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1 Introduction

The Hough transform is an important tool used in image processing and
computer vision. It was used for detection of linear structures in raster
images with great precision. Invented in 1962 by Hough [16], it was pro-
gressively improved in speed and accuracy, and adopted for detection of
different objects. In general, the Hough transform is a parameter estima-
tion method which detect objects in raster images. It is a voting tech-
nique where evidence found in an image votes for parameters of objects
that could generate the evidence. Most voted combination of parameters
is then the output of the method.

In the thesis, parallel coordinates are used for parameterization of the
objects. Parallel coordinates – a coordinate system where all axes are
mutually parallel – are nowadays mostly used in visualization and data
mining [20]. The main contributions of this work are:

• point and line parameterization based on parallel coordinates;

• algorithms for line and grid detection;

• algorithms for vanishing point detection.

Above mentioned parameterizations exploit point-to-line duality be-
tween projective and parallel space. The challenge of these transforma-
tions is to find a set of mappings which transform infinite space into a
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bounded space. The performance of the line parameterization is demon-
strated on simple line detection and matrix code extraction. The point
parameterization is validated on vanishing point detection. It utilizes the
edges in images of the Manhattan world or trajectories of objects with
straight movement trajectories like cars.

As it is further shown, such parameterizations are computationally
very efficient because they require only line rasterization. Also, all calcu-
lations can be implemented without floating-point operations and can be
easily accelerated by different hardware architectures. Side-by-side with
high performance, they preserve or overcome the accuracy of state-of-the-
art methods.

2 Hough Transform

The Hough Transform (HT) [16] is sometimes understood not as a specific
algorithm for object detection but as a wide class of algorithms that share
a common structure. Princen et al. [29] formalized HT as a hypothesis

testing process. The structure of HT when described as generically as
possible is:

I. Some evidence is extracted from the input.

II. For each piece of the evidence, accumulators corresponding to the
hypotheses that are supported by that evidence are incremented.
Possible hypotheses are represented by an N -dimensional parameter

space of accumulators.

III. Probable hypotheses are detected as peaks in the parameter space.

The dimensionality of the parameter space is determined by the num-
ber of degrees of freedom of the hypotheses. The parameter space can be
represented as an N -dimensional array.

2.1 Hough Transform for Line Detection

Line detection using the Hough transform requires a mapping between
a line in an image and a point in the Hough space of parameters. The
motivation for introducing new parameterizations is to find the optimal
trade-off between requirements for the transformation. These require-
ments include preference of the bounding Hough space, discretization with
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minimal aliasing errors, and uniform distribution of discretization error or
intuitive mapping from the original system to the Hough space. In gen-
eral, the image of a transformed point can be a curve of different shapes;
for example circle, sinusoid curve, straight line, etc.

Slope–intercept Parameterization

The first Hough transform, introduced and patented by Paul Hough in
1962 [16], was based on the line equation in the slope–intercept form.
Commonly, the slope–intercept line equation has this form:

ℓ : y = xm+ b. (1)

However, the method used in the Hough’s patent corresponds to:

ℓ : x = ym+ b. (2)

Using parameters m and b, all lines passing through a single point form a
line in the Hough space, so it is a point-to-line mapping. Using a bounded
parameter space requires at least two complementary spaces of parame-
ters. In the case of the slope–intercept line equation, these spaces are, for
example, the two based on equations (1)(2).
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Figure 1: The Hough transform using m–b and k–q parameterizations of
a line. (left) Input image and (right) parts of the corresponding Hough
spaces attached together.
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θ–̺ Parameterization

In 1972, Duda and Hart [11] introduced a very popular parameteriza-
tion denoted as θ–̺ which is very important for its inherently bounded
parameter space. It is based on the line equation in the normal form:

y sin θ + x cos θ = ̺. (3)

Parameter θ represents the angle of inclination and ̺ is the length of the
shortest chord between the line and the origin of the image coordinate
system, Figure 2 (left). In this case, images of all lines passing through a
single point form a sinusoid curve in the parameter space, Figure 2 (right).
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Figure 2: The Hough transform using the θ–̺ parameterization of lines.
(left) Input image and (right) corresponding Hough space.

3 Parallel Coordinates

Parallel coordinates were invented in 1885 by M. d’Ocagne [8] and further
studied and popularized by Alfred Inselberg [19]. Currently, parallel co-
ordinates are mostly used as a tool for visualization and data mining in
high-dimensional data. Significant computational usage of parallel coor-
dinates is in the air traffic control [18].

3.1 Representation of a Point

The parallel coordinate system represents the vector space by axes which
are mutually parallel. The order and the distances between the axes are
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arbitrary. Each N -dimensional vector is represented by N − 1 lines con-
necting the axes and intersecting them at the corresponding coordinates,
Figure 3.
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Figure 3: Representation of a 5-dimensional vector in parallel coordinates.
The vector is represented by its coordinates C1, . . . , C5 on axes x1

p
, . . . ,x5

p
,

connected by a complete polyline (composed of 4 infinite lines).

