
VYSOKÉ UČENI TECHNICKE V BRNE
BRNO UNIVERSITY O F T E C H N O L O G Y

FAKULTA INFORMAČNÍCH TECHNOLOGII
ÚSTAV INFORMAČNÍCH SYSTÉMŮ

FACULTY OF INFORMATION T E C H N O L O G Y
DEPARTMENT OF INFORMATION SYSTEMS

AN EFFICIENT WAY TO ALLOCATE AND READ
DIRECTORY ENTRIES IN THE EXT4 FILE SYSTEM

DIPLOMOVÁ PRACE
M A S T E R ' S THESIS

AUTOR PRÁCE Be. RADEK PAZDERA
A U T H O R

BRNO 2013

VYSOKÉ UČENI TECHNICKE V BRNE
BRNO UNIVERSITY OF T E C H N O L O G Y

FAKULTA INFORMAČNÍCH TECHNOLOGIÍ
ÚSTAV INFORMAČNÍCH SYSTÉMŮ

FACULTY O F INFORMATION T E C H N O L O G Y
DEPARTMENT OF INFORMATION SYSTEMS

EFEKTIVNÍ METODA ALOKACE A CTĚNI
ADRESÁŘOVÝCH ZÁZNAMŮ PRO
SOUBOROVÝ SYSTÉM EXT4
A N EFFICIENT WAY TO A L L O C A T E A N D R E A D DIRECTORY ENTRIES
IN THE EXT4 FILE S Y S T E M

DIPLOMOVÁ PRÁCE
M A S T E R ' S THESIS

AUTOR PRÁCE Be. RADEK PAZDERA
A U T H O R

VEDOUCÍ PRÁCE Ing. TOMÁŠ KAŠPÁREK
S U P E R V I S O R

BRNO 2013

Abstrakt
Cílem t é t o p r á c e je zvýši t výkon sekvenčn ího p rocházen í a d r e s á ř ů v s o u b o r o v é m s y s t é m u
ext4. D a t o v á s t ruktura HTree, j enž je v současné d o b ě p o u ž i t a k implementaci a d r e s á ř ů
v ext4 z v l á d á ve lmi d o b ř e n á h o d n é p ř í s t u p y do ad re sá ře , avšak není o p t i m a l i z o v á n a pro
sekvenční p rocházen í . Tato p ráce p ř ináš í ana lýzu tohoto p r o b l é m u . Nejprve studuje imple
mentaci souborového s y s t é m u ext4 a dalš ích s u b s y s t é m u L inuxového j á d r a , k t e r é s n í m sou
visí. P r o v y h o d n o c e n í výkonu současné implementace ad resá řového indexu byla v y t v o ř e n a
sada t e s t ů . N a zák l adě výs ledků t ě c h t o t e s t ů bylo n a v r ž e n o řešení , k t e r é bylo nás l edně
i m p l e m e n t o v á n o do L inuxového j á d r a . V závěru t é t o p r á c e naleznete v y h o d n o c e n í p ř ínosu
a p o r o v n á n í v ý k o n u nové implementace s da l š ími s o u b o r o v ý m i s y s t é m y v L i n u x u .

Abstract
The a im of this thesis is to improve the performance of sequential directory traversal in
the ext4 file system. The HTree data structure that is used to store directories i n ext4
at the moment works very well for random accesses, however, it is not op t imal when it
comes to traversing a directory sequentially. Th is thesis investigates the issue; it explores
the implementat ion of ext4 and the associated L i n u x kernel subsystems. To assess the
performance of the directory index, a set of test cases and benchmarks was implemented.
Based on the analysis, an optimisat ion was designed and implemented to the ext4 driver
wi th in the L i n u x kernel. The implementat ion was tested, evaluated, and compared to other
native L i n u x file systems in the last chapter of this document.

Klíčová slova
souborový s y s t é m ext4, j á d r o o p e r a č n í h o s y s t é m u , L inux , ad re sá řový index, ad re sá řová
metadata, HTree, itree, sekvenční p r ů c h o d a d r e s á ř e m , optimalizace

Keywords
ext4 file system, the L i n u x kernel, operation systems development, directory index, directory
metadata, HTree, itree, sequential directory traversal, optimisations

Citace
Radek Pazdera: A n Efficient Way to Al loca te and Read Directory Entries in the E x t 4 F i le
System, d ip lomová p ráce , Brno , F I T V U T v B r n ě , 2013

An Efficient Way to Allocate and Read
Directory Entries in the Ext4 File System

Prohlášení
Proh lašu j i , že jsem tuto diplomovou p rác i vypracoval s a m o s t a t n ě pod v e d e n í m pana Ing.
T o m á š e K a š p á r k a

Radek Pazdera
22. 5. 2013

Poděkování
M n o h o k r á t děkuji svému vedouc ímu p r á c e Ing. T o m á š i K a š p á r k o v i a konzultantovi Ing.
Lukáš i Czernerovi ze spo lečnos t i R e d Hat za jejich cenné rady, odbornou pomoc a vedení ,
j enž m i poskyt l i p ř i řešení t é t o p ráce .

© Radek Pazdera, 2013.
Tato práce vznikla jako školní dílo na Vysokém učení technickém v Brné, Fakulté in

formačních technologií. Práce je chráněna autorským zákonem a její užití bez udělení
oprávnění autorem je nezákonné, s výjimkou zákonem definovaných případů.

Contents

Introduction 2

1 File System Development 4
1.1 F i l e Systems in the L i n u x Kerne l 4
1.2 V i r t u a l F i le System 5
1.3 Block I / O Layer 9
1.4 Page Cache 12

2 T h e ext4 File System 14
2.1 Br ie f His tory 14
2.2 On-disk Structures 15
2.3 Directory Index 20
2.4 HTree 22

3 Analysis and Benchmarks 24
3.1 The Issue 24
3.2 Ana lys ing Directory Operations 25
3.3 Tests and Benchmarks 26
3.4 Test Results 28

4 Possible Solutions 30
4.1 Sort ing Directory Entries in User-space 30
4.2 Inode Preal locat ion 32
4.3 A d d i n g an A u x i l i a r y Tree 34
4.4 A Solut ion to Implement 35

5 T h e Design and Implementation of the Inode Tree 36
5.1 The F i le System Feature Design 36
5.2 The Design of the Inode Tree 37
5.3 Integration wi th the Ex i s t i ng Tree 39
5.4 On-disk Structures 40
5.5 Tree Operations 42

6 Evaluat ing the Implementation 45
6.1 Tests and Benchmarks 45
6.2 Results Summary and Discussion 46

Conclusion 50

1

Introduction

This thesis aims to improve the ext4 file system. The extended file system family has
wi thstood many challenges since its int roduct ion to the L i n u x kernel i n 1992. It is only due
to the continuous effort of its developers and maintainers, that the file system meets the
current standards and the requirements determined by the constantly evolving hardware.

The computer industry has come a long way since 1992. Nevertheless, file systems s t i l l
play a crucial role i n operating systems and computer storage i n general. The vast majori ty
of applications need to store some information persistently over a long per iod of t ime. Tha t
is why we use them in the first place. Hav ing our data disappear each t ime the computer
is turned off is s imply unacceptable.

The amount of information the computers are able to process increases as the technology
advances further, which only emphasizes the need for a persistent and reliable data storage.
Moreover, a file system is even considered to be the very heart of an operating system in
the Unix- l ike environment, which is very popular for server deployments these days.

In the L i n u x kernel, the file system of choice has always been one from the extended file
system family. Even though the L i n u x kernel supports a variety of different file systems, ext4
is (at the t ime of writ ing) the default opt ion for many distributions. It is considered to be
what 's called the native L i n u x file system. The administrators choose it for various reasons.
Ei ther it 's reliability, r ich feature set, high level of matur i ty or strong compat ibi l i ty between
different versions. L o n g t radi t ion wi th in the L i n u x kernel and the conservative approach
to development come as benefit to the reputation of ext4 as well.

Motivation

This work is motivated by a series of discussions held by the developers on the ext4 mai l ing
list [1] [2]. Concerns have been raised about the efficiency of the sequential directory traversal
that occurs, for example, when the I s -1 command is executed. Similar issues has been
observed w i t h other operations, that iterate through the directory index and retrieve the
files from disk i n order as returned by the getdentsO system cal l .

A substantial decrease of performance has been reported in this part icular scenario,
when measured in comparison to the performance of other file systems also available in
the L i n u x kernel. The issue is apparent especially w i t h very large directories containing
hundreds of thousands to mil l ions of files.

The current implementat ion seems not to scale well to large directories, while scalabili ty
is becoming increasingly more important asset of a l l software solutions. Especia l ly in the
context of high-throughput machines, such as mainframes, servers and other enterprise
deployments. To make a file system a viable choice, it must perform well for a large variety
of workloads and use-cases of different sizes.

2

Goals

M y goal i n this thesis is to explore and analyse the above mentioned issue. To assess
the existing implementat ion and identify the weak spots that lie behind these performance
problems, and make a comparison wi th other contemporary L i n u x file systems, such as X F S
and btrfs to see how it performs against its competitors i n this aspect.

I would like to use the acquired information to propose an opt imisat ion of the way the
ext4 file system stores directories to remove the performance l imitat ions that have been
recognised i n the current implementation.

M y next goal is to implement a working solution of the problem to the ext4 file system,
so it can be tested and further evaluated. If implementat ion works well, and the solution is
accepted by the community of ext4 developers, I would like to cooperate w i th the upstream
developers and work on merging the changes into the main branch of the L i n u x kernel tree.

The last goal of this master's thesis is merely a personal one. I have been a user of
Linux-based operating systems and the ext4 file system for several years now. However,
my experience wi th programming for L i n u x comes only from the user-space. W i t h this
project, I would like to get familiar w i th the internals of the L i n u x kernel, engage i n its
development, and hopefully to contribute something back upstream.

3

Chapter 1

File System Development

Chapter one of the thesis w i l l provide the reader wi th the necessary background of file
system development in L i n u x required to fully understand what w i l l follow.

The first section w i l l explain what "file system" exactly means i n terms of the L i n u x
kernel. The one after that w i l l introduce the very heart of the storage subsystem of the
L i n u x kernel - the virtual file system layer. The last two sections w i l l describe the way the
kernel interacts w i th the underlying block devices.

1.1 File Systems in the Linux Kernel

L i n u x kernel supports a variety of different file systems. Some of them are developed specif
ical ly for L inux , for instance the extended file system family, btrfs, or ReiserFS. Others were
ported to L i n u x from different Unix- l ike operating systems and they are now maintained as
a part of the L i n u x kernel tree. These include X F S from Irix, J F S from I B M ' s O S / 2 , U F S
from B S D , or even Microsoft 's V F A T . A l though many of these examples are based on the
same abstractions and use very similar interfaces (simply due to the fact they come from
Unix- l ike operating systems), the concepts and storage algorithms can differ dramatical ly
from one file system to another.

Support ing a wide range of file systems is certainly an important asset of any mod
ern operating system. E a c h file system performs differently under different circumstances.
For certain workloads, some are better than others. It is therefore desirable to let the
administrator choose an appropriate solution based on his own needs.

F i le systems i n L i n u x are not used purely for storage. A s many other Unix- l ike operating
systems, L i n u x employs the famous "everything is a file" principle to some extent. A l though
it does not apply entirely (network devices are a notable exception), there are many more
services that are made available using the file abstraction i n a form of various special
file systems. For instance, system information have been t radi t ional ly exported through
proofs, information about devices through sysf s. These two are called virtual file systems,
because they do not operate on any storage media. The data they provide are generated on
the fly. O n top of that, many device drivers are designed to provide access to the devices
as i f they were files. The use of the file abstraction is very powerful indeed.

However, this goal is not as easily attainable as it might seem. To support a new file
system, a simple addi t ion of the code implementing it is not sufficient. There is a number
of issues to consider which results i n many problems to be addressed. Mos t notably the
ways of coexistence and cooperation between the file systems.

4

To support this sort of variety of implementation, there is an addit ional layer between the
implementation of the ind iv idua l file systems and the rest of the kernel called virtual file
system.

1.2 Virtual File System

V i r t u a l file system, sometimes also called the virtual file-system switch, is an abstract inter
face that specifies what operations have to be implemented in a file system. The implemen
tat ion is then accessed exclusively through this interface. Even though it is programmed in
plain C , there are recognizable traits of object-oriented approach i n its design.

The mot ivat ion is to have the structures i n memory separated from the structures actu
ally wri t ten to disk. These are i n many cases quite similar to each other. For example, V F S
defines struct inode while ext4 has struct ext4_inode and X F S struct xf s_inode. In
respect to the abstraction, a l l three structures represent the same thing, but each one of
them is implemented differently. Th is gives file system's developers the freedom to change
and optimise the on-disk structures without breaking the rest of the code. F i l e abstraction
layer enables the L i n u x kernel to support not only the coexistence of file systems buil t on
different principles, but also cooperation between them [3].

V F S also defines a set of operations to manipulate the structures. These operations
are used by the rest of the kernel code as well as the users and programs from user-space
that can access a subset of them v i a the system cal l interface. The hierarchy i n which V F S
takes part is i l lustrated in Figure 1.1. The relationship between system calls, the ind iv idua l
file systems' implementations, and V F S is also demonstrated i n section 1.2.7, where the
getdentsQ system cal l is examined.

System calls

Virtual file system I I
ext4 btrfs XFS procfs

Page cache I
Block layer <-> Devices

Figure 1.1: I l lustrat ion of the relationship of V F S to different parts of the kernel.

1.2.1 V F S A b s t r a c t i o n s

The abstractions used in the v i r tua l file system are based on the t radi t ional Unix-s tyle file
system implementation. Despite this bias, the file model employed i n L i n u x is common
enough to represent any file system's general feature set and behaviour [3].

Apar t from the file system itself, U n i x has t radi t ional ly provided four basic abstractions
related to storage: files, directory entries, inodes, and mount points []. The structures

5

which represent these abstractions are often referred to as metadata, because they provide
information about the data actually stored. A l l five of them w i l l be discussed in the next
few sections.

1.2.2 T h e S u p e r B l o c k

Fi le system as a whole is represented by an object called the super block. It is defined in
include/linux/f s .h as struct super_block. The L i n u x kernel uses it to store control
information describing a specific instance of a file system, its parameters, usage statistics
and more. In most cases it corresponds directly to a control block that is stored in a
well-known locat ion on disk.

T y p i c a l operations performed on this structure are creation, deletion, and mounting [3].
Pointers to the operations available for a part icular file system are stored i n an operation
table represented by struct super .operations. Th is structure is embedded i n the super
block structure as s_op member.

The kernel maintains a list of the super block instances of al l currently active file sys
tems []. E a c h member of the list corresponds to a single mounted file system, unless the
same par t i t ion is mounted mult iple times.

F rom the user-space perspective, the super block structure is allocated when the mount ()
system cal l is invoked. The kernel w i l l retrieve the file system specific super block structure
from disk and use the data to fill the in-core super block.

1.2.3 Index N o d e s

Index nodes, often abbreviated as inodes, represent the information the kernel needs to
know about a file stored on disk. A t this point, the kernel makes no difference between
a regular file and a directory. F r o m the user's perspective, these two are quite different,
but the kernel treats them as a mere sequence of bytes or, more precisely, blocks. The
differences between them are handled later on.

The indode structure defined by the v i r tua l file system is often called in-core, while the
file system specific structure is referred to as on-disk. The in-core inodes are instances of
struct inode defined i n include/linux/f s .h. E a c h structure contains information about
a single file or directory including information about the owner of the file i n question, its
permissions, times of the last access or modification, size of the file, pointers to the file's
data, and more. A l l inodes also have an unique identifier - an inode number.

