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Abstract
In this thesis, the controllability of 2 × 2 switched systems with regular matrices
is investigated by means of Geometric Algebra for Conics (GAC) as a mathemat-
ical framework for analysis and optimization of control strategies. The research
demonstrates the efficiency of GAC in the construction of switching points and
paths while minimizing the number of switches and numerical errors.

Classification of controllability is provided based on the geometric properties
of particular switched systems. For controllable switched systems, the controlling
algorithm based on the GAC primitives is introduced in which the symbolic alge-
bra operations are used, more precisely the wedge and inner product. Therefore,
no numerical solver to the system of equations is needed. Indeed, the only opera-
tion that may bring in a numerical error is a vector normalisation, ie., square root
calculation. The proposed approach creates possibility of passing from the clas-
sical solution of the controllability problem for switched systems to a geometric
one, based on the type of phase trajectory.
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Abstrakt
V této práci je zkoumána řiditelnost switched systémů 2×2 s regulárnı́mi maticemi
pomocı́ Geometrické algebry pro kuželosečky (GAC). Je provedena analýza a op-
timalizace switched strategiı́. Výzkum ukazuje účinnost GAC při hledánı́ switch-
ing bodů a minimalizaci jejich počtu při maximálnı́m omezenı́ numerických chyb.

Na základě geometrických vlastnostı́ konkrétnı́ch switched systémů je uve-
dena klasifikace jejich řiditelnosti. Pro řiditelné switched systémy je představen
algoritmus na hledánı́ switching cest založený na kuželosečkách reprezentovaných
v GAC, v němž jsou použity operace symbolické algebry, přesněji vnějšı́ a vnitřnı́
součin. Nenı́ tedy zapotřebı́ numerického řešenı́ soustavy rovnic. Jedinou operacı́,
která může vnést numerickou chybu, je normalizace vektoru, tedy výpočet odmoc-
niny. Navržený přı́stup vytvářı́ možnost přejı́t od klasického řešenı́ problému
řiditelnosti pro switched systémy ke geometrickému řešenı́ založenému na typu
fázové trajektorie.
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switched systém, geometrická algebra, řiditelnost, Cliffordova algebra
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Introduction

Switched systems form a special case of hybrid dynamical systems with both
discrete and continuous dynamics, which are described by a differential equation
and a state machine or automaton, respectively. They are widely applied in the
cases where a real system cannot be described by one single model. Numerous
examples are given by engineering systems of electronics, power systems, traffic
control and others, [1]. Since the 1990s, research of switched systems stability
has become very popular, see e.g. [2, 3]. The particular case of linear switched
systems was considered by Patrizio Colaneri in [4]. More modern literature about
switched systems is represented by the works of Yuan Lin, Yuan Sun-Ge Wang,
and Jiang-Wang [5], Zhong-Ping, Yuan Wang [6]; the question of stability remains
relevant until today.

Another topic related to switched systems is controllability. Nowadays, the
most popular approach in searching for a control of a switched system is con-
nected with generalizations of Kalman condition, [7] and Lyapunov functions, [8],
which requires complex algorithmic structures. Applications of optimal control
for switched dynamical systems can be found in various fields, including robotics,
power systems, autonomous vehicles, and manufacturing systems, where systems
exhibit complex behavior arising from the interaction between continuous dynam-
ics and discrete events, [9].

The ordinary Lyapunov function is used to test whether a given dynamical
system is stable (more precisely asymptotically stable), but does not provide any
information about controllability. Particular specificity of switched systems is in
the interaction between the continuous variable and the discrete state, which is
not present in the standard control systems. In the works of D. Liberzon [10, 11],
the author addresses the problems of stability and control for particular types
of switched systems, using the analytical approach, ie., Lyapunov function and
Brockett’s condition for asymptotic stability by continuous feedback and control-
lability. The stabilization problem for switched positive regular linear systems by
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state-dependent switching was considered in [12] and anti-bump switching con-
trol problem was introduced in [13]. The case of linear switched singular systems
is studied, e.g. in [3].

The issue of optimal control has also been addressed several times. The most
popular are problems of time- or distance-optimality. For example, finding time-
optimal control for dynamical system was considered by Nasir Uddin Ahmed [14]
while for switched systems analogical problem was considered in [15], where the
author constructs a minimizing sequence and uses compactness property for find-
ing subsequence that minimizes the cost functional. Another way of optimization
is construction of a switching path with minimal amount of switches which is of
our particular interest.

The novelty of this thesis lies in using Geometric Algebra (GA) for investiga-
tion of the switched systems controllability. Geometric Algebra offers a powerful
mathematical framework for handling geometric operations with elegance and ef-
ficiency. Originating from Grassmann algebras and Clifford algebras, GA unifies
geometric primitives and transformations within a single algebraic structure, pro-
viding a seamless approach to geometric analysis and manipulation.

Geometric Algebra for Conics (GAC) is an efficient geometric tool to handle
both conics and their transformations as elements of a particular Clifford algebra,
[16], [17], [18].

The thesis is structured in the following way.
First chapter describes the fundamental concepts of Grassmann and Clifford

algebras, highlighting their role in forming the basis of Geometric Algebra.
Second chapter deals with description of switched systems, their place in the

theory of dynamical systems, and controllability.
Third chapter deals with the 2× 2 switched systems with the special type sub-

systems. More precisely, those subsystems that have a specific equilibrium point
and trajectories intrinsic to Geometric Algebra for Conics. Let us stress that in
the Euclidean space, the problem of finding intersection points of two conics is
reduced to solving the system of quadratic equations using numerical methods.
To avoid the use of the numerical solver we use Geometric Algebra for Conics
and demonstrate it on various examples.

Fourth chapter describes the controllability of the 2× 2 switched systems with
regular matrices of each subsystem, whose phase trajectories are not conic sec-
tions.

We shall demonstrate our results on examples of specific switched systems.
We provide outputs of our implementation in Python using a module Clifford for
GAC operations.
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Chapter 1

Geometric algebras

Geometric Algebra (GA) and its special types, such as Compass Ruler Algebra
(CRA) and Geometric Algebra for Conics (GAC), provide powerful mathematical
frameworks for handling geometric operations in a unified manner. Originating
from Grassmann and Clifford algebras, GA offers a rich algebraic structure that
encapsulates geometric primitives and transformations within a single framework.
In this chapter, we outline the fundamental concepts of Grassmann and Clifford
algebras before dealing with the applications and extensions provided by GA.

Clifford algebras extend Grassmann algebras by incorporating geometric in-
terpretations through the Clifford product. By unifying the outer product and the
dot product into a single geometric product, Clifford algebras provide a framework
for geometric operations.

Let us start from introducing the concept of Tensor algebra for better under-
standing of the consequent description of Clifford algebras.

Definition 1.0.1. Let V be a vector space over a field R. The tensor algebra of
V , denoted by T(V), is defined as the direct sum of all tensor products of V with
itself:

T(V) =
∞
⊕
n=0

V⊗n

where V⊗n represents the n-fold tensor product of V with itself. The elements of
T(V) are called tensors. The direct sum ensures that T(V) contains tensors of all
orders, from scalars (order 0) to higher-order tensors, [19].

The following section deals with Grassmann algebras, also known as exte-
rior algebras, which are a type of associative algebra, that includes antisymmetric
products.
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1.1 Grassmann Algebras
Given a vector space V , the Grassmann algebra Λ(V) associated with V is con-
structed by taking the quotient of the tensor algebra over V by the ideal generated
by the antisymmetrization of tensor products:

Λ(V) = T(V)/I

where T(V) is the tensor algebra of V and I is the ideal generated by

v ∧w +w ∧ v

for all v,w ∈ V , where ∧ denotes the outer product. The resulting algebra Λ(V)
contains elements called outer products, which capture the antisymmetric proper-
ties of geometric quantities.

The connection between the outer product and vector product becomes evident
when considering their geometric interpretations in terms of oriented volumes.
The outer (cross) product of two vectors in three dimensions results in a vector
that is perpendicular to both input vectors. It can be expressed as:

a × b = c.

Grassmann’s outer product (usually denoted as ∧)

a ∧ b = Ω

can be represented as the geometric interaction between two vectors, wherein one
vector moves along the other to create a directed area. The newly formed object
is neither a vector nor a scalar; instead, it is referred to as a bivector, represents
the oriented area of the parallelogram spanned by the two vectors.

Hodge duality relates these two operations by expressing the cross product in
terms of the wedge product:

a × b = ⋆(a ∧ b)

where ⋆ denotes the Hodge star operator, which maps an n-form to an n-form by
taking the wedge product of a given form with the appropriate volume form. In
three dimensions, this operation converts a 2-form (bivector) to a 1-form (vector),
and vice versa.

Similarly, the outer product of the bivector with another vector results in the
creation of a directed volume, identified as a trivector. The process can be ex-
tended to form an n-volume, which will be refered to as a n-vector.

In the following we recall a concept of Clifford algebra and its connection with
quaternions.
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1.2 Clifford Algebras
The connection between Clifford algebras and Grassmann algebras arises from the
fact that Clifford algebras contain Grassmann algebras as subalgebras, together
with the antisymmetric product. Specifically, for a vector space V , the exterior
product of vectors in Λ(V) is embedded into the corresponding Clifford algebra
Cl(V).

Given a real vector space V equipped with an quadratic form Q(v), the Clifford
algebra Cl(V) associated with V is constructed as the quotient space:

Cl(V) = T(V)/I,

where T(V) is the tensor algebra of V and I is the ideal generated by v⊗v−Q(v)1
for all v ∈ V , where 1 denotes the scalar element of the basis of T(V). The product
in the algebra is called the Clifford product. The ideal ensures that the elements
of the Clifford algebra square to scalars. The resulting algebra Cl(V) contains
elements called multivectors.

Let us note that the outer-product is anti-commutative and associative giving
a∧b = −(b∧a) and a∧(b∧c) = (a∧b)∧c = a∧b∧c. Grassmann’s outer product
was unified by Clifford and into one geometric product such that ab = a ⋅ b+ a∧ b,
where ⋅ represents the dot or inner product.

Alternatively, Clifford Algebra can be defined as the associative algebra gener-
ated by the vectors in a vector space V , equipped with a quadratic form Q ∶ V → R,
with the relations:

vw +wv = 2Q(v,w),

for all v,w ∈ V .
In this terms the Clifford product of two vectors v and w is defined as:

v ∧w =
1
2
(vw −wv).

It represents the antisymmetric part of the product of v and w and is a fundamental
operation in geometric algebra.

Remark. Signature (p,q) of Clifford algebra Cl(p,q) denotes that algebra con-
tains p base vectors that square to +1 and q vectors that square to −1.

Let V be a n-dimensional Euclidean space, while p-subspace is a subspace of
dimension p. For a multivector M ∈ ⋀V, < Mi >p∈ ⋀p V denotes its component
of grade p. p-blade is multivector B = v1 ∧ ⋅ ⋅ ⋅ ∧ vp ∈ ⋀p V , with v1, . . . , vp ∈ ⋀V .
Note, that a scalar is a 0-blade, for more details see [20].
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Let us now consider the example describing the connection between Clifford
algebra and quaternions.

Example 1. The Clifford algebra Cl(3,0) of the pure imaginary quaternions is a
real associative algebra generated by a three-dimensional vector space spanned
by the basis elements {1, e1, e2, e3, e1e2, e2e3, e1e3, e1e2e3}. These basis elements
satisfy the following multiplication rules:

eie j + e jei = 2δi j,

where δi j is the Kronecker delta, which equals 1 if i = j, and 0 otherwise. The
elements of Cl(3,0) can be represented as sums of scalars and products of basis
elements, such as a+be1+ce2+de3+( f e1e2+ge2e3+he3e1), where a,b, c,d, f ,g,h
are real scalars.

Now consider the quadratic form Q = (I).
A general quaternion can be written as q = a + bi + c j + dk, where a,b, c,d are

real numbers and i, j, k satisfy the following: i2 = j2 = k2 = −1, i jk = −1.
Let us consider the 3D Euclidean space with basis vectors e1, e2, e3. The imag-

inary unit can be identified in Clifford algebra as one of the 2-blades e1 ∧ e2; e1 ∧

e3; e2 ∧ e3, spanned by the three Euclidean basis vectors e1, e2, e3. We choose
i = e1e2. Anticommutativity follows, ie., e1e2 = −e2e1. Then

i2 = (e1e2)
2 = e1e2e1e2 = −e1e2e2e1 = −e1e1 = −1.

Analogically, j = e2e3, k = e1e3 and

i jk = e1e2e2e3e1e3 = −e1e1 = −1.

Using this notation, we can express the quaternion rotation operator by angle
θ as a linear combination of the basis elements:

R(θ) = cos(
θ

2
) + sin(

θ

2
)(bi + c j + dk),

where q = bi + c j + dk is a unit quaternion representing the axis of rotation.
The fundamental transformation in Clifford algebra is reflection. The given

vectors a,n ∈ Cl(3,0), the reflection of a in n is given by a′ = nan−1, where n
is a non-null 1-vector. It is well known that Euclidean transformations, such as
rotation and translation, are generated by reflection, see [21].

