
TECHNICAL UNIVERSITY OF LIBEREC
Faculty of Mechatronics, Informatics and Interdisciplinary Studies

Study program: Electrical Engineering and Informatics
Study branch: Mechatronics

Release Management in Atlassian JIRA – Extending
an Issue Tracking System

Master thesis

Author: Bc. Viktor Dlouhý

Project leader: Prof. Dr. rer. nat. Stefan Bischoff

Consultants: Dipl.-Ing. (FH) Thomas Haak

Dipl.-Ing. (FH) Christian Bork

Statement

Byl jsem seznámen s tím, že na mou diplomovou práci se plně vztahuje zákon č. 121/2000 Sb.

o právu autorském, zejména § 60 – školní dílo.

Beru na vědomí, že Technická univerzita v Liberci (TUL) nezasahuje do mých autorských

práv užitím mé diplomové práce pro vnitřní potřebu TUL.

Užiji-li diplomovou práci nebo poskytnu-li licenci k jejímu využití, jsem si vědom povinnosti

informovat o této skutečnosti TUL; v tomto případě má TUL právo ode mne požadovat

úhradu nákladů, které vynaložila na vytvoření díla, až do jejich skutečné výše.

Diplomovou práci jsem vypracoval samostatně s použitím uvedené literatury a na základě

konzultací s vedoucím diplomové práce a konzultantem.

Současně čestně prohlašuji, že tištěná verze práce se shoduje s elektronickou verzí, vloženou

do IS STAG.

22. 7. 2014

2/71

Abstract

The master thesis deals with a development of plugins for JIRA system. JIRA is an issue

tracking tool allowing easy project and issue management. The thesis explores possibilities of

system enhancements mostly by the release management features. Further the large amount of

work is dedicated to general technologies, which are used for web application development.

These technologies are then applied for designing and implementing the plugins.

Keywords

JIRA, Atlassian, Java, plugin, development, release management

Abstrakt

Tato diplomová práce se zabývá vývojem rozšíření pro systém JIRA, který umožňuje snadnou

evidenci a správu projektů. Práce se snaží prozkoumat možnosti vylepšení systému především

v oblasti release managementu. Dále je velký prostor věnován obecným technologiím, jenž se

používají při vývoji webových aplikací. Tyto technologie jsou dále uplatněny při návrhu a

implementaci samotných rozšírení pro systém JIRA.

Klíčová slova

JIRA, Atlassian, Java, plugin, programování, release management

3/71

Table of Contents

1.Introduction..11

1.1.Situation..11

1.2.Task...13

2.Theoretical Foundations...15

2.1.Continuous Integration..15

2.2.Release Management..17

2.3.JIRA..19

3.Preparation...21

3.1.General Technologies..21

3.1.1.REST Communication...21

3.1.2.XML Marshalling...23

3.1.3.JSON Marshalling..26

3.1.4.Object Database...27

3.2.JIRA Plugin Technologies...30

3.2.1.Architecture..30

3.2.2.Plugin File Skeleton...31

3.2.3.Important Modules...32

3.2.4.Velocity Templates...34

3.2.5.Atlassian User Interface...35

3.2.6.Servlets and WebWorks..36

4/71

4.Development..38

4.1.ReleaseAdmin for Jira...38

4.1.1.Motivation..38

4.1.2.Specifications...39

4.1.3.Communication..40

4.1.4.Data..41

4.1.5.Mockup..43

4.1.6.Views..46

4.1.7.Features..51

4.1.8.Result...53

4.1.9.Future...54

4.2.Jira Release Management Plugin..55

4.2.1.Motivation..55

4.2.2.Release Management Software..56

4.2.3.Specifications...57

4.2.4.Data Structure..58

4.2.5.Application Structure...60

4.2.6.Views..62

4.2.7.Result...67

5.Conclusion...68

Literature...69

5/71

List of Illustrations

Illustration 1: Logo of Sphairon..11

Illustration 2: ReleaseAdmin..12

Illustration 3: ReleaseAdmin for JIRA...13

Illustration 4: Jira Release Management Plugin..14

Illustration 5: Continuous Integration at Sphairon..15

Illustration 6: Branching...16

Illustration 7: Release management timeline..17

Illustration 8: JIRA Issue page..19

Illustration 9: JIRA Project with Versions page..20

Illustration 10: Jira Architecture [14]..30

Illustration 11: Plugin file structure..31

Illustration 12: Atlassian Sandbox..35

Illustration 13: Simplified communication flow...37

Illustration 14: ReleaseAdmin communication...40

Illustration 15: Simplified data model..41

Illustration 16: New tab on version page, shows detail of release in ReleaseAdmin...............43

Illustration 17: New panels on issue page with basic info about version.................................44

Illustration 18: New tab on project page, shows the version list..45

6/71

Illustration 19: ReleaseAdmin full detail..46

Illustration 20: Affects Versions panel..47

Illustration 21: Project tab with ReleaseAdmin releases in database..48

Illustration 22: Synchronize all dialog..48

Illustration 23: Configuration page...49

Illustration 24: Extension of communication..54

Illustration 25: Accessible fields JIRA version vs JRMP version...58

Illustration 26: Data model...59

Illustration 27: ReleaseAdmin for JIRA - Versions pages duality..60

Illustration 28: Extended context menu..61

Illustration 29: Version edit page..62

Illustration 30: Version detail page...63

Illustration 31: Affects Versions panel..64

Illustration 32: Milestone list page..64

Illustration 33: Milestone administrator page...65

Illustration 34: Milestone modification dialog..65

Illustration 35: Branches and Revisions page...66

Illustration 36: Branches administration page...66

7/71

Glossary

ActiveObjects – Java based Object Relational Mapping for databases

AJAX – Asynchronous JavaScript, a technology for asynchronous communication

API – Application Programming Interface, list of developer usable entities (eg. functions)

Architecture – hight level structure of a software

AUI – Atlassian User Interface, set of advices and graphical components

Build – result of building procedure created from some source code

Client – software or hardware that access exposed services of server

Continuous delivery – process of automated software delivery

Continuous integration – process of automatically building and testing of software

Framework – software which provides API and other features for running applications

GUI – Graphical User Interface

HTML – Hypertext Markup language, language to define web pages

HTTP – Hypertext Transfer Protocol, application protocol used by web pages

Implementation – realization of an abstract plan

Instance – concrete software object in memory

Interface – set of abstract information specifying certain communication abilities

Jackson – data processing tool for JSON

Java – programming language

JavaScript – scripting language

8/71

Jersey – library for RESTful web services

jQuery – library for JavaScript

JSON – JavaScript Object Notation is an data format to exchange information

Library – collection of supporting software

Markup language – system for annotation and description of a document

Marshalling – process of transforming raw data into object representation

Maven – Apache Maven is a build tool

Mockup – quick illustration of desired GUI

MVC architecture – Model View Controller architecture, programming concept

Protocol – collection of digital rules for data exchange

Release – result of release procedure

Repository – stored data structure provided by server

Request – HTTP request, a message going from client to server

Response – HTTP response, a message answering request

REST - Representational state transfer, architectural style of communication

Revision – special incrementing identificator describing source in time

Server – software or hardware that allows clients to communicate via enabled services

Servlet – Java Servlet class provides capabilities to implement web server

SQL database – database using SQL language for query

Tomcat – web server and servlet container

9/71

VTL – Velocity Template Language

XML – Extensible Markup Language, general purpose description language

10/71

1.Introduction

1.1. Situation

Sphairon is a company developing its own hardware and software. The company makes

number of routers and modems with advanced features of telephony. Sphairon has long time

history which goes up to 1948, when it was founded as VEB Fernmeldewerk Bautzen a

company devoted to network systems. Nowadays company enjoys stable growth and is mostly

dedicated to research and development. The company was bought by a famous ZyXEL in the

May 2013, which brought strong international partner from technology and business view.

