TECHNICAL UNIVERSITY OF LIBEREC
Faculty of Mechatronics, Informatics and Interdisciplinary Studies

Study program: Electrical Engineering and Informatics
Study branch: Mechatronics

Release Management in Atlassian JIRA — Extending
an Issue Tracking System

Master thesis

Author: Bc. Viktor Dlouhy
Project leader: Prof. Dr. rer. nat. Stefan Bischoff
Consultants: Dipl.-Ing. (FH) Thomas Haak

Dipl.-Ing. (FH) Christian Bork

Statement

Byl jsem seznamen s tim, Ze na mou diplomovou praci se plné vztahuje zakon ¢. 121/2000 Sb.

o pravu autorském, zejména § 60 — Skolni dilo.

Beru na védomi, Ze Technicka univerzita v Liberci (TUL) nezasahuje do mych autorskych

prav uzitim mé diplomové prace pro vnitini potfebu TUL.

UZiji-li diplomovou praci nebo poskytnu-li licenci k jejimu vyuZiti, jsem si védom povinnosti
informovat o této skutecnosti TUL; v tomto pfipadé ma TUL pravo ode mne poZadovat

uhradu nékladt, které vynaloZila na vytvoreni dila, aZ do jejich skutecné vyse.

Diplomovou praci jsem vypracoval samostatné s pouZitim uvedené literatury a na zakladé

konzultaci s vedoucim diplomové prace a konzultantem.

Soucasné Cestné prohlasuji, Ze tiSténa verze prace se shoduje s elektronickou verzi, vloZenou

do IS STAG.

22.7.2014

2/71

Abstract

The master thesis deals with a development of plugins for JIRA system. JIRA is an issue
tracking tool allowing easy project and issue management. The thesis explores possibilities of
system enhancements mostly by the release management features. Further the large amount of
work is dedicated to general technologies, which are used for web application development.

These technologies are then applied for designing and implementing the plugins.

Keywords

JIRA, Atlassian, Java, plugin, development, release management

Abstrakt

Tato diplomova prace se zabyva vyvojem rozSireni pro systém JIRA, ktery umoZiiuje snadnou
evidenci a spravu projektli. Prace se snazi prozkoumat moznosti vylepSeni systému predevsim
v oblasti release managementu. Dale je velky prostor vénovan obecnym technologiim, jenz se
pouZivaji pfi vyvoji webovych aplikaci. Tyto technologie jsou dale uplatnény pfi navrhu a

implementaci samotnych rozsireni pro systém JIRA.

Klicova slova

JIRA, Atlassian, Java, plugin, programovani, release management

3/71

Table of Contents

L. INTOAUCHION. ..ttt ettt et ettt s bt et e et s bt et e e b e e s abeesabeenaees 11
Lo L STEUALION. ..ttt ettt et e et e et e e e st e e et e e et e e s s e nsbae e e e e e nnraeeeeeas 11
12U TASK ettt ettt et b e et e e bt e st e e be e et ee s eanteesanas 13

2. Theoretical FOUNAAtIONS.........c.cooteriiiiiriiieieeteneeeete ettt sttt et et 15
2.1.CoNtiNUOUS INTEGIAtiON.....cciiriiieriiriiieeieiiieeeeeriteeeerireeeessreeeessraeeeesssrreeesssssaeessssnseeeeeens 15
2.2.Release ManagemMeNL...........eccueerieriueenieeiieenteeieeste e st esstesaeesatesseesseeesasseeesasaeessaseeesnnnes 17
2. 3TTRA . ettt ettt s a e b et a e bt et s st e e a b e e e st e e e aneeeane 19

S PTEPATALION. ..ceiieiieeeeiiiiee e ettt e ettt e e e stte e s ettt e e e s s tbeeeessasaeeessabeee e s sbaeeesssbaaeeeeeeenasnannrsrnnnaes 21
3.1.General TeChNOIOGIES.ccocuiiriiiiiiiieeeeee ettt sttt et s e 21

3.1.1.REST COMMUNICALION.utiiiuieeriieeniieeeiiee ettt eeite et seree st e senraee e s s e snreeeeeenen 21
3.1.2. XML Marshalling.......c.cooitiriiiiiienieeteteete ettt sttt s 23
3.1.3.JSON MarshalliNg........ccceeecuiiriiiniieiienieeteeeee ettt ste e e sbe e e e ssseesasaeenes 26
3.1.4.0DjeCt DAtabase........cccecuiiieiieeciieeciee ettt et et e et e e ae e e ae e e st ae e e e e e naaeeeaeanns 27
3.2.JIRA Plugin TeChNOlO@Ies.......ccc.eeriiriiinieniiiiieeieeiteeie ettt st ssaeesbeesatesaessanaeees 30
3.2 1 ATCRITECIUTE. ...ttt ettt et et e bt e st e bt e st e s be e st e e beesaeeeenne 30
3.2.2.Plugin File SKeletOn......ccccieiiiiiiiiiiieiieeieeteeteet ettt e e 31
3.2.3.IMportant MoOdUIES............eeiriiiiiiieiiieeieeeeeee e ae e e re e e s aaaaeees 32
3.2.4.VelOCity TeMPIALes.......coeiuiiriieeiieiieeieeeeeie ettt ettt e st e st e ssbe e e snaaeesnes 34
3.2.5.Atlassian User INteIface.coccevierieriiirienieeieeteieeteste ettt 35
3.2.6.Servlets and WEDWOTKS........cccovuiriiiiiieieeteeecete et 36

A DEVEIOPIMENL. ... eviiiiieeeiieeeiee ettt et e ettt e st e e st eesbe e s s beessabeesssbeesssteesseeesnssaeesssssnaeessnnnnns 38

4.1.Release Admin fOr JiTa.....coeecuerienierienierieeiesie ettt ettt et s 38
4.1 1. IMOLIVALION. ..ottt ettt e et e s s e st e e s e s e s seesmne e seesmeesaneesmeeesannneenans 38
4.1.2.SPECITICALIONS. ...cuveeerieiieeieecieeeie et e ete et e e teeste e et e e sbeessae e beessaessseessaeesseenssaeeensssaennns 39
4.1.3.COMMUINICALION.tiiitiiiitiieiteeeiteeette ettt ettt st esrre e s e e s s ree e e snraaeeeeas 40
A1 A DALA. ettt et ettt ettt eeh e e st e e at e e bt e bt e s bt e bt e e enbeeeenaeeeeane 41
4. 1.5 MOCKUP. ..ceutteiieeieestee ettt e sttt e et et e e bt e sabe s be e s st e esseessbesssaessssbaesansbaesassraennns 43
BLLB.VIBWS..cniiiiiiiteette ettt ettt ettt ettt e st e e bt e e bt e e bt e e bt e e e bt e e e bt e s eanaree s 46
41,7 FRATUTES. ...c.uetiiiiiiiiieeiteete ettt sttt et e ba e e e bbe e e e s e nrre e e e e 51
ALLBURESULL ..ttt ettt e s abt e e s aaeeeeaas 53
AL FUIULC. ..ottt ettt e e s st e e e e 54

4.2 Jira Release Management PIUGIN........ccoccueiriiiiniiiiiniieiieecieeciecete e e e 55
L LY (1A 18 To) OO PP PP 55
4.2.2.Release Management SOftWATe.........cccueevueerieerieenieeieenteesieeseeeseeseesseessseesssseeeenns 56
4.2.3.SPECIHTICALIONS. ..c.uvteiieiiieeieeite ettt ettt ettt e bt et e st e e satesbeesabeeesennaeeenns 57
4.2.4.DALA STIUCTUTE.ceiiuiiiiiiieiiiee ettt ettt s et s et e e eabae e e e s eabraeeeseennrnaeeeeas 58
4.2.5. APPliCAtiON SIIUCIUTE.eeruiirtieriieeitesite et et et e e st e et e s be et e sbeesseeessbeeesnseeenans 60
426, VIBWS..cniiiiiitieitie ettt ettt ettt sttt e ba e e s e e bt e e ab e e e ab e s anrae s 62
A.2.7 RESULL ..ottt ettt ettt ettt st st reeea 67

5. COMNCIUSION. ..ttt ettt st e bt e st e st e st et e e e e e e e nte e e e b e e e eanee 68
LIOIATUTE.eeviiiiiiiiiecte ettt st s ba e s b e s bt e e s ba e e sannne e e e e sanns 69

5/71

List of |

[lustration 1:
[lustration 2:
[lustration 3:
[lustration 4:
[lustration 5:
[lustration 6:
[lustration 7:
[lustration 8:
[lustration 9:

Illustration 10

Ilustration 11:

Ilustration 12:

Ilustration 13:

Illustration 14:

Ilustration 15:

Ilustration 16:

Illustration 17;

Illustration 18:

llustrations

L0Z0 Of SPRAITON.....ccciiiiiieiiieiiecieeeeete ettt st e e e s be e e snneaesaes 11
Release AdIMiN.....ccouiiiiiieeeeeee et e 12
Release Admin for JTRA........oociirieieeieeteieetere ettt sttt e s e et e e e ens 13
Jira Release Management PIUGiN.........cccceevueriiiiniieniiiinieniienieeeesee et 14
Continuous Integration at SPhairoN...........cceeeveeeieerierrieerieeieereeere e eve e 15
BranChing.......cccuveieiiiiiiiecieececce ettt s e s et e e e e e eeaes 16
Release management timeline.............ccocueeviiniieriiiniienieeeeee e 17
JIRA TSSUR PAGE.....eeeeieeiieeeieiiiteeeeiiteeeesiteeeeesitreeesesrteesesanreeeesnseeessennnssnnaeeeeeeeees 19