Remark (Rotor). Given two unit vectors m,n ∈ S2 ⊂ R3, where S2 denotes a unit
sphere. The consecutive reflection of vector a in vectors n and m can be written
as a′ = mnan−1m−1, see Figure 1.1
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Figure 1.1: Reflection and Rotation generated by two reflections

v′ = T(θ, t) ⋅ v ⋅ R−1(θ, t).

We shall use the term Geometric Algebra to mean the coupling of Clifford
algebras with an accompanying geometric interpretation.

1.3 Introduction to Geometric Algebras
Geometric algebra (GA) is a Clifford algebra with a specific embedding of Eu-
clidean space (of arbitrary dimension) in such a way that the intrinsic geometric
primitives as well as their Euclidean transformations are viewed as elements of
a single vector space, precisely vectors and bivectors, respectively. This concept
was introduced by D. Hestenes in [22] and has been used in many mathematical
and engineering applications since, see e.g. [23, 24]. The computational ad-
vantage of GA lays in that geometric operations, such as intersections, tangents,
distances, etc., are linear functions and can therefore be calculated efficiently. To
show this, we refer to [21] for the basics of geometric algebras, especially for the
conformal representation of Euclidean space. 3D Euclidean space is actually rep-
resented in Clifford’s algebra Cl(4,1), and the consequent geometric algebra is of-
ten denoted asG4,1 with spheres of all types as geometric primitives and Euclidean
transformations at hand, see e.g. [25]. In the following work the two-dimensional
subalgebra G3,1 is also considered. It is called the Compass Ruler Algebra (CRA),
[26], which is an analogue of G4,1 for two-dimensional Euclidean space.

Basic elements of n-dimensional Geometric Algebra are represented by blades
with grades 0,1,2, . . . ,n, where a scalar is considered as a 0-blade and the 1-blades
are the basis vectors e1; e2; . . . ; en. The 2-blades ei ∧ e j are blades constructed by
two 1-blades, and so on. There exists the only one element of the maximum grade
n, I = e1 ∧ e2 ∧ ⋅ ⋅ ⋅ ∧ en, that is called a pseudoscalar. The products in Geometric
Algebra are presented by the outer, the inner and the geometric product, see [26].

Geometric primitives in Geometric Algebra have two algebraic representa-
tions, the IPNS (inner product null space) and the OPNS (outer product null space)
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representation. These representations are duals of each other.
Let E ⊂ R3 be one of the geometric entity listed above then we say that a

multivector EIPNS is an inner product null space representation of E if

{x ∈ R3 ∶ P(x) ⋅ EIPNS = 0} = E,

ie., it is possible to represent a subspace with a blade as the set of all vectors
having a zero contraction with the blade. This method is called the Inner Product
Null Space (IPNS) representation of subspaces.

Analogously we say that a multivector EOPNS (a dual of E) is an outer product
null space representation of E if

{x ∈ R3 ∶ P(x) ∧ EOPNS = 0} = E,

ie., any vector having zero outer product with a blade is inside its subspace. This
is called the Outer Product Null Space (OPNS) representation of subspaces.

Further we provide a brief theoretical survey of geometric algebras.

1.4 Conformal Geometric Algebra

Conformal Geometric Algebra (CGA) is a conformal model of an n–dimensional
Euclidean space. It is a Clifford algebra of signature (n + 1,1) denoted as Cl(n +
1,1) together with a specific embedding of a Euclidean point which be described
for the case n = 2 in the following Section. As a result, CGA contains representa-
tives of Euclidean primitives as well as their transformations. Moreover, spheres
of dimension up to n− 1 can be represented and some non–Euclidean transforma-
tions such as scaling may be performed. Let us just note that to unify the object
representation, one can consider Euclidean primitives as specific spheres, e.g., a
line is one–dimensional sphere with infinite radius. Let us add that this model al-
lows simple construction of objects by wedge product of generating points (OPNS
representation), parameter extraction (IPNS representation) and intersections (wedge
of IPNS representations).

In the following Section, a conformal model of two–dimensional Euclidean
space called Compass Ruler Algebra (CRA) is recalled as well as all necessary
objects, transformations and operations.
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1.5 Compass Ruler Algebra
The Compass Ruler Algebra (CRA) is the Conformal Geometric Algebra in 2D.
Let us remind the main notations (see Table 1.1) and elements of CRA. The al-
gebra contains two Euclidean basis vectors e1 and e2 of the plane and two ad-
ditional basis vectors e+, e− with positive and negative signatures, respectively,
which means that they square to +1 as usual (e+) and to −1 (e−). Let us consider
the alternative basis, containing

e0 =
1
2
(e− + e+), e∞ = e− − e+,

with the geometric meaning that e0 represents the 2D origin, e∞ represents the
infinity.

Notation Meaning
e1, e2 2D basis vectors
e0 origin
e∞ infinity
AB geometric product of A and B
A ∧ B outer product of A and B
A ⋅ B inner product of A and B
A∗ dual of A
A−1 inverse of A

Table 1.1: Notations of Compass Ruler Algebra

Let us now consider geometric meaning of a point P with 2D coordinates
(x1, x2) and its IPNS representation as its null space with respect to the inner
product should be computed.

x = x1e1 + x2e2

is extended to a 4D vector by taking a linear combination of the 4D basis vectors
e1, e2, e∞, and e0:

P = x +
1
2

x2e∞ + e0,

where x2 is the inner product:

x2 = (x2e1 + x2e2) ⋅ (x2e1 + x2e2) = x2
1e2

1 + 2x1x2(e1 ⋅ e2) + x2
2e2

2 = x2
1 + x2

2.
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Therefore, we can consider the embedding:

E2 ↪ R
3,1 ↪ Cl(V).

In the Compass Ruler Algebra exists a correspondence between algebraic expres-
sions and geometric objects such as circles and lines. Circles, for instance, can
be defined based through three points. This is the reason why the circumscribed
circle of a triangle can be expressed easily. Furthermore, with the help of the
products of the algebra, distances and angles as well as geometric operations such
as intersections of geometric objects can be described [26].

In geometric algebra, the intersection of geometric entities can be expressed
using the wedge product of their respective IPNS representations, [25].

Let us now consider basic elements.
To describe circle, we use center point P and its radius r:

C = P −
1
2

r2e∞,

that can be rewritten as

C = x +
1
2

x2e∞ + e0 −
1
2

r2e∞

or
C = x +

1
2
(x2 − r2)e∞ + e0.

It is evident that point can be represented as a circle of radius zero. A circle can
also be described with the help of three points that lie on it, by

C∗ = P1 ∧ P2 ∧ P3.

The other widely used in CRA object is a point pair, that can be defined as inter-
section of two circles:

Pp = C1 ∧C2

and in OPNS representation:

Pp∗ = P1 ∧ P2.

A line in CRA is defined by

L = n + de∞,

where n = n1e1 + n2e2 refers to the 2D normal vector of the line L and d is the
distance to the origin. A line can also be defined with the help of two points that
lie on it and the point at infinity: L = P1 ∧ P2 ∧ e∞. Line can be also considered as
a circle of infinite radius.
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1.6 Geometric Algebra for Conics
Now let us consider Geometric Algebra for Conics (GAC), that is the generaliza-
tion of G4,1, proposed by C. Perwass, [21], and J. Hrdina, A. Návrat, P. Vašı́k,
[16]. Let us stress that in the current work the notation of [16] is used, ie., n̄ and
n are taking place of e0 and e∞, respectively. In the usual basis n̄, e1, e2,n, the
embedding of a plane into G3,1 is given by

(x, y) ↦ n̄ + xe1 + ye2 +
1
2
(x2 + y2)n,

where e1, e2 form the Euclidean basis and n̄ and n stand for a specific linear com-
bination of additional basis vectors e3, e4 with e2

3 = 1 and e2
4 = −1, giving them the

meaning of the coordinate origin and infinity, respectively, [21].
Considering the coefficients from thee CRA part, ie., 1, x, y, x2 + y2, we can

note that they belong to the basis for polynomial of degree 2 of 2 variables. In
order to cover general conics, which are described by the polynomial of degree 2
of 2 variables, it is necessary to add two terms: 1

2(x
2 − y2) and xy, for which it is

needed to introduce two new infinities, [27]. Therefore, we form two additional
Witt pairs. Thus the resulting number of generating vectors of Geometric Algebra
for Conics is equal to eight.

Analogously to the notation in [21], the corresponding basis elements are de-
noted as

n̄+, n̄−, n̄×, e1, e2,n+,n−,n×. (1.1)

This notation suggests that the basis elements e1, e2 play the usual role of stan-
dard basis of the plane while the null vectors n̄, n represent the origin and infinity,
respectively. Note that there are three orthogonal ’origins’ n̄ and three correspond-
ing orthogonal ’infinities’ n [16]. In terms of this basis, a point of the plane x ∈ R2

defined by x = xe1 + ye2 is embedded using the operator C ∶ R2 → Cone ⊂ R5,3,
which is defined by

C(x, y) = n̄+ + xe1 + ye2 +
1
2
(x2 + y2)n+ +

1
2
(x2 − y2)n− + xyn×. (1.2)

Definition 1.6.1. Geometric Algebra for Conics (GAC) is the Clifford algebra
Cl(5,3) together with the embedding (1.2) in the basis (1.1).

Note that, up to the last two terms, the embedding (1.2) is the embedding of the
plane into the two-dimensional conformal geometric algebra G3,1. In particular, it
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Notation Meaning
e1, e2 2D basis vectors
n̄+, n̄−, n̄× origins
n+,n−,n× infinities
AB geometric product of A and B
A ∧ B outer product of A and B
A ⋅ B inner product of A and B
A∗ dual of A
A−1 inverse of A

Table 1.2: Notations of Geometric Algebra for Conics

is evident that the scalar product of two embedded points is the same as in G3,1,
ie., for two points x,y ∈ R2 we have

C(x) ⋅ C(y) = −
1
2
∥x − y∥2, (1.3)

where the standard Euclidean norm is considered on the right hand side. This
demonstrates the linearisation of distance problems. In particular, each point is
represented by a null vector. Let us recall that the invertible algebra elements are
called versors and they form a group, the Clifford group, and that conjugations
with versors give transformations intrinsic to the algebra. Namely, if the conjuga-
tion with a G5,3 versor R preserves the set Cone, ie., for each x ∈ R2 there exists
such a point x̄ ∈ R2 that

RC(x)R̃ = C(x̄), (1.4)

where R̃ is the reverse of R, then x→ x̄ induces a transformation R2 → R2 which is
intrinsic to GAC. See [16] to find that the conformal transformations are intrinsic
to GAC.

Let us also recall the outer (wedge) product, inner product and the duality

A∗ = AI−1, (1.5)

where I = e12345678 is a pseudoscalar, i.e the highest grade element.
For our purposes, we stress that these operations correspond to sums and prod-

ucts only. Thus, computational error is minimized. Indeed, the wedge product is
calculated as the outer product of vectors on each vector space of the same grade
blades, while the inner product acts on these spaces as the scalar product. The
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extension of both operations to general multivectors adds no computational com-
plexity due to linearity of both operations.

Let us also recall that if a conic C is considered as a wedge of five different
points (which determine a conic uniquely), the appropriate 5-vector E∗ is called
an outer product null space representation (OPNS) and its dual E, indeed a 1-
vector, is called the inner product null space (IPNS) representation. The reason is
that if a point P lies on a conic C then

P ⋅ E = 0 and P ∧ E∗ = 0.

Consequently, intersections of two geometric primitives are given as the wedge
product of their IPNS representations, ie.,

C1 ∩C2 = E1 ∧ E2

for two conics C1,C2 and their IPNS representations E1 and E2, respectively, see
[16].

Let us describe the inner product representation more precisely. An element
AI ∈ G5,3 is the inner product representation of a geometric object A in the plane if
and only if A = {x ∈ R2 ∶ C(x) ⋅AI = 0}. The representable objects can be found by
examining the inner product of a vector and an embedded point. A general vector
in the conic space R5,3 in terms of our basis is of the form

v = v̄+n̄+ + v̄−n̄− + v̄×n̄× + v1e1 + v2e2 + v+n+ + v−n− + v×n×

and its inner product with an embedded point is then given by

C(x, y) ⋅ v = −
1
2
(v̄+ + v̄−)x2 − v̄×xy −

1
2
(v̄+ − v̄−)y2 + v1x + v2y − v+,

ie., by a general polynomial of degree two. Thus the objects representable in GAC
are exactly conics. We also see that the two-dimensional subspace generated by
infinities n−,n× is orthogonal to all embedded points. In other words, the inner
representation of a conic in GAC can be defined as a six–dimensional vector

QI = v̄+n̄+ + v̄−n̄− + v̄×n̄× + v1e1 + v2e2 + v+n+ (1.6)

with coefficients (v̄+, v̄−, v̄×, v1, v2, v+).
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1.6.1 GAC objects description

The classification of conics is well known. There exists 3 types of non–degenerate
conics: ellipse, hyperbola, and parabola. Let us briefly describe inner product
representations of the conics in GAC. More information can be found in [16]. Let
us present the vector form (1.6) appropriate to each conic type in the simplest
case, ie., an axes–aligned conic with its centre in the origin. The results may be
verified easily by multiplying each vector by an embedded point. For instance, an
axes–aligned ellipse EI with semi–axes a,b and center in the coordinate system
origin is a vector of the form

EI = (a2 + b2)n̄+ + (a2 − b2)n̄− − a2b2n+.

