensing imagery 

3.5.1. Unmanned aircraft system (UAS) multispectral imaging (airborne) 

Multispectral data were acquired using a Trinity F90 fixed-wing drone with a MicaSense Altum 

dual sensor mounted onboard with two cameras (RGB and Multispectral). The MicaSense 

Altum dual sensor captures images in six independent spectral bands (multispectral), with the 

last band being a thermal infrared sensor (Blue 475 nm (B4), Green 560 nm (B5), Red 668 nm 

(B6), Red edge 717 nm (B7), Near-infrared 840 nm (B8), and Thermal 11 μm (B9)). The RGB 

sensor also captures images in three bands (red–green-blue) (400–700 nm). This is a high-

resolution digital camera where the lens are separated from the multispectral sensor. This 

implies that the total number of bands captured by Trinity F90 was nine. The location of the 

on-board Global Navigation Satellite System (GNSS) and Inertial Navigation Unit has been 

saved in the metadata files using the Exchangeable Image File Format (EXIF). The camera is 

equipped with a sun sensor that gathers information about the light conditions and saves the 

radiant flux data produced in EXIF format. The image was acquired on November 25th, 2019, 

at Nová Ves nad Popelkou and Údrnice under clear sky conditions. The flight plan was prepared 

using a QBase 3D mobile app (mission planning software). This served as the primary interface 

between the user and the UAS device. QBase 3D offers real-time information such as altitude, 

distance, battery life, about the UAS and mission telemetry data that provides the operator with 

updated information about the flight at all times. The flight height was 190 m, and the spatial 

resolution was 8.8 cm, covering an area of 31 ha in Nová Ves nad Popelkou. For Údrnice, the 

altitude was 160 m, covering an area of 52 ha with a spatial resolution of 7.6 cm. We also 

ensured that we had sufficient batteries for the total flight duration for the two study field        . 

The images were captured automatically, and the calculated position was consistent with 85% 



14 

 

front and 75% side overlap. The images were accurately oriented, a 3D model was extracted, 

the digital elevation model (DEM) was calculated based on the generated cloud point (during 

the flying period), and orthorectified images were calculated and then exported as one mosaic 

in a GeoTIFF file in EPGS 4326-Geographical coordinates on the WGS-84 ellipsoid. Before 

generating this orthophoto, calibration was performed. The obtained image (before calibration) 

is already in the reflectance format. However, the actual reflectance values are obtained by 

dividing each band by 32768 to obtain the values normalized in the interval between 0 and 1. 

The band center value is 32768, which represents 100% reflectance. For geometrical correction, 

the ground-based points and the differential global positioning system (DGPS) were used, while 

for both radiation correction and reflectance transformation, the grayscale correction method 

was employed. AgiSoft Metashape Professional 1.5.0 (AgiSoft LLC, St. Petersburg, Russia) 

photogrammetric processing was used. The software's consistent performance in 

photogrammetric processing has been demonstrated in previous studies (Verhoeven, 2011). To 

differentiate bare soil areas, the normalized difference vegetation index (NDVI = (infrared–

red)/(infrared+red)) was employed to mask a threshold of 0.2. R software (R Development Core 

Team, Vienna, Austria) was used for all other data processing. 

3.5.2. Satellite data acquisition (Sentinel-2 imagery) 

The extracted cloud-free Sentinel-2B imagery used for each study field was carried out at the 

European Space Agency's Copernicus Open Access Hub, which depended on its closest date to 

field samplings. The Sentinel-2 mission consists of two similar satellites: Sentinel-2A and 

Sentinel-2B. Each satellite has a Multispectral Instrument (MSI) that generates images of the 

Earth. The Sentinel-2 images are processed to Level 1C, which implies that they have been 

ortho-corrected, map-projected images containing top-of-air reflectance data. This image will 

need further pre-processing by the user, but the level 2A Sentinel-2 imagery can be used 

instantly because its dataset has been processed by the suppliers using the Sen2Cor processor, 

which is integrated into the Sentinel Application Platform (SNAP) tool (Muller-Wilm, 2017; 

Shoko and Mutanga, 2017). These processes include geometric, radiometric, and atmospheric 

corrections. For the two study fields, level 2A Sentinel-2 imagery was acquired. The Sentinel-

2 image consists of 13 spectral bands. These spectral bands range from visible and near infrared 

(Vis-NIR) to shortwave infrared (SWIR). They include four bands at 10 m resolution ((B2, 490 

nm), (B3, 560 nm), (B4, 665 nm), (B8, 842 nm)); six bands at 20 m resolution ((B5, 705 nm), 

(B6, 740 nm), (B7, 775 nm) and (B8A, 865 nm); 2 SWIR large bands, (B11, 1610 nm) and 

(B12, 2190 nm)). Finally, three bands were observed at 60 m resolution ((B1, 443 nm), (B9, 
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940 nm) and (B10, 1380 nm)). Before the download, all 13 bands were resampled to 10 m using 

SNAP software (by pixel resolution). With the exception of B1, B9, and B10, which were 

omitted, all the remaining bands were used for analysis for each study field. The Sentinel-2 user 

handbook describes the whole protocol European Space Agency (ESA), 2016. 

3.6. Data pre-processing and model assessment 

3.6.1. Spectral pre-treatment 

The first step in the development of calibration models is the pre-treatment of the spectral data. 

Soil spectra are first reduced to eliminate noise on both sides of the spectra. Until modelling, 

all the datasets were pre-processed. Murray and Williams (1987) stated that removing outliers 

improves prediction accuracy. Therefore, the outliers from these datasets are removed using a 

local outlier factor (LOF) algorithm procedure proposed by Breunig et al. (2000). The LOF is 

a measure that looks at a certain point's neighbours to determine its density and then compares 

it with the density of other points and uses its local approach to better detect outliers in their 

neighbours. Additionally, the ensemble sparse partial least squares (enpls) was also explored in 

some instances. 

Before using the data calibration models, the noisy portions between 350 and 399 nm were also 

eliminated. The datasets were then subjected to the following set of pre-treatment techniques: 

sg (Savitzky–Golay) from signal R package (Signal developers, 2013), dwt (discrete wavelet 

transformation) calculated with dwt function from wavelets R package (Aldrich, 2013), d1 

(first-order derivative) (Duckworth, 2004), sg_d1, dwt_d1, d2 (second-order derivative), sg_d2, 

dwt_d2, msc (multiplicative scatter correction) which was calculated using pls R package 

(Mevik and Wehrens, 2007), sg_msc, dwt_msc, snv (standard normal variate) which was 

obtained by subtracting each reflectance value from the spectrum's mean reflectance value, and 

then it was divided by standard deviation, sg_snv, dwt_snv, snv_msc, sg_snv_msc, 

dwt_snv_msc, log (logarithmic transformation (log(1/R))), sg_log, dwt_log, log_msc, 

sg_log_msc, dwt_log_msc, log_snv, sg_log_snv, dwt_log_snv, cr (continuum removal) which 

was obtained from tripack R package (Renka, 1996), sg_cr, dwt_cr, cmr (correction by the 

maximum reflectance) (Vašát et al., 2017), sg_cmr, dwt_cmr in order to optimize the fitting of 

target values against spectra. In addition to the other treatment algorithms, orthogonal signal 

correction (OSC) was explored, using the Unscrambler Program, version X11, CAMO, 

Norway, for its application. These algorithms also seek to remove or minimize undesirable side 
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effects (i.e., artefacts) in the spectra while also improving the relevant details about the soil 

property being estimated. 

3.6.2. Modelling development and performance 

To ensure that the results were not dependent on the multivariate model, four different 

multivariate techniques were evaluated separately, namely, Cubist, support vector machine 

regression (SVMR), partial least squares regression (PLSR) and random forest (RF). The Cubist 

method was used to calibrate the regression tree models using the train function of the caret 

package in R. Cubist uses linear regression models at each node instead of the average. To avoid 

overfitting (Kuhn and Johnson, 2013), the default number of committees (1, 10 and 20) and 

neighbours (0, 5, and 9) from the train function were utilized. The root mean square error 

(RMSE) was used to select the best models. Comparably, the SVMR is tuned to different cost 

parameters with the built-in tuning function using the grid search (precisely 0.001, 0.01, 0.1 and 

1) with a linear kernel function, while the epsilon parameter is left to its default value (0.1). The 

Package e1071 library in R was used. Based on the RMSE, the best cost parameter is selected 

from bootstrap results based on 10-fold cross-validation. For the PLSR algorithm, a set of new 

predictor variables identified as latent variables is developed as a linear combination of the 

initial predictor variables. The model runs and tests itself for each number of components, i.e., 

from 1 to 10 (the maximum number of model components was set to 10). The optimum number 

of components is selected based on the lowest RMSE. With the optimal number of components 

obtained, the model is re-calibrated and validated, and the coefficient of determination (R2) and 

the RMSE are computed. 

Finally, the RF algorithm is formulated to reduce experimental noise and improve prediction 

accuracy (Liaw and Wiener, 2002). The dataset under consideration is randomly divided into 

numerous training sets, and decision trees are developed using bootstrap re-sampling 

capabilities. The average of the individual tree outputs is then utilized to calculate the final 

prediction. The Random Forest R package was used, which includes homonyms (Liaw and 

Wiener, 2002). This is founded on the principles of Leo Breiman and Adele Cutler's Fortran 

code. A total of 500 trees were grown, with 35 variables randomly selected as candidates at 

each split. The R programming language (R Development Core Team, 2015, Vienna, Austria) 

was used for spectra pre-processing and modelling techniques. 

The model's output was assessed by five-fold cross-validation for each regression procedure of 

the calibration (75%) and validation set (25%) of the samples using Cubist, SVMR, PLSR and 
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RF modelling techniques. The accuracy of the prediction was assessed based on the coefficient 

of determination for cross-validation (R2
CV), the ratio of performance to interquartile range 

(RPIQ), the ratio of performance to deviation (RPD), which is the ratio of a parameter's standard 

deviation to the standard error of that parameter's prediction by a specific model, the root mean 

square error of prediction (RMSEPcv) (measures the overall model prediction accuracy) of the 

5-fold cross-validation and the bias. The bias represents the error of means and is independent. 

The R2
CV ranges from 0 to 1, where R2

CV = 1 is the optimal value. For the RPD, Chang and 

Laird's (2002) categorization was applied: RPD > 2 indicates good models, RPD between 1.4 

and 2 indicates moderate predictive ability, and RPD lower than 1.4 indicates weak models. 

The five-fold cross-validation was repeated 100 times to ensure model stability and reliability. 

3.7. Methodology summary for each paper  

3.7.1. Methodology 1: Comparison of field and laboratory wet soil spectra in the Vis-NIR range 

for soil organic carbon prediction in the absence of laboratory dry measurements 

The pre-treatment use can be found in the attached article as paper 1. The study focuses on each 

of the separate spectral regions VIS; 400–800, NIR; 800–2500, and the whole Vis-NIR; 400–

2500. In all, there were 24 different output models to be tested for each of the two datasets. 

Almost all the signal transformations were plotted to visualize differences between different 

pre-processing methods. However, the reflectance and absorbance plots were separated for 

visual assessment of variation in the spectra and their similarities. For modelling assessment, 

PLSR, principle component regression (PCR) and SVM were used. The LOF was used for 

outlier detection and elimination. In all, a total of seven outliers were removed from each 

dataset. Additionally, for a detailed comparison of the obtained spectra (lab-wet and field), that 

is, to determine the stable part of the spectra (the part not affected by moisture), the part that 

differs, and the part with no meaningful information, median filter smoothing (MFS) with a 

segment size of 7, spectroscopic transformation-absorbance (STA) and gap-segment second 

derivative (GSD) with a gap size of 6, and a segment size of 25 (Unscramble Software, Version 

X11, CAMO, Oslo, Norway) was used. The order was MFS–STA–GSD. The study area used 

is located at Nová Ves nad Popelkou. 

 3.7.2. Methodology 2: Does the limited use of the orthogonal signal correction pre-treatment 

approach to improve the prediction accuracy of soil organic carbon need attention? 

A total of 259 soil samples from three study fields were used for this study, including 

Brumovice and Nová Ves. The samples include lab-dry and field spectra. Nine pre-treatments 
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were used as can be found in the attached paper (paper 2). Outliers within the datasets were 

eliminated using a local outlier factor (LOF) algorithm proposed by Breunig et al. (2000). In 

total, nine outliers were removed (field 1:1; field 2:1; field 3:7). All pre-treatment methods were 

calculated three separate times from raw spectra, sg spectra and dwt spectra, and the best results 

were selected and reported. 

3.7.3. Methodology 3: Exploring the suitability of UAS-based multispectral images for 

estimating soil organic carbon: Comparison with proximal soil sensing and spaceborne imagery 

For this study, nine calculated spectral indices were applied to both the Sentinel-2 and UAS 

datasets as independent variables, which were anticipated to enhance the prediction capability 

of these datasets. These spectral indices include the colour index (CI), normalized difference 

vegetation index (NDVI), infrared percentage vegetation index (IPVI), normalized difference 

red edge (NDRE), soil adjusted vegetation index (SAVI), vegetation (V), green–red vegetation 

index (GNDVI), difference vegetation index (DVI), and brightness index (BI). 

➢ Data Pre-processing Approaches 

The field spectra and the other two datasets (UAS and Sentinel-2) were subjected to the 

following set of pre-processing techniques: dwt, snv, (log(1/R), as well as the combination of 

dwt with snv (dwt + snv) and with log(1/R) (dwt + log(1/R)). 

➢ Modelling and Prediction Assessment 

The spectra obtained from Sentinel-2 and UAS sensors, including the determined spectral 

indices, were each linked to the SOC determined in the laboratory using collected soil samples 

from the field. Two separate multivariate models were evaluated for all spectral data, namely, 

RF and SVMR. For the modelling assessment, see the attached full article as paper 3. 

 Prior to evaluating the predictive models, the normality of the distribution of the SOC contents 

was examined (skewness <1). 

A correlation matrix was computed to visualize the relationships between the three datasets and 

their parameters (indices) with SOC (to examine which dataset is more correlated or 

significantly correlated). For the remote sensing data sets (UAS and Sentinel-2), this was done 

between SOC and their bands and indices. However, for the field spectra, the correlation was 

made with SOC using only selected wavelengths (based on UAS and Sentinel-2 wavelengths) 

due to the enormous amount of spectral data available (350–2500 nm). For a visual comparison 

of the SOC spatial distribution predicted by models based on different data and laboratory 
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measurements, SOC maps were created using the inverse distance weighting (IDW) 

interpolation method. 

3.7.4. Methodology 4: Using an ensemble model coupled with portable X-ray fluorescence and 

visible near-infrared spectroscopy to explore the viability of mapping and estimating arsenic in 

an agricultural soil. 

Soil organic matter (SOM) can have a strong influence on redox transformations of toxic 

elements and of soil minerals (Borch et al., 2010). Among the several elements explored, the 

prediction of As was high. Therefore, to better understand the role of soil organic matter (SOM) 

on the change in As and to verify whether these changes affected the prediction accuracy of 

SOC within our study field, this study was conducted. This is because the prediction accuracy 

of SOC in this field was poor. A robust model was needed because our study field had no history 

of pollutants. An ensemble model, which comprises four individual modelling techniques, was 

used 

➢ pXRF measurements 

A portable X-ray fluorescence spectrometer Delta Premium (Olympus) was used to analyse As, 

Mn, S, and Fe. The main component, however, was As. The other elements were included (for 

correlation with As) because they have been shown to influence As (directly or indirectly, 

particularly Fe). Fe oxides, for instance, are well known as spectrally active soil properties that 

can strongly adsorb PTEs or have a high affinity for certain PTEs (Axe et al., 2000; Ben-Dor 

and Banin, 1995). For the elemental measurement using the pXRFs, see the attached article as 

paper 4. 

➢ Soil chemical analyses 

Other auxiliary soil properties that can influence As due to their high adsorption with PTEs (soil 

organic carbon (SOC), soil pH) were also determined (correlation test). More information on 

the soil chemical analysis and the pre-treatment used can be found in the attached article as 

paper 4. Four outliers were removed to improve predictive performance. 

➢ Correlation and spatial distribution maps 

A correlation matrix was created to observe the relationships between As and the selected 

auxiliary components (soil pH, SOC, Mn, S, Fe). Spatial variability of soil As contents was 

mapped using the inverse distance weighting (IDW) interpolation method with the R package 

gstat (Pebesma, 2004; Gräler et al., 2016). IDW uses a linear combination of values to estimate 
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the values of the unknown area within the sampling space and allocates weights using its inverse 

function. Due to its ability to assign weights before prediction, IDW can have a lower error 

margin than other interpolation methods, which makes it more suitable for creating spatial 

distribution maps more accurately (Liao et al., 2018; Xie et al., 2011). 

➢ Multivariate modelling and models 

For this study, four separate multivariate techniques evaluated individually, namely, Cubist, 

SVM, PLSR, and RF, were used for the study as individual techniques and then combined, 

forming the ensemble model. The ensemble model details, as well as the model and spatial 

distribution map validation assessment, can also be found in the attachment article as paper 4. 

3.7.5. Methodology 5 (currently under revision): Prediction of topsoil organic carbon content 

with Sentinel-2 imagery and spectroscopic measurements under different conditions using an ensemble 

model approach with multiple pre-treatment combinations. 

For this manuscript, three different agricultural fields were used. Three different proximal 

sensing data (in-situ. Lab-wet and lab-dry) and remote sensing data from one of the study field 

were used. Additionally, a merged data of in-situ+lab-wet+lab-dry and lab-dry+lab-dry were 

also explored. Figure 3 shows the flow diagram for paper five as a manuscript under revision. 

For the introduction, methods, results, and conclusion, please see the attached manuscript. 

 

Figure 3: Schematic diagram illustrating the experimental design 
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3.7.6. Methodology 6 (currently under review): Verifying the impact of fusion high-

resolution simulated in situ spectroscopy, Sentinel-2, and unmanned aircraft systems data into 

a single dataset to estimate soil organic carbon content in low-carbon agricultural fields. 

For this manuscript, two fields low in organic carbon content were used for the data fusion 

approach using three different platforms [in-situ, Unmanned Aircraft Systems (UAS), and 

Sentinel-2 (S2)], which were combined into a single dataset to predict SOC. Before the data 

fusion approach, in-situ spectral data was simulated into 12 bands. Figure 4 shows the flow 

diagram for paper six as a manuscript under review. For the introduction, methods, results, and 

conclusion, please see the attached manuscript. 

 

 

Figure 4: Schematic diagram illustrating the experimental design 
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4. SUMMARY AND CONCLUDING REMARKS 

4.1. Summary and key findings 

In general, the study explores the suitability of using data sets obtained from proximal and 

remote sensing applications in their individual and combined forms to develop a model to 

improve the estimation of soil properties, especially SOC. The data sets collected include 

spectroscopy data (in the visible-near infrared (Vis-NIR) range), unmanned aircraft systems 

(UAS), and Sentinel-2 (S2) data. For the Vis-NIR spectroscopy approach, three data sets were 

collected under different spectral measurement conditions, namely, lab-dry, lab-wet, and in 

situ/field spectral conditions. Although the lab-dry method is normally the most accurate of the 

three measurement conditions, the study decided to use the lab-dry method as reference data 

and instead focused on the lab-wet and field data in the first study. Moreover, these data can be 

used instantly, unlike the lab-dry data, which need further analysis. Additionally, the whole 

idea was to use spectroscopy data that were measured under the same environmental conditions 

as the remote sensing data (UAS, S2) for fair comparison. 

Paper 1 

➢ The focus of this paper was on the comparison of field and naturally acquired lab-wet 

spectra in the Vis and NIR ranges using several pre-treatment approaches, including 

orthogonal signal correction (OSC), to identify the most suitable data. The comparison 

was concluded with the development of validation models for SOC prediction based on 

PLSR, SVMR, and principal component regression (PCR). The study concludes that in 

the absence of the lab-dry, both the field and the lab-wet could be used to estimate SOC. 

However, one significant concern associated with the lab-wet measurement data had to 

do with finding an appropriate method of transportation to the laboratory for analysis. 

This is because during transportation, a certain amount of trapped heat can cause 

variability in moisture content (increasing the moisture content), which can negatively 

influence the accuracy of predicting SOC accurately. OSC_PLSR was the best model. 

Paper 2 

➢ The robustness of the OSC_PLSR model was further explored on larger soil samples in 

this paper because OSC_PLSR was rarely used in soil science, especially on spectra to 

estimate SOC. The idea was to use this model on both proximal and remote sensing data 

in the third study. The second study verified the effectiveness of OSC against nine 

commonly used pre-treatment methods across three different agricultural fields using 



23 

 

lab-dry and in situ spectral data. In this paper, OSC improves SOC predictive 

performance compared to the nine commonly used pre-treatment algorithms. One of 

OSC's strong points was that it helps eliminate multiple artefacts at the same time (e.g., 

a baseline slope and scatter effect) while ensuring that prediction accuracy will be 

enhanced during the process compared to some of the other treatment algorithms that 

remove vital information in the process of improving the dataset under consideration. 

Now convinced of OSC's robustness, it was initially decided to verify its impact on 

remote sensing data to predict and map SOC more accurately in the third study as stated 

already. 

Paper 3 

➢ This paper was about a holistic comparison between field spectra, UAS, and Sentinel-2 

for the monitoring and mapping of SOC. Additionally, calculated spectral indices were 

also added to the remote sensing data to enhance the predictive capability of SOC. 

Several pre-treatment combinations as well as the OSC were also explored (these data 

sets were measured under disturbing environmental conditions). However, the OSC 

approach was eliminated because it did not improve the predictive performance of the 

remote sensing dataset. The results of the study show that, in terms of prediction 

accuracy, the field spectra was better than UAS and S2 because its dataset was correlated 

more with SOC than the remote sensing data. Additionally, the field spectra's high 

spectral resolution gives it an advantage over S2 and UAS because of its ability to 

capture the target object in more detail. S2 imagery, on the other hand, provided the 

worst result because all of its bands and calculated spectral indices show no correlation 

with SOC. Furthermore, UAS's higher spatial resolution than S2 gives it an advantage. 

This research also shows that UAS imagery can be exploited more efficiently using 

spectral indices. 

Paper 4 

➢ The effectiveness of combining four models in an ensemble approach (PLSR + SVMR 

+ RF + Cubist) against the results obtained by each individual algorithm was assessed 

in this paper. The goal was to decide whether to use the individual algorithms or the 

ensemble approach in the next study. The paper used both portable X-ray fluorescence 

and visible near-infrared spectroscopy datasets. The study showed that the ensemble 

model was better than each of the individual models. Additionally, the ensemble model 
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was also tested in another study (which is under revision at Soil and Tillage Research-

journal), titled "Prediction of topsoil organic carbon content with Sentinel-2 imagery 

and spectroscopic measurements under different conditions using an ensemble model 

approach with multiple pre-treatment combinations".  

Manuscript 5 (under revision) 

➢ This study confirmed that when different prediction techniques are combined to form 

an ensemble model using different calibration techniques, prediction and signal pre-

treatment algorithms, the prediction accuracy was superior to any of the modelling 

techniques used individually. The ensemble model built for this study accurately 

captured the trend of all study fields as well as the various datasets gathered with a minor 

error and improved the prediction accuracy of SOC. Furthermore, it provides a more 

robust and reliable approach than each of the individual model estimates do alone. The 

findings demonstrated that the ensemble model could be an effective tool for reducing 

overall error in SOC modelling. It was also successful on almost all the data obtained 

under different spectral measurement conditions with an order of dry > wet > field. The 

only exception was the accuracy of SOC prediction using Sentinel-2 data, which was 

poor for the study field employed, likely due to numerous factors (e.g., cloud cover, 

vegetation) and constraints that affect the acquired Sentinel-2 imagery. 

 

Manuscript 6 (currently under review) 

➢ This paper verifies whether the fusion of high-resolution simulated in situ spectroscopy, 

Sentinel-2, and unmanned aircraft systems data into a single dataset can be used to 

improve the prediction of SOC at low organic carbon sites. The study began by ensuring 

that all of the data were transformed to the same spatial resolution, with an S2 resolution 

of 10 m serving as a reference. Two study fields were used. Different combinations of 

fusion of the sample data were investigated [UAS+S2, in situ + UAS, in situ+S2, in situ 

+UAS+S2, in situ+UAS+S2] and compared with the individual platform. A medium-

level fusion approach was used. For the results, the in situ spatial distribution map 

closely resembles the measured lab map than any other data combination used. The 

fusion of the three-platform data provided the best estimate of SOC. 

Additional Papers  

➢ Paper Biney, 2022 (Computers and Electronics in Agriculture, 194, 106796) aims to 

compare the differences in SOC prediction when using field spectra (FS) and Sentinel-
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2 (S2) data collected separately through simple random (SR) and grid design (GD) on 

the same agricultural field. Additionally, the impact of spectral indices on S2 data in a 

merged data approach under the two-sampling strategies is also tested. The results show 

how crucial the sampling design is for obtaining good prediction accuracy.  

➢ For the paper Demattê et al. 2022 (Remote Sensing, 14, 740), my task was to prepare 

spectral data measured on soil samples from the Czech Republic. This was an 

international initiative comprising 26 different authors. It shows how global is this 

research and exploitation of soil spectroscopy for soil property, particularly SOC, 

prediction. 

4.2. Areas that need further research 

➢ The reason why the OSC_PLSR and the ensemble model were better on proximal 

sensing data but failed to improve remote sensing data needs further study. 

➢ Obtaining S2 imagery captured on bare soil is another area worth investigating; 

normally, the field measurement is taken prior to the search for suitable satellite 

imagery, but due to cloud cover effects, the obtained satellite imagery is sometimes far 

from the date when the field sampling was taken. Perhaps downloading more images to 

investigate the optimum date and adjusting the field measurements could be a solution 

to the issue of obtaining Sentinel-2 imagery captured on bare soil. Other ways to explore 

this issue need further study. Because getting these agricultural fields at one’s "optimum 

time" is highly dependent on the landowners' and land manager’s decisions 

 

4.3. Concluding remarks 

The study shows the following conclusions; 

Both lab-wet and in-situ spectral data can be used in the absence of lab-dry for the prediction 

of SOC and especially for quicker analysis. 

The use of OSC_PLSR and the ensemble models to improve SOC estimates with spectroscopy 

data sets (in-situ and lab-dry) is highly recommended. 

The predictive performance of UAS data to predict SOC was slightly better than S2 data 

because UAS provides a better spatial resolution than S2. 
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Although fusion of proximal and remote sensing data is possible and can serve as an option for 

SOC estimate improvement, the use of the same fusion algorithm for two or more different 

studies needs further study. 

Using data fusion approach to create a SOC spatial distribution map needs to be explored 

further. 

The fusion of simulated in-situ, S2, and UAS data sets into a single dataset can be used to 

improve the prediction of SOC in fields poor in organic carbon content. 

The study also showed that the simulated in-situ data was not affected, because in terms of 

prediction accuracy, it was better than both S2 and UAS data. 

Overall, it can be concluded that, though there are still many things to explore and study, soil 

spectroscopy, used in proximal soil sensing, remote sensing or their combination, provides very 

useful and promising tool for SOC content prediction and monitoring 
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Abstract: Spectroscopy has demonstrated the ability to predict specific soil properties. Consequently,
it is a promising avenue to complement the traditional methods that are costly and time-consuming.
In the visible-near infrared (Vis-NIR) region, spectroscopy has been widely used for the rapid
determination of organic components, especially soil organic carbon (SOC) using laboratory dry
(lab-dry) measurement. However, steps such as collecting, grinding, sieving and soil drying at
ambient (room) temperature and humidity for several days, which is a vital process, make the lab-dry
preparation a bit slow compared to the field or laboratory wet (lab-wet) measurement. The use of soil
spectra measured directly in the field or on a wet sample remains challenging due to uncontrolled soil
moisture variations and other environmental conditions. However, for direct and timely prediction
and mapping of soil properties, especially SOC, the field or lab-wet measurement could be an option
in place of the lab-dry measurement. This study focuses on comparison of field and naturally acquired
laboratory measurement of wet samples in Visible (VIS), Near-Infrared (NIR) and Vis-NIR range
using several pretreatment approaches including orthogonal signal correction (OSC). The comparison
was concluded with the development of validation models for SOC prediction based on partial
least squares regression (PLSR) and support vector machine (SVMR). Nonetheless, for the OSC
implementation, we use principal component regression (PCR) together with PLSR as SVMR is not
appropriate under OSC. For SOC prediction, the field measurement was better in the VIS range with
R2

CV = 0.47 and RMSEPcv = 0.24, while in Vis-NIR range the lab-wet measurement was better with
R2

CV = 0.44 and RMSEPcv = 0.25, both using the SVMR algorithm. However, the prediction accuracy
improves with the introduction of OSC on both samples. The highest prediction was obtained with the
lab-wet dataset (using PLSR) in the NIR and Vis-NIR range with R2

CV = 0.54/0.55 and RMSEPcv = 0.24.
This result indicates that the field and, in particular, lab-wet measurements, which are not commonly
used, can also be useful for SOC prediction, just as the lab-dry method, with some adjustments.

Keywords: vis-NIR spectroscopy; soil organic carbon; proximal sensing; machine-learning;
pretreatment methods; spectral datasets (field-wet)

1. Introduction

Soils are significant natural resources for the survival of humanity. Substantially more carbon
is stockpiled in the world’s soils than is present in global vegetation and atmosphere combined [1].
Studies have shown over the years that the conservation of soil organic carbon (SOC) concentrations
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is strongly linked to biological activity and agricultural productivity [2]. Maintaining SOC contents
above critical limits for specific ecological and climatic zones will help to protect soil resources and
maintain crop yields, thus contributing to global food security [3]. Prediction of SOC in the soil is,
therefore, essential because there is always an improvement in soil health as well as the alleviation of
climate change whenever SOC content increases [4].

Soil spectroscopy under proximal soil sensing, developed some decades ago, has been used
as a useful tool by more researchers in recent years to complement traditional soil analysis [5,6].
Spectroscopy, being the analysis of the interaction of visible-infrared wavelengths with soil properties,
also provides information on soil particle size and thus information on the soil matrix. Another
attractive feature of spectroscopy is that spectra can be recorded, at points or by imaging, from
different platforms; by proximal sensing in the field, in the laboratory using sampled material, or
from remote sensing platforms with multi- and hyperspectral capabilities. Compared with analytical
laboratory approaches, its measurement is more cost-effective because it is quicker and can use a single
spectral measurement to infer multiple soil properties [5–7]. In laboratory and field environments,
the spectroscopy technique is increasingly used to predict numerous soil constituents based on their
diagnostic spectral features and approaches to statistical regression [8].

Prediction of soil organic carbon using visible near-infrared (Vis-NIR) spectroscopy under
laboratory-controlled conditions has produced the most accurate results (high analytical precision) in
comparison to field and remote sensing platforms [9–11]. Under laboratory conditions, external factors
such as moisture and environmental conditions that could influence the spectrum are manipulated and
are subject to greater control, e.g., spectral noise and atmospheric attenuation. However, steps such as
collection, grinding, sieving, and drying of soil, which are vital during this process, make it slower in
comparison to field measurements [12,13].

The laboratory domain has become well acknowledged ahead of using the field and other
applications. However, direct and timely prediction and mapping of soil properties, especially SOC,
can preferably be accomplished by field spectroscopy measurement [14]. Some researchers have even
shown the field measurement producing better results than under the laboratory-controlled approach.
For example, working with an exceedingly disturbed savannah-like environment, Nocita et al. [15]
detected good field predictions of SOC comparative to the same soil samples verified under
laboratory conditions. Also, Stevens et al. [16] demonstrated that field measurements could be as
accurate as laboratory measurements by comparing the efficiency of the laboratory, field, and airborne
spectroscopy to predict SOC using PLSR. They concluded that the RMSE of the field spectral prediction
was similar to that of the Walkley and Black method, and that airborne spectroscopy was inaccurate.

Similarly, understanding the impact of different soil components under field conditions is not
extensively known. Nevertheless, for the assessment of the applicability of laboratory studies to the
natural system, field conditions remain a fundamental requirement [17]. However, natural variability
issues must be taken into consideration when sampling materials in the field, as the field environment
can display subtle and complex variability. Soil samples obtained from the field can also undergo
chemical reactions if special safeguard measures are not applied. For example, an increase in soil pH as
a result of CO2 degassing is because the atmospheric condition and that of the soil atmosphere differ.
These changes in atmospheric condition also affect redox-sensitive elements such as Fe, Cr, Hg, Cu, etc.,
upon their exposure, especially within a depleted oxygen environment [17].

Another form of dataset using the spectroscopy approach (aside field and laboratory dry data) is
laboratory wet data. Ideally, for this form of dataset, the sample is collected from the field and then the
spectral measurement is taken immediately upon reaching the laboratory. For the wet sample to remain
in its natural state, proper and orderly transportation from the field to the laboratory must be ensured.
The laboratory wet spectral measurements have also received some considerable attention over the years
by researchers, but rather in an artificial form, through a process called rewetting [18–20]. However,
in its natural acquired state, it has received relatively less attention. According to Barnard et al. [21]
and Bailey et al. [22], when rewetting dry soil, a large pulse of CO2 is emanated from the soil instantly,
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known as the ‘Birch Effect’, named after “H.F. Birch” who experienced a high mineralization effect in
East African soils after the rewetting process [23]. According to Bailey et al. [22], these outcomes can
cause a considerable decline in soil carbon stabilization and may even affect its predictability outcome.
According to Sparks [17], introducing water to the soil can also create a solution–solid or solution–gas
reaction that may result in an unstable solution–soil equilibrium if the reaction time is either too
short or too long. This shows that the addition of water to dry soil under laboratory conditions may
put the soil under undesirable conditions even before prediction. Artificially generated wet samples
(mostly used for experiments) may differ somewhat from the natural collected wet samples due to the
rewetting approach.

The first stage of Vis-NIR spectra-based multivariate calibration is often data preprocessing.
The intention for this is that Vis-NIR spectra often constitute a subset of the features including noise,
scattering of light and variances in spectroscopic path length, which are unrelated to the responses.
The variation in the predictor that is unrelated to response can disrupt the multivariate modeling,
leading to an inaccurate prediction. Some of these pretreatment methods end up removing relevant
information from the predictor, especially multiple signal correction (MSC) and standard normal variate
(SNV) [24]. This could either cause an enhancement or have a weakening effect [25]. Orthogonal signal
correction (OSC) was firstly introduced by Wold et al. [24] for NIR spectra correction and later on
as an improvement to its performance; numerous algorithms have since been published. The key
concept of OSC technique is based on eliminating the variation that is not related to the parameter for
estimation. This method is achieved through the removal of nonrelevant information of the response
in the matrix. Therefore, only information orthogonal to the response is omitted. This is made by
ensuring that the removed portion is mathematically orthogonal to the response, or as near as possible
to being orthogonal. In some cases, the OSC method can also remove nonlinear relationships between
the response and the predicted variables [24]. Though the method often converges fast, it still needs
5–10 repetitions [26].

The aim of this work is to compare field and naturally acquired lab-wet spectral datasets, in their
raw and pretreatment state, and also to verify the impact on the prediction accuracy by the introduction
of OSC. We will determine which of these datasets could be more suitable in the absence of a lab-dry
measurement or when a quicker analysis is required. This will be accomplished by the use of Vis-NIR
spectra and their ranges.

2. Materials and Methods

2.1. Study Area

Field spectral data (FSD) were measured in May 2019 on a (not recently ploughed) 22 ha agricultural
field located at Nová Ves nad Popelkou (50◦31′ N; 15◦24′ E), central Bohemian region, with a mean
altitude of 185 m a.s.l (Figure 1). The areas are primarily rural and devoted to winter and spring
cereals and characterized by dissected relief with side valleys and toe-slopes. The total number of
measurement and sampling points over the field was 130. The area chosen was representative of the
soils capes that were homogenous and comparable in terms of terrain characteristics, land management,
and the climatic conditions [27]. According to the World Reference Base (WRB) for soil resources
(IUSS Working Group WRB, 2014), soils of this regions are characterized mainly as Cambisols on
sedimentary rocks.
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Europe (B) and location of sampling points at Nová Ves nad Popelkou (C).

2.2. Soil Sampling and Spectral Measurement

The field spectral measurement was taken instantly in the field using an ASD Field Spec III
Pro FR spectroradiometer (ASD Inc., Denver, CO, USA) across the 350–2500 nm wavelength range.
The spectroradiometer spectral resolution was 2 nm for the region of 350–1050 nm and 10 nm for
the region of 1050–2500 nm. Measurements from four different positions around each of the 130
sampling points were taken, and the average value was used for further analysis. The measurement
and sampling points (130) were created before the field visit (Figure 1) and were located in the field
using a GeoXM (Trimble Inc., Sunnyvale, CA, USA) receiver with an accuracy of 1 m. The spectrometer
was standardized using the approach of Shi et al. [28]. Samples for laboratory analysis were collected
from each of those positions (depth 0–20cm) while the field measurement was underway. Composite
samples (approximately 150 to 200 g of soil) were placed into a well-labeled bag and transported to
the laboratory for further analysis. Immediately upon reaching the laboratory, spectra readings were
taken using the same spectrometer used for the field measurement again in four replicates and the
average value used as the lab-wet dataset. The samples were then air-dried, gently crushed, and sieved
(≤2 mm) before analyzing for SOC (ISO 11464:2006).

2.3. Spectra Pretreatment and Prediction Model Development

Before modeling, lab-wet and field data were preprocessed. The original spectral range is
350–2500 nm; however, the noisy portions between 350–399 nm were eliminated, leaving the range
of 400–2500 nm before spectra pretreatments. Murray [29] stated that removing outliers improves
prediction accuracy. Therefore, the outliers from both datasets were removed using a local outlier
factor (LOF) algorithm procedure proposed by Breunig et al. [30]. The LOF is a measure that looks at
a certain point’s neighbours to figure out its density and then compares it with the density of other
points and uses its local approach to better detect outliers within the neighborhoods. The field data
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set was used as the reference data for the removal of outliers, meaning that the removed outliers
from the field dataset were the same outliers as removed from the lab-wet dataset. In all, a total of
seven outliers were removed from each dataset. With the exception of the orthogonal signal correction
(OSC) (using the Unscramble Software, Version X11, CAMO, Oslo, Norway), all other pretreatment
methods used were calculated with R software (R Development Core Team, Vienna, Austria, 2015).
This pretreatment includes Savitzky-Golay (SG) filtering, discrete wavelet transformation (DWT),
multiplicative scatter correction (MSC), standard normal variate (SNV), correction by the maximum
reflectance (CMR), continuum removal (CR), first and second-order derivative (D1 and D2 respectively),
as well as logarithmic transformation (Log(1/R)). We used the sgolayfilt algorithm from the signal
R package for the SG filtering (adjusted for second-order polynomial fit with 30 smoothing points).
For more detail about the pretreatment, the packages used can be found in [31–34].

The PLSR and SVMR predictive models built using five fold leave-group-out cross validation
(which was repeated 100× to give more reliable results) were fitted separately, using either raw
unsmoothed or smoothed spectra. The models were then adjusted using nine other signal transforms
(SG, D1, D2, SNV, log(1/R), DWT, MSC, CR and CMR) with the exception of OSC. All transformations
(except SG) were applied in two ways, i.e., the input data were either raw reflectance spectra or smoothed
SG spectra and DWT. This was done in the visible (VIS; 400–800), near-infrared (NIR; 800–2500), and the
whole Vis-NIR (400–2500) spectral region. In all, there were 24 different output models to be tested for
each of the two datasets. Due to insignificant changes and identical performance, only transforms
computed from raw spectra are shown, since they were better than using SG in more instances.
Almost all the signal transformations were plotted in Figure 2 to visualize differences between different
preprocessing methods. However, the reflectance and absorbance plot were separated for visual
assessment of variation in the spectra and also their similarities (Figure 3). For the OSC, which is
sensitive to the nonlinear algorithm, its assessment was done using PLSR and principal component
regression (PCR), not SVMR because SVMR is a nonlinear algorithm. OSC was also done in three
spectral regions, just as the nine other signal transformations.
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Figure 2. Spectra transforms for both field and lab-wet dataset based on eight different pretreatment
methods used.

For a detailed comparison of obtained spectra (lab-wet and field), that is, to determine the stable
part of the spectra (the part not affected by moisture), the part that differs, and the part with no
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meaningful information, many options were explored without any significant success. Finally, we used
three different combinations to analyze the datasets: median filter smoothing (MFS) with segment size
of 7, spectroscopic transformation-absorbance (STA) and gap-segment second derivative (GSD) having
a gap size of 6, and a segment size of 25 (Unscramble Software, Version X11, CAMO, Oslo, Norway).
The order was MFS–STA–GSD.
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3. Results

3.1. SOC Descriptive Statistics

Table 1 is a summary statistic for SOC characteristic of soil sample in the study area, consisting of
standard deviation (SD), coefficient of variation (CV), minimum, maximum, mean value, skewness
and range. The statistical distributions of SOC at the study area were positively skewed with a mean
value of 1.44 and a CV of 23%. These values usually indicate that the area has a medium to semi-high
SOC content.

Table 1. Descriptive statistics of the soil’s soil organic carbon (SOC) contents in the study area.

Property Mean Median SD SV Kurtosis Skewness Range Min Max CV(%)

SOC content (%)
(n = 130) 1.44 1.44 0.33 0.11 2.41 0.57 2.33 0.60 2.93 23.00

SD: standard deviation, CV: coefficient of variation,
n: number of samples, SV: sample variance

3.2. Basic Comparison of Field And Lab-Wet Spectra

Figure 3 shows the reflectance and absorbance plot from the raw data for each dataset, which was
done to explore the patterns and structure of the generated spectra. The key spectral characteristics of
a range of soil samples can be perceived from its mean score spectrum, which indicates the average
reflectance as well as absorbance in each spectral band for the entire sample sets and the band-specific
spectral variance crosswise the total spectral region.

3.3. Detailed Comparison of Field and Lab-Wet Transformed Spectra

As shown by this work (Figure 4), the stable range for lab-wet spectra is from 818 nm to 1320 nm
and from 1528 to 1748 nm. For field, it is located between 826 nm and 1324 nm and between 1514 and
1746 nm. This section is categorized as a region that is not influenced by moisture. The concave shape
between 450 and 850 nm suggests the presence of crystalline iron [35]. This is also in agreement with
Dematte et al. [36] as they stated that soil minerals containing iron, such as hematite and goethite,
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result in concave shapes in the visible region of the spectrum. Nevertheless, spectra regions below
820 nm do not show any significant information for either dataset due to noise. However, this is not a
justification that this range will not be suitable for prediction, but rather should be interpreted on a
case-by-case basis. For example, Islam et al. [37] and Fystro [38] achieved a significantly better result
for both Australian and Norwegian soils by using the visible region (350–700 nm) for prediction of
SOC. This study also shows that both lab-wet and field spectra between the range of 2000 and 2400 nm
display more irregular and unstable patterns, which could be attributed to the relatively low level
of incoming radiation for the acquired spectra in the field resulting from the high noise rate. For the
lab-wet spectra, this could just be noise or maybe other factors which, for this work, will be very
difficult to explain. Poor absorption at 2265 nm for both lab-wet and field suggests the presence of
gibbsite [39]. According to research by Howari et al. [40], the absorption characteristics at 990 nm are
due to the presence of NaCl, while NaHCO3 shows the absorption characteristics at 1470 nm, 1990 nm
and 2170 nm. Absorption at 1400 nm is typically due to vibrations of water molecules and OH groups.
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The spectrum shown in Figure 4 also illustrates one significant disparity between the field and
lab-wet datasets. While the lab-wet dataset displays its peak absorbance value at 1862 nm, the field
dataset shows its peak at a shifted wavelength of 1864 nm. Peak shifts are expected due to the effect
of temperature change that a sample can sometimes undergo. This could say something about both
the physics and chemistry of the determined samples. It may be a risky attempt to remove/mask it
because one does not know whether the procedure will end up with the removal of a real and existing
signal. Another peak between 1320 and 1528 nm is at the same wavelength of 1375 nm in both field
and lab-wet datasets.

