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1 Introduction 
The Hough transform is an important tool used in image processing and 
computer vision. It was used for detection of linear structures in raster 
images with great precision. Invented in 1962 by Hough [16], it was pro
gressively improved in speed and accuracy, and adopted for detection of 
different objects. In general, the Hough transform is a parameter estima
tion method which detect objects in raster images. It is a voting tech
nique where evidence found in an image votes for parameters of objects 
that could generate the evidence. Most voted combination of parameters 
is then the output of the method. 

In the thesis, parallel coordinates are used for parameterization of the 
objects. Parallel coordinates - a coordinate system where all axes are 
mutually parallel - are nowadays mostly used in visualization and data 
mining [20]. The main contributions of this work are: 

• point and line parameterization based on parallel coordinates; 

• algorithms for line and grid detection; 

• algorithms for vanishing point detection. 

Above mentioned parameterizations exploit point-to-line duality be
tween projective and parallel space. The challenge of these transforma
tions is to find a set of mappings which transform infinite space into a 
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bounded space. The performance of the line parameterization is demon
strated on simple line detection and matrix code extraction. The point 
parameterization is validated on vanishing point detection. It utilizes the 
edges in images of the Manhattan world or trajectories of objects with 
straight movement trajectories like cars. 

As it is further shown, such parameterizations are computationally 
very efficient because they require only line rasterization. Also, all calcu
lations can be implemented without floating-point operations and can be 
easily accelerated by different hardware architectures. Side-by-side with 
high performance, they preserve or overcome the accuracy of state-of-the-
art methods. 

2 Hough Transform 

The Hough Transform (HT) [16] is sometimes understood not as a specific 
algorithm for object detection but as a wide class of algorithms that share 
a common structure. Princen et al. [29] formalized H T as a hypothesis 
testing process. The structure of H T when described as generically as 
possible is: 

I. Some evidence is extracted from the input. 

II. For each piece of the evidence, accumulators corresponding to the 
hypotheses that are supported by that evidence are incremented. 
Possible hypotheses are represented by an TV-dimensional parameter 
space of accumulators. 

III. Probable hypotheses are detected as peaks in the parameter space. 

The dimensionality of the parameter space is determined by the num
ber of degrees of freedom of the hypotheses. The parameter space can be 
represented as an TV-dimensional array. 

2.1 Hough Transform for Line Detection 

Line detection using the Hough transform requires a mapping between 
a line in an image and a point in the Hough space of parameters. The 
motivation for introducing new parameterizations is to find the optimal 
trade-off between requirements for the transformation. These require
ments include preference of the bounding Hough space, discretization with 
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minimal aliasing errors, and uniform distribution of discretization error or 
intuitive mapping from the original system to the Hough space. In gen
eral, the image of a transformed point can be a curve of different shapes; 
for example circle, sinusoid curve, straight line, etc. 

Slope—intercept Parameterization 

The first Hough transform, introduced and patented by Paul Hough in 
1962 [16], was based on the line equation in the slope-intercept form. 
Commonly, the slope-intercept line equation has this form: 

I: y — xm + b. (1) 

However, the method used in the Hough's patent corresponds to: 

£ : x = ym + b. (2) 

Using parameters m and b, all lines passing through a single point form a 
line in the Hough space, so it is a point-to-line mapping. Using a bounded 
parameter space requires at least two complementary spaces of parame
ters. In the case of the slope-intercept line equation, these spaces are, for 
example, the two based on equations (1)(2). 

Figure 1: The Hough transform using m-b and k-q parameterizations of 
a line, (left) Input image and (right) parts of the corresponding Hough 
spaces attached together. 
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9—g Parameterization 

In 1972, Duda and Hart [11] introduced a very popular parameteriza
tion denoted as 9-g which is very important for its inherently bounded 
parameter space. It is based on the line equation in the normal form: 

y sin 9 + x cos 9 = g. (3) 

Parameter 9 represents the angle of inclination and g is the length of the 
shortest chord between the line and the origin of the image coordinate 
system, Figure 2 (left). In this case, images of all lines passing through a 
single point form a sinusoid curve in the parameter space, Figure 2 (right). 

Figure 2: The Hough transform using the 9-g parameterization of lines, 
(left) Input image and (right) corresponding Hough space. 

3 Parallel Coordinates 
Parallel coordinates were invented in 1885 by M . d'Ocagne [8] and further 
studied and popularized by Alfred Inselberg [19]. Currently, parallel co
ordinates are mostly used as a tool for visualization and data mining in 
high-dimensional data. Significant computational usage of parallel coor
dinates is in the air traffic control [18]. 

3.1 Representation of a Point 

The parallel coordinate system represents the vector space by axes which 
are mutually parallel. The order and the distances between the axes are 
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arbitrary. Each TV-dimensional vector is represented by N — 1 lines con
necting the axes and intersecting them at the corresponding coordinates, 
Figure 3. 
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Figure 3: Representation of a 5-dimensional vector in parallel coordinates. 
The vector is represented by its coordinates C i , . . . , C 5 on axes a ? * , . . . , a ? ^ , 

connected by a complete polyline (composed of 4 infinite lines). 