An ellipse and hyperbola E with the semi–axes a,b centred in (u, v) ∈ R2 rotated
by angle θ in the GAC IPNS representation are given by

EI = n̄+ − (α cos 2θ)n̄− − (α sin 2θ)n̄× (1.7)
+ (u + uα cos 2θ − vα sin 2θ)e1 + (v + vα cos 2θ − uα sin 2θ)e2

+ 1
2 (u

2 + v2 − β − (u2 − v2)α cos 2θ − 2uvα sin 2θ)n+,

where

α =
a2 − b2

a2 + b2
, β =

2a2b2

a2 + b2

for an ellipse and

α =
a2 + b2

a2 − b2
, β =

−2a2b2

a2 − b2

for a hyperbola, see Figure 1.2. In the case of parabola we have with the semi-latus

Figure 1.2: Ellipse, Hyperbola and Parabola
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rectum p centred in (u, v) ∈ R2 rotated by angle θ we have:

PI = n̄+ + cos 2θn̄− + sin 2θn̄× (1.8)
+ (u + u cos 2θ + v sin 2θ − 2p sin θ)e1

+ (v − v cos 2θ + u sin 2θ + 2p cos θ)e2

+ 1
2 (u

2 + v2 + (u2 − v2) cos 2θ + 2uv sin 2θ − 4pu sin θ + 4pv cos θ)n+,

It is also visualized in Figure 1.2.
Let us recall the circle representation in GAC. More information can be found

in [16].

Proposition 1.6.1. A circle C centred in (p1, p2) with radius ρ is given by

CI = n̄+ + p1e1 + p2e2 +
1
2(p

2
1 + p2

2)n+ −
1
2ρ

2n+

.

Though a line is not an element of GAC, it still can be represented: line L with
unite normal (n1,n2) and a shift d from the origin is given by

LI = n1e1 + n2e2 + dn+.

Remark. Let us note that a single line in GAC is not an intrinsic primitive and thus
we may understand it as a CRA object, [16]. Therefore its IPNS representation
has the same form as in CRA, [26],

n1e1 + n2e2 + dn+

where n = (n1,n2) is the normal vector and d is the distance from coordinate
origin. The OPNS representation of a line passing through two points p1 and P2

is, [16] of the form
P1 ∧ P2 ∧ n+ ∧ n− ∧ n×.

Formulas for these degenerate conics can be also derived from the non–degenerate
ones by means of certain limits [16].

Proposition 1.6.2. GAC inner representation of two parallel lines is given by
(1.7) with coefficients α = −1, β = 2a2, where 2a is the distance between the lines.
GAC inner representation of two intersecting lines, which are not perpendicular,
is given by (1.7) with coefficients α = 1+k2

1−k2 , β = 0, where k is the line derivation.
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Note that parallel lines are obtained from an ellipse by the limit b → ∞. The
intersecting lines are obtained from a hyperbola by setting b = ka and then by
taking the limit a→ 0, [16].

Two perpendicular lines cannot be expressed in the form (1.7) since the coeffi-
cient of n̄+ has to be zero, see [28]. For this particular case we get the GAC inner
representation of the form

LL⊥I = −(α cos 2θ)n̄− − (sin 2θ)n̄× + (u cos 2θ − v sin 2θ)e1

+ (v cos 2θ − u sin 2θ)e2 −
1
2 ((u

2 − v2) cos 2θ + 2uv sin 2θ)n+.

To specify the conics precisely, let us show the way of parameter extraction
for the conics in GAC.

1.6.2 Parameter extraction
It is well known that the type of a given unknown conic can be read off its matrix
representation, which in our case for a conic is given by

Q =
⎛
⎜
⎝

− 1
2(v̄
+ + v̄−) − 1

2 v̄× 1
2v1

− 1
2 v̄× − 1

2(v̄
+ − v̄−) 1

2v2

1
2v1 1

2v2 −v+

⎞
⎟
⎠
. (1.9)

The entries of (1.9) can be easily computed by means of the inner product:

q11 = QI ⋅
1
2(n+ + n−),

q22 = QI ⋅
1
2(n+ − n−),

q33 = QI ⋅ n̄+,
q12 = q21 = QI ⋅

1
2n×,

q13 = q31 = QI ⋅
1
2e1,

q23 = q32 = QI ⋅
1
2e2.

It is also well known how to determine the internal parameters of an unknown
conic and its position and the orientation in the plane from the matrix (1.9), [29].
Hence all this can be determined from GAC vector QI by means of the inner
product.

The parameters of a conic can be obtained from the matrix (1.9) of its IPNS
representation, for example:
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• center of an ellipse or hyperbola:

xc =
q12q23 − 2q22q31

4q11q22 − q12q12
, yc =

q31q21 − 2q11q32

4q11q22 − q12q12
, (1.10)

• semiaxis of an ellipse:

a,b =

√

(2A(q11 + q22 ±
√
(q11 − q22)

2 + q2
12)

(4q11q22 − q2
12))

, (1.11)

where A = q11q2
23 + q22q2

13 − q12q13q23 + (q2
12 − 4q11q22)q33,

• angle of rotation

θ =

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

− arctan
q22−q11−

√
(q11−q22)2+q2

12

q12
, q12 ≠ 0

0, q12 = 0, q11 < q22
π
2 , q12 = 0, q11 > q22

(1.12)

Other parameters can be derived with the help of eigenvalues of the quadratic form
matrix. For more details see [30].

1.6.3 Transformations
The main advantage of GAC compared to other models (for instance, G6) is that
it is fully operational in the sense that it allows all Euclidean transformations, ie.,
rotations and translations. But not just that, it also allows scaling in the sense
of (1.4). Hence, like in the case of CGA (or G3,1), one obtains all conformal
transformations: rotation, translation and scaling.
Example 2. Let us consider the IPNS representation of the axis-aligned ellipse
with the semi-axes a = 2, b = 4 centred in (u, v) = (0,2):

E = 0.8e2 − 0.5e3 − 0.3e4 + 0.5e6 + 0.3e7.

The rotor for a rotation around the origin by the angle π3 is given by R = R+(R1 ∧

R2), where

R+ = cos(π6) + sin(π6)e1 ∧ e2 =
√

3
2 +

1
2e1 ∧ e2, (1.13)

R1 = cos(π3) + sin(π3)n̄× ∧ n− = 1
2 +

√
3

2 n̄× ∧ n−, (1.14)

R2 = cos(π3) − sin(π3)n̄− ∧ n× = 1
2 −

√
3

2 n̄− ∧ n×. (1.15)
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Rotated ellipse has equation:

Erotated = −0.69282e1+0.4e2−0.5e3+0.15e4−0.25981e5+0.5e6−0.15e7+0.25981e8

The scalor for a by α ∈ R+ is given by S = S +S −S ×, where

S + = α+1
2
√
α
+ α−1

2
√
α
n̄+ ∧ n+, (1.16)

S − = α+1
2
√
α
+ α−1

2
√
α
n̄− ∧ n−, (1.17)

S × = α+1
2
√
α
+ α−1

2
√
α
n̄× ∧ n×. (1.18)

For more information see [16].
Consider axis-aligned ellipse with the semi-axes a = 2, b = 4 centred in (u, v) =

(0,2).
The result of applying the scaling by 2 is the ellipse

Escaled = 3.2e2 − 1.0e3 − 0.6e4 + 1.0e6 + 0.6e7

and translations by vectors (0,2), (2,0), (−3,2) are:

E(0,2) = 2.76923e1+1.23077e2+0.73077e3−0.19231e4+1.73077e6+0.19231e7,

E(2,0) = 2.46154e2 + 1.65385e3 − 0.19231e4 + 2.65385e6 + 0.19231e7,

E(−3,2) = −4.15385e1 + 2.96154e3 − 0.19231e4 + 3.96154e6 + 0.19231e7,

respectively. All transformations are shown in Figure 1.3.

Figure 1.3: Transformations
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1.6.4 Intersections and contact points in GAC

In this section we provide a procedure for intersecting two conics, particularly
ellipses with common centre in the coordinate origin but in a general mutual po-
sition otherwise. Moreover, we consider a system of circumscribed ellipses as in
Figure 1.7 and show a procedure for detecting the first order contact points, ie.,
points where the ellipses touch with identical first order derivative. Again, the
contribution of GAC lies in avoiding the use of a solver which leads to accuracy
improvement.

Let us first describe some differences to CRA or its 3–dimensional version
CGA (Conformal Geometric Algebra). Crucial difference lies in the type of ob-
jects that are intrinsic to respective structures. For CRA (CGA), spheres (circles)
are the geometric primitives that may be represented by specific elements. Taking
into account that lines and planes are spheres with infinite radii and a point pair is
a 1–dimensional sphere, we receive all geometric primitives for analytic geome-
try. Moreover, intersection still remain such objects, indeed, an intersection of two
spheres or two circles are circles or point pairs, respectively. Therefore, intersec-
tions that are realised by wedge of IPNS representations remain representatives of
Euclidean primitives intrinsic to CRA (CGA). On contrary, in GAC the situation
is different. Even if we restrict to the case of co–centric ellipses, their intersection
is a ”four point” which has no meaning in the sense of conic–sections. Indeed, a
planar conic is generated by five points at least. This leads to an algorithm that
may be used for co–centric conics (all types). On the other hand, the algorithm is
still geometric–based and may be realised by a sequence of simple operations in
GAC, ie., there is no numerical solver involved.

Intersections

Let us now present the procedure for getting intersections of two co–centric el-
lipses, ie., the set up according to Figure 1.4. Note that we may assume, without
loss of generality, that the ellipses have four points of intersections. Other cases
are not of our interest and would be recognized by the form of GAC element rep-
resenting the pair of intersecting lines depicted in Figure 1.4 as an imaginary or
degenerate conic. Furthermore we may assume that the ellipse centres are situated
at the coordinate origin, otherwise the whole picture may be translated in GAC to
fulfil this assumption. More information can be found in [31].

We start by taking two IPNS representations of ellipses E1 and E2 and wedging
them. The result corresponds to the common points of both geometric primitives.
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E1

E2

x

y

P1

P2

P3

P4

Figure 1.4: Initial setting of the intersection problem

This is standard operation intrinsic to any geometric algebra. In our case, we
receive an IPNS representative of a four–point E1 ∧ E2 = P1 ∧ P2 ∧ P3 ∧ P4 as in
Figure 1.4. Let us recall that this does not represent any geometric entity intrinsic
to GAC.

Therefore, as the next step, we construct a degenerate conic, more precisely
a pair of intersecting lines (E1 ∧ E2)

∗ ∧ n+, where n+ represents origin of the
Euclidean coordinates and therefore the common ellipse centre, and (E1 ∧ E2)

∗ is
the four–point’s OPNS representation.

Now we need to decompose the pair of lines to two single lines. First, we
construct the matrix Q of its quadratic form by (1.9). Note that Q is a symmet-
ric singular matrix. To decompose a degenerate conic we follow an algorithm
described in [32]. We recall the algorithm just to present that all operations in-
volved are sums and products in the form of determinant calculations. The only
numerical inaccuracy may be imported by a square root calculation.

Indeed, to decompose a pair of intersecting lines into two distinct lines we
have to find a skew-symmetric matrix P formed by parameters λ, µ, and τ such
that N = Q + P is of rank 1. Thus in our case we have to find the parameters λ, µ,
and τ such that the following matrix sum has rank 1:

⎛
⎜
⎝

q11 q12 q13

q21 q22 q23

q31 q32 q33

⎞
⎟
⎠
+
⎛
⎜
⎝

0 τ −µ
−τ 0 −λ
µ λ 0

⎞
⎟
⎠
. (1.19)
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(a) Ellipse setting (b) Pair of lines

Figure 1.5: Setting of Example 3

The rank condition reads that every 2×2 submatrix determinant must vanish. Thus
the necessary conditions for the parameters λ, µ, and τ are:

τ2 = − ∣
q11 q12

q21 q22
∣ , µ2 = − ∣

q11 q13

q31 q33
∣ , λ2 = − ∣

q22 q23

q32 q33
∣

This determines the parameters λ, τ, and µ up to their sign. In general case, to
get precise values of λ, µ, and τ, one can take a non–zero column of the matrix
dual to Q and divide it with a specific factor, see [32]. In the case that the lines
are passing through the origin, the division may be omitted and thus only the dual
matrix, ie., nine determinants of order 2, have to be calculated, see [32].

By taking an arbitrary nonzero row and a nonzero column in the matrix N
we get the coefficients of the respective separated lines. We shall now recall that a
single line represents no conic and therefore it is not a geometric primitive intrinsic
to GAC. Yet it is understood as an element of subalgebra CRA, ie., a model of 2–
dimensional Euclidean space formed by a Clifford algebra Cl(3,1), see [26].