However, a concern about the application of field and lab-wet spectra remains because their
reflectance may be heavily influenced by moisture content, though Vis-NIR spectroscopy can effectively
measure samples with moisture content. Therefore, using any of them as a replacement to the
dry spectra may be seen as a wrong decision, because predictive ability and accuracy of Vis-NIR
measurement is negatively affected by moisture [41–43]. Despite this, some studies have shown that the
field spectra can be more effective than lab-dry measurement for SOC prediction, and Reeves et al. [44]
even stated that in the absence of lab-dry measurement, the field spectra should be considered as the
most appropriate spectral measurement.

3.4. Comparing Field and Lab-Wet Spectra Predictive Capabilities without OSC

PLSR and SVMR, together with several pretreatment methods, were initially used to compare
the prediction accuracy for both field and lab-wet spectral datasets. Leave-group-out cross validation
was considered more appropriate because of its design to give more reliable results by means of five
fold cross validation (which is repeated 100×). The results show (Tables 2 and 3) that for field data,
PLSR gave a better prediction in almost all spectral ranges, particularly in the VIS region with
R2

CV = 0.42 and RMSEPCV = 0.26. But this output was made possible with only three out of several
pretreatment methods used, namely MSC, SNV and log(1/R). However, PLSR was outperformed by
SVMR also in the VIS region with R2

CV = 0.47 and RMSEPCV = 0.24. For the lab-wet dataset, its
best prediction accuracy was achieved with SVMR employing log (1/R) transformation shown by
R2

CV = 0.44 and RMSEPCV = 0.25 in the Vis-NIR region. Nonetheless, MSC and SNV also provide some
improved outcomes relative to other pretreatment procedures used. This shows that the prediction
from field spectra was better in the visible range while that from the lab-wet spectra was better in
the Vis-NIR range. This implies that R2

CV decreased from field-based (VIS) to lab-wet measurements
(vis-NIR) (Table 2), while R2

CV increased from lab-wet-based (VIS) to field-based (Vis-NIR) (Table 3).

Table 2. Statistics of the five fold leave-group-out cross validation for field spectra using both partial
least squares regression (PLSR) and support vector machine (SVMR) on different preprocessing methods.
The results were calculated as mean values from one hundred independent leave-group-out
cross-validation runs.

Pre- Field_PLSR

Treatment VIS NIR VIS-NIR

Methods R2
cv RMSEPcv R2

cv RMSEPcv R2
cv RMSEPcv

Raw 0.36 0.27 0.33 0.28 0.36 0.27
SG 0.35 0.27 0.33 0.28 0.35 0.27
DWT 0.36 0.27 0.33 0.28 0.35 0.27
D1 0.36 0.27 0.3 0.28 0.3 0.28
D2 0.21 0.3 0.17 0.31 0.19 0.3
MSC 0.42 0.26 0.27 0.29 0.3 0.28
SNV 0.42 0.26 0.26 0.29 0.28 0.29
LOG 0.42 0.26 0.36 0.27 0.4 0.26
CR 0.28 0.29 0.2 0.3 0.22 0.3
CMR 0.4 0.26 0.26 0.29 0.29 0.29
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Table 2. Cont.

Pre- Field_SVMR

Treatment VIS NIR VIS-NIR

Methods R2
cv RMSEPcv R2

cv RMSEPcv R2
cv RMSEPcv

Raw 0.35 0.27 0.27 0.29 0.3 0.29
SG 0.33 0.27 0.27 0.29 0.31 0.28
DWT 0.37 0.27 0.28 0.29 0.32 0.28
D1 0.33 0.29 0.24 0.32 0.26 0.31
D2 0.07 0.45 0.22 0.31 0.25 0.3
MSC 0.42 0.26 0.19 0.32 0.19 0.32
SNV 0.41 0.26 0.13 0.35 0.18 0.33
LOG 0.47 0.24 0.31 0.28 0.37 0.27
CR 0.24 0.29 0.23 0.29 0.26 0.29
CMR 0.36 0.27 0.17 0.32 0.19 0.32

Table 3. Statistics of the five fold leave-group-out cross validation for lab wet spectra using both PLSR
and SVMR on different preprocessing methods. The results were calculated as mean values from one
hundred independent leave-group-out cross-validation runs.

Pre- Lab-wet_PLSR

Treatment VIS NIR VIS-NIR

Methods R2
cv RMSEPcv R2

cv RMSEPcv R2
cv RMSEPcv

Raw 0.32 0.28 0.24 0.29 0.26 0.29
SG 0.33 0.28 0.24 0.29 0.27 0.29
DWT 0.33 0.28 0.23 0.29 0.26 0.29
D1 0.29 0.28 0.21 0.31 0.26 0.29
D2 0.08 0.33 0.20 0.30 0.22 0.30
MSC 0.41 0.26 0.23 0.30 0.27 0.29
SNV 0.41 0.26 0.22 0.30 0.26 0.29
LOG 0.39 0.26 0.26 0.29 0.34 0.27
CR 0.34 0.27 0.17 0.31 0.29 0.29
CMR 0.37 0.27 0.21 0.30 0.27 0.29

Pre- Lab-wet_SVMR

Treatment VIS NIR VIS-NIR

Methods R2
cv RMSEPcv R2

cv RMSEPcv R2
cv RMSEPcv

Raw 0.33 0.28 0.31 0.28 0.39 0.26
SG 0.32 0.28 0.30 0.28 0.39 0.27
DWT 0.33 0.27 0.31 0.28 0.39 0.26
D1 0.29 0.28 0.14 0.44 0.29 0.32
D2 0.07 0.33 0.09 0.50 0.11 0.44
MSC 0.41 0.26 0.30 0.30 0.40 0.27
SNV 0.41 0.26 0.30 0.29 0.42 0.26
LOG 0.39 0.26 0.32 0.28 0.44 0.25
CR 0.34 0.27 0.19 0.30 0.34 0.27
CMR 0.38 0.27 0.27 0.31 0.40 0.27

3.5. Comparing Field and Lab-Wet Spectra Predictive Capabilities with OSC Approach

Regarding orthogonal signal correction (OSC), as compared to the other pretreatment algorithms,
PLSR or PCR modeling after the OSC correction yield improved results (Table 4). For instance,
the prediction accuracy for field spectra increased (for both PLSR and PCA), especially in the Vis-NIR
range using PLSR with R2

CV = 0.52 and RMSEPCV = 0.25. However, it fell short of the lab-wet
dataset in the NIR and vis-NIR region (using PLSR) with R2

CV = 0.54/0.55 and RMSEPCV = 0.24/0.24,
which was the overall best prediction for the entire study. PCR and PLSR are related techniques,
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and their prediction errors are comparable in most situations. However, PLSR is desired by analysts
because it relates response and predictor variables so that the model describes more of the response
variance with fewer parameters; also, it could become more interpretable, and the algorithm becomes
computationally faster. Each of these approaches can cope with data containing a large number of
strongly collinear predictor variables [45].

Table 4. Statistics for SOC prediction from field and lab-wet spectra using both PLSR and PCR based
on orthogonal signal correction (OSC).

Dataset Modelling Method
VIS NIR VIS-NIR

R2
cv RMSEPcv R2

cv RMSEPcv R2
cv RMSEPcv

Field PLSR 0.42 0.27 0.51 0.25 0.52 0.25
PCR 0.45 0.27 0.49 0.25 0.49 0.25

Lab-wet PLSR 0.45 0.26 0.54 0.24 0.55 0.24
PCR 0.45 0.26 0.42 0.27 0.43 0.27

4. Discussion

4.1. Comparison of Field and Lab-Wet Spectra

The spectra measured in the field slightly differ from those measured in the laboratory
wet conditions, which may be caused by differences in environmental conditions, mainly soil
water content, as anticipated, such as soil moisture generally increasing spectral absorption
(or decreasing reflectance) of soil compared to dry samples [46]; water replacing the air within
soil voids, causing an increase in the forward scattering of light and increasing the absorption of soil
at each wavelength [47,48]. The spectra (Figure 3) display similar shapes except for differences in
amplitude across the entire range. For example, considering the wavelengths close to 1400 nm and
1900 nm, two obvious features occur because there are either free water or water absorbance bands.
The absorption bands can differ slightly and be sharp or wide depending on the dynamics and minerals
involved [49]. The absorbance order (Figure 3B,D) assigned to the presence of moisture content was:
lab-wet > field, which according to Bishop [50] is attributed to the fundamental widening and bending
vibrations of water and hydroxyl bonds. For instance, in overtone regions, water will absorb energy,
which can be attributed to water retention forces changing from capillary forces to adsorptive ones.
Knadel et al. [51] reported comparable results, too. For the reflectance (Figure 3A,C), it was contrary to
that of the absorbance since the order was lab-wet < field, with the internal reflections of reflected
radiation being in a water layer covering the soil. However, it was challenging to understand why
the reflectance for the lab-wet was lower than for the field since both datasets were expected to have
the same moisture content. According to Haubrock et al. [52], the upper surface and the lower parts
vary from each other, so that spectrum analysis from the soil surface does not provide details on the
properties of lower soil layers.

In this regard, and based on Figures 3 and 4, it could also indicate that our lab-wet samples have
been somewhat affected with respect to transportation to the laboratory, because there may have been
a certain amount of trapped heat causing variability in moisture content that we might have failed
to notice. Variation in moisture content is one of the most significant effects confronting both field and
naturally acquired lab-wet samples for NIR spectral prediction [42]. The lab-wet sample is influenced
mainly only by moisture content because most of the other conditions that affect spectral measurement
are manipulated in the laboratory. Nevertheless, field NIR reflectance measurements are susceptible to
external environmental factors, such as temperature, soil moisture and soil structural factors, transient
changes in weather conditions during measurement, noise, vegetation cover, illumination sources and
variations in illumination due to clouds and wind. One significant concern associated with the lab-wet
measurement has been the appropriate method of transportation to the laboratory. How long before
they approach the laboratory and for measurement of the sample to commence, is an area of concern.
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Sometimes, when the soil is being taken to the laboratory, the samples in the bags appear to ‘sweat’ as
water condensation occurs, and the sample surface may be ‘artificially’ weathered. This could have
also influenced the lab-wet prediction accuracy within this analysis, since for an effective lab-wet
dataset, the samples should be in their natural state. Further study is needed; however, for this time
around, ensuring an effective means of transportation should be paramount so that variations in the
moisture content are taken care of entirely.

In certain circumstances, the spectral response sequence associated mostly with a given parameter
may overlap with the response pattern of another factor and thus hinder the estimation effect of that
given factor. Therefore, its necessary to understand the physical activity component as well as the
environmental conditions of the soil [53]. Some of these components may have direct/indirect bearing
on soil spectra, especially within the Vis-NIR region of the soil, in a particular way [54]. For example,
according to Adar et al. [55], some absorption features may overlap in such a way that the absorption
spectra related to one soil component can be masked, twisted or moved to another position where
other soil components may differ. One instance is spectral variation resulting from changes in iron
oxide content that can nullify differences in absorption due to organic matter [56]. The NIR spectra
contain a combination of diffuse and specular reflectance. Depending on the chemical nature of the
sample itself, different wavelengths of the incident light also experience different absorption of the
sample. In most cases, this signal may represent our area of interest, so it could be critical to measure it.
In some cases, the particle size of the component along the path length may cause a diversion of light
at different angles, depending on wavelength, leading to scattering effects, which is a major cause of
variation in the Vis-NIR region. Scattering effects can be both additive and multiplicative, which can
produce a baseline effect, displacement of the spectrum along the vertical axis, and also modify the
local slope of the spectrum [57,58].

4.2. Spectra Pretreatment and Prediction Models

Aside from the log(1/R) transformation, MSC and SNV also show some improved results,
especially in the visible range for both field and lab-wet data. This is an indication that the light
scatter effect, and the baseline displacement of the spectrum, was one of the main factors affecting the
spectroradiometer signal in the visible region [59]. For example, based on Tables 2 and 3, the reason
why the prediction accuracy for both field and lab-wet data was better using MSC and SNV than
other pretreatment methods (except for log(1/R)) could be attributed to the above-mentioned effect,
which was minimized by the use of these pretreatment methods on both datasets. In Vis-NIR region,
for instance, the prediction accuracy (using MSC and SNV) reduces especially for the lab-wet (SVMR)
data. This is an indication that the above-mentioned effect was not dominant in that region or that
it was masked by other components, making its minimization challenging (notably for the lab-wet
dataset). Martens et al. [60] proposed that excluding certain parts of the spectral axis that do not
represent any necessary information (baseline) would go a long way towards improving the accuracy
of the prediction. This makes good spectroscopic sense, however, detecting these parts, particularly
for the Vis-NIR signal, is difficult. That is why, typically, the pretreatment is applied across the entire
spectra [59].

The reason why the prediction accuracy for the field was better than that of the lab-wet in visible
range but less accurate than the lab-wet in the Vis-NIR region using the log transformation, could be
attributed to the dominance of nonlinearity responses for both datasets, or more nonlinearity appearing
in the visible region than in the Vis-NIR, or less in the visible than Vis-NIR region. According to
Minasny et al. [41], the presence of soil moisture does have a substantial, complex and nonlinear
impact on reflectance spectra. Therefore, the transformation of reflectance to absorbance using log(1/R)
helps to highlight the edges of the absorption characteristics and helps to attain linearization between
the spectra and the SOC content [61]. This implies that most of the factors in the absorbance spectra
that could have an influence on the spectral measurement were minimized to some extent to improve
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prediction. This makes linearization a crucial step for regression models, as many linear modeling
responses are easier with nonlinear responses [62].

The use of nine preprocessing methods, i.e., SG, DWT, D1, D2, MSC, SVN, log(1/R), CR and CMR,
resulted in a mixed output (better or worse) compared to raw spectra, while the use of SG and DWT,
in combination with the above-mentioned pretreatment, did not show any significant improvement
compared to using those pretreatments on the raw data alone (Tables 2 and 3); their results are therefore
not included in this paper. With this in mind, it is no surprise that log transformation is one of
the most common transformations in SOC spectroscopic estimation. This reinforces the need for
at least eight or more components to achieve a reasonable estimate, as also reported, for example,
by Moron and Cozzolino [63] and Mouazen et al. [64]. The spectral range along the path from 350
to 2500 nm can differ due to several factors causing disparity, and the more the disparity, the less
accurate the results. Reducing or eliminating some of the most dominant disparity could improve
the accuracy of predictions, as shown in this work. According to the findings shown in this analysis,
the OSC of NIR spectra seems to be a successful strategy to boost multivariate calibration models.
The findings suggest that the OSC approach also eliminates details from the Vis-NIR data that are not
required between the response and predicted variable, and ends up with improved prediction accuracy.
This implies that though some pretreatment often removes unrelated attributes from the dataset,
that process may end up with the removal of important information. Therefore, in certain instances,
the prediction is also positively or negatively affected, as shown by this study (both in lab-wet and
field datasets) using several pretreatment methods (Tables 2 and 3). This is also in agreement with
Wold et al. [24]. Without OSC, the highest prediction accuracy for lab-wet and field data was R2

CV =

0.44 and RMSEPCV = 0.25 and R2
CV = 0.47 and RMSEPCV = 0.24, respectively, and with OSC, lab-wet

was R2
CV = 0.55 and RMSEPCV = 0.24 and field was R2

CV = 0.52 and RMSEPCV = 0.25. In order to
use OSC for filtering the signal matrix, a response vector is necessarily required. Similarly, spectra
used for the characterization of soil properties such as SOC may appear noisy, and filtering would be
warranted. Though OSC has been useful for signal correction for NIR in other analyses, it is rarely
used for spectral analyses involving SOC. Despite the improvement brought to the prediction accuracy
for both field and lab-wet data by its introduction, further investigation is still needed, such as using it
on a larger amount of data, a different type of soil, location, soil variability and many more. This study
also shares an opposite view to that of Reeve et al. [44] suggesting that the field spectra should be the
most suitable spectral measurement in the absence of laboratory-dry measurement. This is because the
lab-wet data with OSC give a slightly better result than the field data. Nevertheless, this should be a
case-by-case evaluation (between lab-wet and field spectrum measurement).

Quantifying uncertainty is important for a number of reasons. Measuring uncertainty is needed for
the testing of scientific hypotheses [65]. This can improve accuracy by allowing logical combinations of
several information sources, such as repeated measurements, other sensors or background knowledge.
For example, changes in external environmental conditions during field spectra measurement and
ensuring that wet samples do not absorb additional moisture during transport are areas of concern.
This particular field is really challenging for SOC prediction, because very poor results have been
reported over the years, particularly with laboratory dry spectra measurement [66]. It is important to
verify the source of uncertainty from which the sample is collected. Although the R2 value was not so
high for this analysis, it was considered one of the best, based on the history of related research in
this area. We believe a detailed analysis of uncertainty about low predictive accuracy is required for
this field. This research has now produced results on field and wet spectra measurement in relation to
the already existing lab-dry measurement.

5. Conclusions

In this study, the performance of lab-wet and field spectra measurement was evaluated and
compared to determine the most appropriate approach without lab-dry measurement. Soil spectra
measurement in the field or in wet conditions may carry exclusive and imperative information
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about several soil properties still in their natural state. The lab-dry measurement remains the most
appropriate for prediction of SOC and some other soil properties. However, field and especially lab-wet
measurements can be useful for SOC prediction with the help of pretreatment approaches. Nevertheless,
moisture content remains the most challenging effect confronting both lab-wet and field measurements.
Obtaining a procedure that would enable predicting soil properties using measurements taken under
field conditions or on wet sample could save valuable time needed otherwise for soil sample collection
and drying.

The OSC-PLSR method was proven during this study to be the best spectra pretreatment and
modeling approach for SOC content estimation via Vis–NIR when dealing with both field and especially
lab-wet spectral datasets. OSC-PLSR provided the most accurate result using the lab-wet dataset
compared to the nine other tested spectra preprocessing methods, i.e., SG smoothing, DWT, D1, D2,
MSC, SNV, CR, Log(1/R) and CMR. Without OSC, log(1/R), MSC, and SNV methods (using SVMR)
were better in prediction accuracy based on the field spectra prediction accuracy in the visible region,
and concurrently MSC and SNV in the visible region and log(1/R) in the Vis-NIR region on the lab-wet
spectra data.

This research reveals many similarities between field and lab-wet spectra measurements with
a few variations. The prediction accuracy for lab-wet data was better than for the field spectra,
especially with the introduction of OSC (both in NIR and Vis-NIR regions), unlike the use of the other
pretreatment approaches.

Due to unknown interactions between soil chromophores, it is difficult to determine the most
important wavelengths to describe the composition of the soil. Nonetheless, for quantitative analysis
of soil spectra, the optimal bandwidth and number of channels can be very dependent on the soil
heterogeneity and the properties to be studied. In addition, further data treatment for lab-wet
spectroscopy would be required in order to compete with lab-dry methods, in particular by reducing
or removing the effect of moisture. Although the lab-wet data was marginally better than field
spectra (Vis-NIR, OSC), and obtained the highest predictive accuracy based on this analysis, this paper
proposes that, in the absence of a lab-dry measurement, both datasets may be appropriate, because
field spectral measurement was also better in the visible region for all pretreatments, including the OSC.
Further study is still needed, especially using a lab-wet data with a proper transportation system to
the laboratory.
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A B S T R A C T   

Visible-Near-infrared (Vis-NIR) spectroscopy is a relatively modern method that can be used to predict soil 
properties such as soil organic carbon (SOC). Predictions of soil properties with Vis-NIR requires pre-processing 
algorithms. Applying a wrong type or applying too extreme pre-processing algorithms may result in the removal 
of valuable information or may even introduce unwanted variations. This can negatively affect the prediction 
accuracy of the property being studied. Orthogonal signal correction (OSC) pre-processing method has been used 
in other fields for visible and near infrared spectra improvement. However, the application of OSC application in 
soil science remains limited. The main idea behind OSC is the removal of only unwanted variation from the 
spectrum unlike some other pre-treatment methods which are believed to remove valuable information in the 
process of removing undesirable variation. This study verifies the effectiveness of the OSC against nine 
commonly used pre-treatment methods across three different agricultural fields for both lab-dry and in-field 
spectra. For the prediction, partial least square regression (PLSR) and support vector machine regression 
(SVMR) algorithms were used. In this study, the OSC method overall improved prediction accuracy the most (e.g. 
with OSC the best result was R2

CV = 0.79, without OSC the best result was R2
CV = 0.62) and is therefore a 

promising tool that should be included in further studies on different soils and other soil properties.   

1. Main text 

Visible-Near-infrared (Vis-NIR) spectroscopy contains information 
on different soil properties along its wavelengths between 350 and 2500 
nm. However, the measurements can vary under different surface and 
environmental conditions, e.g. differences in the weather conditions, 
environment, humidity, temperature, human factors, spectral noise, and 
atmospheric attenuation (Rinnan et al., 2009). The use of spectroscopy 
in the range of Vis-NIR under laboratory-controlled conditions has been 
noted for its reliable prediction of soil organic carbon (SOC) compared 
to field and remote sensing platforms (Xie et al., 2011). This may be 
because a standardized protocol is used, see e.g. Romero et al. (2018) 
and Ben Dor et al. (2015). This can remove lots of unwanted artifacts 
and stabilize the measurements. Also, external environmental condi
tions that may have an influence on the spectrum are kept under 

observation and manipulate under laboratory conditions (Hulley et al., 
2010). Nevertheless, other issues such as spectrometer instability, illu
mination source, detector output, and sample preparation may persist in 
the laboratory environment. As a result of the above-mentioned dis
turbing factors, data pre-processing has become a vital tool to achieve 
reliable results. The primary function of all pre-processing methods is to 
reduce the unmodeled variability in the data and to enhance the feature 
sought in the spectra, which is often a linear (simple) relation. However, 
choosing the most robust pre-processing technique can be challenging 
because applying a wrong type or applying a pre-processing method that 
is too severe can result in the removal of valuable information or even 
the introduction of unwanted variation (Rinnan et al., 2009; Engel et al., 
2013). This, according to Wold et al. (2008), could have a negative effect 
on the model’s prediction accuracy. Multiple scatter correction (MSC), 
standard normal variate (SNV), Savitzky-Golay (SG) filtering, 
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derivatives and logarithmic (log(1/R)) transformation are some of the 
commonly used pre-processing methods (Vašát et al., 2017). However, 
some of these pre-processing algorithms, particularly MSC and SNV, 
may end up removing useful information in the attempt to remove un
desirable signals (Wold et al., 2008). 

The orthogonal signal correction (OSC) for NIR spectral correction 
was initially introduced by Wold et al. (1998). It had been reasonably 
utilized on spectra in other fields, but its application in soil science re
mains limited. The core principle of OSC technique is to exclude varia
tions that are not related to the predicted parameter. It does this without 
eliminating essential information as some other processing method 
might do (Wold et al., 1998). With OSC, the assumption is that any 
variation not related to the response variable is an artifact and should be 
filtered without removing any vital information (Wold et al., 1998; 
Engel et al., 2013). This is achieved by ensuring that the omitted 
component is either mathematically orthogonal to the response, or as 
close to orthogonal as possible. This research aims to verify OSC’s 
effectiveness in terms of predictive accuracy of SOC against nine of the 
most commonly used pre-processing methods for both VIS and VIS-NIR 
spectra. 

We used 259 soil samples taken from a depth 0–25 cm from three 
separate agricultural fields (field 1: 53, year 2012; field 2: 76, year 2013; 
field 3: 130, year 2019) within the Czech Republic using the sampling 
grid approach. According to the World Reference Base (WRB) for soil 
resources (IUSS Working Group, WRB, 2014), the soils are characterized 
as Rendzic Leptosol and Colluvial soil (field 1), Haplic Luvisol, Regosol 
and Colluvial soil (field 2) and Cambisol on sedimentary rocks (field 3). 
For samples from field 1 and 2, the samples were air-dried, gently 
crushed, and sieved (≤2 mm) before analysis as lab-dry measurement 
(ISO 11464:2006). SOC was measured as the total oxidizable carbon 
using the wet oxidation approach (ISO 14235:1998). The spectral 
measurements were carried out under laboratory conditions using an 
ASD Field Spec III Pro FR spectroradiometer (ASD Inc., Denver, Colo
rado, USA) across the 350–2500 nm wavelength range. The spectror
adiometer spectral resolution was 2 nm for the region of 350–1050 nm 
and 10 nm for the region of 1050–2500 nm. After every 10 samples, the 
sensor was re-calibrated using regular white reference Spectralon® 
(Labsphere, North Sutton, NH, USA). For samples from field 3, the 

spectra measurement was taken in-situ. Samples for laboratory analysis 
were also collected. In summary, the final three datasets consisted of lab- 
dry (LD) spectra (field 1& 2) as well as in-field spectra (FS; field 3). 
Modeling was performed for each field separately. Outliers within the 
datasets were eliminated using a local outlier factor (LOF) algorithm 
proposed by Breunig et al. (2000). In total nine outliers were removed 
(field 1:1; field 2: 1; field 3: 7). Except for the orthogonal signal 
correction (OSC) (using the Unscrambler Program, version X11, CAMO, 
Norway), all other pre-treatment methods used were determined uti
lizing R software (R Development Core Team, 2015). The pre-treatment 
methods include SG filtering (with a second-order polynomial fit and 21 
smoothing points), discrete wavelet transformation (DWT), standard 
normal variate (SNV), continuum removal (CR), maximum reflectance 
correction (CMR), multiplicative scatter correction (MSC), first and 
second-order derivative (D1 and D2) (obtained by using the locpoly 
function from the KernSmooth package), and logarithmic trans
formation (log(1/R)). The SNV was determined by subtracting each 
reflectance value from the mean reflectance value of the specific spec
trum and dividing it by the standard deviation of the entire spectrum. All 
pre-treatment methods were calculated three separate times, from raw 
spectra, SG spectra and DWT spectra and the best results were selected 
and reported. (Only transforms on the raw spectrum are shown in order 
to minimize space). For more information on the pre-treatment algo
rithms, we refer to Vašát et al. (2017) and Biney et al. (2020). The data 
was processed using partial least square regression (PLSR) and support 
vector machine regression (SVMR) models in the spectral region of 
visible (VIS) only and visible and near-infrared (Vis-NIR) built using 
five-fold leave-group-out cross-validation. PLSR model was tuned in the 
way that the maximum number of model components was set to 10. 
Then the model runs and tests itself for each number of components, i.e. 
from 1 to 10. Based on cross validation (which is leave-group-out with 5 
segments) the optimal number of components is chosen based on the 
lowest RMSE. Finally, the model is re-calibrated with the optimal 
number of components and validated, R2 and RMSE calculated. Simi
larly, the SVMR is tuned with different cost values (specifically 0.001, 
0.01, 0.1 and 1), using a linear kernel and an epsilon of 0.1. Based on the 
RMSE, the best cost parameter is selected from a 10-fold cross- 
validation. The overall predictive accuracy of the models was 

Table 1 
Statistics of the five-fold leave-group-out cross-validation for field 1, 2 and 3 spectra using both PLSR and SVMR on different pre-processing methods: Raw (initial 
spectrum), Savitzky–Golay (SG), discrete wavelet transformation (DWT), first derivative (D1), second derivative (D2), multiplicative scatter correction (MSC), 
standard normal variate (SNV), log transformed (LOG), continuum removal (CR), maximum reflectance correction (CMR) and orthogonal signal correction (OSC). The 
pre-processing was applied to raw initial spectra.  

Pre-treatment Raw SG DWT D1 D2 MSC SNV LOG CR CMR OSC 

Field 1 R2
cv  0.51  0.47  0.43  0.40  0.01  0.47  0.38  0.44  0.11  0.45  0.64 

VIS PLSR RMSEPcv  0.13  0.14  0.15  0.15  0.20  0.14  0.16  0.15  0.19  0.14  0.13 
VIS-NIR PLSR R2

cv  0.45  0.46  0.56  0.27  0.02  0.54  0.57  0.56  0.33  0.53  0.79 
RMSEPcv  0.15  0.15  0.13  0.17  0.20  0.13  0.13  0.13  0.16  0.13  0.10 

VIS SVMR R2
cv  0.54  0.50  0.51  0.36  0.10  0.45  0.37  0.47  0.07  0.21  0.51 

RMSEPcv  0.13  0.14  0.13  0.17  0.22  0.15  0.16  0.14  0.18  0.17  0.14 
VIS-NIR SVMR R2

cv  0.52  0.55  0.59  0.44  0.31  0.59  0.57  0.61  0.12  0.52  0.63 
RMSEPcv  0.13  0.13  0.12  0.14  0.16  0.13  0.13  0.12  0.18  0.14  0.12 

Field 2 R2
cv  0.45  0.45  0.45  0.36  0.22  0.48  0.54  0.49  0.11  0.50  0.73 

VIS PLSR RMSEPcv  0.14  0.14  0.14  0.15  0.17  0.14  0.13  0.14  0.19  0.14  0.11 
VIS-NIR PLSR R2

cv  0.44  0.41  0.46  0.37  0.18  0.48  0.48  0.54  0.52  0.50  0.66 
RMSEPcv  0.15  0.15  0.15  0.15  0.18  0.14  0.14  0.13  0.13  0.14  0.13 

VIS SVMR R2
cv  0.53  0.50  0.49  0.44  0.29  0.49  0.48  0.49  0.15  0.40  0.63 

RMSEPcv  0.13  0.13  0.13  0.15  0.19  0.14  0.14  0.14  0.17  0.15  0.12 
VIS-NIR SVMR R2

cv  0.60  0.48  0.52  0.37  0.26  0.62  0.60  0.51  0.52  0.55  0.65 
RMSEPcv  0.12  0.14  0.13  0.16  0.16  0.12  0.12  0.13  0.13  0.13  0.12 

Field 3 R2
cv  0.36  0.35  0.36  0.36  0.21  0.42  0.42  0.42  0.28  0.40  0.42 

VIS PLSR RMSEPcv  0.27  0.27  0.27  0.27  0.30  0.26  0.26  0.26  0.29  0.26  0.27 
VIS-NIR PLSR R2

cv  0.36  0.35  0.35  0.30  0.19  0.30  0.28  0.40  0.22  0.29  0.52 
RMSEPcv  0.27  0.27  0.27  0.28  0.30  0.28  0.29  0.26  0.30  0.29  0.25 

VIS SVMR R2
cv  0.35  0.33  0.37  0.33  0.07  0.42  0.41  0.47  0.24  0.36  0.45 

RMSEPcv  0.27  0.27  0.27  0.29  0.45  0.26  0.26  0.24  0.29  0.27  0.26 
VIS-NIR SVMR R2

cv  0.30  0.31  0.32  0.26  0.25  0.19  0.18  0.37  0.26  0.19  0.28 
RMSEPcv  0.29  0.28  0.28  0.31  0.30  0.32  0.33  0.27  0.29  0.32  0.29  
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evaluated in terms of the index of determination (R2cv) and root mean 
square error of prediction (RMSEPcv). 

The result shows some inconsistency with the introduction of the 
other pre-processing methods, where some pre-processing methods 
worsened the prediction accuracy (Table 1). With the implementation of 
the OSC, the prediction accuracy for the three data sets generally 
improved (Table 1). Exceptions include field 3 (VIS range) where Log(1/ 
R) performed better. Furthermore, OSC obtained a lower error 
(RMSEPcv) compared to the nine pre-treatment methods used. Although 
the Vis-NIR range for this study was the dominant region in term of 
predictive accuracy, however, this range was outperformed by the 
visible range for field 2 (with OSC) and field 3 (without OSC). 

Comparing the nine-pre-treatment methods with OSC reveals that 
only three (for e.g. MSC, SNV and log(1/R)) out of these pre-treatment 
algorithms had a better and consistent prediction accuracy for SOC 
(across the three field); however, in terms of the most accurate result, 
they all fell short to that of OSC. For MSC, one of the possible reasons 
could be defining an appropriate reference spectrum which according to 
Rinnan et al. (2009) is one of the challenges associated with MSC. 
Gallagher et al. (2005) suggested that adding a natural variance to the 
MSC (using a weighting scheme in the pre-processing phase) could help 
with this problem. Unfortunately, this impartially straightforward 
approach does not always work well with NIR data, as a more scattering 
effect is observed on the dataset due to the spread in the higher wave
length range, which needs correction rather than a reduction in the 
applied weight (Rinnan et al., 2009). Another strategy noted by Windig 
et al (2008) is to find the average spectrum from the MSC corrected 
dataset; however, according to Rinnan et al. (2009), the reference 
spectrum should be updated by repeating the MSC several times which 
could limit its accuracy. Although Dhanoa et al. (1994) demonstrate 
similarities between the SNV and MSC, SNV may be susceptible to noisy 
inputs in the spectrum because its parameter does not involve a least 
square fitting (Rinnan et al., 2009). The key ideal for all forms of pre- 
treatment methods is to only eliminate artifacts that are present in the 
data, without introducing unnecessary artifacts or variations to the data. 
According to Engel et al. (2013), one benefit of OSC is the elimination of 
multiple artifacts at the same time (e.g., a baseline slope and scatter 
effect) while ensuring prediction accuracy will be enhanced during the 
process. This study corroborates these findings with OSC improving the 
prediction accuracy for the three datasets (Table 1). However, OSC is 
also prone to some issues, especially the presence of a response variable 
before its application (both measured and predicted is needed). Addi
tionally, OSC method often converges fast, but still requires 5–10 iter
ation (Trygg and Wold, 2002). The study used 5 iteration. Based on our 
findings for both laboratory spectra and field data, to improve SOC 
prediction accuracy OSC appears very promising, and should be 
included in studies testing Vis-NIR on more soils and other soil 
properties. 
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Abstract: Soil organic carbon (SOC) is a variable of vital environmental significance in terms of
soil quality and function, global food security, and climate change mitigation. Estimation of its
content and prediction accuracy on a broader scale remain crucial. Although, spectroscopy under
proximal sensing remains one of the best approaches to accurately predict SOC, however, spec-
troscopy limitation to estimate SOC on a larger spatial scale remains a concern. Therefore, for an
efficient quantification of SOC content, faster and less costly techniques are needed, recent studies
have suggested the use of remote sensing approaches. The primary aim of this research was to
evaluate and compare the capabilities of small Unmanned Aircraft Systems (UAS) for monitoring
and estimation of SOC with those obtained from spaceborne (Sentinel-2) and proximal soil sensing
(field spectroscopy measurements) on an agricultural field low in SOC content. Nine calculated
spectral indices were added to the remote sensing approaches (UAS and Sentinel-2) to enhance their
predictive accuracy. Modeling was carried out using various bands/wavelength (UAS (6), Sentinel-2
(9)) and the calculated spectral indices were used as independent variables to generate soil prediction
models using five-fold cross-validation built using random forest (RF) and support vector machine
regression (SVMR). The correlation regarding SOC and the selected indices and bands/wavelengths
was determined prior to the prediction. Our results revealed that the selected spectral indices slightly
influenced the output of UAS compared to Sentinel-2 dataset as the latter had only one index corre-
lated with SOC. For prediction, the models built on UAS data had a better accuracy with RF than the
two other data used. However, using SVMR, the field spectral prediction models achieved a better
overall result for the entire study (log(1/R), RPD = 1.40; R2

CV = 0.48; RPIQ = 1.65; RMSEPCV = 0.24),
followed by UAS and then Sentinel-2, respectively. This study has shown that UAS imagery can be
exploited efficiently using spectral indices.

Keywords: soil organic carbon; proximal soil sensing; remote sensing multispectral sensors; agricul-
tural soil; spectral indices

1. Introduction

Soil organic carbon (SOC) content is one of the leading indicators for soil state as-
sessment. Therefore, a thorough and timely observation of SOC content with effective
techniques is needed to better understand the function of soil within the carbon cycle
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universally [1,2]. However, numerous drawbacks, including complex and unpredictable
environmental conditions, and numerous soil-forming conditions, limit the efficiency and
performance of their estimation. Due to these unfavorable factors, the mapping of SOC
and its attributes requires time and money [2,3]. Therefore, there is a global surge toward
the need for fast and less costly techniques for efficient quantification of SOC content.

In response to these challenges, the emersion of proximal soil sensing (PSS) and remote
sensing (RS) approaches is described as a useful detection tool for evaluating and analyzing
several soil parameters including SOC [4–6]. For proximal sensing, a physical contact is
needed to obtain signal from the target using the spectrometer sensor (within 2m apart) [7].
Whereas, for remote sensing (RS), electromagnetic radiation is used to obtain, without
physical contact data or occurrence [8]. Spectroscopy (visible near-infrared (vis-NIR)) under
PSS is also classified as a useful tool for the accurate quantification, in laboratory [2,9,10],
and in the field [11–13] of SOC content with limited resources. Its approach for soil
assessment started in the years 1960 to 1980 [14] and intensified between 1990–2000s [15].
Research into vis-NIR spectroscopy approaches within soil science has also increased
rapidly in the last couple of decades [16,17]. For example, with infrared spectroscopy, a
sole spectrum can allow the identification of contrasting soil constituents concurrently [5].
Nevertheless, when using spectroscopy, one of the suggestions is that the accumulation
of an established soil component is linear to a mixture of absorption properties within
the spectral range, also the issue where organic and inorganic molecules can absorb at
wavelengths beyond 2000 nm cannot be ignored [18,19]. According to Mulder et al. [20],
qualitative and quantitative information on soil variables and soil classification can be
collected in a cost-effective approach using RS. For example, it is difficult to disregard
the short revisit duration of the Sentinel-2 imagery and the large quantity of the data set
generated that is available and can also be freely downloaded [21]. In addition, the spectral
composition of the soil can be calculated affordably and conveniently, thus providing a
trade-off between cost and precision [22]. Nevertheless, in terms of detailed large-scale
site monitoring, enhanced results classification, and data reduction, remote sensing has
an advantage over PSS [23]. For measurement, RS methods can be categorized into two
main types, namely spaceborne (e.g., use of satellites) and airborne (either aircraft or
drone). However, aerial surveillance, employing imagery collected by satellites, manned
aircraft and unmanned aerial vehicles (UAVs)(actual aircraft (Drone) itself), is one of the
most commonly used RS techniques [24]. Airborne imaging can provide a more precise
mapping of the variability found in agricultural fields. Even from a single flight mission,
the information produced can cover wide areas because the aircraft has adequate flight
duration [25]. Moreover, airborne sensors can also provide site segmentation data based on
soil heterogeneity, while expanding existing soil property datasets to support digital soil
mapping [20]. Spaceborne remotely sensed imagery, on the other hand, has an enormous
potential as an enabling instrument for generating soil profile maps, due to the relation that
can be created between the soil’s complex chemical bonds and electromagnetic radiation.
For example, with the introduction of the first satellites in the 1980s, optical satellite
(multispectral) imagery was widely utilized for a comprehensive SOC assessment [26].
However, the traditional airborne and satellite remote sensing frameworks where most
sensors (e.g., multispectral, hyperspectral, etc.,) are mounted, have not always satisfied the
researchers’ and environmental demands [27]. In case of environmental applications, some
of these platforms are prone to several issues like high cost and especially poor spatial
and temporal resolution. Satellite data can be very appealing because of its broad spatial
coverage including inaccessible areas that were historically too remote or too harmful
to reach while using traditional aerial photography [28,29]. Nevertheless, issues such as
low resolution and excessive noise while using Hyperion satellites [11] and the 16-day
Landsat-8 revisit period suggest that the available options for time series research and
bare soil observation may be minimal [30,31]. According to Crucil et al. [32], some of the
above-mentioned issues with spaceborne still remain unresolved even with the emersion of
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new satellites, especially Sentinel-2. Moreover, Sentinel-2 data may even have to undergo
several pre-processing steps which could affect its prediction capability of soil properties.

Although remote sensing imagery (e.g., hyperspectral images) offers detailed bare soil
spectral data, the effects posed by some RS factors, especially the soil water content and
dissolved organic material within the soil, cannot be ignored [33,34]. Consequently, one
or more appropriate spectral indices could be necessary to help limiting the effect posed
by the above listed factors on RS imagery [33,35,36]. For examples, Jin et al. [37], reported
improved results by using several indices to predict soil organic matter.

Over the past decade, the development of UAS, also known as unmanned aircraft
system, has made it possible to obtain valuable data that have been beneficial to determine
spatial variability within soil properties [27], especially SOC [38] that would have been
difficult to identify utilizing conventional frameworks for RS. UAS can be categorized
depending on the nature of its wings either as non-movable (non-mobile) or movable (mo-
bile), with the non-mobile wings typically having higher speed and greater duration, while
the mobile wings can offer greater maneuverability. UAS appear as versatile platforms
with the potential to augment RS survey collected from spaceborne or manned aircraft [27].
Although UAS cannot compete based on the spatial coverage with satellite imagery, they
offer unparalleled spatial and temporal resolutions unrivalled by satellite alternatives [39].
Because of its spatial-temporal advantage, the UAS-based approach can provide greater
return time by providing high performance rates for many flights throughout the day and
monitoring processes at a very high spatial and temporal resolution [40]. UAS technology
is now mainstream and cost-effective and is being utilized for a broad variety of environ-
mental applications, for example, estimating evapotranspiration, or assessing water stress
for sustainable agriculture and precision agriculture [41–45]. For monitoring/quantifying
of SOC in agricultural or arable lands, UAS borne imagery has received attention from
some researchers [32,38,46], but most of these studies were focused on fields with rather
high SOC concentration. This implies that a field low in SOC has not yet been explored.
Although UAS has numerous advantages, it is also prone to problems such as restricted
payload, short flight endurance, and difficulties in maintaining flight speed and stability
during heavy winds and turbulence [47]. However, in terms of new technological advance-
ment, most of the technical problems of the UAS could be solved by collaboration involving
environmental experts and UAS engineers [48].

Nevertheless, it is worth mentioning that the Association for Unmanned Vehicle
Systems International (AUVSI) has estimated that in the coming years, about 80% of UASs
will be used for agricultural activities [43]. UAS sales in Germany, for example, approached
400,000 units in 2017 and were projected to grow to over a million by the end of 2020.
Moreover, UAS sales doubled in the US in the same year, with an increase of 117 percent
compared to the previous year [49]. Finally, as reported by Kriehn [45], in 2019, there
were 900,000 registered UAS drones in the United States, with about 17 percent being used
for agriculture.