Sphairon develops its own embedded Linux distribution. More than 80000 revisions were

created during the time, it consists of 200 different software components and has 14 million

lines of code in total. Sphairon Linux empowers very well known products as

O2 HomeBox 1, Vodafone EasyBox 803S or NetCologne Deluxe. Tons of software releases

were created delivering new features and updates to the customers.

The firm uses modern approaches in managing software releases, however the tools are kind

of segmented. Some of the tools can be classified as a free software. Subversion is a revision

control system maintained by Apache, it is as a free software. Jenkins is an open source

continuous integration tool. It facilitates test system functionality in Sphairon. However many

other functions are handled by proprietary server based system. It includes software automatic

building, release management and release archivation. Atlassian JIRA is a great

issue tracking tool, which can be also utilized as a project management tool.

Sphairon benefits on its own independent web portal and on mostly open-source continuous

integration tools. This solution has its pros and cons. The biggest problem is context

fragmentation and data multiplicity. If somebody uses commercial continuous integration

tool, everything is handled inside. But if you want to be independent, it brings such issues.

11/71

Illustration 1: Logo of Sphairon

To properly maintain software an issue tracking system is necessary. JIRA is a professional

issue tracking tool. Its data structure is pretty simple, you have projects and issues. Issue can

be a bug, task or any kind of user story. If you create an issue, you can assign a version to it.

The problem is that the version does not contain a lot of information. Sphairon uses its own

release management tool called ReleaseAdmin (main page on Illustration 2) to maintain

versions and keep information. If somebody makes a release it needs to be listed in

ReleaseAdmin. Release has a name, which is the same as the name of version in JIRA. If

customer makes a complaint, it is necessary to create an issue (bug) in JIRA. If the bug is

fixed, a new release must be created in ReleaseAdmin, but also the same version in JIRA must

change its status to released. You cannot release a software until all bugs are fixed. So it is

necessary to maintain two tools and keep switching between them to have complete data

information. Unfortunately this can lead to wrong linking of different data information and

possibly to create the crucial mistakes.

12/71

Illustration 2: ReleaseAdmin

1.2. Task

First Step

The first step is to bring data provided by standalone release management system

(ReleaseAdmin) into JIRA. This creates new user context inside JIRA, which simplifies

process of managing releases and brings synoptic and suitable number of views giving user

convenient and desired information about releases. Mapping between ReleaseAdmin data

entities and JIRA data entities is required.

The views can fulfill information role only and the editing feature must be still handled only

by ReleaseAdmin itself.

The diagram in Illustration 3 shows the enhancements, which can ReleaseAdmin for JIRA

bring into development process.

13/71

Illustration 3: ReleaseAdmin for JIRA

Second Step

The second step is to create extension plugin, which brings release management principles of

continuous integration into JIRA issue tracking system. Continuous integration is composed

from many steps and requires many tools, issue tracking is one them. The task is to implement

release management into JIRA and create plugin (Illustration 4), which can stand on its own.

The development procedure should keep in mind possibilities of other continuous integration

principles to may be implemented in future. Many import functions are required for the

plugin.

14/71

Illustration 4: Jira Release Management Plugin

2.Theoretical Foundations

2.1. Continuous Integration

Modern practice to develop software is to use continuous integration principles. Continuous

integration (Illustration 5) is a collection of different development tools to provide faster

development process, better collaboration in team and swift resolution of possible bugs. [5]

Sometimes these practices are implemented separately as different tools, which can work

together and user touch is required. These practices can be also managed in continuous

integration systems, which handle all steps in one tool.

Issue Tracker

Issues are tasks which are necessary to be processed. It is not only bugs, it can be different

milestones, functionalities and many others. This is the place where a demand is created.

15/71

Illustration 5: Continuous Integration at Sphairon

Revision Control

The main principle is to store all code into software repository. Repository provides central

storage of code for all members in a team. Most importantly code repository supports

versioning of the code. Commitments should be done regularly.

Revision control system is a software providing control over changes of source code. It is

designed mostly for team developers, but can be used for individuals. It stores changes in

source code and attaches a time stamp information. It prevents concurrent access by locking

files, so that only one developer has write rights. It provides some other important operations

such as merging, branching, updating, messages checking and many others.

Branching and revision creation can be seen on the Illustration 6.

Build Automation

Building is complicated process, that's why automation is necessary. Automation of a build

often includes deployment, binaries compiling, documentation generation and many others.

Once the code is built, testing should be added to confirm all behaves as expected.

Deployment

Making builds available to testers can reduce large amount of rework. Acceptance test can be

necessary.

16/71

Illustration 6: Branching

2.2. Release Management

Release management is a process of planning, testing and deploying releases. The whole

procedure starts when the release is planned for the future. This situation is triggered by

announcing a bug, or when the new features from the software are expected. These issues are

grouped together for a new upcoming release. Then continues integration phase comes – the

development and testing. The software needs to be properly tested. This is the testing phase of

release. If the tests go wrong, everything is handled in frame of continuous integration circle.

The testing can be done automatically or manually by exposing the software to testers in the

field. The deployment phase is actually composed from the archiving of final version, testing

and finally by releasing to the customers.

Above steps can be understood as a managing and storing the information about the

procedure. The most important things are that all releases must be stored somewhere with all

information about the steps created during the development, testing and deploying progress.

With storing the details about the release, the key information can be:

• name of the release – original version name

• targets

• source of the release

• build protocols with build results

17/71

Illustration 7: Release management timeline

• test protocol

• build date

• release date

• customer and others

Some of these information can be just a link to the other software eg. revision control system,

build system and so on. Actually release management software can connect (or integrate) all

tools from continuous integration process together to provide detailed information about a

software in any step of its life-cycle.

18/71

2.3. JIRA

Atlassian JIRA is an issue tracking web based system, which helps to manage development

processes with focus on continuous integration principles (2.1). The system is multi-user

based and every user can have different permissions. Issues and projects are main entities

provided by JIRA. Issues can be understood as a task, reminder, complaint or in case of

software development a bug. Issue page (Illustration 8) is a view showing detail of certain

issue. It allows to add comments, attach files or for example change status of the issue. Project

is an entity enabling to group issues into big units based on eg. product.

JIRA also helps with planning and managing of versions. One can create a version and assign

it to an issue. When the version is released (version becomes actually release), all issues

should be resolved. Versions can be observed also as a road map. This view shows how many

issues with same assigned version are done or undone. It allows simple overview of planned

versions and work status.

19/71

Illustration 8: JIRA Issue page

The JIRA content can be divided into two classes from user perspective. The first class is

view only (Illustration 9), this is usually called overview and the second class is

administration. Administration views are visible only for those with edit rights for eg. certain

project.

JIRA supports many other functionalities like statistics, reports, advanced search possibilities.

The thing which is important, JIRA as other Atlassian products support plugin development.

Atlassian has rich documentation how to create add-ons and enrich its JIRA product with

other different functions and processes.

20/71

Illustration 9: JIRA Project with Versions page

3.Preparation

3.1. General Technologies

First it is necessary to summarize possible technologies, which are used for web application.

General technologies are platform independent and can be applied on different cases. The

principles or approaches can be then used during development.

3.1.1. REST Communication

REST is an conceptual style designed for distributed environment, which describes

communication interface [18]. REST proposes several methods based on HTTP protocol:

 GET (Retrieve)

 POST(Create)

 DELETE

 PUT (Update)

These methods can be implemented on a REST server on different paths and the client can use

them to achieve desired result. REST is very often used to exchange data between two

separate applications. However this approach can be also utilized to provide internal

information exchange between client (browser) and server (web) to manage asynchronous

communication.