Example 3. To construct an ellipse, we need the semi–axes lengths a,b, centre
coordinates c1, c2 and the angle of rotation θ, (1.7). Let us consider two ellipses
Ell1 and Ell2 with parameters (a,b, c1, c2, θ) = (2,4,0,0,0) and (4,2,0,0, π6),
respectively. Their IPNS representations will then be of the form

Ell1 = n̄+ +
3
5

n̄− −
16
5

n+

and

Ell2 = n̄+ −
3

10
n̄− −

3
√

3
10

n̄× −
16
5

n+.
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If transformed to OPNS, it becomes four-vector, therefore it is clear that it corre-
sponds to a wedge of four GAC points. By wedging the origin represented by n̄+,
we receive an OPNS representation of a degenerated conic, more precisely of a
pair of intersecting lines. Their IPNS form is

−
72
25

n̄− −
24
√

3
25

n̄×.

The type of the conic may be easily checked using their matrix form

⎛
⎜
⎜
⎝

36
25

12
√

3
25 0

12
√

3
25 − 36

25 0
0 0 0

⎞
⎟
⎟
⎠

.

After normalization, equation of this conic is x2 − y2 + 24
√

3
3 xy = 0. Thus we have

a pair of lines containing all four ellipses’ intersections and the origin, see Figure
1.5b.

Let us provide all necessary inputs for procedure of line separation (1.19) in
the same form:

⎛
⎜
⎜
⎝

36
25

12
√

3
25 0

12
√

3
25 − 36

25 0
0 0 0

⎞
⎟
⎟
⎠

+

⎛
⎜
⎜
⎝

0 − 12
√

3
25 0

36
√

3
25 −36

25 0
0 0 0

⎞
⎟
⎟
⎠

,

i.e. µ = 0, τ = − 24
√

3
25 , λ = 0. Therefore the pair of lines’ matrix is of the form

⎛
⎜
⎜
⎝

36
25 − 12

√
3

25 0
36
√

3
25 − 36

25 0
0 0 0

⎞
⎟
⎟
⎠

and thus the form of a separated lines may be easily derived according to the first
(non–zero) row and column. After normalization we receive

1
2

x +

√
3

2
y = 0, and

√
3

2
x −

1
2

y = 0.

It is clear that they are perpendicular which has been expected due to symmetries.
Thus we get a system of quadratic (Ellipse) and linear (Line) equations, which

is reduced to the one quadratic equation, that does not require the use of the solver.
In our case
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(a) Ellipse and Hyperbola (b) Hyperbola and Hyperbola

Figure 1.6: Non-degenerate centralized conics

⎧⎪⎪
⎨
⎪⎪⎩

x +
√

3y = 0,
x2

4 +
y2

16 = 1,

for x = −
√

3y, we get 13y2 − 16 = 0 and y = ± 4
√

13
13 , x = ∓ 4

√
39

13 . So we get
intersection points [ 4

√
39

13 ,−
4
√

13
13 ] and [− 4

√
39

13 ,
4
√

13
13 ]. The same way by using the

line x +
√

3y = 0 we get the following points: [4
√

39
13 ,

4
√

13
13 ] and [− 4

√
39

13 ,−
4
√

13
13 ].

The described procedure can be applied to different types of the co–centred
conics with 4 intersection points.

Example 4. Figure 1.6 demonstrates the output of the Python code for different
types of the co–centred conics with 4 intersection points. It shows that our consid-
erations are valid not only for ellipses but for an arbitrary pair of non-degenerate
centralized conics, see [33] for proofs.

Example 5. In the case of axes aligned ellipses we can apply a more geometric
approach, [28]. Given two ellipses Ell1 and Ell2 with parameters (a,b, c1, c2, θ) =
(2,4,0,0,0) and (4,2,0,0,0), respectively, we determine their IPNS representa-
tions according to (1.7) in the form

Ell1 = n̄+ +
3
5

n̄− −
16
5

n+
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and
Ell1 = n̄+ −

3
5

n̄− −
16
5

n+,

the intersecting points form a circle C that may be constructed by (Ell1∧Ell2)∗∧
n̄+, [28], and thus represented by an element

C =
6
5

n̄+ −
96
5

n+,

ie., its equation will be

x2 + y2 −
32
5
= 0.

Then we can construct a pair of intersecting lines (Ell1∧Ell2)∗∧n̄+ with IPNS
representation

6
5

n̄− −
96
25

n+,

ie., of the equation (after normalization) −x2 + y2 = 0.
The line decomposition procedure, although not necessary in this particular

case, will lead to a pair of lines y = x and y = −x. As CRA elements they are of
the form l1 = −

√
2

2 e1 +
√

2
2 e2 and l2 =

√
2

2 e1 +
√

2
2 e2, respectively. Then it is enough

to calculate the intersection C ∧ l1 and C ∧ l2 to get two point pairs P1,P2 in CRA.
Consequently, a procedure for a point pair decomposition must be applied in the
form

pi1 =
−
√

Pi ⋅ Pi + Pi

n+ ⋅ Pi
, pi2 =

√
Pi ⋅ Pi + Pi

n+ ⋅ Pi
for i = 1,2.

In this very simple case we receive CRA points

n̄+ ±
4
√

5
5

e1 ±
4
√

5
5

e2 +
16
5

n+,

which means that the points of intersections are of the form [± 4
√

5
5 ,±

4
√

5
5 ].

Contact points

As mentioned above, by a contact points we understand first order contact points,
ie., points where two curves have identical first order derivative. We shall describe
how to receive a set of contact points for a given system of co–centred ellipses.
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Such system is formed as in Figure 1.7 beginning with two intersecting ellipses
E1 and E2. Then an ellipse E′2 is constructed from E2 just by scaling in such a way
that E′2 is circumscribed to E1, ie., they have two contact points. Then an ellipse
E′1 would be constructed from E1 such that it would be circumscribed to E′2 etc.

E1

E2

p1

p2

1
2
(p1 + p2)

E′
2

P1

P3

P2

P4

Figure 1.7: Initial setting of contact points problem

Proposition 1.6.3. Given a system of co–centric ellipses as in Figure 1.7, the
contact points form a pair of intersecting lines. Furthermore, one of these lines is
the axis of lines p1 and p2 denoted in Figure 1.7 as 1

2(p1 + p2) and, similarly, the
other line is the axis of the lines p3 and p4 in Figure 1.7.

Taking into account that the ellipses are co–centric and their symmetry prop-
erties, it is obvious that 4 points of their intersection form a parallelogram with
diagonals passing through the common centre. The line 1

2(p1 + p2) is the middle
line of the parallelogram and passes through the common centre S of the ellipses.
Note that the notation 1

2(p1 + p2) for the axis of p1 and p2 is the way to calculate
this line in CRA. Indeed, this is true for IPNS representations of p1 and p2.

Proposition 1.6.4. Given a system of co–centric ellipses as in Figure 1.7, a scalor
transforming an ellipse E2 to E′2 may be calculated as S P = ∣S K′∣

∣S K∣ , where K and K′

are the intersection points of the ellipses E2 and E1 with the line 1
2(p1 + p2) and S

is the common centre of the ellipses.

Due to the fact that K′ is the contact point of ellipses E′2 and E1, scaling ellipse
E2 until the contact with E1 means scaling the length section S K up to the length
of S K′, therefore S P = ∣S K′∣

∣S K∣ .

Remark. The transformation of E2 to E′2 is then given in GAC by a scalor accord-
ing to 1.16. In the case of centralized ellipses with the centre in the coordinate
system origin we may just multiply the semi–axes lengths by the scaling factor.
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1.7 QC2GA
Let us recall another construction of a conformal model for conic sections in a
Euclidean space. Quadric Conformal Geometric Algebra (QCGA) is a confor-
mal model for representation of quadratic surfaces (quadrics) in three dimensional
Euclidean space. Its two–dimensional version, QC2GA, then contains conics as
objects, [34].

More precisely, QCGA G9,6 is defined over a 15-dimensional vector space.
The base vectors of the space R9,6 are divided into three groups of the Euclidean
vectors, ”origins” and ”infinities”, respectively. In [34], the authors denote these
respective groups as {e1, e2, e3}, {eO1 , eO2 , eO3 , eO4 , eO5 , eO6}, and
{e∞1 , e∞2 , e∞3 , e∞4 , e∞5 , e∞6}.

Consequently, subalgebra G5,3 of G9,6, ie., QC2GA, is isomorphic to GAC
(Geometric Algebra for Conics), more precisely they are the same algebras with
different bases. The basis transformation is given by:

n̄+ = eO1 + eO2 , n+ =
e∞1 + e∞2

2
,

n̄− = eO1 − eO2 , n+ =
e∞1 − e∞2

2
,

n̄× = eO3 , n× = e∞3 .

Such a basis change has benefit in easier representation of translator, yet other
transformations are then more complicated. Therefore, we will work in GAC in
this thesis.

1.8 Summary of Chapter 1
Geometric Algebra (GA) offers a powerful mathematical framework for handling
geometric operations with elegance and efficiency. Originating from Grassmann
algebras and Clifford algebras, GA unifies geometric primitives and transforma-
tions within a single algebraic structure, providing a seamless approach to geo-
metric analysis and manipulation.

Throughout this chapter, we have explored the fundamental concepts of Grass-
mann algebras and Clifford algebras, highlighting their role in forming the basis
of Geometric Algebra. One of the key features of GA is its ability to represent
geometric entities such as points, lines, planes, and volumes using multivectors,
which are elements of a geometric algebra. These multivectors capture not only

33



the geometry of objects but also their spatial relationships and transformations.
Through the use of the outer, inner, and geometric product operations, GA en-
ables the manipulation and analysis of these geometric entities in a rigorous and
intuitive manner.

34



Chapter 2

Switched systems

2.1 Dynamical system
By dynamical system we mean the triplet (R,Rn, f ), where Rn is a metric space,
which we call phase or state space, and f (t, ⋅) is a system of evolution operators
defined as the mapping f (t, ⋅) ∶ Rn → Rn, which maps the initial state x(0) ∈ Rn to
some state x(t) ∈ Rn.

Dynamical system can be generated by a form of the system of Ordinary Dif-
ferential Equations (ODE)

ẋ = f(t, x), (2.1)

in which a function f ∈ C(Rn+1,Rn) describes the time dependence of a point
x ∈ X and the derivative is considered w.r.t. time.

Definition 2.1.1. Suppose that f ∈ C(Rn+1,Rn). Then x is a solution of the differ-
ential equation (2.1) on the interval I ⊆ Rn if x(t) is differentiable on I and if for
all t ∈ I, x(t) ∈ Rn and ẋ = f(t, x(t)).

Given a differential equation with f ∈ C(Rn), the solution ϕ(t, x0) of the initial
value problem

ẋ = f(t, x), x(0) = x0 (2.2)

with x0 ∈ Rn is dynamical system on Rn if and only if for all x0 ∈ Rn, ϕ(t, x0) is
defined for all t ∈ R.

In our case it describes a mechanical system, which is characterized by its
position and behaviour, while the motion law describes the rate of change of the
state of the system.
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In the simplest case the law of motion is described as an autonomous system
of ordinary differential equations:

ẋi = fi(x1, x2, . . . , xm), i = 1, . . .m, (2.3)

where fi ∈ C(Rm) = C(Rm,Rm).
If the variables (x1, x2, . . . , xm) ∈ Rm, where xi = xi(t) are considered as coor-

dinates of a point x in an m-dimensional space, then the corresponding state of the
dynamical system may be determined by this point x and the differential equations
(2.3) may be rewritten as

ẋ(t) = f(x).

When searching for the solution of the system, generated by system of au-
tonomous ODEs, its existence and uniqueness should be guaranteed. Indeed if
in the following we are given a set of respective initial conditions, we have to be
sure that it each point the solution exists and is unique. Therefore, let us recall the
theorem of existence and uniqueness for the solution of the differential equation.

Theorem 2.1.1. ([35]) Let E be an open subset of Rn containing x0, assume that
f ∈ C1(E). Then there exists an a > 0 such that the initial value problem

ẋ(t) = f(x), x(0) = x0 (2.4)

has a unique solution x on the interval [−a; a]. In addition, for each point
x0 ∈ E there is a maximal interval J = (α;β): if (2.4) has solution y on the interval
I then I ⊆ J and y(t) = x(t) for all t ∈ I.

Let us now recall the basic definitions of trajectory, phase portrait and equilib-
rium.

Definition 2.1.2 ([36]). A trajectory of the dynamical system (2.2) is the set of
points in state space Rn that are the future states resulting from a given initial state
x(0).

Definition 2.1.3. A phase portrait of the system (2.2) is a plot of multiple phase
curves corresponding to different initial conditions x(0) in the same phase plane.

Definition 2.1.4. An equilibrium (or equilibrium point) of a dynamical system
(2.3), generated by an autonomous system of ordinary differential equations (ODEs)
is a solution of (2.3) that does not change with respect to time t.