3.2 Representation of a Line 

In the two-dimensional case, points in the xc-yc space are represented as 
lines in the space of parallel coordinates. A l l representations of collinear 
points intersect at a unique point - the representation of the common line, 
Figure 4. 
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Figure 4: Three collinear points in parallel coordinates, (left) Cartesian 
coordinate system and (right) space of parallel coordinates. Line £ is 
represented by point £ in parallel coordinates. 
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Therefore, a line in 2D Cartesian space is represented by a point in 
parallel coordinates. For some cases, such as line £ : y — x, the corre
sponding point £ lies at infinity (it is an ideal point), Figure 5. 

Cr 

Br 

V 

c 

A. 
A 

Figure 5: Line y = x in (left) Cartesian coordinate system and (right) 
space of parallel coordinates. Line £ is represented by ideal point at infin
ity. 

Using the homogeneous coordinates for the points and lines, it is possi
ble to define mapping between an arbitrary line £ = (a, 6, c) with equation 
£ : ax + by + c = 0 and its image £: 

£ = (a, 6, c) —» £ = [db, — c, a + b]. (4) 

where d is the distance between parallel axes xp and yp [19]. 
Inversely, each point p = [it, v, w] in parallel coordinates, uniquely 

defines a line in Cartesian coordinates: 

p = [it, v, w] —> p = (—it + v, —wd, ud). (5) 

This point-to-line correspondence defines duality between projective plane 
P and space of parallel coordinates, which is crucial for the further tasks. 

4 Parameterizations of Lines Using Parallel Co
ordinates 

Due to the point-to-line duality of a two-dimensional parallel coordinates 
and projective plane P 2 , the parallel coordinates can be used as a line pa
rameterization for the Hough transform. This section presents the prop
erties of such a parameterization, called PClines [10] and its cascaded 
version [9] used for point transformation. 
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4.1 Point-to-Line Mapping 

The transformations of the points and lines between Cartesian and par
allel coordinate space can be defined by 3 x 3 matrices. These matrices 
are dependent on the arrangement of the parallel coordinate axes. Two 
following arrangements are considered here. The first one with the xp 

axis passing through the origin and the yp axis through point [d, 0,1], 
both with the same orientation, Figure 4. The second has the yp axis 
inverted and passing through point [—d, 0,1], Figure 6. 

Figure 6: Three collinear points in parallel coordinates, (left) Cartesian 
coordinate system and (right) space of parallel coordinates. Line £ is 
represented by point £ in parallel coordinates with inverted yp axis. 

The transformations and their corresponding spaces are denoted as 
S - straight - when both axes share the same orientation (6) and T 
twisted - for coordinate system with flipped axis (7). The transformation 
matrices are Sp ( T p ) for points and (TV) for lines. 

S — Straight Transform 

v, 

Sp • [x,y,w]Sp 

Si : (a, 6, c)]Se 
(—x + y, —wd, xd) 
[bd, — c, a + b] 
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T — Twisted Transform 
/ l 0 d" 

T p = 1 

Tp : [z,2/,w]Tp 
7 i : (a,6,c)]T € 

TV = 
/ 0 0 1 

d 0 - 1 
\ 0 - 1 0 

(7) 

[fed, — c, a — b] 

4.1.1 Subspaces 

As Bhattacharya proved [4], an arbitrary point-to-line-mapping ( P T L M ) 
mapps a finite subspace to an infinite subspace. That also means that all 
possible lines from a bounded subspace have representations in an infinite 
subspace of parallel coordinates. However, two dual P T L M transforma
tions are enough for a transformation into two finite subspaces. In parallel 
coordinates, this can be solved by using the S and T transformations. 

From (6) and (7), a line £ = (a, 6, c) has two possible representations; 
Is = £Se and Jj- = £Ti with coordinates (8). 

ls = [bd,-c,a + b] , , 
£T = [bd:-c:a-b] [ } 

If a line £ = (a, 6, c) is be mapped to a point £ with the following rules: 

j __ ( [bd, — c, a + b] if ab > 0 
\ [bd, — c, a — b] if ab < 0, 

the image of the line always mapped between coordinate axes in S or 
T space. The subspaces of T and S spaces bordered with coordinate 
axes can be "attached" one to another. Figure 7 illustrates the spaces 
attached along the Attaching also the yp and — yp axes results 
in an enclosed Möbius strip. Figure 7 shows the original image with points 
and lines and their representations in TS space. 

For an inverse mapping of the point £ = [u,v, 1] from the TS space 
attached along the following formula is used: 

£ _ / (d — u,u, —vd) if u > 0 
\ (d + u, u, —vd) if u < 0. 

(9) 

(10) 
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4.2 Concurrent Lines 

Lines are considered to be concurrent if they intersect at a common point. 
When using parallel coordinates for representing these lines, they are pro
jected to collinear points. These points lie on a line which corresponds to 
the intersection of the lines in Cartesian coordinates, Figure 8. And, as 
shown in the previous section, also the dual statement holds true in paral
lel coordinates: representations of collinear points intersect at a common 
point, Figure 4. 

Figure 8: Six concurrent lines in (left) Cartesian coordinate system and 
(right) space of parallel coordinates. Concurrent lines l\ are represented 
by collinear points l{ in parallel coordinates. 

A set of arbitrary four concurrent lines can be characterized with a 
cross-ratio [14]. In general, the cross ratio is a numeric association between 
a 4-tuple of collinear points. What is very important characteristic of the 
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cross-ratio is its invariance under projective transformation. Because of 
the duality between P 2 and parallel coordinates, the value of the cross-
ratio is preserved also under transformation to parallel coordinates. The 
cross-ratio for four collinear points - images of the lines - stands the same. 