A client using jQuery library in JavaScript is described in Code 1, where the the AJAX

technology is used to generate request and receive response in text format. This snippet is

actually concrete REST client written in JavaScript.

21/71

function releaseSync(id) {
$.ajax({

url : "path",
type : "PUT",
dataType : "text",
contentType : "text/plain",
success : function(data) {

alert(data);
},
error : function(response) {

alert(response.responseText);
}

});
}

Code 1: REST client - JavaScript

REST server can be implemented in Java using common Servlet class. REST client can be

created in Java with raw HttpClient class from Jakarta Commons project. But since there

exists open source Jersey library, it is convenient to use it. Jersey is a library based on Java

API for RESTful Services (JAX-RS) and makes the job very well. [8]

An example how to create instance of REST client using Jersey in Java language, make a

request and receive response in String representation can be observed from Code 2. This is

actually concrete REST client in Java language.

public String releaseSync(int id) {
ClientConfig config = new DefaultClientConfig();
Client client = Client.create(config);
WebResource webResource = client.resource(contextPath +"/" + id +

"/sync");
return webResource.get(String.class);

}

Code 2: REST client – Java – Jersey

22/71

3.1.2. XML Marshalling

XML is a general markup language, which is very often used to store or exchange

information. If a random application provides public API, it usually offers JSON or XML

format. Advantage of XML is clarity and flexibility. Modern approach to read external data

consists of XML marshalling, this means a way to transform raw XML data into specific data

object. [27]

XML files are very popular, because everyone can create own XML markups. If you want to

show others which markups you use, you need to describe it. This is when the XML schema

comes. So called XSD files are based on XML and contains information about user created

XML files. It describes elements and attributes, simple and complex types, model groups and

attribute relationships. [12]

Code 3 shows example of XSD schema file. Following XML object (Code 4) comes from the

given schema.

<?xml version="1.0" encoding="utf-8"?>
<xs:schema elementFormDefault="qualified"
xmlns:xs="http://www.w3.org/2001/XMLSchema">
 <xs:element name="Address">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="Recipient" type="xs:string" />
 <xs:element name="House" type="xs:string" />
 <xs:element name="Street" type="xs:string" />
 <xs:element name="Town" type="xs:string" />
 <xs:element name="County" type="xs:string" minOccurs="0" />
 <xs:element name="PostCode" type="xs:string" />
 <xs:element name="Country" type="xs:string" minOccurs="0" />
 </xs:sequence>
 </xs:complexType>
 </xs:element>
</xs:schema>

Code 3: XSD schema file

23/71

<?xml version="1.0" encoding="utf-8"?>
<Address xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:noNamespaceSchemaLocation="SimpleAddress.xsd">
 <Recipient>Mr.WalterC.Brown</Recipient>
 <House>49</House>
 <Street>FeatherstoneStreet</Street>
 <Town>LONDON</Town>
 <PostCode>EC1Y8SY</PostCode>
 <Country>UK</Country>
</Address>

Code 4: XML output based on XSD schema

Schemes help very much, if you want to use data from external API. From provided XSD file

you can create your own data model which corresponds to API and implement own serializer.

Or there are already prepared tools, which can make the work for you. This approach is called

XML data binding.

Java Architecture for XML Binding (JAXB) provides separate tools to generate Java classes

from given XSD file. Mind that Java classes are generated externally, not in running

application. Notice XML annotations, which are generated by JAXB. In Code 5 you can see

how the XSD file (Code 3) was transformed into Java code by JAXB.

24/71

@XmlAccessorType(XmlAccessType.FIELD)
@XmlType(name = "", propOrder = {
 "recipient",
 "house",
 "street",
 "town",
 "county",
 "postCode",
 "country"
})

@XmlRootElement(name = "Address")
public class Address {
 @XmlElement(name = "Recipient", required = true)
 protected String recipient;
 @XmlElement(name = "House", required = true)
 protected String house;
 @XmlElement(name = "Street", required = true)
 protected String street;
 @XmlElement(name = "Town", required = true)
 protected String town;
 @XmlElement(name = "County")
 protected String county;
 @XmlElement(name = "PostCode", required = true)
 protected String postCode;
 @XmlElement(name = "Country")
 protected String country;
}

Code 5: Java data class representation

Jersey is a library based on Java API for RESTful Services (JAX-RS). Jersey can bed used to

make HTTP request from Java code to external API and marshall received data into instances

of data classes (Code 6). Special annotations are required in marshaled data class (Code 5).

[9]

public <T> T makeRequest(Class<T> newClass) {
WebResource webResource = client.resource(path);
webResource = client.resource(path);
T response = webResource.get(newClass);
return response;

}

Code 6: Client request and XML marshalling

25/71

3.1.3. JSON Marshalling

JSON is an open standard format to exchange data. It is often used as an alternative to XML.

Advantages are simplicity and high efficiency. It is composed from attribute-value pairs.

JSON is often used in AJAX techniques. If it is necessary to marshal JSON data, there are

several approaches to do it. It can be transformed to primitives or mapped to prepared data

classes. It provides also schema descriptions.

Jackson is a library for Java application to make marshalling of JSON. It provides annotations

and of course object mapper as a marshaller. [6]

In Code 7 you can find and example of incoming data in JSON format. For the purposes of

marshalling a general data class is necessary (Code 8).

{
"release_id":"779",
"project_id":"11",
"versionstring":"4.37.2.4",
"builddate":"1394623979",
"releasename_id":"292",
"sw_generation":"4",
"released":"1",

}

Code 7: JSON object

public class ReleaseModel {
@JsonProperty(value = "release_id")

 protected short releaseId;
@JsonProperty(value = "project_id")

 protected byte projectId;
@JsonProperty(value = "versionstring")

 protected String versionstring;
@JsonProperty(value = "builddate")

 protected int builddate;
@JsonProperty(value = "releasename_id")

 protected short releasenameId;
@JsonProperty(value = "sw_generation")

 protected byte swGeneration;
 protected byte released;
}

Code 8: Java data class representation

Combination of Jackson and Jersey can be used to manage HTTP request and marshalling

itself (Code 9).

26/71

public <T> T makeRequest(Class<T> newClass) {

WebResource webResource = client.resource(path);
String response = webResource.get(String.class);
ObjectMapper mapper = new ObjectMapper();
T rObject = mapper.readValue(response, newClass);
return rObject;

}

Code 9: Client request and JSON marshalling

3.1.4. Object Database

ActiveObjects is a Java based Object Relational Mapper developed from the ground as a fast

and easy to use library. It supports number of SQL databases like Derby, HSQLDB, MSSQL,

MySQL, Oracle or PostgreSQL. It is distributed under Apache free software license.

ActiveObjects can be download as a standalone package or using Maven repository. [15]

ActiveObjects provides simple mapping between data classes in Java and database (DB)

itself, so the Java object can be easily stored into database without using SQL queries. Most

importantly data classes can be extended or changed and ActiveObjects handles changes,

migrations or upgrades.

ActiveObjects API provides few crucial classes to work with. EntityManager manages

database access from objective perspective, nevertheless it still supports SQL queries if

necessary. Entity interface needs to be extended in own data interface, which describes data

model. Entity is not recommended to be implemented and then instantiate. To create instance

of desired data object EntityManager factory method should be used.