The structure also contains a table of operations that can be used to manipulate the
respective inode. The table can be obtained from the i_op member point ing to an instance of
struct inode_operations (also defined in include/linux/f s .h). A s i n the previous case
of the super block, each file system can provide its own implementat ion of each operation
or use the generic one that is a part of V F S .

It is also common that inodes representing directories have different operations from
the inodes representing regular files. There are, i n fact, more than two types of files the
kernel can work wi th . For example, symbolic l inks, device files, sockets and pipes []. F i le
type is determined from the i_mode member. Each one of these types can have different
operations associated wi th it and provide different functionality.

A n in-core inode is allocated i n memory from the corresponding on-disk inode from the
underlying medium. This happens when a file from disk is requested. In-core inodes are
cached in the inode cache, so any subsequent requests for a single file does not result in a
series of unnecessary reads from disk.

6

Inodes also can be marked dirty to indicate that changes has been made and the respective
inode should be wri t ten back to disk. It w i l l effectively add the inode to the list of di r ty
inodes. Then it w i l l be wri t ten to disk by the write_inode function from the super block's
operation table.

1.2.4 D i r e c t o r y E n t r i e s

Directories are an essential file system concept. They themselves do not contain any data
directly. Instead, they carry l inks to other files or directories. This allows users to bu i ld
hierarchical structure of folders and organize their files i n them. A s mentioned above, L i n u x
kernel treats directories as files. Directories are stored as directory files. Tha t means each
directory is a file that contains a list (or any other data structure) that maps file names to
inodes. In V F S , the mapping is represented by directory entries.

Directory entries (often shortened to just dentry or dirent) are constructed in memory
on the fly during path lookups. A directory entry is allocated for every component of a
path, including the file itself. The on-disk counterparts are located wi th in the so called
directory files. Each file system implements the file differently, so the format of the on-disk
entries can vary quite a lot.

Directory entries (dentry objects) are represented by struct dentry and defined in
include/linux/dcache .h [3]. The structure contains, apart from some lists, locks, and
flags, a name and the inode it points to. A s the other V F S objects, also dentries have a set
of operations associated wi th them i n the operation table stored i n the d_op member. The
operation table is represented by struct dentry .operations defined, just as the dentry
structure itself, in include/linux/dcache .h.

P a t h lookups are indeed a very common and at the same time very expensive operation.
The kernel has to search whole directories and do a lot of str ing comparison i n the process.
Repeated access to a single file is not uncommon either. For these reasons, L i n u x implements
dentry caching facility called dcache to speed the process up.

1.2.5 Fi les

Tradit ionally, data storage has been based on a simple abstraction of storing files. Due to
this fact, files are i n the core of persistent data manipulat ion. However, from the storage
perspective, the kernel works only wi th inodes. Thus it must provide an abstraction of a
file for user-space.

A file is effectively an ordered string of bytes and it is up to the application to interpret
them correctly according to their internal formatting. A file opened by a process is repre
sented by an instance of struct f i l e defined i n include/linux/fs.h. It is ini t ia l ized by
the open() system cal l . The kernel keeps the structures i n the per-process file descriptor
table. The table is basically an array of file structures and a file descriptor is an integer
index to i t . A l though the actual implementat ion is a bit more complicated, it adheres to
these principles.

The file structure again contains a pointer, f_op, to its associated operations table.
The table is defined as struct f ile_operations i n include/linux/f s .h header file. The
correct set of operations based on the underlying file system driver is placed there during
the object in i t ia l izat ion. However, not a l l of the operations require the attendance of the
driver, so V F S also implements generic functions of some operations to reduce unnecessary
code duplicat ion.

7

Most of the common file operations are well-known from user-space programming. They
include, for example, reading and wr i t ing data, seeking through the file, mapping it to the
memory, and more.

A s the dentry objects, file objects do not correspond direct ly to any data stored on disk.
Instead, the file object points to its associated dentry object v ia the f_dentry pointer [3].
The directory entry then point to an index node.

1.2.6 M o u n t Po ints

U n i x employs a single file system hierarchy into which new file systems can be integrated [4].
There is one distinguished root file system and the data contained i n any other file systems
are accessed through mounting.

Each file system has its own local root directory which is, dur ing the mounting process,
attached to a mount point - a directory wi th in the parent file system. The fact a directory
serves as a mount point is indicated by the d_mounted member of the dentry object associ
ated wi th i t . Its value is incremented every t ime a file system is mounted to the respective
directory entry. This allows the user to mount mult iple file systems to a single directory,
however, only one of them (the last one) can be accessed at a time.

Apar t from the d_mounted flag, the V F S stores the information about each mount point
in an instance of struct vf smount defined i n include/linux/mount .h. It links the mount
point 's dentry structure together w i th the mounted file system's super block. O n top of
that, it contains the mount flags (in mnt.flags) i f any were passed, the usage count, and
more.

1.2.7 g e t d e n t s O sys tem cal l

To illustrate how the kernel works wi th the ind iv idua l file systems through the v i r tua l
file system layer, let us have a closer look at one of the system calls that interact w i th
V F S - getdentsO. This ca l l is very important for this work. It is one of two ways of
sequential walking through the contents of a directory i n L i n u x kernel. The second one is
the readdirO system cal l , which is now, according to the L i n u x man-pages, superseded
by the former and should be avoided. E i the r way, both calls use the same underlying V F S
interface.

1 int getdents (unsigned int fd , struct l i n u x _ d i r e n t *dirp , unsigned int coun t) ;

L i s t ing 1.1: Signature of the getdentsO system call .

The system cal l requires the following arguments: a file descriptor of an open directory
file, a buffer to store the directory entries, and a size of the buffer. It w i l l retrieve several
directory entries represented by struct linux_dirent and store them into the buffer. O n
success, it returns the number of bytes read. Zero is returned when it reaches the end of
the directory.

The cal l is defined i n f s/readdir. c. The implementat ion is quite short, i n fact it is
only a wrapper for a V F S function called vf s_readdir(). It retrieves the corresponding
file object for the descriptor passed and after an successful memory access check for the
buffer, it calls vf s_readdir().

The job done by vf s_readdir() is no harder than of the parent function itself. It per
forms a file permission check, acquires a lock for the inode of the directory file and proceeds

8

sys_getdents() vfs_readdir() file->f_op->readdir() sys_getdents() vfs_readdir() file->f_op->readdir()

Figure 1.2: I l lustrat ion of getdentsO system cal l operation through V F S .

to ca l l the file system specific readdirO function from the operation table of the associ
ated file object. Th is function is responsible for filling out the buffer w i th an appropriate
amount of directory entries. Th is chain of function calls is i l lustrated i n Figure 1.2. The
system cal l layer and the v i r tua l file system layer are just interfaces defining the required
behaviour for the underlying file system implementation, where the real job is done.

1.3 Block I/O Layer

Another subsystem that surrounds the development of file systems i n the L i n u x kernel is the
block 1/O layer. W h i l e the v i r tua l file system interface discussed i n the previous chapter is
there to facilitate the communicat ion of the file system code wi th the rest of the kernel, the
block layer provides interface for accessing block devices, such as hard disks, floppy drives,
U S B sticks, or C D / D V D readers. The block layer provides an abstract interface, allowing
the file system to work on any block device supported by the kernel regardless of its type
or its driver.

This section w i l l explain the principles behind the block I / O subsystem and describe
the structures and function used for this purpose i n the L i n u x kernel.

1.3.1 B l o c k Dev ices

Fi le systems are designed to work w i t h block devices. The main characteristic of a block
device is its abi l i ty to access data randomly (that is, at any point in the data) i n fixed-size
units called blocks. B lock devices constitute a fairly large group of supported peripherals
in L i n u x . A common example of block devices are hard drives.

There are two terms associated wi th block devices - block and sector. A block represents
the min ima l amount of data transferred between the kernel and a device driver. It is the
smallest unit w i th which the L inux ' s block layer work w i t h and its size is configurable. F i le
systems work in terms of blocks. O n the other hand, a sector is a fixed hardware unit . It
specifies the smallest amount of data that can be transferred by the device driver from or
to a physical device. []

A typica l size of a single sector is 512B and usually, the kernel can do a l i t t le about it.
The size of a block depends on the sector size; it must be an integer mult iple of i t . O n top
of that, the block size must be smaller or equal to the page size of the current architecture.
This constraint is artificial; however it simplifies the kernel []. T y p i c a l block sizes are 512,
1024, and 4096 bytes.

Block devices are represented by instances of the block_device structure defined in
include/linux/f s .h. Th is structure contains the device-driver oriented information about
a block device []. It is associated wi th an inode that is stored in a special bdev pseudo file
system. The block_device structure has a pointer to another structure called gendisk,
which represents a generic hard disk - a device that comprises of one or more partit ions.

9

A pointer to the block_device structure is kept i n the super block of every file system
(available through s_bdev).

Due to the nature of block devices and the performance l imitat ions of common hard
drives, the access to them is a subject to extensive caching and optimisat ion. This applies
to the read as well as the write operations. W h e n a block is read it is kept i n memory
for possible future accesses. Some read-ahead algorithms can be employed to speculatively
pre-load blocks that w i l l most l ikely be required shortly. W r i t i n g is usually delayed to allow
the driver to dispatch mult iple blocks to disk at once.

1.3.2 Buffers

Buffers can be used to describe a contiguous sequence of bytes wi th in a page of memory.
They are commonly used to identify disk blocks wi th in memory pages. It is necessary,
because a block can be equal to or smaller than a page of memory and working i n page-size
resolution would be a tremendous waste of available space.

Each buffer has a descriptor associated wi th i t . The descriptor object is represented
by struct buffer_head defined i n include/linux/bufferJiead.h. It contains a l l the
information the kernel needs to know to be able to handle the buffer. This include its
size, pointer to data wi th in the memory page, pointer to the associated page descriptor
represented by struct page, and another pointer to the block_device structure describing
the underlying device.

struct page

Buffer head
Buffer head
Buffer head
Buffer head

Page

Block Block Block Block

Figure 1.3: I l lustrat ion of mapping four 1 kilobyte blocks into a single 4 K page.

The purpose of buffers and buffer heads i n the kernel is solely to provide a mapping between
disk blocks and memory pages. However, i n the past its use was much broader. It used to
be the unit of I / O through the file system and block layer. Th is task has been taken over
by the bio structure which w i l l be discussed i n the following section.

1.3.3 T h e b io S t r u c t u r e

The bio structure was introduced to the L i n u x kernel dur ing the block layer revamp i n 2.5
development kernel. Instances of struct bio represent ongoing I / O operations. Its defi
ni t ion can be found i n the bio.h header file located under the include/linux/ directory.

W h e n the kernel, in the form of a file system, the v i r tua l memory subsystem, or a
system cal l , decides that a set of blocks must be transferred to or from a block I / O device;
it puts together a bio structure to describe that operation. [6]

The bio structure holds a list of segments. E a c h segment is a continuous part of memory;
however it is not necessary for the segments to be stored next to each other. The segments
are represented by the bio.vec structure, which is a 3-tuple <page, offset, length>.

10

Each vector refers to a memory page and specifies an offset from which the buffer starts
along wi th a length of the buffer. Therefore, one segment cannot exceed the size of a page
on the target architecture.

The relationship between the above described structures is i l lustrated i n Figure 1.4.
Structure bio has a list of bio_vec structures available through the bi_io_vec member.
The number of them is indicated by the bi_vcnt. There is also an index bi_idx field
available to keep track of the current posit ion in the vector list. Vectors bio_vec reach to
their associated page v i a the bv.page pointer.

struct bio

I
struct struct struct struct

bio_vec bio_vec bio_vec bio_vec

struct page

struct page

struct page

struct page

Figure 1.4: Relat ionship between the bio structure, I / O vectors, and memory pages.

Instances of the bio structure can be submit ted for processing to the block layer v i a a
cal l to the submit.bio () function. The request w i l l be queued into a request queue for
scheduling.

1.3.4 I / O Schedu l ing

A s mentioned earlier, block devices are often slow and access times to various sections of
the physical device are not always uniform. In case of the t radi t ional hard drives, seek
times depend on the posit ion of the last read or write and they can differ substantially.
To optimise the access costs even further, L i n u x implements several ways of scheduling the
input and output requests.

Each I / O queue is managed by an I / O scheduler (or elevator), which is responsible for
submit t ing requests to the device driver. It can reorder the requests i n the queue to better
match the needs of the underlying device and even merge some if the device supports i t .
For this, the L i n u x kernel implements several algorithms. Each device can use a different
elevator. Device drivers can overwrite some functions of the schedulers and even supply
their own.

The default elevator is the Completely Fair Queuing scheduler. It attempts to provide
a fair share of the device's bandwidth for each process. It is recommended for desktop
workloads, although it performs reasonably well i n nearly a l l workloads [3].

The former defaults include the anticipatory scheduler, and the deadline scheduler,
which offers good latency reduction, unfortunately at the cost of lower overall throughput.

11

The simplest one is the noop scheduler that does not sort the requests at a l l , it only merges
them i f possible.

1.4 Page Cache

This section w i l l introduce page cache; the mechanism the kernel uses to speed up file data
access. It plays a crucial role in file system development i n L i n u x . A s the name suggests,
the page cache works wi th the whole pages of data.

Its pr imary task is to cache chunks of files as the user-space application access them
through reads and writes. Star t ing from the stable version 2.4.10 [7], the page cache also
takes up the role of the buffer cache and is used to keep the contents of the meta-data
blocks accessed by the V F S i n memory as well.

The ult imate goal is to minimize disk I / O by storing data i n memory that would oth
erwise require disk access []. Accessing data on a hard drive is quite expensive. O n the
other hand, accesses to memory are be by several orders of magnitude faster than that.

A l l file reads and writes go through the page cache first, unless the file was open for
direct I / O by passing the CLDIRECT flag to the open() system cal l [8]. In that case the
cache is bypassed and the request is sent directly to the underlying device driver.

1.4.1 C a c h e S t r u c t u r e

The core data structure of the page cache is the address_space object, a data structure
embedded i n the inode object that owns the page []. It establishes a l ink between pages
in the cache and the underlying device the data originates from. The structure is defined
in include/linux/f s .h. It contains a reference to the owner inode, pointers to a l l the
pages associated wi th the mapping stored in a radix tree1, and also a set of operations to
manipulate the mapping. The operations handle reading and wri t ing back the pages from
the underlying device, inval idat ing them, etc.

A s was already mentioned, the unit w i th which the page cache works is a page. Each
page i n the system has a page descriptor associated wi th it represented by a struct page
instance. This structure is actually a part of the memory management subsystem; it is
defined i n include/linux/mm_types .h. It contains two fields that are important from the
page cache perspective - mapping and index. The former is a pointer to the address_space
object the page belongs to. The latter field specifies the offset in page-size units wi th in the
owner's "address space", that is, the posit ion of the page's data inside the owner's disk
image [7].

1.4.2 Buffer Pages

In some cases, usually in association wi th file system meta-data, the kernel needs to work
in terms of blocks, instead of pages. Blocks can be smaller than a page; and to be able
to address them, the kernel uses buffer descriptors represented by the bufferJiead struc
ture (described earlier i n this chapter in section 1.3.2). Pages that have buffer descriptors
associated wi th them are called buffer pages. E a c h buffer page can contain one or more
blocks, depending on the block size of the device and, of course, the page size available on
the target architecture.

1

http://lwn.net/Articles/175432/

12

http://lwn.net/Articles/175432/

W h e n a page acts as a buffer page, a l l buffer heads associated wi th its block buffers are
collected in a singly l inked circular list. The private field of the buffer page points to the
buffer head of the first block i n the page []. Consequentially the PG_private flag of the
buffer page is set; and, i n context of the page cache, it indicates that the page has buffers
associated wi th it.