3.2 Representation of a Line

In the two-dimensional case, points in the xc-yc space are represented as
lines in the space of parallel coordinates. All representations of collinear
points intersect at a unique point – the representation of the common line,
Figure 4.
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Figure 4: Three collinear points in parallel coordinates. (left) Cartesian
coordinate system and (right) space of parallel coordinates. Line ℓ is
represented by point ℓ in parallel coordinates.
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Therefore, a line in 2D Cartesian space is represented by a point in
parallel coordinates. For some cases, such as line ℓ : y = x, the corre-
sponding point ℓ lies at infinity (it is an ideal point), Figure 5.
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Figure 5: Line y = x in (left) Cartesian coordinate system and (right)
space of parallel coordinates. Line ℓ is represented by ideal point at infin-
ity.

Using the homogeneous coordinates for the points and lines, it is possi-
ble to define mapping between an arbitrary line ℓ = (a, b, c) with equation
ℓ : ax+ by + c = 0 and its image ℓ:

ℓ = (a, b, c) → ℓ = [db,−c, a+ b], (4)

where d is the distance between parallel axes xp and yp [19].
Inversely, each point ℘ = [u, v, w] in parallel coordinates, uniquely

defines a line in Cartesian coordinates:

℘ = [u, v, w] → ℘ = (−u+ v,−wd, ud). (5)

This point-to-line correspondence defines duality between projective plane
P
2 and space of parallel coordinates, which is crucial for the further tasks.

4 Parameterizations of Lines Using Parallel Co-

ordinates

Due to the point-to-line duality of a two-dimensional parallel coordinates
and projective plane P2, the parallel coordinates can be used as a line pa-
rameterization for the Hough transform. This section presents the prop-
erties of such a parameterization, called PClines [10] and its cascaded
version [9] used for point transformation.
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4.1 Point-to-Line Mapping

The transformations of the points and lines between Cartesian and par-
allel coordinate space can be defined by 3 × 3 matrices. These matrices
are dependent on the arrangement of the parallel coordinate axes. Two
following arrangements are considered here. The first one with the xp

axis passing through the origin and the yp axis through point [d, 0, 1],
both with the same orientation, Figure 4. The second has the yp axis
inverted and passing through point [−d, 0, 1], Figure 6.
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Figure 6: Three collinear points in parallel coordinates. (left) Cartesian
coordinate system and (right) space of parallel coordinates. Line ℓ is
represented by point ℓ in parallel coordinates with inverted yp axis.

The transformations and their corresponding spaces are denoted as
S – straight – when both axes share the same orientation (6) and T –
twisted – for coordinate system with flipped axis (7). The transformation
matrices are S℘ (T℘) for points and Sℓ (Tℓ) for lines.

S – Straight Transform

S℘ =





−1 0 d
1 0 0
0 −d 0



 Sℓ =





0 0 1
d 0 1
0 −1 0





S℘ : [x, y, w]S℘ = (−x+ y,−wd, xd)
Sℓ : (a, b, c)]Sℓ = [bd,−c, a+ b]

(6)
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T – Twisted Transform

T℘ =





1 0 d
1 0 0
0 −d 0



 Tℓ =





0 0 1
d 0 −1
0 −1 0





T℘ : [x, y, w]T℘ = (x+ y,−wd, xd)
Tℓ : (a, b, c)]Tℓ = [bd,−c, a− b]

(7)

4.1.1 Subspaces

As Bhattacharya proved [4], an arbitrary point-to-line-mapping (PTLM)
mapps a finite subspace to an infinite subspace. That also means that all
possible lines from a bounded subspace have representations in an infinite
subspace of parallel coordinates. However, two dual PTLM transforma-
tions are enough for a transformation into two finite subspaces. In parallel
coordinates, this can be solved by using the S and T transformations.

From (6) and (7), a line ℓ = (a, b, c) has two possible representations;
ℓS = ℓSℓ and ℓT = ℓTℓ with coordinates (8).

ℓS = [bd,−c, a+ b]

ℓT = [bd,−c, a− b]
(8)

If a line ℓ = (a, b, c) is be mapped to a point ℓ with the following rules:

ℓ =

{

[bd,−c, a+ b] if ab ≥ 0
[bd,−c, a− b] if ab ≤ 0,

(9)

the image of the line always mapped between coordinate axes in S or
T space. The subspaces of T and S spaces bordered with coordinate
axes can be “attached” one to another. Figure 7 illustrates the spaces
attached along the xp axis. Attaching also the yp and −yp axes results
in an enclosed Möbius strip. Figure 7 shows the original image with points
and lines and their representations in T S space.

For an inverse mapping of the point ℓ = [u, v, 1] from the T S space
attached along xp axis, the following formula is used:

ℓ =

{

(d− u, u,−vd) if u ≥ 0
(d+ u, u,−vd) if u < 0.

(10)
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Figure 7: (left) Original x-y space and (right) its PClines representation
– the corresponding T S space.

4.2 Concurrent Lines

Lines are considered to be concurrent if they intersect at a common point.
When using parallel coordinates for representing these lines, they are pro-
jected to collinear points. These points lie on a line which corresponds to
the intersection of the lines in Cartesian coordinates, Figure 8. And, as
shown in the previous section, also the dual statement holds true in paral-
lel coordinates: representations of collinear points intersect at a common
point, Figure 4.
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Figure 8: Six concurrent lines in (left) Cartesian coordinate system and
(right) space of parallel coordinates. Concurrent lines ℓi are represented
by collinear points ℓi in parallel coordinates.