JIRA Project with Versions Page.........cccceeeverrieereenrieenieniieeneensieesseeesssseessseeeens 20

D JITQ ATCRITECIUIE [14] oottt ettt e e e e e et etaeeeeseeeeeeeanneseeennnns 30
Plugin file SIIUCIUTE.ccveeieeieieeieeteeieeteee ettt st e st e st esaeeeaeeens 31
Atlassian SANADOX.....cc.cecuerrieriirierienieieeteseete ettt st 35
Simplified communication floW..........cccceeeuiiiiiiriiieniiinieeeeeeee e 37
Release Admin COMMUNICATION.c...eeiutirieriiienieeieerie ettt 40
Simplified data Model............coooueeiiiiiiiiieeeeceeee e 41
New tab on version page, shows detail of release in ReleaseAdmin............... 43
New panels on issue page with basic info about version............ccceccveeeecuveennnne 44
New tab on project page, shows the version list..........ccceccveeeeeiieeeinniiieeeeennn, 45

6/71

[llustration 19:

Illustration 20:

Ilustration 21:

Illustration 22:

[llustration 23:

Illustration 24:

Ilustration 25:

[llustration 26:

[llustration 27:

Illustration 28:

Ilustration 29:

Illustration 30:

[llustration 31:

Illustration 32:

Ilustration 33:

[llustration 34:

Illustration 35:

Illustration 36:

Release Admin full detail.......ooooeeeeeeiiieiiieeeeeee e 46

Affects VErsions Panel...........cc.eccueeeieeiienieeiieeieeieeeteeiee e esereeevee e e sveee e 47
Project tab with ReleaseAdmin releases in database..........cccccceeeeverveereenuenne 48
Synchronize all dialog..........coovirviiiriiiriiieieeieeee e 48
ConfigUuration PAGE.......cecveeeieerieeiiieeieeiteerte et e steerteeseeebeessaeesseessseeessssaesssnees 49
Extension of COMMUNICALION.ccevueruiereerierierieeienteniee ettt see e 54
Accessible fields JIRA version vs JRMP VeIsion.........cccceeveerierneensieenieeeennnne 58
Data MOEl.....c.eiiiiiiiieieee et 59
ReleaseAdmin for JIRA - Versions pages duality.........ccceeeeereuveeercireeenineeeennne. 60
Extended CONLEXE MENU........eiiuiirieriieeieeniteeteerteeteesiteeeeesetesbteeesreeeesbeeeenaee 61
Version @dit PAGE.......ceeeieeruiirieriiienieeiee ettt e ettt e st e st e e e sibe e e s sabeeeearaeeas 62
Version detail PAge........cceecueeruieriiiiienieeeee ettt 63
Affects VErsions Panel..........ccc.eecueeeieeiienieeiiieeieeeesteeee e esieeeeveeeesveeeeeeneas 64
MileStOne LISt PAGE......ccccviereiuieieiieieiieieiee et e esteeesaeeeeaeeeseaeeesaaeessaseessaeessseens 64
Milestone adminiStrator PAGE.........ceeueeerueerieriueeriieerieesieerreesteesieeessereeessareeenans 65
Milestone modification dialog...........cccueevuieriiriieinieniierieeieeee e 65
Branches and ReviSions PAge..........ceevueerriieniiieniieeniieenieeenieeenree e s e siivneeeeens 66
Branches adminiStration Page...........ccceeeeveeerreensieeeneeesieeeesreeessreeessseeessseessnnes 66

7171

Glossary

ActiveObjects — Java based Object Relational Mapping for databases

AJAX — Asynchronous JavaScript, a technology for asynchronous communication
API — Application Programming Interface, list of developer usable entities (eg. functions)
Architecture — hight level structure of a software

AUTI - Atlassian User Interface, set of advices and graphical components

Build — result of building procedure created from some source code

Client — software or hardware that access exposed services of server

Continuous delivery — process of automated software delivery

Continuous integration — process of automatically building and testing of software
Framework — software which provides API and other features for running applications
GUI — Graphical User Interface

HTML — Hypertext Markup language, language to define web pages

HTTP — Hypertext Transfer Protocol, application protocol used by web pages
Implementation — realization of an abstract plan

Instance — concrete software object in memory

Interface — set of abstract information specifying certain communication abilities
Jackson — data processing tool for JSON

Java — programming language

JavaScript — scripting language

8/71

Jersey — library for RESTful web services

jQuery — library for JavaScript

JSON - JavaScript Object Notation is an data format to exchange information
Library — collection of supporting software

Markup language — system for annotation and description of a document
Marshalling — process of transforming raw data into object representation
Maven — Apache Maven is a build tool

Mockup — quick illustration of desired GUI

MVC architecture — Model View Controller architecture, programming concept
Protocol — collection of digital rules for data exchange

Release — result of release procedure

Repository — stored data structure provided by server

Request — HTTP request, a message going from client to server

Response — HTTP response, a message answering request

REST - Representational state transfer, architectural style of communication
Revision — special incrementing identificator describing source in time

Server — software or hardware that allows clients to communicate via enabled services
Servlet — Java Servlet class provides capabilities to implement web server

SQL database — database using SQL language for query

Tomcat — web server and servlet container

9/71

VTL — Velocity Template Language

XML - Extensible Markup Language, general purpose description language

10/71

1.Introduction

1.1. Situation

Sphairon is a company developing its own hardware and software. The company makes
number of routers and modems with advanced features of telephony. Sphairon has long time
history which goes up to 1948, when it was founded as VEB Fernmeldewerk Bautzen a
company devoted to network systems. Nowadays company enjoys stable growth and is mostly
dedicated to research and development. The company was bought by a famous ZyXEL in the

May 2013, which brought strong international partner from technology and business view.

Y%, sphairon

Illustration 1: Logo of Sphairon
Sphairon develops its own embedded Linux distribution. More than 80000 revisions were
created during the time, it consists of 200 different software components and has 14 million
lines of code in total. Sphairon Linux empowers very well known products as
02 HomeBox 1, Vodafone EasyBox 803S or NetCologne Deluxe. Tons of software releases

were created delivering new features and updates to the customers.

The firm uses modern approaches in managing software releases, however the tools are kind
of segmented. Some of the tools can be classified as a free software. Subversion is a revision
control system maintained by Apache, it is as a free software. Jenkins is an open source
continuous integration tool. It facilitates test system functionality in Sphairon. However many
other functions are handled by proprietary server based system. It includes software automatic
building, release management and release archivation. Atlassian JIRA is a great

issue tracking tool, which can be also utilized as a project management tool.

Sphairon benefits on its own independent web portal and on mostly open-source continuous
integration tools. This solution has its pros and cons. The biggest problem is context
fragmentation and data multiplicity. If somebody uses commercial continuous integration

tool, everything is handled inside. But if you want to be independent, it brings such issues.

11/71

To properly maintain software an issue tracking system is necessary. JIRA is a professional
issue tracking tool. Its data structure is pretty simple, you have projects and issues. Issue can
be a bug, task or any kind of user story. If you create an issue, you can assign a version to it.
The problem is that the version does not contain a lot of information. Sphairon uses its own
release management tool called ReleaseAdmin (main page on Illustration 2) to maintain
versions and keep information. If somebody makes a release it needs to be listed in
ReleaseAdmin. Release has a name, which is the same as the name of version in JIRA. If
customer makes a complaint, it is necessary to create an issue (bug) in JIRA. If the bug is
fixed, a new release must be created in ReleaseAdmin, but also the same version in JIRA must
change its status to released. You cannot release a software until all bugs are fixed. So it is
necessary to maintain two tools and keep switching between them to have complete data
information. Unfortunately this can lead to wrong linking of different data information and

possibly to create the crucial mistakes.