Based on the type of the state, dynamical systems are classified into:
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• Continuous, if (x1, x2, . . . , xm) ∈ Rm, m ≥ 1. In a continuous dynamical
system, a trajectory is a curve in the state space;

• Discrete, if the set of achievable states {q1,q2, . . .} is countable. In a dis-
crete dynamical system, a trajectory is a set of isolated points in the state
space;

• Hybrid, if one of the state takes values in Rl while the other part takes values
in a finite set,i.e if there exists 0 < l < m such that (x1, x2, . . . , xl) ∈ Rl, and
(xl+1, x2, . . . , xm) ∈ {q1,q2, . . . , qk}, [37].

2.2 Basic theory of switched systems
Now let us recall the basic terminology in the switched systems theory.

Definition 2.2.1. Switched system is the system of differential equations in the
vector form of the type

ẋ = fσ(t)(x); (2.5)

where x = (x1, . . . , xm) ∈ Rm is called a continuous state, σ ∶ R → R is a left
continuous piecewise constant function of time with finite amount of pieces, that
is called a discrete state(switching signal) with values from an index set M ∶=
{1, . . . ,n}, and fσ(t) ∶ Rm → M is a family of functions of class Ck for sufficiently
large k.

Along with (2.5) we consider the initial condition x(0) = x0, x0 ∈ Rm,

Definition 2.2.2. Let x be a continuous and piecewise differentiable function onR.
Then x is a solution of the switched system (2.5) on R if for all t ∈ R, x(t) ∈ Rn

and ẋ = fσ(t)(x(t)), and at the breakpoints, sigma has the right side derivative.

The form of the right hand side of the dynamical system is described by the
switching signal. Namely, at specific time moments, ie., for t = τ1, . . . , τl, the
system changes its form from σ(τi) to σ(τi+1), hence the trajectory of the system,
starting at the time t = τi, is given by the vector field fσ(τi+1) instead of fσ(τi). In
the works on switched systems, switching times are usually random or are given
by some law. In the sequel, we consider a different formulation of the problem,
ie., the switching signal is under our control, meaning that we are changing the
behaviour of the system.
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Definition 2.2.3. We say that the switched system

ẋ = fσ(t)(x)

is controllable if for any two points A,B ∈ Rm from the state space there exists a
switching signal generating a trajectory from A to B.

Remark. The above definition corresponds to the concept of controllability for a
control system of the form

ẋ = f (x,u) (2.6)

where the control u plays the role of a switching signal.

As a special case of the system (2.5), we recall the linear switched systems,
[4], of the form

ẋ = Aσ(t)x, (2.7)

where Aσ(t) ∈ Mat2, σ(t) ∈ {1 . . .n} are given matrices. It is a linear system
of ODEs with piecewise constant matrix function and thus, we have a unique
solution for any initial value problem for (2.6) and its extendability on the whole
real line. The solution of the switched system is a combination of the solutions of
the particular subsystems on the corresponding interval.

Depending on the type of switch the following types of switched systems are
distinguished [10]:

• State-dependent versus time-dependent;

• Autonomous (no direct control over the switching mechanism that triggers
the discrete events) versus controllable (direct control over the switching
mechanism)

Stability issue of linear systems

In the study of stability of (2.6), we asssume that σ has infinitely many discon-
tinuities τ1 < τ2 < . . . . Particular interest in the study of switched systems is the
study of the relationship between the stability of each subsystem and the switched
system (2.7).

Since the switched system (2.6) is a linear system of ODEs with a piecewise
constant matrix function Aσ(⋅), we use the standard concept of Lyapunov stability
of solutions.
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In the general case with an arbitrary switching signal, the stability of the
switched system can not be guaranteed by the stability of each subsystem. For
example, a 2× 2 linear switched system with two stable subsystems with matrices

A1 = (
0 1
−2 0) , A2 = (

0 1
− 1

2 0)

is stable if σ is such that the solution of (2.6) is a combination of solutions of
subsystems, such that solutions of the first subsystem goes through the first and
third quadrants, and the solutions of the second subsystem goes through the sec-
ond and fourth quadrants. In this case all trajectories approach zero for t → ∞,
[3]. Simultaneously, the switched system is not stable if σ is such that the solution
of 2.7 is a combination of solutions of subsystems such that solutions of the first
subsystem goes through the second and fourth quadrants, and the solutions of the
second subsystem goes through the first and third quadrants, see Figure 2.1.

Figure 2.1: Unstable switched system with stable subsystems ([4])

However, our interest is not directed to stability, but to the controllability of
switched systems.

The main goal of the following chapter is to consider the standard approach to
finding the phase portrait for each subsystem of the 2 × 2 switched system.

2.3 Standard methods
Let us now concentrate on one of the subsystems of the switched system. Vari-
ous methods of studying these systems include using eigenvalues, phase portrait,
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nullclines etc. Let us consider some of them more precisely.

2.3.1 Nullclines
Consider a system of differential equations of the form

dx
dt
= f (x, y),

dy
dt
= g(x, y).

For our goals it is sufficient to have the existence and uniqueness of the local
solution. Therefore it is enough to request f and g to be continuously differen-
tiable functions in Rm. That guarantees the local existence of the solution, see
theorem 2.1.1. The trajectory of solutions in the phase space is given by the func-
tions f and g as follows: here f (x, y) determines the motion in the x direction
at position (x, y) and g(x, y) determines the motion in the y direction at position
(x, y). A nullcline is a curve in the phase space where the vector field is defined
by the differential equation points in a particular direction.

There are two special cases:

• x-nullcline, ie., the set of points in the phase plane where dx
dt = 0. This

corresponds to the points (x, y) such that f (x, y) = 0. y-motions are further
referred as vertical.

• y-nullcline, ie., the set of points in the phase plane where dy
dt = 0. This

corresponds to the points (x, y) such that g(x, y) = 0. x-motions are further
referred as horizontal.

The x-nullcline and y-nullcline divide the phase plane into particular regions.
Along the boundary of these regions the solutions are either moving horizontally
or vertically. The procedure of construction of the phase portrait is demonstrated
on the following example.

Example 6. Consider the system of ordinary differential equations:

dx
dt
= −x +

y
2
, (2.8)

dy
dt
= −

x
2
− y. (2.9)

Let us find the nullclines using the condition

−x +
y
2
= 0, (2.10)
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−
x
2
− y = 0. (2.11)

implying that
y = 2x, y = −

x
2
.

By substituting (2.10) to (2.9), leading to dx
dt = 0, and (2.11) to (2.8), leading

to dy
dt = 0, we get that along the nullclines, the vertical motion is described by

differential equations
dy
dt
= −

5y
4
,

while the horizontal motion is described by

dx
dt
= −

5x
4
.

The point (x, y) = (0,0)must be an equilibrium point, since there is no motion
in either x or y directions. Two nullclines are dividing the phase plane into four
regions. After checking the signs and directions of nullclines we get the phase
portrait, demonstrated in Figure 2.2. For more details, see [35].

Figure 2.2: Phase plane with nullclines and trajectories

The other approach allows us to get the trajectory directly in terms of the
system.
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2.3.2 Solution as a parametrized curve
Consider the system of the differential equations of the first order:

{
dx
dt = f1(x, y)
dy
dt = f2(x, y)

. (2.12)

In our case, the existence and uniqueness of a local solution suffices; therefore,
it suffices to impose the continuously differentiability condition on the functions

f1(x, y) and f2(x, y), see 2.1.1. The trajectory is parametrized as Γ = {
x = u1(t)
y = u2(t)

,

where (u1,u2) is a solution of (2.12) on the interval (a,b). Then we have

f2(u1(t),u2(t))u′1(t) − f1(u1(t),u2(t))u′2(t) = 0,

for t ∈ (a,b).Now let us consider ( f2(u1(t),u2(t)),− f1(u1(t),u2(t))) and (u′1(t),u
′
2(t))

as vectors. Then after rewriting in terms of the scalar product, we get:

( f2(u1(t),u2(t)),− f1(u1(t),u2(t))) ⋅ (u′1(t),u
′
2(t)) = 0

for t ∈ (a,b).
Therefore, we have proved that for any (x, y) ∈ Γ, the vector

( f1(x, y), f2(x, y))

is tangent vector of the curve Γ. Now assume that the trajectory Γ is given explic-
itly as y = g(x), x ∈ (a,b). Then

( f2(x,g(x)),− f1(x,g(x)) ⋅ (1,g′(x)) = 0

for x ∈ (α, β). If, moreover, f1(x, y) ≠ 0 for (x, y) ∈ Γ, then we get

g′(x) =
f2(x,g(x))
f1(x,g(x))

for x ∈ (α, β) and thus, g is a solution of 2.12. Therefore we come to the differen-
tial equation

dy
dx
= y′ =

f2(x, y)
f1(x, y)

. (2.13)

Consequently, trajectories of (2.12) are integral curves of 2.13.

Let us now consider the types of systems that can occur in 2 × 2 case.
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2.4 Types of 2x2 linear systems depending on equi-
librium point

Let us consider a linear homogeneous system with constant coefficients in the
form

ẋ = Ax, A = (
a b
c d) , a,b, c,d ∈ R, A ∈ Mat2. (2.14)

In the system (2.14), three types of phase trajectories are possible: point,
closed curve, unclosed curve. A point on the phase plane corresponds to the equi-
librium of the system (2.14), while the closed curve corresponds to the periodic
solution, and unclosed to non-periodic solutions of the system (2.14), respectively.
The equilibrium points of the system (2.14) can be found by solving the homoge-
nous system: Ax = 0.

System (2.14) has a unique zero equilibrium position, if detA ≠ 0. If detA = 0,
then, besides the zero equilibrium position, there are others as well, as in this case,
system Ax = 0 has an infinite set of solutions. Qualitative behaviour of phase
trajectories (type of equilibrium) is determined by the eigenvalues of the system
matrix. In the following we consider only the cases det A ≠ 0. The eigenvalues of
the matrix will be found by solving the characteristic equation

λ2 − (a + d)λ + ad − bc = 0.

Note that a+ d = TrA (trace of the matrix) and ad − bc = detA, [35]. Classification
of equilibrium points in the case when detA ≠ 0 is shown in the Table 2.1.

Table 2.1: Classification of equilibrium points in the case detA ≠ 0

Roots of characteristic Equation Point Type
λ1, λ2 are real numbers of the same sign λ1λ2 > 0 Node
λ1, λ2 are real numbers of the opposite sign λ1λ2 < 0 Saddle
λ1, λ2 are complex numbers Reλ1 = Reλ2 ≠ 0 Focus
λ1, λ2 are complex numbers Reλ1 = Reλ2 = 0 Center

Types of the trajectories are demonstrated on the Poincare diagram, see Figure
2.3.
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Figure 2.3: Poincare diagram

The stability of equilibrium points can be determined by general theorems on
stability (see [8]). So, if the real eigenvalues (or real parts of complex eigenvalues)
are negative, then the unique equilibrium point is asymptotically stable. Examples
of such equilibrium points are stable node and stable focus.

If det A ≠ 0 and the real part of at least one eigenvalue is positive, the corre-
sponding equilibrium point is unstable. For example, it may be a saddle.

Finally, in the case of purely imaginary roots (when the equilibrium point is a
center), we are dealing with the classical stability in the sense of Lyapunov.

2.5 Summary of Chapter 2
The Chapter provides an overview of dynamical systems, particularly focusing on
the theory of switched systems. In this chapter we introduced controllability of
switched systems and presented standard methods for analyzing dynamical sys-
tems. Finally, the types of 2x2 linear systems depending on equilibrium points
were discussed.
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Chapter 3

Control of the switched system by
means of GAC

The following chapter deals with the 2× 2 switched systems with two subsystems
of the special type. More precisely, subsystems have a specific equilibrium point
and trajectories intrinsic to Geometric Algebra for Conics. Indeed, the trajectories
in question are ellipses and hyperbolas, ie., the elements of GAC.

3.1 Center-Center
In the following section, the case of 2 × 2 matrices with both subsystems having
pure imaginary eigenvalues is studied. Further we will refer to this type of the
switched system as Center-Center. This case has already been considered in [38],
and the main difference lies in using GAC as a suitable space for geometric op-
erations with the ellipses, for elementary notions see Chapter 1. First, consider
one dimensional oscillation problem of a spring pendulum under the condition of
absence of external and friction forces and its model equation in the form

ẍ = −kx, k ∈ R (3.1)

with a switchable stiffness coefficient k > 0 with two possible values. In the spring
pendulum problem, this corresponds to joining and removing an additional spring
with stiffness coefficient k2 to the original spring with stiffness coefficient k1. Two
cases can be considered. If the springs are connected in parallel, the parameter k
of the system switches between k1 and k1 + k2. If the connection is in series, the
parameter k of the system switches between k1 and k1k2

k1+k2
.
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Let us rewrite the differential equation (3.1) of the pendulum oscillations as a
switched system in the form of a system of two differential equations of order one
by denoting

x1 = x, x2 = ẋ.

Consequently, if we set x = (x1, x2)
T , the resulting system in the matrix form can

be written as
ẋ(t) = Aix(t), Ai ∈ Mat2(R), i = 1,2. (3.2)

Without the loss of generality, let us assume that we start and end with the first
system i = 1. Suppose that two nonzero points (starting S = [a1,a2] ∈ R2 and end
E = [b1,b2] ∈ R2) are given.