A set of arbitrary four concurrent lines can be characterized with a
cross-ratio [14]. In general, the cross ratio is a numeric association between
a 4-tuple of collinear points. What is very important characteristic of the
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cross-ratio is its invariance under projective transformation. Because of
the duality between P

2 and parallel coordinates, the value of the cross-
ratio is preserved also under transformation to parallel coordinates. The
cross-ratio for four collinear points – images of the lines – stands the same.

The ability of the parallel coordinates to preserve the cross-ratio to-
gether with invariance under perspective projection leads to its usage for
detection of perspectively projected group of parallel lines (e.g. a grid of
a matrix code). If the lines were originally parallel and equidistant, three
detected points in parallel coordinates with known relative indices are
enough to define whole sequence. Suppose three detected points pa, pb, pc
with indices a, b, c respectively. From definition of cross ratio, the fourth
point pd with index d is calculated as:

(pa − pc)(pb − pd)

(pa − pd)(pb − pc)
=

(a− c)(b− d)

(a− d)(b− c)

α = (a− c)(b− d)

β = (a− d)(b− c)

pd =
αpapc − βpbpc + (α− β)papb

αpb − βpa − (α− β)pc
.

(11)

The equations are evaluated separately for each coordinate and thus the
position of point pd can be easily found. The precise indices (a, b, c, d)
in the sequence of the lines are not required, only the relative positions
between them are necessary.

4.3 Line-to-line Mapping

Point-to-line duality of two-dimensional parallel coordinates and projec-
tive plane P

2 can be used in a manner similar to the Cascaded Hough
Transform [32] – lines are transformed to points and they are again trans-
formed to lines. Dually, a point is mapped to a line and then again to
a point. As shown below, transformations based on parallel coordinates,
Figure 9, can be used to project ideal points to regular points. Therefore,
the projective plane P

2 can be projected to a finite space.
Transformation matrices which define point-to-line duality are pre-

sented in Section 4.1. When two of these mappings are applied sequen-
tially in order to form a composition, a point is mapped again to a point
and the same holds true for every line. The mappings vary in combination
of the S and T transform. As a result, four different composite mappings
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Figure 9: Three collinear points and three concurrent lines in cascaded
parallel coordinates. (left) Cartesian coordinate system, (middle) first
space of parallel coordinates and (right) second space of parallel coordi-
nates. A line is mapped to a point and then to another line; and dually,
a point is mapped to a line and to a point again.

can be constructed: S ◦ S, T ◦ S, T ◦ T , S ◦ T (12 – 15). The distance of
the parallel axes in the first space of parallel coordinates is d, the distance
in the second one is D.

Composition of two S spaces

SS℘ = S℘Sℓ =





0 −d −1
0 0 1

−dD 0 −d



 SSℓ = SℓS℘ =





0 −D 0
−d −D dD
−1 0 0





SS℘ : [x, y, w]SS℘ = [−dDw,−dx,−x+ y − dw]
SSℓ : (a, b, c)SSℓ = (db+ c,Da+Db,−dDb)

(12)

Composition of S space and then T space

ST℘ = S℘Tℓ =





0 −d −1
0 0 1

−dD 0 d



 STℓ = SℓT℘ =





0 −D 0
d −D dD
−1 0 0





ST ℘ : [x, y, w]ST℘ = [−dDw,−dx,−x+ y + dw]
ST ℓ : (a, b, c)STℓ = (−db+ c,Da+Db,−dDb)

(13)
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Composition of two T spaces

TT℘ = T℘Tℓ =





0 −d 1
0 0 1

−dD 0 d



 TTℓ = TℓT℘ =





0 −D 0
d D dD
−1 0 0





T T ℘ : [x, y, w]TT℘ = [−dDw,−dx, x+ y + dw]
T T ℓ : (a, b, c)TTℓ = (−db+ c,Da−Db,−dDb)

(14)

Composition of T space and then S space

TS℘ = T℘Sℓ =





0 −d 1
0 0 1

−dD 0 −d



 TSℓ = TℓS℘ =





0 −D 0
−d D dD
−1 0 0





T S℘ : [x, y, w]TS℘ = [−dDw,−dx, x+ y − dw]
T Sℓ : (a, b, c)TSℓ = (db+ c,Da−Db,−dDb)

(15)

4.3.1 Subspaces

Each of the above mentioned mappings is a transformation of one infinite
space to another [4]. The goal is to find an infinite subspace which is
mapped to a finite subspace, similarly to the T S space for line transfor-
mation (Section 4.1.1) or Cascaded Hough Transform [31]. Application
of above mentioned point mappings, each on one quadrant of the real
projective plane, leads to finite domain of the transformation, Figure 10.
Such a transformation maps both the ideal and the regular points to the
regular points.

Point Transformation

It can be proved that all points from Ic quadrant transformed via two
T transformation are mapped to a triangular subspace in IIIp quadrant,
IIc quadrant transformed with ST ℘ to IIp quadrant, IIIc quadrant trans-
formed with T S℘ to IVp quadrant and IVc quadrant transformed with
SS℘ to Ip quadrant, Figure 10.