A l l buffer pages are stored i n the address space of the master bdev inode of the de
vice they are associated wi th . The file system implementat ion can use a function called
sb_bread() from include/linux/bufferJiead.h to access ind iv idua l blocks on a file sys
tem. The function takes two arguments, a super block and a logical block number of the
block to read and returns a buffer descriptor for the requested block.

1.4.3 C a c h e E v i c t i o n

The size of files stored on disk usually vastly exceeds the size of available system memory.
Addi t ional ly , the memory cannot be used only for caching. The kernel can keep only a
very l imi ted amount of pages i n the cache. A so-called cache eviction a lgori thm must be
implemented i n the kernel to remove unused pages from the cache and free the memory.

To facilitate proper cache eviction, L i n u x implements a daemon called pdflush running
in the background as a one or more kernel threads (the number is dynamical ly adjusted).

A modified version of the least recently used algori thm called LRU/2 is used. There
are two queues to keep track of the usage of the page. Freshly accessed pages are put in
front of the first queue, the passive one. In case an entry is accessed again while it is in the
passive queue, it is moved to the second one, the active queue. The pdflush threads always
remove the pages from the back of the passive queue.

13

Chapter 2

The ext4 File System

The following chapter gives an overview of the design and implementat ion of the fourth
incarnation of the extended file system. Apa r t from the very first section, which presents
shortly the history of the extended file system family, this chapter w i l l introduce the physical
data structures, the related algorithms, and discuss the current directory file indexing
approaches used in ext4.

A l l references to the L i n u x source tree i n this chapter are relevant to the stable upstream
L i n u x kernel of version 3.6.3.

2.1 Brief History

The first development version of ext4, the ext4dev, was accepted to L i n u x kernel during
the merge window of 2.6.19 i n 2006. It was s imply a copy of the existing ext3 code wi th
mult iple patches that meant to improve the storage l imits imposed from the use of 32-bit
block numbers and the 32,768 l imi t on subdirectories, increase the resolution of timestamps,
and address some performance l imitat ions [9], which were rejected for inclusion to ext3 due
to concerns the developers raised about the stabil i ty of such changes.

The works on the development branch went on for approximately two years and i n L i n u x
2.6.28 (released i n December 2008) ext4 was marked stable and ready for adoption.

The fourth extended file system is, as his predecessor, backward compatible w i th the
other members from the extended family. It is therefore possible to mount ext2 or ext3 file
systems as ext4. Addi t ional ly , ext3 is par t ia l ly forward compatible w i th ext4 meaning that
ext4 can be mounted as ext3 unless it uses extents instead of indirect blocks for mapping
file's data blocks.

In fact, extents are one of the most notable features introduced i n ext4, finally replacing
the t radi t ional and largely inefficient block mapping scheme. Managing blocks using extent
trees helps to improve the performance of large files and to reduce fragmentation. Use
of extents enables ext4 to support volumes w i t h sizes up to 1 E i B and files w i th sizes
up to 16 T i B . Similar improvements of performance and decrease in fragmentation are
consequential to implementing the delayed allocation technique. Addi t ional ly , the ext4
directory indexing feature dir.index is now enabled by default.

It is expected, that ext4 w i l l be replaced by btrfs as the default L i n u x file system in the
future. The developers work on stabil izing i t . However, btrfs is (at the time of writ ing)
s t i l l not ready for deployment in product ion environment.

14

2.2 On-disk Structures

This section introduces the data structures actually wri t ten to disk when ext4 stores data.
It is based on the exhaustive description of the on-disk layout from ext4's w i k i page by
Darr ick Wong [10] as well as on exploring the ext4 code base and experimenting wi th
utilities such as debugf s and dumpe2f s from the e2fsprogs package.

2.2.1 L a y o u t

Every instance of the ext4 file system is divided into a series of block groups. E a c h block
group can contain a copy of the super block and group descriptors followed by data block
and inode bitmaps (the exact conditions w i l l be explained later on). After them comes only
the inode table and data blocks. Figure 2.1 illustrates a single ext4 block group layout.

A s opposed to placing a l l meta-data to the beginning of the file system, this approach
guarantees that the meta-data are distr ibuted evenly across the file system and it makes
it possible for the allocator to optimise placement of both data and meta-data to achieve
better performance. A l l the meta-data structures w i l l be described i n detai l in the following
sections.

Super Block
Group

Descriptors
Data Block

Bi tmap
inode

Bi tmap
inode
Table

Data
Blocks

1 block n blocks 1 block 1 block n blocks n blocks

Figure 2.1: Layout of a single block group i n ext4.

A l l fields i n ext4 are wri t ten to disk i n l i t t le-endian order, w i th the exception of the journal
jbd2 which uses big-endian order. There are also some important values and constants
(usually stored i n the super block) that influence the layout.

Block Size

Fi le system block is the smallest unit of data that can be manipulated at once. The size of
a single block can have a serious impact on the layout decisions made by the file system.
In ext4, several other important values, such as the size of block and meta-block groups,
depend on the base logical block size. M i n i m u m block size i n ext4 is l imi ted to 1024 Bytes
while the m a x i m u m can be set up to 6 5 K i B . In practice, it is often configured accordingly
to the page size of the target machine, as it is the upper l imi t .

It can be determined from the value of s_log_block_size member of the super block
structure by substi tut ing it for n to the following formula 2 1 0 + n . This form of recording
the block size is used to make sure sane values are used.

Size of a Block G r o u p

The size of a single block group in an ind iv idua l instance of ext4 is specified by a value in
super block called s_blocks_per_group. Alternat ively, it can be calculated as 8xblock_size.
Very common number of blocks i n a single group is 2 1 5 , which corresponds to block size of
4096B. It equals to 1 2 8 M i B of space i n a single block group.

15

Metadata Metadata

Data Block inode inode Data Data Block inode inode Data
Bitmap Bitmap Table Blocks Bitmap Bitmap Table Blocks

Data Block Data Block inode inode inode inode Data Data
Bitmap Bitmap Bitmap Bitmap Table Table Blocks Blocks

Metadata

Figure 2.2: I l lustrat ion of the flex_bg feature principle on two adjacent block groups.

Flexible Block Groups

W i t h the introduct ion of extent trees to ext4 as a way of addressing data blocks, fairly small
block groups started to become more of a l imi t ing factor. Extents represent a continuous
series of adjacent data blocks and wi th t radi t ional block groups the space is part i t ioned to
relatively smal l parts (128MiB on a file system wi th 4 K i B block size).

To overcome this problem, flex-bg feature was added to ext4. If enabled, several block
groups are t ied together and form a logical block group called flex. The number of block
groups that make up a flex block group is given by 2 n where n is determined by a value of
s_log_groups_per_f lex from the super block.

B o t h bitmaps and the inode table from al l the groups i n a flex are packed together and
stored in the first block group, thus allowing to use the remaining space of the flex block
group to store files' data blocks. The layout change is i l lustrated in Figure 2.2.

However, the redundant copies of the super block and group descriptors w i l l not be
moved, so to take a full advantage from flex_bg, sparse_super feature should be enabled as
well.

M e t a Block Groups

Normally , a complete copy of the entire block group descriptor table is kept after every
copy of the super block. W h e n the file system contains enough block groups (volumes over
256 T i B) , they w i l l fill the entire block group leaving no space for anything else.

W i t h the meta.bg feature, the ext4 file system w i l l be part i t ioned into many meta block
groups. E a c h meta block group is a series of block groups whose group descriptor structures
can be stored i n a single disk block. For ext4 file system wi th 4 K i B block size, a single
meta block group par t i t ion includes 64 block groups, or 8 G i B of disk space. The meta
block group feature moves the location of the group descriptors from the first block group
of the whole file system into the first group of each meta block group itself. The backups
are kept i n the second and last group of each meta block group. []

2.2.2 T h e S u p e r B l o c k

The super block data structure of ext4 contains various information about the file system,
settings and parameters of the specific file system instance. This includes the block size used,

16

the total number of blocks and inodes available, maintenance information, such as mount
count, the t ime of the last fsck, and more. In the kernel, the super block is represented by
struct ext4_super_block defined i n fs/ext4/ext4.h.

O n disk, a copy is kept in the beginning of the file system, right after the boot sector from
offset 1024. A p a r t from that, backup copies of the super block are kept i n the beginning
of every block group. It carries data very important for the existence of the file system, so
maintaining mult iple copies at various places is more than desirable to be able to recover
at least some bits of data after losing the beginning of the file system (which is not that
uncommon).

The backup copies are not used or even accessed during the normal operation of the file
system. They are updated and synchronized wi th the active ones during the consistency
checks done by the e2fsck program from e2fsprogs.

However, having so many copies can be quite inefficient w i th today's volume sizes mea
sured i n terabytes. For instance, on 2 T i B volume wi th the block size equal to 4 K i B , there
w i l l be 16,384 copies of the super block. If the sparse_super feature is enabled, redundant
copies of the super block are kept only in the groups whose group number is either 0 or
a power of 3, 5, or 7. In the case of the previous example, the number of copies w i l l be
reduced to 19.

2.2.3 B l o c k G r o u p D e s c r i p t o r s

Apar t from the global information that ext4 keeps i n its super block, some addit ional
meta-data have to be maintained on a per-block-group basis. Each block group has a
group descriptor associated wi th i t . A table of a l l the block group descriptors, called the
group descriptor table, is located after every copy of the super block in a file system. The
sparse_super feature discussed above applies to the block group descriptor tables as well.

A n on-disk block group descriptor is represented by a structure called ext4_group_desc
that is defined in f s/ext4/ext4.h. It contains block numbers of both the block and inode
bitmaps, and the inode table of the corresponding block group. Besides those pointers,
each descriptor also contains the numbers of free blocks, free inodes, and used directories
in the group. These numbers help the block and the inode allocators make better decisions
while looking for the op t imal placements for new allocations.

2.2.4 B l o c k a n d Inode B i t m a p s

The bitmaps track the use of data block and inodes wi th in a block group. A zero bit w i th in
the b i tmap indicates that the corresponding block or inode are not currently in use and are
free for allocation.

The locat ion of the bitmaps wi th in a block group is not fixed. They can float depending
on whether the block group contains a copy of the super block and the group descriptors.
They can even be located out of the block group completely (as i l lustrated in Figure 2.2)
if the flex.bg feature is enabled.

Each b i tmap takes up exactly one file system block. Th is fact determines the size of
each block group of a file system. For example, i f the block size is 4096 bytes there w i l l
be 32,768 bits in the block bi tmap. Consequentially, the size of each block group is 32,768
blocks times the block size

32768 x 4096 = 128 M i B .

17

http://flex.bg

2.2.5 Inode T a b l e

Inodes in ext4 are evenly distr ibuted along the whole file system. It is beneficial for perfor
mance reasons, because then the allocator can place the data and meta-data closer together.
A n inode table is a part of each block group on the file system. Its size is again l imi ted
by the block size. Due to the fact that the inode b i tmap discussed i n the previous section
takes up only one block, the m a x i m u m number of inodes per block group is 32,768. This
consequentially l imits the number of files that can be created on a file system.

The number of inodes per group is specified in the super block by a member called
s_inodes_per_group. It is decided at file system creation t ime and from that point on, it
is fixed and it cannot be changed.

Inodes wi th in a file system are numbered sequentially from number 1, so i n order to
locate one, the driver does not need to search, instead it can use a couple of very simple
calculations to convert an inode number to a block number and an offset to its inode table.
The index of a block group containing an inode of a specific number can be calculated as

inode number — 1
s_inodes_per_group

and the offset into the group's table is;

(inode number — 1) m o d (s_inodes_per_group).

Physically, the inode table is an array of the ext4's inode objects. The structure ext4_inode
is very similar to the in-core inodes that are a part of V F S (descirbed i n chapter 1). Its
definition can be found i n fs/ext4/ext4.h. It contains values such as, the size of file in
bytes, access and modification times, user permissions, the U I D and G I D of the file's owner,
and more. However, the most interesting field is the i_block which contains a block map
or an extent tree to mark which blocks carry the data.

The default size of an inode i n ext4 is 256 bytes; however, effectively used is only 156
bytes. The extra space can be used for extended attributes [10].

2.2.6 Indirect B l o c k M a p p i n g

The ext2 and ext3 file systems both use a direct / indirect block mapping scheme to address
data blocks associated wi th an inode. This scheme is very efficient for sparse or smal l files,
but it has high overhead for larger allocations [11]. In ext4, this scheme has been superseded
by the extent trees, nevertheless, it is s t i l l supported for backwards compat ibi l i ty reasons.

Inside ext4's inode, under the i_data field, there is space for 15 block numbers (total
of 60 bytes). These block pointers specify, in which blocks the file system keeps the data
associated wi th this inode. The first 12 of them points to data blocks directly and the last
3 are used for indirect mapping. The 13th entry of the i_data field points to one indirect
block, the 14th to a double indirect block, and the 15th to a tr iple indirect block. The
indirect block contains references data blocks directly, the double indirect block points to
indirect blocks, and the triple indirect block contains pointers to double indirect blocks.

The indirect and double indirect blocks are i l lustrated i n Figure 2.3. B lue fields i n the
picture represent entries that point directly to data blocks. Indirect pointers are painted
green, double indirect red, and triple indirect purple. Note that the triple indirect mapping
is not pictured whole (to save space).

18

Data blocks

11
12
13
14

i data

Direct data
blocks

Indirect
Double Indirect
Triple Indirect

Figure 2.3: Example of the indirect block mapping.

A l l three types of indirect blocks contain a simple array of 32-bit block numbers referring
to different blocks on the file system (indirect or data). Considering a block size of 4096
bytes, a single indirect block can carry up to 1024 pointers to other blocks. Due to this fact,
the indirect mapping scheme cannot work wi th block numbers that exceed the t radi t ional
32 bits.

Smal l files (up to 48 K i B w i t h 4096 bytes block size) usually do not require any indirect
blocks, so the mapping is very efficient. Unfortunately, as the file size grows, the number
of indirect blocks required to keep track of a l l the data blocks grows very rapidly.

2.2.7 E x t e n t s

A s the size of common file systems and the size of the files computers can handle increases,
the indirect block mapping scheme becomes more and more inefficient. To address this
issue, the developers introduced extents as the major new feature of the transi t ion from
ext3 to ext4.

A n extent is a single descriptor which represents a range of contiguous file system
blocks [11]. Single extent can cover up to 32768 blocks (128 M i B wi th 4 K block size). Th is
is very efficient in comparison to the indirect block mapping scheme. In practice, the vast
majori ty of files on a standard file system w i l l take no more than 3 extents [9]. Extents
also benefit from the improvements of the block allocator that were also a part of ext4's
development. Figure 2.4 shows the structure of the descriptor. Basically, it contains three
integer numbers, the first logical block number, size of the extent, and the physical block
number from which the extent is stored on disk.

Logical Size Physical
Block Number

Size
Block Number

0 4 6 12

Figure 2.4: Extent descriptor structure layout.

19

Extent Tree

Extents are stored in a B + tree data structure called the extent tree. E a c h node of the tree
consists of a header followed by an array of entries. The header contains information about
the depth of the node wi th in the tree, number of entries in the node, and its capacity. The
entries can be of two types - index entries and extents.

Interior nodes of the tree, marked by depth greater than zero, contain exclusively index
entries, only the leaves can carry the extent descriptors. Index nodes s imply point to either
leaf nodes wi th extents or alternatively another index nodes. The root of the tree is stored
directly wi th in the inode; each of the other nodes takes up a full disk block. Figure 2.5
shows the the structure of the ext4's extent tree.

i data

00

extent header

extent idx

Index Node

extent header

extent idx

extent idx

Leaf Node
Data blocks

extent header

extent extent

extent extent

Leaf Node

extent header _ f extent _ f
extent extent

Figure 2.5: Structure of the extent tree.