Clearly, the use of UAS is increasing rapidly, which calls for further studies to assess
and enhance its prediction capability for soil properties, especially SOC. Although there
have been some studies on both Sentinel-2 and UAS imagery for exploring SOC content,
the focus has mainly been on fields with high SOC content. This study aims to focus on a
field that is poor in SOC and, importantly, to verify the effect of spectral indices from UAS
data (which is rarely used by researchers), as remote sensing data are vulnerable to many
disturbing external environmental parameters. To the best of our knowledge, no studies
have evaluated the capability of UAS for the agriculture fields with a low amount of SOC
when coupled with spectral indices. Therefore, this study’s primary objective is to evaluate
and compare UAS monitoring capabilities and estimation of SOC with those obtained from
spaceborne (Sentinel-2) and proximal soil sensing (field spectroscopy measurements) on an
agricultural field low in SOC content as well as verifying the effect of soil and vegetation
indices. The spatial SOC distribution map will also be computed for the various sensors
used in reference to the laboratory SOC measured values.
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2. Materials and Methods
2.1. Study Area

The site used for this study is a 22 ha agricultural land situated at Nová Ves nad
Popelkou (50.310◦ N, 15.240◦ E), in the Liberec Region (Figure 1), in the Czech Republic.
The region has consistent mean windspeeds of 6 km/h, a humidity of 74% with an average
altitude of 185 m a.s.l. The region is predominantly agricultural and is dedicated to
winter and spring cereals and is dominated by dissected relief with side valleys and toe-
slopes. Local prevalent soils types are mainly Cambisols and Stagnosols on crystalline and
sedimentary rocks according to the World Reference Base for Soil Resources (IUSS Working
Group WRB, 2014).
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2.2. Soil Sampling and Field Spectral Measurement

A sampling grid method comprising 130 sampling points spread across the whole field
was used, as shown in Figure 1. Prior to the actual site survey, those sampling points (130)
were generated and identified in the field employing GeoXMM. (Trimble Inc., Sunnyvale,
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CA, USA) receiver with an accuracy of 1 m. The field spectra were measured instantly
in the field on 6 May 2019 using an ASD Field Spec III Pro FR spectroradiometer (ASD
Inc., Denver, CO, USA) across the 350–2500 nm wavelength range. The spectroradiometer
spectral resolution was 2 nm for the region of 350–1050 nm and 10 nm for the region of
1050–2500 nm. Measurements from four different positions around each of the 130 sam-
pling points were taken, and the average value was used as the field spectral dataset. The
spectroradiometer was calibrated before the first scan and after every six measurements,
using a white Spectralon TM (Lab-sphere, North Sutton, NH, USA) [50]. Soil samples were
also collected from each of those positions (depth 0–20 cm) while the field measurement
was underway. Composite samples (approximately 150 to 200 g of soil) were placed into
well-labelled bags and transported to the laboratory for further analysis. These samples
were then air-dried, gently crushed, and sieved (≤2 mm) and SOC was measured as total
oxidized carbon using wet oxidation approach [51]. This process utilized the dichromate
redox titration approach and was accomplished in two different sub-steps [52]. That is, the
samples were first oxidized with K2Cr2O7 and the solution was then potentiometrically
titrated with ferrous ammonium sulphate.

2.3. Remote Sensing Imagery

The remote sensing data used were the Sentinel-2 and UAS imagery at different
resolution. Table 1 provides an overview of their individual missions’ characteristics.

Table 1. Key radiometric features of multi-spectral sensors shown in this analysis.

Features of the Sensor Sentinel-2 Trinity F90 Fixed-Wing Drone
[53]

Mission Spaceborne UAS
Sensor type Push-broom MicaSense Altum dual sensor

Spectral bands 13 9

Used spectral bands 10 6
Spectral range 9 vis-NIR 9VNIR

3 SWIR

FWHM (nm) 20–200

SNR 129 (444) nm 32 (475) nm
(typical) 154 (497) nm 14 (531) nm

168 (560) nm 27 (560) nm
142 (664) nm 16 (650) nm
117(704) nm 14 (668) nm
89 (740) nm 10 (705) nm
10 (783) nm 12 (717) nm

174 (843) nm 57 (842) nm
72 (865) nm thermal infrared 8–14 um

114 (943) nm
50 (1377) nm

100 (1613) nm
100 (2200) nm

GSD 10/20/60 m Variable
(spatial resolution) (8.8 cm)

Positional accuracy 12 m 3 m
Acquisition date 10 June 2019 25 November 2019

UAS: unmanned aircraft system; vis-NIR: visible and near-infrared; FWHM: full width at half maximum; SNR:
signal-to-noise ratio (Wavelength mentioned); SWIR: short-wave infrared; GSD: ground sampling distance.

2.3.1. UAS Multispectral Imagery

Multispectral data were acquired using a Trinity F90 fixed-wing drone with a Mi-
caSense Altum dual sensor mounted onboard with two cameras (RGB + Multispectral).
The MicaSense Altum dual sensor captures images in six independent spectral bands
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(multispectral) with the last band being a thermal infrared sensor (Blue 475 nm (B4), Green
560 nm (B5), Red 668 nm (B6), Red edge 717 nm (B7), Near-infrared 840 nm (B8), and
Thermal 11 µm (B9)). The RGB sensor also captures images in three bands (red-green-
blue) (400–700 nm). This is a high-resolution digital camera that is separated from the
multispectral sensor. This implies that the total bands captured by the Trinity F90 were
nine. The location of the on-board Global Navigation Satellite System (GNSS) and Inertial
Navigation Unit has been saved in the metadata files using the Exchangeable Image File
Format (EXIF). The camera is equipped with a sun sensor that gathers information about
the light conditions and saves the radiant flux data produced in the EXIF format. The image
was acquired on 25 November 2019 at Nová Ves nad Popelkou in a clear sky condition.
The flight plan was prepared using a QBase 3D mobile app (mission planning software),
this served as the primary interface between the user and the UAS device. QBase 3D offers
real-time information, such as altitude, distance, battery life about the UAS, and mission
telemetry data that provide the operator with updated information about the flight at all
times. The flight height was 190 m and the spatial resolution was 8.8 cm, covering an
area of 31 ha. We also ensured that we had sufficient batteries for the total flight duration
over the entire study field. The images were captured automatically, and the calculated
position was consistent with 85% front and 75% side overlap. The images were accurately
oriented, 3D model was extracted, the digital elevation model (DEM) was calculated based
on the generated cloud point (during the flying period), and orthorectified images were
calculated and then exported as one mosaic in GeoTIFF file in EPGS 4326—Geographic co-
ordinates on WGS-84 ellipsoid. Before generating this orthophoto, calibration is performed.
The obtained image (before calibration) is already in the reflectance format, however, the
actual reflectance values are obtained by dividing each band by 32,768 to get the values
normalized in the interval between 0 and 1. The 32,768 is the band center value which
represents 100 percent of reflectance. For geometrical correction, the ground-based points
and the Differential Global Positioning System (DGPS) were used while for both radiation
correction and transformation of reflectance, the Gray Scale Correction method was utilized.
AgiSoft Metashape Professional 1.5.0 (AgiSoftLLC, St. Petersburg, Russia), photogram-
metric processing was used. The software’s consistent performance in photogrammetric
processing has been demonstrated in previous studies [54]. In order to differentiate bare
soil areas, the Normalized Difference Vegetation Index (NDVI) was employed to mask a
threshold of 0.2. The R software (R Development Core Team, Vienna, Austria) was used for
all other data processing. For this study, it was only the multispectral section (Trinity F90)
with six bands that was used for further analysis.

2.3.2. Sentinel-2 Imagery

The extracted cloud-free Sentinel-2B imagery used for this study was carried out at the
European Space Agency’s Copernicus Open Access Hub on 10 June 2019. The Sentinel-2
mission consists of two similar satellites: Sentinel-2A, and Sentinel-2B, respectively. Each
satellite has a Multi-Spectral Instrument (MSI) that generates images of the earth. The
Sentinel-2 images are processed to Level-1C, which implies that they have been ortho-
corrected, map-projected images containing top-of-the-air reflectance data. This image
will need further pre-processing by the user, but the level 2A Sentinel-2 imagery can be
used instantly because its dataset has been processed by the suppliers using Sen2Cor
processor. These processes include geometric, radiometric, and atmospheric corrections.
For this study the level 2A Sentinel-2 imagery was used. The Sentinel-2 image consists of
13 spectral bands. These spectral bands range from the visible and near infrared (vis-NIR)
to the short-wave infrared (SWIR). They include four bands at 10 m resolution ((B2, 490 nm),
(B3, 560 nm), (B4, 665 nm), (B8, 842 nm)); six bands at 20 m resolution ((B5, 705 nm), (B6,
740 nm), (B7, 775 nm), and (B8A, 865 nm); 2 SWIR large bands, (B11, 1610 nm) and (B12,
2190 nm). Finally, three bands at 60 m resolution ((B1, 443 nm), (B9, 940 nm), and (B10,
1380 nm)). Before downloading, all the 13 band were resampled to 10 nm using the SNAP
software (by pixel resolution). With the exception of B1, B9, and B10 that were omitted, all
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the remaining bands were used for this study. The Sentinel-2 user handbook [55] describes
the whole protocol.

Soil optical properties can be influenced by certain factors such as soil water content,
mineral composition, and organic matter content [37]. Therefore, nine calculated spectral
indices have been applied to both Sentinel-2 and UAS datasets as independent variables,
anticipated to enhance the prediction capability of the datasets. The added spectral indices
were Colour Index (CI), Normalized Differences Vegetation Index (NDVI), Infrared Per-
centage Vegetation Index (IPVI), Normalized Difference Red Edge (NDRE), Soil Adjusted
Vegetation Index (SAVI), Vegetation (V), Normalized Difference Vegetation Index (GNDVI),
Difference Vegetation Index (DVI), and Brightness Index (BI). The equations used to deter-
mine these indices are shown in Table 2. SNAP was used to obtain bare soil pixel values at
sampling locations.

Table 2. Indices derived from Sentinel-2 and UAS spectra.

Index Definition Based on Sentinel-2 Definition Based on UAS References

CI B4−B3
B4+B3

B6−B5
B6+B5 Pouget et al. [56]

NDVI B8−B4
B8+B4

B8−B6
B8+B6 Rouse et al. [57]

IPVI 1
2 (NDVI + 1) 1

2 (NDVI + 1) Crippen [58]
NDRE B8−B5

B8+B5
B8−B7
B8+B7 Barnes et al. [59]

SAVI
(B8−B4)∗(1+L)

B8−B4+L
L = 0.5

(B8−B6)∗(1+L)
B8−B6+L
L = 0.5

Huete [60]

GNDVI B8−B3
B8+B3

B8−B5
B8+B5 Gitelson et al. [61]

DVI B8-B4 B8-B6 Richardson and
Wiegand [62]

BI
√

(B4∗B4)+(B3∗B3)
2

√
(B6∗B6)+(B5∗B5)

2
Escadafal [63]

V B8
B4

B8
B6 Jordan [64]

Sentinel-2 (B3: Green, B4: Red, B5: Red Edge, B8: NIR); UAS (B5: Green, B6: Red, B7: Red Edge, B8: NIR).

2.4. Data Pre-Processing Approaches

The initial field spectral range was 350–2500 nm; however, the noisy segments of
350–399 nm were removed prior to spectra treatment, retaining only 400–2500 nm range.
The field spectra and the other two dataset (UAS and Sentinel-2) were then subjected to
the following set of pre-processing techniques: discrete wavelet transformation (DWT),
standard normal variate (SNV), logarithmic transformation (log(1/R)), as well as the
combination of DWT with SNV (DWT + SNV) and with log(1/R) (DWT + log(1/R)). The
DWT is a known technique for signal smoothing and/or noise reduction. This function was
determined using the wavelet package in the R software [65]. Also, all other pre-treatment
algorithms have been computed using the R software.

2.5. Modelling and Prediction Assessment

The spectra obtained from Sentinel-2 and UAS sensors, including the determined
spectral indices, were each linked to the SOC determined in the laboratory using collected
soil samples from the field. For the field data, the spectral measurement in the field was
used. The above-mentioned datasets were used to build SOC predictive models. The
spatial resolution for the UAS remains the same (8.8 cm). Two separate multivariate models
were evaluated for all spectral data, namely random forest (RF) and support vector machine
regression (SVMR). SVMR is a nonlinear algorithm used for regression and classification
processes with a set of related supervised learning algorithms, which has an excellent ability
to be a universal predictor of any multivariate function to any defined degree of accuracy.
Even if the discriminant feature gathered is based on minimal data, the independent
test set’s prediction error can still be small. RF is also a technique for classification and
regression. RF belongs to the ensemble machine learning algorithm family that predicts a
soil parameter response from a set of predictors that could be a training data matrix. This
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is done by creating and aggregating multiple decision trees. RF also adjusts splitting by
picking the best split from a randomly chosen subset of predictors [66]. In multivariate
regression models, spectral reflectance data were used as predictor variables and selected
soil parameters data as output responses. The model output was evaluated for each
regression procedure by five-fold cross-validation of the training set (75%) and the testing
set of 25% of the samples using SVMR and RF modelling techniques. The prediction
accuracy was evaluated by index of determination (R2

CV), the ratio of performance to
interquartile range (RPIQ), the root mean square error of prediction (RMSEPcv) of the
5-folds cross-validation, and the ratio of performance to deviation (RPD). The RPD was
determined as an auxiliary indicator of model reliability as the ratio of the RMSEPcv to
the standard data deviation. The larger the RPD, the better the model for prediction. Prior
to evaluating the predictive models, the normality of the distribution of the SOC contents
was examined (skewness <1).

A correlation matrix was also calculated to visualize the relationships between the
three datasets and their parameters (indices) with SOC (examine which dataset is more
correlated or significantly correlated). For the remote sensing data set (UAS and Sentinel-
2), this was done between SOC and their bands and indices. However, for the field
spectra, the correlation was made with SOC using only selected wavelengths (based on
UAS and Sentinel-2 wavelengths) due to the enormous amount of spectral data available
(350–2500 nm).

For a visual comparison of SOC spatial distribution predicted by models based on
different data and laboratory measurement, SOC maps were created using the inverse
distance weighting (IDW) interpolation method.

3. Results
3.1. Soil Organic Carbon (SOC) Frequency Histogram and Descriptive Statistics

Figure 2 is a frequency histogram and a statistics summary of SOC characteristics
in soil samples within the study area comprising standard deviation (SD), coefficient of
variation (CV), minimum, maximum, mean value, skewness, and standard error (SE). The
statistical distribution of the SOC within the sample site was positively skewed. A visual
inspection of the SOC histogram showed that the value distribution (tail region) has shifted
to the left side. Generally, the overall result signifies a low to medium SOC content of
the area.
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3.2. Correlation of SOC with Reflectance Bands and Spectral Indices for Sentinel-2 and
UAS Datasets

To visualize the differences between UAS, Sentinel-2 imagery datasets and the calcu-
lated indices (for each dataset) within the study area, correlation matrices between their
parameters (bands and indices) and SOC were built (Figure 3). The correlation matrices
helped to determine among the datasets strong or significant correlations (in both positive
and negative directions) so as to identify which spectral bands or indices are the key deter-
minants in the prediction of SOC. For the UAS dataset, the most significant correlations
were found between SOC and CI, band 7 and band 6, followed by NDVI, NDRE, IPVI, and
BI. For the Sentinel-2 spectral bands, it was only CI that provided significant correlation
with SOC. Although, neither dataset was strongly correlated with SOC, there were strong
correlations between some of the bands and indices.

3.3. Correlation between SOC and Selected Wavelength of Field Spectra

Figure 4 displays the correlation matrix of SOC with selected wavelengths of field
spectra. These wavelengths were selected using the wavelength values that were similar
or closer to that of UAS and Sentinel-2 bands. Considering all selected wavelengths, the
strongest significant correlations between SOC and field spectra were obtained from 443,
665, 668, 705, and 717 nm while the remaining wavelengths showed good correlations.
Although strong correlation was seen between all selected wavelengths (among each other),
there were no strong correlation witnessed between SOC and the selected wavelengths.
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3.4. Prediction of SOC Using UAS, Sentinel-2 and Field Spectra Data Sets

The prediction results (Table 3) showed that the highest prediction accuracy of SOC
(RPD = 1.4; R2

CV = 0.48; RPIQ = 1.65; RMSEPCV = 0.24, for log(1/R)) were obtained with
field spectral data using SVMR algorithm. This was followed by UAS (DWT, RF) with
RPD = 1.13, R2

CV = 0.27, RPIQ = 1.36, and RMSEPCV = 0.30, and finally Sentinel-2 (SNV),
SVMR) with RPD = 1.08, R2

CV = 0.24, RPIQ = 1.31, and RMSEPCV = 0.31, respectively.
Moreover, other improved result was also obtained using SNV + DWT, log + DWT, and
SNV (SVMR) methods with the field spectra and log(1/R) (RF) with UAS.

Table 3. Statistics of the fivefold leave-group-out cross-validation for field spectra, UAS and Sentinel-2 using random forest
(RF) and support vector machine regression (SVMR) with different pre-processing methods.

UAS Sentinel-2 Field Spectra
RF

Treatment RPD R2
cv RPIQ RMSEPcv RPD R2

cv RPIQ RMSEPcv RPD R2
cv RPIQ RMSEPcv

Raw 1.05 0.11 1.24 0.32 1.04 0.04 1.22 0.32 0.99 0.05 1.14 0.34
DWT 1.13 0.27 1.36 0.29 1.02 0.02 1.2 0.33 1.02 0.08 1.18 0.33
SNV 1.00 0.14 1.19 0.34 0.96 0.15 1.27 0.35 1.12 0.22 1.31 0.3

SNV + DWT 1.01 0.03 1.22 0.33 1.02 0.01 1.23 0.33 1.08 0.18 1.28 0.31
Log(1/R) 1.04 0.22 1.31 0.32 1.02 0.05 1.29 0.33 1.01 0.06 1.14 0.33

Log + DWT 1.10 0.17 1.27 0.3 1.01 0.01 1.18 0.33 1.02 0.05 1.14 0.33

SVMR

Raw 1.01 0.11 1.18 0.33 1.07 0.15 1.27 0.31 1.21 0.36 1.44 0.28
DWT 1.05 0.14 1.16 0.32 1.03 0.11 1.13 0.33 1.23 0.35 1.44 0.27
SNV 1.06 0.22 1.25 0.31 1.08 0.24 1.31 0.33 1.31 0.44 1.53 0.26

SNV + DWT 1.04 0.12 1.12 0.32 1.05 0.11 1.14 0.32 1.35 0.45 1.59 0.25
Log(1/R) 1.09 0.19 1.29 0.31 1.08 0.16 1.28 0.31 1.4 0.48 1.65 0.24

Log + DWT 1.07 0.11 1.15 0.31 1.06 0.12 1.12 0.32 1.33 0.45 1.56 0.25

4. Discussion

Spectroscopy under proximal soil sensing has now become a common way of estimat-
ing SOC and other soil parameters because of its high accuracy level compared to the other
forms of measurement stated above [7]. In comparison with the other two data sets, namely
UAS and Sentinel-2, the field spectra under proximal soil sensing show the best prediction
output as expected (RPD = 1.4; R2

CV = 0.48; RPIQ = 1.65 and RSMEPCV = 0.24, for log(1/R),
SVMR). Although the RPD and R2

CV value for this field is not so high, it is comparable
to other research findings [67]. Nonetheless, Stevens et al. [25] demonstrated in one of
their studies the efficiency of field measurements in comparison to airborne spectroscopy
to predict SOC. However, under field measurement, spectroscopy is prone to external
environmental conditions, primarily soil moisture, while under laboratory conditions its
final output can be influenced by issues such as spectrometer instability, illumination
source, detector output, and sample preparation.

Considering the field spectra correlation with SOC using the selected wavelengths
based on both UAS and Sentinel-2 bands, it reveals that most of the wavelengths were
significantly correlated with SOC compared to the other two datasets. Likewise, almost all
selected wavelengths of the field spectra were strongly correlated with each other. This
might have accounted for the improved performance of field measurements using vis-
NIR spectroscopy approach. However, field spectroscopy inability to cover large spatial
areas is one of its major disadvantages. This is because the costs and work and time
demands associated with field and laboratory evaluation makes it difficult to undertake
soil properties assessment on a vast scale area [68].

The vast frequent data streams generated by satellite sensors can also ensure that
soil monitoring and mapping techniques for larger areas can be accurately, rapidly, and
effectively established [29,69]. In this study, the accuracy of SOC predictions using Sentinel-
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2 imagery was the lowest compared with the other two datasets, although the differences
were rather small compared to that of the UAS (Table 2). One of the probable reasons for
its worst performance could be the low correlation of all Sentinel-2 bands and almost all
the calculated indices used with SOC. It could also be presumed that our quest to acquire
a cloud-free image which shifted the Sentinel-2 image collection date from early May to
June, a likely period for some vegetation to emerge on the field, could have affected the
accuracy of Sentinel-2 imagery prediction. For instance, Castaldi et al. [21] attributed the
weak output of Sentinel-2 imagery data in their study to the probable influence of maize
seedlings on some of the Sentinel-2 bands (wavelengths), highly sensitive to vegetation.
This is so because their Sentinel-2 image was collected in May when maize seedlings may
have been emerging. According to Bartholomew et al. [70], spectral reflectance form can
sometimes be affected because of the apparent existence of fresh or dry vegetation (less than
20%) and therefore the predictive accuracy of soil properties could be affected. Satellite data
can be desirable due to its wide spatial coverage, fast revisit time, and the ability to acquire
data unaffected by local air traffic restrictions, however, as a result of cloudiness or when
parched and bald soil conditions are needed, these predetermined revisit times may not be
suitable for adequate temporal coverage [32]. Other challenges for satellite applications
are the relatively low image resolution, restricted availability of high-quality temporal
and spatial images, primarily as a result of adverse atmospheric conditions and sensor
requirements [71]. For example, in Brazil, Friedel et al. [72] utilized spectroscopy techniques
and spaceborne (Hyperion satellite) imagery to quantify soil obtained from the tropics.
They indicated that because of the presence of shadow within the study area, satellite
image efficiency was hampered. In addition, Steinberg et al. [73] evaluated the potential
of both airborne and spaceborne (simulated EnMap) imaging spectroscopy for SOC and
clay prediction. Their finding was that the airborne imagery revealed a small improvement
with regard to the accuracy of prediction compared to the spaceborne domain.

UAS may be a cheaper and more realistic replacement to satellites, general aviation
aircraft and even ground spectroscopy (thanks to large spatial coverage). UAS light-bearing
sensors are now being used effectively to track vegetation in precision agriculture [74,75].
An advantage of UAS consists in the small distance between the UAS sensor and the
outermost layer of soil, compared to airborne or satellite sensors, which can lead to a
comprehensive retrieval of soil spectra. A further advantage of UAS over both airborne
and satellite is its ability to yield accurate surface reflectance, especially in case of the need
for high-resolution remote sensing-based data, because of the possibility of UAS to be fitted
with an incoming sunlight sensor, whereas both satellite and airborne data may require an
atmospheric correction model for reflectance measurement [32,76]. Although the spatial
resolution of airborne sensors (using aircraft) is higher and could be an alternative to that
of satellite data rather than UAS, the acquisition of multitemporal data in an optimum
state is hampered by high operating costs especially in case of a change in environmental
conditions during measurement [77]. For instance, Stevens et al. [25] used an aircraft-
mounted CASI + SASI sensor (444–2500 nm) to detect the shift in carbon stock on a larger
scale survey, one of the main problem encounters being the spectral model calibration
which they attributed to the several troubling factors including soil water content and
enormous aircraft noise that influenced the final carbon stock estimate. For this study,
the prediction accuracy for UAS (Table 3) was slightly better than Sentinel-2 satellite
(with RPD = 1.13; R2

CV = 0.27; RPIQ = 1.36 and RMSEPCV = 0.30, against Sentinel-2 with
RPD = 1.08; R2

CV = 0.24; RPIQ = 1.31 and RMSEPCV = 0.31). One possible reason could be
that some of the UAS bands and indices (CI, Band 7, and Band 6 followed by NDVI, IPVI,
NDRE, and BI) showed some level of significant correlation with SOC unlike the Sentinel-2
data (only CI). Furthermore, the UAS image was acquired during a favorable weather
condition, which is one of UAS strongest advantages over spaceborne and airborne (using
aircraft). According to Gomez et al. [33], some of the reasons that could affect the difference
in prediction accuracy of SOC between airborne and spaceborne are the sensor spectral
and spatial information quality, the distance between sensors and target, and atmospheric
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conditions [33]. The use of UAS has become almost ubiquitous in the last five years owing
to a reasonable price of its aircraft and the payload camera (from vis-NIR to thermal and
3D) [78]. Although in this study, UAS acquired imagery have shown some positives over
satellite images, to uncover its maximum potential for soil properties estimation especially
SOC, some outstanding issues would need to be tackled and probably resolved. However,
some researchers have suggested solutions to some of the UAS limitations. The UAS
lightweight system, for example, could signify an unstable camera positioning resulting
from a discrete spatial resolution on the same flight route between two or more captured
images [79]. Nevertheless, according to Hardin et al. [80] and Vericat et al. [81], cases
of manual geometric correction can be successfully used to solve the above-mentioned
problem. According to Aldana-Jague et al. [38], the amount of data produced by the UAS
is huge and this demands a significant portion of processing time. Nevertheless, recent
developments in UAS GPS systems, coupled with lofty performance inertial measurement
units (IMUs), have helped to minimize these large amounts of processing time by using
direct-georeferencing approaches [82]. Before UAS images are merged, geometric correction
and ortho-rectification are necessary, which is due to the small swath area and platform
instability. However, according to Xiang and Tian [71], this issue could be addressed by
already developed methods such as the manual use of georeferencing tools (ground-based
GCPs), image matching, as well as the use of automated georeferencing (data navigation
along with camera lens distortion model). Moreover, it is proposed that the accuracy of the
images gathered from a UAS platform should first be assessed for practical purposes to
select the most suitable pre-processing technique [83].

Another common limitation of the UAS is the issue of the vignetting effect, that
normally induces a shade along the extreme parts of the acquired image, resulting in a
blackening of the boundaries compared to the center of the image taken. Nonetheless,
Aldana-Jague et al. [38], minimize this issue by taking several images of a “canvas white”
beneath consistent daylight conditions and averaging these images for the number of
bands used. Lelong et al. [79] also suggested additional method to help resolve the
above-mentioned concern, as well as the issue of the bi-directional reflectance distribution
function (BRDF) effects faced by UAS, however, according to Hardin and Jensen [48], to
better solve these concerns further experiments are still needed. For Lebourgeois et al. [84],
though the problem of vignetting is less likely to have an impact on multispectral and
hyperspectral imaging sensors that are custom designed, there will still be some degree
of vignetting present irrespective of the action taken to rectify its effect. Though, BRDF
could influence UAS images as stated above, according to Aber et al. [85,86], the use of
the UAS platform is one of the easiest ways to evaluate BRDF models on other remote
sensing systems. The use of UAS in agriculture for aerial imaging is still fairly new and may
need some bit of patience as well as modest expertise. However, this system continues to
gain considerable popularity among environmental scientists, despite all UAS drawbacks
as outlined by Hardin and Hardin [47], such as instability, short flight times, distortion
within captured imagery, and payload limitation [87]. In a study by Moran et al. [88],
they stated that issues related to UAS imaging are also similar to conventional aerial and
satellite image applications, e.g., instrument calibration, atmospheric correction, vignetting
correction, band-to-band registration, and frame mosaicing. However, with UAS (as stated
above) most of these issues can be corrected or adjusted compared to the other ways
of measurement. Notwithstanding, as noted already, using UAS comes with numerous
benefits including simple to utilize, rapid and accurate set-up at low costs, versatile while
flying, and the ability to capture images with very fine resolution. The future for UAS looks
promising and it could be used to replace the spaceborne or supplement that of proximal
soil sensing if the suggestions by Hardin and Jensen [48] are fully carried out, that is, most
of the technical challenges faced by UAS could be overcome by a broad cooperation among
environmental experts and UAS engineers during the development of new UAS devices.

One area that is worth mentioning is the issue related to data transfer between spec-
troscopy and RS especially for large scale site estimation/monitoring of soil properties,
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especially SOC. As a result of limited studies [89,90] to date in such a significant area, more
work is still needed in order to help limit the uncertainty of atmospheric correction, which
according to Castaldi et al. [90] does affect spectral responses from remote sensing data.
UAS could have been the best option in terms of all remote sensing approaches due to its
small distance between its sensor and the soil. However, it was difficult to locate studies
that have tested the feasibility of that approach. A study into such areas in the foreseeable
future is highly needed, especially data transfer between spectroscopy and UAS for large
scale estimation of soil properties.

SOC predictive performance can be highly variable when data are collected using
different procedures, sampling techniques, sample preparation prior to its analyses, instru-
ment requirements, and analytical approaches and algorithms. This is because spectro-
scopic models can be seriously affected by the properties described above [91,92]. Moreover,
this is not exceptional to SOC measurement with spaceborne, UAS and field spectroscopy
where the method of data collection does differ as was the case in this study. Choosing
the most comprehensive pre-processing strategy may assist in achieving a more accurate
prediction models [31], however, linking this with the most appropriate modelling method
can positively or negatively affect prediction accuracy. For the modelling and pre-treatment
algorithms used in this study, it can be noted that though the field spectra performance
increases using SVMR with log transformation (Table 3), for RF, its prediction accuracy
experiences a decrease even compared to the UAS dataset. This confirms the need for the
use of more techniques for better comparison and to achieve a fair estimation of different
form of datasets as noted by Moron and Cozzolino [93] and Mouazen [94] and have been
also confirmed by some other studies [10,13]. Finally, the SOC maps derived from the
predictive modeling based on the data from the different sensors used are shown in the
Figure 5. This was done to view the distribution of SOC within the study field in reference
to the laboratory measured values. This demonstrates that all the sensors imagery could
predict both low and high SOC values. The field spectra yield a map more similar to the
reference map compared to the models using the other two datasets. Sentinel-2 imagery
showed a better similarity than UAS imagery to the reference map possibly due to SWIR
bands in Sentinel-2, however, map based on UAV imagery on the other hand was similar
to the reference map where SOC is lower.
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Figure 5. Spatial SOC distribution maps based on prediction using various sensors at Nová Ves nad Popelkou study site
as compared to the map based on laboratory SOC measurement: (a) reference laboratory conditions, (b) field spectral,
(c) Sentinel-2 multispectral imagery, (d) UAS multispectral imagery.

5. Conclusions

This study compared and explored the ability to predict SOC in a field with low
SOC content using UAS imagery with spectral indices to that of field spectroscopy and
Sentinel-2 datasets. Although for prediction accuracy of SOC, the field spectroscopy
was better, the low SOC content within the field makes it difficult to compare the actual
performance between UAS and Sentinel-2. However, although the difference was small,
the UAS imagery was slightly better than the Sentinel-2 output. This was attributed to the
correlation of the spectral indices and bands with SOC. Unlike UAS that had CI, Band 7,
and Band 6, followed by NDVI, IPVI, NDRE, and BI that were significantly correlated with
SOC, it was only CI for Sentinel-2. It is worth mentioning that all the three datasets show
no strong correlation with SOC. However, the spatial distribution map shows that these
sensors can detect both high and low SOC values. For comparison especially between UAS
and Sentinel-2, the study shows both forms of measurement have their positive features,
that is for Sentinel-2 larger spatial coverage and for UAS the reduce distance between
the sensor and the soil surface can contribute to a more comprehensive retrieval of soil
spectra. Also, they are prone to several limitations especially for Sentinel-2, such as cloud
cover and a lot of pre-processing steps, and for UAS they include instability, short flight
times, and payload limitation. However, for UAS, most of these issues can be corrected
or adjusted compared to other ways of measurement. In conclusion, UAS and Sentinel-2
sensors exploitation for SOC estimation in fields with low SOC need further study, such
as using different spectral indices, different machine learning algorithms, and the use of
both high and low SOC content fields to determine their actual differences. UAS-based
imagery will not substitute the use of manned aircraft or satellite imagery for larger scale
assessments but will greatly contribute to local management at small to medium scales.
The application of UAS for aerial imagery in agriculture is still relatively new and requires
patience and moderate experience. This research has shown that UAS imagery can be
exploited more efficiently using spectral indices.
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Increasing concentrations of potentially toxic elements (PTE) in agricultural soils remain amajor source of public
concern. Monitoring PTEs in an agricultural field with no history of contaminants necessitate adequate analysis
utilizing a robust model to accurately uncover hidden PTEs. Detecting andmapping the distribution of soil prop-
erties using portable X-ray fluorescence (pXRF) and proximal sensing techniques is not only rapid, but also rel-
atively inexpensive. In this study, an ensemblemodel, consisting of partial least square regression (PLSR), support
vectormachine (SVM), random forest (RF) and cubist, was used for the prediction andmapping of soil As content
in an agricultural fieldwith no history of pollution. The datasetswere collected using pXRF and field spectroscopy
techniques. The main goal was to compare the ensemble model to each of the calibration techniques in terms of
prediction accuracy of As content in such a field. Other components [e.g., soil organic carbon (SOC),Mn, S, soil pH,
Fe] that are known to influence As levels in the soil were also retrieved to assess their correlationwith soil As. The
models were evaluated using the root mean squared error (RMSECV), the coefficient of determination (R2CV) and
the ratio of performance to interquartile range (RPIQ). In terms of prediction accuracy, the ensemble model
outperformed each of the individual techniques (R2

CV = 0.80/0.75) and obtained the least error margin
(RMSECV = 1.91/2.16). Overall, all the predictive techniques were able to detect both low and high estimated
values of soil Aswithin the study field, but with the ensemble model resembling the measurements better. The
ensemble model, a promising tool as demonstrated by the current study, is highly recommended to be
included in future studies for more accurate estimation of As and other PTEs in other agricultural fields.

© 2021 Elsevier B.V. All rights reserved.
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1. Introduction

Soil is considered a diverse and complex ecosystem that supports
both human food production systems and a wide range of biodiversity.
It is also one of the most important natural resources on the planet.
However, increasing accumulation of potentially toxic elements
(PTEs) in the soil (particularly, agricultural soils) has been a major
source of public concern, as plants grown in such soils can take up a
large amount of these PTEs (e.g., Cu, Pb, Cd, Zn, As), which threatens
food quality and security and increases potential risk to human health
as well as other organisms through the food chain (Järup, 2003; Wu
et al., 2015; Yin et al., 2021). For example, Zn lowers immunological
function and high-density lipoprotein levels, excess Cu has been linked
to liver damage, and Pb and Cd are hazardous even at low concentra-
tions. Whiles Pb induces renal tumors, increases blood pressure, Cd on
the other hand, can induce kidney dysfunctions (FDA, 2001; Ikem and
Egiebor, 2005; Llobet et al., 2003).

PTEs can penetrate and remain in agricultural soils naturally, based
primarily on the composition of the geological parent materials, as
well as other means, but at a level that is considered not toxic to the
human body (FDA, 2001; Lu et al., 2012; Singh and Garg, 2006). How-
ever, deficiency and toxic effects are observed beyond this normal
threshold due to other sources such as wastewater irrigation, solid
waste disposal, livestock manure, inorganic fertilizers, agrochemicals,
sludge applications, vehicular exhaust, industrial activities, aswell as at-
mospheric deposition and pesticides (Hu and Cheng, 2013; Liu et al.,
2020; Panchenko et al., 2018; Plyatsuk et al., 2019; Wu et al., 2020).
Therefore, accurate prediction and monitoring of soil PTEs are impera-
tive for effective contingency planning.

Soil arsenic is one of the most harmful contaminants, according to
the United States Toxic Commission (Jiang et al., 2015). This is due to
the potential health risks it poses to humans, particularlywhen exposed
to a higher concentration of its content in a short period of time. These
includes skin cancer, abnormal cell metabolism, diseases of the bladder,
liver, lungs, kidneys, and even death (Bennett, 1996). Arsenic can form
organic and inorganic compounds when it reacts with other elements,
however, the latter are thought to be more toxic than the former. Fur-
thermore, the concentration of As in the soil can be influenced by
other soil components. Some studies (Cao and Ma, 2004; Horta et al.,
2015; Mandal and Suzuki, 2002; Warren et al., 2003) have even sug-
gested that assessing the relationship between these components
(e.g., soil organic carbon (SOC), Mn, soil pH, total Fe, temperature, S,
clay) and As could help explain the concentration of As in the soil. The
main factors that contribute to soil As pollution have been recognized
as rock weathering and atmospheric deposition as well as anthropo-
genic activities (Li et al., 2021; Patel et al., 2005). In agricultural soil,
the enrichment of As poses a threat to food security as a result of its bio-
accumulation in plant (Cui et al., 2018). Additionally, soil As has been a
serious environmental threat in a number of countries throughout the
world affecting millions of people (Smedley and Kinniburgh, 2002).
So, highlighting the role of soil safety to human health and sustainable
agriculture, identifying areas polluted by toxic metals is critical (Brevik
et al., 2018). Therefore, as a result of the growing prevalence of As and
its potential toxicity, there is an urgent need for a rapid assessment in
agricultural soils so that an efficientmitigation framework can be estab-
lished to minimize or eliminate the potential health risk of As and other
PTEs.

PTEs in agricultural soil can be identified using simplified, quick, and
low-cost technologies such as X-ray fluorescence (XRF) [a recent ad-
vancement being the portable XRF (pXRF)], and visible near-infrared
(Vis-NIR) as well as several other traditional approaches that are costly
and also non- environmentally friendly [e.g., inductively coupled
plasma (ICP) or atomic absorption spectrometry (AAS)]. In most cases,
pXRF measurements of soil PTEs could be read directly from the
analyser, however, the reading may fail due to the analyser's detection
limit, especially if the elements concentration is low (O'Rourke et al.,
2

2016). According to Sacristán et al. (2016), the main advantage of Vis-
NIR spectroscopy over XRF spectroscopy is that information onmultiple
soil features can be obtained with a single measurement from the same
spectrum. Nevertheless, the absorption bands in the soil Vis-NIR spectra
are feeble, comprehensive, and could also overlap. This may cause the
information of certain critical spectra needed to improve the predictive
performance of soil features to be hidden. Therefore, to accurately iden-
tify soil characteristics, a proxy approach must be developed to retrieve
this hidden information (Gholizadeh et al., 2016; Rossel and Behrens,
2010). Furthermore, Vis-NIR spectral information may be affected by
the conditions under which the soil is scanned, reducing the accuracy
of soil property estimation due to unwanted variance. Normally, multi-
ple pre-treatments are utilized, because a single treatment algorithm
may not be able to handle all the variations that may exist (artefacts).
Also, Vis-NIR spectra combined with chemometrics have been used by
several researchers (Chakraborty et al., 2015; Ren et al., 2009; Shi
et al., 2016; Wei et al., 2019; Wu et al., 2005, 2007) to predict the pres-
ence of As and other heavy metals in the soil.

As the need for rapid, accurate, and environmentally friendly
methods to estimate PTEs in agricultural soil grows, the results of
some comparative studies (e.g., Gholizadeh et al., 2020; Fang et al.,
2021; Kebonye et al., 2021; Xie et al., 2021; Zhou et al., 2021) based
on the use of multiple machine learning (ML) methods to predict PTE
in soil (within a single study) were not consistent; theseML algorithms
were evaluated individually. But, different MLs can indicate different
sets and important predictors variableswhen estimating soil properties.
The solution to this problem according to Dietterichl (2002) may lie in
combining multiple individual prediction techniques into a single
model, and thus employing the ensemble learning theory. The hypoth-
esis is that the newmodel (ensemblemodel)will performat least better
than each of the separate techniques in terms of appropriately utilizing
all the available data (Diks and Vrugt, 2010). Even though the ensemble
theory is not new, it has yet to be thoroughly investigated on Vis-NIR
spectra to estimate PTEs (specifically As) using ML and statistical
approaches.

For this study, the focus is primarily on the possibility of improving
the predictive performance of spectroscopic models for As content
because it is a major PTE with related health implications to living
organisms in the ecosystem. Four well-known and tested individual
techniques were used to develop the ensemble model, namely three
ML algorithms [random forest (RF), support vector machine regression
(SVM) and cubist] and one statistical method [partial least squares
regression (PLSR)]. Although, comprehensive research studies on the
prediction and monitoring of PTEs in agricultural soil have already
been conducted by a number of researchers, the majority of these
studies (Agyeman et al., 2021; Chakraborty et al., 2015, 2017; Ettler
et al., 2005; Gholizadeh et al., 2015; Han et al., 2019; Kebonye et al.,
2021; Kebonye and Eze, 2019; Kotková et al., 2019; Tremlová et al.,
2017; Vaněk et al., 2008; Xie et al., 2021) has focused on agricultural
sites or areas close to landfills (where solid waste were dumped) or
areas in proximity to industrial plants or industries (e.g., coal, mining)
that generate toxic waste. Nevertheless, even normal agricultural prac-
tices (e.g., application of pesticides and fertilizers;mineral fertilizers, or-
ganic fertilizers; parent material composition; vehicular exhaust;
agrochemicals) can generally cause the enrichment of PTEs in agricul-
tural soil (Chen et al., 2008; Nicholson et al., 2003).

Additionally, As is also found in the continental crust, primarily in
inorganic form (arsenic compounds) associated with igneous and sedi-
mentary rocks. For example, Holub (1997), discovered a high concen-
tration of arsenic in Central Bohemian (Czech Republic) Pluton parent
rocks ranging from 20 to 50 mg · kg−1. Although there is no historical
record of PTEs in the selected study field, the soil type in the area is
Cambisols on sedimentary rocks. This highlights the possibility of
PTEs, particularly As, because, according to Li et al. (2021) and Patel
et al. (2005), as stated above, weathering of rock is a likely source of
soil As pollution.
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Therefore, the objective of this study was to investigate the feasibil-
ity of using an ensemblemodel withmultiple pre-treatment algorithms
and coupled with pXRF and field Vis-NIR spectra data for the prediction
and mapping of soil As content. Specifically, to apply this methodology
in an agricultural soil with no historical background of pollution or
close to any toxics production sites or industries. The main goal was to
compare the results of the individual calibration algorithms (PLSR,
SVM, RF, and cubist) with the ensemble model, and to verify through
comparison which approach could predict and map soil As content
more accurately. Additionally, spatial distribution maps of As within
the study site were assessed for each model using the pXRF-As values
and the predicted values using the Inverse Distance Weighting (IDW)
Interpolation method.

2. Material and methods

2.1. Study site, soil sampling, and field spectra measurement

The study site is an agricultural field located in Nová Ves nad
Popelkou, 22 ha (50°31′ N; 15° 24′ E), Czech Republic with a mean
Fig. 1. Location of sampling site at Nová
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altitude of 185 m above sea level. This area is known for some agricul-
tural and irrigation activities. The chosen area was representative of
the soil caps, which were homogeneous and comparable in terms of
terrain characteristics, land management, and climatic conditions
(Schmidt et al., 2010). The most dominant crops are winter and spring
cereals. According to the IUSS Working Group WRB (2014), the soils
in this region are predominantly Cambisols on sedimentary rocks.

During soil surveys, using the grid sampling approach (with 40 m
spacing) spread across the entire field (Fig. 1), 130 spectra observations
were collected in the field using an ASD Field Spec III Pro FR
spectroradiometer (ASD Inc., Denver, CO, USA) in the 350–2500 nm
wavelength range. The spectroradiometer spectral resolution was
2 nm for the region of 350–1050 nm and 10 nm for the region of
1050-2500 nm. Additionally, to prevent meteorological conditions con-
straints, a contact probe device with a 2-cm-diameter circle viewing
area and its own light source was used (Waiser et al., 2007). The spec-
trometer was standardized using a Spectralon® panel (Lab-sphere,
North Sutton, New Hampshire, USA) with 99% reflectance preceding
thefirst scan and after every tenmeasurements (Shi et al., 2016). During
the field spectra measurement, soil samples from each of the 130-
Ves nad Popelkou in Czech Republic.
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sampling points were also collected (depth of 15 cm) in well-labelled
bags (composite sample of approximately 150 to 200 g) and
transported to the laboratory for further analysis. The scanning of each
sampling point and the collection of samples was conducted in three
replicates with an average of three measurements. In the laboratory,
these soil samples were oven dried, ground up and sieved through a
<2 mm stainless steel sieve before analysis.