The coordinate axes xc, yc and ideal line ℓ∞ = (0, 0, 1) lie on bor-
ders of the quadrants of the real projective plane. Their images also lie
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Figure 10: Correspondence between quadrants in Cartesian coordinates
and triangle subspaces of the space of parallel coordinates. (left) Quad-
rants of the original infinite Cartesian space. (right) Quadrants of the
parallel spaces attached to each other.

on the borders of the finite triangular subspaces. This enables the four
parts, each mapped by a different mapping to be attached together. The
attached space has a diamond shape and in the further text is referred to
as the diamond space and the mapping denoted D.

An arbitrary point in the real projective plane; including the ideal
points; is mapped to a regular point in the diamond space and for some
specific cases (such as the coordinate axes), the point is mapped to the
couple of points on the borders (16).

D℘([x, y, w]) = [−dDw,−dx, sgn(xy)x+ y + sgn(y)dw]
D−1

℘ ([p, q, 1]) = [Dq, sgn(u)dp+ sgn(v)Dq − dD, p]
(16)

Line Transformation

An image of a line using transformations (12)–(15) is again a line (17).

(a, b, c)SSℓ = ℓSS = (db+ c,Da+Db,−dDb)
(a, b, c)TSℓ = ℓT S = (db+ c,Da−Db,−dDb)
(a, b, c)TTℓ = ℓT T = (−db+ c,Da−Db,−dDb)
(a, b, c)STℓ = ℓST = (−db+ c,Da+Db,−dDb)

(17)

However, the image of a straight line in the joined diamond space is not
a line anymore. The result of the mapping Dℓ is a polyline whose number
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of segments depends on the number of quadrants the line passes through
(each quadrant is mapped by a different transformation). Figure 11 shows
a line after SSℓ,ST ℓ, T T ℓ and T Sℓ transformation. From each transfor-
mation, only a line segment in the finite triangle subspace is included in
the diamond space, Figure 12.

TTyc

xc

up up up upvp vp -vp -vp

pc pc pc pc

qcqcqcqc

`

TSSS ST

`SS

`TS

`TT `ST

Figure 11: Representation of a line using different transformations. Only
a darker triangular subspaces are parts of final diamond space.
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TT
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up vp-vp
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qc
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Figure 12: Representation of a line using diamond transformation. Poly-
line with three segments, each corresponding to one quadrant and one
transformation.

The sequence of the endpoints defining the polyline depends on the
intersections of the line images with coordinate axes pc, qc and the dia-
mond space borders. They can be defined using nonzero signum function
(18). When a line passes through just two quadrants (vertical lines, hori-
zontal lines, lines through the origin), one segment always degenerates to
a point.

α = sgn(ab); β = sgn(bc); γ = sgn(ac)
(a, b, c) →
[

αdDa

c+ γda
,

−αdc

c+ γda

]

,

[

dDb

c+ βdb
, 0

]

,

[

0,
db

a+ αb

]

,

[

−αdDa

c+ γda
,

αc

c+ γda

]

(18)
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Using the diamond space as an accumulator for the Hough transform
requires discretization of the space. Reprojection of the discrete grid in
the diamond space to image space is shown on the Figure 13. The shape
of the back-projected accumulator’s bins in the image space is different
in the xc and yc axis because the diamond space was made with the
vertical axis inverted (yp and vp). As it is shown, the area covered by the
accumulator’s bin increases with the distance from the image origin. In
Section 5.3, this behavior is used for an accurate vanishing point detection,
where the bigger error in localization far from the origin has the same
influence as the smaller error near to the origin.

Figure 13: Visualization of the accumulator bins from the diamond space
back-projected to the image plane.

5 Usage of Line Parameterizations based on Par-

allel Coordinates in Computer Vision

This section gives several examples how the parameterizations of points
and lines based on parallel coordinated can be used in computer vision
tasks in context of the Hough transform.

5.1 Line Detection

Line parameterization based on parallel coordinates used for line detection
using the Hough transform, is presented in Algorithm 1.

As in the standard Hough transform [11], points of interest are firstly
detected (line 2). For each point a two-segment polyline with vertices
A,B,C is accumulated. One part is in the T space (line 7) and the second
in the S space (line 8). The Hough space H is scanned for local maxima
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Algorithm 1 Detection of lines using the Hough transform and parallel
coordinates.
Input: Input image I with size wi × hi, accumulation space H, axes

distance d
Output: Detected lines L = {(a1, b1, c1), . . .}
1: Clear accumulator H
2: E ⊆ {1, . . . , wi} × {1, . . . , hi} is set of points of interest in I
3: for all (i, j) ∈ E do

4: A = [−d,−j]
5: B = [0, i]
6: C = [d, j]
7: Accumulate line AB to H
8: Accumulate line BC to H
9: end for

10: M = {(u, v);H(u, v) is a significant local maximum}
11: L = {(d− sgn(u)u, u,−vd); ∀(u, v) ∈ M}
12: return L

above a given threshold (line 10) and corresponding line parameters are
calculated using Equation (10) (line 11).

For a real accuracy comparison between different parameterizations
a dataset of automatically generated black-and-white images are used.
In each image, one line is rasterized first. Then, 25 000 noise pixels are
inverted. Figure 14 compares the errors of the three methods for lines
with different θ generated within 5◦ wide intervals. For every interval,
100 images are generated. The computed average error as it depends on
line’s slope of all lines detected in the images are shown in Figure 14a and
the average of the 5 least accurate lines out of all 100 lines on 14b.