Code 10 shows an example of extending Entity interface into own data model. Setters and

getters are used to map attributes into database columns. Code 11 explains how to create an

object from given data model interface.

public interface Person extends Entity {
 public String getFirstName();
 public void setFirstName(String firstName);
 public String getLastName();
 public void setLastName(String lastName);
}

Code 10: Data model interface

27/71

EntityManager em = new EntityManager(jdbcURI, username, password);
Person p = em.create(Person.class);
p.setFirstName(“Pavel”);
p.setLastName(”Mokry”);
p.save();

Code 11: Using manager to create and store object [21]

ActiveObjects API supports also some demanding functionalities like relations, indexing or

preloading. Annotations as @OneToMany and @ManyToMany can be used to describe

relationship between two different data models connected in DB table by id. But in

ActiveObjects you do not need to bother with joining the tables. It is done for you by special

relation annotation tags (Code 12). [23]

public interface City extends Entity {
 public String getName();
 public void setName(String name);
 @OneToMany
 public Person[] getOccupants();
}

public interface Person extends Entity {
 public String getFirstName();
 public void setFirstName(String firstName);

 public String getLastName();
 public void setLastName(String lastName);

 public City getCity();
 public void setCity(City city);
}

Code 12: Data model relations [23]

As written before it is not recommended to implement Entity interface (only to extend). But

how to achieve similar result? How to implement methods itself? Solution exists, however the

implementation is little bit painful. Annotation @Implementation must be used and different

class must be created, the name is specified by annotation. Implementation class needs to

provide reference to Entity in constructor as it is described in Code 13.

28/71

@Implementation(PersonImpl.class)

public interface Person extends Entity {
 public String getFirstName();
 public void setFirstName(String firstName);

 public String getLastName();
 public void setLastName(String lastName);

 public City getCity();
 public void setCity(City city);
}

public class PersonImpl {

 private Person model;

 public PersonImpl(Person model) {
 this.model = model;
 }

 public String getFirstName(){
 return model.getCustomer().toUpperCase();
 }
}

Code 13: Data model and implementation class [22]

29/71

3.2. JIRA Plugin Technologies

JIRA is a standalone application, that is capable of extension. Extensions are called plugins.

Plugins should be designed in MVC architecture as well and Atlassian as a company standing

behind JIRA provides many tools to achieve this. As a view layer you can use WebWorks or

generic Servlets (3.2.6), as a data layer ActiveObjects mapper (3.1.4) is available. All these

components are called plugin modules. Plugin modules expose certain kind of available

functionality to plugin such as above written view, data layer or for example REST service.

3.2.1. Architecture

JIRA is a web based application using MVC architecture. JIRA is written in Java and is

deployed as WAR file into Java Servlet Container usually Tomcat. [14]

30/71

Illustration 10: Jira Architecture [14]

3.2.2. Plugin File Skeleton

Every plugin project must fulfill certain structure. Most important files are description files.

File atlassian-plugin.xml contains information about used resources, plugin modules and other

components. File pom.xml holds important information how to build plugin, which libraries

(dependencies) to use, it also contains name, version and other specific fields about a plugin.

The main folder contains the source code written in Java. The resources folder contains views,

JavaScript codes, CSS styles. Files with extension .properties contains string values, which

can be used for localization, if necessary.

31/71

Illustration 11: Plugin file structure

3.2.3. Important Modules

WebWork Plugin Module

WebWork plugin module is based on OpenSymphony WebWork1 framework. It provides

view layer for JIRA plugins and interaction for users. WebWork can be invoked from links

and return certain view. [25]

Servlet Plugin Module

General Servlet can be also used to provide any interaction between client and server. Servlet

can return view or just a generic data. Servlet allows to use all of common HTTP

methods. [24]

Project Tab Panel Plugin Module

This kind of module exposes possibility to add certain view into project page of JIRA. [19]

Version Tab Panel Plugin Module

This kind of module exposes possibility to add certain view into version page of JIRA. [13]

Component Plugin Module

From global perspective objects are created by JIRA itself when they are defined as modules

(Code 14). Component plugin module makes possible to share own object between modules

in plugin since you can not refer to the object manually, you need to use constructor injection

method, example is in Code 15. [4]

<!-- COMPONENT - DATA PROVIDER -->
<component key="data-accessor" class="com.releaseadmin.DataAccessor"
name="Data Accessor" i18n-name-key="data-accessor.name">

<description key="data-accessor.description">Data
Accessor</description>
</component>

Code 14: Component declaration

32/71

public class ReleasesRestService {

private DataAccessor dataAccessor;

public ReleasesRestService(DataAccessor dataAccessor) {
this.dataAccessor = dataAccessor;

}
...
}

Code 15: Example of injection

REST Plugin Module

REST module enables REST API service to be added into plugin. This can be used for

communication between client and server. [16]

<rest name="Rest Service" i18n-name-key="rest-service.name"
key="rest-service" path="/rest" version="1.0">
<description key="rest-service.description">Rest Service

Plugin</description>
</rest>

Code 16: REST declaration

ActiveObjects Plugin Module

This module allows to store data model into object database. Data model must be declared as

ActiveObject Plugin Module.

<!-- ACTIVE OBJECTS - DATA ITEM -->
<ao key="ao-module">

<description>The module configuring the Active Objects used by this
plugin

</description>
<entity>com.example.data.ModelOne</entity>
<entity>com.example.data.ModelTwo</entity>

</ao>

Code 17: Data model declaration

Component Import Plugin Module

This module allows to access Java components shared by other plugins. [7]

33/71

3.2.4. Velocity Templates

Velocity is a Java based template system, which separates Java code from views, but still it

provides access to Java objects, which enables to get all public parameters or to call public

methods. Simple and powerful scripting language Velocity Template Language (VTL) can be

used to generate dynamic views. It gives options for example to create variables, make

conditions and cycles. Since you can generate pages through Velocity, you can even generate

JavaScript code, which brings almost endless possibilities. [2]

<html>
<body>
Hello $customer.Name!
<table>
#foreach($mud in $mudsOnSpecial)
 #if ($customer.hasPurchased($mud))
 <tr>
 <td>
 $flogger.getPromo($mud)
 </td>
 </tr>
 #end
#end
</table>
</body>
</html>

Code 18: Example of VTL [2]

Atlassian recommends to use Velocity Templates and mostly as a developer of plugins, it is

the only way to create views. Simple way to create a view for Atlassian plugin is in Code 18.

Using VTL it is easy to share objects between Java code and Velocity Template, most

importantly Atlassian usually provides some basic objects itself, so it is not big problem to get

for example base URL (Code 19) or to import some specific resources.

$webResourceManager.requireResource("com.atlassian.auiplugin:aui-
experimental-table-sortable")
...
<a href="${requestContext.baseUrl}/browse/$projectKey/fixforversion/
$version.getId()">$name
...

Code 19: Example of adding resources and using baseUrl

34/71

3.2.5. Atlassian User Interface

Atlassian User Interface (AUI) is a library of visual components, which Atlassian shows in its

products including JIRA. These components are also available for plugin developers. A

component is usually composed from HTML and can have JavaScript to provide some

functionality. There are many components from the basic ones as buttons and dialogs or

whole page decorators. [17]

There is also Atlassian Design Guidelines which is a library of articles and recommendations

for both Atlassian developers and plugin developers. Every component from AUI is described

from view of designer with suggestions how to use them and where to place them. [17]

Atlassian Sandbox (screenshot on Illustration 12) is a web tool for developers, which makes

easier to create views. All available components are prepared to be copied including its

JavaScript functions. Using Sandbox you can also run own JavaScript functions or test own

HTML layouts.

35/71

Illustration 12: Atlassian Sandbox

3.2.6. Servlets and WebWorks

As it is written before (3.2.4) to create a view, you can use Velocity Templates. To create

controllers for these views, you can use Java Servlets or OpenSymphony WebWork. Typical

web application interacts with a server using web forms. On the server side, information are

handled by Java Servlet. Servlet is like a controller, which access database and returns needed

data back to the view.