Let us consider the particular type of the switched system (3.2) with the system
matrix of the form

Ai = (
0 1
−αi 0) , αi ∈ R

+ for i = 1,2.

Namely, αi ≠ 0. Then the solution of the system is of the form

x1(t) = γ1 sin(
√
α1t) + γ2 cos(

√
α1t),

x2(t) =
√
α1γ1 sin(

√
α1t) −

√
α1γ2 cos(

√
α1t), γ1, γ2 ∈ R.

The trajectories for the system with pure imaginary eigenvalues are ellipses. In
the case TrAi = 0 , ie., the case of the spring pendulum without damping, for
example,

Ai = (
0 1
−αi 0) , αi ∈ R

+,

we have an axis-aligned ellipse, while if TrAi ≠ 0, then the ellipses are rotated and
the given switched system is equivalent to the equation describing the oscillatory
system with damping. In this case the rotation angle can be calculated from the

elements of the conic matrix Q, (1.9), namely of its 2× 2 submatrix (
q11 q12

q21 q22
) as

follows:

θ =

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

arctan ( 1
q12
(q22 − q11 −

√
(q11 − q22)

2 + q12)) , q12 ≠ 0

0, q12 = 0, q11 < q22
π
2 , q12 = 0, q11 > q22

Note that this enables us to solve efficiently even the systems with rotated ellipses
as the trajectories.
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3.2 Algorithm for a switching path construction
In the following, we describe the algorithm for finding a control of a switched
system, ie., finding a path composed of the systems’ integral curves from the
starting point S to the endpoint E such that the number of switches is minimal.
More information ca be found in [31]. Consider the case n = 2, ie., only two
systems are included, and both starting and final ellipse belong to the same family.
To apply the GAC based calculations, it is necessary to get the exact GAC form
of the representatives of both families of ellipses. Thus the system of ODEs is
solved numerically (e.g. by Runge-Kutta method) with the initial condition at the
starting point A. This will give us a set of points representing the initial ellipse.
After applying the GAC conic fitting algorithm, [16], we get the ellipse in IPNS
representation. Note that according to [33], the algorithm may be further specified
by prescribing the resulting ellipse to be axis-aligned and with its centre placed in
the origin. This makes the initial trajectories very precise.

1. Get S ,E, the starting and final point, respectively, ie., get their conformal
embedding C(S ), C(E) to GAC, (1.2).

2. Find the IPNS representation of the initial ellipse E1
1 by conic fitting algo-

rithm. Let us denote its semiaxis by a and b.

3. Find the final ellipse E f in the following two steps:

● Construct a line l passing through the points C([0,0]) = n̄+ and C(E)
according to Remark (1.6.1):

l = C(E) ∧ n+ ∧ n̄+ ∧ n− ∧ n×.

Find the intersection point C = E1
1∩l of the line and the starting ellipse,

ie., solve a quadratic equation in a Euclidean space as in Example 3.

● According to Proposition 1.6.4, the scale parameter between the start-
ing and final ellipse is

S P1 =
∣n̄+ ⋅ C(E)∣
∣n̄+ ⋅ C(C)∣

.

Construct the scalor according to Proposition 1.6.4 and the final ellipse
E f by (1.4) as

E f = S +S −S ×E1
1S̄ ×S̄ −S̄ +.
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4. Find the first intermediate ellipse E1
2. Note that lower index shows the num-

ber of subsystem, to which ellipse belongs. Take e.g. [0,b] as initial con-
dition and find IPNS representation of the sample ellipse Es by GAC conic
fitting algorithm, [33]. In order to get the circumscribed ellipse E1

2, we need
Es to have four intersection points with E1

1. This can be checked easily by
determining the type of the conic (E1

1 ∧ Es)
∗ ∧ n̄+ and we shall scale Es

by a factor α < 1 as in (1.4) until the conic type of (E1
1 ∧ Es)

∗ ∧ n̄+ is two
intersecting lines. Then continue.

● Find the intersections E1
1 ∧ E1

2 according to Chapter 1.6.4.

● Construct pair of lines p1 and p2 according to Remark 1.6.1 and cal-
culate their axis p = 1

2(p1 + p2). To recognize the correct line one
can use the inner product with the lines determined by the ellipse E1

1
semiaxis denoted also as a and b. Indeed, a ⋅ p ≤ b ⋅ p which is clear
from Figure 1.7 and from the properties of inner product similar to the
scalar product of vectors. Clearly, in IPNS representation both a and
p are 1-vectors.

● Construct the intersection of p and E1
1 by Pt12 = E1 ∧ p. Then Pt12 is a

point pair of contact points Pt1 and Pt2.

● Calculate the scaling parameter α between the ellipses Es and E1
2 as

α = ∥S Pt1∥
a′ , where a′ is the length of Es semiaxis. Note that the ellipse

parameters may be easily computed from the matrix (1.9). Correctness
of this calculation follows from Proposition 1.6.4.

● Construct E1
2 by rescaling Es.

5. Check the intersection between E f and Ei
2, where i = 1,2.. is the number of

additional ellipse in the following steps.

(a) If E f ∩ Ei
2 ≠ ∅ Ô⇒ find the intersection points of all ellipses, get the

path from A to B by choosing the nearest point with respect to the path
evolution. This will switch to final ellipse.

(b) If E f ∩ Ei
2 = ∅ Ô⇒ calculate the scaling parameter S P according to

Proposition 1.6.4.

By scaling Ei
1,E

i
2 using S P get new pair of circumscribed ellipses

Ei+1
2 ∶= scale(Ei

2,S P), Ei+1
1 ∶= scale(Ei

1,S P),
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Get intersection Ei+1
1 ∩Ei+1

2 , add points of intersection to the list of switching
points and return to the beginning of the step 5 until E f ∩ E j

2 ≠ ∅ for some
j. This cycle constructs the sequence of ellipses from the starting ellipse to
the final one.

As a result, the above algorithm provides a sequence of switching points as
well as a sequence of trajectories in GAC [31]. For example of the resulting path
see Figure 3.4.

3.3 Examples and comparison to the numerical
methods

Let us now consider the following set of examples, which generalize the system
from [39, p. 6]. The following systems describe the oscillatory problem without
damping.
Example 7. Consider the switched system (3.2) in its matrix form, ie., ẋ = Aix,
for i = 1,2, where

A1 = (
0 1
−2 0) , A2 = (

0 1
−1

2 0) .

Consider the starting point S = [2,5] and the ending point E = [12,22].We need
to find the path from S to E composed of the respective system trajectories. For
example of the pair of ellipses families see Figure 3.1, left, where the ellipses have
a common centre and perpendicular semiaxes. In Figure 3.1, right, the resulting
path can be found. Consequently, the set of switching points is calculated with the
following result:

[0,-5.74456],[8.12404,0],[0,11.48913],[-16.24808,0],

[0,-22.97825],[23.2054167141,12.86501593890354].

This is a result of Python code written in a module Clifford according to the algo-
rithm in Chapter 3.2. Note that the red points in Figure 3.1, left, form the set of
points generated by Runge-Kutta method and you can see the fitted conic, too.

In order to compare the result received by the use of GAC with numerical so-
lution, we solve the same system numerically. Instead of GAC conic fitting and
searching for intersections, we use Runge-Kutta method for the next ellipse con-
struction and for the last ellipse we get the system of two quadratic equations. For
fitting the ellipse we use the least squares fitting of ellipses by Halir and Flusser
[40].
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Figure 3.1: Example 7

1. Get S ,E, the starting and final point

2. Find the IPNS representation of the initial ellipse E1
1 by conic fitting algo-

rithm. Let us denote its semiaxis by a and b.

3. Find the final ellipse E f in by Runge-Kutta and conic fitting algorithm

4. Find the intermediate ellipse Ei
2. Note that lower index shows the number

of subsystem, to which ellipse belongs. Take e.g. [0,b] as initial condition
and using Runge-Kutta for solving the system of differential equations with
the starting point and [0,b].

5. Using ellipse fitting algorithm get the needed intermediate ellipse.

6. Check the intersection between E f and Ei
2, where i = 1,2.. is the number of

additional ellipse in the following steps. This is done by solving the system
of quadratic equations.

(a) If E f ∩ Ei
2 ≠ ∅ Ô⇒ find the intersection points of all ellipses, get the

path from S to E by choosing the nearest point with respect to the path
evolution. This will switch to final ellipse.

(b) If E f ∩ Ei
2 = ∅ Ô⇒ then keep constructing inscribed ellipses Ei

1 and
Ei

2.
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Get intersection Ei+1
1 ∩Ei+1

2 , add points of intersection to the list of switching
points and return to the beginning of the step 5 until E f ∩ E j

2 ≠ ∅ for some
j. This cycle constructs the sequence of ellipses from the starting ellipse to
the final one.

As a result of the above numerical algorithm we receive the following set of
switching points:

[0.0, 5.74456265], [8.1240384,0.0], [0.0, 11.48912529],

[16.24807681,0.0],[0.0,22.97825059],

[-21.1344899771933,12.7540843143374].

Let us compare the resulting coordinates with the case of using geometric algebra:

[0.0, 5.744562646461688], [8.12404, 0.0], [0.0, 11.48913],

[16.24808, 0.0], [0.0, 22.97825],

[-23.205416714111358, 12.86501593890354].

Note that the final switching point is different in the numeric case. This hap-
pens due to the fact that the calculations in the numerical solution contains a nu-
merical error in the final numerical calculation of the ellipses intersection, which
is completely avoided in the case of GAC where the intersections are obtained
geometrically, for more details see Section 1.6.4.

Example 8. Let us note that numerical error increases with the increasing num-
ber of the intermediate ellipses. Every new ellipse is carrying the error from the
previous step and this can lead to the differences in the set of switch points, see
Figure 3.2 displaying the set of intermediate ellipses geometrically for both GAC
(left) and numerical(right) solution although the difference is not quite clear. To
see the error in coordinates, we add the list of respective switching points. The
following list represents the respective switching points and their coordinates for
numerical and GAC solution. Note that the difference between the final switch-
ing point FNUM and FGAC of the numerical method and GAC, respectively, is
significant.

NUMERIC

[0.0, 5.744562646461688], [8.12404, 0.0], [0.0, 11.48913],

[16.24808, 0.0], [0.0, 22.97825], [32.49615, 0.0],

[0.0, 45.9565], [64.99231, 0.0], [0.0, 91.913],

FNUM=[-101.93109159592173, 29.564380018122797]
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Figure 3.2: Example 8, GAC solution(left) and numeric solution(right)

GAC

[0.0, 5.74543306], [8.12526935, 0.0, [0.0, 11.49086611],

[16.2505387, 0.0], [0.0, 22.98173222], [32.5010774, 0.0],

[0.0, 45.96346444],[65.00215479, 0.0], [0.0, 91.92692889],

FGAC=[-89.9967425686796,26.5008143923407]

Let us note that even numerically we can find the switches of the system, but they
may not be optimal due to the amount of switches, see the following example.

Example 9. In some cases even the number of switches can be different. If, for
example, the ending point belongs to one of the ellipses of the starting family, and
the number of steps is relatively large, the numeric solution can offer extra ellipse,
therefore, the set of switching points is growing and the solution is not optimal
with respect to the number of switches.

Figure 3.3, right, demonstrates the extra horizontal ellipse leading to new ver-
tical ellipse as a solution, offered by numerical solution. Nevertheless, the num-
ber of switches can differ only by 1 because the length of the semiaxes of the
circumscribed ellipses grows much faster than the numerical error. As a result we
conclude that the numeric solution may not be optimal with respect to the number
of switches.

Example 10. Now let us consider the pendulum problem with damping. The cor-
responding switched system is switched system ẋ = Aix, i = 1,2, where matrices
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(a) GAC solution (b) Numeric solution

Figure 3.3: Example 9

of the sybsystems are given as

A1 = (
0 1
−2 0) , A2 = (

1 1
−2 1) .

The starting point is [2; 5], and we need to find a path to the point [30; 22]. Both
of the matrices have pure imaginary eigenvalues, so the system is switching be-
tween ellipses. Ellipses of the second family are rotated. That means that the
second subsystem describes one of the cases of the oscillatory system with damp-
ing. These can also produce other types of conics, e.g. spirals, but that case is not
the point of our interest. The set of switching points is

[-2.88653912573,-3.697011208397],

[-4.23042514649,8.76807759024],

[5.98270815467, -7.662511450902],

[-8.76807759024,18.1729216252],

[-15.88149952097,-12.39990012429],

[-11.14111993673,43.01897176660]

and the switching path calculated in Python module Clifford can be seen in Figure
3.4.

Remark. Problems with a closed curve, ie., when the starting point coincides with
the ending point, may be of particular interest. In this case, the controllability
condition also applies. Let S be the starting point and let A be an arbitrary point
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Figure 3.4: Example 10

on the phase portrait. Then the existence of a path from S to A follows from the
controllability of the system. Similarly, there exists a path from A to S . Thus, we
obtain a curve with a start and an end at S and passing through an arbitrary point
A, see Figure 3.5.