The measurements confirm the theoretical considerations: the θ–̺
parameterization discretized the space evenly; PClines are about as ac-
curate as θ–̺ for θ ∈ {45◦, 135◦, 225◦, 315◦} and more accurate at θ ∈
{0◦, 90◦, 180◦, 270◦}; the m–b parameterization is the least accurate of
the three evaluated methods.

Harnessing the Edge Orientation

O’Gorman and Clowes [28] improve the basic θ–̺ parameterization with
their idea of not accumulating values for all discretized values of θ but for
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Figure 14: Line localization error as it depends on the lines’ slope. For x
on the horizontal scale, the lines’ slope in degrees is at interval 〈x, x+5).
Red: PClines; Green: θ–̺; Blue: m–b. (a) Average error over all lines.
(b) Average error of the 5 least accurate lines, i.e. a pessimistic error
estimation.

a single value of θ, instead. The appropriate θ for a point can be obtained
from the gradient of the detected edge present at this point [30].

One common way to calculate the local gradient direction of the image
intensity is by using the Sobel operator. By Sobel convolution kernels, two
derivative estimations Gx and Gy can be obtained for any discrete location
in the input image. Using the response of the convolution kernels, the
horizontal position of the ℓ as it depends on the gradients is the following:

ℓu = d
Gy

Gx + sgn(GxGy)Gy
. (19)

In order to avoid errors caused by noise and the discrete nature of the input
image, accumulators within a suitable interval 〈ℓu − r, ℓu + r〉 around the
calculated ℓu position are also incremented.

To evaluate the detection rate, 500 blurred images are used, each with
20 random half-planes and 25 000 noisy pixels. Local maxima higher
then threshold T = max(H)/4 are considered as detected lines. These
lines are compared with ground truth lines. Results in Figure 15 show
that for small r, the detection rate is low, which is caused by inaccurate
estimation of edge gradient. The detection rate can be increased by:
better estimation of the gradient or bigger value of r. With bigger Sobel
kernel, the estimation of the gradient is more accurate, i.e. closer to the

17



correct position. With higher r it becomes more probable, that even with
inaccurate estimate of gradient, the accumulated bins include the correct
position. However with very high value of r the space is more “messy”
because noisy pixels start to form lines (i.e. local maxima) which are not
real lines.
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Figure 15: PRC and ROC characteristics for line detection using edge
orientation. Blue lines stand for values using the Sobel kernel with size
3× 3. Green lines are for kernel with size 5× 5. Red dots are the optimal
r; i.e. r with maximal F1 score.

5.2 Grid Detection

Section 4.2 discusses the invariance of the cross ratio under projection
and in parallel coordinates. This property can be used for detection of
parallel lines under perspective projection. The detection is demonstrated
on a projected grid. Two methods for the detection are introduced here.
The common part involves: firstly, the edge points are detected and their
gradients are estimated; a histogram of oriented gradients with a small
number of bins is built together with a list of edges that voted for the
bins. Since a grid is expected to be present in the image, two main peaks
can be detected in the histogram, Figure 16. These two peaks, roughly
90◦ degrees apart, represent two main orientations in the image. Because
the two main orientations in the image are known, only two narrow stripe
parts of the T S space need to be accumulated, instead of the whole space.

After accumulation, each stripe of the Hough space contains collinear
maxima with a known distribution which have to be detected.
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Figure 16: Input QRcodes and corresponding accumulated stripes in T S
space which corresponds to two dominant edge orientations.

5.2.1 Detection by Using the Cross Ratio

The value of the cross-ratio for a quadruplet of the points in the parallel
coordinates is equal to the cross-ratio of the lines represented by these
points. This can be used for the detection of a pencil of lines with a known
distribution, for example equidistant lines under a perspective projection.

The detection algorithm requires the filled Hough space as its input.
Firstly, few highest local maxima are detected. The maxima, in an ideal
case, correspond to the most significant lines from the grid. For uniquely
determining the perspective projection and rest of the lines, three lines
with known relative indices are required. Therefore, triplets {pa, pb, pc}
are selected from the set. Then, linear regression with least squares ap-
proach is used to calculate line ℓ best fitting points pa, pb, pc, yellow line in
Figure 17a. The line is a hypothetical vanishing point of one group of the
grid lines. The relative indices of the lines are found and used in equation
(11). The confidence score of the hypothesis about the vanishing point
and the distribution of the lines depends on the values in the Hough space
at the locations of the estimated maxima, green circles in Figure 17b. The
algorithm returns the hypothesis with the highest score.

Detection of QR Codes

By finding the point between two consecutive maxima and sampling the
image at the intersections of lines represented by these points, a bitmap
of the data matrix code can by extracted, Figure 18a. The input image
is sampled at the intersections and after extracting the grayscale image,
adaptive thresholding is used for creating the binary bitmap of the matrix
code, Figure 18b.
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(a) Stripes of the accumulator (b) Zoomed parts

Figure 17: (a) The whole accumulator stripes: triplets of maxima (red
dots) with the corresponding line used for vanishing point estimation
(yellow line). (b) Zoomed parts of the stripes: blue crosses represent
the estimated centers, where low values are expected and the green circles
stand for the estimated maxima.