SDhairon Portal 24.06.2014 - 12:48:11 Usemame Password: | Logi

Did you forget your passwe

‘ Start | Blog | Wiki | Issues | Code | Build | Test | Release | Labs | Mail | more Language: ™= 3iE
Releases Start | Delivered releases | Buildspecs | Branches | Statistics | Administration Project: [All projects v || Appny
Road map: Min page

Search: View:

Searching about the customer: Sphairon (Business Router (ROUTER)) v Sortby: System default v |[ascending v
Searching about the version or revision: Disable print releasenames:

Setfilter | | Resetfilter

Legend: &> Latest release in test | < Images download link | () This release was delivered to the customer | i A release note exists | &) This release has been approved by the customer

Sphairon Release 8 Modem Release 2.1.1 [Detsis] [CSV-Export]
Versionstring: Project: Revision: Issues: Supported device IDs: Build date:
435241 Business Router (ROUTER) 77570 n/a 286914, 2686915, 286916 20.01.14-14:35 Details % 2
Sphairon Release 8 Modem Release 2.1 [Detzis] [CSV-Export]
Versionstring: Project: Revision: Issues: Supported device IDs: Build date:
43524 Business Router (ROUTER) 71004 nia 286914, 286915, 266916 05.02.13-15:27 Details % =
43523 Business Router (ROUTER) 70741 nia 286914, 286915, 286916 1501.13-19:24 Details
43522170741 Business Router (ROUTER) 70741 nia 286914, 286915, 286916 15.01.43-19:24 Details
4.35.2.2170320 Business Router (ROUTER) 70320 nia 286914, 286915, 286916 06.12.12-01:04 Details
4331252 Business Router (ROUTER) 66408 nia 286914, 286915, 286916 28.05.12-04:51 Details
43322 Business Router (ROUTER) 67696 nia 286914, 286915, 286916 13.08.12-13:43 Details
4.33.1.252. 166408 Business Router (ROUTER) 66408 nia 286914, 286915, 286916 28.05.12-04:51 Details
4.33.1.113165056 Business Router (ROUTER) 65056 nia 286914, 286915, 286916 11.01.12-04:33 Details

Illustration 2: ReleaseAdmin

12/71

1.2. Task

First Step

The first step is to bring data provided by standalone release management system
(ReleaseAdmin) into JIRA. This creates new user context inside JIRA, which simplifies
process of managing releases and brings synoptic and suitable number of views giving user
convenient and desired information about releases. Mapping between ReleaseAdmin data

entities and JIRA data entities is required.

The views can fulfill information role only and the editing feature must be still handled only

by ReleaseAdmin itself.

The diagram in Illustration 3 shows the enhancements, which can ReleaseAdmin for JIRA

bring into development process.

i Head Build
Server
/v Test
Archive
Test \‘ Acceptance

Test

/
Repository.
CW Testing System Deploy
|

terate

Illustration 3: ReleaseAdmin for JIRA

13/71

Second Step

The second step is to create extension plugin, which brings release management principles of
continuous integration into JIRA issue tracking system. Continuous integration is composed
from many steps and requires many tools, issue tracking is one them. The task is to implement
release management into JIRA and create plugin (Illustration 4), which can stand on its own.
The development procedure should keep in mind possibilities of other continuous integration

principles to may be implemented in future. Many import functions are required for the

Head Build
Server
/v Test
Archive
Test \ Acceptance

Test

= Y,
Repository
C:my Testing System Deploy
|

terate

plugin.

Illustration 4: Jira Release Management Plugin

14/71

2.Theoretical Foundations

2.1. Continuous Integration

Modern practice to develop software is to use continuous integration principles. Continuous
integration (Illustration 5) is a collection of different development tools to provide faster

development process, better collaboration in team and swift resolution of possible bugs. [5]

Head Build
Server

Archive

Test

Acceptance
Test

De&w\,

Regression

Commit Testing System

» lterate

Task

Illustration 5: Continuous Integration at Sphairon

Sometimes these practices are implemented separately as different tools, which can work
together and user touch is required. These practices can be also managed in continuous

integration systems, which handle all steps in one tool.
Issue Tracker

Issues are tasks which are necessary to be processed. It is not only bugs, it can be different

milestones, functionalities and many others. This is the place where a demand is created.

15/71

Revision Control

The main principle is to store all code into software repository. Repository provides central
storage of code for all members in a team. Most importantly code repository supports

versioning of the code. Commitments should be done regularly.

Revision control system is a software providing control over changes of source code. It is
designed mostly for team developers, but can be used for individuals. It stores changes in
source code and attaches a time stamp information. It prevents concurrent access by locking
files, so that only one developer has write rights. It provides some other important operations

such as merging, branching, updating, messages checking and many others.

Branching and revision creation can be seen on the Illustration 6.

revl revz revd
Trunk -
Branch 1 -
Branch 2 .
Illustration 6: Branching
Build Automation

Building is complicated process, that's why automation is necessary. Automation of a build
often includes deployment, binaries compiling, documentation generation and many others.

Once the code is built, testing should be added to confirm all behaves as expected.
Deployment

Making builds available to testers can reduce large amount of rework. Acceptance test can be

necessary.

16/71

2.2. Release Management

Release management is a process of planning, testing and deploying releases. The whole
procedure starts when the release is planned for the future. This situation is triggered by
announcing a bug, or when the new features from the software are expected. These issues are
grouped together for a new upcoming release. Then continues integration phase comes — the
development and testing. The software needs to be properly tested. This is the testing phase of
release. If the tests go wrong, everything is handled in frame of continuous integration circle.
The testing can be done automatically or manually by exposing the software to testers in the
field. The deployment phase is actually composed from the archiving of final version, testing

and finally by releasing to the customers.

Checkout/Build,__| Head Build
/ Server

Archive

Test

Acceptance
Test

Degﬁ)y\‘

Regression
Testing System

Release planning Continuous integration Archiving Testing Deploying

Illustration 7: Release management timeline

Above steps can be understood as a managing and storing the information about the
procedure. The most important things are that all releases must be stored somewhere with all

information about the steps created during the development, testing and deploying progress.
With storing the details about the release, the key information can be:

* name of the release — original version name
* targets
» source of the release

* build protocols with build results

17/71

* test protocol

build date
e release date
e customer and others

Some of these information can be just a link to the other software eg. revision control system,
build system and so on. Actually release management software can connect (or integrate) all
tools from continuous integration process together to provide detailed information about a

software in any step of its life-cycle.

18/71

2.3. JIRA

Atlassian JIRA is an issue tracking web based system, which helps to manage development
processes with focus on continuous integration principles (2.1). The system is multi-user
based and every user can have different permissions. Issues and projects are main entities
provided by JIRA. Issues can be understood as a task, reminder, complaint or in case of
software development a bug. Issue page (Illustration 8) is a view showing detail of certain
issue. It allows to add comments, attach files or for example change status of the issue. Project

is an entity enabling to group issues into big units based on eg. product.

£y shalron Dashboards ~ Projects ~ lIssues ~ Agile ~ Tempo ~ B Q Quick Search @~ L~ ‘ -

9@3 ReleaseAdmin for Jira /| RAJ-12
= 1) Drop down menus disappear after update to version 0.2.2

Edit > Comment Assign | More ~ Start Progress = Resolve Issue Admin ~ B | [Export ~
Details People
Type [®) Bug Status: EELT) (View Workflow) Assignee: ‘Vlktor Diouhy
Priority: Critical Resolution: Unresolved Reporter: ‘:,,? Christian Bork
Affects Version/s 0.2.2 Fix Version/s None .
Votes: o Vote for this issue
Labels: None Watchers: 2 Start waiching this issue
Branches trunk, branches/0.2.0-stable
Customer Account: 80000003 - internal_infrastructure Dat
ates
Reproducibility: At all times - (immer)
Created: 16.07.2014 23:29
L. Updated 16.07.2014 23:38
Description

After update from v.0.2.1 to v.0.2.2 the navigation drop down menus disappears (see attached file). Only menu
for "Tempa" is available. Collaborators +

I checked this behavior by the following actions:

+ run update v0.2.1 to v0.2.2 -> drop down menus disappear Agile

« uninstall v0.2.2 and reinstall v0.2.1 -> drop down menus are visible View on Board
- reinstall v0.2.2 -> drop down menus disappear

Hllustration 8: JIRA Issue page

JIRA also helps with planning and managing of versions. One can create a version and assign
it to an issue. When the version is released (version becomes actually release), all issues
should be resolved. Versions can be observed also as a road map. This view shows how many
issues with same assigned version are done or undone. It allows simple overview of planned

versions and work status.

19/71

The JIRA content can be divided into two classes from user perspective. The first class is
view only (Illustration 9), this is usually called overview and the second class is
administration. Administration views are visible only for those with edit rights for eg. certain

project.

JIRA supports many other functionalities like statistics, reports, advanced search possibilities.
The thing which is important, JIRA as other Atlassian products support plugin development.
Atlassian has rich documentation how to create add-ons and enrich its JIRA product with

other different functions and processes.

G et tiven Dashboards ~ Projects ~ Issues ~ Agile - Tempo ~ (@] Q, Quick Search @~ £~ ‘ -

)" ReleaseAdmin for Jira

E= 1) Key: RAJ ~ Lead: € Christian Bork

Overview Administration

Summary Versions Manage Versions
Issues
Road Map Name Start date Release date Description
People @ o3 17.07.2014
Change Log @ o022 16.07.2014
Reports
@ 021
Calendar -
T 020
Subversion FT
Versions © 019

Atlassian JIRA Project Management Software (v6.2.4#6261-sha1:4d2e6f6 About JIRA Report a problem

WAtlassian

Illustration 9: JIRA Project with Versions page

20/71

3.Preparation

3.1. General Technologies

First it is necessary to summarize possible technologies, which are used for web application.
General technologies are platform independent and can be applied on different cases. The

principles or approaches can be then used during development.
3.1.1. REST Communication

REST is an conceptual style designed for distributed environment, which describes

communication interface [18]. REST proposes several methods based on HTTP protocol:

e GET (Retrieve)

e POST(Create)

e DELETE

e PUT (Update)
These methods can be implemented on a REST server on different paths and the client can use
them to achieve desired result. REST is very often used to exchange data between two
separate applications. However this approach can be also utilized to provide internal

information exchange between client (browser) and server (web) to manage asynchronous

communication.