2.2. Laboratory analysis

2.2.1. pXRF measurements
A portable X-ray fluorescence spectrometer was used to analyse As,

Mn, S, and Fe. Several researchers have also emphasized the effective-
ness of using p-XRFs to rapidly obtain elemental measurements of soil
(Eze et al., 2016; Paulette et al., 2015; Ravansari et al., 2020). The
main component, however, was As. The other elements were included
(for correlation with As) because, they have been shown to influence
As (directly or indirectly, particularly Fe). Fe oxides for instance, are
well-known as spectrally active soil properties that can strongly adsorb
PTEs or have a high affinity for certain PTEs (Axe et al., 2000; Ben-Dor
and Banin, 1995). For the elemental measurement, the pXRFs was
operated in accordance with the manufacturer's instructions
(e.g., calibration, setting the time spent during analysis), to helps reduce
inconsistencies and inadequacies in the resulting output. The sample
was lightly tapped within the cup for uniformity before scanning. This
was done to enhance the sample surface area and the layer through
which the X-rays may penetrate adequately. After that, each sample
was scanned for 60 s using a pXRF spectrometer (Delta Premium XPD
600, Olympus Innov-X, USA) connected to a computer loaded with the
pXRF software (Weindorf et al., 2013, 2016). The “Soils Mode” was
used for measurement. Each sample was scanned three times
(amounting to 180 s total time), and the average of the three measure-
ments was calculated and used as the final element. For quality control
and assurance, the analysis used the quality assurance and control pro-
cedure, as well as the standard reference material for a portable device
(i.e., XRF 2711a NIST, the National Institute of Standards and Technol-
ogy). The detection limits for the main elements were As <5 mg/kg
and <10 mg/kg (Fe).

2.2.2. Soil chemical analyses
Other auxiliary soil properties that can influence As due to their

high adsorption with PTEs (soil organic carbon (SOC), soil pH)
were also determined (correlation test). Measurement of SOC was
carried out in two steps using the dichromate redox titrationmethod
(Skjemstad and Baldlock, 2008). The samples were initially oxidized
with K2Cr2O7 and afterwards, the solution was potentiometrically
titrated with ferrous ammonium sulphate (FeH8N2O8S2). The soil
pH was measured using a 1:5 (w/v) ratio of soil and water (pH-H2O)
and 1 M potassium chloride (pH-KCl) solution (ISO 10390:1994)
using an inoLab Level 1 pH meter (WTW GmbH & Co. KG, Weilheim.
Germany).

2.3. Spectra data pre-processing approaches

Spectral data are influenced by a variety of undesirable variations
(Ben Dor et al., 2015), and as a result, treatment algorithms are com-
monly used as a remedy. One of the major benefits of using data pre-
processing, particularly for field spectra data, is that it can help mini-
mize or eliminate majority of these unwanted variations (e.g., baseline
changes, peak shifts, scattering, noises, missing values, e.t.c) that can
occur during samples collection and preparation. These variations may
at times obscure the “true” chemically relevant underlying structure,
thereby lowering the prediction accuracy of the parameter under con-
sideration (Engel et al., 2013; Rinnan et al., 2009).

The original spectral range was 350–2500 nm; however, the noisy
portions between 350 and 399 nm was eliminated, leaving the range
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of 400–2500 nm before spectral pre-treatment. The raw spectra were
transformed into reflectance and were then subjected to the following
set of pre-processing techniques. Savitzky-Golay filter (sg) (adjusted
for second-order polynomial fit with 31 smoothing points) from signal
R package (Signal Developers, 2013). Discrete wavelet transformation
(dwt), first-order derivative (d1), second-order derivative (d2) and
multiplicative scatter correction (msc)were calculated using pls R pack-
age (Mevik and Wehrens, 2007). Standard normal variate (snv), loga-
rithmic transformation (log) as (log(1/R)) and continuum removal
(cr) (Vašát et al., 2017) and correction by the maximum reflectance
(cmr) from the tripack R package (Renka, 1996). In addition following
combinations were also used sg_d1, dwt_d1, sg_d2, dwt_d2, sg_msc,
dwt_msc, sg_snv, dwt_snv, snv_msc, sg_snv_msc, dwt_snv_msc,
sg_log, dwt_log, log_msc, sg_log_msc, dwt_log_msc, log_snv,
sg_log_snv, dwt_log_snv, sg_cr, dwt_cr, sg_cmr, dwt_cmr. This was
done to select the most accurate result for each individual modelling
techniques. Before the prediction of As, four outliers were removed to
improve predictive performance. It is worth mentioning that only the
three best pre-treatment results and the raw dataset (no pre-
treatment applied) for each calibration technique are shown. For the
spectra pre-processing, the R software's (R Core Team and Team,
2015) was used.

2.4. Correlation and spatial distribution maps

A correlation matrix was created to observe the relationships be-
tween As and the selected auxiliary components (soil pH, SOC, Mn, S,
Fe). This was done to determine which of these components were
closely related to As content and could potentially influence its estima-
tion. Lastly, the spatial variability of soil As contents was mapped using
the inverse distance weighting (IDW) interpolation method with the R
package gstat (Pebesma, 2004; Gräler et al., 2016). Spatial interpolation
techniques are noted to estimate values at an unmeasured location by
using point measurements within a given sample space (Qiao et al.,
2018). However, selecting an appropriate interpolation strategy for dif-
ferent occurrences and datasets presents numerous challenges (Liao
et al., 2018; Qiao et al., 2018). For example, field intricacy, and a large
amount of inefficiently collected geographical data can be problematic.
The Inverse Distance Weighting (IDW) algorithm is among the most
frequently used spatial interpolation techniques in soil science because
of its ease of application. IDW uses a linear combination of values to es-
timate the values of the unknown area within the sampling space and
allocates weights using its inverse function. Due to its ability to assign
weights before prediction, IDW can have a lower error margin than
other interpolation methods which make it more suitable for creating
spatial distribution maps more accurately (Liao et al., 2018; Xie et al.,
2011).

2.5. Multivariate modelling and models

To make sure the results were not dependent on the multivariate
model, four separate multivariate techniques were evaluated individu-
ally, namely cubist, SVM, PLSR, RF. The R software (R Core Team and
Team, 2015) was used for both modelling and prediction for each of
the technique detailed below.

2.5.1. Cubist
The cubist method was used to calibrate the regression tree models

using the train function of the caret package in R. The cubist model is a
kind of tree structure modelling based on an M5 algorithm (Quinlan,
1992) To avoid overfitting, cubist uses linear regression models at
each node instead of the average (Kuhn and Johnson, 2013), For this
study, the default number of committees (1, 10 and 20) and neighbours
(0, 5, and 9) from the train function were used, giving us a total of nine
models. The root means square error (RMSE) was used to select the
best models.
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2.5.2. Support vector machine (SVM)
Similarly, for this study, the SVMwas tuned to different cost param-

eters using the grid search's built-in turning function (specifically,
0.001, 0.01, 0.1, and 1) in R's package e1071 library, while the epsilon
parameter was left at its default value (0.1). Based on the RMSE, the
best cost parameter was selected from bootstraps based on a 10-fold
cross validation.

2.5.3. Partial least square regression (PLSR)
The PLSR algorithm offers the benefit of removing the issue of mul-

tiple collinearities between the independent variables (Næsset et al.,
2005). For the current study, the model was made to run and test itself
for each number of components, i.e. from 1 to 10 (the maximum num-
ber ofmodel componentswas set to 10). The optimal number of compo-
nents was selected based on the lowest RMSE. The model was then re-
calibrated and validated, the R2 and the RMSE were computed.

2.5.4. Random forest (RF)
The RF algorithm was specially formulated to reduce experimental

noise and improve prediction accuracy (Liaw and Wiener, 2002). The
dataset under evaluation was divided randomly into several training
sets, and decision trees created to utilize the bootstrap re-sampling ca-
pability. The final prediction was calculated using the average of the in-
dividual tree outputs. The random forest R package, which includes
homonymous (Liaw and Wiener, 2002), was used. A total of 500 trees
were used, with 35 variables randomly selected as candidates at each
split.

2.6. Construction of the ensemble model

Each of the four best performing predictions obtained from the four
techniques (SVM, PLSR, RF, and cubist) was assigned a specific weight
using an automated approach that involved testing all possible combi-
nations of predefined weights (routine sequence values from 0.05 to
0.95). The only requirement is that they must add up to one. The
weights for each basemethodwere determined by testingmultiple pos-
sible cases with a precision of two hundredths. In practice, we
proceeded by creating all possible permutations with repetition about
the size of four elements (the number of predictive algorithms used)
from a set of possible numbers n as weights, which was a sequence
from 0 to 1 by 0.02. Subsequently only the foursomes that summed up
to 1 were used as weights. All those sets of weights were then used
one by one for the weighted average of the predictive algorithms and
the particular validation statistics was recorded. The set of weights
that yielded the lowest RMSE was taken as the most suitable one. In
more detail, since an n-fold cross-validationwas employed, all four pre-
dictive algorithms were run at each data split and weighted averaged.
As an input to the ensemble model, these four individual predictions
(which had already been cross-validated)were adjusted by theweights
of the initial permutation and then added. In addition, for each ap-
proach, the ensemble model employed the best treatment algorithm
Table 1
Statistical summary of soil attributes.

na Mean Median SDb

As (mg/kg) 126.00 13.42 12.75 4
S 130.00 249.97 249.00 44
Mn 130.00 1153.82 1139.00 260
Fe 130.00 18,314.60 16,997.75 4000
SOC (%) 130.00 1.44 1.45 0
PH 130.00 6.39 6.39 0

a n: number of samples.
b SD: standard deviation.
c Min: minimum.
d Max: maximum.
e CV: Coefficient of variation.
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(each technique is selected alongside its best treatment algorithm).
The cross-validation statistics were computed by comparing the com-
bined (ensemble) prediction and observed values, using100-repetition
runs. The validation statistics were then calculated from these number
of runs as a mean value. The same approach had been used to process
all permissible permutations, yielding a set of ensemble models with
cross-validation statistics. As a consequence, a large number of ensem-
bles learning runs were created based on the number of admissible
permutations. The result with the lowest RMSEcv was selected as the
most suitable.

2.7. Model and spatial distribution map validation assessment

The model's output was assessed by a five-fold cross-validation for
each regression procedure of the calibration (75%) and validation set
(25%) of the samples using cubist, SVM, PLSR and RF modelling tech-
niques. The accuracy of the prediction was assessed based on the coeffi-
cient of determination (R2

CV), the ratio of performance to interquartile
range (RPIQ), and the root mean square error of prediction (RMSEcv)
(measures the model overall prediction accuracy) of the 5-folds cross-
validation. The bias represents the amount that amodel's prediction dif-
fers from the target value. The R2

CV ranges from 0 to 1, where R2
CV = 1 is

the optimal value. Thefive-fold cross-validationwas repeated 100 times
to ensure model stability and reliability.

3. Results and discussion

3.1. Measured data

3.1.1. Descriptive statistics of as, andfive other soil attributes (SOC, Fe, S,Mn
and soil pH)

According to the summary statistics results (Table 1), arsenic (As)
had the most positively skewed distribution, with a skewness of 1.68,
a standard deviation of 4.3 and a significant variability ranging from
6.85 to 29.35 [all in mg/kg]. Additionally, As content was found to vary
more than any of the parameters measured, presenting a substantial
coefficient of variation (CV) value of 32%, which implies that As has a
high chance of being influenced by external causes such as human
activities (Chen et al., 2008). Total Fe provided the highest mean of
18,314.60 mg/kg, as well as the second-best skewness value of
1.16 mg/kg. SOC had the lowest mean of 1.44% because its predicted
content within the study area is low according to other studies in the
area (Biney et al., 2021; Biney et al., 2020; Gholizadeh et al., 2018).
The soil pH ranged from moderately acidic (5.56) to slightly alkaline
(7.76), with amean value of 6.39. The CV for pH is not reported because,
the CV is restricted to variables measured on scales with an absolute
zero: pH has an arbitrary zero. The arbitrary choice of zero affects its
CV. Sulphur was the least varied parameter, with a CV of 18 mg/kg
and also the lowest skewness value. Finally, Mn had the second highest
mean, trailing only Fe, aswell as the secondmost varied element, with a
CV of 23%.
Skewness Minc Maxd CVe%

.30 1.68 6.85 29.35 32

.31 0.14 148.00 394.50 18

.68 0.71 622.00 2101.50 23

.30 1.16 11,653.50 30,086.50 22

.33 0.57 0.60 2.93 23

.28 0.99 5.56 7.76



Table 2
Prediction performance showing Statistics of the five-fold leave-group-out cross-valida-
tion for soil As content using PLSR (partial least square regression), RF (random forest),
cubist, SVMR (support vector machine) and the ensemble model (combination of all four
models) with several pre-treatment algorithms combination.

Treatment R2cv RMSEcv RPIQ BIAS

SVM
Raw 0.64 2.57 1.41 −0.0674
sg 0.71 2.35 1.83 −0.0317
dwt 0.75 2.16 1.99 0.0613
msc 0.71 2.33 1.84 −0.0422

RF
Raw 0.30 3.59 0.99 −0.1059
sg_d1 0.57 2.84 1.25 −0.0799
sg_d2 0.64 2.65 1.34 −0.0605
dwt_d2 0.63 2.64 1.34 −0.0861

PLSR
Raw 0.64 2.58 1.37 0.0061
d1 0.71 2.29 1.55 −0.0468
dwt_d1 0.72 2.28 1.56 −0.0093
dwt_d2 0.71 2.30 1.54 −0.0506

Cubist
Raw 0.56 2.92 1.21 −0.0203
Log 0.65 2.55 1.39 −0.0115
snv_msc 0.64 2.59 1.37 −0.0115
msc 0.61 2.70 1.32 −0.0337

Ensemble
Combined treatment 0.80 1.91 2.11 −0.0111
dwt+
sg_d2+
dwt_d1+
Log

Ensemble structure (with weights): As = 0.20AsPLSR; dwt_d1 + 0.54AsSVM; Dwt +
0.24AsRF; sg_d2 + 0.02Ascubist; log.
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3.1.2. Influence of other soil attributes on as
Several studies conducted over the last two decades discovered that

As and other PTEs availability, mobility and distribution in the soil could
be influenced by their adsorption relationship to many factors and pa-
rameters. These includes, but not limited to the following organic mat-
ter concentration, pH, Fe, Mn, temperature, SOC, clay, soil particle size,
phosphate and Fe-oxide content in the soil (Cao and Ma, 2004; Hale
et al., 1997; Horta et al., 2015; Mandal and Suzuki, 2002; Warren
et al., 2003; Xie et al., 2012). In order to test and confirms this hypothe-
sis, the correlation coefficients between As and some of these soil prop-
erties and metals (S, Mn, Fe, SOC, soil PH) were calculated (Fig. 2). This
was done to help ascertain the primary contributing factors of high As
prediction found in an agricultural site that is not nearby any industries
or landfills site that generatewaste substanceswhichmay contain some
amount of toxic elements.

For the result, total Fe (R = 0.53) was the most correlated compo-
nent to As. SOC correlated negatively with As (R=−0.34), the remain-
ing components were only weakly correlated with As. According to Fitz
andWenzel (2002), Fe-oxides and Fe-hydroxides have been identified as
some of the primary active elements that influenced soil-As retention
ability. Furthermore, PTEs have been found to bond and interact with
primary spectrally active soil constituents, including SOC and other
forms of Fe content in the soil (Song et al., 2012; Wu et al., 2005). In
the current study, these two soil properties were the only components
with some degree of correlation with soil As. Khosravi et al. (2017)
showed that Fe can affect the prediction of As and some other PTEs. Al-
though, SOC may also play a role in As prediction. One possible reason
for this is that, if the inorganic constituent level in soils is higher than
the organic constituent content, spectral measurements can be signifi-
cantly influenced. Moreover, the bonding effects of Fe and Al com-
pounds promote As adsorption by soil organic matter (SOM) (Lin
et al., 2004). For example, Hartley et al. (2004) used Fe-oxide tomitigate
As concentration in an As-contaminated soil because Fe is known to ad-
sorb As. Even though, Fe had a good relationship with As for the current
study, however, presumably, its content was not enough or the total Fe
were non-reactive to cause the adsorption of As for this study field.
Fig. 2. Correlation matrix showing scatter plots, histograms, and Pearson's correlation coeffici
correlation at p-values of 0.05, 0.01 and 0.001, respectively.
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According to Misra and Tiwari (1963), several studies have found out
that, soils with high levels of reactive iron parameters absorb more As
than soils with a comparable texture but low levels of iron.
ents between As and the other soil attribute values. *, ** and *** represent the significant
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3.2. Evaluation and comparison of models, as well as the impact of pre-
treatment algorithms

3.2.1. Predictive performance of soil As content using the stand-alone
modelling algorithms

Field spectra in the Vis-NIR range were used to predict soil As
throughout the study area using an As data set measured in the lab-
oratory with the pXRF for each of the 130 samples collected. Though,
all the separate calibration techniques demonstrated acceptable pre-
diction of soil As content [ranging from R2

CV = 0.64 to 0.75, RPIQ =
1.34 to 1.99, and RMSEcv = 2.16 to 2.59], however, in general,
SVM_dwt model provided the most appropriate result (Table 2)
with the highest R2

CV and lowest error values compared to the other
techniques in an order of PLSR_dwt_d1 > cubist_log > RF_sg_d2.
According to Stevens et al. (2010), SVM is known for its ability to
estimate and improve nonlinear structures in multidimensional do-
mains. Several other studies have also demonstrated the pre-eminence
of SVM over other multivariate techniques (Lucà et al., 2017; Xu et al.,
2020).

The predictions from the separate multivariate techniques
(Table 2) were obtained with distinct pre-treatment algorithms
(dwt, sg_d2, dwt_d1, and log). For example, the dwt algorithm is
commonly used to filter and normalize spectra data, thus accounting
for discrepancies during sample preparation (Viscarra Rossel et al.,
2016), smoothing with Sg is often used to eliminate artificial noises
within the working spectral range, log is used for the attainment of
linearization between the predictors and response variables, while
the first derivatives were used in the study by Gholizadeh et al.
(2018) to eliminate baseline offset. This is an indication that, the
field spectra data were most likely affected by multiple variations
Fig. 3. Observed vs. predicted As content (%) values for each of the four calibrations tec
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(artefacts) and therefore, a single treatment strategywas insufficient
to provide a comprehensive rectification of these variations in order
to improve the prediction accuracy of As. For example, without the
introduction of the treatment algorithms, the results obtained for
each calibration technique were poor to average [ranging from
R2
CV = 0.3 to 0.56, with error margins of 2.92 to 3.59], except for

SVM and PLSR, which provided good results [R2
CV = 0.64, (Table 2,

raw data)].
The Scatterplots (Fig. 3) show the results of predicted versus ob-

served for As predictive accuracy using the four individual predictive
techniques. Though, some extreme points are seen for each tech-
nique particularly for RF_sg_d2 and cubist log_log, these points
may not necessary be classified as outliers or if outliers, then they
could be positive outliers containing vital information about the
data set. For instance, before prediction of As, four (4) outliers were
removed from the data set (result not shown) using a local outlier
factor (LOF) algorithm procedure proposed by Breuniq et al.
(2000). This is because, the prediction accuracy for the techniques
improved after the outlier's removal except for cubist (which re-
mained the same). The LOF algorithms examine the density of a spe-
cific point's neighbours to determine its density, then compare it to
the density of other points, and employ a local approach to detect
outliers within the neighbourhoods. This is in agreement with
Murray (1988), who stated that, outlier removal improves predic-
tion accuracy. However, according to Frost (2019), some of these
outliers may also contain vital information and their removal could
affect the accuracy of prediction. In terms of prediction accuracy on
the test set, it was clear that SVM and PLSR look similar, whereas
RF and cubist provided nearly identical outputs in terms of coeffi-
cient of determination but differed in terms of RPIQ values. This
hniques (PLSR, SVM, MLR, and RF) with the best treatment algorithms employed.
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was the generated output which was fed into the ensemble order to
improve the prediction accuracy of As by combining the four model-
ling techniques predictions.
3.2.2. Assessment of the ensemble model for soil as prediction
Consequently, the ensemble Vis-NIR spectra model (which is com-

bining of several individual predictions made with different calibration
techniques into a single final one), outperformed these algorithms in
terms of soil As prediction accuracy. It provided the lowest RMSEcv
(1.91 mg/kg) as well as the highest prediction accuracy [R2

CV = 0.80,
RPIQ = 2.11, BIAS = − 0.111] compared to the best result obtained
by the separate techniques [R2

CV = 0.75, RMSEcv =2.16, RPIQ = 1.99,
BIAS = 0.0613, SVM]. Moreover, the ensemble model, in particular,
obtained RMSEcv improvements of 25–74%, highlighting the potential
of the ensemble model for soil As prediction. This result (ensemble)
was achieved by minimizing the limitations and drawbacks of each
technique and maximizing the responses of the combined models
(Arabameri et al., 2019; Kalantar et al., 2018; Martre et al., 2015). Fur-
thermore, diverse signal pre-processing strategieswere explored, yield-
ing a large number of individual predictions as input for the ensemble
model. Notably, the best pre-processing algorithms for each technique
that makes up the ensemble model were used, allowing for a complete
correction of the variety of artefacts present (Mishra et al., 2020). Addi-
tionally, the variability of As (Table 1) within the study site could have
probably be a contributing factor for the ensemble model's improved
performance. According to Liu et al. (2015), the ensemble model may
be more effective if the individual predictive techniques vary in terms
of the nature of the predictive algorithm and the structure of the pro-
vided parameters.

It is also worth noting that, choosing the best pre-treatment for a
specific spectra data set can be difficult, especially when using mul-
tivariate techniques separately. According to Oliveri et al. (2019),
this is due to a lack of clear guidelines for determining when to use
a specific pre-processing approach, i.e. whether to use a single or a
combination of treatment algorithms. Normally, the user is required
to explore all possible alternatives in order to determine which algo-
rithmmay be best for the data set under consideration (Mishra et al.,
2020). According to the findings in this current study; using an
Fig. 4. Spatial As and Fe distribution maps based

8

ensemble model as a solution to the aforementioned problem could
be a viable option.

3.3. Comparison of soil spatial distribution maps produced by individual
techniques and the ensemble model

Both pXRF-laboratory measured and Vis-NIR-predicted As content
(using the individual techniques and the ensemble model) were used
as an example to validate the feasibility of detecting the spatial distribu-
tion of soil As content. Thiswas done in order to detect areaswith higher
As content as well as the spatial prediction of As for each algorithm and
the ensemble model. As Fe was most strongly correlated, a spatial
distribution map of Fe was also created using Fe-pXRF-measurements,
to compare to As-pXRF. The results show that, while the hotspots for
Fewere spread across the entire study field, for As, it was concentrated
in a few selected sections (specifically, the northern section), but was
broad in scope than that of Fe (Fig. 4). Finally, the spatial distribution
maps of the measured and predicted As presented in Fig. 5 show that
overall all the predictive techniques were able to detect both low and
high estimated values of soil Aswithin the studyfieldwith the ensemble
model showing greater detail. While high concentration levels of As
were predicted around the northern section, lower levels were pre-
dicted around the east-southern section of the study field (Fig. 5).
Fig. 6 shows the difference between the interpolated predicted and
measured values. Although areas of overprediction andunderprediction
are similar among the algorithms, the prediction error appears less
extreme for the ensemble model. This shows that especially with the
ensemble model the spatial variability of soil As and its level of concen-
tration could be reasonably identified by interpolating predicted As
values. This implies that, Vis-NIR data in combination with IDW has
the potential to roughly and rapidly reveal spatial patterns of soil As.

In summary, we identified and could predict levels of Arsenic in an
agricultural field with no history of pollution or close to any landfills
or industries that generate toxic waste element. Therefore, this study
agreeswith Chen et al. (2008) andNicholson et al. (2003) that, common
agricultural practices can influence the cause of PTEs in agricultural soil.
Disentangling the origin of As is a question this current study could not
answer. However, this study demonstrates that the focus for estimating
PTEs should not be limited to agricultural soil or areas near industries
on laboratory measurement pXRF values.



Fig. 5. Spatial As distribution maps based on the best prediction outcome from field spectroscopy and pXRF data for individual techniques and the ensemble model [SVM(a), RF (b), PLSR
(c), cubist (d), ensemble model (e)].
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with toxic waste, but also to agricultural fields with no such records to
help discover the early level of PTEs. The developed ensemble models
for this study are robust and effective at not only predicting PTEs in ag-
ricultural soils but also reduces the error margin.

4. Conclusion

The use of pXRF (lab) and field spectroscopy data coupled with an
ensemble model [PLSR, SVM, random forest, and cubist] predicted soil
As content more accurately than each of calibration techniques used
separately. Among the other auxiliary components used (soil PH, Mn,
S, Fe, and SOC), known to influence As content in the soil, Fewas corre-
lated most strongly to As than any of the other components. The study
also shows that, agricultural field with no historical background of
9

PTEs pollution or in close proximity to any industries that produce
and release harmful substances, need more attention from researchers
to unearth hidden PTEs at the early stages. This is due to the tendency
that, unknowing, the health of human and other organisms could be
negatively impacted. Although there were similarities in terms of
the spatial distributionmap between the individual approaches, the en-
semble model better resembled the measured data. Based on our find-
ings, the ensemble model appears very promising because it also
provided the lowest error margin [RMSECV = 1.91 as against 2.16], an
error improvement of between 24 and 74% among the individual
techniques. Therefore, the study recommends its inclusion in studies
testing Vis-NIR spectroscopy and pXRF data to estimate and mapped
soil As more accurately, as well as other PTEs, though further studies
are still required, especially using larger data sets.



Fig. 6. Differences in spatial As distribution (predicted-measured) for individual techniques and the ensemble model [SVM(a), RF (b), PLSR (c), cubist (d), ensemble model (e)].
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Abstract 14 

Estimating soil organic carbon (SOC) using visible near infrared (Vis-NIR) spectroscopy has proven to 15 

be a rapid and reliable approach. However, when working across large geographical scales, remote 16 

sensing may be more suitable. Acquiring these spectra data normally under different measurement 17 

conditions could introduce artefacts that reduce SOC prediction accuracy. A common procedure has 18 

been using calibration or multivariate techniques in conjunction with one or more pre-treatment 19 

algorithms. The results of several comparative studies based on these predictive calibration techniques 20 

used alone were inconsistent. Moreover, protocols to select the most appropriate pre-treatment 21 

algorithms rarely exist. This study combines predictions from different techniques into a single model 22 

based on an ensemble learning approach. The main objective is to improve the accuracy of SOC 23 

prediction by assessing the effectiveness of using different calibration techniques individually against 24 

an ensemble model consisting of one statistical method, which includes partial least squares regression 25 
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(PLSR), and three machine learning (ML) algorithms, including random forest (RF), support vector 26 

machine regression (SVMR), and Cubist. Several pre-treatment algorithms were also employed to 27 

improve the spectral data before prediction. Spectra data were collected from three different agricultural 28 

fields (with different soil types), under different spectral measurement conditions (field, wet and dry). 29 

Additionally, Sentinel-2 (S2) data was collected from one of these fields. Furthermore, to ascertain the 30 

effectiveness of the developed model on regional scale dataset, two options were employed: (1) merged 31 

data from all fields, and (2) merged data from fields measured under the same spectral measurement 32 

conditions. The models were evaluated using root mean square error of prediction (RMSEPCV), the 33 

coefficient of determination (R²CV), the ratio of performance to interquartile range (RPIQ), the ratio of 34 

performance to deviation (RPD) and BIAS. The results show that, across the three agricultural fields, 35 

the ensemble model predicted SOC more accurately than each of the individual calibration techniques 36 

(R2
CV = 0.92, RMSEPCV = 0.10, RPD = 3.06, RPIQ = 3.74, BIAS = 0.0067). The models derived from 37 

merged data (regional dataset) show that the ensemble approach predicted SOC more accurately with 38 

option 2 than option 1. Finally, while the ensemble model improves SOC accuracy with S2 data, the 39 

final output was poor. Further research to determine the underlying problem is strongly recommended. 40 

Nonetheless, these results indicate that the ensemble model is advantageous because it improved the 41 

prediction accuracy of SOC and reduced the error margin. 42 

Keywords: Ensemble predictive model; Soil organic carbon; Agricultural soil; Spectroscopy (field-wet-43 

dry); Sentinel-2; Pre-treatment 44 

1. Introduction 45 

Essential ecological resources, such as food and fibre production, are under threat because of the 46 

pressures on soils and their carbon stocks stemming from rapid urban growth, land degradation, and 47 

intensive agriculture. There is a growing need for accurate monitoring of soil organic carbon (SOC), as 48 

carbon losses can have negative impacts on agricultural soil productivity and ecosystem health while 49 

contributing to increasing atmospheric greenhouse gas concentrations (Lausch et al., 2019; Paustian et 50 

al., 2016; Zádorová et al., 2015; Sanchez et al., 2009; Van Oost et al., 2007; Lal, 2004) 51 
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Visible near-infrared (Vis-NIR) spectroscopy has proven to be a rapid, accurate, and trustworthy 52 

approach to estimate SOC. However, acquiring these spectra data under different measurement 53 

conditions could introduce artefacts or other factors that increase the chances for inaccuracies. These 54 

can result, for example, from the number of field observations, the density of soil samples, the target 55 

variables, possible soil properties (i.e., chemical, physical, biological, etc.) and perhaps other soil 56 

constituents (see e.g., Stenberg et al., 2010). According to Ben-Dor et al. (2015), a key Vis-NIR 57 

limitation is that soil spectral information is susceptible to the conditions in which the soil is scanned. 58 

This can have a significant impact on the measured reflectance spectra and obtained calibration models, 59 

reducing the accuracy of SOC prediction (Ge et al., 2011). 60 

In recent years, more modern, dynamic, and comprehensive multivariate calibration approaches using 61 

linear and non-linear methods and machine learning (ML) algorithms (e.g., Lamichhane et al., 2019; 62 

Heung et al., 2016; Stevens et al., 2010; Viscarra Rossel and Behrens, 2010) have been used to retrieve 63 

vital information from proximal and remote sensing datasets (e.g., Carmon and Ben-Dor, 2017; Viscarra 64 

Rossel et al., 2016) to estimate SOC as well as other soil properties. Additionally, through the use of 65 

digital soil mapping (DSM), these ML algorithms can create a possible relationship between soil and 66 

environmental predictor variables to predict soil properties such as SOC for areas that have not been 67 

physically sampled (Padarian et al., 2020; Taghizadeh-Mehrjardi et al., 2020). Unfortunately, the results 68 

of several comparative studies based on ML algorithms were not consistent (Wang et al., 2018; Jeong 69 

et al., 2017; Were et al., 2015). This is because the predictive algorithms' output may be influenced by 70 

a range of factors or artefacts. Furthermore, different ML algorithms can identify different sets of 71 

important predictor variables when estimating SOC. According to Diettrich. (2002), the solution to this 72 

issue may lie in combining multiple individual prediction models made with different calibration 73 

techniques into a single model, using ensemble learning theory and selecting appropriate pre-treatment 74 

options to minimise or eliminate artefacts.  75 

Ensemble models are defined as machine learning models in which several learners are trained to 76 

address the same problem (Dietterich, 2002). As a result, the ensemble model will be presented with a 77 

broader range of individual predictions as data input. The eventual prediction is estimated based on 78 
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either an average or weighted average of these individual algorithms. The assumption is that the new 79 

model would be at least as good as all individual models effectively using all available information 80 

(Diks and Vrugt, 2010). However, to further improve the predictive accuracy of the calibration, model 81 

pre-treatment methods may be needed; but, there is no hard-and-fast rule for determining a specific pre-82 

treatment and, more importantly, the specific multivariate algorithm to match it. 83 

The ensemble model constructed for this study consists of a combination of four individual modelling 84 

techniques: one statistical method, which includes partial least squares regression (PLSR), and three ML 85 

algorithms, including random forest (RF), support vector machine regression (SVMR), and Cubist. 86 

Additionally, 32 pre-treatment algorithms with several combinations for removing noise and other 87 

irrelevant information from the spectra before prediction were also employed to assess the likelihood of 88 

enhancing the predictive efficiency of spectroscopic models to predict SOC accurately. The model will 89 

first return the results for each technique and their best pre-treatment algorithms (after exploring all the 90 

several pre-treatment algorithms available). The best output for each technique, together with its optimal 91 

pre-treatment, will then be fed into the ensemble model in a combined form (single unit) as an input to 92 

generate the ensemble model prediction outcome using a weighted average approach. 93 

Although the ensemble theory is not new, it has yet to be fully explored on all the numerous ML and 94 

statistical approaches currently available. Furthermore, its application in soil science is limited in 95 

contrast to other fields of study (Li et al., 2021; Li et al., 2021; Huang et al., 2020; Kalantar et al., 2020; 96 

Ma et al., 2019; Althuwaynee et al., 2014; Engler et al., 2013; Chi et al., 2009, etc.). In soil carbon 97 

research, it’s been used for the assessment of SOC biogeochemical processes (Farina et al., 2021), for 98 

identifying trends in SOC stock using time series data (Riggers et al., 2019), for modeling SOC using 99 

topographic attributes and vegetation indices (Tajik et al., 2020), and for analysing laboratory dry data 100 

to estimate SOC content (Vaát et al., 2017). It has, however, not yet been widely researched for SOC 101 

prediction using wet and field spectra data and employing both Sentinel-1 and 2 imagery. 102 

In this study, Vis-NIR spectroscopy datasets were collected in three different agricultural fields in the 103 

Czech Republic (with different soil types) under different spectral measurement conditions (dry, field 104 

and wet). The goal of this study is twofold: (i) to use Vis-NIR spectroscopy datasets to predict SOC 105 
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more accurately using ensemble models while employing the most appropriate signal pre-treatment 106 

strategy, and (ii) to verify the suitability of the developed ensemble model on two other datasets (i.e., a 107 

remote sensing dataset [Sentinel-2 imagery (S2)] acquired from only one of the study fields and a 108 

regional scale dataset obtained by merging different spectra data). 109 

2. Materials and methods 110 

2.1. Study areas 111 

For this study, three different agricultural sites of varying soil types and in different parts of the Czech 112 

Republic were selected: Vidim, Bromovice, and Nová Ves nad Popelkou (Field A, Field B, and Field 113 

C, respectively) (Figure 1). These fields are examples of intensively farmed arable land.  114 

2.1.1. Vidim (Field A) 115 

Vidim is an agricultural site spanning 8 ha (50°28'4.262 "N, 14°31'32.968"E, altitude 315–323 m above 116 

sea level (a.s.l.), average annual temperature 7–8 °C, average annual precipitation 550–650 mm) situated 117 

in the northern part of the Czech Republic. This area features traditionally cultivated farmlands that are 118 

severely affected by water erosion due to significant slope and intensive ploughing. The soil texture is 119 

mainly silt loam (Antonín et al., 2021a). From the top to bottom, the soil units were recognised as Haplic 120 

Luvisol on loess and loess clays, Regosol, and Colluvic Regosol (Zádorová et al., 2014). According to 121 

the World Reference Base (WRB) for soil resources (IUSS Working Group, WRB, 2014), the soils are 122 

characterised as Haplic Luvisol, Regosol and Colluvial soil 123 

.2.1.2. Brumovice (Field B) 124 

The Bromovice study area (100 ha, 48°57'38.864"N, 16°53'46.153"E, altitude 187–227 m a.s.l., average 125 

annual temperature 9–10 °C, average annual precipitation 550–650 mm) developed on loess substrate 126 

and is located in the southeast of the Czech Republic. The area's soil is among the most fertile in the 127 

Czech Republic. Wheat and sweet corn are the two most dominant crops grown in this area. The soil 128 

texture is mainly Silt loam, Loam (1st) (Antonín et al., 2021b).  However, as a result of significant slope, 129 

the land is affected by water erosion, with distinct erosion furrows occurring mostly in the steepest parts 130 
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of the area. The area was once covered evenly with a distinct soil unit known as Haplic Chernozem. 131 

Nevertheless, three different soil types; Regosols (degraded Chernozem), colluvial Chernozem, and 132 

colluvial, later evolved due to intensive machinery cultivation and subsequent intense water erosion 133 

depending on the topographical conditions of the area. As per the World Reference Base for Soil 134 

Resources (IUSS Working Group WRB, 2014), all the soil units were finally classified as Haplic 135 

Chernozem, Regosol, Colluvial Chernozem, and Colluvial soil. See, for example, Zádorová et al. 136 

(2011a) or Jakšík et al., (2015) for more extensive characterisation of the area. 137 

2.1.3. Nová Ves nad Popelkou (Field C) 138 

The study field at Nová Ves nad Popelkou (22 ha, 50°31′ N; 15°24′ E) is located in the central Bohemian 139 

region with a mean altitude of 185 m a.s.l. The soils of the representative area chosen are homogenous 140 

and comparable in terms of terrain characteristics, land management, and climatic conditions (Schmidt 141 

et al., 2010). Soil texture in area can be classified as sandy-loam and loam (Gholizadeh et al., 2018). 142 

The most dominant crop is winter and spring cereals. According to the World Reference Base (WRB) 143 

for soil resources (2014), soils of this region are predominantly Cambisols on sedimentary rocks. 144 
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 145 

Figure 1: Locations of each study site in the Czech Republic 146 

2.2. Soil sampling and soil organic carbon laboratory determination 147 

A total of 303 soil samples [Field A (76), Field B (97) and Field (130)] were collected from the 148 

respective agricultural fields via a rectangular grid design from the topsoil layer (0 to 25 cm depth) in 149 

2013 (Field A), 2010 (Field B) and 2019 (Field C) and placed in clearly labelled bags (approximately 150 

150 to 200 g). The size of the sample provided adequate coverage of the fields and was representative 151 

of the area and samples to which the models were developed. Each field's sampling points were selected 152 

separately before the field visit and were located on the field using a GeoXM (Trimble Inc., 2007) 153 

receiver at an accuracy of 1 m. The samples were then air-dried, gently crushed, and sieved to particle 154 
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fraction (to 2 mm) before analysis. SOC measurement was carried out in two steps using the dichromate 155 

redox titration method (Skjemstad and Baldock, 2008). The specimens (samples) were initially oxidised 156 

with K2Cr2O7, and afterwards, the solution was potentiometrically titrated with ferrous ammonium 157 

sulphate (FeH8N2O8S2). 158 

2.3. Laboratory and field spectra measurement 159 

The spectral reflectance of the soil samples for the different Vis-NIR approaches was measured using 160 

an ASD Field Spec III Pro FR spectroradiometer (ASD Inc., Denver, Colorado, USA) with a high-161 

intensity contact probe across the 350–2500 nm wavelength range. The spectroradiometer spectral 162 

resolution was 2 nm for the range of 350–1050 nm and 10 nm for the range of 1050–2500 nm. The 163 

device also has its light source (100 W halogen reflectors lamp), which was used to acquire the soil 164 

spectra in the laboratory (Weiser et al., 2007). For Field C, two different spectral measurements were 165 

taken, namely field and wet spectra. The field spectra were measured in the field. Three spectral 166 

measurements for each sample were collected. The average of these measurements was used as field 167 

spectra for Field C. The sensor was re-calibrated preceding the first scan and after every ten runs by 168 

scanning a Spectralon® (Labsphere, North Sutton, NH, USA) standard white reference panel with 99% 169 

reflectance, reflective area diameter (inches):1.25, housing material: delrin, diameter (inches): 1.5, 170 

thickness (inches): 0.55, and operating relative humidity: 5% - 95%. During the field sampling and 171 

spectral acquisition for Field C, as stated earlier, samples for laboratory analysis were also collected and 172 

immediately upon arrival at the laboratory, spectra readings were taken (three repetitions) and the 173 

average value was used as the wet spectra dataset for Field C. The samples for Fields A and B were 174 

measured in the laboratory using the same procedure as for Field C. However, before the spectral 175 

measurement in the lab, these soil samples were placed in 9 cm diameter Petri dishes to form 2 cm layers 176 

of soil. The samples were levelled with a stainless-steel blade, and three replicate measurements was 177 

taken in the centre of the sample, and the average of each sample was used as datasets for Fields A and 178 

B. The spectrometer was standardised using a Spectralon® panel (Lab-sphere, North Sutton, NH, USA) 179 

(Shi et al., 2016). 180 

2.4. Sentinel-2 imagery acquisition and analysis 181 
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The Multi-Spectral Sentinel-2B imagery used was a cloud-free image-level 2A, which means it is ready 182 

to be used right away because it has already been processed by the providers using Sen2Corprocessor. 183 

These processes include geometric, radiometric, and atmospheric corrections. The imagery was obtained 184 

from the Copernicus Open Access Hub of the European Space Agency on June 26, 2019. The Sentinel-185 

2 image (S2) is made up of 13 spectral bands. These spectral bands range from visible and near-infrared 186 

(vis-NIR) to short-wave infrared (SWIR). There are four bands with a 10 m resolution [(B2, 490 nm), 187 

(B3, 560 nm), (B4, 665 nm), (B8, 842 nm)]; six bands at 20 m resolution [(B5, 705 nm), (B6,740 nm), 188 

(B7, 775 nm), and (B8A, 865 nm); 2 SWIR large bands, (B11, 1610 nm) and (B12,2190 nm)], and 189 

finally, three bands at 60 m resolution [(B1, 443 nm), (B9, 940 nm), and (B10,1380 nm)]. Before 190 

extracting these bands, a pixel resolution re-sampling was performed using 10 m as the reference to 191 

ensure that all the bands were at the same resolution. This was done using the SNAP software. For 192 

further analysis, three bands (B1, B9, B10) were excluded. According to Elhag and Bahrawi (2017), the 193 

selected 10 bands are usually used to assess soil properties. Technical details of the S2 bands used in 194 

this study can be found in the European Space Agency work book, (2010). 195 

2.5. Comparison of spectra data measured under different conditions and the detection and removal of 196 

outliers 197 

When scanning soil materials with spectroscopy in the Vis-NIR range, certain soil properties (e.g., 198 

minerals, soil moisture content, etc.) and other factors of a wide variety, including the changing working 199 

conditions of the spectrometer device (e.g., temperature, re-calibration intervals, etc.), may influence 200 

the spectra during the measurement phase. Since the magnitude of such occurrences or influences cannot 201 

be seen with the naked eye, the different spectra data (field, wet, and dry samples) were transformed 202 

with log transformation and continuum removal to visualise and compare the various spectral forms. 203 

The raw spectra without modification were used as references. 204 

The initial spectral range was 350-2500 nm. Before data transformation with the several pre-treatment 205 

algorithms, the noisy region between 350–399 nm was removed, leaving a range of 400-2500 nm. 206 

Furthermore, the presence of outliers was explored using ensemble sparse partial least squares (enpls), 207 
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because according to Balakrishnan (1994) and Frost. (2019), outliers could influence prediction 208 

accuracy. The number of outliers removed was Field A (0), Field B (2), Field C (wet (4), field (5)).  209 

 2.6. Dataset pre-processing 210 

The raw spectra (after outlier removal) were transformed into reflectance. The datasets were then 211 

subjected to the following set of pre-treatment techniques: sg (Savitzky-Golay) from signal R package 212 

(Signal developers, 2013), dwt (discrete wavelet transformation) calculated with dwt function from 213 

wavelets R package (Aldrich, 2013), d1 (first-order derivative) (Duckworth, 2004), sg_d1, dwt_d1, d2 214 

(second-order derivative), sg_d2, dwt_d2, msc (multiplicative scatter correction) which was calculated 215 

using pls R package (Mevik and Wehrens, 2007), sg_msc, dwt_msc, snv (standard normal variate) which 216 

was obtained by subtracting each reflectance value from the spectrum's mean reflectance value, and then 217 

it was divided by standard deviation, sg_snv, dwt_snv, snv_msc, sg_snv_msc, dwt_snv_msc, log 218 

(logarithmic transformation (log(1/R))), sg_log, dwt_log, log_msc, sg_log_msc, dwt_log_msc, log_snv, 219 

sg_log_snv, dwt_log_snv, cr (continuum removal) which was obtained from tripack R package (Renka, 220 