Three different data structures are used i n ext4 to represent the extent tree. The header
is the same for a l l node types and it is la id out in struct ext4_extent_header, index
entries are represented by struct ext4_extent_idx, and extent descriptors are instances
of struct ext4_extent. A l l three are defined in f s/ext4/ext4_extents .h. They a l l are
conveniently of the same size of 12 bytes.

2.3 Directory Index

The ext4 file system supports two ways of storing a directory. The first available option
is to populate the directory file w i th a linear list of entries. Th is approach is simple, but
not very efficient, especially w i t h large directories w i t h many files. The linear approach has
been replaced in ext3 by a special indexing tree, which offers much better performance in
most cases. E x t 4 supports both schemes for backward compat ibi l i ty reasons. The linear
approach is s t i l l used for very smal l directories that do not exceed the size of a single file
system block. B o t h approaches w i l l be explained i n the following sections.

2.3.1 L i n e a r Direc tor ie s

Using this approach, the directory file w i l l contain a simple linear array of directory entries.
There are two versions of the structure that represents each directory entry wi th in the
list. The original directory format used the struct ext4_dir_entry, but the structure was

20

slightly altered and struct ext4_dir_entry_2 was created later. A l though , bo th of them
are supported for compat ibi l i ty reasons. The latter is the default one, unless the file type
feature is disabled (by omi t t ing the flag in the super block).

B o t h structures contain the name of the file and a block pointer to the inode on disk
that the name is associated wi th . The difference between these structures is i n the length
of the name_len field that contains, as its name suggests, the length of the file name. The
former version of the structure reserves two bytes for i t . However, file names are l imi ted to
255 characters i n L i n u x . Therefore, the developers decided to shorten the field and use the
addi t ional byte to store file type.

struct ex t4_d i r _entry_2 {
__le32 inode; A Inode number */
__le l6 rec_len ; A Directory entry length */
„ u 8 name.len ; A Name length */
__u8 f i l e - t y p e ;
char

};
name [EXT4JNAMF T,F,N] ; A File name */

Lis t ing 2.1: F u l l definition of the directory entry structure.

Final ly , bo th structures also contain the rec_len field that stores the length of the whole
entry. Th is is used by entries located at the end of each block of the directory file. Oc
casionally, gaps can appear when there is s t i l l space i n the block, but it is not enough to
store the whole next entry. In these cases the size of the last directory entry i n a block is
adjusted to take up the remaining space.

This , although fairly easy to implement, approach has a significant performance disad
vantage: each directory operation (create, open and delete) requires a linear search over an
entire directory file []. Th is results in quadratical ly increasing the cost of operating on
al l files of a directory, as the number of files i n the directory increases [12].

O n the other hand, due to its simplicity, it is quite efficient for very smal l number of
entries. Th is makes it s t i l l a viable choice for directories smaller than one block, where the
advantages of more complex solution do not yet outweigh its addi t ional overhead.

2.3.2 Indexed Direc tor ie s

W h e n a directory file exceeds the above mentioned one block of size, an index w i l l be added
to speed up the lookup of files in the directory. The use of this approach is indicated by an
inode flag EXT4_INDEX_FL.

The indexing feature was introduced in 2001 by Dan ie l Ph i l l ips . A data structure crafted
specifically for the use i n ext4 called the HTree is used, which reduces the complexity of
ind iv idua l directory operations from O(n) , i.e., linear search over the directory to 0(log(n)) .
The entries are s t i l l stored using the same structure ext4_dir_entry_2. However, in this
case, they are not arranged into a linear array. They are stored inside the leaf nodes of the
tree. The principles of HTrees w i l l be explained in the following section.

One of the most interesting features of the index is that it is backwards compatible w i th
older versions of the file system. The tree is hidden inside the directory file, masquerading
as empty directory data blocks [10]. For the previous versions of the extended file system,
the directory appears as a well formed. It works, because an empty entry i n the directory
table is signified by setting the inode number of an entry to 0 (there is no inode zero).

21

2.4 HTree

The HTree data structure is in principle a B + tree. The key used as an index i n the tree is
a hash value of the name of the associated directory entry. Its characteristics lie somewhere
between those of a tree and a hash table []. It offers a good performance while retaining
some of the s implic i ty of implementation.

The B + tree is an ideal data structure for this purposes i n ext4. It separates the sequence
set (in our case the directory entries) from the index. The sequence set is contained only
in the leaf nodes, while the index provides information to speed up random accesses into
the sequence.

In this section, we w i l l not explain the principles behind B-trees and B + trees alone.
Instead, we w i l l focus on the part icular implementat ion of the tree used i n the extended file
system. The principles of mult iway trees were described by Dona ld K n u t h i n his famous
series about computer programming [] and specifically B-trees are very well explained in
an article by Douglas Comer [].

There are 2 types of nodes used i n HTree. Each node takes up a whole file system block.
The very first block (logical block 0) of a directory file is always occupied by an index node.
The root can point either to more index nodes or to leaf nodes. Index nodes contain block
pointers to other nodes wi th in the tree (either index or leaf). The leaf nodes contain an
array of directory entries.

The depth of the tree is currently l imi ted to a m a x i m u m of 2 levels. Two level direc
tory index can accommodate more than 30 mi l l ion directory entries, which is more than
sufficient [12].

2.4.1 O n - d i s k S truc tures

The on-disk layout of the directory index is a bit more complicated due to the efforts to
maintain backwards compatibil i ty. The index blocks act as i f they were unused directory
entries i n order to remain ignored by the older code. The full structure of the tree is shown
in Figure 2.6.

dx root

fake dirent

fake dirent

dx root info

dx countlimit

d x e n t r y

dx node

fake dirent

dx countlimit

dx_entry

dx_entry

Leaf Node

ext4_ directory _ entry _ 2

ext4_ directory _ _ entry _ 2

ext4_ directory entry 2

Leaf Node

ext4_ directory entry 2

ext4_ directory _ _ entry _ 2

ext4_directory_entry_2

Figure 2.6: Structure of the HTree il lustrated.

The root node is represented by struct dx_root. The structure contains two fields of type
struct f ake.dirent from the start. This is because of the convention that first two entries
are always the "." and " . ." point ing to the current directory and its parent respectively.

22

These are therefore excluded from the tree and arranged from the beginning of the structure.
The latter, the dot-dot entry, has its size set as if it was stretched al l the way to the end of
the block. Th is w i l l effectively hide the rest of the block from the legacy code.

These two directory entries are followed by the dx_root_inf o structure, which holds the
control information about the directory index, such as the type of the hash function used,
and the number of indirect levels i n the tree.

Direct ly after the info structure, there is an array of index entries represented by struct
dx_entry. E a c h index entry has two fields a hash and a block. Each entry points to a
subdomain of the B + tree and contains a block number of the block in which the subdomain
is stored. The entries are ordered by the hash value. It is important to note, that a l l block
pointers wi th in the directory index contain logical block numbers wi th in the directory file,
not physical block numbers.

The first index entry of the list is unused. It is overlaid by struct dx_countlimit,
which contains the m a x i m u m number of index entries that can follow, and the actual
number of entries that follow this header. The l imi t field determines the order of the B +

tree and it depends on the block size of the ind iv idua l file system.
The second type of node, the index node, is quite similar to the root. It masquerades

itself as an empty directory entry. The first field of a directory entry (as showcased in
L i s t ing 2.1) is a pointer to an inode, therefore start ing wi th four zeroed bytes w i l l t r ick the
older code to assume the entry is empty. Size of this entry is again set as i f it stretched al l
the way to the end of the block. After comes a list of index entries, as i n the case of the
root node.

A l l the structures mentioned above are defined local ly in fs/ext4/namei.c. They are
not available anywhere else i n the code.

2.4.2 T r e e O p e r a t i o n s

There are three basic operations commonly performed on a HTree. Inserting a new entry to
a directory, deleting an entry from a directory, and searching for a part icular entry wi th in
a directory. A t the first glance, these three operations may seem very different from each
other, but they are i n fact very similar. W h e n inserting an entry to a tree, it is necessary
to find the right place for i t . The same applies to the delete operation - when deleting an
entry from a tree, one needs to search for it first. Th is means that the first two operations
are basically the same as the last one, except there is an action performed after an entry is
found.

A search through the index can be performed wi th logari thmic t ime complexity

0 (log 6 (n))

where b is the order of the tree, i.e., the number of entries i n each node and n is the total
number of entries i n the tree. The t ime complexity of an insert or removal of an entry from
a leaf node is constant as the nodes are of a constant size. Therefore the complexity of a l l
the operations performed on the HTree is logarithmic.

23

Chapter 3

Analysis and Benchmarks

This chapter contains the analysis of the issues which cause the observed decrease i n perfor
mance of ext4, while working wi th large directories. Based on the carried out experimenta
t ion, I designed and implemented a set of test cases and benchmarks to assess the current
implementation of the directory index in the ext4 file system. The tests w i l l be useful not
only to identify the issue; they w i l l also help us to evaluate the future optimisations and
possibly also find regressions i n the new code.

The first section contains a description of the issue, based on the description that has
been presented in discussions on the l inux-ext4 1 mai l ing list. The following section contains
an analysis of the file system operations related to directories i n ext4 and their behaviour
wi th respect to the description of the issue. The following section describes the design of
the tests and benchmarks that were developed to be able to verify and further investigate
the issue. In the last two sections of this chapter, the results of these tests along wi th a
brief comparison wi th a few contemporary L i n u x file systems are presented; concluding the
analysis.

3.1 The Issue

The implementat ion of the HTree directory index has brought an interesting side effect to
the file system. It was discussed on numerous occasions on the ext4 developer's mai l ing
list [,]. Danie l Ph i l l ips discussed this problem i n the original paper presenting the in i t i a l
directory index implementat ion i n 2002 []. Cao et al . pointed it out again in a paper
discussing the status of ext3 in 2005 [].

The HTree data structure orders directory entries by their hash. Consequentially, when
a directory is read using the readdirO l ibrary cal l , the entries are returned in hash order.
However, due to the random characteristics of the hash function used, the ordering is practi
cally random. This is desirable from the perspective of the directory index implementat ion
and it works very well . However, it is far from opt imal in case we would like to manipulate
the directory as a whole. The ext4 file system stores the inodes in an ascending order, so
the op t imal way of reading them to avoid seeks is precisely in that order.

Currently, when an applicat ion attempts to access a l l the files i n a directory i n the order
in which readdirO returns them, it w i l l access the inode table blocks on the file system
in a random manner. A single inode table then can be retrieved from disk mult iple times
during the directory traversal. In the worst case scenario, the block can be retreived from

1 linux-ext 4 @ vger. kernel. org

24

disk for every inode in i t . This is certainly not ideal and it can lead to disk head thrashing
when the directory is large enough.

3.2 Analysing Directory Operations

This section w i l l analyse the possible impact of this issue on various file system operations.
Fi rs t , the readdir () l ibrary cal l is described, followed by a discussion of various operations
that can be performed over a directory. I used strace

2

 and l t r a c e
3

 cal l tracers to examine
what actually happens during the execution of different commands.

3.2.1 readdir () l i b r a r y cal l

This l ibrary ca l l provides the user-space interface for reading a directory file. It is a part
of the G N U C l ibrary and it is i n compliance wi th the P O S I X . 1-2001 standard. It accepts
a pointer to a directory handle of type DIR and returns a pointer to the next directory
entry represented by struct dirent. W h e n the end of the directory stream is reached,
nul l pointer is returned. Internally, the function uses the getdents () system cal l to retrieve
directory entries from the kernel. The system cal l was described earlier in section 1.2.7.

It is important to point out, that this function and therefore also the underlying system
cal l do not access the inodes of the files contained i n the directory on disk. It only reads
the inode of the directory file. Therefore, cal l ing this function alone is not necessarily slow
nor suboptimal .

3.2.2 C r e a t i n g Fi les

The operation of inserting a file to a directory is i n case of ext4 quite efficient. Traversing
the HTree to find a suitable leaf block is done i n logari thmic time. The tests I performed
show an outstanding performance, even i n comparison to other L i n u x file systems. The
results w i l l be discussed i n section 3.4. Creat ing new files certainly is the type of operation
that benefited the most from the directory index implementation.

3.2.3 D e l e t i n g Fi les

R a n d o m file deletion is an operation similar to the file creation discussed above. F i le
system driver must locate the leaf block for a part icular entry and remove i t . A l so w i th the
logari thmic complexity.

However, the deletion of a whole directory can be affected by disk thrashing, provided
the directory file is large enough to exceed the size of the available page cache. Dur ing
file deletion, the file system driver has to touch the inodes i n order to decrement their l ink
count [12].

3.2.4 L i s t i n g directories — the Is c o m m a n d

Lis t ing the contents of directories is one of the most common and the most well known
directory operations from the user's perspective. The Is command has been t radi t ional ly
used for these purposes in the Unix- l ike operating systems. B y default, it only prints a
sorted list of file names. The names can be attained directly from the directory file. T ime

2

http://sourceforge.net/projects/strace/
3

http://sourceforge.net/proj ects/ltrace/

25

http://sourceforge.net/projects/strace/
http://sourceforge.net/proj

complexity of l is t ing the file names from the whole directory is therefore equal to the of a
single cal l to readdir().

The si tuation is different in case the user requests more information about each ind iv id
ual file contained in the directory. For instance by executing the list command wi th the -1
option to print file permissions, sizes, and more. The Is command uses the stat() system
cal l to get the information about each file as it reads the directory. Ul t imately , it leads to
the retrieval of the inodes of a l l the files in the directory. Return ing inodes in random order
in this case can lead to subopt imal performance.

3.2.5 C o p y i n g — the cp c o m m a n d

The copy operation is quite common as well, especially i n product ion environment where
full backups are performed on a regular basis. W h e n copying a whole directory, the kernel
needs to retrieve each file and write it one by one to a different location. This is done as
the program traverses the directory using readdir().

The si tuation is similar to directory l ist ing, but the kernel needs to retrieve the file's
data as well as their inodes. The amount of blocks read depends on the size of the directory.
However, reading lots of addi t ional blocks can have a negative impact on the page cache,
evicting the pages wi th inode tables. If the kernel accesses them i n a random manner, it
means the disk might have to seek for every inode.

Copying large directories, in terms of number of files as well as their size, is the operation
that suffers the most when reading the files i n random order. Substantial slowdown, in terms
of mult iple hours i n comparison to reading the files i n inode-order can be observed i n the
results of my tests.

3.3 Tests and Benchmarks

This section w i l l cover the design and the implementat ion of the test suite I developed
specifically for assessing and measuring the performance of the ext4's directory index. The
conditions required to reproduce the issue are described first, followed by a description of
the two groups of test cases that are a part of the dir-index-test 4 suite.

3.3.1 T h e M i n i m a l R e p r o d u c e r

Several factors can affect the occurrence of disk head thrashing from accessing inodes in
random order. If the directory is smal l or conversely, if the target machine has a large
amount of memory, the page cache w i l l reduce the number of random seeks by keeping the
inode tables cached. The slowdown w i l l become more severe either w i th an increase in the
size of the directory or decrease i n the amount of available memory for page cache. This is
determined by the configuration of the target system and also by the ut i l iza t ion of system
resources at the t ime of the test.

Based on the carried out experimentations, I identified the easiest and at the same time
the most effective way of reproducing the issue to be copying files. W h e n the file system
driver also has to read the content of each file, it w i l l evict the inode tables from cache so
the disk has to retrieve them again and seek.