A client using jQuery library in JavaScript is described in Code 1, where the the AJAX
technology is used to generate request and receive response in text format. This snippet is

actually concrete REST client written in JavaScript.

21/71

function releaseSync(id) {

$.ajax({
url : "path",
type : "PUT",

dataType : "text",

contentType : "text/plain",

success : function(data) {
alert(data);

}I

error : function(response) {
alert(response.responseText);
}

1)

Code 1: REST client - JavaScript

REST server can be implemented in Java using common Servlet class. REST client can be
created in Java with raw HttpClient class from Jakarta Commons project. But since there
exists open source Jersey library, it is convenient to use it. Jersey is a library based on Java

API for RESTful Services (JAX-RS) and makes the job very well. [8]

An example how to create instance of REST client using Jersey in Java language, make a
request and receive response in String representation can be observed from Code 2. This is
actually concrete REST client in Java language.

public String releaseSync(int id) {

ClientConfig config = new DefaultClientConfig();

Client client = Client.create(config);

WebResource webResource = client.resource(contextPath +"/" + id +
"/sync");

return webResource.get(String.class);
}

Code 2: REST client — Java — Jersey

22/71

3.1.2. XML Marshalling

XML is a general markup language, which is very often used to store or exchange
information. If a random application provides public API, it usually offers JSON or XML
format. Advantage of XML is clarity and flexibility. Modern approach to read external data
consists of XML marshalling, this means a way to transform raw XML data into specific data

object. [27]

XML files are very popular, because everyone can create own XML markups. If you want to
show others which markups you use, you need to describe it. This is when the XML schema
comes. So called XSD files are based on XML and contains information about user created
XML files. It describes elements and attributes, simple and complex types, model groups and

attribute relationships. [12]

Code 3 shows example of XSD schema file. Following XML object (Code 4) comes from the
given schema.

<?xml version="1.0" encoding="utf-8"7>
<xs:schema elementFormDefault="qualified"
xmlns:xs="http://www.w3.0rg/2001/XMLSchema">
<xs:element name="Address">
<xs:complexType>
<Xs:sequence>
<xs:element name="Recipient" type="xs:string" />
<xs:element name="House" type="xs:string" />
<xs:element name="Street" type="xs:string" />
<xs:element name="Town" type="xs:string" />
<xs:element name="County" type="xs:string" minOccurs="0" />
<xs:element name="PostCode" type="xs:string" />
<xs:element name="Country" type="xs:string" minOccurs="0" />
</Xs:sequence>
</xs:complexType>
</xs:element>
</Xs:schema>

Code 3: XSD schema file

23/71

<?xml version="1.0" encoding="utf-8"7?>
<Address xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:noNamespaceSchemalLocation="SimpleAddress.xsd">
<Recipient>Mr.WalterC.Brown</Recipient>
<House>49</House>
<Street>FeatherstoneStreet</Street>
<Town>LONDON</Town>
<PostCode>EC1Y8SY</PostCode>
<Country>UK</Country>
</Address>

Code 4: XML output based on XSD schema

Schemes help very much, if you want to use data from external API. From provided XSD file
you can create your own data model which corresponds to API and implement own serializer.
Or there are already prepared tools, which can make the work for you. This approach is called

XML data binding.

Java Architecture for XML Binding (JAXB) provides separate tools to generate Java classes
from given XSD file. Mind that Java classes are generated externally, not in running
application. Notice XML annotations, which are generated by JAXB. In Code 5 you can see
how the XSD file (Code 3) was transformed into Java code by JAXB.

24/71

@XmlAccessorType (XmlAccessType.FIELD)

@XmlType(name = "", propOrder = {
"recipient",
"house",
"street”,
“"town",
"county",
"postCode",
"country"
})
@XmlRootElement (name = "Address")
public class Address {
@XmlElement (name = "Recipient", required = true)
protected String recipient;
@XmlElement (name = "House", required = true)
protected String house;
@XmlElement (name = "Street", required = true)
protected String street;
@XmlElement (name = "Town", required = true)
protected String town;
@XmLElement (name = "County")
protected String county;
@XmLElement (name = "PostCode", required = true)
protected String postCode;
@XmLElement (name = "Country")
protected String country;

Code 5: Java data class representation

Jersey is a library based on Java API for RESTful Services (JAX-RS). Jersey can bed used to
make HTTP request from Java code to external API and marshall received data into instances
of data classes (Code 6). Special annotations are required in marshaled data class (Code 5).
[9]

public <T> T makeRequest(Class<T> newClass) {
WebResource webResource = client.resource(path);
webResource = client.resource(path);
T response = webResource.get(newClass);
return response;

Code 6: Client request and XML marshalling

25/71

3.1.3. JSON Marshalling

JSON is an open standard format to exchange data. It is often used as an alternative to XML.
Advantages are simplicity and high efficiency. It is composed from attribute-value pairs.
JSON is often used in AJAX techniques. If it is necessary to marshal JSON data, there are
several approaches to do it. It can be transformed to primitives or mapped to prepared data

classes. It provides also schema descriptions.

Jackson is a library for Java application to make marshalling of JSON. It provides annotations

and of course object mapper as a marshaller. [6]

In Code 7 you can find and example of incoming data in JSON format. For the purposes of

marshalling a general data class is necessary (Code 8).

{
"release_id":"779",
"project _id":"11",
"versionstring":"4.37.2.4",
"builddate":"1394623979",
"releasename_id":"292",
"sw_generation":"4",
"released":"1",

Code 7: JSON object

public class ReleaseModel {
@JsonProperty(value = "release id")
protected short releaseld;
@JsonProperty(value = "project id")
protected byte projectId;
@JsonProperty(value = "versionstring")
protected String versionstring;
@JsonProperty(value = "builddate")
protected int builddate;

@JsonProperty(value = "releasename id")
protected short releasenameld;
@JsonProperty(value = "sw generation")

protected byte swGeneration;
protected byte released;

Code 8: Java data class representation

Combination of Jackson and Jersey can be used to manage HTTP request and marshalling

itself (Code 9).

26/71

public <T> T makeRequest(Class<T> newClass) {

WebResource webResource = client.resource(path);
String response = webResource.get(String.class);
ObjectMapper mapper = new ObjectMapper();

T rObject = mapper.readValue(response, newClass);
return rObject;

Code 9: Client request and JSON marshalling

3.1.4. Object Database

ActiveObijects is a Java based Object Relational Mapper developed from the ground as a fast
and easy to use library. It supports number of SQL databases like Derby, HSQLDB, MSSQL,
MySQL, Oracle or PostgreSQL. It is distributed under Apache free software license.

ActiveObjects can be download as a standalone package or using Maven repository. [15]

ActiveObjects provides simple mapping between data classes in Java and database (DB)
itself, so the Java object can be easily stored into database without using SQL queries. Most
importantly data classes can be extended or changed and ActiveObjects handles changes,

migrations or upgrades.

ActiveObjects API provides few crucial classes to work with. EntityManager manages
database access from objective perspective, nevertheless it still supports SQL queries if
necessary. Entity interface needs to be extended in own data interface, which describes data
model. Entity is not recommended to be implemented and then instantiate. To create instance

of desired data object EntityManager factory method should be used.

Code 10 shows an example of extending Entity interface into own data model. Setters and
getters are used to map attributes into database columns. Code 11 explains how to create an
object from given data model interface.

public interface Person extends Entity {
public String getFirstName();
public void setFirstName(String firstName);
public String getLastName();
public void setlLastName(String lastName);

Code 10: Data model interface

27171

EntityManager em = new EntityManager(jdbcURI, username, password);
Person p = em.create(Person.class);

p.setFirstName(“Pavel”);

p.setLastName(”Mokry”) ;

p.save();

Code 11: Using manager to create and store object [21]

ActiveObjects API supports also some demanding functionalities like relations, indexing or
preloading. Annotations as @OneToMany and @ManyToMany can be used to describe
relationship between two different data models connected in DB table by id. But in
ActiveObjects you do not need to bother with joining the tables. It is done for you by special
relation annotation tags (Code 12). [23]

public interface City extends Entity {
public String getName();
public void setName(String name);
@0neToMany
public Person[] getOccupants();

}

public interface Person extends Entity {
public String getFirstName();
public void setFirstName(String firstName);

public String getLastName();
public void setlLastName(String lastName);

public City getCity();
public void setCity(City city);

Code 12: Data model relations [23]

As written before it is not recommended to implement Entity interface (only to extend). But
how to achieve similar result? How to implement methods itself? Solution exists, however the
implementation is little bit painful. Annotation @Implementation must be used and different
class must be created, the name is specified by annotation. Implementation class needs to

provide reference to Entity in constructor as it is described in Code 13.