1996), sg_cr, dwt_cr, cmr (correction by the maximum reflectance) (Vašát el al, 2017), sg_cmr, dwt_cmr 221 

in order to optimise the fitting of target values against spectra. These algorithms also seek to remove or 222 

minimise undesirable side effects (i.e., artefacts) in the spectra while also improving the relevant details 223 

about the soil property being estimated. It is worth mentioning that only the best pre-treatment results 224 

for each calibration technique are shown. 225 

The following spectroscopic datasets were obtained for further analysis: Field A (dry spectra), Field B 226 

(dry spectra), and Field C (wet spectra and field spectra). Additionally, the robustness and 227 

parsimoniousness of the models to predict SOC with different spectral datasets in a combined form (e.g., 228 

regional dataset) were also examined using two options. For option 1, spectra from Field A, Field B, 229 

and Field C (field spectra) were merged to form a single dataset: three field merged data [Field (A+B+C 230 

(field spectra)]. For option 2, dry spectra datasets were also merged together to form a single dataset: 231 

two field merged data (Field A+ Field B). 232 

2.7. Modelling development and performance 233 



11 
 

To ensure the results were not dependent on the multivariate model, four different multivariate 234 

techniques were evaluated separately, namely Cubist, support vector machine regression (SVMR), 235 

partial least squares regression (PLSR) and random forest (RF). The Cubist method was used to calibrate 236 

the regression tree models using the train function of the caret package in R. Cubist uses linear regression 237 

models at each node instead of the average. To avoid overfitting (Kuhn and Johnson, 2013), the default 238 

number of committees (1, 10 and 20) and neighbours (0, 5, and 9) from the train function were utilised. 239 

The root mean square error (RMSE) was used to select the best models. Comparably, the SVMR is tuned 240 

to different cost parameters with the built-in tuning function using the grid search (precisely 0.001, 0.01, 241 

0.1 and 1) with a linear kernel function while the epsilon parameter is left to its default value (0.1). The 242 

Package e1071 library in R was used. Based on the RMSE, the best cost parameter is selected from 243 

bootstrap results based on 10-fold cross-validation. For the PLSR algorithm, a set of new predictor 244 

variables identified as latent variables is developed as a linear combination of the initial predictor 245 

variables. The model runs and tests itself for each number of components, i.e., from 1 to 10 (the 246 

maximum number of model components was set to 10). The optimum number of components is selected 247 

based on the lowest RMSE. With the optimal number of components obtained, the model is re-calibrated 248 

and validated, and the coefficient of determination (R2) and the RMSE are computed. 249 

Finally, the RF algorithm is formulated to reduce experimental noise and improve prediction accuracy 250 

(Liaw and Wiener, 2002). The dataset under consideration is randomly divided into numerous training 251 

sets, and decision trees are developed using bootstrap re-sampling capabilities. The average of the 252 

individual tree outputs is then utilised to calculate the final prediction. The Random Forest R package 253 

was used, which includes homonymous (Liaw and Wiener, 2002). This is founded on the principles of 254 

Leo Breiman and Adele Cutler's Fortran code. A total of 500 trees were grown, with 35 variables 255 

randomly selected as candidates at each split. The R programming language (R Development Core 256 

Team, 2015, Vienna, Austria) was used for spectra pre-processing and modelling techniques.  257 

The model's output was assessed by five-fold cross-validation for each regression procedure of the 258 

calibration (75%) and validation set (25%) of the samples using Cubist, SVMR, PLSR and RF modelling 259 

techniques. The accuracy of the prediction was assessed based on the coefficient of determination 260 
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(R2
CV), the ratio of performance to interquartile range (RPIQ), the ratio of performance to deviation 261 

(RPD), which is the ratio of a parameter's standard deviation to the standard error of that parameter's 262 

prediction by a specific model, the root mean square error of prediction (RMSEPcv) (measures the 263 

overall model prediction accuracy) of the 5-folds cross-validation and the bias. The bias represents the 264 

error of means and is independent. The R2
CV ranges from 0 to 1, where R2

CV = 1 is the optimal value. 265 

For the RPD, Chang and Laird's (2002) categorisation was applied: RPD > 2 indicates good models, 266 

RPD between 1.4 and 2 indicates moderate predictive ability, and RPD = 1.4 indicates weak models. 267 

The five-fold cross-validation was repeated 100 times to ensure model stability and reliability. 268 

2.8. The ensemble predictive model's construction 269 

The four tested calibration techniques were combined together in order to build the ensemble model, 270 

which in turn is actually a weighted average of four individual predictions (one for each calibration 271 

technique). To ensure that the best possible result was achieved, all permissible combinations of weights 272 

for individual predictions were tested. To do so, an automated procedure was utilised that proceeds in a 273 

way that a regular sequence (ranging from 0 to 1 by 0.05) of desired values is first created, for which 274 

subsequently all possible permutations of the length of four are computed. To ensure that the assigned 275 

weights sum up to one, only permutations whose sum is equal to one were taken for further calculations. 276 

Next, the four individual cross-validation results were repeatedly weighted averaged using the valid 277 

permutations one by one (there were as many runs as there were the number of valid permutations) and 278 

the respective validation statistics (weighted average vs. observed values) were calculated and recorded. 279 

Note that the individual cross-validations are composed of an average of one hundred individual runs. 280 

Finally, the set of weights that correspond to the best validation statistics (the lowest RMSE) form the 281 

ensemble model. 282 

Furthermore, only those predictions that were achieved using the best pre-treatment method were used 283 

to build the ensemble model. To test the predictive performance of the ensemble model, the validation 284 

statistics were compared to those achieved with the four individual techniques for all datasets used (field 285 

spectra, combined dataset approach, and the Sentinel-2 data). Figure 2 schematically displays the 286 

experimental design. 287 
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 288 

Figure 2. Schematic diagram illustrating the experimental design. [ PLSR (partial least squares 289 

regression), RF (random forest), SVMR (support vector machine regression), S2 (Sentinel-2), Field A 290 

(Vidim), Field B (Bromovice), Field C (Nová Ves nad Popelkou)] 291 

3. Results 292 

3.1 Soil organic carbon (SOC) descriptive statistics 293 

The descriptive statistics (Table 1) show the results of SOC analysis within the three study fields for the 294 

whole calibration and validation data sets, comprising the mean, median, minimum (Min), maximum 295 

(Max), standard deviation (SD), coefficient of variation (CV), and skewness. For Field A, the calibration 296 

data CV was the same as the whole data, whereas for Field B, both the whole and validation data were 297 

also the same. Generally, the study fields (using the whole data set) were significantly different in SOC 298 

content. For instance, the lowest mean content of 1.02% was observed in Field A, while Field C obtained 299 
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the highest mean content of 1.44%. Furthermore, skewness was used to evaluate the normality of SOC 300 

content. It was discovered that all of the study fields’ SOC content was presumed to be normally 301 

distributed, with skewness values close to 0.8, particularly for Field B. The SOC content for these fields 302 

could be described as medium to semi-high. 303 

Table 1: Descriptive statistics of soil organic carbon (SOC%) contents at the three study fields 304 

Fields (Samples) na Mean Median SDb Skewness Range Minc Maxd CV%e 

Field A (dry) 

(WDf) 76 1.02 0.98 0.19 0.59 0.94 0.66 1.6 19.00 

Calibration data 57.00 1.04 1.04 0.20 0.38 0.94 0.66 1.60 19.00 

Validation data 19.00 0.93 0.90 0.11 0.54 0.38 0.77 1.15 12.00 

Field B (dry) (WD) 97 1.06 0.99 0.32 0.79 1.48 0.5 1.98 30.00 

Calibration data 73.00 0.98 0.95 0.25 0.57 1.08 0.50 1.58 26.00 

Validation data 24.00 1.30 1.37 0.39 0.07 1.29 0.69 1.98 30.00 

Field C (field & 

wet) (WD) 130 1.44 1.44 0.33 0.57 2.33 0.6 2.93 23.00 

Calibration data 97.00 1.45 1.47 0.35 0.62 2.33 0.60 2.93 24.00 

Validation data 33.00 1.42 1.43 0.29 0.15 1.39 0.71 2.10 20.00 

 305 

an: number of samples 306 

bSD: standard deviation 307 

cMin: minimum 308 

dMax: maximum 309 

eCV: coefficient of variation 310 

fWD: whole data set 311 

 312 
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Figure 3 (B1 & C1) displays the effect of using logarithmic transformation and CR algorithms on the 313 

raw spectra data under different measurement conditions (field, wet, and dry), whereas Figure 3 (A1) 314 

shows only the raw spectra without transformation. The CR algorithm is commonly used to compare 315 

different spectra measurements because of its ability to scale spectra to unity. The CR line in Figure 3 316 

(C1) shows the specific field absorption along the spectra wavelengths can be attributed to the influence 317 

of H2O/OH and carbonate. According to Howari et al. (2002), absorption at 990 and 1400 nm is typically 318 

caused by NaCl and water molecular vibrations and OH groups. Additionally, absorption and reflection 319 

at bands usually centred at 1400, 1900, 2200, and 2365 nm are due to water and mineral influences 320 

(Soriano-Disla et al., 2014). This shows that Field C (wet) had the highest water content and that the 321 

spectra formed for Field B were slightly better than Field A, particularly in the 500 nm range. The 322 

log(1/R) algorithm transforms the reflectance into absorbance (Minasny et al., 2011), which helps detect 323 

the absorption characteristics' edges. The sequence of absorbance in terms of soil moisture is displayed 324 

in Figure 3 (B1) as Field C (wet) > Field C (field) > Field A > Field B. The reflectance, as shown in A1, 325 

was the exact opposite of B1. Correspondingly, on display was organic matter with wavelengths ranging 326 

from 2000 to 2500 nm (Ben-Dor et al., 1999). 327 
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 328 

Figures 3: Spectra showing raw data (A1), absorbance features (B1), and continuum removal plot (C1) 329 

for the three fields under difference spectra measurement conditions. 330 

 331 
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3.3. Evaluating the predictive performance of calibration methods for all datasets  332 

 3.3.1 Individual modelling algorithm. 333 

The assessment of SOC with individual calibration techniques and the pre-treatment algorithms 334 

(different combinations) shows the model prediction accuracy differs significantly from one field to the 335 

other, while Sentinel-2 data (only from Field C) provided the worst results (Tables 1&2). Considering 336 

Field A (dry spectra) (Table 1), both PLSR and SVMR yielded almost the same results with R2
CV = 337 

0.64/0.63 and RMSEP = 0.12/0.13 when compared to the other two individual techniques (Cubist and 338 

RF), which provided poor results. However, there was a slight difference between the RPD (1.66/1.59) 339 

and RPIQ values (2.44/2.35) favouring PLSR. Furthermore, for Field B [(dry spectra) (Table 2)], the 340 

order of individual prediction accuracy was SVMR (sg_msc) > PLSR (cmr) > RF (dwt_cr) > cubist 341 

(sg_log), with R2
CV values ranging from 0.84 to 0.89. For Field C (Table 2), SVMR (R2

CV= 0.49, 342 

RMSEPCV = 0.23, RPD = 1.37, RPIQ = 1.51) provided the most appropriate result, followed by PLSR 343 

for both the wet and field spectra dataset. Additionally, based on the obtained RPD values, the result 344 

demonstrates a poor model in which only high and low values are observable using Chang and Laird's 345 

(2002) categorisation. 346 

3.3.2 Combined data set and Sentinel-2 imagery 347 

For the combined data using the individual calibration techniques and treatment algorithms, the results 348 

(Table 2) indicated that a more accurate prediction was achieved with option 2 [Field A (dry spectra) + 349 

Field B (dry spectra) (R2
CV = 0.79, RMSEPCV = 0.13, RPD = 2.16, RPIQ = 2.79)] compared to option 1 350 

[Field A (dry spectra) + Field B (dry spectra) + Field C (field spectra)] (R2CV= 0.71, RMSEPCV= 0.20, 351 

RPD = 1.78, RPIQ = 2.69). Nonetheless, the best result for both options was realised with the same 352 

calibration technique (SVMR) and treatment algorithm (log).  353 

3.3.3 Evaluating the predictive performance of the Ensemble Model 354 

The predictive performance for SOC with the ensemble model using all the datasets shows some 355 

improvement compared to the individual calibration techniques (Tables 1&2). However, the margin of 356 

increase in prediction accuracy varied among each dataset. The Field B dataset for instance, provided 357 
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the overall best results (R2
CV = 0.92, RMSEPcv = 0.10, RPD = 3.06, RPIQ = 3.74, BIAS = 0.0067), 358 

while the Sentinel-2 dataset (Field C) obtained the worst results (R2
CV = 0.27, RMSEPcv = 0.29, RPD 359 

= 1.2, RPIQ = 1.31, BIAS = -0.004). For the Sentinel-2 dataset, this was a slight improvement compared 360 

to the result achieved by the individual techniques. The prediction accuracy of SOC obtained from the 361 

combined dataset (option 2) using the ensemble was better than the individual techniques and was more 362 

appropriate than option 1. 363 

Table 2: Prediction performance showing statistics of the five-fold leave-group-out cross-validation for 364 

four spectra measurement at three distinct areas: Field A (dry spectra in the lab), Field B (dry spectra in 365 

the lab), Field C (wet spectra in the lab), and Field C (field spectra on the field)  using PLSR (partial 366 

least squares regression), RF (random forest), Cubist, SVMR (support vector machine regression) and 367 

the ensemble model (combination of all four models) with  several pre-treatment algorithms 368 

combination: Raw (initial spectrum), Savitzky–Golay (sg), discrete wavelet transformation (dwt), first 369 

derivative (d1), second derivative (d2), multiplicative scatter correction (msc), standard normal variate 370 

(snv), log transformed (log), continuum removal (cr), maximum reflectance correction (cmr) 371 

  Models Best pre-treatment 

 

R2
CV RMSEPcv RPD RPIQ BIAS   

                  

  
 

           Field A (dry soil sample)                        

  PLSR log_msc 

 

0.64 0.12 1.66 2.44 -0.0008   

  Cubist sg_log_msc 

 

0.48 0.16 1.42 2.08 -0.0080   

  RF sg_log_snv 

 

0.48 0.15 1.40 2.06 -0.0083   

  SVMR sg_snv  

 

0.63 0.13 1.59 2.35 -0.0069   

  Ensemble log_msc+sg_log_msc+ 

 

0.70 0.12 1.88 2.66 0.0034   
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    sg_log_snv+sg_snv +             

    with all four models             

                  

               Field B (dry soil sample)             

  PLSR sg_msc 

 

0.86 0.13 2.66 3.24 0.0052   

  Cubist cmr 

 

0.84 0.14 2.50 3.04 0.0098   

  RF dwt_cr 

 

0.85 0.13 2.54 3.09 -0.0033   

  SVMR sg_log 

 

0.89 0.12 2.97 3.65 0.0102   

  Ensemble sg_msc+cmr+dwt_cr+sg_log+ 

 

0.92 0.10 3.06 3.74 0.0067   

  
 

with all four models 

 

    
  

                  

             Field C (field soil sample)             

  PLSR dwt_log 

 

0.41 0.26 1.30 1.49 0.0009   

  Cubist log 

 

0.34 0.27 1.24 1.42 0.0115   

  RF sg_d1 

 

0.31 0.28 1.21 1.38 0.0054   

  SVMR log 

 

0.47 0.25 1.31 1.50 -0.0047   

  Ensemble dwt_log+log+sg_d1+log+ 

 

0.50 0.25 1.39 1.59 -0.0132   

    with all four models             
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           Field C (wet soil sample) 

  PLSR dwt_log_msc 

 

0.37 0.27 1.25 1.43 -0.0022   

  Cubist sg_log_msc 

 

0.31 0.28 1.20 1.37 -0.0106   

  RF dwt_cr 

 

0.30 0.29 1.18 1.35 0.0081   

  SVMR log_msc 

 

0.49 0.25 1.37 1.51 -0.0238   

  Ensemble dwt_log_msc+sg_log_msc+ 

 

0.54 0.24 1.42 1.63 -0.0103   

    dwt_cr+log_msc+             

    with all four models             

 372 

Table 3: Prediction performance showing statistics of the five-fold leave-group-out cross-validation for 373 

three (A+B+C) and two (A+B) field combined using PLSR, RF, Cubist, SVMR (support vector machine 374 

regression) and the ensemble model with several pre-treatment algorithms combination: Raw (initial 375 

spectrum), Savitzky–Golay (sg), discrete wavelet transformation (dwt), first derivative (d1), second 376 

derivative (d2), multiplicative scatter correction (msc), standard normal variate (snv), log transformed 377 

(log), continuum removal (cr), maximum reflectance correction (cmr). 378 

  Models Best pre-treatment 
 
R2cv RMSEPcv RPD RPIQ BIAS   

   

           

Three fields combined (A+B+C)       

 PLSR sg_log 0.66 0.21 1.71 2.59 0.0009  

 Cubist log 0.68 0.21 1.73 2.61 0.0036  

 RF cr 0.66 0.21 1.71 2.59 -0.0011  

 SVMR log 0.71 0.20 1.78 2.69 0.0101  

 Ensemble sg_log+log+cr+log 0.75 0.17 1.91 2.76 0.0045  

  with all four models       
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Two fields combined (A+B)      

 PLSR sg_d1 0.76 0.13 2.04 2.48 0.0041  

 Cubist dwt_msc 0.78 0.13 2.13 2.59 -0.0024  

 RF sg_d1 0.75 0.14 1.98 2.40 -0.0031  

 SVMR log 0.79 0.13 2.16 2.79 0.0098  

 Ensemble sg_di+dwt_msc+sg_di+log 0.83 0.12 2.30 2.96 0.0065  

  with all four models       
 379 

The scatterplots (Figure 4) show the results of predicted versus observed contents of SOC predictive 380 

accuracy using the different spectra measurement conditions dataset (field, wet and dry), the merged 381 

data options and the Sentinel-2 imagery. In this study, the discrepancies in predicting SOC across 382 

different datasets and measurement conditions vary on all R2
CV, RMSEPcv, RPD, and RPIQ model 383 

performance indicators. None of the SOC predictions resembled a 1:1 fit, especially for Field C (both 384 

wet and field), the combined dataset option 1 (field dry) and the Sentinel-2 data. 385 
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 387 
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 388 

Figure 4: Observed vs predicted SOC content (%) values for each of the four best calibrations model 389 

(PLSR, SVM, MLR, and RF) as well as the final ensemble calibration model for (A2): three different 390 

fields (four measured spectra), (B2): for combined data option 1 (A+B+C (field)) and combined data 391 

option 2 (A+B), with least-squares fit (solid) and hypothetical, optimal fit (dashed). 392 

 393 

4. Discussion 394 

4.1. Comparison of the individual modelling techniques for all datasets 395 

The inconsistency in the predictive performance of the four individual techniques (PLSR, RF, Cubist 396 

and SVMR) (Table 2) could be attributable to the fact that accuracy assessment of SOC models can vary 397 

significantly from one field to another depending on the spectral measurement conditions and the signal 398 

pre-treatment procedures used (Mishra et al., 2020). Furthermore, the validation assessment reveals 399 

SVMR as the most reliable method for this study. In comparison to the other individual techniques, it 400 

provides the best prediction result of SOC [e.g., Field B (R2
CV = 0.89)] on almost all datasets except 401 

Field A, where the PLSR result is slightly better (R2
CV = 0.64); however, the difference between PLSR 402 

and SVMR (R2
CV = 0.63) for the said field could be considered negligible (difference of only 0.01). It 403 

is worth mentioning that, in some instances (Table 2), the prediction accuracy of SVMR and the other 404 

individual techniques (PLSR, RF, and Cubist) were nearly comparable, particularly for the Field B 405 
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sample. However, in other instances, the results obtained for all the individual techniques were not 406 

favourable. A specific example is datasets from Field C [(field or wet spectra) (R2
CV = 0.49) and 407 

Sentinel-2 imagery (R2
CV = 0.21)], where all individual techniques fail to explain at least 0.5% of the 408 

variance in SOC. This implies that the model's inputs failed to explain nearly half of the observed 409 

variation. 410 

Large RMSE values suggest that the predicted and true responses vary substantially, whereas a small 411 

RMSE suggests that the predicted and true responses are very close. According to Ben-Dor et al. (2015), 412 

large or small RMSE values could result from differences in measurement protocols and the use of 413 

sample techniques under different conditions. For the current study, the RMSEPcv, as well as the other 414 

evaluation criteria (RPD, RPIQ and BIAS) results using the modeling techniques separately (Table 1) 415 

show that SVMR obtained the lowest error margin and better assessment metrics (either better or slightly 416 

better) than the other techniques, except for Field A where PLSR provided slightly improved results. 417 

Despite this, this study highlights SVMR's robustness in identifying the existence of correlated and 418 

outdated variables. For example, in a study comparing SVMR with other multivariate techniques (e.g., 419 

PLSR) to predict SOC contents, Viscarra Rossel and Behrens (2010) found that SVMR yielded the 420 

lowest RMSEs in the prediction of SOC contents at all Vis–NIR wavelengths. Additionally, according 421 

to Thissen et al. (2004), SVMR models are less susceptible to noise and outliers. Although SVMR is 422 

noted to approximate and enhance a non-linear structure among multidimensional spaces (Stevens et al., 423 

2010), its positive results can also presumably be attributable to the fact that there are both linear and 424 

non-linear correlations between the many spatial variables that SVMR could effectively evaluate. The 425 

superiority of SVMR has also been established in many other studies (e.g., Xu et al., 2018; Lucà et al., 426 

2017; Kuang et al., 2015). Among the individual techniques, RF was considered the least well-427 

performing algorithm. This further affirms its poor predictive ability, as previously reported, e.g., by 428 

Viscarra Rossel and Behrens (2010). 429 

4.2. The impact of spectra pre-processing algorithms on data sets 430 
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The accuracy of SOC prediction may also be influenced by numerous factors of uncertainty under 431 

different conditions during data collection and analysis resulting from different data collection mediums 432 

that exit [particularly proximal (spectroscopy) and remote (airborne, satellite, and space-borne) sensing 433 

approaches]. For example, temperature increases may result in a non-linear carbon deficit (Ciais et al., 434 

2005; Reichstein et al., 2006). Sampling and laboratory biases also need to be considered, while samples 435 

from various surveys may differ significantly due to a range of factors (Lal et al., 2001; Neff et al., 2002; 436 

Ogle et al., 2006). Under certain conditions, the spectral characteristics pattern related to a given 437 

parameter during spectral measurement may overlap with the response pattern (e.g., SOC) associated 438 

with some other factor, causing the prediction of that given factor to be negatively impacted or other 439 

significant information masked out, both leading to a decrease in prediction accuracy. For this study, all 440 

three different spectroscopy measurement conditions were used (laboratory (wet and dry) and field) as 441 

well as space-borne imagery acquisition (Sentinel-2). Therefore, almost all the various disturbing factors 442 

that could influence the spectral measurement were anticipated (i.e., soil moisture, texture, noise, 443 

transient changes in weather conditions during measurement, illumination sources, etc.). Some of these 444 

factors can be visually seen using the reflectance plot (Figure 3 (A1)). Likewise, some of these effects 445 

on the spectra wavelength can also be seen in Figure 3 (B1 & C1) using the absorbance and the CR 446 

plots. 447 

Similarly, the spatial, spectral, and temporal resolutions of remote sensing sensors vary, which could 448 

also affect the accuracy of SOC estimation. The use of the several pre-treatment algorithms employed 449 

before prediction helped to improve the applicable spectral features. According to Bowers and Hanks 450 

(1965), one of the major factors influencing spectral measurement is the effect of an increased moisture 451 

content. This can initiate the phenomenon of stretching and bending vibrations of water and hydroxyl 452 

bonds, which can negatively affect soil property predictive performance (Minasny et al. 2009; 453 

Bricklemyer and Brown 2010). Moreover, the baseline height, as well as other spectral attributes across 454 

the entire spectral range, may also be affected (Muller and Decamps, 2000). Additionally, the effect of 455 

soil moisture content and other constraints on spectral measurements for SOC prediction has also been 456 
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reported in several other studies (e.g., Minasny et al., 2011; Tekin et al., 2012; Nocita et al., 2013; 457 

Wijewardane et al. 2016; de Santana et al. 2019). 458 

The 32 (including different combinations) spectral treatments provided mixed results (better or worse, 459 

the majority of the worse results are not shown). Because these spectral datasets were obtained under 460 

different conditions, as already stated, they may contain artefacts indicating the presence of unwanted 461 

variation (Mishra et al., 2020). These artefacts could result from but are not limited to the following: 462 

instrumental drifts, measuring modality, state of sample and environmental influences (Roger et al., 463 

2020). According to Engel et al. (2013), no single method is universally adequate for all datasets, and 464 

signal pre-treatment techniques can influence the entire analysis. For Field A, the best result using the 465 

individual calibration techniques was achieved with log_msc (R2
CV = 0.64), indicating that linearisation 466 

attainment between the spectra and SOC content and light scattering effects were some of the dominant 467 

artefacts affecting this dataset. Furthermore, the second-best result was obtained with the sg_snv 468 

algorithm (R2
CV = 0.63), suggesting that the light scattering effect was also one of the spectral defects. 469 

However, because the prediction accuracy was modest, the possibility that a critical section was masked 470 

by other components or removed by the treatment algorithm application cannot be ruled out. This is 471 

because failing to select the most appropriate pre-treatment algorithm may result in the removal of 472 

relevant information related to the property of interest (Engel et al., 2013; Oliveri et al., 2019). 473 

According to Wold et al. (1998), both SNV and MSC have the potential to remove vital information 474 

from the spectra if misused. On the other hand, for Field B, the most relevant result (also with the 475 

individual techniques) was achieved with the sg_log algorithm (R2
CV = 0.89), signifying that the 476 

attainment of linearisation between the spectra and SOC content was presumably effective. Moreover, 477 

the log approach has also been shown to remove baseline effects to enhance spectral characteristics, 478 

resulting in enhanced prediction accuracy (Ben-Dor et al., 1997; Schlerf et al., 2010). The results 479 

obtained with the other calibration techniques (Table 2) presumably show the rectification of other 480 

abnormalities, e.g., the second-best result was achieved with the sg_msc algorithm (R2
CV = 0.86) (light 481 

scatter effect), and the third-best result was achieved with the dwt_cr algorithm (R2
CV = 0.85) (resolving 482 

overlapping bands and unwanted background noise as well as vertical offset and/or slope effect). This 483 



27 
 

study, therefore, agrees with the study of Mishra et al. (2020), which stated that pre-treatment could 484 

improve spectral quality by removing undesired effects from a dataset. However, due to the constraints 485 

of different techniques and the intricacy of these undesirable effects, a single pre-treatment procedure 486 

may be unable to entirely eliminate all of these deficiencies. As a result, using a combination of diverse 487 

pre-treatment methods is one of the most effective options. Although the log_msc algorithm provided 488 

the best results for Field C, the prediction accuracy was, conversely, not encouraging (R2
CV = 0.49). This 489 

indicates that the effect of soil moisture content (Figure 3) was likely dominant, as the spectra used for 490 

this field were spectra measured under field and wet conditions: the soil sample had not been dried to 491 

reduce the amount of water in the soil. This highlights the challenge for pre-treatments to eliminate the 492 

influence of water content on Vis-NIR spectra measured in the field or under wet conditions. Although, 493 

the external parameter orthogonalization (EPO) algorithm was utilised by Minasny et al. (2011) to 494 

remove the effect of soil water content from Vis-NIR spectra for SOC content calibration, however, in 495 

order to develop EPO pre-processed dataset, prior knowledge of soil water content information is 496 

needed. 497 

4.3. Ensemble model predictive performance of SOC  498 

4.3.1. Using the single data set  499 

The ensemble model (a merger of SVMR, PLSR, Cubist and RF) predicted SOC more accurately than 500 

any of the individual models as mentioned earlier. The model significantly improves prediction accuracy 501 

certainty by minimising the limitations and drawbacks of each model while maximising the combined 502 

models' responses. (Kalantar et al., 2018; Arabameri et al., 2019; Martre et al., 2015). The ensemble 503 

model's good performance was achieved by selecting the best pre-treatment algorithms for each 504 

technique to aid in the correction of a variety of artefacts that the individual techniques might have failed 505 

to address (Mishra et al., 2020). The ensemble model not only improved the prediction accuracy of SOC 506 

(from R2
CV = 0.89 to 0.92), but also reduced the error margin (from RMSEPcv = 0.12 to 0.10). Other 507 

assessment parameters of the ensemble model (RPD, RPIQ, and BIAS) were also improved when 508 

compared to the individual techniques. Furthermore, for Field C, the reason why the prediction accuracy 509 

for its two spectra was not the same and lower in comparison to the other two study fields could be 510 
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attributed to the mode of spectral measurement. For instance, while the field spectral measurement was 511 

taken under uncontrolled environmental conditions prone to several environmental factors as stated 512 

above, the wet spectra were measured under a controlled laboratory environment, meaning its spectra 513 

data was influenced mainly by soil moisture content, as shown in Figure 4 because the measurement 514 

was taken on the soil in its wet state. The other fields performed better, most likely due to lower moisture 515 

content (measured using a laboratory regulated dry method) and other effects mitigated by the pre-516 

treatment combination techniques employed. Under laboratory measurement conditions, standardised 517 

protocols are followed, which aid in removing unwanted factors (Romero et al., 2018; Ben Dor et al., 518 

2015). Despite these effects, the ensemble model improved the accuracy of prediction of SOC for Field 519 

C (using the wet spectral) from R2
CV = 0.49 (best for the individual techniques) to R2

CV = 0.54 520 

(ensemble), while other assessment parameters also improved accordingly in addition to the reduction 521 

in error (Table 2). 522 

4.3.2. Combined data sets 523 

For the merged dataset (option 1), the ensemble model shows its superiority over each of the individual 524 

calibration techniques by improving the prediction accuracy of SOC for each option (Table 3). However, 525 

the differences in accuracy between these options could be attributable to the influence of moisture 526 

content and probably other environmental and stochastic factors. The addition of the field spectra (from 527 

Field C) to the two dry spectra (Fields A and B) might have introduced some new defects to the other 528 

variations that already existed in the field dataset during measurement (e.g., moisture, etc). This is 529 

because the accuracy of the SOC predictive performance increased with option 2 (without the Field C 530 

dataset). This is in agreement with Waiser et al. (2007) who found that fields with high surface moisture 531 

content could influence prediction accuracy. Furthermore, as per Minasny et al. (2011), the presence of 532 

water within the soil would have a significant, intricate, and non-linear impact on the reflective spectra, 533 

potentially affecting prediction accuracy. This implies that our ensemble model could be used for the 534 

prediction of a merged dataset measured under different spectra conditions (dry, wet and field) or 535 

different soil types (e.g., regional dataset). However, for improved accuracy, the merger or combination 536 
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of these soil spectra data should be done with spectra obtained under the same spectra measurement 537 

conditions (dry spectra samples only, wet spectra samples only or field spectra samples only). 538 

4.3.3. Using the satellite dataset 539 

Finally, even though the ensemble model outperformed all individual calibration techniques using the 540 

Sentinel-2 dataset (an improvement of 0.06) (Table 3), it was nevertheless deemed unsuccessful due to 541 

its poor final predictive performance (R2
CV = 0.27, RMSEPcv = 0.29, RPD = 1.20, RPIQ = 1.31, BIAS 542 

= -0.0154). The influence of other factors or occurrences cannot be ruled out. All the models utilised, 543 

including the individual techniques and signal pre-treatment approaches, failed to yield satisfactory 544 

results on this dataset (Sentinel-2). Vegetation cover on the surface of the soil is one of the major 545 

disrupting environmental factors that normally negatively influence the predictive performance of 546 

Sentinel-2 imagery for estimating soil properties, including SOC. Although our sampling period was in 547 

May, to obtain a cloud-free image, the downloaded Sentinel-2 imagery was an image dated June 20, a 548 

possible time during which some vegetation in the field is anticipated to emerge. The presence of this 549 

vegetation [e.g., green or dry vegetation (> 20%)] can significantly alter the form of spectral reflection, 550 

potentially affecting the prediction accuracy of soil properties (Bartholomew et al., 2011; Castaldi et al., 551 

2019). Perhaps downloading more images to investigate the optimum date and adjusting the field 552 

measurements could be a solution to the issue of obtaining Sentinel-2 imagery captured on bare soil. 553 

However, getting these agricultural fields at one’s "optimum time" is highly dependent on the 554 

landowners' decisions. The above-mentioned issues of vegetation cover and some other occurrences 555 

could probably be some of the reasons for the Sentinel-2 imagery dataset's poor performance with the 556 

ensemble as well as the individual techniques. More research in this specific area could help ascertain 557 

the true predictive performance of Sentinel-2 data using the ensemble model, which has received limited 558 

attention from researchers. 559 

4.4. Scatter plots comparison and outliers assessment  560 

The scatterplots in Figure 3 highlight the disparities pattern of the ensemble model and the modeling 561 

techniques for the spectra datasets and the Sentinel-2 imagery data. The order of disparity between the 562 
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measured and estimated SOC values under Field A (dry spectra), Field B (dry spectra) and Field C (field 563 

and wet spectra) was: Field C > Field A > Field B. This could be due to the sensor's spectral information 564 

content measured under different conditions and other parameters (Figure 3). According to Gomez et al. 565 

(2018), some of these disparities could be ascribed to light sources, instrumental noise, and 566 

environmental conditions (i.e., laboratory and field). For instance, Fields A and B may be affected 567 

differently by these defects, although both datasets were measured under laboratory-controlled 568 

conditions. For Field C, the field and wet plot were nearly identical, with minor changes that were not 569 

statistically significant. For the other two merged data, option 2 was better than option 1 because of the 570 

addition of the field spectra to option 1. Lastly, the measured and observed plot of Sentinel-2 data may 571 

be due to the lower predictive performance of satellite imagery which is often related to environmental 572 

conditions, spatial resolution, and the condition of the soil (Zhang and Zhou 2016; Steinberg et al., 573 

2016). 574 

It is also worth noting that the disparities between the measured and observed values (particularly Field 575 

C and the Sentinel-2 imagery) cannot be entirely attributed to the influence of outliers. Sometimes, 576 

keeping or removing outliers, particularly in regression models before prediction, could result in either 577 

a positive or negative outcome. Some of these outliers contain essential information about the data and 578 

could aid in prediction, so removing them may adversely affect prediction (Frost, 2019; Blatná, 2006).  579 

Figure 5 shows the outlier plot using enpls (Aggarwal, 2013) for spectroscopy and the Sentinel-2 dataset. 580 

Although there were several extreme points considered outliers in Field A, these extreme points were 581 

considered positive outliers containing vital information about the dataset because removing any of 582 

those points before prediction negatively affected the predictive performance of SOC for Field A, so 583 

they were not removed. The result improves by removing some of the extreme values in both Field B 584 

[points (p) 93 and 97] and Field C [wet (p 71,31,54,28)], field (p 71,23,35,48,105). However, due to the 585 

interesting response of this process for Sentinel-2 data, no outliers were removed to achieve a fair 586 

comparison. This is because while removing some of these extreme values improves the prediction 587 

accuracy for the individual techniques from R2
CV = 0.21 to 0.25, it diminishes the ensemble model’s 588 

accuracy (from R2
CV = 0.27 to 0.24). 589 
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 590 

Figure 5: Outliers plot showing the mean and the standard deviation (SD) of the prediction error 591 

distribution for spectroscopy and Sentinel-2 datasets [Among the 4 regions, the lower left region, 592 

which occupies most off the data, is the normal samples that have a small mean value and SD. The 593 

upper left area is the x outliers, which have a small mean value but a large SD. Conversely, the lower 594 

right region is the y outliers, which have a large mean value but a small SD. The upper right region 595 

contains some of the extreme outliers or abnormal samples. 596 
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In summary, the ensemble model built for this study proved to be more robust and reliable than the 597 

individual modeling techniques. This has also been confirmed by other studies (e.g., Riggers et al., 2019; 598 

Tajik et al., 2020; Mishra et al., 2020). Previously, other studies focused on just one type of spectroscopy 599 

measurement condition for the estimation of SOC using the ensemble model approach. The resulting 600 

models were sometimes less applicable to other forms of spectroscopy measurement conditions as well 601 

as space-borne imagery data. For this study, the collected samples were from three separate sites with 602 

various soil types, and they were taken under the primary spectroscopy measurement conditions (wet, 603 

dry and field). 604 

Additionally, satellite data and regional datasets (spectra data merged) were also tested. The focus was 605 

to enhance the precision of SOC prediction. A slight change in the SOC pool could considerably impact 606 

the global carbon cycle and, ultimately, climate change in general (Powlson et al., 2011). Therefore, it 607 

is necessary to develop models as shown in this study to estimate SOC accurately under different 608 

measurement conditions. Finally, there are many more ML algorithms and data mining tools that have 609 

yet to be explored in an ensemble model. Exploring these options is highly recommended. According to 610 

Martre et al. (2015), one of the benefits of using the ensemble model is its ability to compensate for 611 

errors across the models and provide better synchronisation of the model procedures. 612 

5. Conclusion 613 

The goal of the study was to compare the effectiveness of using an ensemble model against individual 614 

techniques forming the ensemble model to predict SOC using spectral data (field, wet, and dry), merged 615 

spectral data (regional), and Sentinel-2 data. This study confirmed that when different prediction 616 

techniques are combined to form an ensemble model using different calibration techniques, prediction 617 

and signal pre-treatment algorithms, the prediction accuracy was superior to any of the modeling 618 

techniques used individually. The ensemble model built for this study accurately captured the trend of 619 

all study fields as well as the various datasets gathered with a minor error and improved the prediction 620 

accuracy of SOC. Furthermore, it provides a more robust and reliable approach than each of the 621 

individual model estimates do alone. The findings demonstrated that the ensemble model could be an 622 

effective tool for reducing overall error in SOC modelling. It was also successful on almost all the data 623 
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obtained under different spectral measurement conditions with an order of dry > wet > field. The only 624 

exception was the accuracy of SOC prediction using Sentinel-2 data, which was low for the study field 625 

employed, likely due to numerous factors (e.g., cloud cover, vegetation) and constraints that affect the 626 

acquired Sentinel-2 imagery. This is because all the individual techniques also produced similarly poor 627 

results with the Sentinel-2 data. Nonetheless, future studies to verify the effectiveness of an ensemble 628 

model on remote sensing data are highly recommended, especially using remote sensing data with fewer 629 

defects. 630 

Using the ensemble model on a regional dataset is highly feasible. However, to obtain a more accurate 631 

results of SOC prediction, the selected regional dataset should be made up of soil samples measured 632 

under the same spectroscopy conditions. Selection of the most appropriate treatment combination could 633 

be one option to eliminate or minimise several artefacts at the same time. The ensemble model 634 

demonstrates the ability to choose the best treatment algorithms for each dataset. 635 
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Abstract 13 

Accurate estimation of soil organic carbon (SOC) content remains key because of its numerous benefits 14 

to the environment, including but not limited to contributing to food security and mitigating the 15 

greenhouse gas effect. The results of SOC estimates provided by researchers using proximal 16 

(spectroscopy) and remote sensing (airborne or spaceborne) data varied (from bad to excellent) across 17 

several fields. However, most of these studies focus on areas high in organic carbon, whereas areas low 18 

in SOC have received limited attention. It is believed that merging high-resolution spectroscopy with 19 

remote sensing datasets could improve the estimation of SOC. Currently, no single sensor or technique 20 

can estimate all soil properties accurately, including SOC. However, integrating data from these sensors 21 

remains a challenge due to differences in spatial/spectral resolution for each sensor, making the 22 

combination problematic. Therefore, the present study aims to explore improving the prediction and 23 

mapping of SOC content in two agricultural fields low in organic carbon where detailed information 24 

needs to be captured. This was done by merging data from in-situ spectroscopy, Unmanned Aircraft 25 
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Systems (UAS), and Sentinel-2 (S2) into a single dataset through data fusion. Before the fusion process, 26 

each platform's variable importance (VI) data was selected as the final data fused into a single dataset. 27 

The study confirmed that fusion of these datasets using VI provides better SOC results than separately 28 

using individual datasets. Concerning the SOC spatial distribution map, the in-situ map resembled the 29 

referenced measured map compared to the other platforms. Although the data fusion approach used in 30 

this study is a promising tool, further research is highly recommended, mainly using remote sensing 31 

data with fewer defects and other modeling techniques. The results obtained from the two study fields 32 

varied, ranging from an improvement in one field compared to no improvement in the other field.  33 

Keywords: Soil organic carbon; Data fusion; In-situ spectroscopy; Remote sensing; Variable 34 

importance; Agricultural soil 35 

1. Introduction 36 

The Spatio-temporal variability of soil organic carbon (SOC) content, regulated by both natural and 37 

anthropogenic influences, is the interaction of numerous processes and factors that vary from one 38 

locality to another. This is because no two soils are the same. Moreover, the soil is considered a complex 39 

environmental system with temporal and spatial variation at multiple scales (Webster & Oliver, 2007; 40 

Post & Kwon, 2000; Guenet et al., 2021; Hugue et al., 2016; Guo and Gifford, 2002). However, as a 41 

result of the soil's complex features and the variable spectral response of organic matter, resulting in a 42 

lack of clear and narrow spectral features, estimating the behaviours of soil attributes, such as SOC, has 43 

provided mixed results (bad and good) despite the use of several machine learning and regression models 44 

on datasets obtained from both proximal and remote sensing techniques. Therefore, accurate estimation 45 

of SOC content remains vital because of its central role and benefits in various soil functions in the 46 

environment. This includes contributing to food security, greatly influencing soil structure, fertility, 47 

water-holding capacity, and mitigating greenhouse gas levels in the atmosphere. As a result, failure to 48 

accurately estimate its content may lead to wrong decisions by farmers and policymakers, affecting not 49 

only a community but possibly a country as a whole. This is because minor changes in SOC content or 50 

stock may have a negative impact on atmospheric CO2 concentrations (Davidson & Janssens, 2006). To 51 

aid farmers and decision-makers in accurate decision-making and natural resource planners for optimal 52 
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planning, reliable estimates of SOC content must be examined across various spatial scales (Vaudour et 53 

al., 2019). 54 

In the last few decades, a wide variety of studies have explored the use of several existing, updated, and 55 

newly developed machine learning (ML) and regression models, as well as other approaches in the quest 56 

to improve the estimation of SOC (e.g., Lamichhane et al., 2019; Heung et al., 2016; Heuvelink et al., 57 

2021; Taghizadeh-Mehrjardi et al., 2016). Nevertheless, some of these models have yielded average to 58 

excellent results, especially in fields high in organic content. In contrast, for fields low in organic carbon 59 

content, the performance of these models ranges from average to abysmal results. Even though progress 60 

in developing these algorithms (ML and regression models) outweighs proximal and remote sensing 61 

techniques, there is still no best global predictive algorithm for SOC estimation. Because specific criteria 62 

and factors must be considered to predict SOC, for example, accurately, the geospatial characteristics 63 

of the study site, sample size and the specified covariate (Yimer et al., 2006; Wang et al., 2019; Yao et 64 

al., 2019). This implies that the varying results for SOC obtained using these algorithms can also be 65 

attributed to how data sets are collected and processed using these sensing techniques [proximal (e.g., 66 

spectroscopy) and remote (e.g., spaceborne and airborne). 67 

The use of spectroscopy as a high-resolution technique (Munnaf et al., 2020), specifically in the visible 68 

near-infrared (Vis-NIR) range, has facilitated the rapid determination of organic components, 69 

particularly SOC. Spectroscopy, as a cost-effective method, has been shown to produce accurate 70 

measurements of soil properties, including SOC, compared to remote sensing methods. This is a result 71 

of its ability to retrieve soil information more effectively due to the proximity of its sensors to the target 72 

attributes during spectral measurement in the field or the laboratory (Viscarra Rossel et al., 2006; Kuang 73 

et al., 2012; Angelopoulou et al., 2019; Grunwald et al., 2015). 74 

Although spectroscopy is more often used in the laboratory to predict a variety of soil constituents using 75 

diagnostic spectral features and statistical regression approaches (Bayer et al., 2016), in-situ applications 76 

are increasingly being utilised (Ben-Dor et al., 2009; Kweon and Maxton, 2013). This technique can 77 

also be mounted on platforms ranging from handhelds to fixed installations or tractor-embedded sensors. 78 