The performance of the algorithm is evaluated on a dataset of chal-
lenging photos of QRcodes and as a reference is used the ZXing Project.
Table 1 shows that the algorithm is very well resistant to rotation and
perspective deformation of the matrix code. The main issue of the algo-
rithm based on PClines exhibits when the code is surrounded by intensive
parallel edges.

presented ZXing
(count) 100% 99% 95% 100% 99 % 95%

plain (113) 88.5 97.3 98.2 88.5 97.3 97.3
rot (95) 68.4 94.7 98.9 53.7 58.9 62.1

pers (110) 89.1 95.5 95.5 69.1 74.5 74.5
rot+pers (112) 78.6 96.4 97.3 9.8 9.8 9.8

all (430) 81.6 96.0 97.4 55.3 60.2 60.9

Table 1: Detection rate achieved by ZXing and the algorithm based on
PClines. The detection rates are reported for different notions of correct
detection: 100% / 99% / 95% of code pixels detected correctly.
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(a) QR code cells sampling (b) Extracted data

Figure 18: Extraction of the matrix code. The points shown in green are
sampled and form a bitmap which is then adaptively thresholded.

5.2.2 Detection of Grids by Inverse Projection

A regular grid under perspective projection can be transformed with a
projective transformation so that the lines in each direction are again
parallel and aligned with coordinate axes. In parallel coordinates, it means
a transformation of the space after which the points representing the lines
are equidistant and lie on a line parallel to the axes.

The algorithm based on inverse projection expects the accumulated
stripe of the Hough space using PClines. Firstly, a set of maxima is
detected in each stripe and lines are fitted to each group of the points. The
lines represent the vanishing point U and V . Further, they are processed
separately for each part. The goal is to obtain a uniform distribution of
the maxima on the line using a nonuniform sampling along the line. To
get the ni sample, the algorithm uses the remapping equation depending
on the orientation of the horizon.

t =
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, σ(x) =

{

1 x ∈ S
−1 x ∈ T

(20)

where d is the distance between parallel axes. To define the scale, two
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points are fixed to have the same distance in the original Hough space and
in the new sampling (n0, n1). The resampling function maps each point
from 1D vector to a corresponding value in the Hough space on position
[ui, vi, 1], (21).

ui =
(−t− σ(ℓ))u1u0 + d(iu1 − (i− 1)u0)

(−t− σ(ℓ))(iu0 − (i− 1)u1) + d

vi =
(−t− σ(ℓ))(iu0v1 − (i− 1)u1v0) + d(iv1 − (i− 1)v0)

(−t− σ(ℓ))(iu0 − (i− 1)u1) + d
ni = H([ui, vi, 1])

(21)
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Figure 19: Sampling of the values along the vanishing point. Dashed
arrows show the couples of input image points.

After sampling along the line ℓ, the 1D vector {ni} has maxima dis-
tributed uniformly. In order to find the frequency of the maxima, auto-
correlation of the sequence is used. Using the uniform distance and one
maximum, the positions of the rest of the maxima are derived. These
indices are again used in (21) and the resulting [uj , vj , 1] are the positions
of the maxima in the Hough space.

Detection of Fractal Marker Field

Detection based on the inverse projection was used for Fractal Marker
Field (FMF) extraction. FMF [15] is a fiduciary marker with a fractal
structure. Because FMF consists of more then one frequency of the grid
lines, the algorithm is modified to find more then one dominant frequency
of maxima. Similar to QRcode detection the input image is sampled in
the center of each module.
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Table 2 shows the detection rates on this set of images. When the
FMF is viewed from a skew angle without rotation (pers), the detector
is confused by the different frequencies of the two groups of (originally
perpendicular) lines and in each direction, different levels are sampled.
Figure 20 shows examples of successfully detected and localized FMF
under different conditions.

plain rot pers rot + pers all

480× 320 100 90.3 80.3 87.7 88.5
600× 400 100 99.2 87.9 97.7 96.7
1200× 800 100 100 93.9 100 98.9

Table 2: Detection rate (%) achieved by the detector based on parallel
coordinates.

Figure 20: Successfully detected and localized Fractal Marker Fields on
real-life images.

5.3 Detection of Vanishing Points

In man-made architecture, parallel and perpendicular structures often oc-
cur. When captured by a camcorder or a camera, these regular structures
can be used for estimation of camera orientation or calibration and many
other tasks. At the same time, the vanishing points tend to be very stable
and supported by various parts of the scene and their detection is thus
robust against various distortions. Having the vanishing points reliably
and efficiently detected facilitates many other computer vision tasks.

Algorithm 2 shows the detection of the vanishing point by using the
diamond space. Firstly, the input image is normalized. The edgelets with
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a known position and orientation are detected (line 2). These information
are used to calculate parameters of the corresponding fitted line (line 4).
Lines are transformed to polylines (18) (line 5) and accumulated into the
diamond space (line 6). The highest peak in the diamond space is the most
voted vanishing point (line 8) and by using Equation (16) the detected
diamond space maximum is projected to the image plane (line 9).

Algorithm 2 Vanishing point detection using diamond space.