4

https://github.com/astro-/dir-index-test

26

https://github.com/astro-/dir-index-test

3.3.2 O r d e r Tests

A s was discussed i n the sections above, the order i n which inodes are returned when reading
a directory file from disk is crucial for the performance of the subsequent operations on
the files; especially wi th in large directories. The purpose of these tests is to capture and
visualize the order i n which a file system driver returns directory entries to the user-space.

I use mult iple approaches. The first one is based on a test script posted to the ext4
development mai l ing list by P h i l l i p Susi [], which calculates the correlation between the
number of inodes that were preceded by inodes wi th smaller number and the to ta l number
of inodes returned. In an ideal case, the correlation would be very close to 1.

The second approach is to visualize the ordering in a plot. The X-ax i s variable w i l l be
the sequence number wi th which was the inode retrieved from the kernel and the Y-var iable
w i l l be the inode number on disk. This w i l l effectively visualize the theoretical path the
disk head has to take i n order to retrieve the sequence of inodes in this part icular order.
A n example of this plot is shown in Figure 3.1.

5 10 15 20

position in getdents output

(a) Ext4

285

280

a> 275

n
E

1 270

I 265

260

255

5 10 15 20

position in getdents output

(b) Btrfs

25

Figure 3.1: Sequences returned by getdents() for a directory of 25 files.

3.3.3 B e n c h m a r k s

The second part of the test suite is comprised of benchmarks to measure the performance
of various directory operations i n different conditions. The purpose of these tests is to
ascertain what operations suffer from this problem, and to what extent are they slowed
down. These benchmarks are also used for the comparison wi th other L i n u x file systems.

The performance of several operations is measured, including copying files between two
physical devices, l is t ing files in a directory, creating a tar archive from a directory, creating
and deleting a whole directory. A p a r t from those, I also created an isolated test case to
measure the performance of just getdents () followed by cal l ing stat () on every file in the
directory. Th is test case helps to isolate the problem from another software layers bu i ld on
top of those system calls.

The benchmarks are focused on measuring the performance of operations that read
a directory and then manipulate the data i n it in some way as these are the ones to
be affected by the issue described earlier. However, we must not forget to measure the
performance of the remaining operations related to directories (file creation and deletion).
These benchmarks w i l l be useful later on to verify that the optimisations have not caused
any harm to other parts of the file system.

27

3 .3 .4 T e s t i n g C o n d i t i o n s

To get a better picture of what exactly is the cause of the above mentioned performance
problems, the benchmarks w i l l be performed i n various circumstances.

To determine how the performance of the operation changes wi th the size of the direc
tory, I used a number of different values (up to 5 mi l l ion files in a single directory).

Also , two different sizes for the files i n the testing directory w i l l be used; 0 bytes, i.e.,
empty files and 4096 bytes, i.e., files taking up a single file system block. The more blocks
a file system has to handle during an operation the less effective the page cache is to
compensate for the unnecessary I / O operations. Pages are evicted more often i n case of
the increased load.

To simulate heavy load even more, the benchmarks can be run i n memory pressure.
This can be simulated by allocating large amounts of system memory during the test.

3 .3 .5 Tests I m p l e m e n t a t i o n

Most of the tests and benchmarks were implemented as a combination of shell and python
scripts. Some test cases are programmed directly in C to avoid any distort ion caused by
other software layers on top of system calls. The test suite w i t h a l l its sources is publ ic ly
available on G i t h u b 5 under the terms of G N U General P u b l i c License.

Apar t from the test cases themselves, mult iple processing scripts are also a part of the
test suite. These are used to calculate statistics, format them into tables, and plot the
results in graphs using the G N U plot uti l i ty.

The performance test cases are run twice. D u r i n g the first run, only the t ime of execution
is measured. Dur ing the second run the Seekwatcher u t i l i t y 6 is used to collect statistics
about which blocks were read from disk and to visualize the I / O patterns.

The scripts are arranged so they can be run i n batch by executing the ma in script
called run_tests. sh. Th is script w i l l run a l l the test cases and benchmarks, and gather
their results. Every th ing is processed automatically, so the results of the tests are available
in the form of tables and graphs.

3.4 Test Results

This section presents the test results that were observed. A l l tests were executed using a
desktop system wi th Intel Core 2 Duo 6600 processor running at 2 .40GHz, 4 G B of memory,
and two S A T A hard drives - 2 5 0 G B Western D i g i t a l W D 2 5 0 0 A A K X - 0 and 320GB Segate
ST3320620AS. The first one was used as a pr imary test device, while the second one served
as a scratch device for copy tests.

The results show that the performance of ext4 dur ing file creation and deletion is out
standing. It easily outperforms X F S , J F S , and is almost twice as fast as btrfs.

W h e n it comes to l is t ing a directory (i.e., accessing only its meta-data), ext4 s t i l l out
performs btrfs, due to caches that from certain point contain a l l necessary inode tables and
compensate for the seeks. However, it is roughly 25% slower than X F S in this case.

Table 3.1 shows a detailed overview of durations when copying files between two file
systems. A l l files contained a single block of data, in this case 4096B. Copying is certainly

5

https://github.com/astro-/dir-index-test
6

https://oss.oracle.com/~mason/seekwatcher/

28

https://github.com/astro-/dir-index-test
https://oss.oracle.com/~mason/seekwatcher/

Files btrfs ext4 ext4-spd J F S X F S

250,000 224.269 2,348.615 115.579 165.895 121.202

500,000 426.306 5,129.581 224.902 343.293 257.047

750,000 596.551 7,670.962 371.185 562.602 399.921

1,000,000 803.226 10,605.363 728.488 782.527 552.79

1,250,000 1,028.372 13,569.547 687.927 1,008.731 704.262

Table 3.1: Compar ison of the copy times on different file systems. The ext4-spd column
contains the results for ext4 wi th the readdirO l ibrary ca l l patched to cache and sort the
entries.

where the issue manifests the most. E x t 4 falls long behind a l l other file systems. It is
almost twenty times slower than X F S .

Interestingly enough, if we sort the inodes i n the user-space, using the modified ver
sion of readdirO mentioned in section 3.2, ext4 performs quite well i n comparison to its
opponents. Th is shows that there certainly is a space for improvement.

This performance issues were also confirmed by the order tests. E x t 4 w i t h the HTree
accesses the inodes during the copying i n v i r tua l ly random order. O n the other hand,
btrfs and X F S go through the sequence in an ascending order. This is crucial to avoid
unnecessary seeks. Based on the tests I d id on an aged file system, btrfs is able to mainta in
the perfect ordering for I / O even after random deletions and creations. However, X F S
suffers from fragmentation and the ordering tends to degrade over t ime, which results in
a substantial drop of the performance of directory traversal. E x t 4 s t i l l returns entries in a
random order, no change there.

F u l l test reports and results summaries including the plotted data are available on the
media attached to this document.

29

Chapter 4

Possible Solutions

Now that we have analysed the issue and tested the impact of it on various directory
operations and their performance, we w i l l discuss the possible solutions of the problem. In
this chapter, three proposals w i l l be presented.

The first section describes the least complicated solution to the problem - mere sorting
of the inodes returned from the readdirO system cal l . The following section explains
a proposal from Andreas Dilger and Danie l Ph i l l ips that incorporates making changes to
the ext4's inode allocator to make pre-allocations for directories and then allocate new
inodes i n hash order, rather than allocating them sequentially. The last approach that is
described i n this chapter constitutes the adding of an addi t ional tree to the file system that
would provide a different view on the data that is more suitable for sequential access while
retaining the current tree for random accesses.

A brief comparison of the three proposals is made i n the last section of this chapter.

4.1 Sorting Directory Entries in User-space

The very first solution that comes to m i n d is to s imply sort the inodes before they are
returned to the user so the following accesses to disk are i n the ideal order from the file
system's perspective. Some applications have been using this workaround to improve their
performance when used w i t h the ext4 file system. However, forcing the user to sort the
inodes before accessing them is not very convenient and not very efficient either, as every
application would have to contain this sorting code. Nevertheless, there are a few places on
the path from the kernel to the user-space code where the sorting could possibly be done.

We cannot sort the entries directly in the kernel, because the amount of kernel space
memory is l imi ted and it cannot be swapped out. This brings us to one of the biggest
downsides of sorting the entries - to be able to sort them, we need to read a l l the entries
from disk first, and store them in memory. This can lead to using quite a lot of R A M , as
the program might need to load mil l ions of entries.

In the worst case scenario, each directory entry can be 263 bytes long (file names are
l imi ted to 255 characters i n L inux) so a directory wi th a mi l l ion files can take up as much
as 2 5 0 M B of memory. Reading 5-mill ion directory entries would require more than 1 G B
of free system memory. A n operation as simple as reading a directory should not require
that much memory. In addit ion, the memory used for directory entries for the t ime of the
operation would not be available for the page cache. Smaller available page cache could
slow down the operation on the directory, because of the increased amount of I / O .

30

Besides sorting the entries wi th in the kernel, the sorting could be done in the user-space as
well . The g e t d e n t s system cal l is rarely used directly; most of user-space code accesses this
functionality through the r e a d d i r l ibrary cal l . Th is function could be changed to sort the
inodes before giving them to the user. In fact, there is a modified version already available
in e2fsprogs1 that w i l l sort the directory entries before passing them to the user (available
in c o n t r i b / s p d _ r e a d d i r . c) .

Based on the benchmarks I d id , using this l ibrary pre-load works great as a workaround
for some cases where there is enough memory available for storing the directory entries.
The C P U overhead of sorting the entries before they are returned is insignificant compared
to the great increase of performance of the subsequent operation on the directory.

Nevertheless, the same concerns about space complexity apply for this approach as well.
Th is could even become a security issue, as a user w i th malicious intentions could force a
system to create one or more large directories and then cripple the system by using a l l of
the memory by simply accessing them.

One way to overcome these l imitat ions would be not to sort the whole directory, but
use a fixed-size buffer for directory entries and sort it i n parts. Th is approach was proposed
on the linux-ext4 mai l ing list by Andreas Dilger.

I made a pa tch 2 for the spd_readd i r pre-load to allow l imi t ing the size of the buffer
and performed benchmarks of it w i th different buffer sizes including 1,000, 10,000, and
50,000 directory entries. Th is approach helps to increase the performance to some extent.
Natural ly, the bigger the buffer, the bigger the improvement in performance.

W h e n the sequence is sorted i n several steps, the I / O operations are performed i n waves
throughout the file system. The performance increase then depends on the number of waves,
i.e., the number of times the disk has to go through the whole sequence. The performance
increase then depends pr imar i ly on the size of the sequence and the size of the buffer used.
The layout of inodes i n the sequence is important as well . The more scattered the inodes
in the directory through the file system, the less effective this opt imisat ion w i l l be.

ext4 copy times

16000 i 1 1 1 1 1 1 1 1

0 200000 400000 600000 800000 1e+06 1.2e+06 1.4e+06 1.6e+06

Number of files

Figure 4.1: Copy durations for different buffer sizes. The worst case in the graph was
measured without the pre-load entirely; the best case is w i th unl imi ted buffer size.

A n example of this benchmark is shown in Figure 4.1. The graph displays the increase
in copy times based on the size of the directory being copied. The performance increase

x

http://e2fsprogs.sourceforge.net/
2

https://github.com/astro-/dir-index-test/blob/master/src/spd_readdir. c

31

http://e2fsprogs.sourceforge.net/
https://github.com/astro-/dir-index-test/blob/master/src/spd_readdir

is substantial, especially in the case of buffering 50000 files, where the kernel has to go
through the inode tables about 30 times. This is much better for the cache compared to
random access, but there s t i l l can be a lot more I / O operations than necessary.

4.1.1 E v a l u a t i o n of the P r o p o s a l

This approach can be used to solve the issue and greatly increase the performance of the
ext4 file system, especially for full backups and similar workloads. It has some l imitat ions
and downsides, such as excessive memory usage and increased C P U usage during the sort
that might negatively impact the performance of the system in the worst case scenarios.

In my opinion, this approach is more of a workaround that can be used i n case the
system has plenty of memory available. Alternat ively, the patched version spcLreaddir
implementation can be used, where the administrator can fine-tune the l imits on the buffer
to fit the needs of the part icular system.

A p p l y i n g this solution generally as a part of the G N U C l ibrary might be problematic.
The l ibrary is used on a large variety of devices ranging from embedded devices (such as
Raspberry P i) to large product ion servers. A n d while it is unlikely to encounter directories
containing mill ions of files on a system-on-a-chip computer, it is not impossible. The smaller
device natural ly do not have that much resources to handle the addit ional processing as
easily as large product ion machines, so the algori thm would most certainly need to adjust
the buffering parameters accordingly to the resources currently available on the system.

Besides, there are other contemporary file systems to ext4, such as X F S or btrfs that
return inodes i n the op t imal order already. In fact, it seems as something the file system
driver should do, instead of depending on external l ibrary code to perform well.

4.2 Inode Preallocation

The idea behind this solution was introduced by the L i n u x kernel developers Andreas Dilger
and Danie l Ph i l l ips i n 2003. Ph i l l ips presented the proposal in an email posted to the l inux-
ext4 mai l ing list [16].

This proposal was picked up later by a kernel developer C o l y L i who worked on imple
menting it into the extended file system [17, 18]. The work seems to be finished, but, for
some reason, the project was abandoned and the code was not merged to the mainline.

This approach incorporates making modifications to the inode allocator of ext4 to in
crease the correlation between the hash order and the order in which the inodes are al
located. Normal ly , the inodes wi th in a directory are allocated l inearly as close to the
directory inode as possible. Th is leads to increased cache pressure on directory traversal as
some inode table blocks might be retrieved repeatedly from the disk [].

In the ideal case, the inode allocator would return the inodes based on the posit ion
of the associated directory entries wi th in the directory file. So when the directory is read
sequentially i n hash order, the file system could process a l l the entries wi th in a single inode
table block while it is s t i l l i n the cache.

Unfortunately, this is not possible, because we do not know the exact size of the directory
nor a l l the file names ahead of t ime. Therefore, we cannot make a precise decision where
to put the inodes while they are allocated. However, Dilger and Phi l l ips propose that this
decisions can be approximated rather well using pre-allocated sections of the inode table
for each directory.

32

Region #1: 2 9 13 26

Region #2: 1 5 8 10 15 18 20 22

Region #3: 3 4 6 7 11 12 14 16 17 19 21 23 24 25 27 28

Figure 4.2: Three hash ordered regions of the inode table

The main idea is to reserve a region i n the inode table for each directory when it is created.
This space would be used to allocate the inodes from i n an approximate hash order. A
new, twice as big, area would be reserved when the directory outgrows the space of the
pre-allocated region and the hash order allocations would continue from there.

This would then result i n several regions wi th in the inode table and each one of them
would be roughly i n hash order. Occasionally, some inodes might have been allocated out
of order, because of an unfortunate sequence of hash values. B u t this shouldn't happen too
often due to the random nature of the hashing functions used. E a c h region then represents
a group of non-overlapping blocks. Therefore, when reading the directory in hash order,
there would be at most a single block required from each sorted group i n which the next
inode could reside. Th is would decrease the cache load from O(n) to 0{log2{n)) [16].

Figure 4.2 shows how three pre-allocated regions could look like. The first region (a
single inode table block) would have to be in cache for the whole directory traversal. The
two blocks from the second region would spend in cache only a half of the t ime of the
traversal each, as the first block of the second region would not be accessed after moving
to hash values bigger than 10. Each addi t ional region would increase the number of blocks
in cache by only one addit ional block.