The ability of the parallel coordinates to preserve the cross-ratio to
gether with invariance under perspective projection leads to its usage for 
detection of perspectively projected group of parallel lines (e.g. a grid of 
a matrix code). If the lines were originally parallel and equidistant, three 
detected points in parallel coordinates with known relative indices are 
enough to define whole sequence. Suppose three detected points pa,PbjPc 
with indices a, 6, c respectively. From definition of cross ratio, the fourth 
point pd with index d is calculated as: 

(Pa -Pc)(Pb- Pd) _ (a- c)(b-d) 

(Pa -Pd)(pb- • Pc) (a - d)(b-c) 
a = (a — c)(b -d) 

P = (a — d)(b -c) 

Pd --
_ apapc - PPbPc + (a ~ P)PaPb 

Pd -- apb -~ fiPa ~ (<* -~P)Pc 

(11) 

The equations are evaluated separately for each coordinate and thus the 
position of point pd can be easily found. The precise indices (a, 6, c, d) 
in the sequence of the lines are not required, only the relative positions 
between them are necessary. 

4.3 Line-to-line Mapping 

Point-to-line duality of two-dimensional parallel coordinates and projec
tive plane P 2 can be used in a manner similar to the Cascaded Hough 
Transform [32] - lines are transformed to points and they are again trans
formed to lines. Dually, a point is mapped to a line and then again to 
a point. As shown below, transformations based on parallel coordinates, 
Figure 9, can be used to project ideal points to regular points. Therefore, 
the projective plane P 2 can be projected to a finite space. 

Transformation matrices which define point-to-line duality are pre
sented in Section 4.1. When two of these mappings are applied sequen
tially in order to form a composition, a point is mapped again to a point 
and the same holds true for every line. The mappings vary in combination 
of the S and T transform. As a result, four different composite mappings 
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Figure 9: Three collinear points and three concurrent lines in cascaded 
parallel coordinates, (left) Cartesian coordinate system, (middle) first 
space of parallel coordinates and (right) second space of parallel coordi
nates. A line is mapped to a point and then to another line; and dually, 
a point is mapped to a line and to a point again. 

can be constructed: S o S, T o S, T o T , S o T (12 - 15). The distance of 
the parallel axes in the first space of parallel coordinates is d, the distance 
in the second one is D. 

Composition of two S spaces 

( 0 

0 
\-dD 

•d 
0 
0 •d. 

/ o 
-d 

V - i 

-D 0 
-D dD 
0 0 

SSP : [x,y,w] SSP 

SS£ : (a, 6, c)SS^ 
[—dDw, —dx, —x + y — dw] 
(db + c, L>a + Db, -dDb) 

(12) 

Composition of S space and then T space 

S T p — S P T £ — 
/ 0 

0 
\-dD 

-d 
0 
0 

ST^ = SeTp = 
I 0 -D 0 

\ - l 0 0 

STP : [x, y, w] STp 

STe: (a,b,c)STe 

[—dDw, —dx, —x + y + rfw;] 
(-dfc + c, Da + Db, -dDb) 

(13) 
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Composition of two T spaces 

T T V = TpTe = 
( 

V 

o 
o 
dD 

TT£ = T£Tp = 
/ 0 

d 
V - i 

-D 0 
D dD 
0 0 

TTp: [x,y,w]TTp = 
TTe : (a,6,c)TT> = 

[-dDw, —dx, x + 2/ + diu] 
(-dft + c, Da-Db, -dDb) 

(14) 

Composition of T space and then S space 

/ 0 - d ii 
0 

\-dD 
0 
0 

T 5 P : [x,y,w] TSP 

TSt: (a,b,c)TSe 

/ o 0 
D dD 

W 0 0 

[—dDw, —dx, x + y — dw] 
(db + c,Da- Db, -dDb) 

(15) 

4.3.1 Subspaces 

Each of the above mentioned mappings is a transformation of one infinite 
space to another [4]. The goal is to find an infinite subspace which is 
mapped to a finite subspace, similarly to the TS space for line transfor
mation (Section 4.1.1) or Cascaded Hough Transform [31]. Application 
of above mentioned point mappings, each on one quadrant of the real 
projective plane, leads to finite domain of the transformation, Figure 10. 
Such a transformation maps both the ideal and the regular points to the 
regular points. 

Point Transformation 

It can be proved that all points from I c quadrant transformed via two 
T transformation are mapped to a triangular subspace in III p quadrant, 
IIC quadrant transformed with STP to I I p quadrant, IIIC quadrant trans
formed with TSP to I V P quadrant and I V C quadrant transformed with 
SSp to I p quadrant, Figure 10. 

The coordinate axes 3?c? Uc 
and ideal line loc = (0,0,1) lie on bor

ders of the quadrants of the real projective plane. Their images also lie 
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Figure 10: Correspondence between quadrants in Cartesian coordinates 
and triangle subspaces of the space of parallel coordinates, (left) Quad
rants of the original infinite Cartesian space, (right) Quadrants of the 
parallel spaces attached to each other. 

on the borders of the finite triangular subspaces. This enables the four 
parts, each mapped by a different mapping to be attached together. The 
attached space has a diamond shape and in the further text is referred to 
as the diamond space and the mapping denoted V. 