Atlassian provides OpenSymphony WebWork version 1. WebWork are build on top of the

servlet combining other frameworks like XWork and implementing dynamic parameter

mapping to JavaBeans, validation of request and other features [26]. However with WebWork

you cannot handle AJAX request, because response is always a view, response can not be in

JSON format, this requires special object for asynchronous accessing eg. REST API server.

So WebWorks have its positive and negative sides.

Table 1: Comparison of WebWork and own solution

feature own solution WebWork

Multiple view for action yes yes

Template layout system yes no (only velocity)

Security managed no yes

HTTP req validation partly partly

AJAX possible yes no

Proven solution no yes

The idea would be to create own controller, which supports everything on top of the Servlet,

but since the WebWorks are quite well documented, proven and secure technology and on top

of that it is generally advised by Atlassian to use WebWorks. From conceptual point of view, it

is anyway better to divide controller for views and controller for background communication

(AJAX) as it is possible to see on Illustration 13.

36/71

37/71

Illustration 13: Simplified communication flow

4.Development

4.1. ReleaseAdmin for JIRA

4.1.1. Motivation

The most important motivation is to help Sphairon company to have correct and full

information about its releases. To remove switching of content in browser, which can easily

cause mistakes and to have all necessary information about releases in one tool.

As JIRA has possibility to add versions to issue, it can be used to recognize release in

ReleaseAdmin. When the correct release exists in ReleaseAdmin (same name as JIRA

version) offer these information from ReleaseAdmin in JIRA. When the proper version is not

found in ReleaseAdmin, it is probably not a software development issue. Or it is not correctly

named.

This plugin does not have any ambition to be used by somebody else than Sphairon

employees. It should be proprietary software.

38/71

4.1.2. Specifications

 Communication in JSON format

 Data model similar to ReleaseAdmin Rest API output

 Version in JIRA corresponds to release in ReleaseAdmin

 Release extends version by adding new information (release is version)

 Ask ReleaseAdmin for releases presence

 Cache releases in JIRA plugin database

 Release in cache DB is always valid, allow user to refresh an item in the cache

 Provide simple mapping of projects

◦ ReleaseAdmin project vs Jira project, eg.: ISDN-SIP-Gateway (SIPGW) vs ISDN-

SIP-Gateway

◦ Allow one-to-many relation in JiraProject to ReleaseAdmin project

 Show list of cached releases in JIRA

 Show panel on issue page of corresponding cached releases

 Show link to ReleaseAdmin if possible

 Show full information on version page and compact information on issue panel

 Support of devices in many-to-many relation to version

 Support of release notes

 Allow to download all information about all versions in JIRA project to cache

39/71

4.1.3. Communication

One of the most important thing is the communication between JIRA plugin and

ReleaseAdmin. The plugin needs to retrieve data from ReleaseAdmin and show them. The

technology which is proper for this situation is REST communication (3.1.1), because it uses

usual HTTP protocol and fits the most for web application purposes.

REST communication is just a method how to exchange data. Another thing is the data

format. Most often used standards JSON and XML are possible. For its efficiency JSON is

used in this case.

Two REST commands are necessary on ReleaseAdmin side:

 Provides data about release based on release name.

 URL eg.: api/rest/latest/version?version=2.4.5.1

 returns empty JSON string or data about given release

 Provides data about projects in ReleaseAdmin

 URL eg.: api/rest/latest/project

 returns array of projects, its name and id

Using JSON Marshalling (3.1.3) it is pretty simple to transform JSON output into JAVA data

objects.

40/71

Illustration 14: ReleaseAdmin communication

4.1.4. Data

The main idea to create data structure is to separate data model for communication

(ReleaseModelHelper) and data model for caching (ReleaseModel). Data objects which

comes from ReleaseAdmin REST output must be transformable to Java objects from JSON.

This process is called marshaling and for this purpose Jackson library can be used (3.1.3).

Model which goes to database must be separate in case it was necessary for example to be

extended. Inheritance can be used, however another thing that tells the model must be

separated is the limitation of ActiveObjects framework – we need to use interfaces to describe

an item in database – not classes (3.1.4). And of course if the ReleaseAdmin REST API

changes, we just change communication data class instead of whole application dependent

data class.

The mapper must be implemented to convert communication objects into database objects.

The opposite direction can be also useful, in case somebody wants to use AJAX for browser

to server communication.

Another data classes (other than ReleaseModel) are necessary. For example to store devices

and projects. However the idea with mapping stays.

In Code 20 there is a full implementation of ReleaseModelHelper with all annotations

necessary for marshaling from JSON data to Java instances.

41/71

Illustration 15: Simplified data model

@JsonIgnoreProperties(ignoreUnknown = true)
public class ReleaseModelHelper{

@JsonProperty(value = "release_id")
protected short releaseId;
@JsonProperty(value = "project_id")
protected byte projectId;
@JsonProperty(value = "versionstring")
protected String versionString;
@JsonProperty(value = "builddate")
protected int buildDate;
@JsonProperty(value = "releasename_id")
protected short releaseNameId;
@JsonProperty(value = "sw_generation")
protected byte swGeneration;
@JsonProperty(value = "released")
protected byte released;

@JsonProperty(value = "releaseddate")
protected int releasedDate;

@JsonProperty(value = "url")
protected String url;

@JsonProperty(value = "project")
protected String project;

@JsonProperty(value = "releasename")
protected String releaseName;

@JsonProperty(value = "customer")
protected String customer;

@JsonProperty(value = "devices")
protected List<ReleaseDeviceModelHelper> devices;

@JsonProperty(value = "revision")
protected int revision;

@JsonProperty(value = "branch")
protected String branch;

@JsonProperty(value = "buildspec")
protected ReleaseBuildSpecModelHelper buildSpec;

@JsonProperty(value = "buildsystem")
protected ReleaseBuildSystemModelHelper buildSystem;

...
}

Code 20: ReleaseModelHelper data class

42/71

4.1.5. Mockup

Mockups are simplified illustrations of views to help design an application structure. For the

mockups, there are many tools using different approaches to generate illustrations. Mockups

can be very simple, the purpose is to find out where to place GUI components and how they

should behave. Usual screenshots of pure JIRA instance can be used together with simple

paint tool.

ReleaseAdmin for JIRA needs to have separate page (Illustration 16) with details of release

information contained in cache. For the administrators, the button to reload data from remote

host can be visible.

43/71

Illustration 16: New tab on version page, shows detail of release in ReleaseAdmin

The issue page is crucial for JIRA. So that is why it so important to introduce panels showing

brief information of corresponding releases. An issue can have affects versions and fixed

versions, so it is necessary to implement two panels.

44/71

Illustration 17: New panels on issue page with basic info about version

List of cached releases needs to be created to provide complex view for all versions in project.

This list can show small amount of information about releases stored in JIRA.

45/71

Illustration 18: New tab on project page, shows the version list

4.1.6. Views

All views are composed from Java classes, Velocity templates and usually some JavaScript

functions. Java class needs to extend some Atlassian view class (3.2.3). The proper definition

in atlassian-plugin.xml is necessary too.

Version detail page

Version detail page (Illustration 19) contains detailed information about release in

ReleaseAdmin connected to version in JIRA. It is a tab on version page of JIRA. It offers also

a few buttons. Update data allows project administrator to get new data from ReleaseAdmin.

There are buttons available, if release contains release notes or download links. If more

corresponding releases to currently viewing version are found, all of them are visible.

46/71

Illustration 19: ReleaseAdmin full detail

Issue page panel

Issue page panel (Illustration 20) provides information on issue page. This is a crucial view,

that brings necessary data from ReleaseAdmin into JIRA. There are two panels, one contains

details about affect version and one about fixed version.