Input: Normalized image I, accumulation space H
Output: Vanishing point v1
1: Clear accumlator H
2: E ⊆ {1, . . . , wi} × {1, . . . , hi} × 〈0, π〉 is set of points of interest in I
3: for all (i, j, θ) ∈ E do

4: ℓ = (cos θ, sin θ,−(i cos θ + j sin θ))
5: Get polyline vertices P for line ℓ
6: Accumulate polyline to H
7: end for

8: M = (p, q);H(p, q) ≥ H(i, j), ∀(i, j) ∈ I
9: v1 = [q, sgn(p)p+ sgn(q)q − 1, p]

10: return v1

If there are more then one vanishing point to be found the accumulator
is cleared and only edgelets which do not contribute to the already found
vanishing points are accumulated and the highest response is sought for.

(a) Input image (b) Extracted edges (c) Accumulator (d) Color-coded edges

Figure 21: Detection of orthogonal vanishing points. Right images depict
the affiliation of edges/contributions to different orthogonal VPs by color.

In a Manhattan world scenario, three projections of orthogonal van-
ishing points are of interest. The new three maxima are found to be
orthogonal, have maximal response in the accumulator and be close to
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the originally detected triplet.
The detection accuracy is evaluated on the York Urban Database [7],

consisting of 102 images, each with three orthogonal ground truth van-
ishing points. The parameters (space resolution, image normalization)
were obtained from the training set and the evaluation was done on the
complete set in order to be comparable with previous works. Two means
of evaluation are used: detection rate with 10◦ angular error tolerance,
Table 3, and cumulative histogram of the count of correctly recognized
vanishing points based on the angular error tolerance, Figure 22.

method [27] [12] [25] [24] [26] [13] ours

correct [%] 94.35 100⋆ 84.6 99.3⋆⋆ 90.03 93 88.04/98.04
avg. err [◦] 3.5 1.63 - - <3 - 1.87/1.41

Table 3: Detection rate at < 10◦ angular error tolerance. For the pre-
sented method, the value for directly detected VPs are reported, followed
by the orthogonalized VPs in bold. ⋆ Column should be omitted because
the authors seem to apply the tolerance on individual angles. ⋆⋆ Column
should also be treated lightly because the authors feed the detector only
with edges user-annotated as belonging to one of the VPs.
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Figure 22: Cumulative histogram of the number of correctly detected
vanishing points. x-axis: average angular error of the detected vanishing
points from the ground truth. y-axis: fraction of vanishing points detected
with the given error tolerance. green: Presented algorithm without the
orthogonalization. red: Presented after search for orthogonal triplet of
vanishing points. GS, EM andCasc1D are algorithms used in [23, 22, 2].
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Figure 23: Examples of the diamond accumulation space. White arrows
represent ground truth directions and the red-green-blue are the detected
ones. In accumulated diamond space: red circles Non-orthogonal van-
ishing points (v̄1, v̄2, v̄3); blue crosses Orthogonal triplet of vanishing
points; green dots Ground truth vanishing points.

5.4 Roadside Camera Calibration

The number of internet-connected cameras is quickly increasing and a
notable amount of them are used in traffic monitoring. The goal is to
provide fully automatic traffic processing algorithms – leading towards
vehicle classification and counting, speed measurement, congestion detec-
tion, etc. In the presented method, the calibration of internal camera
parameters as well as external parameters (camera orientation and posi-
tion up to scale with respect to the dominant motion of the vehicles) and
radial distortion compensation parameters are automatically determined.

Figure 24 shows the vanishing points with the color notation and VP
visualization to be used throughout this section: red 1st vanishing point
in the direction of the car motion; green 2nd vanishing point in the ground
plane, perpendicular to the vehicle motion; blue 3rdvanishing point per-
pendicular to the ground plane.
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Figure 24: Automatic approach to camera calibration by recognizing the
three dominant vanishing points which characterize the vehicles and their
motion.

First Vanishing Point Extraction

For the detection of 1st VP, the Hough transform with the diamond space

accumulator is used. In each video frame, feature points are detected and
tracked in the subsequent frame. Successfully detected and tracked points
exhibiting a significant movement are treated as fragments of vehicle tra-
jectories. These fragments of trajectories are extended to infinite lines,
assuming that they pass through the first vanishing point. All these lines
vote in the diamond space accumulator. The most voted point is consid-
ered to be the first vanishing point. Figure 25 shows the tracked points
accumulated to the diamond space. Once the first VP is determined,
moving points can be discerned whether they move towards the VP or
from it, or whether they are moving in a completely different direction.

Second Vanishing Point

The 2nd vanishing point is the direction parallel to the road and perpen-
dicular to the first direction. Again, the diamond space is used for its
detection. An edge background model is used to select only edges on
moving objects (probable vehicles). The model is updated each frame to
deal with shadows and other slow changes. Figure 26 shows the edge back-
ground model, omitted and accumulated edges and the diamond space.
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Figure 25: Illustration of the tracked points. Points marked by green
exhibit a significant movement and they are accumulated. Points marked
by yellow are stable points and do not vote. The accumulation diamond
space is in the top left corner.

Third Vanishing Point, Principal Point and Focal Length

The third vanishing point corresponds to the direction perpendicular to
the ground plane. Unfortunately, in majority of the roadside views, there
seems to be minimal amount of edges supporting the third VP. Instead
of finding the third VP, its position is calculated using the first two VPs
and the assumption that the principal point is in the middle of the image.