A n arbitrary point in the real projective plane; including the ideal 
points; is mapped to a regular point in the diamond space and for some 
specific cases (such as the coordinate axes), the point is mapped to the 
couple of points on the borders (16). 

Vp([x, y,w]) = [—dDw, —dx, sgn(xy)x + y + sgn(y)dw 
V~x{\p, q, 1]) = [Dq, sgn(u)dp + sgn(v)Dq - dD,p] (16) 

Line Transformation 

A n image of a line using transformations (12)—(15) is again a line (17). 

(a, 6, c)SS £ = £Ss = (db + c, Da + Db, -dDb) 
(a, 6, c)TS£ = ITS = (db + c,Da- Db, -dDb) 
(a, 6, c)TT^ = £ r r = (-db + c,Da- Db, -dDb) 
(a, 6, c)ST£ = 1ST = (~db + c, Da + Db, -dDb) 

(17) 

However, the image of a straight line in the joined diamond space is not 
a line anymore. The result of the mapping Vg is a polyline whose number 
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of segments depends on the number of quadrants the line passes through 
(each quadrant is mapped by a different transformation). Figure 11 shows 
a line after SSi,STi,TTi and TSg transformation. From each transfor
mation, only a line segment in the finite triangle subspace is included in 
the diamond space, Figure 12. 

SS 

4s . 

q \ <• TS 

Pc 

7T 9cl ' ST q* 

Figure 11: Representation of a line using different transformations. Only 
a darker triangular subspaces are parts of final diamond space. 

ST q< SS 

-v„ TT »P rs 

Figure 12: Representation of a line using diamond transformation. Poly
line with three segments, each corresponding to one quadrant and one 
transformation. 

The sequence of the endpoints defining the polyline depends on the 
intersections of the line images with coordinate axes pc, qc and the dia
mond space borders. They can be defined using nonzero signum function 
(18). When a line passes through just two quadrants (vertical lines, hori
zontal lines, lines through the origin), one segment always degenerates to 
a point. 

a = sgn(a6); (3 = sgn(6c); 7 = sgn(ac) 
(a, 6, c) —> 

adDa —adc 
c + 7da' c + 7da 

(18) 

dDb 
c + ßdb 

0 0, 
db 

a + ab 
-adDa ac 

c + 7da ' c + jda 
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Using the diamond space as an accumulator for the Hough transform 
requires discretization of the space. Reprojection of the discrete grid in 
the diamond space to image space is shown on the Figure 13. The shape 
of the back-projected accumulator's bins in the image space is different 
in the xc and yc axis because the diamond space was made with the 
vertical axis inverted (yp and vp). As it is shown, the area covered by the 
accumulator's bin increases with the distance from the image origin. In 
Section 5.3, this behavior is used for an accurate vanishing point detection, 
where the bigger error in localization far from the origin has the same 
influence as the smaller error near to the origin. 

\x \ x \ x\ \x\ Y\ 

X \ NX N X \ \ c \ s \ x\jOef'^k 

*N̂5v / \ N / ^ ^ x V In/ -
* > S J ~*. 

\ \ l N/ 
\ H f 
\ s i Nt 
># <M/\' 
/ \y r 

' iv' ip\ IX A I O X \ / \ X ^ \ <M/\' 
/ \y r 

Xl/f y\ x \M\ / \ \ X s 

/ \ A \/\ y \ x \ / \ 

Figure 13: Visualization of the accumulator bins from the diamond space 
back-projected to the image plane. 

5 Usage of Line Parameterizations based on Par
allel Coordinates in Computer Vision 

This section gives several examples how the parameterizations of points 
and lines based on parallel coordinated can be used in computer vision 
tasks in context of the Hough transform. 

5.1 Line Detection 

Line parameterization based on parallel coordinates used for line detection 
using the Hough transform, is presented in Algorithm 1. 

As in the standard Hough transform [11], points of interest are firstly 
detected (line 2). For each point a two-segment polyline with vertices 
A, B, C is accumulated. One part is in the T space (line 7) and the second 
in the S space (line 8). The Hough space H is scanned for local maxima 
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Algorithm 1 Detection of lines using the Hough transform and parallel 
coordinates.  
Input: Input image 7 with size W{ x hi, accumulation space i7, axes 

distance d 
Output: Detected lines L — {(a\, b\, c i ) , . . . } 

1: Clear accumulator H 
2: E C { 1 , . . . , Wi] x { 1 , . . . , hi] is set of points of interest in 7 
3: for all e E do 
4: A = [-d, - j ] 
5: B = [0, z] 
6: C = [ d , j ] 
7: Accumulate line AB to i7 
8: Accumulate line BC to i7 
9: end for 

10: M = {(u, v); i7(w, -y) is a significant local maximum} 
11: 7/ = {(d — sgn(u)u,u, —vd);V(u,v) G M} 
12: return 7 

above a given threshold (line 10) and corresponding line parameters are 
calculated using Equation (10) (line 11). 

For a real accuracy comparison between different parameterizations 
a dataset of automatically generated black-and-white images are used. 
In each image, one line is rasterized first. Then, 25 000 noise pixels are 
inverted. Figure 14 compares the errors of the three methods for lines 
with different 9 generated within 5° wide intervals. For every interval, 
100 images are generated. The computed average error as it depends on 
line's slope of all lines detected in the images are shown in Figure 14a and 
the average of the 5 least accurate lines out of all 100 lines on 14b. 