However, on a larger scale or in areas difficult to access, the use of spectroscopy that provides 79 
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information only at selected points is limited (Schwartz et al., 2011; Stenberg et al., 2010; Viscarra 80 

Rossel et al., 2006; McCarty et al., 2002). Additionally, over larger areas, its prediction levels of 81 

accuracy tend to decline, owing primarily to nonlinear correlations between soil characteristics and 82 

spectra, resulting in more significant prediction errors (Stevens et al., 2013; Stenberg et al., 2010). 83 

Remote sensing (RS), on the other hand, is commonly associated with the use of satellite (e.g., Sentinel-84 

2 (S2)) and airborne (Unmanned System Aircraft (UAS)) platforms that employ multi or hyperspectral 85 

imagery. Regular updates of RS data provide great potential for estimating and mapping SOC over a 86 

large domain, including inaccessible areas (needs physical contact). As an alternative to costly and time-87 

consuming conventional field sampling and analysis, this sensing technique is rapid and provides a 88 

spectral reference base for soil attributes (Castaldi et al., 2019a). However, its low spatial resolution is 89 

one of its significant limitations, including several disturbing environmental factors, as stated in the 90 

literature. 91 

As a result, identifying a universally accepted single sensor to function under such circumstances (soil's 92 

complex nature) to measure all soil parameters reliably remain key due to these sensors' limitations. 93 

This is because each of these sensors does provides distinct spatial and temporal perspectives of soil at 94 

different spatial resolutions (Grunwald et al., 2015) [e.g., spectroscopy (ranges in nanometers (nm), 95 

satellites (S2 (meters (m)), airborne (UAS (centimetres (cm)]. Finding a strategy for integrating data 96 

from each of these sensors and fusing it into a single data set, especially in fields with low organic 97 

carbon content, could thus improve SOC estimation accuracy. 98 

For instance, some studies have estimated and mapped SOC and other soil properties within the last few 99 

decades using proximal and remote sensing data. However, most of these studies (Biney et al., 2021; 100 

Gholizadeh et al., 2018; Žížala et al., 2019; Gomez et al., 2008; Crucil et al., 2019) use these data 101 

separately in a single study. Although in some literature, some of these datasets were merged to estimate 102 

soil properties (Sabetizade et al., 2021; Vohland et al., 2014; Peng et al., 2015; Bousbih et al., 2019; 103 

Wang et al., 2020; Vohland et al., 2022). Moreover, this was mostly done with only airborne, 104 

spaceborne, or spectroscopy datasets and spaceborne and airborne data combined. Additionally, several 105 

procedures were used in the said studies to achieve their set objectives. This ranges from upscaling and 106 
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downscaling (Li et al., 2017; Wang et al., 2017; Peng et al., 2015), data integration, sensor fusion or 107 

data fusion (Wang et al., 2017; Ji et al., 2019; Khaleghi et al., 2013; Simone et al., 2002). According to 108 

Grunwald et al. (2015), sensor/data fusion could be a viable solution for integrating soil attributes at 109 

multiple scales of variation (both horizontally and vertically) to improve soil attribute estimation, 110 

including SOC (i.e., merging proximal and remote sensing data). 111 

Data fusion is the process of combining data and information from multiple sensors into a single dataset, 112 

thereby improving the interpretation performance of the obtained data to achieve greater accuracy than 113 

each of the source data alone (Hall and Llinas, 1997). Data fusion incorporates concepts from various 114 

disciplines, including signal processing, information theory, statistical estimation and inference, and 115 

artificial intelligence (Khaleghi et al., 2013). Consequently, researchers have attempted to use multiple 116 

sensors to obtain more accurate results (Horta et al., 2015; O'Rourke et al., 2016; Xu et al., 2019). 117 

Several approaches are used to perform data fusion, including a simple combination of the original data 118 

(Viscarra Rossel et al., 2006; Ji et al., 2019), a simple combination of selected spectral features (Xu et 119 

al., 2019b), and a combination of the measurement results (O'Rourke et al., 2016). The combination of 120 

measurement results, also called model averaging (Horta et al., 2015), involves various model outcomes 121 

to obtain a better result. This improves the estimation accuracy and reduces the possibility of aberrant 122 

measurements (O'Rourke et al., 2016; Chen et al., 2019). However, the accuracy could decline in fields 123 

with low soil properties under consideration. Although various categories of fusion approaches have 124 

been developed for different purposes (e.g.), some of these methods have performed better than others 125 

in the broad area of fusion technology (Grunwald et al., 2015). 126 

As global climate change remains a major environmental concern (Enriquez-de-Salamanca et al., 2017), 127 

SOC will continue to play an essential role in the carbon cycle globally because, according to Lal (2004), 128 

it remains the most significant carbon pool on land. As a result, several studies are ongoing using 129 

modified existing and new techniques and approaches to estimate and map SOC content and improve 130 

upon existing and new data for SOC estimation. Also, previous work on the current fields (Gholizadeh 131 

et al., 2018; Biney et al., 2021) has shown medium-to-poor SOC estimate results using proximal and 132 

remote sensing datasets individually.  133 
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The objective of the present study was to compare the individual and merged abilities of in situ, UAS, 134 

and S2 sensors for estimating the content of SOC in two different agricultural fields with varying types 135 

of soil. In the case of the merged approach, different combinations of the above data sets were explored. 136 

To the best of our knowledge, no studies have tested the impact of merging these three datasets into a 137 

single dataset through data fusion to estimate SOC. As a result, this study's tasks included (i) estimating 138 

the contents of SOC using the in-situ, UAS, and S2 data separately in their original resolution, (ii) 139 

performing the estimations with middle-level fusion techniques (simulated in situ + UAS + S2) after 140 

variable importance selection using the Boruta algorithm, (iii) verifying the performances of support 141 

vector machine (SVM) on the fused data to estimate SOC, and (iv) creating spatial distribution maps of 142 

SOC content in the study areas using the inverse distance weighting (IDW) interpolation method. 143 

2. Materials and methods 144 

2.1. Site description 145 

The study area selected from which data were collected consists of two different agricultural fields 146 

located at Nová Ves nad Popelkou and Udrnice. The Nová Ves nad Popelkou study area (Field A) is 22 147 

ha (50°31′ N; 15°24′ E) in central Bohemia, with a mean altitude of 185 m asl, while Udrnice (Field B) 148 

is 52 ha (50°21′ N; 15°15′ E) in the district of Jicin, with a mean altitude of 269 m asl (Fig. 1). These 149 

fields are representations of arable land that has been extensively farmed. The areas are primarily rural, 150 

with the most dominant crops being winter and spring barley, spring cereals, and maize. Additionally, 151 

the selected sites were representative of soil capes, which were homogenous and comparable in terms 152 

of terrain characteristics, land management, and climatic conditions (Schmidt et al., 2010). These areas 153 

were also characterised by dissected relief with side valleys, toe-slopes, and back-slopes. According to 154 

the World Reference Base (WRB) for soil resources (World Reference Base for Soil Resources 2014), 155 

the soil types in Udrince consist mainly of Chernozems and Luvisols on loess, while those in the Nová 156 

Ves nad Popelkou region are predominantly Cambisols on sedimentary rocks. Table 1 shows the study 157 

sites and data collection details. 158 
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 159 

Fig. 1: Location of sampling points in the Czech Republic [Nová Ves nad Popelkou (A), Udrnice (B)] 160 
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Table 1: Study area and data collection details. 161 

Location 

Area size 

(ha) Dominant soil unit 

Samples 

(no.) 

Soil 

sampling UAS S2 

Udrnice  22 

Chernozems and Luvisols 

on  
loess  130 10.06.2019 24.11.2019 25.07.2019 

 

Nová Ves 

nad Popelkou 52 

Cambisols on sedimentary 

rocks. 111 24.05.2019 24.11.2019 10. 07.2019 

 162 

2.2. Soil sampling and in situ spectra measurement 163 

A total of 241 soil samples were comparably taken from the corresponding agricultural fields [Field A 164 

(130), Field B (111)]. A rectangular grid sampling strategy with a space interval of 40 m (Field A) and 165 

60 m (Field B) was adopted. To be transported to the laboratory for chemical analysis, soil samples from 166 

the topsoil layer (0 to 20 cm depth) were collected and placed in clearly labelled bags (approximately 167 

150 to 200 g). The sample size provided adequate coverage of the fields and was symbolic of the area 168 

and samples for which the models were implemented. Each field's sampling points were located in the 169 

field using a GeoXM (Trimble Inc., 2007) receiver at an accuracy of 1 m. Both fields had not been 170 

recently ploughed (soil not disturbed). These samples were air-dried for two weeks in the lab, and large 171 

clods of the dried soil samples were gently crushed in a porcelain bowl and then passed through a 2 mm 172 

sieve. Soil organic carbon content (SOC, %) was measured in two steps using the dichromate redox 173 

titration method (Skjemstad and Baldock, 2008). The specimens (samples) were initially oxidised with 174 

K2Cr2O7, and afterwards, the solution was potentiometrically titrated with ferrous ammonium sulfate 175 

(FeH8N2O8S2). Concurrently, in situ spectral measurements were performed on the soil using an ASD 176 

Field Spec III Pro FR spectroradiometer (ASD Inc., Denver, Colorado, USA) with a high-intensity 177 

contact probe across the 350–2500 nm wavelength range during the respective field sampling. Before 178 

that, the removal of some undesired materials from the soil surface (excluding plant material, crop 179 

residues, or stones) was carried out. The spectroradiometer spectral resolution was 3 nm for the region 180 

of 350–1050 nm and 10 nm for the region of 1050–2500 nm. Three spectral measurements for each 181 

sample were collected, and the average values were used for further analysis. The sensor was 182 
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recalibrated every ten runs using a Spectralon® (Labsphere, North Sutton, NH, USA) standard white 183 

reference panel (Shi et al., 2016). 184 

2.3. Remote sensing data acquisition 185 

2.3.1. Sentinel-2 imagery (S2) 186 

The Multispectral Sentinel-2B imagery used was a cloud-free image-level 2A product ready to be used. 187 

This is because processes including geometric, radiometric, and atmospheric corrections have already 188 

been performed by the manufacturers using Sen2Corprocessor. The imagery, made up of 13 spectral 189 

bands (10 m, 20 m, or 60) (Table 2), was obtained through the Copernicus Open Access Hub of the 190 

European Space Agency on July 10, 2019 (Field A) and July 25, 2019 (Field B). To ensure that all the 191 

bands had the exact resolution, Snap software was used to resample from the original Bottom of 192 

Atmospheric (BoA) 20 or 60 m spatial resolution to 10 m using the nearest neighbor resampling 193 

approach because it is computationally efficient and conserves the input image pixel values (Roy et al., 194 

2016). Three bands were excluded for further analysis (B1, B9, and B10). The remaining 10 bands 195 

[(VNIR-SWIR, B2, B3, B4, B5, B6, B7, B8, B8A, B11, and B12] were used in this study. According to 196 

Elhag and Bahrawi (2017), the selected bands are usually used to assess soil properties. Technical 197 

information about the S2 bands used can be found in the European Space Agency's handbook (2010). 198 

2.3.2. Unmanned Aircraft System Multispectral Imagery 199 

Multitemporal spectral images were collected on November 25, 2019, using a fixed-wing Unmanned 200 

Aircraft Systems (UAS) (Trinity F90 fixed-wing) mounted with two cameras: a sony camera (RGB, 3 201 

bands) and a MicaSense Altum camera (Multispectral, 6 bands), totalling nine bands (Table 3). The 202 

sensor resolution was 2064 x 1544 pixels with a long wave infrared band of 160 x 120 pixels. 203 

Additionally, the field of view was 47° x 37° (multi-spectral) and 57° x 44° (thermal), respectively. The 204 

camera has a sun sensor that gathers information about the light conditions and saves the radiant flux 205 

data in EXIF format. A QBase 3D smartphone app (mission planning software) was used to create the 206 

flight plan, which acted as the primary interface between the user and the UAS device. The QBase 3D 207 

provides real-time information about the UAS, such as altitude, distance, battery life, and mission 208 
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telemetry data, so the operator always has the most up-to-date information on the flight. Batteries were 209 

added to last the flight duration for the two study areas. The images were taken between 9:30 and 13:30 210 

under cloudless conditions to guarantee high-quality imagery. The flight height was 190 m (Field A) 211 

and 145 m (Field B), with a spatial resolution of 8.8 cm (Field A) and 7.7 cm (Field B) (MicaSense 212 

Altum camera), covering an area of 31 ha for Field A and 52 ha for Field B. All collected images during 213 

the flying of the UAS were processed in one go. Then, an exterior orientation based on tens of thousands 214 

of identical points was created. Afterwards, point clouds and DEMs (digital elevation models) were 215 

generated to collect ground control points. When the residuals on each GCP are satisfied, an orthophoto 216 

mosaic is created by recalculating all the models again. The orthorectified image is exported as one 217 

mosaic in GeoTIFF file format on the WGS-84 ellipsoid. Calibration was performed prior to generating 218 

this orthophoto. AgiSoft Metashape Professional 1.5.0 (AgiSoft LLC, St. Petersburg, Russia), 219 

photogrammetric processing was used. The normalised difference vegetation index (NDVI) was used to 220 

mask a 0.2 threshold to differentiate bare soil areas for both study fields. 221 

Table 2: Specifications of Sentinel-2B Multispectral Instrument sensor 222 

Spectral band Spectral-domain Central wavelength (nm) Spatial resolution (m) 

B1 visible (vis) 433 60 

B2 vis 490 10 

B3 vis 560 10 

B4 vis 665 10 

B5 Red-edge 705 20 

B6 Red-edge 740 20 

B7 Red-edge 783 20 

B8 Near-infrared (NIR) 842 10 

B8A NIR 865 20 

B9 NIR 945 60 

B10 Short wave infrared (SWIR) 1380 60 

B11 SWIR 1610 20 

B12 SWIR 2190 20 

 223 
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Table 3: Specifications of UAS Multispectral Instrument sensor 224 

Spectral band Spectral-domain Central wavelength (nm) 

           RGB     

B1 Blue 475 

B2 Green 560 

B3 Red 650 

Multispectral   

B4 Red 668 

B5 Red-edge 705 

B6 Red-edge 717 

B7 Red-edge 740 

B8 Near-infrared 842 

B9 Thermal (long wave infrared) 945 

 225 

2.4. Pearson correlation matrix and alignment of in-situ spectroscopy data to multi-spectral imaging 226 

The degree of a linear relationship between two variables is measured by correlation (predictors and 227 

responses). Before the correlation matrix was applied to the S2 and UAS, as well as the in-situ spectral 228 

data with SOC for each study field, some modifications were made to the in-situ data. As already stated, 229 

the in-situ spectra range from 350–2500 nm, but these are point-based measurements. Therefore, the 230 

reflectance data from the in-situ spectroradiometer were simulated by S2 and UAS multi-spectral 231 

imaging sensors to obtain simulated broadband reflectance data at ground level, resulting in 12 bands 232 

(S2 format) and 8 bands (UAS format). Due to noise in the 350–399 nm region, only the reflectance 233 

values between 400 nm and 2500 nm were used. 234 

A "read.asd" tool was developed in Visual Basic for Applications (VBA) under Excel® software 235 

(Vaudour et al., 2014) to process and automate the in-situ spectra data. The tool was also designed using 236 

the Relative Spectral Response Function (RSRF) to weight the average in-situ reflectance values 237 

automatically. The relative spectral response (RSR) for S2 and the specific UAS imagery used in this 238 

study were obtained and utilised. The RSRF integrated the in-situ spectrum reflectance into the UAS 239 
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and S2 band formats. Even though it is possible to acquire a synthesised value by computing a simple 240 

mean from the nominal FWHM bandwidth, it is preferable to use the available RSR to account for the 241 

sensitivity of each sensor band (satellite and drone) (Feilhauer et al., 2013). The S2 data, on the other 242 

hand, were extracted into reflectance values using Snap software, while the UAS values for each band 243 

were extracted into digital numbers format. However, it was converted into reflectance values using the 244 

band centre value, which was 32768 and represented 100% of the reflectance. Each band was divided 245 

by 32768 to obtain normalised values ranging from 0 to 1. Finally, the Pearson correlation matrix was 246 

performed using the UAS and S2 data and the simulated in-situ spectral data (S2 and UAS) with SOC 247 

for comparison. This was done to help explain the impact of each dataset on SOC prediction. 248 

Additionally, the simulated in-situ datasets (UAS or S2 format) were compared, and the data showing 249 

the best correlation with SOC were selected as in-situ spectral final data. 250 

2.5. Pretreatment and outlier removal. 251 

During in-situ spectral measurement, the obtained spectra are prone to many defects, ranging from noise 252 

and other undesirable side effects (i.e., artefacts). These artefacts can negatively influence the obtained 253 

spectra, thereby affecting the predictive performance of the attribute under consideration (SOC). 254 

Therefore, to optimise the fitting of SOC against the spectral data while also improving the SOC relevant 255 

details, pretreatment algorithms were applied to the in-situ spectral data to help reduce the unmodeled 256 

variability in the data and enhance the features sought in the in-situ spectral data. The pretreatment 257 

methods used include SG filtering (with a second-order polynomial fit and 21 smoothing points) 258 

[sgolayfilt function from the signal R package (Signal developers, 2013) was used], logarithmic (log 259 

(1/R)) transformation (to linearise the relation between spectral values and the concentration of 260 

absorbing soil constituents) and the standard normal variate (SNV) (normalisation of the spectra). The 261 

SNV was calculated by subtracting every reflectance value from the mean reflectance value of the 262 

particular spectrum and dividing this value by the standard deviation of the whole spectrum. 263 

According to Murray (1988), outliers can be classified as undesirable data that can influence model 264 

output and must be checked and removed to enhance the model's predictive performance. Therefore, 265 

before the spectral treatment, the presence of outliers was examined using ensemble sparse partial least 266 
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squares (enpls). In total, 6 outliers (Field A (4), Field B (2)) were removed from the in-situ data. No 267 

outliers were removed from either the S2 or UAS datasets. 268 

2.6. Variable importance selection 269 

The selection of featured bands (variable importance) is an efficient way of improving the model's 270 

accuracy and robustness by reducing the bias caused by uninformative variables (Xu et al., 2019). This 271 

is because not all variables are significant for estimating the desired outcome. As a result, removing 272 

irrelevant variables may aid in improving the model's predictive performance. The Boruta algorithm, 273 

which is an ensemble learning technique, and a random forest classification wrapper were used for the 274 

future selection approach. This algorithm can select all feature sets related to the dependent variables 275 

and can also detect the influencing factors of the dependent variables to achieve effective and superior 276 

feature selection. Boruta employs a random forest classifier with two main adapters: permutation 277 

importance (raw permutation adapter and normalised permutation adapter) and Gini importance. The 278 

Gini importance of each feature is calculated as the sum of the number of splits and includes the feature. 279 

It also considers the fluctuations in the mean accuracy loss among the generated forest trees. 280 

2.7. Data set preparation and development before data fusion 281 

2.7.1. Transforming datasets to the same spatial resolution 282 

As previously stated, S2 and UAS data were collected with varying spatial resolutions [(Field A (S2 (10 283 

m), UAS (8.8 cm), Field B (S2 (10 m), UAS (7.7 cm)], whereas for the in-situ data, it has no spatial 284 

resolution but was collected with a spectral resolution of between 2 nm and 10 nm for both fields. 285 

Therefore, these datasets were transformed to a 10 m resolution format (S2 data as reference). This was 286 

done separately for each study field using only the future selected variables for each data. For the in-situ 287 

data, a kriging map was created using empirical Bayesian kriging (EBK). This kriging method (EBK) 288 

is a geostatistical interpolation technique that consists of two geostatistical models: intrinsic random 289 

function kriging (e.g., Chilès and Delfiner, 1999) and a linear mixed model (Diggle and Ribeiro, 2007). 290 

This method is unique and differs from other kriging techniques. EBK uses the process of subsetting 291 

and simulation to produce optimal results. Furthermore, parameter determination is performed 292 



14 
 

automatically. In the process, EBK assumes an estimated semivariogram for the interpolation region as 293 

well as a linear prediction that includes variable spatial damping, thereby producing less error. In 294 

contrast to ordinary kriging, which utilises weighted least squares to estimate semivariogram 295 

parameters, this method uses restricted maximum likelihood estimation. 296 

Using the GPS coordinates of the study area (used to locate the sampling points in the field), including 297 

one of the selected bands, a map was generated with the band values overlaid on the image (for each 298 

sampling point 126). The map (referred to as the "estimated spectral map") was transformed to a raster 299 

with a resolution of 10 m. Afterwards, the spectral band values were extracted from all sampling points 300 

for each study field separately [Field A (126) and Field B (109)]. The procedure was repeated for each 301 

selected band based on the future selection approach. The final data (in-situ spectral) at 10 m resolution 302 

were used for further analysis. For the S2 data (already at 10 m), the future selected bands were retained 303 

as the final data set for each field. However, for the UAS, the imagery was resampled to a resolution of 304 

10 m, and the future selection bands were also retained as the final data. The kriging and resampling or 305 

upscaling processes were performed in the ArcGIS map (ArcGIS 10.8.1) and ENVI 5.6.1 306 

2.7.2. Data fusion 307 

However, middle-level fusion was considered for this study by using the combination of UAS, S2 and 308 

in situ spectral feature bands selected by the Boruta algorithm. However, the low-level fusion was also 309 

tested, but the result is not shown because it was less accurate than the middle-level approach. In this 310 

study, the variables UAS, S2 and in-situ were denoted by i, j, and k, respectively, and the number of soil 311 

samples was denoted by n. The combinations of the spectra (UAS ⊗ S2 ⊗ in-situ) produced n outer 312 

product matrices with the multiplied intensities of the original three domains. The i × j × k matrix was 313 

then unfolded to an i × j × k vector, resulting in a new matrix with n rows and i × j × k columns for the 314 

chemometric analysis. 315 

Y= Wo + (CUAS × XUAS) + (CS2 × XS2) + (Cin-situ × Xin-situ)                        (1) 316 



15 
 

Where Y is the vector with the soil property of interest (measured element contents), XUAS, XS2 and 317 

Xin-situ are the independent variables (prediction outcomes of UAS, S2 and in-situ), Wo is the intercept, 318 

and CUAS, CS2 and Cin-situ are the coefficients of UAS, S2 and in-situ outcomes. 319 

2.8. Chemometric analysis and model assessment 320 

2.8.1. Support vector machine (SVM) 321 

The support vector machine (SVM) algorithm was proposed by Guyon et al. (2002). This algorithm is 322 

noted for updating the ranking criterion at each step of a backwards strategy: the criterion must be 323 

reviewed at each stage, and the variable that minimises this measure must be excluded. SVM use kernel 324 

functions such as degreed polynomial, radial basis, or hyperbolic tangent to project the data onto a new 325 

hyperspace where complex nonlinear patterns can be simply represented (Gunn, 1998; Cortes and 326 

Vapnik, 1995). For this study, SVM was tuned with different cost parameters with the built-in tuning 327 

function of the grid search (specifically 0.001, 0.01, 0.1, and 1) using a linear kernel while the epsilon 328 

parameter was left at its default value (0.1). The best cost parameter is determined from a 10-fold cross-329 

validation based on the RMSE. The package e1071 library in R was used. 330 

2.8.2. Data partitioning, model accuracy assessments and spatial distribution maps 331 

The model's output was assessed by fivefold cross-validation for each regression procedure, where the 332 

whole dataset was randomly divided into calibration (75%) and validation sets (25%) of the samples. 333 

The accuracy of the prediction was assessed based on the coefficient of determination (R2
cv) [the R2

cv 334 

ranges from 0 to 1, where R2
cv = 1 is the optimal value], the root mean square error of prediction 335 

(RMSEcv) (measures the overall model prediction accuracy) and the ratio of performance to 336 

interquartile range (RPIQ), which is defined as the interquartile range of the observed values divided by 337 

RMSEcv. The RPIQ considers both prediction errors and variation in observed values, resulting in a 338 

model validity metric that is more easily comparable across model validation studies. The RPIQ does 339 

not make any assumptions about the distribution of the observed values. The greater the RPIQ is, the 340 

better the model's predictive capacity [very poor model (RPIQ < 1.4), fair (1.4 ≤ RPIQ < 1.7), good 341 

models (1.7 ≤ RPIQ < 2.0), very good models (2.0 ≤ RPIQ ≤ 2.5), and excellent models (RPIQ > 2.5)]. 342 
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The RPD is the ratio of a parameter's standard deviation to a specific model's standard error of that 343 

parameter's prediction. For the RPD, Chang and Laird's (2002) categorisation was applied: RPD > 2 344 

indicates good models, RPD between 1.4 and 2 indicates moderate predictive ability, and RPD = 1.4 345 

indicates weak models. The fivefold cross-validation was repeated 100 times to ensure model stability 346 

and reliability. 347 

Finally, the spatial variability of SOC contents was mapped using the inverse distance weighting (IDW) 348 

interpolation method using the predicted values for each platform data as well as the merged data and 349 

different fusion data sets. According to Qiao et al. (2018), this interpolation method can use point 350 

measurements at a given location to estimate other values at an unknown location. Additionally, due to 351 

its ease of application, the IDW method is classified among the most frequently used interpolation 352 

techniques in soil science. One of its major advantages is its ability to assign weights before prediction, 353 

thereby providing a lower error margin and creating a more accurate distribution map than other 354 

techniques (Liao et al., 2018). Fig. 2 schematically displays the experimental design. 355 

 356 

3. Results 357 

3.1. Descriptive statistics of soil organic carbon (SOC, %) content and simulated in situ spectral data 358 

Table 4 shows the statistical results of SOC for two agricultural fields (A and B), indicating the 359 

standard deviation (SD), mean, skewness, minimum, maximum, and coefficient of variation. 360 
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Table 4: Descriptive statistics of soil organic carbon (SOC, %) content at two study fields 361 

Samples Mean Median SD Skewness Minimum Maximum CV(%) 

Field A 1.44 1.44 0.33 0.57 0.6 2.93 23 

Field B 1.09 1.03 0.35 2.20 0.53 2.88 31 

CV: coefficient of variation, SD: standard deviation     

 362 

SOC values were approximately normally distributed across both study fields, with skewness values of 363 

0.57 in Field A and 2.20 in Field B. The study fields differed significantly in terms of SOC content. 364 

Field A had the highest mean content of 1.44%, while Field B, with a mean of 1.09%, was the lowest. 365 

The results also show that the SOC distribution is more homogeneous in Field A than in Field B, with 366 

the former having CV values of 23% and the latter having CV values of 31%. These SOC values could 367 

indicate medium to semi-high SOC content for Field A and medium to poor SOC content for Field B. 368 

The simulated in-situ spectra (UAS format) were selected over the in-situ spectra (S2 format) as the 369 

final in-situ dataset for each study field. The approach used, however, differs for each study field. For 370 

example, for Field A, the majority of its simulated in-situ spectral bands (UAS) (Fig. 3a) significantly 371 

correlate with SOC compared to the other in-situ spectral data (S2 format) (see supplementary file). In 372 

the case of Field B, none of the bands in its simulated in-situ spectral data (UAS and S2 form) was 373 

correlated with SOC. Nonetheless, the in-situ spectra (UAS format) show a strong correlation among 374 

their individual bands compared to the other in-situ spectral data (S2 format) (see supplementary file). 375 

Hence, only these in-situ data (UAS format) were considered for subsequent investigations in this study. 376 

3.2. Correlation matrix between SOC and bands for each platform data 377 

For Field A, the Pearson correlation analysis (Fig. 3b) showed no correlation between SOC and all S2 378 

bands. In contrast, for the in-situ spectral data (simulated data), a moderately significant correlation was 379 

found between SOC and five of its bands [B2, B3, B5, B6, B7, r =-0.45, -0.43, -0.41, -0.41, -0.41], while 380 

three bands of the UAS data (Figure 3c) [B6, B7, B8, r =-0.34, -0.38, -0.30] showed weak correlation 381 
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with SOC. In the case of Field B, almost all the bands for the three datasets [in-situ spectra (simulated 382 

data), S2 and UAS] (Fig. 4 a, b, c) showed a vague or no relationship with SOC, except for Band 3 (r = 383 

-031) of S2 data (Fig. 4b), which had a weak correlation with SOC. Notwithstanding, the in-situ data 384 

were slightly better than the remaining two datasets (Field B) (order: in situ > S2 > UAS) in terms of 385 

better interrelationships among the individual bands, highlighting their strong mutual dependence. 386 

 387 

 388 

 389 
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 391 
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Fig. 3:  Correlation matrices of SOC with the best simulated in-situ spectra (UAS) (a), S2 reflectance 392 

bands (b) and UAS reflectance bands (c) for Field B393 

 394 

 395 
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 396 

Fig. 4: Correlation matrices of SOC with the best simulated in-situ spectra (UAS) (d), S2 reflectance 397 

bands (e) and UAS reflectance bands (f) for Field B 398 

3.3. Future selection with the Boruta algorithm 399 

Following the application of the Boruta algorithm to each of the three datasets (in situ, UAS, and S2) 400 

for both Field A and Field B, some of the bands constituting these datasets (bands before the shadow 401 

max index) (Fig. 5 a and b) were deemed irrelevant and were removed. This includes the following 402 

bands: [in-situ (B2), S2 (B8), UAS (B2, B4) (Field A)], and [in-situ (B1, B4), S2 (B2, B6, B7, B8, B8A), 403 

UAS (B4, B5, B6, B7, B8, B9 (Field B)]. As a result, only the most appropriate bands (bands after the 404 

shadow max index) were considered for further investigation in this study, specifically for the data 405 

fusion approach (Fig 5 a and b). 406 
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 407 

 408 
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 409 

Fig. 5a: Variable importance of Field A for the three-platform data. 410 

 411 
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 412 

 413 

Fig. 5b: Variable importance of Field B for the three-platform data. 414 
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3.4. SOC prediction performance for the three platforms using individual and fused data 415 

The results of the estimation models using SVM for the three datasets (in-situ, S2 and UAS) for each 416 

study field (A and B), including the prediction for the individual data, merged data (without considering 417 

variable importance), and fused data (considering only variable importance), are presented in Table 5. 418 

The obtained results varied for each category of the dataset. The estimations of SOC using the in-situ 419 

spectra under the individual data category provided the best results compared to both S2 and UAS data 420 

for Field A (R2
cv = 0.51, RMSE = 0.23, RPIQ = 1.74, RPD = 1.56) and Field B (R2

cv = 0.34, RMSE = 421 

0.29, RPIQ = 1.36, RPD = 1.34). Whereas the result for Field A could be described as fair because the 422 

amount of variance explained by the model was 0.51%, the result for Field B was less satisfying, 423 

as the explained variance was only 0.35%. Table 5 also shows that for Field A, although the merged 424 

data (without considering VI) were better than UAS and S2 (Field A), these data, however, were 425 

outperformed by the in-situ data in terms of the predictive performance of SOC. In contrast, the merged 426 

data (Field B) were almost comparable to the in situ data but slightly better than the other individual and 427 

fused data sets. However, the error margin provided by the in-situ data was slightly better than that of 428 

the merged data (Field B) (Table 5). 429 

According to the results (Table 5), using the variable importance datasets to obtain improved SOC 430 

estimates from each study field differed substantially. In Field A, the fused approach using the three-431 

platform data (in-situ, + UAS + S2) provided the best overall result; in Field B, the merged and in situ 432 

datasets provided slightly better results than the fused datasets. Additionally, for Field A, two of the 433 

fusing combinations (in-situ + S2 and UAS + S2) showed less predictive performance of SOC compared 434 

to the in situ dataset. 435 

 436 

 437 

 438 

 439 
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Table 5: Prediction performance showing fivefold leave-group-out cross-validation statistics for three 440 

platforms (in-situ, UAS, and S2) as well as different combinations among the dataset (fusion and merged 441 

format) at two different sites (Fields A and B) using SVM (support vector machine). 442 

Datasets R2
CV RMSE RPIQ RPD 

   Field A   

in-situ 0.51 0.23 1.74 1.56 

UAS 0.29 0.28 1.34 1.22 

S2 0.26 0.33 1.32 1.1 

  Merged data (without considering VI) 

In situ + UAS + S2 0.49 0.28 1.68 1.5 

  Fused data (with only VI)  

in-situ + UAS 0.52 0.23 1.74 1.54 

in-situ + S2 0.47 0.26 1.59 1.42 

UAS + S2 0.31 0.31 1.24 1.11 

in-situ + UAS + S2 0.57 0.22 1.85 1.62 

   Field B   

in-situ 0.34 0.29 1.36 1.34 

UAS 0.21 0.38 1.27 1.25 

S2 0.18 0.41 1.18 0.91 

  Merged data (without considering VI) 

In-situ+UAS+S2 0.35 0.37 1.26 1.34 

  Fused data (with only VI)  

in-situ + UAS 0.31 0.30 1.33 1.30 

in-situ + S2 0.24 0.33 1.22 1.22 

UAS + S2 0.18 0.34 1.09 0.96 

In-situ + UAS + S2 0.30 0.27 1.34 1.32 

 443 

The scatterplots of predicted SOC using SVM against observed SOC are shown in Fig. 6a and 6b for 444 

three platform datasets and combinations from two different locations (Fields A and B). Overall, the 445 

in-situ and fused datasets (in situ+UAS+S2) look similar and differ in extreme values, with the former 446 

having more extreme values than the latter (Field A). Additionally, UAS and S2 also look identical, 447 
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but although more points were located closer to the 1:1 line, the arrangement of points looks different 448 

(concentrated together) compared to the in-situ data. Moreover, the 1:1 line for both the UAS and S2 449 

was shifted because of the arrangement of the points based on these data, indicating an underestimated 450 

SOC content. The difference in predicting SOC among the various platforms was not the same, with 451 

the in-situ data showing better results than the UAS and S2 data. However, the results improved with 452 

the use of the fused datasets.453 

 454 

Fig. 6a. Observed vs predicted SOC content (%) for the individual platforms and the overall fused data 455 

set in Field A using SVM 456 

Visually, the scatterplots for the four datasets in Field B look similar but differ in terms of the extreme 457 

value distribution. UAS and S2 had more extremely distributed values than the in-situ data. For 458 

prediction, the in situ data were better. However, all the different platforms and combinations failed to 459 
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account for at least 0.5% of the variance in SOC for the area.460 

 461 

 Fig. 6b. Observed vs predicted SOC content (%) for the individual platforms and the overall fused 462 

data set in Field B using SVM 463 

Spatial distribution of SOC using in situ, UAS and S2 with different data combinations 464 

The spatial distribution maps of SOC obtained using SVM predictive modeling from the in-situ spectral, 465 

UAS, and S2 data as well as different fusion combinations among these datasets, including fused data 466 

[(in-situ + UAS + S2)], (in-situ + S2), (in-situ + UAS), (S2+UAS)] and merged data (in-situ + UAS + 467 

S2), are illustrated in Figs. 7 and 8. 468 

Fig. 7 shows that the in situ and fused data (in-situ+S2) spatial distributions of the SOC maps look 469 

similar to the lab-measured SOC map. In the case of UAS and S2, their spatial distribution maps also 470 

look similar, especially in both the upper and lower sections, but differ in the middle section, where S2 471 

shows lower SOC content than UAS. Additionally, comparing both the S2 and UAS maps to the lab-472 

measured map, the S2 SOC distribution map looks better than the map displayed by the UAS imagery, 473 

and both the UAS and the fused data (UAS+S2) maps look similar in the upper, middle, and lower 474 

halves of the study area. Finally, the fused data (in-situ + UAS) and (in-situ + UAS+S2) produced 475 
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identical SOC spatial distribution maps. However, the former detection of high SOC values is similar 476 

to the lab measurement compared to the latter. 477 

 478 

Fig. 7. Spatial SOC distribution maps in Field A based on the best prediction outcome from the 479 

individual platforms merged and fused dataset with SVM [lab measured (A), in-situ (B), UAS (C), S2 480 

(D), merged data (in-situ+UAS+S2) (E), fused data (in-situ +UAS) (F), fused data (in-situ+S2) (G), 481 

fused data (UAS+S2) (H), fused data (in-situ+UAS+S2)] 482 

Fig. 8 shows that none of the different platforms and the additional data combinations have any 483 

similarity with the lab-measured spatial distribution map of SOC, particularly regarding detecting high 484 
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SOC values. However, the fused data sets [in-situ +UAS, in-situ +S2, and in-situ +UAS] as well as the 485 

merged data exhibit similar characteristics of SOC distribution in the study area, with low SOC values 486 

in the middle to lower section. Additionally, UAS and S2 were almost identical except for the 487 

detection of high SOC values, where S2 was better than UAS. 488 

 489 

Fig. 8. Spatial SOC distribution maps in Field B based on the best prediction outcome from the 490 

individual platforms merged and fused dataset with SVM [lab measured (A), in situ (B), UAS (C), S2 491 

(D), merged data (in situ+UAS+S2) (E), fused data (in-situ +UAS) (F), fused data (in-situ+S2) (G), 492 

fused data (UAS+S2) (H), fused data (in-situ+UAS+S2)]. 493 

 494 
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4. Discussion 495 

The differences in model output among the three platforms individually could be attributed to the 496 

conditions and approaches under which each dataset was obtained to estimate SOC. Normally, high 497 

spatial and spectral resolution remote sensing data (closer to the target object during measurement) are 498 

needed to help estimate SOC more accurately (Peng et al., 2015), especially in an area with low organic 499 

carbon content detailed information is required. The performance of the in-situ platform over other 500 

platforms is not surprising, as several studies have shown the superiority of spectroscopy (especially lab 501 

spectra) to remote sensing data (Hrelja et al., 2021; Angelopoulou et al., 2019; Gomez et al., 2008; 502 

Lagacherie et al., 2008, Stevens et al., 2008). The use of the in-situ spectral data ensured that all three 503 

platforms were prone to the same disturbed environmental conditions for a fair comparison. This 504 

environmental condition includes weather conditions, soil roughness, different measurement conditions, 505 

acquisition heights, noise interferences, spatial resolution, atmospheric conditions, pixel purity, and crop 506 

residues (Gomez et al., 2018; Lagacherie et al., 2008; Zhang and Zhou, 2016). However, the results 507 

show that these disturbing factors influence remote sensing data (S2, UAS) more than the in-situ data 508 

(Table 4). The study also showed that the simulated in-situ spectral data (UAS format as the final in 509 

situ-spectra) were not affected. It performed better than S2 and UAS data in estimating SOC (in Field 510 

A). 511 

Similarly, the projection of the in-situ simulated bands into 10 m resolution for the data fusion approach 512 

was unaffected, as shown in Table 5. However, for Field B, although the simulated in-situ was better, 513 

all three platforms' predictive performances of SOC were poor because all the data sets had no 514 

relationship with SOC (Fig. 4). Moreover, as shown in Table 4, the statistical distribution of SOC in this 515 

field was poor, with a low mean value of 1.09%. 516 

This study also evaluated the importance of predictors used to explain the variability of SOC. The Boruta 517 

algorithm technique, with a unique ability to reveal the significance of predictors to any machine 518 

learning model, was adopted (with an order of importance in ascending order) (section 3.3) before the 519 

data fusion approach to use only relevant variables to improve the accuracy of SOC. For Field A, for 520 

instance, the total number of bands for the three platforms using the data fusion approach was 27. Four 521 



32 
 

bands were discarded [in-situ (B1, B4, B5, B8, B6, B3, B7), UAS (B3, B1, B9, B5, B8, B6, B7), and S2 522 

(B8A, B7, B6, B4, B3, B5, B11, B12, B2)], with B8 being the worst band (Figure 5a). Many studies 523 

have demonstrated the sensitivity of B8 to SOC (Mondal et al., 2017). The significance of this band in 524 

estimating SOC content within a study area in South Africa was emphasised by Odebiri et al. (2020). 525 

They reasoned that B8 could provide valuable information on the physiological state of vegetation 526 

concerning SOC, where chlorophyll content attributes are present. This could have influenced the S2 527 

data used to estimate SOC in the current study (Table 5). 528 

One of our primary goals was to assess the impact of data fusion across these platforms using various 529 

combinations after variable importance (VI) selection using the Boruta algorithm. As expected, the 530 

fusion approach (Field A) resulted in a better overall SOC estimation accuracy than the individual 531 

platforms, except for the in-situ platform, where SOC estimation was better than the following fusion 532 

approaches: in-situ+S2 and UAS+S2. One possible explanation is that the S2 data had a negative 533 

influence on both the in-situ and UAS data because, as shown in Fig. 3b, none of the bands of the S2 534 

imagery was correlated with SOC. Moreover, the influence of B8 on S2, as stated above, cannot be ruled 535 

out. Regardless, the results (Table 5) show that the data fusion model with the combined three platform 536 

techniques using only variable importance datasets (in-situ+UAS+S2) can be used to map and improve 537 

the prediction of topsoil SOC with cross-validation R2
cv values of 0.57, RMSE = 0.22, RPD = 1.62, and 538 

RPIQ = 1.85 in a study field (Field A) low in organic carbon content (with SOC values ranging between 539 

0.6 and 2.93%). This improvement was most likely due to the minimal effect of the S2 data on the 540 

combined data of the in-situ and UAS platforms before prediction, as these two datasets fused provided 541 

the second-best result (R2
cv = 0.52, RMSE = 0.23, RPIQ = 1.74, RPD = 1.54). 542 

Furthermore, the removal of interference caused by each sensor technique may have resulted in 543 

comprehensive information for predicting the target parameter (Terra et al., 2019; Viscarra Rossel et al., 544 

2006; Xu et al., 2019). This is because, after variable importance selection, the redundant and 545 

undesirable bands were discarded. For example, considering the merged data without variable 546 

importance selection, the model fails to account for at least 0.5% of the variance in SOC (R2
cv = 0.49). 547 

This suggests that the three-platform merged data approach included redundant bands, influencing the 548 
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model output. This improvement in SOC predictive performance is also consistent with findings from 549 

other studies (e.g., Knox et al., 2015; Johnson et al., 2019; Terra et al., 2019), although, in some 550 

instances, the individual approaches were slightly better or better off than some of the fusion 551 

combinations. It is worth noting that other researchers also obtained contradictory results (Clairotte et 552 

al., 2016; Viscarra Rossel et al., 2006) using a data fusion approach to estimate SOC, where no 553 

improvement was reported. The study by Clairotte et al. (2016) attributed this phenomenon to several 554 

disturbing factors (e.g., noise, undesirable information, or artefacts) when more than one spectral range 555 

or band is merged. 556 

Moreover, the baseline height and other spectral attributes throughout the entire spectral range or bands 557 

may negatively influence the prediction accuracy of the soil properties under consideration (Muller and 558 

Decamps, 2000). In the case of Field B, generally, the obtained result was very poor, irrespective of 559 

whether the datasets were used individually, in merged form, or even in different combination formats 560 

before the data fusion application. This could result from the fact that all three platform bands (Fig. 4d, 561 

e, and f) exhibited either no or poor correlation with SOC, thereby negatively affecting the predictive 562 

capability of SOC. Moreover, many redundant bands were detected and removed after the application 563 

of the Boruta algorithms (Fig. 5b) compared to Field A, which did not even help because the obtained 564 

results after the data fusion application were slightly poorer than using the in-situ data individually or 565 

the merged data approach. One possible issue that could have warranted this problem is using the same 566 

data fusion techniques for different study fields with varying soil types. This might not work out, as was 567 

the case for the current study. As a result, caution should be exercised when selecting data fusion 568 

approaches for different study fields to avoid introducing unexpected sources of error that can reduce 569 

prediction accuracy (Javadi et al., 2021). Therefore, further studies on the impact of using the same data 570 

fusion techniques on different study fields under different soil types and conditions could help verify 571 

the possibility of obtaining a universal data fusion approach to improve SOC estimates. Additionally, 572 

the poor SOC distribution statistics (Table 4) for this study location, with a low mean score of 1.09%, 573 

as stated earlier, could probably be a contributing factor. Overall, data fusion can generate better, well-574 
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resolved, and apparent results than the use of a single data set, especially in poor to medium organic 575 

carbon fields. 576 

The observed vs predicted results for SOC predictive accuracy for study locations A and B using the in-577 

situ, UAS, and S2 data individually and under fusion conditions are shown in the scatterplot (Fig. 6 a 578 

and b). The extreme values, especially in Field B, can be attributed to the spectral information content 579 

of the sensors under different measurement conditions as well as other soil types and the ability of each 580 

sensor to detect both low and high SOC at the study location. Moreover, each sensor platform was prone 581 

to disturbing external environmental conditions that generally affect proximal and remote sensing 582 

measurements in the field, as stated above. It is worth mentioning that extreme points cannot be 583 

classified as negative outliers. During the data analysis process, outliers within the datasets were checked 584 

based on their impact on the prediction accuracy of SOC using the enpls technique. As stated earlier, all 585 

undesirable data were removed. According to Balakrishnan (1994) and Frost (2019), outliers can affect 586 

the prediction accuracy, but some outliers are still significant, and removing them may affect the model 587 

output. 588 

Overall, from the output maps (Field A), SOC is moderately prevalent in the study area, especially in 589 

the middle part (Fig. 7). Compared to the in-situ platform, both UAS and S2 depict a slightly different 590 

scenario, especially UAS showing a field with semi-high SOC in the middle part, which can be attributed 591 

to the poor prediction accuracy of SOC using these data sets. In addition, UAS and S2 also 592 

underestimated the highest SOC values in the area due to the various wavelength variables used in the 593 

development of each prediction model. According to Wulder et al. (2015), selecting better S2 imagery 594 

under ideal conditions with fewer interferences could help obtain a reliable prediction accuracy, thereby 595 

providing improved mapping of a given study area under consideration. Additionally, differences in 596 

acquisition date, the presence of clouds, masking techniques, or better masking effects (Immitzer et al., 597 

2016; Steinberg et al., 2016) could also affect the accuracy of remote sensing data sets in mapping soil 598 

attributes. Although the fused datasets were reasonably comparable to the lab-generated map, the highest 599 

SOC values were likely overestimated due to fusing their platform datasets. This also shows that the 600 

IDW spatial distribution map generated by the fusion of different sensor data needs further research. For 601 
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Field B (Fig. 8), although all the individual and fused data underestimated the poor distribution of SOC 602 

in the study area in reference to lab-measured SOC values, none of these data sets was able to detect the 603 

highest SOC value, which could result from the poor prediction of SOC by each data set using the SVM 604 

model. 605 

5. Conclusion 606 

The study verified the impact of estimating and mapping SOC in study fields low in organic carbon 607 

content by merging high-resolution simulated in-situ data with Sentinel-2 (S2) and Unmanned Aircraft 608 

Systems (UAS) data through a data fusion approach. Prior to SOC estimation, all the data were converted 609 

to the same spatial resolution, and a variable importance approach was also applied. 610 

This study confirmed that data fusion could generate better, more intense, and apparent results than the 611 

use of a single data set, especially in poor to medium organic carbon fields. The findings also 612 

demonstrated that the data fusion approach could effectively reduce the overall error in SOC modeling. 613 

Although it was successful in the Nova Ves study field (Field A), the accuracy of SOC did not improve 614 

for the Udrince study field, likely because all three platform bands exhibited either no or poor correlation 615 

with SOC, thereby negatively affecting the predictive capability of SOC. Additionally, the obtained 616 

results for this study field were very poor, irrespective of whether the datasets were used individually, 617 

in merged form, or even in different combination formats before the data fusion application. As a result, 618 

caution should be exercised when selecting data fusion approaches for other study fields to avoid 619 

introducing unexpected sources of error that can reduce prediction accuracy. Although there were 620 

similarities in the spatial distribution map between the individual approaches, the in situ platform better 621 

resembled the measured data in Field A. In contrast, for Field B, none of the platforms resembled the 622 

measured map because no correlation existed between these data sets and SOC. Nonetheless, future 623 

studies to verify the effectiveness of the fusion approach on both proximal and remote sensing data are 624 

highly recommended, mainly using remote sensing data with fewer defects and other modeling 625 

techniques. 626 

 627 
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Abstract: Although many Soil Spectral Libraries (SSLs) have been created globally, these libraries still
have not been operationalized for end-users. To address this limitation, this study created an online
Brazilian Soil Spectral Service (BraSpecS). The system was based on the Brazilian Soil Spectral Library
(BSSL) with samples collected in the Visible–Near–Short-wave infrared (vis–NIR–SWIR) and Mid-
infrared (MIR) ranges. The interactive platform allows users to find spectra, act as custodians of the
data, and estimate several soil properties and classification. The system was tested by 500 Brazilian
and 65 international users. Users accessed the platform (besbbr.com.br), uploaded their spectra,
and received soil organic carbon (SOC) and clay content prediction results via email. The BraSpecS
prediction provided good results for Brazilian data, but performed variably for other countries.
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Prediction for countries outside of Brazil using local spectra (External Country Soil Spectral Libraries,
ExCSSL) mostly showed greater performance than BraSpecS. Clay R2 ranged from 0.5 (BraSpecS) to
0.8 (ExCSSL) in vis–NIR–SWIR, but BraSpecS MIR models were more accurate in most situations. The
development of external models based on the fusion of local samples with BSSL formed the Global
Soil Spectral Library (GSSL). The GSSL models improved soil properties prediction for different
countries. Nevertheless, the proposed system needs to be continually updated with new spectra so
they can be applied broadly. Accordingly, the online system is dynamic, users can contribute their
data and the models will adapt to local information. Our community-driven web platform allows
users to predict soil attributes without learning soil spectral modeling, which will invite end-users to
utilize this powerful technique.