Radial Distortion Compensation

In practice, some real-life cameras exhibit a large degree of radial distor-
tion. Provided the assumption of the road being straight, the tracked
trajectories can be used to compensate for the camera’s radial distortion.
The corrected position of input points can be modeled by the polynomial
radial distortion model [5]. In order to find distortion parameters the
extracted trajectories are used. Optimal parameters are found by mini-
mization of the sum of square differences of all points in all trajectories
to their best fitting lines. The evolutionary strategy is used to search for
the first two coefficients. The optimization is done on-line. When new
trajectories are tracked, one iteration of the optimization is executed. The
radial distortion compensation process is shown in Figure 27.
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Figure 26: Accumulation of the 2nd vanishing point. Blue edges belong
to the background. Yellow edges are omitted from voting because of
their vertical direction or direction towards the first VP. Red edges are
accumulated to the diamond space (in the corner; green circle marks the
maximum).
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Figure 27: Radial distortion compensation. (a) Original image with tra-
jectories. (b) Parameter space with value calculated from trajectories.
Green cross stands for the optimal parameter combination found by the
evolution algorithm. The color gradient shows the error for each combi-
nation of the parameters k1, k2. (c) Undistorted image using the optimal
coefficients.
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Experimental Results

The presented approach is evaluated on 5 groups of videos, each containing
5–8 videos. Videos in a common group share the same camera intrinsic
parameters but have different extrinsic parameters and capture different
scenes or scenes from a different view.

In order to evaluate the accuracy of the detection of the vanishing
points, the precision of length measurements in videos similarly to Zhang
et al. [33] is computed. From each video, 15–25 pairs of feature points
are tracked in 21 subsequent frames. These points are projected with
the matrix obtained from the vanishing points and the stability of their
distance d is evaluated. Error of ith pair in jth sequence is calculated as

eji =

∣

∣

∣

∣

1−
dij

dj

∣

∣

∣

∣

, (22)

where dj is the mean distance in the jth sequence. For each video, two
errors are computed from eji – the worst (evw) and the mean error (evm).

group g1 g2 g3 g4 g5

egw (%) 6.5 1.8 10.1 5.3 4.0
egm (%) 1.2 0.2 1.3 0.8 0.7

f 705.7 7163.7 674.6 769.6 2465.1

Table 4: Mean and worst length-measurement error for groups of videos
in % and the computed focal lengths.

Table 4 shows the worst and mean error for the groups and the com-
puted focal lengths. The focal length f is taken from the video with
the lowest evm in the group. It is mentioned here in order to illustrate
the differences in the camera settings. Larger f leads to smaller length-
measurement error due to smaller perspective distortion and consequent
smaller dependence on the point tracker accuracy. Zhang et al. [33] re-
port similar measurements (single scene, 28 point pairs, 6 sequences), their
mean error appears to be 6%, the worst 19%, the second worst 13%.
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Figure 28: Examples of real-life videos: Automatic detection of three
vanishing points.

Figure 29: Examples of real-life videos: Radial distortion estimation and
compensation.
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6 Conclusion

This short report presents the parameterizations of lines and points us-
ing parallel coordinates. These parameterizations are based on point-to-
line duality between projective plane P

2 and the space of parallel coor-
dinates. By composing two point-to-line mappings, final transformation
has bounded range for an arbitrary bounded space. Using the mapping
two times consecutively leads to a cascaded version which defines point-
to-point transformation. By this mapping, all points, including the ideal
points at infinity are mapped to regular points.

Both transformations can be used in the Hough transform manner
for detection of line structures and vanishing points. The accumulation
can be done very fast, since it requires only line rasterization and can be
implemented without using floating point operations. The line param-
eterization allows convenient detection of parallel and concurrent lines.
This was demonstrated on the detection and extraction of matrix code
and fiduciary markers.

Point-to-point mapping was used for detection of orthogonal and non-
orthogonal vanishing points in real-world images or videos. In these al-
gorithms, accumulated lines are obtained from oriented edges or straight
trajectories. The results show that the presented algorithms outperforms
existing methods in terms of accuracy and at the same time, they are
computationally very efficient.

References

[1] M. E. Antone and S. Teller. Automatic recovery of relative camera rotations for
urban scenes. In Proceedings of CVPR, 2000.

[2] S. T. Barnard. Interpreting perspective images. Artificial Intelligence, 1983.

[3] H.-G. Beyer and H.-P. Schwefel. Evolution strategies – a comprehensive introduc-
tion. Natural computing, 2002.

[4] P. Bhattacharya, A. Rosenfeld, and I. Weiss. Point-to-line mappings as Hough
transforms. Pattern Recognition Letters, 2002.

[5] D. C. Brown. Close-range camera calibration. Photogrammetric engineering, 1971.

[6] R. Cipolla, T. Drummond, and D. Robertson. Camera calibration from vanishing
points in images of architectural scenes. In Proceedings of BMVC, 1999.

[7] P. Denis, J. H. Elder, and F. J. Estrada. Efficient edge-based methods for esti-
mating manhattan frames in urban imagery. In Proceedings of ECCV, 2008.

32
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