The measurements confirm the theoretical considerations: the 9-Q 
parameterization discretized the space evenly; PClines are about as ac
curate as 9-Q for 9 G {45°, 135°, 225°, 315°} and more accurate at 9 G 
{0°, 90°, 180°, 270°}; the m-b parameterization is the least accurate of 
the three evaluated methods. 

Harnessing the Edge Orientation 

O'Gorman and Clowes [28] improve the basic 9-Q parameterization with 
their idea of not accumulating values for all discretized values of 9 but for 
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PClines 
m-b . 

-

theta-rho -

0 45 90 135 180 225 270 315 360 
theta (degrees) 

(a) Average error 

WW-
-J V ^ - ' 

PClines -
m-b 

theta-rho 

0 45 90 135 180 225 270 315 360 
theta (degrees) 

(b) Average of worst 5 detections 

Figure 14: Line localization error as it depends on the lines' slope. For x 
on the horizontal scale, the lines' slope in degrees is at interval (x, x + 5). 
Red: PClines; Green: 9-g; Blue: m-b. (a) Average error over all lines, 
(b) Average error of the 5 least accurate lines, i.e. a pessimistic error 
estimation. 

a single value of 6>, instead. The appropriate 9 for a point can be obtained 
from the gradient of the detected edge present at this point [30]. 

One common way to calculate the local gradient direction of the image 
intensity is by using the Sobel operator. By Sobel convolution kernels, two 
derivative estimations Gx and Gy can be obtained for any discrete location 
in the input image. Using the response of the convolution kernels, the 
horizontal position of the 1 as it depends on the gradients is the following: 

u Gx + sgn(GxGy)Gy

 y o ) 

In order to avoid errors caused by noise and the discrete nature of the input 
image, accumulators within a suitable interval (lu — r,lu + r) around the 
calculated lu position are also incremented. 

To evaluate the detection rate, 500 blurred images are used, each with 
20 random half-planes and 25 000 noisy pixels. Local maxima higher 
then threshold T = max(7f)/4 are considered as detected lines. These 
lines are compared with ground truth lines. Results in Figure 15 show 
that for small r, the detection rate is low, which is caused by inaccurate 
estimation of edge gradient. The detection rate can be increased by: 
better estimation of the gradient or bigger value of r. Wi th bigger Sobel 
kernel, the estimation of the gradient is more accurate, i.e. closer to the 

17 



correct position. Wi th higher r it becomes more probable, that even with 
inaccurate estimate of gradient, the accumulated bins include the correct 
position. However with very high value of r the space is more "messy" 
because noisy pixels start to form lines (i.e. local maxima) which are not 
real lines. 

precision false positive rate 

Figure 15: P R C and R O C characteristics for line detection using edge 
orientation. Blue lines stand for values using the Sobel kernel with size 
3 x 3 . Green lines are for kernel with size 5 x 5 . Red dots are the optimal 
r; i.e. r with maximal F l score. 

5.2 G r i d Detection 

Section 4.2 discusses the invariance of the cross ratio under projection 
and in parallel coordinates. This property can be used for detection of 
parallel lines under perspective projection. The detection is demonstrated 
on a projected grid. Two methods for the detection are introduced here. 
The common part involves: firstly, the edge points are detected and their 
gradients are estimated; a histogram of oriented gradients with a small 
number of bins is built together with a list of edges that voted for the 
bins. Since a grid is expected to be present in the image, two main peaks 
can be detected in the histogram, Figure 16. These two peaks, roughly 
90° degrees apart, represent two main orientations in the image. Because 
the two main orientations in the image are known, only two narrow stripe 
parts of the TS space need to be accumulated, instead of the whole space. 

After accumulation, each stripe of the Hough space contains collinear 
maxima with a known distribution which have to be detected. 
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Figure 16: Input QRcodes and corresponding accumulated stripes in TS 
space which corresponds to two dominant edge orientations. 

5.2.1 Detection by Using the Cross Ratio 

The value of the cross-ratio for a quadruplet of the points in the parallel 
coordinates is equal to the cross-ratio of the lines represented by these 
points. This can be used for the detection of a pencil of lines with a known 
distribution, for example equidistant lines under a perspective projection. 

The detection algorithm requires the filled Hough space as its input. 
Firstly, few highest local maxima are detected. The maxima, in an ideal 
case, correspond to the most significant lines from the grid. For uniquely 
determining the perspective projection and rest of the lines, three lines 
with known relative indices are required. Therefore, triplets {pa,Pb,Pc} 
are selected from the set. Then, linear regression with least squares ap
proach is used to calculate line £ best fitting points pa,Pb,Pa yellow line in 
Figure 17a. The line is a hypothetical vanishing point of one group of the 
grid lines. The relative indices of the lines are found and used in equation 
(11). The confidence score of the hypothesis about the vanishing point 
and the distribution of the lines depends on the values in the Hough space 
at the locations of the estimated maxima, green circles in Figure 17b. The 
algorithm returns the hypothesis with the highest score. 