Version list page

Project page has many tabs concerning to a project. It usually shows all issues included,

people assigned, associated versions and others. One could say, why not to extend current

versions tab with new information regarding to ReleaseAdmin. To add new columns into table

and new links. Sadly this is not possible and Atlassian does not provide any correct way to

change existing Versions tab. This means that own tab must be created, which contains all

necessary information about cached versions (releases in ReleaseAdmin).

The tab allows user to see all cached versions in plugin. For the project administrators there

are advanced features as synchronizing of all versions in Jira with ReleaseAdmin (Illustration

22) and off course a function that updates one particular release. The screenshot is visible on

Illustration 21.

47/71

Illustration 20: Affects Versions panel

48/71

Illustration 21: Project tab with ReleaseAdmin releases in database

Illustration 22: Synchronize all dialog

Configuration

Configuration page is available only for JIRA administrators and allows them to configure

plugin:

• ReleaseAdmin REST API path

• Cached items statistics

• Delete items in database

49/71

Illustration 23: Configuration page

Project mapping

Project mapping is very important to be done after plugin installation. Plugin needs to know

which projects in ReleaseAdmin corresponds to JIRA projects. With versions it is simple, the

name must be the same. But with projects it is more difficult, because project names are not

always the same and sometimes one project in JIRA have to be connected with more projects

in ReleaseAdmin (eg. general library development). Using project mapping view it is possible

to connect all projects and it also offers automatic mapping functionality (4.1.7).

50/71

4.1.7. Features

Acquiring releases from ReleaseAdmin

Very important question is when to acquire data from ReleaseAdmin? The best answer is

“When it is needed”. The idea is to provide user as much information as possible and in the

time it is necessary. The approach is simple, if there is a version in JIRA browsing context

which can have corresponding item in ReleaseAdmin, ask for it. If it is not in cache (local

database), ask remote host (ReleaseAdmin) for a result. If the result is successful, show it to

the user. And more if the user is administrator, allow possibility of refresh.

Version listener

Version listener is added functionality to JIRA, listener is called whenever new version is

created. If release with corresponding name is found in ReleaseAdmin it is also added into

database. This approach makes the plugin more automatic and comfortable.

String comparison

To map project between JIRA and ReleaseAdmin, the plugin uses special String comparison

algorithm which comes out from Levenshtein distance function. This function calculates how

many substitutions are necessary to reach conformity between two strings. String comparison

algorithm uses this function but in little bit adjusted way. The algorithm is possible to see in

Code 21.

Possible positive scenarios:

• returns true, if one string is a part of the second one (eg. Google Inc vs Google)

• returns true, if the number of changes necessary to get conformity are less than half

size of longer string (eg. Googla Inc vs Google)

51/71

public static boolean checkSimilarity(String str1, String str2) {

if (str1.contains(str2) || str2.contains(str1)) {
return true;

} else {
float limit = 0.5f;
int biggestSize = str1.length();
if (str2.length() > biggestSize)

biggestSize = str2.length();
int changesNeeded = computeLevenshteinDistance(str1, str2);
if(((float) changesNeeded / (float) biggestSize) <= limit){

return true;
}

}
return false;

}

Code 21: Check similarity method

52/71

4.1.8. Result

The plugin was tested during development on clean JIRA test instance. Introducing new

features the plugin was everytime uploaded to JIRA staging instance. JIRA staging instance is

a copy of live instance including all data inside. JIRA staging instance is for Sphairon

employees available, so that is how the testing went.

Currently the plugin is deployed to the live instance of JIRA in Sphairon company.

ReleaseAdmin for JIRA has 40 revisions created during 19 days of development, 4513 lines

of codes (without empty lines) were written. Pure Java code is presented by 2410 lines, this is

server side application. ReleaseAdmin for JIRA was first released in version 0.1.9, than

version 0.2.0 was deployed to public live instance of JIRA, version 0.2.1 was immediately

added repairing some crucial bugs announced by users. Version 0.2.2 is in future expected

release to have some new features.

53/71

4.1.9. Future

For the next release, there are some ideas to extend the plugin. For example enhance the

communication between ReleaseAdmin and ReleaseAdmin for JIRA. It would be nice, when

a release is created in ReleaseAdmin, it would announce that to JIRA REST API by creating a

version in JIRA, then the plugin would get detailed information about the release from

ReleaseAdmin. The proposal of communication is described on diagram in Illustration 24.

54/71

Illustration 24: Extension of communication

4.2. JIRA Release Management Plugin

4.2.1. Motivation

JIRA is one of the most often used bug tracking systems and still it doesn't have any plugin,

which adopts release management functionalities. The JIRA itself supports version entities as

a first step to introduce these abilities. However it is not enough. Competition is pretty rare, if

you don't think about big commercial continuous integration systems, where the issue

tracking is one small part of big colossus.

As a competition some standalone open source projects can be listed, for example:

• Apache Continuum

• Jenkins (build system with release management plugin)

• GitHub (host system on top of the GIT with bug tracking and release features)

• BitBucket

These applications are usually created on top of certain tool and don't support connection of

multiple tools.

The idea is to create a plugin for users of Atlassian JIRA which combines most of the release

management abilities, with possibilities in future to adopt other continuous integration

features, so that the plugin can be a competition to projects like Apache Continuum or

BitBucket, but running inside of JIRA.

The plugin should be general in its data model, so everyone can use it. For the Sphairon

company the motivation is to replace own proprietary release management system

(ReleaseAdmin) in future, and replace it with Jira Release Management Plugin (JRMP), so

that the data are not presented in two systems (JIRA and ReleaseAdmin), but only in one.

55/71

4.2.2. Release Management Software

Release management software is a software, which takes care of managing the life time of

release. With usage of continuous integration tools, it fulfills the role of the main information

source for managers of software development. Main idea which is hidden behind the software

is to cover and to store all steps and information, that are used during continues integration

cycle, with a release procedure and with planning.

JIRA takes care of planning itself, it supports issues and versions to be created for upcoming

releases. But the necessary information incoming from continues integration tools are

missing. Release management software should gather these information to keep complex

overview of software inside.

The first step to create successful release management software is to create general data

model, which fits most of the use-cases. Since JIRA is a great project management tool for

software development, it needs to be also a great platform to create successful release

management software.

The second step is to connect all tools together, which are usually used in development and

create general software which link existing development applications. The task is not to

implement these tools from the scratch, but use them to be more connected, since they are

indirectly connected anyway.

56/71

4.2.3. Specifications

• JRMP version extends version in JIRA

• adds new information like revision control system, build system, milestone or

customers

• Plugin must use most of JIRA common tools eg. Versions Administrator page

• Milestone is as a group for versions

• Milestone is connected to JIRA project

• Version can have only one milestone

• Version can have many customers

• Version has many targets and one revisions

• Since Version Overview page can not be extended, new Milestone page should do the

trick with expandable number of versions inside

• Revision control systems, customers, build systems are global entities, they are not

connected to project

• New menu should be added to provide overview and administration pages for new

entities

• Panels Affect Versions and Fixed Versions on Issue page should contain compact

JRMP version information

• Version Detail page should be added to have all information about JRMP version

57/71

4.2.4. Data Structure

Since Jira knows the data entity, which is called version, it is necessary that plugin works with

it. Version in JIRA has few attributes, these are name, description, release date and start date.

Version also knows about itself, if it was released or archived. It is not possible to inherit from

version, because it is forbidden by Atlassian API. So another solution is to keep reference on

version in our data model.

The comparison what attributes usual JIRA version offers is on Illustration 25. The proposal

enhancements are quite hight, and JrmpVersion brings many new parameters to extend release

management features.