Figure 3.5: Closed curve controllability

Note that the presented algorithm is applicable for the switched systems, with
subsystems, whose phase curves are intrinsic to GAC elements.
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3.4 Saddle-Saddle
In the following section, the case of 2 × 2 matrices with both subsystems having
real eigenvalues is considered. Further we will refer to this type of the switched
system as Saddle-Saddle. The equilibrium point is called a Saddle under the fol-
lowing condition: the eigenvalues λ1, λ2 are real numbers of the opposite sign,
ie., λ1λ2 < 0. Since one of the eigenvalues is positive, the saddle is an unstable
equilibrium point. Let us suppose λ1 < 0, λ2 > 0.

The straight lines directed along the corresponding eigenvectors are called
separatrices. These are the asymptotes of other phase trajectories that have the
form of a hyperbola. Each of the separatrices can be associated with a certain
direction of motion.

Let us consider switched system

ẋ(t) = Aix(t), i = 1,2,

where

A1 = (
0 1
α 0) , A2 = (

0 1
1/α 0) , α > 0, α ∈ R.

Considering subsystems of the switched system separately, we get the solution
of the first subsystem

ẋ(t) = A1(x(t))

in the form
x1(t) = γ1e

√
αt + γ2e

√
αt

x2(t) = −
√
αγ1e

√
αt +
√
αγ2e

√
αt

and the solution of the second subsystem

ẋ(t) = A2(x(t))

in the form
x1(t) = δ1e

1√
α

t
+ δ2e

1√
α

t

x2(t) =
1
√
α
δ1e

1√
α

t
−

1
√
α
δ2e

1√
α

t
,

respectively.
For now let us fix α > 1. Let us now consider phase portraits for both systems.

We start from plotting them separately for each subsystem, and then the Figure
3.7 shows both systems together.
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Figure 3.6: Phase portraits for first(left) and second(right) systems for α = 4
Let us consider the phase portrait for a switched system (see Figure 3.7) and let
us argue those types of the system that are not controllable. We will demonstrate
it on the system’s phase portrait.

Figure 3.7: Phase portrait for switched system for α = 4
In this case, there is no set of switching points that allows to get from points in the
first and third quadrants to points in the second and fourth quadrants. Therefore,
there exists at least one pair of points that cannot be connected by a trajectory.

Thus, a Saddle-Saddle type switched system is not controllable. Let us note
that in the case when the algorithm for switching path construction, see 3.2, is
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applied, it will be interrupted by reaching a predescribed maximal number of iter-
ations.

3.5 Center-Saddle

In the next step, we consider a switched system, where one of the matrices has
real eigenvalues of different signs (a singular point of the Saddle type), and the
other has purely imaginary eigenvalues.

Let us consider switched system (3.2), where matrices take the form

A1 = (
0 1
−α 0) , A2 = (

0 1
1/α 0) , α > 0, α ∈ R. (3.3)

When switched system consists of subsystems of the Center and Saddle type, the
algorithm 3.2 is also applicable, but it is greatly simplified. The fact is that in this
case, only two switches are enough to find the path. Let us formulate the following
theorem.

Theorem 3.5.1. The switched system (2.14) with subsystems having matrices
of the type (3.3) is controllable. Moreover, if the movement from the starting
point corresponds to the system of the Saddle type, then it is possible to get to an
arbitrary end point using two switches.

The proof follows directly from the fact that for any two axes aligned hyperbolas
of the form

x2 − αy2 = c2

there exists an ellipse of the form

x2 +
y2

α
= d2,

intersecting both of the hyperbolas.
Therefore, the first step is to find the hyperbolas passing through the starting

and ending points. Then the intermediate ellipse is used for the motion between
them, therefore we find the needed path with 2 switches (see Figure 3.8).

57



Figure 3.8: Phase portrait for system with Saddle and Center subsystems, α = 4,
Starting point [-2,2], ending point [-3,-1]

Remark. The starting point lies on the hyperbola H1, the end point on the hyper-
bola H2, respectively. We need an ellipse from the auxiliary family that will have
a contact point with one of the hyperbolas and intersect with the other. To find
such an ellipse, we take an instance of the auxiliary class (ellipse) and scale it un-
til the contact point with hyperbola which semiaxis it bigger. That will guarantee
us intersection with the other hyperbola. The scaling procedure is done with the
scalor 1.16 by means of GAC.

3.6 Node-Node
We again consider switched system (3.2), where the system matrices take the
following form

A1 = (
1 α
−α 1) , A2 = (

−1 1
α

− 1
α
−1)

where α > 0, α ∈ R.
The eigenvalues λ1, λ2 of the respective subsystems are real numbers of the

same sign, therefore we classify the equilibrium point as point of type Node.
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The following particular cases may arise here.

3.6.1 Stable Node
In the case of Stable Node (also known as Sink) the roots λ1, λ2 are distinct λ1 ≠ λ2

and negative.
Let us consider the phase portrait for this system. Suppose that ∣λ1∣ < ∣λ2∣. The

general solution has the form

x(t) = C1eλ1tv1 +C2eλ2tv2,

where v1 = (v11, v12)
T , v2 = (v21, v22)

T are the eigenvectors corresponding to λ1, λ2,
respectively. As t →∞, the phase trajectories tend to the origin. Therefore the ori-
gin is equilibrium point of the type Stable Node. Let us consider it more precisely.
Since

x1(t) = C1v11eλ1t +C2v21eλ2t,

x2(t) = C1v12eλ1t +C2v22eλ2t,

dx2

dx1
=

C1v12λ1eλ1t +C2v22λ2eλ2t

C1v11λ1eλ1t +C2v21λ2eλ2t
=

C1v12λ1 +C2v22λ2e(λ2–λ1)t

C1v11λ1 +C2v21λ2e(λ2–λ1)t .

In this case, λ2 − λ1 < 0. Therefore, the terms with the exponential function tend
to zero as t →∞. As a result, for C1 ≠ 0, we obtain

lim
t→∞

dx2

dx1
=

v12

v11
,

ie., the phase curves get the direction of the eigenvector v1 as t →∞. If C1 = 0, the
derivative at any t equals dx2

dx1
=

v22
v12

, ie., the phase trajectory lies on a line directed
along the eigenvector v2 as t → −∞. The coordinates x1(t), x2(t) tend to infinity,
and the derivative dy

dx for C2 ≠ 0 is of the following form:

dx2

dx1
=

C1v12λ1e(λ1–λ2)t +C2v22λ2

C1v11λ1e(λ1–λ2)t +C2v21λ2
=

v22

v21
,

therefore, the phase curves at the points at infinity flow in the direction to the
vector v2.

Now let us consider the switched system 2.5 with both subsystems having
equilibrium point of the type Stable Node, ie.,
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A1 = (
−1 0
0 −α

) , A2 = (
−1 0
0 − 1

α

)

where α > 0, α ∈ R. We show the phase portraits together with some phase curves
for the systems with the matrices A1,A2 as above separately in Figure 3.9 and the
phase portraits for the same switched system in one picture, Figure 3.10.

Figure 3.9: Phase portrait for both systems with α = 2

Now let us consider both subsystems together and investigate them from the geo-
metric point of view, see Figure 3.10.
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Figure 3.10: Phase portrait for switched system for α = 2

In this case, it is impossible to leave a neighborhood of zero, so there exists no
switching path if the starting point is laying closer to the origin than the ending
point. Therefore, switched systems of this type are not controllable.

3.6.2 Unstable Node

The case of Unstable Node (also known as Source) is analogical to the case of Sta-
ble Node but with both corresponding eigenvalues being positive. More precisely,
we consider the system (3.2) with the matrices

A1 = (
1 0
0 α
) , A2 = (

1 0
0 1

α

) .

where α > 0, α ∈ R.
Taking into account the geometry of the system (see Figure 3.11), note that

there is no set of switching signals that allows the path from a point in R2 to a
point that is closer to the origin. Therefore, similarly to the previous case, the
system is not controllable.
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Figure 3.11: Phase portrait for switched system with α = 2

3.6.3 Stable-Unstable Nodes

Now let us consider the combination of Stable and Unstable Nodes, ie., the system
(3.2) with matrices

A1 = (
−1 0
0 −α

) , A2 = (
1 0
0 1

α

) .

where α > 0, α ∈ R.
Let us again consider the phase portrait of the system, see Figure 3.12. From

the geometric point of view, the system is controllable with the starting and ending
point lying in the same quadrant. But in general, the switching path does not exist
for any two points. For example, the movement from the point [1,2] to the point
[−1,2] can be taken into account only if we formally consider the origin to be a
switching point. But this point is not feasible for finite t, therefore, this type of the
switched systems is also not controllable.
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Figure 3.12: Phase portrait for switched system with α = 2

3.6.4 Dicritical Node
Now let us consider a specific case, precisely the case of Dicritical Node. It is
again the switched system (3.2), where the eigenvalues of both system matrices
are equal and nonzero, ie.:

λ1 = λ2 = λ ≠ 0.

The system has a basis of two eigenvectors, ie., the geometric multiplicity of the
eigenvalue λ is 2, in other words the dimension of the eigenspace of A is equal to
2. This situation occurs for systems of the form

dx1

dt
= λx1,

dx2

dt
= λx2

as the first subsystem with eigenvalue λ and

dx1

dt
= νx1,

dx2

dt
= νx2

as the second subsystem with eigenvalue ν, respectively. Consider first subsystem
in details. The direction of the phase trajectories depends on the sign of λ. Here
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the following two cases can arise: for λ1 = λ2 = λ < 0, the equilibrium is called a
Stable Dicritical Node and for λ1 = λ2 = λ > 0, Unstable Dicritical Node. Phase
portraits for both cases are demonstrated separately on Figure 3.13.

Figure 3.13: Phase portrait for both systems for α = 2

This leads to a conclusion that this type of switched system is not controllable.
A switch is between two different trajectories is possible in the equilibrium point
only, but this point is not feasible. If the two trajectories are identical with oppo-
site orientation, then the motion is allowed within this particular trajectory only.
Therefore, the system is not controllable.

3.7 Center-Node
We again consider switched system (3.2) with the system matrices of the following
form

A1 = (
0 1
−α 0) , A2 = (

1 α
−α 1) , α > 0, α ∈ R. (3.4)

The first subsystem matrix A1 has pure imaginary eigenvalues, ie., it is classified
as the type Center. The second subsystem matrix A2 has real eigenvalues, both
positive or both negative, ie., it is classified as the type Node.

From geometrical point of view, we again conclude that the switched system
will not be controllable. Similarly to the previous not controllable cases, the Cen-
ter type system does not allow movement towards the origin (see Figure 3.14).
Therefore there exists at least one pair of points that cannot be connected by a
path, e.g., the starting point being further from the origin than the end point, and
thus the system is not controllable.

64



Figure 3.14: Phase portrait for system with Node and Center subsystems, α = 2

3.8 Summary of Chapter 3
The Chapter describes the controllability of the 2 × 2 switched systems with reg-
ular matrices of each subsystem by the means of Geometric Algebra. It was
demonstrated that the use of GAC for construction of switching points of 2D
switched systems leads to the solution that is optimal with respect to the num-
ber of switches. From the geometric nature of our approach we can see that the
number of switches can only differ by 1 from the numerical solution but also the
numerical error for particular switches must be taken into account. We provided
examples with axes aligned ellipses but from the description of GAC it is clear,
that their approach will handle rotated conics of any type as well, in which case
numerical solution will carry even larger error.
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Chapter 4

Cases laying out of GAC

In the previous chapter we considered the cases where the phase curves of the
subsystems of the switched system are intrinsic to GAC, ie., conic sections.

The aim of the following chapter is to describe particular systems whose phase
portrait contains 2D curves, not being conic sections (for example, spirals), there-
fore, laying out of GAC.

Upon further investigation, it turned out that among the switched systems with
regular 2x2 matrices, except the systems described in the previous Chapter, con-
trollable can be also switched systems corresponding to switch between matrices
with equilibrium point of the type stable and unstable Focuses (λ1, λ2 are com-
plex numbers Reλ1 = Reλ2 ≠ 0) and partially controllable systems are systems,
which have switches between Saddle (λ1, λ2 are real numbers of the opposite sign
λ1λ2 < 0) and Focus (λ1, λ2 are complex numbers Reλ1 = Reλ2 ≠ 0). Now let us
consider those cases in detail.

4.1 Focus-Focus

The equilibrium point of dynamical system of the form

ẋ = Ax, A ∈ Mat2(R),

is called a Focus under the following condition: the eigenvalues λ1, λ2 of the ma-
trix A are complex numbers with non-zero real part. If the matrix A is composed
of real numbers, the complex roots the characteristic polynomial are conjugate
complex numbers: λ1,2 = a ± ib.
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The solution x(t) corresponding to the eigenvalue λ1 = a + ib is of the form

x(t) = eλ1tv1 = e(a+ib)t(u + iw)

where v1 = u+iw is the complex-valued eigenvector associated with the eigenvalue
λ1, u and w are 2D real vectors. As a result, we obtain

x(t) = eateibt(u + iw) = eat(cos bt + i sin b)(u + iw) =

= eat(u cos bt −w sin bt)) + ieat(w cos(bt + u sin bt)).