Detection of Q R Codes 

By finding the point between two consecutive maxima and sampling the 
image at the intersections of lines represented by these points, a bitmap 
of the data matrix code can by extracted, Figure 18a. The input image 
is sampled at the intersections and after extracting the grayscale image, 
adaptive thresholding is used for creating the binary bitmap of the matrix 
code, Figure 18b. 
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(a) Stripes of the accumulator (b) Zoomed parts 

Figure 17: (a) The whole accumulator stripes: triplets of maxima (red 
dots) with the corresponding line used for vanishing point estimation 
(yellow line), (b) Zoomed parts of the stripes: blue crosses represent 
the estimated centers, where low values are expected and the green circles 
stand for the estimated maxima. 

The performance of the algorithm is evaluated on a dataset of chal
lenging photos of QRcodes and as a reference is used the ZXing Project. 
Table 1 shows that the algorithm is very well resistant to rotation and 
perspective deformation of the matrix code. The main issue of the algo
rithm based on PClines exhibits when the code is surrounded by intensive 
parallel edges. 

(count) 
presented 

100% 99% 95% 
ZXing 

100% 99 % 95% 
plain (113) 

rot (95) 
pers (110) 

rot+pers (112) 

88.5 97.3 98.2 
68.4 94.7 98.9 
89.1 95.5 95.5 
78.6 96.4 97.3 

88.5 97.3 97.3 
53.7 58.9 62.1 
69.1 74.5 74.5 

9.8 9.8 9.8 
all (430) 81.6 96.0 97.4 55.3 60.2 60.9 

Table 1: Detection rate achieved by ZXing and the algorithm based on 
PClines. The detection rates are reported for different notions of correct 
detection: 100% / 99% / 95% of code pixels detected correctly. 
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(a) QR code cells sampling (b) Extracted data 

Figure 18: Extraction of the matrix code. The points shown in green are 
sampled and form a bitmap which is then adaptively thresholded. 

5.2.2 Detection of Grids by Inverse Projection 

A regular grid under perspective projection can be transformed with a 
projective transformation so that the lines in each direction are again 
parallel and aligned with coordinate axes. In parallel coordinates, it means 
a transformation of the space after which the points representing the lines 
are equidistant and lie on a line parallel to the axes. 

The algorithm based on inverse projection expects the accumulated 
stripe of the Hough space using PClines. Firstly, a set of maxima is 
detected in each stripe and lines are fitted to each group of the points. The 
lines represent the vanishing point U and V. Further, they are processed 
separately for each part. The goal is to obtain a uniform distribution of 
the maxima on the line using a nonuniform sampling along the line. To 
get the rii sample, the algorithm uses the remapping equation depending 
on the orientation of the horizon. 

t = 

1 
<r(Ü)bu 

mv 

1 
a (U)b 

0 
1 

v d 

K 
mv 

bv 

, <j(x) 
l xeS 
- l x e T (20) 

where d is the distance between parallel axes. To define the scale, two 
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points are fixed to have the same distance in the original Hough space and 
in the new sampling (no,ni). The resampling function maps each point 
from ID vector to a corresponding value in the Hough space on position 
[v,i,Vi, 1], (21). 

Ui 

Vi 
m 

(—t — a(£))uiUo + d(iu\ — (i — 1)UQ) 
(—t — a(£))(iuo — (i — + d 

(—t — a(£))(iiiQVi — (i — 1)UIVQ) + d(iv\ (j ~ j>o) (21) 

H([ui,Vi, 1]) 
a(£))(iuQ — (i — l)u\) + d 

Figure 19: Sampling of the values along the vanishing point. Dashed 
arrows show the couples of input image points. 

After sampling along the line £, the ID vector {rii} has maxima dis
tributed uniformly. In order to find the frequency of the maxima, auto
correlation of the sequence is used. Using the uniform distance and one 
maximum, the positions of the rest of the maxima are derived. These 
indices are again used in (21) and the resulting [UJ, Vj,l] are the positions 
of the maxima in the Hough space. 

Detection of Fractal Marker Field 

Detection based on the inverse projection was used for Fractal Marker 
Field (FMF) extraction. F M F [15] is a fiduciary marker with a fractal 
structure. Because F M F consists of more then one frequency of the grid 
lines, the algorithm is modified to find more then one dominant frequency 
of maxima. Similar to QRcode detection the input image is sampled in 
the center of each module. 
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Table 2 shows the detection rates on this set of images. When the 
F M F is viewed from a skew angle without rotation (pers), the detector 
is confused by the different frequencies of the two groups of (originally 
perpendicular) lines and in each direction, different levels are sampled. 
Figure 20 shows examples of successfully detected and localized F M F 
under different conditions. 

plain rot pers rot + pers all 
480 x 320 100 90.3 80.3 87.7 88.5 
600 x 400 100 99.2 87.9 97.7 96.7 

1200 x 800 100 100 93.9 100 98.9 

Table 2: Detection rate (%) achieved by the detector based on parallel 
coordinates. 

Figure 20: Successfully detected and localized Fractal Marker Fields on 
real-life images. 

5.3 Detection of Vanishing Points 

In man-made architecture, parallel and perpendicular structures often oc
cur. When captured by a camcorder or a camera, these regular structures 
can be used for estimation of camera orientation or calibration and many 
other tasks. At the same time, the vanishing points tend to be very stable 
and supported by various parts of the scene and their detection is thus 
robust against various distortions. Having the vanishing points reliably 
and efficiently detected facilitates many other computer vision tasks. 