28/71

@Implementation(PersonImpl.class)

public interface Person extends Entity {
public String getFirstName();
public void setFirstName(String firstName);

public String getLastName();
public void setLastName(String lastName);

public City getCity();

public void setCity(City city);
}

public class PersonImpl {
private Person model;

public PersonImpl(Person model) {
this.model = model;
}

public String getFirstName(){
return model.getCustomer().toUpperCase();
}

Code 13: Data model and implementation class [22]

29/71

3.2. JIRA Plugin Technologies

JIRA is a standalone application, that is capable of extension. Extensions are called plugins.
Plugins should be designed in MVC architecture as well and Atlassian as a company standing
behind JIRA provides many tools to achieve this. As a view layer you can use WebWorks or
generic Servlets (3.2.6), as a data layer ActiveObjects mapper (3.1.4) is available. All these
components are called plugin modules. Plugin modules expose certain kind of available

functionality to plugin such as above written view, data layer or for example REST service.
3.2.1. Architecture

JIRA is a web based application using MVC architecture. JIRA is written in Java and is

deployed as WAR file into Java Servlet Container usually Tomcat. [14]

o]
Lt

UserfBTuwser

o

Seraph JSPNelocity

{v\
g ’J JIRA core utility
Plugins and che Lucens, Lucene

Manager classes indexes
v Y €/>

Embedded Crowd PropertySet

OFBiz Entity Engine OSWorkflow Quartz

Illustration 10: Jira Architecture [14]

30/71

3.2.2. Plugin File Skeleton

Every plugin project must fulfill certain structure. Most important files are description files.

File atlassian-plugin.xml contains information about used resources, plugin modules and other

components. File pom.xml holds important information how to build plugin, which libraries

(dependencies) to use, it also contains name, version and other specific fields about a plugin.

The main folder contains the source code written in Java. The resources folder contains views,

JavaScript codes, CSS styles. Files with extension .properties contains string values, which

can be used for localization, if necessary.

v src
| main
v java
v[i@ com
ik test
v testproject
= MyPluginComponent.java
= MyPluginComponentimpl.java
v|& resources
[css
» & images
* js
atlassian-plugin.xml
|| testproject.properties
Pl test
|1 LICENSE
pom.xml
|| README

2items
2items
1item
1item
1item
2items
91 bytes
583 bytes
5items
1item
2items
1item
1.5kB

53 bytes
2items
310 bytes
43kB
625 bytes

Illustration 11: Plugin file structure

Folder
Folder
Folder
Folder
Folder
Folder
Text
Text
Folder
Folder
Folder
Folder
Markup
Text
Folder
Text
Markup
Text

31/71

3.2.3. Important Modules
WebWork Plugin Module

WebWork plugin module is based on OpenSymphony WebWork1 framework. It provides
view layer for JIRA plugins and interaction for users. WebWork can be invoked from links

and return certain view. [25]
Servlet Plugin Module

General Servlet can be also used to provide any interaction between client and server. Servlet
can return view or just a generic data. Servlet allows to use all of common HTTP

methods. [24]

Project Tab Panel Plugin Module

This kind of module exposes possibility to add certain view into project page of JIRA. [19]
Version Tab Panel Plugin Module

This kind of module exposes possibility to add certain view into version page of JIRA. [13]
Component Plugin Module

From global perspective objects are created by JIRA itself when they are defined as modules
(Code 14). Component plugin module makes possible to share own object between modules
in plugin since you can not refer to the object manually, you need to use constructor injection
method, example is in Code 15. [4]

<!-- COMPONENT - DATA PROVIDER -->

<component key="data-accessor" class="com.releaseadmin.DataAccessor"

name="Data Accessor" il8n-name-key="data-accessor.name">
<description key="data-accessor.description">Data

Accessor</description>

</component>

Code 14: Component declaration

32/71

public class ReleasesRestService {
private DataAccessor dataAccessor;

public ReleasesRestService(DataAccessor dataAccessor) {
this.dataAccessor = dataAccessor;
}

Code 15: Example of injection

REST Plugin Module

REST module enables REST API service to be added into plugin. This can be used for
communication between client and server. [16]

<rest name="Rest Service" il8n-name-key="rest-service.name"
key="rest-service" path="/rest" version="1.0">
<description key="rest-service.description">Rest Service

Plugin</description>

</rest>

Code 16: REST declaration

ActiveObjects Plugin Module

This module allows to store data model into object database. Data model must be declared as
ActiveObject Plugin Module.

<!-- ACTIVE OBJECTS - DATA ITEM -->
<ao key="ao-module">
<description>The module configuring the Active Objects used by this
plugin
</description>
<entity>com.example.data.ModelOne</entity>
<entity>com.example.data.ModelTwo</entity>
</ao>

Code 17: Data model declaration
Component Import Plugin Module

This module allows to access Java components shared by other plugins. [7]

33/71

3.2.4. Velocity Templates

Velocity is a Java based template system, which separates Java code from views, but still it
provides access to Java objects, which enables to get all public parameters or to call public
methods. Simple and powerful scripting language Velocity Template Language (VTL) can be
used to generate dynamic views. It gives options for example to create variables, make
conditions and cycles. Since you can generate pages through Velocity, you can even generate
JavaScript code, which brings almost endless possibilities. [2]

<html>

<body>

Hello

<table>

#foreach($mud in $mudsOnSpecial)

#if ($customer.hasPurchased($mud))
<tr>
<td>

</td>
</tr>
#end
#end
</table>
</body>
</html>

Code 18: Example of VTL [2]

Atlassian recommends to use Velocity Templates and mostly as a developer of plugins, it is
the only way to create views. Simple way to create a view for Atlassian plugin is in Code 18.
Using VTL it is easy to share objects between Java code and Velocity Template, most
importantly Atlassian usually provides some basic objects itself, so it is not big problem to get
for example base URL (Code 19) or to import some specific resources.

$webResourceManager. requireResource("com.atlassian.auiplugin:aui-
experimental-table-sortable")

;é.href=

>

Code 19: Example of adding resources and using baseUrl

34/71

3.2.5. Atlassian User Interface

Atlassian User Interface (AUI) is a library of visual components, which Atlassian shows in its
products including JIRA. These components are also available for plugin developers. A
component is usually composed from HTML and can have JavaScript to provide some
functionality. There are many components from the basic ones as buttons and dialogs or

whole page decorators. [17]

There is also Atlassian Design Guidelines which is a library of articles and recommendations
for both Atlassian developers and plugin developers. Every component from AUI is described

from view of designer with suggestions how to use them and where to place them. [17]

Atlassian Sandbox (screenshot on Illustration 12) is a web tool for developers, which makes
easier to create views. All available components are prepared to be copied including its
JavaScript functions. Using Sandbox you can also run own JavaScript functions or test own

HTML layouts.

Clear Save as snippet Library HTML = Javascript CSS = Preview

HTML PREVIEW
LIBRARY

Appheader 17~ cl

Button
. 18 Menu item 1
Auiselect2 19 Menu item 2 Primary Button
A 28 Menu item 3
vatars =
22 Link button
Badges
23
Buttons 24 Dropdown button ~
25 class="aui-button class="aui-icon aui-icon-small au co
+
DatePicker 26 © Icon button
27
Dialog 28
Dialog2 29 class="aui-button” aria-disabled="true"-Disabled button
38
Dropdown 31 ¥ Subtle button
32
Expander 21 class="aui-butten aui-button-subtle class="aui-icon aui-icon Split button | ~
Forms 35
HorizontalNav Bs Button =~ Button Button
37 id= lass="aui-b class= n s
Icons 38~ id= -
39~
InlineDialog a8 e.con/">Menu item 1
a1 n/"=Menu item 2
Labels a Menu iten 3
43
Lozenges o
Messages o

Illustration 12: Atlassian Sandbox

35/71

3.2.6. Servlets and WebWorks

As it is written before (3.2.4) to create a view, you can use Velocity Templates. To create
controllers for these views, you can use Java Servlets or OpenSymphony WebWork. Typical
web application interacts with a server using web forms. On the server side, information are
handled by Java Servlet. Servlet is like a controller, which access database and returns needed

data back to the view.

Atlassian provides OpenSymphony WebWork version 1. WebWork are build on top of the
servlet combining other frameworks like XWork and implementing dynamic parameter
mapping to JavaBeans, validation of request and other features [26]. However with WebWork
you cannot handle AJAX request, because response is always a view, response can not be in
JSON format, this requires special object for asynchronous accessing eg. REST API server.

So WebWorks have its positive and negative sides.

Table 1: Comparison of WebWork and own solution

feature own solution WebWork
Multiple view for action |yes yes

Template layout system |yes no (only velocity)
Security managed no yes

HTTP req validation partly partly

AJAX possible yes no

Proven solution no yes

The idea would be to create own controller, which supports everything on top of the Servlet,
but since the WebWorks are quite well documented, proven and secure technology and on top
of that it is generally advised by Atlassian to use WebWorks. From conceptual point of view, it
is anyway better to divide controller for views and controller for background communication

(AJAX) as it is possible to see on Illustration 13.

36/71

HSQLDB

http:request

ActiveObjects

http:response:htmi
4 Velocity WebWorks
Client
A JavaScript RestModule

REST API

ajax

Illustration 13: Simplified communication flow

37/71

4.Development

4.1. ReleaseAdmin for JIRA

4.1.1. Motivation

The most important motivation is to help Sphairon company to have correct and full
information about its releases. To remove switching of content in browser, which can easily

cause mistakes and to have all necessary information about releases in one tool.