The real and imaginary parts in the above expression form real solution

x(t) = C1Re(x(t)) +C2Im(x(t)) =

= eat(u(C1 cos bt +C2 sin bt) +w(C1 cos bt −C2 sin bt)), C1,C2 ∈ R.

If we set the constants C1 = C sin δ, C2 = C cos δ, C ∈ R, where δ is an auxiliary
angle, then the solution can be rewritten as

x(t) = Ceat(u(C1 sin δ cos bt +C2 cos δ sin bt) +wC1 cos δ cos bt +C2 sin δ sin bt) =

= Ceat(u sin(bt + δ) +w cos(bt + δ)).

Thus, the solution x(t) can be expressed in the basis of vectors u and w:

x(t) = µ(t)u + ν(t)w,
µ(t) = Ceat sin(bt + δ),

ν(t) = Ceat cos(bt + δ).

Therefore, the phase trajectories are spirals. In the case Re(λ1) = a < 0 and
Re(λ2) = a < 0, the spirals twist in the direction towards the equilibrium point,
which is then called a Stable Focus. Similarly, in the case of a > 0, the equilibrium
point is an Unstable Focus.

Figure 4.1: Phase portrait for Stable Focus (left), and Unstable Focus (right), α = 2
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4.1.1 Unstable Focus
Let us consider a switched system (3.2) with two subsystem matrices

A1 = (
1 −α
α 1 ) , A2 = (

1 − 1
α

1
α

1 )

where α > 0, α ∈ R. Both subsystems are classified as Unstable Focus (also known
as Spiral Source).

Let us investigate the phase portrait for given above switched system (see Fig-
ure 4.2, right) and let us argue those types of the system that are not controllable.
We will demonstrate it on the system’s phase portrait.

Figure 4.2: Phase portrait for switched system with Stable Focus (left), and Un-
stable Focus (right), α = 2

In this case, there is no set of switching points that allows to get from a point
laying far from the origin to the points in the neighborhood of zero. Therefore,
there exists at least one pair of points that cannot be connected by a trajectory.

Thus, the system is not controllable.

4.1.2 Stable Focus
Let us consider a switched system (3.2) with two subsystem matrices

A1 = (
−1 α
−α −1) , A2 = (

−1 1
α

− 1
α
−1) ,
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where α > 0, α ∈ R. Each subsystem is classified as Stable Focus (also known as
Spiral Sink).

Let us consider the phase portrait for a switched system (see Figure 4.2, left)
and let us argue those types of the system that are also not controllable. We
will demonstrate it on the system’s phase portrait. In this case, there is no set
of switching points that allows to leave the neighborhood of zero. Therefore,
there exists at least one pair of points that cannot be connected by a trajectory.

Thus, switched systems of this type are also not controllable.

4.1.3 Stable-Unstable Focus
Now let us investigate case of switching between systems with stable and unstable
focuses. Let us consider the system (3.2), with the following matrices

A1 = (
1 α
−α 1) , A2 = (

−1 1
α

− 1
α
−1) ,

where α > 0, α ∈ R. As an example, see Figure 4.3 for a phase portrait of a
switched system in question and let us demonstrate on an example that for such
system it is always possible to find a control for any pair of starting and end points.

Figure 4.3: Phase portraits for systems with Stable and Unstable Focus, α = 2
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Example 11. Let us consider the system (3.2) with the following particular matri-
ces, ie., we choose α = 2 ∶

A1 = (
1 2
−2 1) , A2 = (

−1 1
2

− 1
2 −1) .

Let the starting point be S = [−2;−1.1] and the ending point E = [1; 2.4]. We start
from finding the corresponding spirals passing through S and E, respectively. The
switching path is then constructed by switching between the spirals in arbitrary
points with the final switch given by the intersection with the spiral containing the
endpoint. For instance, the set of switching points can be the following:

[-2.7352;3.9998], [-0.5613;2.0000], [3.1032;2.0451],

[2.2142;0.8132], [2.6106;-1.2371].

The corresponding switching path is demonstrated in Figure 4.4.

Figure 4.4: Example 11, α = 2
Note that due to the different directions of the spirals any two points can be

connected by a path containing finite number of switches. Moreover, with respect
to the minimal number of switches, any two points may be connected by a switch-
ing path containing just one switch. The reason is that two spirals corresponding
to different subsystems have infinitely many intersections and therefore it is al-
ways possible to choose a switch which will consequently take us to the endpoint.
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Note that this choice may lead to undesirably long time. In conclusion, our system
is controllable and from the geometrical point of view, the switched system of the
type Stable and Unstable Focus is controllable.

4.2 Saddle-Focus
Let us consider a switched system (3.2) with the subsystem matrices of the form

A1 = (
0 1
α 0) , A2 = (

−1 1
α

− 1
α
−1) ,

where α > 0, α ∈ R. This case corresponds to the switch between Saddle and
Stable Focus type subsystems, respectively.

For this system, two cases may arise, ie., 0 < α < 1 and α > 1.
First, for 0 < α < 1, due to the orientation of the spiral, the system is con-

trollable everywhere except the equilibrium point which is unreachable. This is
similar to the case Center-Saddle, for more details see 3.5.

Second, for α > 1, there is no set of switching points that allows to get from
the first (third) quadrant to the second (fourth) quadrants, respectively. Therefore,
there exists at least one pair of points that cannot be connected by a trajectory.
Thus, a Saddle-Saddle type switched system is not controllable for α > 1.

Therefore, the controllability of the system depends on the value of real part
of the Saddle system’s eigenvalue Reλ = α. Those systems we classify as control-
lable under condition.

If in the previous system, Stable Focus is changed for Unstable Focus, ie., the
subsystem matrices are of the form

A1 = (
0 1
α 0) , A2 = (

1 1
α

− 1
α

1) ,

controllability is guaranteed for α > 1 except the equilibrium point, while for
0 < α < 1, the system is not controllable. Again, those systems are classified as
controllable under condition.

Figure 4.5 demonstrates the phase portraits for parameter α = 2 for Saddle
type system combined with Unstable Focus (left) and with Stable Focus (right). It
can be easily observed from the form of the phase portraits that the first system is
controllable except the unreachable equilibrium point while the second system is
not controllable.
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Figure 4.5: Saddle and Unstable Focus subsystems and Saddle and Stable Focus,
α = 2

4.3 Node-Focus
Let us consider a switched system (3.2), with the subsystem matrices of the form

A1 = (
1 α
−α 1) , A2 = (

−1 1
α

− 1
α
−1) ,

where α > 0, α ∈ R. This case corresponds to the switch between Stable Node and
Stable Focus type subsystems. Let us consider the phase portrait for a switched
system depicted in Figure 4.6. Clearly, it demonstrates that such system is not
controllable because no motion from the origin is allowed, more precisely, every
allowed trajectory tends to the origin. Therefore, there exists at least one pair of
points that cannot be connected by a trajectory. Thus, the system is not control-
lable.

4.4 Summary of Chapter 4
The Chapter describes the controllability of the 2 × 2 switched systems with reg-
ular matrices of each subsystem, whose phase portraits are not conic sections.
Concrete examples and phase portraits were utilized to illustrate the controllabil-
ity characteristics of different system configurations. It was demonstrated that the
only controllable systems from cases laying out of GAC are the systems, which
are the combination of Stable and Unstable focuses. The switched systems with
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Figure 4.6: Phase portrait for system with Stable Node and Stable Focus subsys-
tems, α = 2

subsystem matrices’s curves of the types Saddle and Focus are ”controllable un-
der condition”, ie., dependent on the constant. Those systems were found to be
controllable only within certain parameter ranges, contingent upon the real part of
the Saddle system’s eigenvalue.
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Chapter 5

Results

As a result we get the following table that shows which type of switched system
is controllable. For example, switched systems with matrices of the type Center-
Center (both matrices have pure complex eigenvalues), are controllable, while
switched systems with matrices of the type Saddle-Saddle(both matrices have real
eigenvalues) are not controllable.

Table 5.1: Controllability of the switched 2x2 systems

A1 n A2 Center Saddle Node Focus
Stable Unstable Stable Unstable

Center + + - - - -

Saddle + - - -
controllable
under condition

controllable
under condition

Node Stable - - - - - -
Unstable - - - - - -

Focus Stable -
controllable
under condition - - - +

Unstable -
controllable
under condition - - + -

Therefore, the only controllable types of the switched systems are the combi-
nation of Center and Saddle, Center and Center, Stable and Unstable focuses. The
switched systems with subsystem matrices’s curves of the types Saddle and Focus
are ”controllable under condition”.
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Chapter 6

Conclusions

The thesis dealt with the controllability of the 2×2 switched systems with regular
matrices of each of two subsystems. For the systems whose phase trajectories are
conics (which are the elements of GAC), the Geometric Algebra approach was
used. It was demonstrated that the use of GAC for construction of switching paths
of 2D switched systems leads to the solution that is optimal with respect to the
number of switches.

We demonstrated a complete geometric algorithm for a system with two fam-
ilies of axes–aligned, centralized ellipses in Example 5, where we showed sym-
bolic and Python calculations, respectively. In addition, we used a property of
GAC that it contains a two–dimensional conformal geometric algebra CRA, where
our calculations were completed. This case corresponds to an oscillatory switched
system without damping. But our approach applies also for damped systems
where the integral curves are formed by rotated ellipses, ie., non axes–aligned,
which we demonstrated in Examples 3 and 10. Also in this case no solver was
needed because, in the system of two quadratic equations describing the ellipses’
intersections, we replaced an ellipse equation by a line equation which reduced
the degree and allowed analytic solution. Note that both approaches exploit the
elegance of conics manipulation in GAC by constructing a pair of lines contain-
ing the intersecting points and circumscribed ellipses simply calculated by GAC
scaling with a factor determined according to Proposition 1.6.4. Let us point out
that even the preparation of initial trajectories is highly geometric. Fitting a conic
with prescribed properties in GAC eliminates an error in numerical solution to
our switched system. Indeed, all trajectories will be precisely of a given type, ie.,
co–centred and axes–aligned. Consequent GAC transformations do not change
these properties and do not input any numerical errors. Therefore, the only place
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for a rounding error is the calculation of fractions and square roots because all
operations in GAC may be converted to sums of products, [28, 41].

Using the geometric nature of our approach, we demonstrated that the number
of switches can only differ by 1 from the numerical solution but also the numerical
error for particular switches must be taken into account. We provided examples
with axes aligned ellipses but from the description of GAC it is clear, that this
approach will handle rotated conics of any type as well, in which case numerical
solution will carry even larger error.

Therefore, the advantages of using GAC lies in the following: The GA ap-
proach speeds up algorithms, eliminates the need for numerical solvers, reduces
computational complexity, minimizes numerical errors, and allows for a coordinate-
free formulation.

Classification of switched systems controllability was provided based on their
geometric properties. It was proved that the only controllable systems are sys-
tems of the type Center-Center, Center-Saddle and Stable-Unstable focuses. The
switched systems of type Saddle-Focus are ”controlled under condition”. For
controllable switched systems, the controlling algorithm based on the GAC prim-
itives and their transformations was introduced. The proposed approach creates
possibility of passing from the classical solution of the controllability problem for
switched systems to a geometric one, using the type of phase trajectory.

It was demonstrated that GAC as a research tool speeds up the algorithm and
minimizes numerical errors. Controlling algorithms for controllable systems with
elliptical, hyperbolic or combined phase trajectories based on GAC were devel-
oped. The advantage of this approach is the minimization of computational errors
due to the solver-free method and minimization of number of switches.

The research was done for the systems switching between two matrices, but
it can be generalized for arbitrary number of subsystems. Algorithm 3.2 is then
applied on two consequent subsystems, respectively.

Overall, the thesis demonstrated the effectiveness of using Geometric Algebra
for analyzing and controlling 2 × 2 switched dynamical systems, offering advan-
tages in efficiency, accuracy, and simplicity of implementation.

Geometric Algebra (GA) provides a comprehensive mathematical framework
for handling geometric operations efficiently. Originating from Grassmann alge-
bras and Clifford algebras, GA unifies geometric primitives and transformations
into a single algebraic structure, facilitating geometric analysis and manipulation.
Key concepts include representing geometric entities using multivectors and uti-
lizing outer, inner, and geometric product operations for manipulation.

The controllability of 2×2 switched systems with regular matrices is addressed
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using Geometric Algebra. GA aids in constructing optimal switching points, min-
imizing the number of switches required. The approach is demonstrated with
examples of axes-aligned ellipses, showcasing its effectiveness even with rotated
conics.

A novel algorithm for optimal control of switched dynamical systems with
purely imaginary eigenvalues is proposed. This algorithm utilizes Geometric Al-
gebra for Conics (GAC) to construct switching paths consisting of circumscribed
ellipses, minimizing numerical errors and eliminating the need for solvers.

The work highlights the geometric nature of the approach, emphasizing its
ability to handle various system configurations and minimize computational er-
rors. It also discusses the formulation of controlling algorithms mainly using GAC
operations.
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