Algorithm 2 shows the detection of the vanishing point by using the 
diamond space. Firstly, the input image is normalized. The edgelets with 
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a known position and orientation are detected (line 2). These information 
are used to calculate parameters of the corresponding fitted line (line 4). 
Lines are transformed to polylines (18) (line 5) and accumulated into the 
diamond space (line 6). The highest peak in the diamond space is the most 
voted vanishing point (line 8) and by using Equation (16) the detected 
diamond space maximum is projected to the image plane (line 9). 

Algorithm 2 Vanishing point detection using diamond space. 
Input: Normalized image / , accumulation space H 
Output: Vanishing point v\ 

1: Clear accumlator H 
2: E C { 1 , . . . , Wi] x { 1 , . . . , hi] x (0,7r) is set of points of interest in I 
3: for all (i,j,0) G E do 
4: £ = (cos 6>, sin 6>, —(i cos 9 + j sin 9)) 
5: Get polyline vertices P for line £ 
6: Accumulate polyline to H 
7: end for 
8: M = (p,q);H(p,q) > H(i, j ) , V ( i , j) G I 
9: vi = [q, sgn(p)p + sgn(q)q - l,p] 

10: return v\ 

If there are more then one vanishing point to be found the accumulator 
is cleared and only edgelets which do not contribute to the already found 
vanishing points are accumulated and the highest response is sought for. 

(a) Input image (b) Extracted edges (c) Accumulator (d) Color-coded edges 

Figure 21: Detection of orthogonal vanishing points. Right images depict 
the affiliation of edges/contributions to different orthogonal V P s by color. 

In a Manhattan world scenario, three projections of orthogonal van
ishing points are of interest. The new three maxima are found to be 
orthogonal, have maximal response in the accumulator and be close to 
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the originally detected triplet. 
The detection accuracy is evaluated on the York Urban Database [7], 

consisting of 102 images, each with three orthogonal ground truth van
ishing points. The parameters (space resolution, image normalization) 
were obtained from the training set and the evaluation was done on the 
complete set in order to be comparable with previous works. Two means 
of evaluation are used: detection rate with 10° angular error tolerance, 
Table 3, and cumulative histogram of the count of correctly recognized 
vanishing points based on the angular error tolerance, Figure 22. 

method [27] [12] [25] [24] [26] [13] ours 
correct [%] 
avg. err [°] 

94.35 
3.5 

100* 
1.63 

84.6 99.3** 90.03 
<3 

93 88.04/98.04 
1.87/1.41 

Table 3: Detection rate at < 10° angular error tolerance. For the pre
sented method, the value for directly detected V P s are reported, followed 
by the orthogonalized V P s in bold. * Column should be omitted because 
the authors seem to apply the tolerance on individual angles. ** Column 
should also be treated lightly because the authors feed the detector only 
with edges user-annotated as belonging to one of the VPs . 

- Ill Detected 

— Or thogonal 

G S 

— E M 

- C a s d D 

5 10 15 
Angu la r Error (degrees) 

20 

Figure 22: Cumulative histogram of the number of correctly detected 
vanishing points, x-axis: average angular error of the detected vanishing 
points from the ground truth, y-axis: fraction of vanishing points detected 
with the given error tolerance, green: Presented algorithm without the 
orthogonalization. red: Presented after search for orthogonal triplet of 
vanishing points. GS, E M and Casc lD are algorithms used in [23, 22, 2]. 
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Figure 23: Examples of the diamond accumulation space. White arrows 
represent ground truth directions and the red-green-blue are the detected 
ones. In accumulated diamond space: red circles Non-orthogonal van
ishing points (v i , V 2 , V 3 ) ; blue crosses Orthogonal triplet of vanishing 
points; green dots Ground truth vanishing points. 

5.4 Roadside Camera Calibration 

The number of internet-connected cameras is quickly increasing and a 
notable amount of them are used in traffic monitoring. The goal is to 
provide fully automatic traffic processing algorithms - leading towards 
vehicle classification and counting, speed measurement, congestion detec
tion, etc. In the presented method, the calibration of internal camera 
parameters as well as external parameters (camera orientation and posi
tion up to scale with respect to the dominant motion of the vehicles) and 
radial distortion compensation parameters are automatically determined. 

Figure 24 shows the vanishing points with the color notation and V P 
visualization to be used throughout this section: red 1st vanishing point 
in the direction of the car motion; green 2nd vanishing point in the ground 
plane, perpendicular to the vehicle motion; blue 3 r i ivanishing point per
pendicular to the ground plane. 
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Figure 24: Automatic approach to camera calibration by recognizing the 
three dominant vanishing points which characterize the vehicles and their 
motion. 

First Vanishing Point Extraction 

For the detection of 1 s t V P , the Hough transform with the diamond space 
accumulator is used. In each video frame, feature points are detected and 
tracked in the subsequent frame. Successfully detected and tracked points 
exhibiting a significant movement are treated as fragments of vehicle tra
jectories. These fragments of trajectories are extended to infinite lines, 
assuming that they pass through the first vanishing point. A l l these lines 
vote in the diamond space accumulator. The most voted point is consid
ered to be the first vanishing point. Figure 25 shows the tracked points 
accumulated to the diamond space. Once the first V P is determined, 
moving points can be discerned whether they move towards the V P or 
from it, or whether they are moving in a completely different direction. 