As JIRA has possibility to add versions to issue, it can be used to recognize release in
ReleaseAdmin. When the correct release exists in ReleaseAdmin (same name as JIRA
version) offer these information from ReleaseAdmin in JIRA. When the proper version is not
found in ReleaseAdmin, it is probably not a software development issue. Or it is not correctly

named.

This plugin does not have any ambition to be used by somebody else than Sphairon

employees. It should be proprietary software.

38/71

4.1.2. Specifications
Communication in JSON format
Data model similar to ReleaseAdmin Rest API output
Version in JIRA corresponds to release in ReleaseAdmin
¢ Release extends version by adding new information (release is version)
Ask ReleaseAdmin for releases presence
Cache releases in JIRA plugin database
Release in cache DB is always valid, allow user to refresh an item in the cache
Provide simple mapping of projects

o ReleaseAdmin project vs Jira project, eg.: ISDN-SIP-Gateway (SIPGW) vs ISDN-
SIP-Gateway

o Allow one-to-many relation in JiraProject to ReleaseAdmin project

Show list of cached releases in JIRA

Show panel on issue page of corresponding cached releases

Show link to ReleaseAdmin if possible

Show full information on version page and compact information on issue panel
Support of devices in many-to-many relation to version

Support of release notes

Allow to download all information about all versions in JIRA project to cache

39/71

4.1.3. Communication

One of the most important thing is the communication between JIRA plugin and
ReleaseAdmin. The plugin needs to retrieve data from ReleaseAdmin and show them. The
technology which is proper for this situation is REST communication (3.1.1), because it uses

usual HTTP protocol and fits the most for web application purposes.

ReleasefAdmin connector REST API

Illustration 14: ReleaseAdmin communication

REST communication is just a method how to exchange data. Another thing is the data
format. Most often used standards JSON and XML are possible. For its efficiency JSON is

used in this case.

Two REST commands are necessary on ReleaseAdmin side:

¢ Provides data about release based on release name.

e URL eg.: api/rest/latest/version?version=2.4.5.1

e returns empty JSON string or data about given release
¢ Provides data about projects in ReleaseAdmin

e URL eg.: api/rest/latest/project

e returns array of projects, its name and id

Using JSON Marshalling (3.1.3) it is pretty simple to transform JSON output into JAVA data

objects.

40/71

4.1.4. Data

The main idea to create data structure is to separate data model for communication
(ReleaseModelHelper) and data model for caching (ReleaseModel). Data objects which
comes from ReleaseAdmin REST output must be transformable to Java objects from JSON.

This process is called marshaling and for this purpose Jackson library can be used (3.1.3).

Model which goes to database must be separate in case it was necessary for example to be
extended. Inheritance can be used, however another thing that tells the model must be
separated is the limitation of ActiveObjects framework — we need to use interfaces to describe
an item in database — not classes (3.1.4). And of course if the ReleaseAdmin REST API
changes, we just change communication data class instead of whole application dependent

data class.

The mapper must be implemented to convert communication objects into database objects.
The opposite direction can be also useful, in case somebody wants to use AJAX for browser

to server communication.

=<interface>>

Entity
extg¢nds
<zinterfaces>
ReleaseModelHelper |- - 1“%f {ModelMapper |- - - - ['2°%. | ReleaseModel - = - Lu:23} . IpatabaseAccessor
+releaseld +fr0ITMGCIE'lTDDD{) oeiRel Td +CreateRelease{)
+versionString +fromDbToModel () getReleaseld() +getRelease()
ersionst +setReleaseld() e Relomeesl)
+ +ge‘tVerSiOnSt Fing() +deIEtEREIEaSE{)
S +setVersionString()

+getBuildDate() +ooa ()

+setBuildDate()
+.o..0)

ActiveObjects

+get()
+create()
+find()

Illustration 15: Simplified data model

Another data classes (other than ReleaseModel) are necessary. For example to store devices

and projects. However the idea with mapping stays.

In Code 20 there is a full implementation of ReleaseModelHelper with all annotations

necessary for marshaling from JSON data to Java instances.

41/71

@JsonIgnoreProperties(ignoreUnknown = true)
public class ReleaseModelHelper{

@JsonProperty(value = "release id")
protected short releaseld;
@JsonProperty(value = "project id")
protected byte projectId;
@JsonProperty(value = "versionstring")
protected String versionString;
@JsonProperty(value = "builddate")
protected int buildDate;
@JsonProperty(value = "releasename id")
protected short releaseNameld;
@JsonProperty(value = "sw generation")
protected byte swGeneration;
@JsonProperty(value = "released")
protected byte released;

@JsonProperty(value = "releaseddate")
protected int releasedDate;

@JsonProperty(value = "url")
protected String url;

@JsonProperty(value = "project")
protected String project;

@JsonProperty(value = "releasename")
protected String releaseName;

@JsonProperty(value = "customer")
protected String customer;

@JsonProperty(value = "devices")
protected List<ReleaseDeviceModelHelper> devices;

@JsonProperty(value = "revision")
protected int revision;

@JsonProperty(value = "branch")
protected String branch;

@JsonProperty(value = "buildspec")
protected ReleaseBuildSpecModelHelper buildSpec;

@JsonProperty(value = "buildsystem")
protected ReleaseBuildSystemModelHelper buildSystem;

Code 20: ReleaseModelHelper data class

42/71

4.1.5. Mockup

Mockups are simplified illustrations of views to help design an application structure. For the
mockups, there are many tools using different approaches to generate illustrations. Mockups
can be very simple, the purpose is to find out where to place GUI components and how they
should behave. Usual screenshots of pure JIRA instance can be used together with simple

paint tool.

ReleaseAdmin for JIRA needs to have separate page (Illustration 16) with details of release

information contained in cache. For the administrators, the button to reload data from remote

host can be visible.

‘,«:('"RA Dashboards ~ Projects ~ Issues ~ Agile Create issue Q Quick Search @~ £H- & =
4 Project
A Versio2 Versio2 | sdfsdf p
Summary

Version in ReleaseAdmin detail
Issues
- show information about corresponding release in ReleaseAdmin
Release - allow possibility ko refresh the data

- if nothing is cached, ask For a result ReleaseAdmin directly

ReleaseAdmin

Bug tracking and project tracking for software development powered by Atlassian JIRA (v6.2.2#6258-sha1:2012433) - AboutJIRA - Reporta problem

This JIRA site is for non-production use only.

“WAtlassian

Illustration 16: New tab on version page, shows detail of release in ReleaseAdmin

43/71

The issue page is crucial for JIRA. So that is why it so important to introduce panels showing
brief information of corresponding releases. An issue can have affects versions and fixed

versions, so it is necessary to implement two panels.

ﬁ']]m Dashboards ~ Projects ~ Issues - Agile Create issue Q, Quick Search = (e & -

4 Project / PROJ-1

A Issue 1

Edit > Comment Assign | More ~ Start Progress | Done Admin ~ % [Export -
Details People
Type: New Feature Status: (View Workflow) Assignee: " admin
Priority: T Major Resolution: Unresolved Reporter: n admin
Affects Version/s: Versio2 Fix Version/s: None. .
Votes: 0
Labels: Nane Watchers: @ Stop watching this issue
Description Dates
Click to add description
Created: Today 9:42 AM
Updated: a few seconds ago
Activity
Al Comments WorklLog History = Activity Versions in ReleaseAdmin

There are no comments yet on this issue. - compact info about versions connected to issue

- if more versions, show some tabs

¢ Comment

Bug tracking and project tracking for software development powered by Atlassian JIRA (v6.2 2#6258-sha1:2012433) About JIRA Report a problem

This JIRA site is for non-production use only.

Whtlassian

Illustration 17: New panels on issue page with basic info about version

44/71

List of cached releases needs to be created to provide complex view for all versions in project.

This list can show small amount of information about releases stored in JIRA.

.):(HRA Dashboards ~ Projects - Issues - Agile Create issue Q Quick Search - b & -

A Project

Key: PROJ - Lead: F} admin

Overview Administration

Summary . . .
Versions in ReleaseAdmin
Issues
Road Map - show the list of cached versions in ReleaseAdmin
Change Log
Reports

Versions

Versions in ReleaseAdmin

Bug tracking and project tracking for software development powered by Atiassian JIRA (v6.2 2#6258-sha1:2012433) - AboutJIRA - Reporta problem

This JIRA site is for non-production use only.

WAtlassian

Illustration 18: New tab on project page, shows the version list

45/71

4.1.6. Views

All views are composed from Java classes, Velocity templates and usually some JavaScript
functions. Java class needs to extend some Atlassian view class (3.2.3). The proper definition

in atlassian-plugin.xml is necessary too.
Version detail page

Version detail page (Illustration 19) contains detailed information about release in
ReleaseAdmin connected to version in JIRA. It is a tab on version page of JIRA. It offers also
a few buttons. Update data allows project administrator to get new data from ReleaseAdmin.
There are buttons available, if release contains release notes or download links. If more

corresponding releases to currently viewing version are found, all of them are visible.

b e Dashboards = Projects ~ Issues -~ Agile + Tempo ~ Service Desk ~ @] Q, Quick Search @~ £H- ‘ -
9@4) . ReleaseAdmin for Jira
~ 0.2.1 0.2.0 0.2.2
i 0.2.0 1 4
Summary
Issues 0.2.0 [Sphairon]) Update data = @ View in ReleaseAdmin
People Project: ReleaseAdmin for JIRA

. Customer: Sphairon

ReleaseAdmin

Release name: ReleaseAdmin Plugin Release 0.2
Build date: 21.05.2014 - 13:58

Branch: trunk rev. 311

Release

Buildsystem: build-system
Last data update: 04.06.2014 - 16:59

Atlassian JIRA Project Management Software (v6 2 4#6261-sha1:4d2e6f6) About JIRA Report a problem

‘Whtlassian

Illustration 19: ReleaseAdmin full detail

46/71

Issue page panel

Issue page panel (Illustration 20) provides information on issue page. This is a crucial view,
that brings necessary data from ReleaseAdmin into JIRA. There are two panels, one contains

details about affect version and one about fixed version.