58/71

Illustration 25: Accessible fields JIRA version vs JRMP version

The overall data model of plugin can be seen on Illustration 26. JrmpVersion keeps reference

on Jira version (by jiraVersionId field) in relation one-to-one. JrmpVersion owns reference for

Customer data object. This relation is many-to-many. JrmpVersion can have many customers,

and customer can have many versions. JrmpVersion has also reference to Milestone.

Milestone knows into what Jira project (by jiraProjectId field) it belongs. JrmpVersion can

have only one Milestone assigned, but Milestone can have many JrmpVersion. JrmpVersion

has many targets as Target can reference to many JrmpVersions. This is a difference between

software version information and deployment. There could be many deployments with the

same software information. Target can have many stored files so as the JrmpVersion. But a

single File has only on Target and one JrmpVersion.

59/71

Illustration 26: Data model

4.2.5. Application Structure

Application structure should have some common elements as ReleaseAdmin for JIRA plugin

(4.1.5). The panels (Illustration 17) which brings brief information about versions should stay,

only the data contained need to be changed a bit. The version tab (Illustration 16) with

detailed information about release also stays, but the content needs to change a lot, since the

data are bit different.

New features need to be introduced, since the data have to be maintained and edited by users,

it is important to add some kind of central overview and administrator pages, where all

entities can be edited. These pages are global, they are not connected with issue or project in

JIRA. In these pages you could edit for example customer, target, build system and others.

The duality from ReleaseAdmin for JIRA plugin (Illustration 27) is not very convenient,

where there are two pages for versions. One contains usual JIRA versions and the other

contains only these versions, which are cached in the database (correspond to ReleaseAdmin).

This approach is the only solution for ReleaseAdmin for JIRA, however for JRMP plugin the

solution can be better.

60/71

Illustration 27: ReleaseAdmin for JIRA - Versions pages duality

An entity called milestones can be used for that. Milestone is something like a group for

versions, usually it divides these versions which introduce new features. For the purpose of

milestones the separate page needs to be created in context of JIRA project page. Since the

milestone contains versions, it is easy to design the page as expandable milestone list with

table of versions inside.

To bring new features to JIRA version, new data model needs to be implemented (4.2.4). With

new data model, new editing features are necessary. Editation Luckily in compare of usual

Versions overview page, this Version administrator page can be extended. And new items to

context menu of each version can be added as it is possible to see on Illustration 28.

61/71

Illustration 28: Extended context menu

4.2.6. Views

Version edit page

Version edit page can be accessed from standard version list in administration section of

project. Edit function allows to add desired values in comfortable way. Selection box uses

Select2 library for compact view and easy modification. Select2 box enables searching,

adding, removing of elements in given category. Version edit page (Illustration 29) brings the

most important fields to usual JIRA version with nonviolent way. The entities are acquired by

AJAX background communication.

62/71

Illustration 29: Version edit page

Version detail page

Version detail page can be observed on the Illustration 30. This page brings detailed view with

all items assigned to the certain version. Usually every item can have also a description, the

description field is hidden, if no text is inside. This ensures clear approach to show

information. For the users with administration permissions, the edit button is visible. It shows

Version edit page in dialog.

63/71

Illustration 30: Version detail page

Issue page panel

Issue page panel (Illustration 31) is very similar to that one in ReleaseAdmin for JIRA plugin.

It shows little bit different information. It also brings new feature, that the icon is shown next

to the version name. Icon marks if the version is released or not.

Milestone overview page

Milestone overview page is visible to all users, it shows versions in JIRA with focus of

milestone assignment. Archived versions are hidden. The example of page is shown on

Illustration 32.

64/71

Illustration 31: Affects Versions panel

Illustration 32: Milestone list page

Milestone administration page

Milestone administration page (Illustration 33) shows a list of milestones with possibility of

modification. The edit dialog (Illustration 34) shows also the versions assigned to the selected

milestone. It is easy to add them or remove them. If the version has already another milestone

assigned, it is properly displayed to the user. When it is necessary to delete a milestone,

proper unassigned of all entities is done before, the versions inside are not deleted.

65/71

Illustration 33: Milestone administrator page

Illustration 34: Milestone modification dialog

Overview pages

There are many overview pages sharing the same same controller class. However the view is

defined for each page separately. Overview pages show global entities in plugin for example

customers, build systems, branches and revisions (Illustration 35) and others.

Administration pages

Administration are only visible for the users with certain permissions. They allow to edit

existing global entities in plugin with possibility to add a new entity.

66/71

Illustration 35: Branches and Revisions page

Illustration 36: Branches administration page

4.2.7. Result

JRMP plugin is successfully deployed to a JIRA staging instance in Sphairon for the testing of

behavior. The plugin has extensive editing features to achieve user specific desires. It is as

general as possible. It is a standalone release management plugin running in JIRA. It

successfully extends current JIRA functionalities of release management and brings new

desired attributes to JIRA versions.

However the plugin needs many features to be implemented in future to be successful as a

release management software. The links with build systems and revision control systems are

important. Current version allows only manually entering of data from these systems. Other

helping functions would be convenient. For example automatic versioning or automatic

deployment to reach continues delivery principles.

Jira Release Management Plugin has 10 revisions created during 23 days of development,

9373 lines of codes (without empty lines) were written. It shares with ReleaseAdmin for JIRA

859 lines of code. 3552 lines of code are in Java, the rest are views using Velocity Templates

and JavaScripts. Java code contains 28,5% abstract and 71,4 % concrete entities.

67/71

5.Conclusion

Within the master thesis two plugins were created. One of them ReleaseAdmin for JIRA is

regularly used by employees of the Sphairon company. It helps to solve daily situations with

release management issues. The plugin is still in development mostly bringing new features in

GUI and reflecting the comments within the company. In the ReleaseAdmin for JIRA number

of new technologies I had to learn to provide the best functionality and the best user

experience.

Using the skills from developing ReleaseAdmin for JIRA another plugin was designed and

developed. The Jira Release Management Plugin is planned to replace proprietary

ReleaseAdmin application in future. The plugin should be also introduced to Atlassian

Marketplace to offer another companies to enjoy enhanced release management features

inside the JIRA system. The plugin still needs development to be used on live systems as a

proper release management software. It requires to implement some other suitable functions

in future.

During the development of newer versions of ReleaseAdmin for JIRA I could use the plugin

itself to manage its versions. This way I was introduced to release management process. I

found the approach so practical, I was pleased it happened and I am going to use these

experiences in future. I was also introduced to continuous principles of developing software,

which I partly used on case of my plugins. I met new tools like Subversion, Jenkins and other

which helped me with proper development techniques. I also enjoyed excellent knowledges of

my consultants and leaders in Sphairon, who always brought appropriate criticism into my

work.

68/71

Literature

[1] Algorithm Implementation/Strings/Levenshtein distance. In: Wikibooks: open books for

an open world [online]. San Francisco (CA): Wikimedia Foundation, 2001- [cit. 2014-07-21].

Available on:

http://en.wikibooks.org/wiki/Algorithm_Implementation/Strings/Levenshtein_distance

[2] Apache Velocity: Velocity User Guide. THE APACHE SOFTWARE FOUNDATION. The

Apache Velocity Project [online]. 2007 [cit. 2014-07-21]. Available on:

https://velocity.apache.org/engine/releases/velocity-1.5/user-guide.html

[3] Caching Guidance. MICROSOFT. Developer Network [online]. 2014 [cit. 2014-07-21].

Available on: http://msdn.microsoft.com/en-us/library/dn589802.aspx

[4] Component Plugin Module. ATLASSIAN. Atlassian Developers [online]. [cit. 2014-07-

21]. Available on:

https://developer.atlassian.com/display/JIRADEV/Component+Plugin+Module

[5] FOWLER, Martin. Continuous Integration. [online]. 2006 [cit. 2014-07-21]. Available on:

http://martinfowler.com/articles/continuousIntegration.html

[6] JacksonInFiveMinutes. FASTERXML, LLC. Jackson [online]. [cit. 2014-07-21].