Second Vanishing Point 

The 2nd vanishing point is the direction parallel to the road and perpen
dicular to the first direction. Again, the diamond space is used for its 
detection. A n edge background model is used to select only edges on 
moving objects (probable vehicles). The model is updated each frame to 
deal with shadows and other slow changes. Figure 26 shows the edge back
ground model, omitted and accumulated edges and the diamond space. 
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Figure 25: Illustration of the tracked points. Points marked by green 
exhibit a significant movement and they are accumulated. Points marked 
by yellow are stable points and do not vote. The accumulation diamond 
space is in the top left corner. 

Third Vanishing Point, Principal Point and Focal Length 

The third vanishing point corresponds to the direction perpendicular to 
the ground plane. Unfortunately, in majority of the roadside views, there 
seems to be minimal amount of edges supporting the third V P . Instead 
of finding the third V P , its position is calculated using the first two V P s 
and the assumption that the principal point is in the middle of the image. 

Radial Distortion Compensation 

In practice, some real-life cameras exhibit a large degree of radial distor
tion. Provided the assumption of the road being straight, the tracked 
trajectories can be used to compensate for the camera's radial distortion. 
The corrected position of input points can be modeled by the polynomial 
radial distortion model [5]. In order to find distortion parameters the 
extracted trajectories are used. Optimal parameters are found by mini
mization of the sum of square differences of all points in all trajectories 
to their best fitting lines. The evolutionary strategy is used to search for 
the first two coefficients. The optimization is done on-line. When new 
trajectories are tracked, one iteration of the optimization is executed. The 
radial distortion compensation process is shown in Figure 27. 
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Figure 26: Accumulation of the 2 vanishing point. Blue edges belong 
to the background. Yellow edges are omitted from voting because of 
their vertical direction or direction towards the first V P . Red edges are 
accumulated to the diamond space (in the corner; green circle marks the 
maximum). 

(a) Original trajectories (b) Parameter space (c) Undistorted trajectories 

Figure 27: Radial distortion compensation, (a) Original image with tra
jectories, (b) Parameter space with value calculated from trajectories. 
Green cross stands for the optimal parameter combination found by the 
evolution algorithm. The color gradient shows the error for each combi
nation of the parameters k\,k2- (c) Undistorted image using the optimal 
coefficients. 
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Experimental Results 

The presented approach is evaluated on 5 groups of videos, each containing 
5-8 videos. Videos in a common group share the same camera intrinsic 
parameters but have different extrinsic parameters and capture different 
scenes or scenes from a different view. 

In order to evaluate the accuracy of the detection of the vanishing 
points, the precision of length measurements in videos similarly to Zhang 
et al. [33] is computed. From each video, 15-25 pairs of feature points 
are tracked in 21 subsequent frames. These points are projected with 
the matrix obtained from the vanishing points and the stability of their 
distance d is evaluated. Error of ith pair in jth sequence is calculated as 

d 

dn 

(22) 

where dj is the mean distance in the jth sequence. For each video, two 
errors are computed from eji - the worst (e^) and the mean error (e^J. 

group g l g2 g3 g 4 g5 
el (%) 6.5 1.8 10.1 5.3 4.0 
e9

m (%) 1.2 0.2 1.3 0.8 0.7 

/ 705.7 7163.7 674.6 769.6 2465.1 

Table 4: Mean and worst length-measurement error for groups of videos 
in % and the computed focal lengths. 

Table 4 shows the worst and mean error for the groups and the com
puted focal lengths. The focal length / is taken from the video with 
the lowest ev

m in the group. It is mentioned here in order to illustrate 
the differences in the camera settings. Larger / leads to smaller length-
measurement error due to smaller perspective distortion and consequent 
smaller dependence on the point tracker accuracy. Zhang et al. [33] re
port similar measurements (single scene, 28 point pairs, 6 sequences), their 
mean error appears to be 6%, the worst 19%, the second worst 13%. 
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Figure 28: Examples of real-life videos: Automatic detection of three 
vanishing points. 

Figure 29: Examples of real-life videos: Radial distortion estimation and 
compensation. 
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6 Conclusion 
This short report presents the parameterizations of lines and points us
ing parallel coordinates. These parameterizations are based on point-to-
line duality between projective plane P 2 and the space of parallel coor
dinates. By composing two point-to-line mappings, final transformation 
has bounded range for an arbitrary bounded space. Using the mapping 
two times consecutively leads to a cascaded version which defines point-
to-point transformation. By this mapping, all points, including the ideal 
points at infinity are mapped to regular points. 

Both transformations can be used in the Hough transform manner 
for detection of line structures and vanishing points. The accumulation 
can be done very fast, since it requires only line rasterization and can be 
implemented without using floating point operations. The line param
eterization allows convenient detection of parallel and concurrent lines. 
This was demonstrated on the detection and extraction of matrix code 
and fiduciary markers. 

Point-to-point mapping was used for detection of orthogonal and non-
orthogonal vanishing points in real-world images or videos. In these al
gorithms, accumulated lines are obtained from oriented edges or straight 
trajectories. The results show that the presented algorithms outperforms 
existing methods in terms of accuracy and at the same time, they are 
computationally very efficient. 
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