Affects Versions in ReleaseAdmin

0.2.0

Project: ReleaseAdmin for
JIRA

Customer: Sphairon

Release name: ReleaseAdmin
Plugin Release 0.2

Build date: 21.05.2014 - 13:58

Revision: 311

iew Details

Illustration 20: Affects Versions panel

Version list page

Project page has many tabs concerning to a project. It usually shows all issues included,
people assigned, associated versions and others. One could say, why not to extend current
versions tab with new information regarding to ReleaseAdmin. To add new columns into table
and new links. Sadly this is not possible and Atlassian does not provide any correct way to
change existing Versions tab. This means that own tab must be created, which contains all

necessary information about cached versions (releases in Release Admin).

The tab allows user to see all cached versions in plugin. For the project administrators there
are advanced features as synchronizing of all versions in Jira with ReleaseAdmin (Illustration
22) and off course a function that updates one particular release. The screenshot is visible on

Illustration 21.

47171

. ReleaseAdmin for Jira
Key: RAJ - Lead: ¥3 Christian Bork

Overview Administration

Summary ReleaseAdmin Versions
Issies Synchronize all...
Road Map
People Version Customer Released
Change Log 019 Sphairon false
Reports :

0.2.0 Sphairon false
Calendar
Subversion 0.21 Sphairon false
Versions

ReleaseAdmin Versions

Last data update

04.06.2014 - 16:59

24.06.2014 - 18:51

04.06.2014 - 16:59

Atlassian JIRA Project Management Software (v6.2. 4#6261-sha1:4d2e6f6) - AboutJIRA

WAtlassian

- Report a problem

Action

) Update data
) Update data

) Update data

Illustration 21: Project tab with ReleaseAdmin releases in database

Synchronize all

Checks for Versions in JIRA and finds all corresponding
releases in ReleaseAdmin. It also updates all existing
releases. This process can take a while. After it is done,

page is automatically reloaded.

Synchronize | Cancel

Illustration 22: Synchronize all dialog

-
-

-

48/71

Configuration

Configuration page is available only for JIRA administrators and allows them to configure

plugin:
* ReleaseAdmin REST API path
e (Cached items statistics

e Delete items in database

Administration Q search JIRA admin
Projects Add-ons User Management Issues System Audit Log

ATLASSIAN MARKETPLAGE Release Admin Configuration

Find new add-ons

URL address | http://portal/playaround/releaseadmin/api/rest/lates!

Setan URL address to Release Admin REST API

Manage add-ons

Purchased add-ons
eg. hitp/portal/playground/releaseadmin/api/restlatest/

APPLICATION LINKS

Save
Application Links
SOURCE CONTROL Plugin data Delete
DVES Accounts Data info | Database contains:
Subversion Repositories 1 configuration items
26 device items
SCRIPT RUNNER 137 release items

233 association items
137 build spec items
Builtin Scripts 137 build system items
13 project rule items

Script Console

4

Script Fields
Script Listeners

Script JQL Functions

BUILDS

Bamboo configuration

Illustration 23: Configuration page

49/71

Project mapping

Project mapping is very important to be done after plugin installation. Plugin needs to know
which projects in ReleaseAdmin corresponds to JIRA projects. With versions it is simple, the
name must be the same. But with projects it is more difficult, because project names are not
always the same and sometimes one project in JIRA have to be connected with more projects
in ReleaseAdmin (eg. general library development). Using project mapping view it is possible

to connect all projects and it also offers automatic mapping functionality (4.1.7).

50/71

4.1.7. Features
Acquiring releases from ReleaseAdmin

Very important question is when to acquire data from ReleaseAdmin? The best answer is
“When it is needed”. The idea is to provide user as much information as possible and in the
time it is necessary. The approach is simple, if there is a version in JIRA browsing context
which can have corresponding item in ReleaseAdmin, ask for it. If it is not in cache (local
database), ask remote host (ReleaseAdmin) for a result. If the result is successful, show it to

the user. And more if the user is administrator, allow possibility of refresh.
Version listener

Version listener is added functionality to JIRA, listener is called whenever new version is
created. If release with corresponding name is found in ReleaseAdmin it is also added into

database. This approach makes the plugin more automatic and comfortable.
String comparison

To map project between JIRA and ReleaseAdmin, the plugin uses special String comparison
algorithm which comes out from Levenshtein distance function. This function calculates how
many substitutions are necessary to reach conformity between two strings. String comparison
algorithm uses this function but in little bit adjusted way. The algorithm is possible to see in

Code 21.
Possible positive scenarios:

* returns true, if one string is a part of the second one (eg. Google Inc vs Google)

* returns true, if the number of changes necessary to get conformity are less than half

size of longer string (eg. Googla Inc vs Google)

51/71

public static boolean checkSimilarity(String strl, String str2) {

if (strl.contains(str2) || str2.contains(strl)) {
return true;
} else {

float limit = 0.5f;

int biggestSize = strl.length();

if (str2.length() > biggestSize)
biggestSize = str2.length();

int changesNeeded = computelLevenshteinDistance(strl, str2);

if(((float) changesNeeded / (float) biggestSize) <= limit){
return true;

}

}

return false;

Code 21: Check similarity method

52/71

4.1.8. Result

The plugin was tested during development on clean JIRA test instance. Introducing new
features the plugin was everytime uploaded to JIRA staging instance. JIRA staging instance is
a copy of live instance including all data inside. JIRA staging instance is for Sphairon

employees available, so that is how the testing went.

Currently the plugin is deployed to the live instance of JIRA in Sphairon company.
ReleaseAdmin for JIRA has 40 revisions created during 19 days of development, 4513 lines
of codes (without empty lines) were written. Pure Java code is presented by 2410 lines, this is
server side application. ReleaseAdmin for JIRA was first released in version 0.1.9, than
version 0.2.0 was deployed to public live instance of JIRA, version 0.2.1 was immediately
added repairing some crucial bugs announced by users. Version 0.2.2 is in future expected

release to have some new features.

53/71

4.1.9.

Future

For the next release, there are some ideas to extend the plugin. For example enhance the

communication between ReleaseAdmin and ReleaseAdmin for JIRA. It would be nice, when

a release is created in ReleaseAdmin, it would announce that to JIRA REST API by creating a

version in JIRA, then the plugin would get detailed information about the release from

ReleaseAdmin. The proposal of communication is described on diagram in Illustration 24.

JIRA Release Admin
plugin

JIRA

ReleaseAdmin

X

Actor

event is triggered JIRA version is created

JIRA public REST API
[rest/apif2/version [POST]

F 3

success [201]

¥

get data
version/?version=new\Version

A

success[201]
{"releases™:

Illustration 24: Extension of communication

release is created

54/71

4.2. JIRA Release Management Plugin

4.2.1. Motivation

JIRA is one of the most often used bug tracking systems and still it doesn't have any plugin,
which adopts release management functionalities. The JIRA itself supports version entities as
a first step to introduce these abilities. However it is not enough. Competition is pretty rare, if
you don't think about big commercial continuous integration systems, where the issue

tracking is one small part of big colossus.
As a competition some standalone open source projects can be listed, for example:
* Apache Continuum
* Jenkins (build system with release management plugin)
* GitHub (host system on top of the GIT with bug tracking and release features)
* BitBucket

These applications are usually created on top of certain tool and don't support connection of

multiple tools.

The idea is to create a plugin for users of Atlassian JIRA which combines most of the release
management abilities, with possibilities in future to adopt other continuous integration
features, so that the plugin can be a competition to projects like Apache Continuum or

BitBucket, but running inside of JIRA.

The plugin should be general in its data model, so everyone can use it. For the Sphairon
company the motivation is to replace own proprietary release management system
(ReleaseAdmin) in future, and replace it with Jira Release Management Plugin (JRMP), so

that the data are not presented in two systems (JIRA and ReleaseAdmin), but only in one.

55/71

4.2.2. Release Management Software

Release management software is a software, which takes care of managing the life time of
release. With usage of continuous integration tools, it fulfills the role of the main information
source for managers of software development. Main idea which is hidden behind the software
is to cover and to store all steps and information, that are used during continues integration

cycle, with a release procedure and with planning.

JIRA takes care of planning itself, it supports issues and versions to be created for upcoming
releases. But the necessary information incoming from continues integration tools are
missing. Release management software should gather these information to keep complex

overview of software inside.