Available on: http://wiki.fasterxml.com/JacksonInFiveMinutes

[7] JAMESON, Rosie. Component Import Plugin Module. ATLASSIAN. Atlassian

Developers [online]. [cit. 2014-07-21]. Dostupné z:

https://developer.atlassian.com/display/JIRADEV/Component+Import+Plugin+Module

[8] Java API for RESTful Services. Java.net [online]. [cit. 2014-07-21]. Available on:

https://jax-rs-spec.java.net/

[9] Jersey 2.10.1 User Guide. ORACLE CORPORATION. [online]. [cit. 2014-07-21].

Available on: https://jersey.java.net/documentation/latest/index.html

69/71

https://jersey.java.net/documentation/latest/index.html
https://jax-rs-spec.java.net/
https://developer.atlassian.com/display/JIRADEV/Component+Import+Plugin+Module
http://wiki.fasterxml.com/JacksonInFiveMinutes
http://martinfowler.com/articles/continuousIntegration.html
https://developer.atlassian.com/display/JIRADEV/Component+Plugin+Module
http://msdn.microsoft.com/en-us/library/dn589802.aspx
https://velocity.apache.org/engine/releases/velocity-1.5/user-guide.html
http://en.wikibooks.org/wiki/Algorithm_Implementation/Strings/Levenshtein_distance

[11] J Tricks: Little JIRA Trics [online]. 2014 [cit. 2014-07-21]. Available on: http://www.j-

tricks.com/

[12] KOŠEK, Jiří. XML schémata. [online]. 2013 [cit. 2014-07-21]. Available on:

http://www.kosek.cz/xml/schema/

[13] NECHT, Andreas. Version Tab Panel Plugin Module. ATLASSIAN. Atlassian Developers

[online]. [cit. 2014-07-21]. Available on:

https://developer.atlassian.com/display/JIRADEV/Version+Tab+Panel+Plugin+Module

[14] KURUVILLA, Jobin. JIRA 5.x development cookbook: this book is your one-stop

resource for mastering JIRA extensions and customizations. Birmingham, U.K.: Packt

Publishing, 2013, 1 online source (v, 491 p.). ISBN 978-1-78216-908-6.

[15] LE BERRIGAUD, Samuel. Pure-Java Object Relational Mapping. Java.net [online].

2011 [cit. 2014-07-21]. Available on: https://java.net/projects/activeobjects/pages/Home

[16] MADDOX, Sarah. REST Plugin Module. ATLASSIAN. Atlassian Developers [online].

[cit. 2014-07-21]. Available on:

https://developer.atlassian.com/display/DOCS/REST+Plugin+Module

[17] MADDOX, Sarah. Atlassian User Interface (AUI) Developer Documentation.

ATLASSIAN. Atlassian Developers [online]. [cit. 2014-07-21]. Available on:

https://developer.atlassian.com/display/AUI/Atlassian+User+Interface+(AUI)

+Developer+Documentation

[18] MALÝ, Martin. REST: architektura pro webové API. Zdroják [online]. 2009 [cit. 2014-

07-21]. Available on: http://www.zdrojak.cz/clanky/rest-architektura-pro-webove-api/

[19] Project Tab Panel Plugin Module. JIRADEV [online]. [cit. 2014-07-21]. Available on:

http://jiradev.com/project-tab-panel.html

[20] RAGOZIN, Alexey. Data Grid Pattern - Proactive caching. [online]. 2011 [cit. 2014-07-

21]. Available on: http://blog.ragozin.info/2011/10/grid-pattern-proactive-caching.html

70/71

http://blog.ragozin.info/2011/10/grid-pattern-proactive-caching.html
http://jiradev.com/project-tab-panel.html
http://www.zdrojak.cz/clanky/rest-architektura-pro-webove-api/
https://developer.atlassian.com/display/AUI/Atlassian+User+Interface+(AUI)+Developer+Documentation
https://developer.atlassian.com/display/AUI/Atlassian+User+Interface+(AUI)+Developer+Documentation
https://developer.atlassian.com/display/DOCS/REST+Plugin+Module
https://java.net/projects/activeobjects/pages/Home
https://developer.atlassian.com/display/JIRADEV/Version+Tab+Panel+Plugin+Module
http://www.kosek.cz/xml/schema/
http://www.j-tricks.com/
http://www.j-tricks.com/

[21] SPIEWAK, Daniel. ActiveObjects: An Easier Java ORM. Javlobby [online]. [cit. 2014-

07-21]. Available on: http://www.javalobby.org/articles/activeobjects/

[22] SPIEWAK, Daniel. An Easier Java ORM Part 2. Code Commit [online]. [cit. 2014-07-

21]. Available on: http://www.codecommit.com/blog/java/an-easier-java-orm-part-2

[23] SPIEWAK, Daniel. An Easier Java ORM: Relations. Code Commit [online]. [cit. 2014-

07-21]. Available on: http://www.codecommit.com/blog/java/an-easier-java-orm-relations

[24] Servlet Plugin Module. ATLASSIAN. Atlassian Developers [online]. [cit. 2014-07-21].

Available on: https://developer.atlassian.com/display/JIRADEV/Servlet+Plugin+Module

[25] TURNER, Jeff. Webwork plugin module. ATLASSIAN. Atlassian Developers [online].

[cit. 2014-07-21]. Available on:

https://developer.atlassian.com/display/JIRADEV/Webwork+plugin+module

[26] WebWork. In: Wikipedia: the free encyclopedia [online]. San Francisco (CA): Wikimedia

Foundation, 2001- [cit. 2014-07-21]. Available on: http://en.wikipedia.org/wiki/WebWork

[27] XML Schema (W3C). In: Wikipedia: the free encyclopedia [online]. San Francisco (CA):

Wikimedia Foundation, 2003, 2014 [cit. 2014-07-21]. Available on:

http://en.wikipedia.org/wiki/XML_Schema_(W3C)

71/71

http://en.wikipedia.org/wiki/XML_Schema_(W3C
http://en.wikipedia.org/wiki/WebWork
https://developer.atlassian.com/display/JIRADEV/Webwork+plugin+module
https://developer.atlassian.com/display/JIRADEV/Servlet+Plugin+Module
http://www.codecommit.com/blog/java/an-easier-java-orm-relations
http://www.codecommit.com/blog/java/an-easier-java-orm-part-2
http://www.javalobby.org/articles/activeobjects/

	1. Introduction
	1.1. Situation
	1.2. Task

	2. Theoretical Foundations
	2.1. Continuous Integration
	2.2. Release Management
	2.3. JIRA

	3. Preparation
	3.1. General Technologies
	3.1.1. REST Communication
	3.1.2. XML Marshalling
	3.1.3. JSON Marshalling
	3.1.4. Object Database

	3.2. JIRA Plugin Technologies
	3.2.1. Architecture
	3.2.2. Plugin File Skeleton
	3.2.3. Important Modules
	3.2.4. Velocity Templates
	3.2.5. Atlassian User Interface
	3.2.6. Servlets and WebWorks

	4. Development
	4.1. ReleaseAdmin for JIRA
	4.1.1. Motivation
	4.1.2. Specifications
	4.1.3. Communication
	4.1.4. Data
	4.1.5. Mockup
	4.1.6. Views
	4.1.7. Features
	4.1.8. Result
	4.1.9. Future

	4.2. JIRA Release Management Plugin
	4.2.1. Motivation
	4.2.2. Release Management Software
	4.2.3. Specifications
	4.2.4. Data Structure
	4.2.5. Application Structure
	4.2.6. Views
	4.2.7. Result

	5. Conclusion
	Literature