4.2.1 E v a l u a t i o n of the P r o p o s a l

The inode pre-allocation seems to be a very elegant solution to the problem. It does not
require any changes to the disk format, so it is completely compatible w i th older kernels and
file systems. It would also require only a smal l number of lines of code to implement [16].
Andreas Dilger predicts the number of lines to roughly 500 [].

However, the pre-allocations could br ing some negative side effects to the file system that
could outweigh its benefits. Due to the reserved regions in the inode table, the directories
would tend to spread apart more quickly than before. The inode table could become
fragmented when creating too many directories and the file system would need to fall back
to the original allocator. Th is might be a problem especially wi th the big directories where,
at some point, creation of a single file would result i n pre-allocating a mi l l ion of inodes at
once.

It would also take some time to find and mark the new regions to reserve during directory
creation or i n case the previous region has been filled. Th is operation could potential ly be
very t ime consuming especially wi th large directory files.

33

4.3 Adding an Auxiliary Tree

The directory data structure is handled in two different ways. A s a part of the file system
tree, it acts as a container of other files while it is an entry of its parent directory at the
same t ime. W h i l e manipulat ing the directory, we might want to do two types of operations;
either to manipulate the entries wi th in the directory or to manipulate the whole directory
as i f it was a single file.

The first view of directories is ut i l ized typical ly for path lookups, inserting, deleting, or
otherwise manipula t ing ind iv idua l files wi th in the directory. For these operations, the most
effective way of indexing the entries is by the file name. In case of ext4, this is achieved by
using the hash generated from the file name that is associated wi th the entry as a key to
the B + tree that contains the entries. These operations are without a doubt very important
and their performance plays a crucial role in the overall usabil i ty of the whole file system
in the majori ty of workloads.

The other view comes to effect when the directory is manipulated as a whole, including
operations, such as the creation, deletion, and traversal of the entire directory. The typical
workload from this category is doing full backups. In that case, the whole directory file and
al l the files stored under the directory must be read and copied to a different location. For
the best performance of this group of operations, the ordering of entries must reflect the
way the directory is la id out on the file system to avoid unnecessary I / O .

Merging these two views of the directory so the file system performs well in a l l the cases
described is a very difficult task, provided that there is no relationship between the file's
name and its location on disk.

However, to get a good performance of a l l the operations, the file system could use two
separate indexes wi th the directory file, one i n the hash order for quick file lookups and an
auxi l iary index for fast manipula t ion of the whole directory. This way, we would get the
full benefit of both of the indexing approaches for a l l directory operations. The operations
involving only ind iv idua l entries i n the directory would use the hash-ordered data structure
while the directory oriented operations would use the other one.

One problem of this approach is the fact that every modification of the directory would
require modifying both data structures, which could potential ly introduce some delays.
The ext4 file system uses a B + tree on which a l l the operations can be done i n logarithmic
time. Therefore, we cannot use any structure simpler than a tree i n order not to affect the
performance of inserts or deletes.

Another problem wi th the auxi l iary tree comes from its key - the inode number. The
ext4 file systems allows creating up to 65,000 hard links to a single inode. The tree would
not be able to differentiate between these coll iding entries and would handle them as a single
sequence. This would result i n a severe performance drop i n this part icular scenario. The
creation of thousands of links to a single file is not very common, yet it is not impossible.

Fortunately, this problem can be easily overcome by using a mixed key comprising of
the inode number along wi th the hash associated wi th the directory entry. Therefore, we
w i l l reduce the problem of hard l ink collisions to collisions between 32-bit hash values which
are very rare indeed.

A d d i n g a second tree to the directory would roughly double the size of the meta-data
associated wi th the directory file, as the same information must be stored on the disk again
only in a different order. M a k i n g the new data structure use the directory entries that are
stored i n the original tree would introduce different problems wi th performance during the
traversal.

34

4.3.1 E v a l u a t i o n of the A p p r o a c h

The biggest drawback of this solution is the necessity to change the on-disk format. The
changes could be made backwards compatible quite easily. However, achieving full forward
compat ibi l i ty would be problematic. The ext4 parti t ions wi th the new feature could be
mounted by older kernels only for reading, because the older kernels couldn' t update the
newer tree while adding files to a directory.

The directory file would be bigger and inserting or deleting a file from the index might
be affected, because of the necessity to insert the entry to both of the trees. The page cache
should compensate for this to some extent, given that both trees w i l l reside quite close to
each other, so these delays shouldn't be too big.

The trade-off for these possible drawbacks is solving the problems entirely for a l l possible
cases. W i t h the addi t ional tree, the inodes would always be returned i n the ideal order for
sequential reading. The order would not suffer from degradation caused by file system
ageing or fragmentation.

4.4 A Solution to Implement

Three possible approaches to improve performance of the ext4 file system while manipulat
ing large directories were presented i n this chapter. The first and the least complex solution
involves sorting the entries at some point after they were read from the directory file. The
second approach is an attempt to create some degree of correlation between the ordering
of the directory file and the order in which the inodes are allocated on the file system. The
last presented solution goes the other way around the problem. It involves the addi t ion of
a second tree to the directory file that would provide information about the placement of
the files on the disk.

F rom the perspective of this thesis, the first approach is more of a workaround, rather
than a proper solution. I would like to t ry to solve the problem directly in the file system
driver, rather than patching several user-space applications to do the sorting.

O n the other hand, the last two approaches both seem as viable options that could fix
the problem in ext4. A n attempt to implement the inode pre-allocation idea has been made
in the past already, but the development work stopped before it could be merged to the
mainline.

Therefore, I decided to work on the last presented approach and implement an addit ional
tree to the directory index of the ext4 file system. The expected benefits and downsides of
this solution are clear. This idea has not been t r ied yet i n the ext4, and by implementing
it, I would like to test whether the trade-off is viable. It w i l l also serve as an alternative to
the inode pre-allocation patches that exist already. The design and implementat ion of this
solution w i l l be described in the following chapter.

35

Chapter 5

The Design and Implementation of
the Inode Tree

This chapter describes the design and the implementat ion of an addi t ional indexing tree
to the ext4 directory file. The inode tree should be used by the file system to improve
performance while working wi th very large directories.

The first section is dedicated to the design of the itree feature from the perspective of
the user of the file system. It describes the file system flags that are associated wi th this
feature and its level of backward and forward compatibil i ty. It is followed by two sections
that explain the design of the new tree and how it w i l l affect the existing directory indexing
implementation. These sections are s t i l l focused more on the design and of high-level view,
unlike the very last two sections of this chapter that describe the low-level bits from the
implementation of the inode tree in the L i n u x kernel.

5.1 The File System Feature Design

The first decision to be made concerns the level of compat ibi l i ty of the new feature. To
assure the backward compat ibi l i ty w i l l be easy, because the newer kernel can work wi th the
older file systems s imply as it d id previously and ignoring the new code. O n the other hand,
maintaining a full forward compat ibi l i ty w i l l not be possible. A n older kernel w i l l be able
to read the new on-disk format without noticing the new blocks, but it won't be able to
modify it correctly. It would add the entry to the old directory index, but, for the obvious
reasons, it would not be able to change the new tree. A n y modifications to a directory wi th
this feature enabled from an older kernel would lead to diversion between the two trees.
The index would be destroyed and it would have to be rebuilt dur ing a file system check.

W i t h these things in mind , I w i l l add a new read-only compatible feature flag and also
a new inode flag. The file system flag w i l l indicate that the ext4 instance in question, may
contain directories w i th the itree enabled, and the inode flag w i l l mark a l l the directories
wi th the tree. The flags and their assigned bits are in Table 5.1.

A d d i n g a file system flag is convenient, because it makes the feature optional . The
optimisat ion w i l l have its downside and the trade-off may not be favourable for every
possible use-case of the file system. It is best to let the administrator decide whether the
feature is viable for the part icular workload or not.

Users w i l l be able to enable or disable the itree feature when creating the file system by
passing a flag to mke2f s. The feature can also be turned on or off later on using tune2f s.

36

F l a g Name B i t M a s k

EXT4_FEATURE_R0_C0MPAT_ITREE 13 0x1000
EXT4_ITREE_FL 30 0x20000000

Table 5.1: The file system and inode flags associated wi th the new itree feature

I created a patch set for e2fsprogs that adds support for these options to the mke2fs,
tune2f s, and dumpe2f s util i t ies.

5.2 The Design of the Inode Tree

Now let us proceed to the design of the inode tree itself. F r o m a theoretical standpoint, it
is a B + tree. There are actually two reasons why I have chosen this type of data structure.
The first one is to mainta in the t ime complexity bounds of the directory operations. The
original HTree is a k ind of B + tree too, so it is necessary to use a data structure wi th at most
0(log(n)) t ime complexity for the insert, delete, and search operations. Apa r t from that, I
would like to add as l i t t le complexity to the existing code as possible. B + trees work very
well w i t h block-oriented storage devices and given that there is one already implemented
in ext4, there is a chance I w i l l be able to reuse some code as well . The order of the tree
w i l l be determined by the block size of the ind iv idua l file system instance. W i t h 4 k B per
block, each non-leaf node w i l l have room for up to 227 entries.

2 5 6 8 10 12 15 22 25 30

F i gure 5.1 : A n example of a B + tree of the order 3.

The entries i n the tree are ordered by the inode number, but the actual key is compounded.
It is a 64 bit vector, comprising of an inode number and a hash, which are associated wi th
the entry. The hash value is there to resolve the collisions between mult iple hard l inks to
the same inode wi th in a single directory. W i t h ext4, the user can create as much as 65,000
names for a single file. A l l these hard l inks would collide i n case they a l l reside wi th in the
same directory.

Work ing wi th collisions requires special care from the kernel, because it cannot differ
entiate between them using the key. Tha t is a problem, because we cannot use the key to
remember the posit ion wi th in the sequence. We could t ry to use a byte offset to the entry
on disk. Unfortunately, this is not possible, because, in the concurrent environment that is
an operating system, the entries can easily move during a node split, inval idat ing any offset
we might have kept to be able to continue processing.

1

http://marc.info/?l=linux-ext4&m=136770333515230

37

http://marc.info/?l=linux-ext4&m=136770333515230

itree key

inode number hash flag

64 32 1 0

Figure 5.2: The structure of the key used for the inode tree.

Therefore, the kernel must manipulate a l l the col l iding entries at once, read them al l from
disk and cache them in memory. However, working wi th a sequence of 65,000 entries at once
would be extremely inefficient and it might cause severe performance issues. Even though it
is unlikely for the users to create as many names for the same file from a single directory, it
is not impossible and the kernel must be able to work well, even in the corner-case scenarios.

To eliminate these collisions, a 16 bit unique sequence number could be added to the
key. The problem here is how to effectively assure the uniqueness of this number. Hav ing
to walk through the whole sequence, in order to find the first free number i n it , would again
have a negative effect on the performance of inserting to the tree. Therefore, I decided to
use the hash number which is already computed by the original itree code, and the values
are almost unique. There s t i l l w i l l be some key collisions, but they w i l l happen far less
often, and the kernel won't have any problems wi th caching only several directory entries.

The collisions pose another problem when it comes to splits. If a node should be split
just between two col l iding entries, the entries before the collision would be skipped during
a traversal. The si tuation is shown i n Figure 5.3.

2 8 8 8 8 8 8 9 12 13 37 42

Figure 5.3: A split collision in a B + tree. This w i l l not work correctly. A l l the entries w i th
key=8 except the last one w i l l be skipped during a traversal.

To overcome this issue, we could either disallow splits wi th in collisions altogether or make
the tree traversal a lgori thm aware of the fact. I decided to use the second approach to stay
close wi th the HTree, which uses flags in the index nodes to indicate collision splits. It is
convenient, because the least significant bit i n the hash value is actually unused, so we can
use it for the flag the same way as the original tree.

The depth of the tree is l imi ted to a m a x i m u m of three levels. The l imi ta t ion is there
only to avoid heap memory allocations for certain variables. Hav ing a rather smal l upper
l imi t on the number of levels allows us to allocate the memory statically on the stack.
A three level tree can take around 12 mi l l ion of entries i n the worst case scenario of 255
characters per file name and each node of the tree only half-full. In a much more likely case
of 20 bytes per name and 75% average fullness, the tree capacity grows up to 500 mi l l ion
of entries. These values are sufficient for now, but in case they are exceeded i n the future,
the l imi t can be increased by changing a constant i n the source files.

38

5.3 Integration with the Existing Tree

One of the most important parts of the implementat ion is the integration of the new tree
wi th the existing directory index, which w i l l be described i n this section. W h i l e th ink ing of
integration, it is necessary to keep in mind the backward and the forward compatibi l i ty. To
keep the file system backwards compatible, we cannot remove any functionality, we can only
add more. Addi t iona l ly , while adding things, we must consider the forward compat ibi l i ty
of the older kernels, especially while changing the on-disk format.

Currently, a l l parts of the directory index, i.e., the index blocks along wi th the leaves are
stored wi th in the directory file using logical block numbers. The index nodes are formatted
in a clever way as if they were empty directory entries, so a kernel without the support for
directory indexing can s t i l l read the entries off the directory. The question is, how to fit a
new tree here wi th only min ima l changes to the structure of the existing index?

The first approach that comes to m i n d is to hide the blocks that belong to the new
tree i n the directory file, the same way the original tree is hidden. In this case, it would
be necessary to hide a l l the blocks, not only the non-leaf nodes. Otherwise, the same
directory entries would appear twice on a sequential traversal through the directory file.
Th is approach seems appealing, for it keeps everything i n one place on the disk. However,
we would then need to have a way of differentiating between the blocks that belong to the
hash tree and those of the inode tree. A p a r t from that, using logical block numbers means,
that the file system has to keep a block map or an extent tree to resolve the mapping of
the logical blocks to physical ones. Th is is not necessary, because the B + tree stores the
pointers to blocks anyway. A n d especially wi th mill ions of files, it is better to avoid any
unnecessary processing.

The second alternative is to store the new blocks for the inode tree outside of the
directory file using meta-data blocks addressed directly by physical block numbers. This
approach was proposed by Theodore Ts 'o on the l inux-ext4 mai l ing list [] and it is the
approach that I decided to use. It solves both of the problems described above. The
directory file w i l l stay unchanged, and because we are using the 64 bit physical block
numbers to address the blocks i n the tree, there is no need for any translation.

One problem wi th this approach is, that we w i l l not be able to reuse the majori ty of the
existing code, because it works w i t h structures that cannot accommodate for block addresses
twice as big. However, we need to use bigger key as well, due to the hard l ink collisions, so
we would not be able to reuse much of the existing code without many substantial changes
anyway.

5.3 .1 O n - d i s k F o r m a t C h a n g e s

Even though the tree w i l l be stored completely outside of the directory file, a smal l change
to the current format of the directory file is s t i l l required. The address of the root block of
the inode tree (a 64 bit number) must be stored somewhere so the ext4 driver can find it.

The ideal place for storing the pointer would be the root block of the directory index,
which is always the very first block of the directory file. To retain m a x i m u m compatibil i ty,
the address w i l l be stored at the end of the block. We can use the fact, that there is a
number that says, how many entries can be stored wi th in this particular block. We can
lower the limit of the root block and hide the root pointer behind the entries.

The same approach is used by the metadata_csum feature which stores the checksum in
the t a i l space of the root block. The pointer w i l l be added to the t a i l behind the checksum

39

dx root block

root info count
limit entries checksum itree ptr

dx tail

Figure 5.4: The placement of the pointer i n the dx_root block. The whole structure is
described i n detai l i n section 2.4.1.

entry. The entries must be handled carefully, because none of the features is mandatory
and one or the other entry can be missing. The file system driver must handle a l l of these
cases correctly. The structure of the HTree root block wi th the itree pointer added is shown
in Figure 5.4.