Keywords: proximal soil sensing; soil spectral library; spectroscopy; soil analysis; soil quality;
precision agriculture; community practice; soil health monitoring

1. Introduction and Contextualization

Soil is an important component of the environment as it offers vital services such as
food production, clean water, and carbon sequestration [1]. To achieve sustainable use
of these resources, the world’s soil community must form partnerships and seek reliable
methods for obtaining its information. So far, the traditional soil laboratory has been the
most common way to obtain soil data, but it is not environmentally friendly, and it becomes
expensive when large amount of samples need to be analyzed [2]. This is especially crucial
in developing countries, where farmers either do not conduct soil analysis due to high
costs or the absence of locally accessible laboratory services. Despite the disadvantages,
traditional laboratory analysis is, and will continue to be, the most suitable way to obtain
soil data. However, alternatives such as soil spectroscopy have proved to be a convenient
way to optimize soil analysis and a rapid alternative to disseminate the results to all
interested parties. Indeed, a recent study [3] proved that wet laboratories’ analysis results
have more variation between laboratories than between spectral sensors.

Soil spectroscopy is well-documented in the literature with a strong background in
science and evidence [4–7]. Understanding the infrared phenomena on soil has provided
researchers with confidence in its use to quantify soil properties, with much research con-
ducted post-2000. Soil researchers are encouraged by the power of the infrared technique
and seek a global communication tool, such as the so-called Soil Spectral Libraries (SSLs).
The first publication on developing an SSL with global soil reflectance data was presented
by Stoner and Baumgartner in 1981 [8], followed by others, [9,10]. The latter example had
92 participating countries. In addition, countries have developed their own SSLs, such
as the Brazilian Soil Spectral Library (BSSL) [11,12], the Czech Republic [13], France [14],
Denmark [15], Mozambique [16], Spain [17], Australia [18], China [19–21], USA [22–24],
New Zealand [25], and Tajikistan [26].

Soil spectroscopy is mostly understood by researchers and has gathered hundreds
of papers in the last 60 years [6,7]. Despite the substantial research, the technique has not
advanced to the end-users. Traditional wet chemistry soil analysis has continued to be
performed since early 1800. There is no doubt regarding the importance of conventional wet
chemistry lab analysis, but the demand for soil analysis is increasing and the dependency
on wet chemistry is not be sustainable [27].

Many researchers have demonstrated the efficiency of soil spectroscopy and robust
predictive capabilities for multiple soil properties [28], summarized in [7]. In addition, the
MIR spectral range has been proven to provide superior prediction compared to vis–NIR–
SWIR spectra [29–31]. The SSLs, thus, are important research initiatives [10] but the data
are only available through scientific journal publications. Other initiatives have adopted an
‘open spectra’ approach. This includes regional programs such as the ICRAF-ISRIC Soil
VNIR Spectral Library [32], the LUCAS framework (Land Use/Cover Area Frame Survey;
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http://eusoils.jrc.ec.europa.eu/projects/Lucas accessed on 12 January 2022) [33] with data
from 23 countries in Europe [34], African Soil Information System (AFSIS) [35] and the
GEOCRADLE with samples from 9 countries in the Balkans, Middle East, north and central
Africa [36], the Open Soil spectral Library [37] promoted by the Soil Spectroscopy for a
Global Good, based on the Rapid Carbon Assessment [38] spectral data from USA and
Africa [32,35]. In both cases, the closed and open spectra data still lack operationalization
to make them readily available to end-users, such as farmers and land managers.

Spectral data require scientific expertise to infer soil properties using complex pro-
cessing algorithms not available to the general public. Moreover, there are variations in
spectra aroused from different measurement protocols [39]. As an analogy, when satellite
imagery was available for free for the first time, it was not widely adopted. Most users
lacked computational competencies in pre-processing issues (e.g., atmospheric correction
and georeferencing) and the complexity in supervised and unsupervised classification
methods [40]. These shortcomings were removed when the images were made available
to general users in pre-processed and georeferenced data format. Nowadays, we have
a similar situation, where many SSLs and software processing are available [41] but did
not make the bridge to making their use easier for the end-users, and thus they (farmers,
consulters, others) cannot see the importance. As the first step on a learning curve, why
not start delivering the spectral soil products directly to users? Such a win-win approach
would boost even more research aimed at providing the best possible spectral-derived soil
data and at the same time benefit end-users.

In this study, we present a free online platform called the Brazilian Soil Spectral Service
(BraSpecS) for soil properties prediction using visible–Near–Short Wave Infrared (vis–NIR–
SWIR) and Mid-Infrared (MIR) spectral ranges. This platform is a pioneering initiative,
which aims to demonstrate its application for predicting many soil attributes, but here with
a focus on soil organic carbon (SOC) and clay contents with spectral data from Brazil and
the world. Furthermore, by establishing its direct application, we hope to foster a new
generation of collaboration towards building a global online service for soil analysis.

2. Materials and Methods
2.1. The Brazilian Soil Spectral Service (BraSpecS) Construction

We developed an online service called The BraSpecS (Brazilian Soil Spectral Service)
with support of the Geotechnologies in Soil Science Group (GEOCIS, https://esalqgeocis.
wixsite.com/english accessed on 30 January 2022) Laboratory at the Luiz de Queiroz Col-
lege of Agriculture (ESALQ), University of São Paulo (USP). The web interface of the
platform BraSpecS was created in JavaScript language. JavaScript is a lightweight, inter-
preted and object-based language, mainly used in building web interfaces [34]. BraSpecS
is divided into three complementary modules: data localization, soil data visualization,
and soil processing and quantification (Figure 1). The web platform can be accessed at
http://besbbr.com.br/ (accessed on 30 January 2022).

In the data locations module, the user visualizes the number of samples by Brazilian
states and identifies the authors and partner institutions. The map interaction of the
Brazilian states was elaborated using the Leaflet library [42]. The soil data visualization
module shows soil spectra in the vis–NIR–SWIR, and MIR bands filtered by classifications,
orders, groups, layers, and textures.

All spectra and models are kept inside the system, maintaining data privacy and
not publicly disclosed. Scripts for modeling are in the system’s backend, so the user only
needs to choose the desired properties to quantify. The system delivers the following soil
properties which user can choose: soil color (Hue, Value and Chroma), clay, sand, silt, SOC,
pH in water, exchangeable/available contents (Ca2+, Mg2+, K+, Al3+, H + Al, and P), sum of
bases (SB = Ca2+ + Mg2+ + K+), cation exchange capacity (CEC = SB + H+Al), base saturation
(V% = SB/CEC × 100), aluminum saturation (m% = Al3+/(SB + Al3+) × 100), pseudo-total
contents (Fe2O3, TiO2, MnO, SiO2, Al2O3), and Ki weathering index (Ki = SiO2/Al2O3 × 1.7).

http://eusoils.jrc.ec.europa.eu/projects/Lucas
https://esalqgeocis.wixsite.com/english
https://esalqgeocis.wixsite.com/english
http://besbbr.com.br/
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Figure 1. Flowchart of the directions inside the system: (a) Cover page, Entry directions, System
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the system; (c) Evaluation–Validation procedure.

This system was prepared only for the BraSpecS as an experimental prototype. The
predictive models were prepared in R software [43]. The steps of the soil processing and
quantification module are described in the sections: soil dataset construction (Section 2.2)
and data processing, models, and validation (Section 2.3). The baseline of the system
functional architecture is illustrated in Figure 1.

For the web server, a workstation was acquired with 2 XEON 5120T processor hard-
ware, with 14 cores each, and a video card with 4000 GPU’s, which are essential for the
application of the predictive models. The web server was created using the Apache soft-
ware [44] and PHP programming language [45,46]. Apache is an open-source Hypertext
Transfer Protocol (HTTP) server project to provide a secure, efficient, and extensible web
server on HTTP standards. PHP is a fast and flexible scripting language, mainly used in
web development [47]. The R scripts used in the soil processing and quantification module
were integrated into the Apache web server through rApache software. The rApache
allows the execution of scripts developed in the R programming language on Apache web
servers [48].

Soil processing and quantification is a task that requires high computational re-
sources [49], and to meet this requirement, we employed tools for organizing the spectral
data submitted by users in queues and distributing them to other computers. The First-In-
First-Out (FIFO) [50] model was selected and implemented on the server, allowing for a
dynamic queue data structure that allows the removal and insertion of processing on the
server. A high-performance processing cluster was created and thus made it possible to
distribute the processes with low-cost computers in the R environment.

2.2. Internal Soil Dataset of BraSpecS

As mentioned, the BraSpecS is a service based on the soil dataset from the BSSL [12]
where details of soil sampling and spectra can be achieved. In summary, soil samples
are from different depths (cm)—A (0–20), B (40–60), C (80–100) and D (100–120)—which
were acquired by auger or inside pits. Using these data, we constructed the platform with
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vis– NIR–SWIR, resulting in 49,753 soil samples donated by 81 collaborators, representing
69 institutions from all over the country (https://bibliotecaespectral.wixsite.com/english/
lista-de-cedentes, accessed on 30 January 2022). The BraSpecS in the MIR range comprises
4951 soil samples.

The BraSpecS contains laboratory analysis for several soil attributes in vis–NIR–SWIR
and MIR regions. In this paper, we focused only on clay and SOC. The total content of
SOC was determined according to a modification of the Walkley–Black method [51] where
SOC is oxidized with potassium dichromate (K2Cr2O7) in the presence of sulfuric acid
(H2SO4), and the heat released in the acid dilution is used to catalyze the redox reaction.
After digestion, the remaining unreduced K2Cr2O7 is titrated with ferrous ammonium
sulfate (Fe(NH4)2(SO4)26H2O). The methodological procedure for this analysis was fol-
lowed as described by [52]. For clay, in general the informed method was determined by
measurements from [53]. For the vis–NIR–SWIR analysis, the soil samples were dried at
45 ◦C for 48 h, crushed, sieved with a 2 mm mesh, and homogeneously distributed in petri
dishes prior to the measurement of the spectra in the 400–2500 nm range [12]. The spectral
data were acquired using the Fieldspec 3 spectroradiometer (Analytical Spectral Devices,
ASD, Boulder, CO, USA). The sampling interval was 1 nm, reporting 2151 channels. The
light source was provided by two external 50-W halogen lamps, which were positioned
at a distance of 35 cm from the sample (non-collimated rays and a zenithal angle of 30◦)
with an angle of 90◦ between them. The sensor is calibrated using a white Spectralon plate
(Lab-sphere, North Sutton, NH, USA) representing a 100% reflectance standard (reflectance
factor 1.0). The reflectance of each sample was calculated as the radiance ratio between the
soil sample and the Spectalon reference.

For spectral analysis in the MIR, the soil samples were ground and passed through
100 mesh. Reflectance spectra were obtained with the Alpha Sample Compartment RT-
DLaTGS ZnSe (Bruker Optik GmbH, Ettlingen, Germany) equipped with an accessory for
acquiring Diffuse Reflectance Infrared Fourier Transform (DRIFT). The sensor has a HeNe
laser positioned inside the equipment and a calibration pattern for each wavelength. It has
a KBr beam allowing a high amplitude of the incident radiance to penetrate the sample.
Spectra were acquired between 4000 to 600 cm−1 (which is about 2500–16,667 nm) with a
spectral resolution of 5 cm−1 and 32 scans per minute per spectrum. A gold reference plate
was used as standard, and the sensor was calibrated every four measurements.

2.3. Data Modeling Provided by BraSpecS

Different pre-processing methods were evaluated for the vis–NIR–SWIR range and
those that presented the best results for each soil property was selected. The Standard
Normal Variable (SNV) and the Continuous Removal (CR) were used for clay and SOC,
respectively, and all calculations were done using the ‘prospectr’ package in R [34]. In
order to minimize the influence of noise at the tail ends of measured spectra, the ranges
from 350 to 420 nm and from 2480 to 2500 nm were removed to have the spectra range
from 420 to 2480 nm. Finally, we resampled the spectra at a resolution of 10 nm to reduce
spectral multicollinearity and processing time and improve the modeling efficiency for this
large dataset [54,55]. For the MIR spectral range, the Savitzky–Golay first Derivative (SGD)
with a first-order polynomial and a window size of 9 nm and SNV were applied.

The datasets for each soil property were randomly split into a calibration (training;
70%) and a validation (testing; 30%) datasets, independently for each property. The
complete BraSpecS dataset was used to calibrate spectroscopy models using the cubist
machine learning algorithm [56]. Cubist is a rules-based algorithm that applies the M5
(Model Tree) approach to create categorical decision trees to deal with continuous classes.
The algorithm produces ‘trees’ through rules that use boost training [56]. Reinforcement
training is based on converting weak learners into strong learners, in addition to giving
stronger learners more weight [57]. Cubist has been successfully applied to model clay and
SOC from vis–NIR–SWIR spectra in numerous other studies (e.g., [10,21,58,59]). According
to a comprehensive review by [60], Cubist stood out as a method, among other machine

https://bibliotecaespectral.wixsite.com/english/lista-de-cedentes
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learning methods, to predict SOC reliably from vis–NIR–SWIR spectra with R2 between
0.76–0.89 and residual prediction deviation (RPD) between 1.99–2.88 in several studies.

The final model is regulated by a set of nodes along the tree and two hyperparam-
eters (committees and neighbors), which improve the model’s performance. The model
construction and estimation process were performed by the caret package in R [61], which
has a set of functions that seek to simplify the process of creating predictive models. The
first criteria used to select the optimal models was the Coefficient of Determination (R2).
However, the Root Mean Square Error (RMSE) and Ratio of Performance to Interquartile
Distance (RPIQ) also were used for interpretation of results.

The online system was tested by users using their own spectra with a total of 500 Brazil-
ian participants recruited along a spectroscopy course (https://esalqgeocis.wixsite.com/
english/probase, accessed on 30 January 2022) composed by laboratory technicians, re-
searchers, students, farmers, consultants, and distributed along 20 states of the federation
(two spectra per user, total of 1000 spectra) for the vis–NIR–SWIR and 200 samples for
MIR using equipment and protocol equal to that used for the construction of BraSpecS.
The spectral soil predictions for clay and SOC were made on-the-fly immediately after
submission of the spectra. These blind set soil predictions were compared post-hoc after
retrieval of participants’ soil analytical lab data to evaluate deviations. Users were also
invited to provide critiques of the system for further improvement.

2.4. Data Modeling Provided by BraSpecS

We compared clay and SOC models derived using the world, national (BraSpecS),
and local vis–NIR–SWIR and MIR datasets. The following approaches were used: (a) We
entered the world spectral data to predict clay and SOC using the BraSpecS soil models. The
global data entailed 28,598 soil samples with vis–NIR–SWIR scans from 65 countries and
8039 samples from 4 countries with MIR scans (390 from Australia, 170 from Iran, 2728 from
the USA, and 4751 from Brazil); (b) we created for each of the 65 countries Local Models
(ExCSSL) with their spectral population and predicted clay and SOC locally; (c) finally, we
merged the BraSpecS with the spectra from the other 65 countries and generated a GSSL.

The processing was the same as the previously described for the BraSpecS, that is,
random data split with 70% for model calibration (training) and 30% for validation (testing)
and modeling using the machine learning algorithms. Finally, we compared the results
from the BraSpecS tested by other countries and compared them with the developed
ExCSSL, BraSpecS and GSSL models were compared with the same 65 countries. This
made it possible to evaluate the differences between global, national, and local datasets on
the quantification of soil properties. The workflow process is illustrated in Figure 2. The
number of samples per country is provided in Supplementary Materials.

Remote Sens. 2022, 14, 740 7 of 28 
 

 

local datasets on the quantification of soil properties. The workflow process is illustrated 
in Figure 2. The number of samples per country is provided in Supplementary Materials. 

 
Figure 2. World participants. Exploiting different populations and models to quantify soil 
properties, (a) spectra from 65 countries were tested into the BraSpecS model, (b) the Local 
model, (c) the Global Soil Spectral Model. 

3. Results 
3.1. Online Interaction Experience 

The website is available on “besbbr.com.br” and brings together spectral information 
in vis–NIR–SWIR and MIR ranges (Figure 3). This is a user-friendly interface intended to 
provide a favorable experience for users. The web is designed for: (a) end-users, who want 
the soil analysis; (b) researchers and academic employees, who want to test and evaluate 
their models; (c) students who are interested to learn; (d) pedologists and soil scientists to 
test and have new insights and view the soil spectral signatures patterns; (e) startups to 
create their own market. 

The website presents the following sequence (Figure 3). First, a user registers in the 
system. Afterward, the user can view the general information on how the BraSpecS was 
developed or go directly to BraSpecS-related services. 

The tool offers three services (Figure 3), which are as follows. First, (1) an alignment 
tool, where the user can search for the owners for spectral data and personal contact 
information. With this information, users can contact the data provider directly and ask 
for specific datasets to initiate a collaboration. Furthermore, the user will see where to find 
potential users on spectroscopy. The idea was to stimulate users to interact and create a 
new collaboration. The interactive map of contributors allows one to search for specific 
institutions or researchers and visualize Brazilian State spectral data. The map also allows 
the interaction between researchers and that leads to spectral data sharing and 
partnerships. Second, (2) users find several examples of soil types of patterns. One may 
ask for a specific soil class, for example, a Ferralsol, and the system will filter and show 
the average of all Ferralsols in the dataset or from a specific state. Users can run searches 
by specific criteria, such as soil depth, soil type, and specific soil property. For example, 
the user can ask to retrieve vis–NIR–SWIR samples of sandy soils at surface depth and in 
a specific state, owner, region, or the whole library. The result of the search is the average 
of soil spectra regarding the chosen characteristic. Depending on the number of soil 

Figure 2. World participants. Exploiting different populations and models to quantify soil properties,
(a) spectra from 65 countries were tested into the BraSpecS model, (b) the Local model, (c) the Global
Soil Spectral Model.

https://esalqgeocis.wixsite.com/english/probase
https://esalqgeocis.wixsite.com/english/probase


Remote Sens. 2022, 14, 740 7 of 27

3. Results
3.1. Online Interaction Experience

The website is available on “besbbr.com.br” (accessed on 12 January 2022) and brings
together spectral information in vis–NIR–SWIR and MIR ranges (Figure 3). This is a
user-friendly interface intended to provide a favorable experience for users. The web
is designed for: (a) end-users, who want the soil analysis; (b) researchers and academic
employees, who want to test and evaluate their models; (c) students who are interested
to learn; (d) pedologists and soil scientists to test and have new insights and view the soil
spectral signatures patterns; (e) startups to create their own market.
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The website presents the following sequence (Figure 3). First, a user registers in the
system. Afterward, the user can view the general information on how the BraSpecS was
developed or go directly to BraSpecS-related services.

The tool offers three services (Figure 3), which are as follows. First, (1) an alignment
tool, where the user can search for the owners for spectral data and personal contact
information. With this information, users can contact the data provider directly and ask for
specific datasets to initiate a collaboration. Furthermore, the user will see where to find
potential users on spectroscopy. The idea was to stimulate users to interact and create a
new collaboration. The interactive map of contributors allows one to search for specific
institutions or researchers and visualize Brazilian State spectral data. The map also allows
the interaction between researchers and that leads to spectral data sharing and partnerships.
Second, (2) users find several examples of soil types of patterns. One may ask for a specific
soil class, for example, a Ferralsol, and the system will filter and show the average of all
Ferralsols in the dataset or from a specific state. Users can run searches by specific criteria,
such as soil depth, soil type, and specific soil property. For example, the user can ask
to retrieve vis–NIR–SWIR samples of sandy soils at surface depth and in a specific state,
owner, region, or the whole library. The result of the search is the average of soil spectra
regarding the chosen characteristic. Depending on the number of soil spectra falling under
specific criteria, the process may take some time. As an example, we selected the São Paulo
(SP) state, the vis–NIR–SWIR spectra, the sandy textural class from the first layer (A), with
no indications for soil classification. This query took about 3 min. Figure 3 gives detail on
spectral patterns that users have access. Users can see the spectra regarding clay content or
soil classification and compare them with their spectra.

Finally, (3) we have the Soil Analysis Spectral Service. Here the user has spectral
data and wants to make a soil prediction anywhere in the world. To access the prediction
module, the user must register on the platform with an email address to receive the results.
Afterward, the user must log into his/her account in the platform to: (1) download the
template to organize the soil spectra; (2) upload the file (.csv format) with the soil spectra;
(3) select the attributes to be predicted; and (4) send the data for processing in the platform.
Thus, the user uploads the spectra, and chooses among vis–NIR–SWIR or MIR spectral
range and the desired soil properties, and then runs the processing. The system runs all
scripts in the background, not displayed on the web but presented in this paper. After
about 15 minutes, depending on the filtering and number of samples chosen, the user will
receive a report by email. The report entails all soil analyses of the specific spectra, method
(cubist), and statistical performance metrics of the backend. The user also has the option to
provide feedback online and share the wet soil analytics of user spectra, so the system will
be recharged with new data and will increase the dataset.

3.2. The Quantification

The descriptive metrics for spectroscopy clay content and SOC estimated concentra-
tions using different population models, that is the BraSpecS, GSSL, and the ExCSSL are
shown in Figure 4. For clay, the predicted content standard of all models w very similar
with the observed distribution, with 90% of the population ranging mainly from 150 to
400 g·kg−1. For SOC, the predicted value distributions obtained from the GSSL and the
ExCSSL were in accordance with the observed values, with 90% of the population ranging
mainly from 10 to 180 g·kg−1. However, the BraSpecS model underestimated SOC values
compared to SOC observations.
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3.3. Prediction Models Based on Different Populations

Figures 5 and 6 present the R2 values of the vis–NIR–SWIR models results for clay
and SOC using the different models (ExCSSL, BraSpecS and GSSL) while the RMSEs and
RPIQ of clay and SOC models are shown in Figures 7–10, respectively. ExCSSL presented
better results followed by the global and the BraSpecS models. The BraSpecS model was
very good for Brazilian samples, but not for other countries.

The BraSpecS model showed a very different value from the ExCSSL in other countries
for both clay and SOC in the MIR range (Figures 11 and 12). Prediction values derived from
MIR closely matched the observed properties’ distributions, except for clay predictions
using BraSpecS. Interestingly, the R2 for clay validation models mirrored the results of
vis–NIR–SWIR. However, for SOC, the R2 derived from MIR spectra were substantially
better than those derived from vis–NIR–SWIR using the BraSpecS.

Spectra from a large country such as Brazil has advantages due to its high variability
in soils and biomes. Table 1 shows that, using the BraSpecS model, 24 countries achieved
an R2 of greater than 0.5 for clay with vis–NIR–SWIR data. When the BraSpecS model
was applied in 16 different African countries, 7 had R2 score over 0.5, which means that
BraSpecS was feasible. In fact, many countries from Africa have similar soils as Brazil. In
contrast, the BraSpecS models did not perform well on spectra from Asia. Using ExCSSL,
11 models in Asia achieved R2 ≥ 0.7. The GSSL models outperformed the BraSpecS models,
but did not perform as well as the ExCSSL. In total, 54 countries achieved an R2 higher
than 0.5 for clay estimation using GSSL compared to only 24 countries using the BraSpecS.
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Table 1. Number of countries with R2 for clay model using vis–NIR–SWIR data.

Model R2 Total Africa Asia Europe North
America Oceania South

America

ExCSSL Clay

0–0.3 1 0 0 1 0 0 0
0.3–0.5 3 0 0 3 0 0 0
0.5–0.7 8 3 1 2 1 0 1
0.7–0.8 11 1 2 4 1 1 2

>0.8 40 11 9 13 3 1 3

BraSpecS Clay

0–0.3 14 3 3 6 1 0 1
0.3–0.5 25 6 5 8 2 2 2
0.5–0.7 12 4 1 5 0 0 2
0.7–0.8 9 1 1 4 2 0 1

>0.8 3 2 1 0 0 0 0

GSSL Clay

0–0.3 3 1 1 1 0 0 0
0.3–0.5 6 2 1 3 0 0 0
0.5–0.7 18 3 4 8 1 0 2
0.7–0.8 18 5 3 4 3 1 2

>0.8 18 4 3 7 1 1 2

In summary, the best clay model performance was obtained for ExCSSL > GSSL > BraSpecS
irrespective of different continents with ExCSSL clay models showing R2 larger than 0.5 in
59 countries. Interestingly, even in South America, BraSpecS clay models were outper-
formed by GSSL and ExCSSL models. What also stands out is the high performance of
ExCSSL clay models in Europe, with 13 countries out of 23 achieving a R2 > 0.8. Another
interesting point is that 4 countries from Europe had the same R2 (0.7–0.8) with all models
(BraSpecS, ExCSSL and GSSL).

For SOC, the results for R2 in validation mode using vis–NIR–SWIR data were less
promising, when using the BraSpecS (Table 2) but maintained the trend of better for the
GSSL and the best for the ExCSSLs. The BraSpecS and somewhat GSSL SOC models
performed especially poorly in European countries. Indeed, these ones have very different
mineralogy and carbon contents.

Table 2. Number of countries with R2 for Soil Organic Carbon (SOC) models using vis–NIR–
SWIR data.

Model R2 Total Africa Asia Europe North
America Oceania South

America

ExCSSL SOC

0–0.3 3 0 0 3 0 0 0
0.3–0.5 9 0 0 9 0 0 0
0.5–0.7 17 0 2 11 1 0 3
0.7–0.8 9 4 1 0 4 0 0

>0.8 19 7 7 1 2 1 1

BraSpecS SOC

0–0.3 38 3 5 22 3 1 4
0.3–0.5 11 5 2 1 1 0 2
0.5–0.7 6 2 2 1 1 0 0
0.7–0.8 1 0 0 1 0 0 0

>0.8 1 0 1 0 0 0 0

GSSL SOC

0–0.3 17 4 5 4 1 1 2
0.3–0.5 14 2 1 6 2 0 3
0.5–0.7 22 3 3 13 2 0 1
0.7–0.8 2 1 0 1 0 0 0

>0.8 2 1 1 0 0 0 0
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4. Discussion
4.1. The Web Service Advantages and Limitations

The BraSpecS online platform presented here overcomes some practical limitations
and makes soil spectra a service accessible to anyone, democratizing its usage. Although a
highly complex, state-of-the-art machine learning method (Cubist) was used in this study,
our platform frees the end-user from having to learn spectral modeling. A user only needs
to upload a spectrum and will receive the soil analysis. This may start to bring years of infrared
research directly to the public.

The spectral platform approach enhances equity of making spectral soil models and
knowledge readily available to the global community at no cost. The data-driven knowl-
edge engrained in soil models, such as ExCSSL, BraSpecS, and GSSL, developed from
vis–NIR–SWIR and MIR spectral data is shared with users who become participants to
co-create larger and larger global soil spectral libraries that serve the greater good.

The web services on the spectral platform are user-friendly, fast, and facilitate the
formation of an active and engaged community of experts, soil scientists, students, farmers,
consultants, and other stakeholders. As a living technology platform, suggestions from
the user community can be readily integrated. People who belong to a global soil spectral
community can also benefit by retrieving soil analytics from their uploaded spectral data.

While other global and continental soil spectral models were driven by researchers
and professional soil databases other ongoing global spectral community efforts (e.g., Soil-
Spec4GG) are more vertical with researchers subsuming people’s spectral data without a
data sharing policy that fully acknowledges and credits the user’s labor and costs of field
data collection. Works such as from [10], the European LUCAS dataset modeled by [62,63],
as well as the U.S. soil spectral data modeled by [23,64,65], were important to show the
community the importance and potential of the technique. A free repository such as by [66]
have great importance to make this grow since users have access to data. Therefore, our
initiative demonstrates the importance of providing online results to end-users and this
may encourage other working groups to improve similar new systems.

One of the reasons the accuracy varies between SSLs is the difference in measurement
protocol used by the SSL owners. This issue needs to be resolved in the near future with
an initiative to establish an agreed standard and protocols amongst the global users. This
effort is being carried out by the IEEE SA P4005 working group.

In addition to the service, developing a soil-spectral data web platform that is antici-
pated to grow even further in the future with the submission of new spectra provides a
virtual space to build community. Due to data ownership, the system used a non-disclosed
dataset idea. If one is interested in the data, the system indicates the data owner, and
encourages the user to contact the data custodian, increasing community knowledge.

The pedometric and soil modeler community have become quite specialized in AI,
scripting, modeling, and high-end data processing, which has somewhat disconnected
them from work with field pedologists and farmers cropping the fields. Thus, our soil-
spectral web platform helps bridge the gap between modelers and users of soil data. Our
tool offers people to collaborate, form partnerships, get to know others who are interested
in soil spectroscopy, and better understand soils in all regions of the globe. Reconnecting
soil modelers and soil spectral data collectors offers new avenues to build community. In
essence, new connections can be made between “the machine” that models soils and people
with interest in soils.

To understand the usefulness of shared SSL, consider the following example: Stake-
holders (farmers or researchers) could send their soil samples to a central SSL (e.g., national,
or global SSL), where they would be scanned and the spectral data stored, or they could
send already acquired soil spectra. Local SSL can be explored for personal interests or to
meet other needs (e.g., soil monitoring) and feed the global SSL, growing a global repository.
Once a global SSL is trained and evaluated, spectra from a profile of an unknown type
can be compared with spectra in the global SSL and a preliminary soil classification or
specific soil properties, such as SOC or clay content, can be estimated. Global, regional, and
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local SSL can co-exist because they serve different needs and purposes. While local SLs are
customized to specific soil regions, they tend to perform better to predict SOC and clay than
regional (BraSpecS) and global (GSSL) models, as demonstrated in our study. However,
the outlook for SSL is that as more soil-spectral data pairs are added, global prediction
performances using more advanced analysis are expected to become better at modelling
local soil variations. Growing a global SSL will eventually converge to a saturation level at
which regional soil variabilities are well represented; thus, it is expected that global SSL
using AI technology will provide as robust and accurate soil prediction models as local SSL
in the future.

One requirement for a robust model is that the dataset must be standardized with the
same spectral bands and the same soil analysis method. This is because the interaction
between wet analytical data and spectra can be different when spectral models are trained
using unharmonized spectra and SOC data. This could increase the predictive uncertainty
and reduce the interpretability of the model. Data quality is crucial for superior results,
although it is difficult to achieve with legacy datasets. Thus, it is imperative to start using
agreed-upon standards and protocols on careful and agreed spectral soil measurements
with the quality of soil wet chemistry analysis, which are the basis for success in delivering
accurate model estimates for soil properties.

Another limitation is that end-users will need to acquire or gain access to spectrora-
diometers to collect soils’ vis–NIR–SWIR and/or MIR data. These limitations are viewed as
temporary since soil sensor technology has become more widespread with the advent of pre-
cision agriculture and “smart” agricultural management. In addition, regional cooperatives
or centers may serve farmers and end-users in more resource-limited settings.

4.2. Brazilian Users of the BraSpecS

For the Brazilian vis–NIR–SWIR dataset, clay content presented good results using
the platform, with R2 = 0.75. In contrast, SOC presented lower values (R2 of 0.45). These
results indicate that the SOC is more dependent on so many factors such as biomes, land
use, mineralogy [12,67], and has great dynamics due to climate and microorganisms that
mean its quantification can become a challenge. This agrees with past studies, e.g., [6]. In
this scenario, the use of SSL and local models can be a strategy for the online service to
return more accurate estimates to end-users. Moreover, SOC spectral estimation has been a
challenge in Brazilian agricultural areas because of the low soil carbon content. The SOC
results using MIR were significantly better than vis–NIR–SWIR, since they reached R2 of
0.8 and 0.7 for clay and SOC, respectively, in agreement with past studies [68–70]. Thus, the
BraSpecS online platform can be used as an important service for soil analysis over Brazil,
considering the level of accuracy and the clay and SOC property.

4.3. International Users of the BraSpecS Based on the Internal BraSpecS

International users from several countries submitted spectra via the online platform
to identify whether their local samples could be predicted by the BraSpecS service. We
observed that for clay, three countries from Africa, two from Asia, four from Europe and
two from North America showed R2 values of over 0.7. Despite that, in Europe there were
still five countries with models in the R2 range of 0.5–0.7 for clay. The results were less sat-
isfactory for SOC, which agrees that this property is more dependent on other factors such
as biomes, land use, and others [10]. In the case of clay, results indicated that the BraSpecS
model presented good results for some countries. For example, spectra from Thailand,
Benin, Denmark, Jamaica, Japan, The Netherlands, Nicaragua, Poland, Philippines, South
Africa, and Sweden reached R2 over 0.7. This indicates that for clay, a model built using
spectra from a large, diverse country can quantify spectra from other countries. On the
other hand, many countries reached low values. This gives two indications: (1) a country
model can assist other countries but not all of them; (2) the user will have the opportunity
to choose the SSL depending on soil similarity. For example, if the user lives in a country
that does not have an SSL, the user can choose a global one or another region with similar



Remote Sens. 2022, 14, 740 20 of 27

soil. These limitations can be added to the online spectrum service platform, enabling
the user to make the decision to use local or global models based on the accuracy of the
estimates required for each application of the results.

4.4. International Users of the BraSpecS Based on Local Datasets

SSLs may adopt several approaches and levels: a farm [71], a region [72] a coun-
try [12,19], a continent [33], or the world [10]. The present paper presented different
approaches to understand soil population specific modeling (ExCSSL, BraSpecS, and GSSL).

We observed that ExCSSL were clearly better at quantifying clay and SOC in almost
all cases and continents. The user-specific ExCSSL preserved the main characteristics of
their regional soils, parent materials, biomes, and other information which spectra carry.
This finding agrees with [73], for whom the transfer of vis–NIR–SWIR models from global
to local scale, the latter were the best. In our study, better model performances for both
clay and SOC were observed in local models when compared to the GSSL, irrespective
of different continents with diverse soils. We observed only a few cases in Europe where
model performances were quite low for both SOC and clay (R2 < −0.3).

Our results clearly demonstrate that the GSSL model performed better than the
BraSpecS model for both SOC and clay content, while the local country-specific mod-
els outperformed both BraSpecS and GSSL models.

The caveat is that local datasets had different sample sizes (unbalanced sampling
design) which may have influenced model performances. The issue of unbalanced datasets
in testing the transfer of soil spectral models was addressed by [74] who used a standardized
balanced sampling design; however, in their study the transferability and scalability of
spectral models (local to regional scale, and vice versa) for soil carbon were inconclusive.
The study found that the transferability and up- and downscaling of the soil spectral
models were limited by the following factors: (a) the spectral data domain; (b) soil attribute
domain; (c) methods (e.g., machine learning or deep learning AI methods) that describe
the relations between vis-NIR-SWIR and soil carbon; and (d) environmental domain space
of attributes that control soil carbon dynamics.

Other soil spectral studies, such as [75,76], showed that spiking libraries improved the
performance of soil prediction models. These spiking studies suggest that building larger
spectral libraries (continental and world libraries) achieves better results to model soil
properties than regional and local libraries. However, [76,77] pointed out that local model
calibrations customized and optimally fitted to field/farm/local soilscapes are the best to
model soil properties, even with small datasets with as few as 25 samples. Whether local
or global soil spectral models perform better may be more a question of homogenization
of data to reduce the variability in soil, spectral, and/or associated soil-environmental
characteristics. A study [60] found for soils in southern Brazil that the stratification of a
large spectral library into more homogeneous sample groups by environmental criteria
(physiographic regions and land-use/land-cover) improved the accuracy of SOC predic-
tions compared to pedological (soil texture) and vis–NIR–SWIR spectral (spectral classes)
criteria. Subsetting can be considered as an approach to localize and homogenize soil
spectral sample populations, but it is not always successful and depends on the soil and
environmental conditions [78]. In another study [79], they found that stratification by min-
eralogical uniform clusters improved predictive performance of clay content, irrespective
of the geographic region, using a large tropical soil spectral set.

There are several factors that play a role in building world soil spectral libraries
that have contradictory effects on modeling of soil properties. First, adding soil spectral
data may introduce noise to the global library, specifically if the data quality is of poor
quality due to incorrect measurement, or different protocols. Second, adding redundant
soil spectral data that are already present in the world library is unlikely to boost model
performance of soil properties. Indeed, studies demonstrated that more soil data in a
spectral library does not necessarily mean better soil predictions. According to [80], there
was relatively little significant increase in prediction capacity of soil attributes with the
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use of an entire data set compared to a smaller subset, which increased the R2 from 0.63 to
0.72 for SOC and R2 from 0.71 to 0.73 for clay, respectively. On the other hand, representing
the actual soil variability exhaustively of every region of the globe—including cold regions,
mountainous or wetland regions that are difficult access, or politically restricted regions—
would ensure that data gaps are filled, and all soil types are included in a global dataset.
Such efforts are underway, though have been hampered by investment in new soil sample
campaigns and standardized analytics and spectral protocols to ensure high data quality.

The issue of legacy datasets that have dominated national and global soil libraries and
the lack of a consistent global soil monitoring network are noteworthy; [81,82] stressed that
although striking global soil maps have been generated, future soil mapping and modeling
efforts will depend on data mining all existing soil data and an increase in soil monitoring
efforts. A suggestion to use an internal soil sample (ISS) that is disseminated between all
laboratories and align all measurements to this ISS was proposed and validated by [39].
Various users successfully adopted this method using different spectrometers [83] and
measurement conditions [84]. This direction may minimize the variation between many
new SSLs and help better use our system in the global domain as demonstrated by [85].