5.3.2 F i l e S y s t e m O p e r a t i o n s

A n d finally, a modification some of the existing file system operations is required. We need
to make sure that the entries are inserted, removed, and modified i n the auxi l iary inode
tree at the same time as they are i n the directory index. This can be achieved rather easily
by adding an addi t ional calls next to the existing ones that handle the itree. However, we
need to pay a special attention to error handling i n these cases, as an entry could be added
to one tree and not to the second one due to a failure. This would lead to a diversion
between the two trees that would require a file system check to resolve.

The tree w i l l be ini t ia l ized along wi th the hash tree when the size of the directory file
exceeds a single block. This is done by the make_indexed_dir () function, so the itree in i
t ial isat ion code can be called from there. A p a r t from that, a ca l l to either itree insert or itree
delete w i l l have to be added to the ext4_dx_add_entry (), ext4_rmdir (), ext4_unlink(),

and ext4_rename() functions.

5.4 On-disk Structures

This section describes the structures that represent the nodes wi th in the inode tree. A s
we already know from section 5.3, the nodes of the inode tree w i l l be placed i n blocks
outside of the existing layout. Tha t means, we are not l imi ted i n their design in any way
i n order to stay compatible w i th the current disk format. Unfortunately, we cannot reuse
any structures that are used by the HTree, for both the key and the block pointers used
there are only 32 bits long. The inode tree, on the other hand, requires 64 bits for each
one. Nevertheless, I s t i l l t r ied to keep the design of the nodes as close as possible to the
original tree, at least on the conceptual level.

There are only two types of nodes i n the inode tree, the index nodes and the leaf nodes,
as opposed to the hash tree, which works wi th three types. In this case, we do not need to
keep any addi t ional information about the tree i n the root block, so the root is the same
as any other index node. This is convenient, because we can make the number of levels in
the tree easily extensible without the necessity of changing the code.

The structure of the tree is visualised i n Figure 5.5, showing both the index nodes and
the leaf nodes. Thei r properties are then discussed indiv idual ly i n the sections that follow.

40

The root node

itree node

itree entry

itree entry

Index nodes
The leaves

itree node

itree _ entry r
itree _ entry

itree node

itree entry

itree leaf head

itree leaf entry

itree leaf entry

itree leaf entry

Leaf node

itree leaf head

itree leaf entry

itree leaf entry

Figure 5.5: The structures that constitute the nodes of the itree.

5.4 .1 Index N o d e s

There are two structures used wi th in each index node of the inode tree. The whole node
is represented by struct itree_node and the entries that are a part of the node are
represented by the itree.entry structure. The exact layout of both of the structures
is shown in Figure 5.6.

struct itree node

indirect
count limit checksum levels entries

0 2 4 8 9 n
struct itree_entry

inode hash block fullness flags
I I I I

0 4 16 17 18

Figure 5.6: The layout of the itree_node and itree_entry structures.

The itree_node is very similar to the dx_node structure that is used i n the hash tree. It
contains the number of entries that currently reside wi th in the node (count), the max imum
number of entries that can fit into this part icular node (limit). A p a r t from that, there is
a field for a checksum and a single byte number, that is used to determine on which level of
the tree does this node reside. This way, we can use the same nodes to point to both index
nodes and leaf nodes as well. W h e n the indirect_levels field is set to zero, the entries
wi th in this index node point directly to the leaves, otherwise they point to another level of
index nodes wi th in the tree.

The very last i tem is an array of the itree.entry structures, which stretches a l l the way
to the end of the block. These structures carry the keys and pointers to other blocks. A p a r t
from the inode and hash fields, that constitute the key, and the block field, that stores
the pointer to the next block in the tree, there are two addi t ional single byte numbers. The
first one is to store various flags. However, there is only a single flag at the moment for
which I found a use for dur ing the development - ITREE_N0DE_FL_C0NT to indicate collision

41

splits. There is a one bit unused in the hash part of the key, which could serve as this flag,
so the flags field is very l ikely to be removed in the future, provided there w i l l be no other
flags required.

A n d the last field stores the fullness of the node, which is this entry point ing at. Th is
value is very important while the tree is coalesced as files are removed from the directory.
Wi thou t keeping this statistic here, we would have to read a mult i tude of addit ional blocks
from the disk during the delete operation and walk through them to determine whether
they can be merged wi th the current block. Do ing this would be extremely inefficient.

5.4.2 L e a f N o d e s

The leaf nodes are the place where the directory entries are stored. A g a i n , the precise
layout of this type of node is shown i n Figure 5.7. In the inode tree, each leaf node is
started wi th an instance of struct itree_leaf Jiead. The head is only two entries long.
It contains the checksum for this node and also the number of bytes i n this block that are
used by the directory entries. Keeping this value here is convenient, because then we do
not need to count it every t ime it is t ime to update the fullness of this node i n the index.

itree leaf node

struct itree leaf head struct itree leaf entry struct itree leaf entry

checksum limit hash struct ext4 dir entry 2 hash struct ext4 dir entry 2

0 4 6 10 n

Figure 5.7: The layout of an itree leaf block.

The head is followed by a linked-list of directory entries. The entries i n the inode tree
are represented by a different structure than they are in the original tree. Unl ike i n the
hash tree, the directory entries are kept sorted wi th in the leaves of the inode tree. Each
leaf entry is represented by an instance of the itree_leaf _entry structure, which is an
ordinary directory entry, but it is accompanied by the hash value that is associated wi th
this entry.

I decided to store the hash values wi th the directory entries i n the leaves to optimise
the processing of large collision sequences, where the ext4 driver would have to compute
the values every t ime a new col l iding entry were to be added to the sequence. This would
be done for the whole sequence i n case the entry would fit as the very last entry in it.

However, as was mentioned above, the inode collisions are very rare i n the common
file system workloads, so it might be a subject to a discussion in the future, whether it is
necessary to do such optimisations. O n the other hand, a dramatic decrease of performance
i n certain easy-to-reproduce cases might leave space for possible exploitat ion, as it could
be used by users to intentionally paralyse the machine rather easily.

5.5 Tree Operations

Now is the t ime to describe the implementat ion of the operations that are able to search
or modify the inode tree. The set of operations is almost identical to the actions that are
performed on the HTree, as both of them are B + trees i n nature. Th is section w i l l focus
on briefly describing the implementat ion of these operations for the inode tree, rather than
their general properties.

42

5.5.1 T r e e T r a v e r s a l

The very basis of each operation is the traversal through the tree. If we would like to
insert a new entry, we must search the tree for the right place to put i t . The same applies
on deletion. The entry must be found first, i n order to be deleted. The tree traversal is
implemented in a function called itree_probe () . The design of this function is very similar
to its counterpart from the hash tree - dx_probe () . It starts w i t h a key and a block pointer
to the root and it returns the path through the tree, leading to the entry we're looking for.
Th is function does not search through the leaves, so the result is i n fact a block, i n which
the entry should be located. There are mult iple reasons for this. The format of the leaf
nodes is different, so representing the path would not be as simple. A n d i n case the traversal
is used for the insert operation, the entry we are looking for does not exist yet. Th is would
again require some addi t ional processing, therefore the last step i n the traversal is s imply
left to the caller to do.

Dur ing the leaf searches, it is important to keep in mind , that there might have been
a coll ision and the entry could as well reside in the following block. If the search fails,
the collision flag of the next entry in the index must be checked and the search continued
from there, i n case the flag is set. Th is check is implemented i n the itree_next_frame ()
function. For searching a leaf block there are two options wi th a slightly different semantics.
The scan_sorted_buf () does the complex search through the leaf block, that is required
while inserting an entry to the tree. The function used for deletes, itree_search_leaf (),
does just a basic search, but it performs an addit ional verification of the result to make
sure not to erase a wrong entry.

5.5.2 Insert ing E n t r i e s

The insert operation is implemented by a function called itree_add_entry() . It starts
wi th a search through the tree using the probing function we described earlier. Then the
scan_sorted_buf () function is called to find the right spot in the leaf for the new entry.
Provided there is enough space wi th in the leaf node, the entry is stored in the right place
by the put_entry_to_sorted_buf () function. In case there is not enough room available
for the entry wi th in this node, it w i l l be split.

The split is quite a complicated procedure, because it can affect the whole tree. It
has two parts, spl i t t ing the leaf node, which is handled direct ly i n the itree_add_entry ()
function and inserting a new entry to the associated index node, which is taken care of in
the itree_node_insert_entry () function. However, the index node may be full as well, so
the a lgori thm might end up repeating the split procedure a few times over un t i l it reaches
the root. In case the root is full, and the tree is not yet of the m a x i m u m depth, a new
level of the tree w i l l be created. The split operation in case of the whole tree being full is
i l lustrated in Figure 5.8.

5.5.3 D e l e t i n g E n t r i e s

Ent ry deletion is handled by the itree_delete_entry () function. The first part again, as
in the insert operation, consists of a search through the tree. W h e n the entry is found, it
is not removed, but it is rather hidden by increasing the length of the previous entry. This
makes the file system driver ignore the file later on and the free space may be allocated for
a new entry i n the future.

43

Figure 5.8: A node split i n a full tree. The new leaf entry is pictured in red, the newly
added index entries are green, and the grey spaces wi th in nodes indicate free space.

W h e n this is done, the delete operation continues w i t h a check i f the current leaf could be
merged wi th any of its neighbours. This coalesce on delete functionality is very important ,
because the inode tree could get very easily fragmented during file moves. The kernel w i l l
look at the fullness of the neighbour blocks, which is stored i n the associated index node
and it w i l l merge the leaf node wi th either of them, i n case the entries from the neighbour
block would fit wi th in the leaf.

After the merge, the kernel must remove the entry that is associated wi th the block
being freed from the index node. The procedure is very similar to node splits. The kernel
goes through the index blocks of the tree, removes an entry and attempts to merge the
index node w i t h one of its neighbours as well . The root block is removed in case it only
has a single chi ld node left. The leaf nodes are merged by the itree_do_delete_entry()
function. The index nodes are coalesced wi th in the itree_remove_from_index() function,
in case it is necessary.

5 .5 .4 T h e g e t d e n t s O S y s t e m C a l l

To actually receive the benefits from having an auxi l iary tree wi th the directory entries
ordered by the inode numbers, an addit ional implementat ion of the getdentsO system
cal l must be added to the file system driver, which w i l l use the inode tree while read
ing the entries from disk. In the ext4 driver, this system cal l is implemented wi th in
the ext4_readdir () function. I added a new implementation, that can be found in the
ext4_itree_readdir () function. This function is used instead of the original one i n case
the directory has the itree flag set.

The new implementat ion is i n many ways similar to the previous one. It is a bit simpler
though, because we do not have to sort the entries wi th in each leaf any more. The posit ion
wi th in the directory file is represented by the value of the last key read. The key is stored
wi th in the file's offset (filp->f_pos), i n the f i l e structure. Th is is crucial , because the
directory might have changed between the calls to getdentsO and the kernel must be able
to restart the operation from the exact point where it previously stopped. We cannot keep
any offsets, because the node we were working wi th might have been split and a half of the
entries moved to a different block.

Because we can keep track of the entries only by their key, any collisions wi th in the
sequence are problematic. The kernel cannot differentiate between the col l iding entries
using the key. A l l the entries w i th the same value for the key must be then read at once,
and they are cached i n memory unt i l the next ca l l to getdentsO.

44

Chapter 6

Evaluating the Implementation

The previous chapter introduced the design and the implementat ion of a new feature to the
ext4's directory index. In the one that follows, we a im to assess this feature and evaluate,
how it affects the whole file system. We w i l l focus mainly on assessing the performance of
the operations that manipulate directories. The same set of tests and benchmarks that we
used to do the analysis i n chapter 3 w i l l be used to compare the new implementat ion to
btrfs, X F S , and also to the upstream version of the ext4 file system.

6.1 Tests and Benchmarks

This section w i l l describe the set of benchmarks that were performed to assess the imple
mentation. A p a r t from that, a brief overview of the environment i n which the tests were
performed w i l l be given, including the description of the hardware and also the software
and the tools that were used. It is important to keep i n mind , that the tests performed on
a different system might yield very different outcomes, because the results depend heavily
on a number of factors, for instance the number of storage devices, their speed, and par
t i t ioning. The tests can also be affected by the amount of available memory, which then
determines the size of the page cache. Chapter 3 offers a full analysis of the conditions that
can affect various directory operations.

The same set of tools and scripts that I developed during the first part of this project
was used to conduct the testing (the design of the test suite itself was described in detail in
section 3.3). The benchmarks included measuring of the performance of various directory
operations, such as file creation, deletion, and, of course, directory traversal in various
circumstances. The first two operations are not directly related to the case that we a im to
optimise, but nevertheless, we must test how the new implementation affected them and
make sure the implementat ion d id not introduce any regressions to the file system.

To assess the directory traversal, three different test cases were used. The first bench
mark measures the performance of copying a whole directory to a different location on a
different physical device. This test represents a workload that is very common i n practice,
for example while storing snapshots or doing full backups. The other two test cases measure
the performance only of an isolated directory traversal. They might not be as common in
practical applications, but they are important so we can compare only the properties of the
directory indexing code without any distort ion, that can be added by different parts of the
file system. Also the cache load for the isolated traversal is very much different from the
load of the copy operation.

45

These few test cases were performed on a number of directories of different sizes ranging
from 10,000 files a l l the way to 5,000,000 files per directory. The size of each ind iv idua l
file affects the cache pressure, so the tests were performed two times, once wi th empty files
and again wi th each file exactly of 4 k B of size. The last parameter of the tests was the
fragmentation of the test directories. The first batch of tests was done on clean directories,
which were populated by files created by a single process. In the second run a simple
simulation of file system ageing was used while populat ing the directories w i th files.

6.1.1 T e s t i n g E n v i r o n m e n t

The hardware used to perform these tests was a desktop machine wi th an Intel Core 2
Duo E7600 processor running at 3 .06GHz. The machine had 2 G B of memory and three
physical disk drives. One disk served as a system drive and the remaining two were used
for testing. The disks were both 150GB Western D i g i t a l Raptors (W D 1 5 0 0 A D F D) running
at 10,000 R P M . Each one had only a single par t i t ion that stretched a l l the way across the
disk. The second testing device served only as a scratch for the copy test. The X F S file
system was used on the scratch device for a l l the tests. The operating system installed on
this machine was Fedora 18 wi th the upstream 3.9.0-rc7 kernel buil t direct ly from git.

6.2 Results Summary and Discussion

W i t h the tests and the testing environment explained, let us now proceed to the results
of the tests. Th is section contains just a summary and a brief evaluation of a subset of
the actual results, as there are way too many of them. The full results of a l l the tests I
d id are available on the media attached to this document. E a c h benchmark is available
in two representations - graphical and text. The graphs visualise the differences between
the ind iv idua l file systems, while the tables contain the precise values that were measured
during the tests.

The results of the order tests (described i n section 3.3.2) show a clear improvement over
the previous implementat ion. N o w that the entries are read from the auxi l iary tree, they
are always returned perfectly i n order. Th is is true for a l l the cases that were tested, even
for aged and fragmented directories.

The different ordering of the entries lead to a great improvement in performance of the
copy benchmark, which was more than 14 times faster i n comparison to ext4 without the
inode tree. Copying 5 mi l l ion of empty files took previously 6 hours and 28 minutes to
complete, while the new implementat ion does the very same task wi th a 6-hour difference
just under 28 minutes. A very similar improvement was observed i n the same test, but w i th
2 0 G B of data (each file w i th 4 k B of data), where the t ime required to copy the directory
went down from 22 hours to only 2 hours, saving almost a whole day of computat ion. The
results from this test case are shown i n Figure 6.1.

The isolated directory traversal tests are no different in this aspect. For the directory
size of 5 mi l l ion , the traversal was almost 8 times faster for both the empty and the 4kB
files. The improvement here is not as big as it was in the case of the copy test, because the
cache load is much lower, as the directory is only read, we do not need to write the blocks
to another file system. Therefore, the page cache is able to compensate for the random
accesses to some extent.

In both benchmarks, the copy and the isolated directory traversal, the differences be
tween the results grow wi th the number of files i n the directory. This tendency is caused by

46

A comparison of copy times

0 1e+06 2e+06 3e+06 4e+06 5e+06

Number of files

Figure 6.1: This graph shows the improvement i n copy times. W i t h the inode tree the ext4
performs as well as the X F S . Btrfs is much slower i n this case and the upstream ext4 falls
far behind. These values were measured on cleanly created directories w i th 4 k B per file.

two reasons. A s a directory grows, more inodes are allocated and even though the directory
was created cleanly, the sequence is so big, that the first and the last inodes are very far
from each other on disk. Accessing the inode tables randomly then leads to even longer
seek times. Also the longer the sequence, the less effective the page cache is here, so the
disk has to seek even more often.

Let us now have a look at the other operations - creating and deleting files from a
directory and how the addi t ion of the auxi l iary tree affected them. The t ime required to
populate a directory wi th 5 mill ions of empty files increased by 40% from 34 minutes to
47 minutes. Roughly the same percentual increase can be observed in case the files are
of a 4 k B of size. Th is difference again gets bigger as the number of file i n the directory
increases. This is caused by the increased size of the directory file, which leads to decrease
in cache hits. A comparison of delete times of ext4 and X F S is displayed i n Figure 6.2.

A n d finally, the delete times. A substantial decrease was observed up to the direc
tory size of 1,500,000 files. In that case, the deleting the whole directory took 3 minutes
and 25 seconds wi th the inode tree feature enabled. Wi thou t it , the operation run for
11 minutes and 50 seconds, being more than 3 times slower. Beh ind this point, the new
implementation is s t i l l faster, but the differences are far less obvious as the directory size
increases. However, the exact opposite tendency was expected. This is most l ikely to be
caused by the implementat ion of the coalesce-on-delete algori thm, which is at the moment
very aggressive. The nodes i n the tree are probably merged too often, which results in more
opt imal ut i l isat ion of disk space, but it also leads to decrease i n performance. This issue
w i l l certainly be looked into during the next development iteration.

6.2.1 C o m p a r i s o n to O t h e r L i n u x F i l e Sys tems

This section offers a brief comparison of ext4 wi th the itree feature enabled to two other
L i n u x file systems - btrfs, and X F S . I picked these two, because they are among the most
well-known. The X F S is used quite often for server deployments and btrfs is considered to
be the next default L i n u x file system. In case of btrfs, it is important to keep in m i n d that
it is s t i l l , at the t ime of wri t ing, not stable and it is under a lot of development which is
not yet focused on performance.

47

A comparison of create times

4000
3500
3000

1e+06 2e+06 3e+06

Number of files

4e+06 5e+06

Figure 6.2: The create times of directories of different sizes are compared i n this graph.
E x t 4 performs well bo th wi th and without the inode tree up to 2 mi l l ion files. The create
times tend to grow much less on the X F S after that point. Btrfs was left out from this
comparison, as the results were completely out of this scale, worsening the readabili ty of
the rest of the graph. The values were measured on cleanly created directories w i th 4kB
per file.

In the cases we tested, btrfs performs worse than both its stable opponents. The perfor
mance of ext4 during the copy benchmark was even worse, but now wi th the inode tree, it
moved to the other end and it is even a slightly faster than X F S wi th empty files on a clean
directory. It is a bit slower wi th 4 k B files, but when the directory ages, the ext4 maintains
its performance, while X F S suffers more from fragmentation. W i t h 5 mi l l ion empty files
in a fragmented directory, ext4 was measured to be more than two times faster to perform
the copy operation.

The results of isolated directory traversal are much the same as the copy benchmarks,
the X F S being slightly faster, but when the directory is fragmented, ext4 becomes almost
10 times faster to walk the whole directory.

The X F S file system is much better in the file creation. Creat ing cleanly 5 mi l l ion of
files is more than 3 times faster on the X F S than on the ext4. However, while the directory
is fragmented the times are approximately the same for both file systems. Btrfs is again
far behind, being almost 4 times slower than both its opponents.

The delete results are again much better on the X F S . The difference is smaller for the
fragmented tests, ext4 is actually faster there up to 2 mi l l ion of files, but it gets approxi
mately 1.5 times slower than X F S for 5 mi l l ion files due to the above mentioned coalesce
on delete algori thm.

6.2.2 T h e F i n a l D i scuss ion

Based on the results presented above, the implementat ion of the itree feature fixes the
problem of the inefficient directory traversal rather well . However, as w i th many other
optimisations it is a trade-off. A n addi t ional tree takes up more space on the disk and
maintaining both of the trees takes more time. The insert operation is roughly 40% slower
for mass creation of files. However, there s t i l l might be space for improvement.

Dur ing the development, I made a decision to keep the leaf nodes of the inode tree
sorted, so they do not need to be sorted every t ime during a traversal through the directory.

48

Test Results for 250,000 Files

Operat ion btrfs ext4 ext4-itree X F S

Create 26.8 21.6 20.3 82.7

Delete 53.1 13.1 9.6 43.3

Copying 135.4 1911.5 96.8 110.7

Isolated Traversal 22.8 6.7 4.9 10.1

Table 6.1: A comparison of the durations of a few directory operations for a directory of
250,000 files. A l l the values wi th in the table are i n seconds.

However, that may require more processing during file addi t ion in certain cases. Not sorting
the leaf nodes could speed up the insert operation. The directory traversal should not be
slowed down very much by the necessity to sort the leaves, as it is already fast enough in
comparison to the previous state of affairs. However, it would require substantial changes
in the implementation, so further testing and investigation is necessary, before we proceed
wi th such a step.

The performance of file deletion has improved, but not as much as was hoped for. Th is
is most l ikely caused by too aggressive coalescing of the tree nodes. D u r i n g the next stage
of development, the coalesce-on-delete algori thm must be fine-tuned to provide a good
compromise between the fragmentation of the tree and the performance burden it imposes
on the delete operation.

Overal l , the current implementat ion of the inode tree works best for directory sizes up to
1.5 mi l l ion files. For instance, v i r tua l ly no decrease of performance of the create operation
was observed up to 250,000 4 k B files, while the copying was almost 20 times faster in this
case (the precise results of this part icular test case are shown in Table 6.1). The deletion
t ime was also around 40% faster. W i t h more than 2 mi l l ion files, the directory traversal
times are s t i l l excellent, but the create and delete operations seem to suffer more from the
extra processing that is required to manage the addi t ional tree. Nevertheless, exchanging
40% decrease of file creation for 14 times faster directory traversal is more than a viable
trade-off for many workloads. The si tuation might get even better i n the future when the
coalesce on delete algori thm is optimised.

49

Conclusion

The goal of this project was to analyse the current implementat ion of the directory index in
ext4, to find out the reasons for the enormous drop of performance that had been observed
during sequential directory traversals, and ul t imately to implement a better solution.

I started off by s tudying the internals of the L i n u x kernel. I explored the subsystems
associated wi th file systems, such as the v i r tua l file system layer, the block I / O layer, buffer
and page caches, and the ways these parts cooperate w i th each other. Understanding of
the principles behind those subsystems was crucial for further comprehension of ext4 and
its codebase.

After that, I focused on the implementat ion of the ext4 file system itself. Its on-disk
layout as well as the algorithms used to store files and directories on disk. D u r i n g this
part, I developed an understanding of the way ext4 stores and manipulates directory files
reasonable enough to be able to work on the issue.

A n analysis of various directory operations was carried out next. D u r i n g this phase
of the project I developed a series of test cases to for evaluating and benchmarking the
performance of directory operations. This testing suite is now publ ic ly available on G i t h u b 1

under the G N U G P L v3 license. The experimentation and further testing identified the
weak spots i n the current implementation. A comparison of ext4 to btrfs and X F S shown
to which extent the issue affects each operation.

Fol lowing the analysis, I researched the existing proposals to solve this problem and
worked on one of my own. The different approaches were evaluated and a decision was
made to implement an auxi l iary tree to the ext4's directory index, an approach that has,
to my knowledge, never been tr ied before i n the ext4 file system, as opposed to the other
solutions.

A new feature adding the auxi l iary tree called itree was implemented to the ext4 file
system. It can be enabled optionally at the file system's creation time, in case the adminis
trator expects to work wi th large directories. The patches wi th the implementat ion of this
feature were posted to the ext4 development mai l ing l i s t 2 .

Later on, the implementat ion was tested and evaluated using the same set of benchmarks
that were developed during the analysis. Based on the test I d id , the directory traversal
is roughly 14 times faster than before wi th the itree feature enabled. Copying 5,000,000
files, an operation that took previously more than 6 hours to complete is now done i n 28
minutes. Th is is for the cost of an increased size of the directory file and approximately a
40% increase of file creation times, as the file system now has two trees to maintain. This
optimisat ion is, as many others, a trade-off, however, a viable one i n many situations and
workloads (such as doing full backups, processing large data sets, ma i l server workloads,
and more).

1

https://github.com/astro-/dir-index-test
2

http://marc.info/?l=linux-ext4&m=136770326315215

50

https://github.com/astro-/dir-index-test
http://marc.info/?l=linux-ext4&m=136770326315215

There are several areas of this project where further work is planned. One of them is the
insert operation to the inode tree. The leaf nodes of the inode tree are kept sorted, which
could, in some cases, be less efficient than sorting the entries later on during the traversal.
A series of benchmarks could be made to analyse the insertions to see whether the sorting
is viable. A similar series of tests w i l l be necessary for the delete operation to find the most
suitable configuration for the coalesce-on-delete routines.

The last downside of this solution is the increased size of the directory meta-data,
because the entries must reside i n both trees at the same t ime. A further research could
be made to the possibilities of storing both indexes outside of the directory file and using
pointers into a single sequence of entries shared by both the trees.

A n d ultimately, as it is w i th any new feature, the code must be reviewed, tested, de
bugged, and refined again, un t i l it meets the requirements for production, especially i n the
environment as cr i t ica l as data storage.

51

Bibliography

[1] Jacek Luczak . difrost.kernel@gmail.com. getdents - ext4 vs btrfs performance.
Feb 29, 2012. L i n u x Kerne l M a i l i n g L is t Archives: linux-ext4@vger.kernel.org
(Aug 25, 2012).

[2] P h i l l i p Susi . psusi@cfl.rr.com. Large directories and poor order correlation.
M a r 14, 2011. L i n u x Kerne l M a i l i n g L is t Archives: linux-ext4@vger.kernel.org
(Aug 25, 2012).

[3] Rober t Love. Linux Kernel Development, Third Edition. Addison-Wesley
Professional, 2010.

[4] Wolfgang Mauerer . Professional Linux Kernel Architecture. Wrox Press L t d . ,
B i rmingham, U K , 2008.

[5] C l a u d i a Salzberg Rodriguez, Gordon Fischer, and Steven Smolski . The Linux(R)
Kernel Primer: A Top-Down Approach for x86 and PowerPC Architectures. Prentice
H a l l P T R , Upper Saddle River , N J , U S A , 2005.

[6] Jonathan Corbet , Alessandro R u b i n i , and Greg Kroah-Har tman . Linux Device
Drivers, 3rd Edition. O ' R e i l l y M e d i a , Inc., 2005.

[7] Dan ie l Bovet and M a r c o Cesat i . Understanding The Linux Kernel, Third Edition.
O ' R e i l l y Med ia , 2005.

[8] L u k á š Je l ínek. Jádro systému Linux: Kompletní průvodce programátora. Computer
Press, a. s., H o l a n d s k á 8, 639 00 Brno , 2008.

[9] Theodore T 'so. E x t 4 . Presented at The Free and Open source Software Developers'
European Meeting (F O S D E M) , Brussels, 2009.

[10] Darr ick J . Wong. E x t 4 disk layout. A u g 3, 2012.
h t t p s : / / e x t 4 . w i k i . k e r n e l . o r g / i n d e x . p h p / E x t 4 _ D i s k _ L a y o u t (A u g 25, 2012).

[11] A . Mathor , M . Cao, S. Bhat tacharya, A . Dilger , A . Tomas, and L . V i v i e r . The new
ext4 filesystem: current status and future plans. In Proceedings of the Linux
Symposium, pages 21-33, Ottawa, O N , Canada, 2007.

[12] D . Ph i l l ips . A directory index for ext2. In Proceedings of the Linux Symposium,
pages 426-438, Ot tawa, O N , Canada, 2002.

[13] Dona ld E . K n u t h . Sorting and Searching, volume 3 of The art of computer
programming. Add i son Wesley Longman Publ i sh ing Co . , Inc., Redwood Ci ty , C A ,
U S A , second edition, 1998.

52

mailto:difrost.kernel@gmail.com
mailto:linux-ext4@vger.kernel.org
mailto:psusi@cfl.rr.com
mailto:linux-ext4@vger.kernel.org
https://ext4.wiki.kernel.org/index.php/Ext4_Disk_Layout

[14] Douglas Comer . Ubiqui tous B-Tree . ACM Comput. Surv., 11(2):121-137, June 1979.

[15] M i n g m i n g Cao, Theodore Y . Ts 'o , B a d a r i Pulavarty, Suparna Bhat tacharya, Andreas
Dilger, and A l e x Tomas. State of the art: Where we are w i th the ext3 filesystem. In
In Proceedings of the Ottawa Linux Symposium, pages 69-96, 2005.

[16] Dan ie l Ph i l l ips , phillips@arcor.de. [RFC] Improved inode number allocation for
HTree . (Mar 10, 2003). L i n u x Kerne l M a i l i n g L is t Archives:
linux-ext4@vger.kernel.org (Nov 18, 2012).

[17] C o l y L i . coyli@suse.de. [RFC] Designing and Implementation of Directory Inode
Reservation. (Mar 27, 2007). L i n u x Kerne l M a i l i n g L is t Archives:
linux-ext4@vger.kernel.org (Jan 05, 2013).

[18] C o l y L i . coyli@suse.de. [P A T C H] ext4: dir inode reservation V 3 . (Nov 13, 2007).
L i n u x Kerne l M a i l i n g L is t Archives: linux-ext4@vger.kernel.org (Jan 05, 2013).

[19] Theodore Ts 'o . tytso@mit.edu. Re: [RFC] Op t imiz ing readdir(). (Jan 14, 2013).
L i n u x Kerne l M a i l i n g L is t Archives: linux-ext4@vger.kernel.org (Jan 25, 2013).

53

mailto:phillips@arcor.de
mailto:linux-ext4@vger.kernel.org
mailto:coyli@suse.de
mailto:linux-ext4@vger.kernel.org
mailto:coyli@suse.de
mailto:linux-ext4@vger.kernel.org
mailto:tytso@mit.edu
mailto:linux-ext4@vger.kernel.org

Contents of the Attached CD

• /dir-index-test/ - test cases and scripts

• /ext4-tests/ - detailed results of the tests

• /ext4-tests/README - description of the test results

• /patches/kernel/ - the itree patch sets for L i n u x 3.9 and 3.10-rcl, full sources of
both kernels included

• /patches/e2f sprogs/ - patches adding the itree feature to the ext4 user-space u t i l
ities, full sources of e2fsprogs 1.42.7 included

• 7xpazde00-ext4.pdf - the pdf version of this document

54