The GSSL of clay compared to the ExCSSL, agrees with [86], who presented a method-
ological framework for using vis–NIR–SWIR spectroscopy at local and global scales by
spectral treatment and regression methods. In our study, MIR-based predictions of clay
showed the highest R2 for ExCSSL, followed by GSSL and last BraSpecS. MIR data (and
pooled MIR + vis-NIR-SWIR) compared to solely using vis-NIR-SWIR data have shown
superior results to predict SOC and/or clay in numerous studies (e.g., [64,78,87,88]). Al-
though MIR spectra have fingerprinting capabilities to trace fundamental spectral elemental
bonds, vis-NIR-SWIR is limited to identifying overtones in spectra. However, the former
is much more costly and laborious to use. This explains the rapid growth of national and
continental vis-NIR-SWIR libraries, while large MIR libraries that cover the variability of
soils around the globe are still limited.

Figure 13 shows an example of application. The Israel dataset was inserted in BraSpecS
and reached an R2 of 0.88. When using the local model, the performance was still at
0.88 with a lower error. For SOC in Kenya, BraSpecS reached 0.44, and with the local
model, 0.92. As both datasets were inserted in the GSSL, results varied; the Israel prediction
became worse but it improved for Kenya. The examples indicate that BraSpecS can be
used depending on the country and soil similarity. This may be the track for SSLs of the
world, a user can seek SSL that provides the best result for its spectral data. For example,
‘if’ Israel did not have any SSL, which SSL would they choose to use: BraSpecS or a global
one? As we suggest for the future, the user can test both and use the best one according
to the user’s objective. We need to have global, continental, country, and local SSLs. To
alleviate the problem of the current model of central data custodian, SSLs need to have a
distributed model where users can contribute towards a global SSL but their data ownership
and privacy are preserved [49]. In the future, distributed SSLs linked via a system such
as a blockchain would ensure data ownership is respected, yet users can still access the
global dataset.
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Figure 13. Israel scatter plots for Clay: (a) Observed × Predicted by the BraSpecS model, (b) Observed
× Predicted ExCSSL, and (c) Observed × Predicted GSSL. Kenya scatter plots for SOC: (d) Observed
× Predicted by the BraSpecS model, (e) Observed × Predicted ExCSSL, and (f) Observed × Pre-
dicted GSSL.

5. Conclusions and Final Considerations

It was possible to construct a platform where its importance can cover resource-limited
regions which may consider the opportunity to submit spectra and retrieve estimated soil
data in an established online service, such as BraSpecS. End-users can already interact with
infrared technology.

The BraSpecS system facilitates dynamic communication between worldwide users
and delivers important soil information. The presented system can be applied for several
purposes, including research, farming, soil analytical laboratories, industries, consulting
companies, creation of startups, teaching, pedology research, digital soil mapping, precision
agriculture, and more. The system is user-friendly and does not require the user to have
competency and literacy in soil spectral modeling. Users simply insert the soil spectra into
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the system and receive soil estimates with statistical metrics information. The user also has
the ability to find the owners of spectra, request data, get in contact, and build partnerships.
The platform also allows users to view spectral patterns of soil classes, soil texture, SOC
content, and many other soil properties. Finally, the user receives a report of the soil model
results for spectra that were submitted to the web platform. Nevertheless, this system is
not without drawbacks and limitations, which will be resolved once the system is in use
and feedback is received from worldwide users.

In the case of clay and SOC quantification, vis–NIR–SWIR presented reasonable data
(best for clay) and MIR reached the best in both cases. In terms of data model population,
statistics increased as follows: Global Model—BraSpecS model—Local model.

The cascading future growth of GSSL holds much promise through the pooling of
local and regional soil spectral data to represent the global soil variability. End-user and
stakeholder engagement in the BraSpecS will be profoundly important to build a robust and
sustainable global soil spectral library that serves the greater good of soils. Our approach of
a community-driven GSSL in which people and stakeholders participate in collecting new
soil samples and spectra that represent actual soil conditions will overcome some of the
limitations of global SOC and clay maps/grids derived via digital soil mapping that were
mainly produced from legacy soil data representing historic soil conditions. Monitoring
soil change is profoundly important in an age of multi-hazard natural disasters (such
as wildfires and flooding), global climate change, and interconnected soil, food, social,
economic, and ecological dilemmas. The need for up-to-date SOC, clay, and other soil
properties is imminent. BraSpecS has operationalized soil spectroscopy to address these
urgent needs for accurate and current soil information as well as assessment of soil change
around the globe.

6. Future Works

The quality of model performances is influenced by multiple factors including: (a) qual-
ity and consistency of spectral data (absence of an agreed protocol); (b) quality and consis-
tency of soil wet laboratory analysis (method and accuracy); and (c) soil forming factors,
mineralogy, biome, and other environmental factors that influence soil genesis. These
should be addressed in future studies to achieve the best results to assess soils. We would
like to stress that community-driven global soil spectral libraries allow the contributors to
construct clay, SOC, and other soil property models of various kinds. This work paves the
way to investigate spectra modeling using spectra similarities from a global or regional SSL.
Similarities of soil and environmental factors between regions matter when transferring
spectral models overseas is certainly the best approach, as indicated in our work.

An important direction for the future should be a filter inside the system, which
would achieve the best spectra to create the model (i.e., spectral fitting). Thus, for each
spectrum (and for each soil attribute), the user could have a different model, increasing the
use worldwide. Looking at the same ideas, the system of soil classification (which is also
presented here) could be improved with photo and soil description, to assist pedologists
and soil survey. Along these insights, the system could also allow pre and post-processing
which would gather other end-users in a larger community such as researchers, consultants,
and industries.

Web sites

(1) The Brazilian Soil spectral Service (BraSpecS): besbbr.com.br or http://143.107.213.22
7/layout/_en/apresenta_temp.php. (Accessed on 2 February 2022)

(2) The Brazilian Soil Spectral Library (BSSL): https://bibliotecaespectral.wixsite.com/
english or http://143.107.213.227/layout/. (Accessed on 2 February 2022)

(3) The Group that developed, Geotehnologies on Soil Science Group (GeoCis): https:
//esalqgeocis.wixsite.com/english. (Accessed on 2 February 2022)

(4) Corresponding author profile: https://jamdemat.wixsite.com/dematte (Accessed on
2 February 2022)
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83. Kopačková, V.; Ben-Dor, E. Normalizing reflectance from different spectrometers and protocols with an internal soil standard. Int.

J. Remote Sens. 2016, 37, 1276–1290. [CrossRef]
84. Chabrillat, S.; Gholizadeh, A.; Neumann, C.; Berger, D.; Milewski, R.; Ogen, Y.; Ben-Dor, E. Preparing a soil spectral library

using the internal soil standard (ISS) method: Influence of extreme different humidity laboratory conditions. Geoderma 2019,
355, 113855. [CrossRef]
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Verifying the predictive performance for soil organic carbon when 
employing field Vis-NIR spectroscopy and satellite imagery obtained using 
two different sampling methods 
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A B S T R A C T   

In soil research, the most employed sampling design techniques can be categorized as random sampling (strat
ified or simple random (SR)) or systematic techniques (transects or grid). Many other sampling approaches have 
also been developed by researchers based on these sampling principles. The purpose of this study is to compare 
the differences in SOC prediction when using field spectra (FS) and Sentinel-2 (S2) data collected separately 
through SR and grid design (GD) on the same agricultural field. Additionally, the impact of spectral indices on S2 
data in a merged data approach under the two-sampling strategies will also be tested. The data for each sampling 
method were obtained based on a previous study in which 130 soil samples were collected from a full grid design 
(with 40 m spacing) covering the entire area. Although the full GD method was used for this current study, the 
distance between the samples was increased (80 m apart). The schemes were therefore structured for the 
collection of 65 samples in the field for each sampling technique. However, 63 samples were collected with the 
GD because two of the sampling points fell on rocky areas and were eliminated accordingly. For SR sampling, the 
study field was not stratified, and no requirements were used for minimum sample spacing. Sixty-five samples 
and spectral data were collected at various locations. To achieve the mentioned objective, this study builds a five- 
fold cross-validation model based on support vector machines (SVMs). Different pretreatment combinations were 
also implemented. The results showed that the GD was better than the SR approach using the merged dataset 
(R2

CV = 0.45, RMSECV = 0.26, RPD = 1.41, bias = − 0.0073); however, SOC prediction under SR sampling using 
FS yielded the highest accuracy and lowest error margin (R2

CV = 0.60, RMSECV = 0.21, RPD = 1.66, and bias =
0.0045). Despite the above-mentioned disparity between the single and merged data, this study shows that using 
different sampling design methods on the same field separately is a very promising approach for SOC estimation, 
particularly in fields with low SOC. Based on these results, the robustness of this approach should be investigated 
next in future studies using larger sample sizes as well as other modeling techniques. Based on these results, the 
robustness of this approach should be investigated next in future studies using larger sample sizes as well as other 
modeling techniques.   

1. Introduction 

Soil organic carbon is considered one of the essential soil compo
nents because of its contribution to soil fertility and crop production 
(Muñoz and Kravchenko, 2011). However, its impact extends beyond 
the physical, chemical, and biological properties of the soil to include 
climatic change mitigation (Karmakar et al., 2016). Therefore, its 

prediction is crucial because decision-makers and farmers rely on these 
values to map up an informed strategy for the benefit of a community, 
region, and a country as a whole. Nonetheless, the efficient prediction of 
SOC content and its change depends largely on the spatial variability of 
SOC and the long-term and seasonal temporal variability; monitoring 
programs that can address this variation are vital (Allen et al., 2010). 

Soil sampling is primarily intended to provide a representative 
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sample of soil properties in an area, using mainly a statistical approach 
to achieve that. However, the number of collected samples can vary, 
depending on the variation in the region (James and Wells, 1990). The 
first step for obtaining the spatial distribution of soil characteristics is an 
appropriate sampling design because the predictive performance of the 
soil property accuracy under study could be compromised if an inap
propriate sampling design is chosen (Zhu et al., 2015). According to 
Chang et al. (2016), the applicability of the sampling design is subject to 
the soil monitoring objective. However, for Stein and Ettema (2003), the 
main goal is to ensure that the prediction error for mapping or spatial 
investigation is minimized. 

According to an FAO report titled “Soil carbon monitoring based on 
repeated measurement’’ (FAO, 2012), for designing a scheme, especially 
for SOC prediction, certain key criteria must be considered. This in
cludes the intensity of the sampling, sampling interval, soil layers and, 
most importantly, the position of the sample points and the total number 
that must be collected. SOC typically has high spatial variability 
because, in some instances, soil-forming features include different 
spatial scales, thus revealing the spatial variance characteristics of SOC 
may face some difficulties (Miller et al., 2016). Some researchers have 
also reported that SOC prediction varies with sampling density, espe
cially in complex terrain areas compared to simple topography regions 
(e.g., Heim et al. 2009; Tsui et al. 2013). 

Therefore, choosing the most suitable sampling design for a partic
ular study area is an enormous task to accomplish, particularly for 
prediction in a large area or even a new field (Stevens et al., 2008). This 
is because according to Yang et al. (2019), distinct sampling design 
techniques produce different sample sets, which will normally have a 
direct impact on the predictive performance of soil properties. However, 
according to Carter & Gregorich (2007), the aim of selecting a suitable 
sampling method for SOC estimation is that the sampling scheme should 
be a total representation of the entire field at a reasonable cost. 

Over the past decades and more, there have been numerous sampling 
methods used by researchers according to the project types and budgets 
across several fields (reviewed in Gilbert, 1987; Mulla and McBratney, 
2002; Liao et al., 2009). For instance, in soil research, the most 
commonly employed sampling design methods can be categorized as 
random or systematic or by convenience (Carter & Gregorich, 2007; 
Eggleston et al., 2006). The most commonly used sample procedures 
with respect to systematic sampling are transects or grid techniques, 
while for random sampling, they are simple and stratified random 
sampling (Carter & Gregorich, 2007). Many other sampling techniques 
have also been used or developed that are comparable to or modified 
versions of the above-mentioned sampling designs. Details can be found 
in the studies by Brus et al. (2011), Allen et al. (2010), Vasat et al. 
(2012), Wang et al. (2021), and Minasny and McBratney (2006). With 
the availability of both satellite and space-borne images, new sampling 
approaches have been developed not only to cover the whole area but 
also to consider the spatial representation (Hank et al., 2019). However, 
the fact remains that ground-based measurements will always serve as 
the primary or reference value for remote sensing-based analysis. 
Numerous studies in soil science have used both remote sensing (RS) 
(satellite imagery) and proximal soil sensing (PSS) (e.g., spectroscopic 
reflectance) (Ben-Dor and Banin, 1994; Ben-Dor and Banin, 1995) for 
the analysis of soil samples obtained using several sampling approaches. 
For example, Stevens et al. (2008) predicted SOC content on a regional 
scale using laboratory, field and airborne spectroscopy. 

The prediction of SOC with PSS techniques, proven to be rapid and 
cost-effective, has provided more accurate results compared to the 
traditional approach, which is time-consuming (e.g., Viscarra Rossel and 
Bouma, 2016). PSS also differs significantly in terms of its sensing 
platform, data structure, and research objectives. However, one of the 
primary limitations of spectroscopy (under PSS) is its inability to cover 
larger-scale sampling areas because it is a point-based approach, and the 
costs involved, including labour, can be enormous. RS, on the other 
hand, is known for its ability to cover larger-scale sites, as well as for 

monitoring and to enhance result classification, but its limited spatial 
resolution as well as the effect of external environmental factors are 
some of its key limitations (Lagacherie et al., 2008; Angelopoulou et al., 
2019). It is assumed that if the proper sampling design is not selected, 
the predictions of soil properties, such as SOC may be negatively 
impacted. 

In this context, the main goal of this study is to assess the prediction 
accuracy for SOC when using two different sampling designs—simple 
random and grid design—to collect field spectra and Sentinel-2 data 
separately on the same field for each sampling method. The main goal is 
to determine which sampling designs are consistent across the two 
datasets and whether they improved SOC predictive performance. The 
assessment will be performed using (i) field spectra and Sentinel-2 data 
individually and (ii) in a combined form (Sentinel-2 + calculated 
spectral indices). Spectral indices from sentinel imagery will be used for 
the combined data approach. This is to also verify the effect of these 
indices on the Sentinel-data under two different sampling strategies. 

2. Materials and methods 

2.1. Study area and soil sampling 

The study site (Fig. 1) is a 22-ha field in Nová Ves nad Popelkou 
(50◦31′ N; 15◦24′ E) in the Czech Republic’s central Bohemian region, 
with a mean altitude of 185 m a.s.l. It is an agricultural field that 
stretches two kilometres southeast of the town of Lomnice nad Popelkou 
along the Popelka River. The main crops grown in the area are winter 
wheat and spring barley. The areas are primarily rural, characterized by 
dissected relief with side valleys and toe-slopes. Additionally, the study 
field chosen is a representative of soil capes, which are homogenous and 
comparable in terms of terrain characteristics, land management, and 
climatic conditions (Schmidt et al., 2010). During the measurement 
campaign, the soil was bare and undisturbed (it had not recently been 
plowed). According to the World Reference Base (WRB) for soil re
sources (IUSS Working Group WRB, 2014), the soils of these regions are 
characterized mainly as Cambisols on sedimentary rocks. 

Two sets of field spectra data were collected separately in the field 
using two different sampling methods, namely, simple random (SR) and 
grid-design (GD). The sampling points for each sampling strategy were 
selected in reference to a previous study in the same study area (Biney 
et al., 2020). For the said study, 130 soil samples were collected using a 
full grid design (with 40 m spacing) covering the entire study area. 
Although the full GD technique was still adopted for the current study, 
covering the entire area; however, the spacing between each sampling 
point was modified (80 m apart) compared to the previous study. This 
was done to also assess the impact of two grid-sampling designs (having 
different sample spacing) on the estimation of SOC in a study field low in 
SOC content. The schemes were therefore structured for the collection of 
65 samples in the field for each sampling technique. Notwithstanding, 
63 samples were collected with the GD because two of the sampling 
points fell on rocky areas and were eliminated accordingly. Addition
ally, for the SR design, three different sampling schemes were created 
using the data management tool in ArcGIS (ESRI, The Redlands, CA, 
USA) to ensure that the generated result was not by chance. However, 
due to financial constraints, only one of the ArcGIS SR design schemes 
was used in the field. Using a descriptive statistics plot, this scheme was 
compared to the two remaining schemes (where no field samples were 
collected) (result not shown). The SR scheme used in the field was 
selected for further analysis because it provided a better mean, coeffi
cient of variation (CV), and standard deviation (SD). Additionally, 
during the SR sampling design, the study field was not stratified, and no 
requirements were used for minimum sample spacing. The sampling 
points (SR and GD) were created separately and fed into a GeoXM 
(Trimble Inc., Sunnyvale, California, USA) receiver with an accuracy of 
1 m before the field visit, and the positions of each sampling point were 
located in the field using the same instrument. 
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2.2. Field spectral measurement and soil analysis 

The GD sampling points were spread evenly across the whole field, as 
shown in Fig. 1C. The field spectra (FS) were measured on May 24, 2019, 
using an ASD Field Spec III Pro FR spectroradiometer (ASD Inc., Denver, 
Colorado, USA) across the 350–2500 nm wavelength range. The spec
troradiometer spectral resolution was 2 nm for the region of 350–1050 
nm and 10 nm for the region of 1050–2500 nm. The spectral measure
ments were carried out on the soil surface at three individual locations 
around each sampling point, uniformly distributed and then averaged 
into one composite spectrum per sampling point for each spectral re
gion. The spectrometer was standardized prior to the first measurement 
and after every 10 measurements using a white Spectralon™ panel 
(Labsphere, North Sutton, NH, USA) (Shi et al., 2016). The same pro
cedure was repeated for the SR field spectra sample (Fig. 1B). In addi
tion, soil samples (using the SR and GD) were collected from each 
sampling point (depth, 0–2 cm) during the FS measurement, placed into 
a well-labelled bag and conveyed to the laboratory (composite samples, 
approximately 130 to 170 g of soil) for further analysis. These samples 
were then air-dried, gently crushed, and sieved (≤2 mm) before being 
analysed for SOC (ISO 11464:2006). 

2.3. Sentinel-2 imagery acquisition and analysis 

The Multispectral Sentinel-2B imagery used was a cloud-free image 
level 2A product, which means it is ready to be used right away because 
the suppliers using Sen2Corprocessor have already processed it. These 
processes include geometric, radiometric, and atmospheric corrections. 
The best sentinel-2 imagery used was imagery dated July 10, 2019, 
obtained from the Copernicus Open Access Hub of the European Space 

Agency. Additionally, two other comparable imagery dates, June 15 and 
30, were also collected to obtain imagery that was closer to the field 
sampling date. The imagery (S2) consists of 13 spectral bands. These 
spectral bands range from visible and near-infrared (vis-NIR) to short
wave infrared (SWIR). There were four bands at 10 m resolution [((B2, 
490 nm), (B3, 560 nm), (B4, 665 nm), (B8, 842 nm))] and six bands at 
20 m resolution [((B5, 705 nm), (B6, 740 nm), (B7, 775 nm), and (B8A, 
865 nm)]. The remaining bands were two SWIR large bands [(B11, 
1610  nm) and (B12, 2190  nm)] and three 60 m resolution bands [(B1, 
443 nm), (B9, 940 nm), and (B10, 1380  nm)]. Prior to extracting these 
bands, a resampling by pixel resolution approach (10 m resolution as the 
reference) was performed to ensure that all the bands were at the res
olution. This was done using the SNAP software. For further analysis, 
three bands (B1, B9, and B10) were excluded. This implies that all the 
remaining bands used were at the same resolution of 10 m. Technical 
details of the S2 bands used in this study can be found in work book of 
the European Space Agency. (2010). 

2.4. Merged data set approach 

Combining both remote sensing data at different spatial resolutions 
(10, 20, and 60 m) with soil data collected with field spectra at 2 or 3 nm 
is problematic or not appropriate. These datasets cannot be combined 
because they are associated with different support sizes: tens of meters 
for remote sensing data and point support for field survey data. Due to 
this difficulty, the study did not merge the S2 and FS data. However, 
future studies exploring this approach are recommended to help verify 
the impact of high-resolution data such as the FS merged with S2 on SOC 
estimation, since, according to Grunwald et al. (2015), there is no single 
sensor or technique that can accurately estimate all soil properties, such 

Fig. 1. Sampling area location in the Czech Republic (A), display of simple random (B) and grid design (C) sampling points at NováVes nad Popelkou.  
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as SOC. 
Spectral indices, usually a single number derived from the spectral 

reflectance of two or more wavebands (Ji and Peters, 2007), are believed 
to improve the interpretation of remote sensing data (Grunwald et al., 
2015). For instance, according to Peng et al. (2015), spectral indices are 
preferable to raw spectral bands as indicators for SOC estimation, 
because when compared to spectral bands, these indices are more spe
cific in distinguishing bare soil, vegetation, and other factors that could 
influence SOC estimation. Moreover, spectral indices were utilized by 
Jin et al. (2017) and Liu et al. (2015) for the estimations of various soil 
properties. To explore this hypothesis on the two different sampling 
strategies on the same study field, nine calculated spectral indices as 
covariates were extracted from the S2 imagery to serve as an additional 
covariate that will be merged with the S2 bands to verify the impact of 
merged data on SOC estimation. These indices include the normalized 
difference vegetation index (NDVI) (Rouse et al., 1974), soil adjusted 
vegetation index (SAVI) (Huete, 1988), green–red vegetation index 
(GRVI) (Tucker, 1979), and modified soil adjusted vegetation index 
(MSAVI) (Qi et al., 1994). The remaining indices are the brightness 
index (BI) (Escadafal, 1989), redness index (RI) (Pouget et al., 1990), 
infrared percentage vegetation index (IPVI) (Crippen, 1990), normal
ized difference red edge (NDRE) (Barnes et al., 2000), and finally the 
differenced vegetation index (DVI) (Richardson and Wiegand, 1977). 
SNAP was used to obtain the values at the sampling locations. 

The formulas to derive these indices are shown in Table 1. 

2.5. Dataset preprocessing and predictive modeling performance 

The initial spectroscopic measurements were within the range of 
350–2500 nm, but before further processing, the extremely noisy part of 
the spectra (350–399 nm) was removed to improve the accuracy of 
prediction. Subsequently, the datasets were subjected to the following 
set of pretreatment techniques, sg (Savitzky–Golay) from the signal R 
package (Signal developers, 2013), dwt (discrete wavelet trans
formation) calculated with the dwt function from the wavelet R package 
(Aldrich, 2013), d1 (first-order derivative) (Duckworth, 2004), sg_d1, 
msc (multiplicative scatter correction), which was calculated using the 
pls R package (Mevik and Wehrens, 2007), snv (standard normal 
variate), log (logarithmic transformation (log(1/R))), dwt_log, 
dwt_log_snv, sg_msc, sg_log, raw, sg_log_msc, dwt_log_msc, log_msc, log, 
sg_d1, sg_log_snv, and sg_log_msc, to optimize the fitting of target values 
against spectra. The four best pretreatment algorithms will be reported 
for each approach to avoid nonrelevant results. We refer to Vašát et al. 
(2017) and Biney et al. (2020) for more details on the pretreatment al
gorithms used for this current study. R software was used to evaluate all 
the pretreatment techniques (R Development Core Team, 2014). In total, 
the following datasets were obtained for the two sampling methods for 

both the individual and merged data approaches: (a) individual ap
proaches [GD (two datasets were used, that is, S2 and FS) and SR (two 
datasets were also used, that is, S2 and FS)], (b). for the merged data 
approaches [GD (S2 + spectra indices (SID)) and for the SR (S2 + SID]. 
In addition, a Pearson correlation was computed between SOC and each 
of the data that formed the merged dataset (S2 and SID). This was done 
to aid in determining the level of relationship between SOC and the 
datasets in question. This was performed for each sampling strategy used 
in this study (GD and SR). 

The predictive models were calibrated using the SVM algorithm, a 
machine learning method (Vapnik, 2000). SVM has been utilized across 
different scientific disciplines for classification and regression problems. 
The e1071 R package (Meyer et al., 2014) is for computations, specif
ically the linear kernel function. Before fitting the final models, the cost 
parameter was fine-tuned using the built-in tuning function. The epsilon 
parameter was left at its default value (0.1). For information on the 
tuning of hyperparameters and the optimal number of cost values and 
the type of kernel for SVM, the reader is directed to Biney et al. (2021a, 
2021b). The overall model (SVM) output was evaluated by the index of 
determination (R2

CV), the ratio of performance to deviation (RPD) 
[which is calculated as the ratio of standard error of the estimate 
(RMSEcv) to standard deviation of the data], and the root mean square 
error of prediction (RMSEcv) [measures the model overall prediction 
accuracy]. 

The whole dataset for each sampling approach was randomly divided 
into two subsets for calibration (75%) and validation (25%). Each model 
was fitted using the calibration data, while the validation evaluated 
model performance. A 5-fold leave-group-out cross validation (5-fold 
LGO CV) was applied to the training dataset for each of the models 
utilized. The R2

CV ranges from 0 to 1, where R2
CV = 1 is the optimal 

value, and for RPD, Chang and Laird’s (2002) categorization was 
applied: RPD > 2 indicates good models, RPD between 1.4 and 2 in
dicates moderate predictive ability, and RPD = 1.4 indicates weak 
models. 

3. Results and discussion 

3.1. SOC descriptive statistics and distribution of GD and SR sampling 
points in the study field 

Table 1 is a statistics summary for SOC characteristics in soil samples 
for the GB and SR approaches, comprising standard deviation (SD), 
coefficient of variation (CV), minimum (Min), maximum (Max), mean 
value, and skewness. Both sampling approaches captured the same Min 
and Max value and showed an approximate normal distribution (skew
ness = 1.21/1.24). According to Blanca et al. (2013), acceptable values 
of skewness should fall between − 3 and + 3. The CV for both sampling 
methods indicated a moderate variability of SOC (0.15 < CV < 0.35), 
which could be attributed to random factors such as inherent spatial 
variation in soil (Wilding, 1985). Generally, the overall result (Table 2) 
signifies a low to medium SOC content for the area. 

This study examined the use of two different sampling techniques (on 
the same field) for designing field sampling schemes to obtain soil 
samples with field spectroscopy (FS) and Sentinel-2 (S2) imagery to 
separately evaluate the predictive performance of SOC. The results show 
that the GD sampling (under the systematic sampling approach) and the 
SR sampling methods (under the random sampling approach) varied 
considerably from each other (Table 3) in terms of predictive perfor
mance and the level of error margin for SOC estimation. One of the 
primary goals of selecting an appropriate sampling procedure is to 
accurately estimate the values of soil attributes in specific locations 
without difficulties. As stated by Brus et al. (2011), the significance of 
selecting a sampling design that is simple to implement and leads to 
easily interpretable statistical estimation procedures cannot be over
estimated. Soils are heterogeneous on a range of spatial and temporal 
scales due to soil property variations (Fitter et al., 2000). For example, if 

Table 1 
Derived indices.  

Index S2 imagery Classification 

NDVI B8 − B4
B8 + B4  

IPVI 1
2
(NDVI+1)

NDRE B8 − B5
B8 + B5  

SAVI (B8 − B4)*(1 + L)
B8 − B4 + L 

L = 0.5  
GRVI B3 − B4

B3 + B4  
DVI B8-B4 
BI ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(B4*B4) + (B3*B3)
√

2  
MSAVI (1 + L)(B8 − B4)

(B8 + B4 + L)
RI B4*B4

B3*B3*B3   
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the heterogeneity of variance of soil properties is not adequately rep
resented with the selected sampling design method, the prediction ac
curacy for such a field with all collected sampling points could be 
affected. Fig. 1B & C reveals that the two-sampling approach’s selected 
sampling points and positions in the same field differed, indicating 
differences in prediction performance. 

3.2. Comparison and evaluation of SOC prediction with field spectra 
under GD and SR sampling techniques 

The individual datasets collected from these sampling approaches 
(GD and SR) in Table 3 clearly indicate that the data collected through 
the SR sampling method using the FS provided not only the overall most 
appropriate result but also the least error margin (R2

CV = 0.60, RMSECV 
= 0.21, RPD = 1.66, bias = 0.0045, log_snv) compared to the data 
collected through the GD sampling approach (R2

CV = 0.49, RMSECV =

0.24, RPD = 1.35, bias = 0.0055, dwt_log_snv). In comparison to pre
vious studies in this field (Biney et al., 2020; Gholizadeh et al., 2018), 
the obtained results could be described as an improvement in SOC ac
curacy as well as a decrease in error margin. Nonetheless, the modified 
GD sampling point distance (spacing distance) had no significant effect 
on the final SOC prediction accuracy when compared to the results 
obtained from a previous study (Biney et al., 2020). For example, the 
study by Biney et al. (2020) utilized only the GD sampling approach, 
with a limited distance (40 m apart), as opposed to the current study, 

which employs the GD and SR approaches separately with an increase in 
sample spacing for the GD approach (80 m apart), as previously 
mentioned. Both results (using the GD) were almost the same. Addi
tionally, for the study of Gholizadeh et al. (2018), the conditioned Latin 
Hypercube Sampling (cLHS) method was utilized. This implies that 
sometimes the sampling design does not depend on the number of 
sampling points or distances but rather on the heterogeneity of the soil 
in the area, which may vary on a case-by-case basis. As a result, failure to 
select the most appropriate sampling method could have an impact on 
the ultimate result. Mishra et al. (2009) showed 48 samples having 
better-represented variance heterogeneity of the soil than 240 samples 
which did not and for prediction, the latter was better than the former. 
According to Zhao et al. (2016), for sampling structure establishment, 
one should ensure that there is a compromise between uniform and 
irregular distribution of sampling points, and especially the inclusion of 
previous knowledge in the sampling design should be a key consider
ation. For Stenberg et al. (2010), the main feature controlling the final 
prediction accuracy of SOC might be the SOC variability characteristics. 
However, Heung et al. (2017) stated that the collection of spectral data 
in the field for an accurate prediction of SOC is highly dependent on a 
proper sampling design prior to the field visit. 

The findings of the current study contradict those of Mallarino and 
Wittry (2004), who concluded that grid sampling was perhaps the most 
efficient method for determining organic matter and soil pH. Presum
ably, the good results of the SR sampling approach were explained by 
better representativeness and possibly a normal statistical distribution. 
Moreover, SR sampling techniques have also been acknowledged for soil 
surveys by some researchers (Roels and Jonker, 1983; Shadish, 2002). 
For instance, according to Shadish (2002), SR sampling ensures that the 
findings from the dataset under consideration are close to the outcome 
that would be obtained if the full study field was used. Although the SR 
was better than the GD for this study, when compared to some other 
sampling approaches, especially the conditioned Latin Hypercube 
Sampling (cLHS) stratified random strategy (Minasny and McBratney, 
2006), SR could show some downsides. These include its inability to 
select a sample if the units or parameters are widely dispersed, it may 
not achieve good geographical coverage, and finally its poor distribu
tions of variables (Minasny and McBratney 2006; Worsham et al., 2012). 
One of the key advantages of the cLHS stratified random strategy is that, 
instead of using geographic space, it makes use of the available feature 
space (Worsham et al., 2012). Consequently, its main drawback is the 
possibility of obtaining an ideal Latin hypercube, which tends to 
decrease as the number of input variables or sample locations increases. 
This is due to the effect of equal stratification, which can result in 
selecting more samples that are near the mean of the sample space. 

Although GD sampling has been noted to provide a comprehensive 
view of the research area, it is also described as both expensive and time- 
consuming (Nanni et al. 2011; Stamper et al. 2014). Nevertheless, one of 
its major issues is locating where the soil sample should be taken within 
each grid or the possible size of the grid, since taking the centres of the 
chosen grid cells is inaccurate, as all other point locations would have 
zero chances of being selected. Thus, the estimated quality measures will 
necessarily apply to a finite set of point locations rather than the entire 
grid. As a result, several researchers (Nanni et al. 2011; Stamper et al. 
2014; Wollenhaupt and Wolkowski, 1994) have expressed 

Table 2 
Soil organic carbon (SOC) descriptive statistics for grid design (GD) and simple random (SR).  

SOC (%) Mean Median aSD Kurtosis Skewness bMin cMax dCV (%) 

GD  1.48  1.49  0.34  4.60  1.21  0.87  2.93  23.00 
SR  1.49  1.50  0.33  4.92  1.24  0.87  2.93  22.00  

a SD: standard deviation. 
b Min: minimum. 
c Max: maximum. 
d CV: coefficient of variation. 

Table 3 
Statistics of the five-fold leave-group-out cross-validation for SOC prediction 
from field spectra (FS) and S2 using the individual datasets collected through 
grid design (GD) and simple random (SR) sampling methods with support vector 
machine (SVM) algorithm on different preprocessing combination algorithms.    

GD     
FS   

Treatment dwt_log dwt_log_snv sg_msc sg_log 

R2cv 0.42 0.49 0.44 0.47 
RMSEcv 0.26 0.24 0.25 0.24 
RPD 1.30 1.35 1.32 1.37 
Bias − 0.0316 0.0055 − 0.0100 − 0.0036    

S2   
Treatment raw dwt_log Dwt d1 
R2cv 0.22 0.38 0.35 0.14 
RMSEcv 0.34 0.29 0.30 0.36 
RPD 1.10 1.25 1.23 1.04 
Bias 0.0220 − 0.0067 0.0159 − 0.0131    

SR    
FS   

Treatment log_snv sg_log_msc dwt_log_msc dwt_log_snv 
R2cv 0.60 0.51 0.48 0.39 
RMSEcv 0.21 0.24 0.24 0.26 
RPD 1.66 1.38 1.38 1.29 
Bias 0.0045 0.0055 0.0121 0.0134    

S2   
Treatment sg_log log_msc Log sg_d1 
R2cv 0.24 0.24 0.30 0.32 
RMSEcv 0.35 0.37 0.33 0.34 
RPD 1.06 1.01 1.11 1.14 
Bias 0.0025 0.0380 0.0117 − 0.0060  
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dissatisfaction with the approaches used to select suitable grid sizes or 
cells that will provide a comprehensive understanding of soil property 
variations. To address this issue, Brus et al. (2011) suggest that one or 
more point locations be chosen randomly in each grid cell. As per 
Flowers et al. (2005), the best grid size for sampling a field may not be 
identified until after the sampling has taken place. For this study field, 
for instance, both grid and cLHS in previous studies (on the same field) 
failed to achieve a better result than this current study using FS collected 
through SR sampling. 

3.3. Assessment of SOC prediction using S2 imagery obtained via GD and 
SR sampling techniques 

Table 3 also indicates that both sampling conditions (GD and SR) 
using S2 data provided poor results. Nevertheless, the results attained 
through GD sampling (R2

CV = 0.38, RMSEcv = 0.29, RPD = 1.25, bias =
− 0.0067, dwt_log) were slightly better than those obtained through the 
SR sampling strategy (R2

CV = 0.32, RMSEcv = 0.34, RPD = 1.14, bias =
− 0.0060 sg_dl). Fig. 2 also shows that the Pearson correlation coefficient 
results for these sampling approaches using the SOC and S2 bands show 
poor correlation with some bands under GD (e.g., B3, B5, B6, B7, B12), 

whereas there is a vague or no relationship with all the bands under the 
SR method (except for B4, B11), which were even poorly correlated with 
SOC). This might have accounted for the slightly better results obtained 
with S2 under GD. Notwithstanding, some of the bands were moderately 
to strongly correlated with each other. This implies that these bands may 
be important for specific soil types or conditions but may not work for all 
datasets. This shows that S2 imagery underpredicts SOC content using 
the two sampling methods by missing out on some useful information. 
For instance, SOC was poorly correlated or showed no relationship with 
these bands regardless of which sampling strategy was adopted (Fig. 2). 

Furthermore, S2 imagery being influenced by vegetation cover on 
the surface of the field cannot be ruled out. This is because, due to cloud 
cover issues, the study could not obtain S2 imagery that corresponded to 
the very same date when the field sample was collected. As stated 
earlier, the best S2 imagery used was dated July 10, 2019, because in 
terms of prediction, it was better than the two other comparable 
collected imagery dated June 10 and 30, 2019, as stated above (results 
not shown). Normally, in July, the presence of vegetation at its initial 
stage in agricultural fields is possible. According to Bartholomeus et al. 
(2011), the presence of vegetation cover in the field before spectral 
measurement can sometimes influence the spectral reflectance shape, 

Fig. 2. Pearson correlation of SOC based on S2 bands and calculated indices from different sampling strategies [GD (a, b) and SR (c, d) sampling approaches].  
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and this could influence the predictive performance of soil properties, 
such as SOC. For the current study, the field sampling was taken on bare 
soil. One probable solution to the issue of obtaining Sentinel-2 imagery 
captured on bare soil is the possibility of downloading several images to 
investigate the optimum date so that the field measurements can be 
adjusted accordingly. However, getting these agricultural fields at one’s 
“optimum time” is highly dependent on the landowners’ or farmers’ 
decisions, which, in most cases, are final because these fields are utilized 
for commercial purposes. Despite these occurrences, several studies 
have confirmed the superiority of spectroscopy over remote sensing 
approaches (e.g., Gomez et al., 2018; Stevens et al., 2008; Lagacherie 
et al., 2008) for SOC estimation. 

3.4. Combined dataset model and pretreatment performance under 
different sampling methods for SOC estimation 

The best result for the combined data (Table 4) was obtained using 
GB sampling (R2

CV = 0.45, RMSEcv = 0.26, RPD = 1.41, bias =
− 0.0073, sg_log_snv). This is because the S2 band as a covariate under 
GD is marginally better than SR. Additionally, some of the indices ob
tained under GD show some partial relationship with SOC, particularly 
the RI (Fig. 2b). This index could have positively influenced the merged 
data. According to Madeira et al. (1997), the RI index (spectral index) is 
noted for measuring soil redness variation and can also account for the 
intensity of absorption features that characterize certain soil properties 
(e.g., iron oxide, organic matter, etc.). Table 4 also shows that the SR 
sampling approach was outperformed by the GD sampling method in the 
combined dataset strategy using the S2 and the indices datasets. One 
possibility is that S2 imagery performance under the SR approach was 
poor. Therefore, indices obtained from the same spectral data using the 
SR sampling approach did not add much important information to the 
models. Moreover, in terms of correlation, the indices derived under the 
SR method were poorly correlated with SOC (Fig. 2d). Although, under 
the right conditions, some of these sampling methods can yield mean
ingful results, there is no guarantee that, under a different set of cir
cumstances or approaches, the good results will be sustained (Cochran, 
1977). Therefore, it is worth mentioning that when merging two or more 
distinct sets of data acquired using different measurement techniques, 
employing mathematical and statistical techniques (e.g., data fusion) 
that will only merge the positive attributes of the datasets and exclude 
the defects from these datasets will be much more appropriate for 
increasing prediction accuracy. If not, as stated above, the dataset’s 
vulnerabilities may have an impact on the overall combined dataset. 
Although the overall best merged data result was less comparable to the 
overall best result using the individual data (Table 3), the addition of the 
spectral indices under the GD improved the overall result provided by 

the S2 data (Table 4). 
The scatterplots (Fig. 3) show the results of the predicted versus 

observed SOC predictive accuracy using the FS and S2 sensing platform 
datasets obtained through the GD and SR sampling methods. In this 
study, the disparities in predicting SOC across different platforms vary 
from one platform to the other as well as from one sampling approach to 
the other based on all R2

CV, RMSECV and RPD parameters. There were 
substantially more scatters in SOC prediction, particularly when using 
S2 (for individual data) as well as the combined data (FS + SID, both 
sampling approaches). This confirms that the difference in SOC pre
diction between the two sampling approaches was not obvious because, 
as shown in Fig. 1, the sampling points captured by the sampling tech
niques were distributed across different locations within the same field. 
Additionally, it was shown that the individual (particularly field spectra) 
and the combined dataset differed. According to Gomez et al. (2018), 
light sources, instrumental noise, spatial resolution, and atmospheric 
conditions can all have a negative impact on sensor accuracy for spec
troscopy and remote sensing during measurement. 

The use of several pretreatment combinations (Table 3, 4) provided 
mixed results on the various datasets. Pretreatment approaches are 
essential in eliminating irrelevant information and may primarily 
improve the performance of the predictive model. Choosing the right 
pretreatment, however, is critical for spectroscopy and remote sensing 
data since no method can be considered universally suitable for any 
dataset (Engel et al., 2013). The log_snv combination, noted for linear
ization attainment between the spectra and SOC content as well as the 
correction of the light scattering effect, was the best pretreatment al
gorithm (helped to achieve the best overall result). Additionally, the log 
algorithm also eliminates baseline effects and enhances the spectral 
features, thereby causing an increase in prediction accuracy (Schlerf 
et al. 2010). According to Liu et al. (2019), numerous factors could in
fluence the dataset; the selection of only one pretreatment could 
sometimes fail to cope with all of these factors. The best pretreatment, 
therefore, depends on the dataset used, and a combination of several 
pretreatments could be more useful, but further study is needed on that. 
This implies that various pretreatments on sampling design are not 
influenced but can be differently efficient when combined with different 
sampling designs. 

4. Conclusion 

This study examined the possibility of enhancing the precision of 
SOC prediction in an agricultural field low in SOC content by employing 
different sampling techniques [simple random (SR) and grid design 
(GD)], utilizing field spectra (FS) and Sentinel-2 imagery (S2) based on 
the SVM algorithm. To predict the SOC content, two approaches based 
on FS and S2 imagery were developed for each sampling technique: 
using the individual data only and merging the S2 band with nine 
spectral indices (SID) extracted from the Sentinel-2 imagery (S2 + SID). 
The study showed that the GD and SR data obtained with S2 provided 
poor results compared to the same sampling conditions using the FS. 
One of the possible reasons was that, in terms of correlation, all S2 
selected bands were either poorly correlated or showed no relationship 
with SOC no matter which sampling strategy was adopted. However, the 
overall result provided by the S2 data under the GD sampling method 
improved with the addition of the spectral indices (merged data 
approach) (R2

CV = 0.45, RMSEcv = 0.26). However, the best result and 
lowest error margin for the entire study were achieved with the SR 
sampling method using FS (R2

CV = 0.6, RMSEcv = 0.21). Despite the fact 
that in the past, different sampling methods have been utilized in the 
same study field (particularly grid and conditioned Latin Hypercube 
Sampling (cLHS) methods), the obtained results with SR sampling for 
the current study are by far the most appropriate. Moreover, this shows 
that the use of different sampling designs on the same field separately is 
a promising option to predict SOC accurately, especially in fields with 
low SOC content. The addition of these approaches in future studies is 

Table 4 
Statistics of the five-fold leave-group-out cross-validation for SOC prediction 
from the combined dataset approach (S2 + SID) for grid design (GD) and simple 
random (SR) sampling methods with SVM on different preprocessing combina
tion algorithms.    

GD     
S2 + SID   

Treatment sg_log_snv dwt_log_snv sg_log_msc log_snv 

R2cv 0.45 0.38 0.34 0.37 
RMSEcv 0.26 0.28 0.27 0.28 
RPD 1.41 1.33 1.24 1.22 
bias − 0.0053 − 0.0068 − 0.0042 − 0.0119    

SR     
S2 + SID   

Treatment sg_log_snv sg_log_msc dwt_log_msc dwt_log_snv 

R2cv 0.37 0.27 0.32 0.24 
RMSEcv 0.29 0.32 0.30 0.34 
RPD 1.27 1.21 1.19 1.14 
bias 0.0035 0.0045 0.0111 0.0151  
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highly recommended, especially using larger datasets to test their 
robustness. 
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