The first step to create successful release management software is to create general data
model, which fits most of the use-cases. Since JIRA is a great project management tool for
software development, it needs to be also a great platform to create successful release

management software.

The second step is to connect all tools together, which are usually used in development and
create general software which link existing development applications. The task is not to
implement these tools from the scratch, but use them to be more connected, since they are

indirectly connected anyway.

56/71

4.2.3. Specifications
JRMP version extends version in JIRA

* adds new information like revision control system, build system, milestone or

customers

Plugin must use most of JIRA common tools eg. Versions Administrator page
Milestone is as a group for versions

Milestone is connected to JIRA project

Version can have only one milestone

Version can have many customers

Version has many targets and one revisions

Since Version Overview page can not be extended, new Milestone page should do the

trick with expandable number of versions inside

Revision control systems, customers, build systems are global entities, they are not

connected to project

New menu should be added to provide overview and administration pages for new

entities

Panels Affect Versions and Fixed Versions on Issue page should contain compact

JRMP version information

Version Detail page should be added to have all information about JRMP version

57171

4.2.4. Data Structure

Since Jira knows the data entity, which is called version, it is necessary that plugin works with

it. Version in JIRA has few attributes, these are name, description, release date and start date.

Version also knows about itself, if it was released or archived. It is not possible to inherit from

version, because it is forbidden by Atlassian API. So another solution is to keep reference on

version in our data model.

The comparison what attributes usual JIRA version offers is on Illustration 25. The proposal

enhancements are quite hight, and JrmpVersion brings many new parameters to extend release

management features.

Version

+name
+description
+startDate
+releasebate
+isReleased
+isArchived
+project

JrmpVersion

+name
+description

+startDate

+releaseDate
+isReleased

+isArchived

+project

+generation

+buildDate

+customers
+customersDescription
+milestone
+milestoneDescription
+targets
+targetsDescription
+buildSystem
+buildSystemDescription
+revision
+revisionDescription
+branch
+branchDescription
+revisionControlSystem
+revisionControlSystemDescription
+Tile

+fTileDescription

Illustration 25: Accessible fields JIRA version vs JRMP version

58/71

The overall data model of plugin can be seen on Illustration 26. JrmpVersion keeps reference
on Jira version (by jiraVersionld field) in relation one-to-one. JrmpVersion owns reference for
Customer data object. This relation is many-to-many. Jrmp Version can have many customers,
and customer can have many versions. JrmpVersion has also reference to Milestone.
Milestone knows into what Jira project (by jiraProjectld field) it belongs. JrmpVersion can
have only one Milestone assigned, but Milestone can have many JrmpVersion. Jrmp Version
has many targets as Target can reference to many JrmpVersions. This is a difference between
software version information and deployment. There could be many deployments with the
same software information. Target can have many stored files so as the JrmpVersion. But a

single File has only on Target and one Jrmp Version.

w
IrmpVersion ==
. 1 +Jleaer slund ﬁ:;—

File _+oeneration

- bulldbate
+ur i

N §
a1 i
. Milestone Customer
1 Tarqet JiraProjectld

RevislonControlSystem

1

BuildSystem

w
Branch
1
0..1
¥ - .
Revision

Illustration 26: Data model

59/71

4.2.5. Application Structure

Application structure should have some common elements as ReleaseAdmin for JIRA plugin
(4.1.5). The panels (Illustration 17) which brings brief information about versions should stay,
only the data contained need to be changed a bit. The version tab (Illustration 16) with
detailed information about release also stays, but the content needs to change a lot, since the

data are bit different.

New features need to be introduced, since the data have to be maintained and edited by users,
it is important to add some kind of central overview and administrator pages, where all
entities can be edited. These pages are global, they are not connected with issue or project in

JIRA. In these pages you could edit for example customer, target, build system and others.

The duality from ReleaseAdmin for JIRA plugin (Illustration 27) is not very convenient,
where there are two pages for versions. One contains usual JIRA versions and the other
contains only these versions, which are cached in the database (correspond to ReleaseAdmin).
This approach is the only solution for ReleaseAdmin for JIRA, however for JRMP plugin the

solution can be better.

Dashboards Projects Issues Agile Tempo] Q Quick Search @ & ‘

i3 ReleaseAdmin for Jira
qml Key: RAJ - Lead: ¥ Christian Bork

Overview Administration

Summary Versions Manage Versions
Issues
Road Map Name Start date Release date Description
People M@ 03 17.07.2014
Change Log @ 022 16.07.2014
Reports
@ o020
Calendar N
B o021
Subversion
Versions @ o1s
ReleaseAdmin Versions
ReleaseAdmin Versions Synchronize all.. Manage Versions
Version Customer Released Last data update Action
0.3 Sphairon false 21.07.2014 - 09:08 Ee24
0.2.2 Sphairon false 17.07.2014 - 17:17 &
0.2.1 Sphairon false 17.07.2014 - 09:05 E+24
0.2.0 Sphairon false 17.07.2014 - 09:05 Eo24
0.1.9 Sphairon false 21.07.2014 - 09:06 Ee24

Illustration 27: ReleaseAdmin for JIRA - Versions pages duality

60/71

An entity called milestones can be used for that. Milestone is something like a group for
versions, usually it divides these versions which introduce new features. For the purpose of
milestones the separate page needs to be created in context of JIRA project page. Since the
milestone contains versions, it is easy to design the page as expandable milestone list with

table of versions inside.

To bring new features to JIRA version, new data model needs to be implemented (4.2.4). With
new data model, new editing features are necessary. Editation Luckily in compare of usual
Versions overview page, this Version administrator page can be extended. And new items to

context menu of each version can be added as it is possible to see on Illustration 28.

*,(:'j".'lA Dashboards ~ Projects ~ Issues ~ Agile Create issue Q Quick Search @ -

vy Project
4)

Key: PROJ - Lead: F} admin = Category: None - URL: No URL
Overview Administration

s — .
urmmary Versions

Issue Types
w For software projects, JIRA allows you fo track different versions, e.g. 1.0, 2.0. Issues can be assigned to versions.

New Feature

Sub-task Name Description Start date Release date
fask @] M Add
Workflow
oridiows @ HN-SPH_P-2.21- o
Screens 24958 Release
Field i
lelas @ 4.37.244r81228 Build and Release
Versions Archive
5 4.37.24.4.r81304 Delete
Components
Edit
Rol .
oes View
Permissions

Issue Security

Notifications

Illustration 28: Extended context menu

61/71

4.2.6. Views

Version edit page

Version edit page can be accessed from standard version list in administration section of
project. Edit function allows to add desired values in comfortable way. Selection box uses
Select2 library for compact view and easy modification. Select2 box enables searching,
adding, removing of elements in given category. Version edit page (Illustration 29) brings the
most important fields to usual JIRA version with nonviolent way. The entities are acquired by

AJAX background communication.

Edit Version

General

Name

Description

Start date
Build date

Rel date

Generation

Assignment

Milestone

Customers

Revision System
Type
Branch

Revision

Build System
Type

Targets

Illustration 29: Version edit page

Stable Release 0.3

Sphairon %

Subversion
branches/0.3.0-stable

353

Select or create

Select or create

Cancel

Save ajax

Version detail page

Version detail page can be observed on the Illustration 30. This page brings detailed view with
all items assigned to the certain version. Usually every item can have also a description, the
description field is hidden, if no text is inside. This ensures clear approach to show
information. For the users with administration permissions, the edit button is visible. It shows

Version edit page in dialog.

Epehuten Dashboards ~ Projects ~ Issues - Agile ~ Release Management ~ Tempo ~ [Q Quick Search @~ £~ ‘ *

@ . ReleaseAdmin for Jira

qmﬁ 0.3 4022 0.3

Summary

Issues Detail # Edit Version

People General Revision Control

Detail Name: 0.3 Type: Subversion

Release Description: This is a version implementing new features as Branch: branches/0.3.0-stable
table sorting, download dialog and buildspec

possibilities. It also fixes all previous bugs. Revision: 353

Start Date:

Build Date: Build System

Release Date: 17.07.2014 Type:
Generation: Targets:
Assignment
Milestone: Stable Release 0.3
Customers: Sphairon
Atlassian JIRA Project Management Software (v6 2 4#6261-sha1:4d2e6f6) - About JIRA Report a problem

Whtlassian

Illustration 30: Version detail page

63/71

Issue page panel

Issue page panel (Illustration 31) is very similar to that one in ReleaseAdmin for JIRA plugin.
It shows little bit different information. It also brings new feature, that the icon is shown next

to the version name. Icon marks if the version is released or not.

Affects Version/s

o022
Milestone: Stable Release 0.2
Customers: Sphairon
Start Date:
Build Date:
Release Date: 16.07.2014
Revision: 352
Targets:

View Details

Illustration 31: Affects Versions panel

Milestone overview page

Milestone overview page is visible to all users, it shows versions in JIRA with focus of
milestone assignment. Archived versions are hidden. The example of page is shown on

Ilustration 32.

.~ ReleaseAdmin for Jira

qulm Key: RAJ - Lead: ¢ Christian Bork

Overview Administration

Summary Milestones Manage Versions | Manage Milestones © ~
Issues Expand all
Road Map Development Release 0.1 Hide all
People Name Start date Build date Release date Customers
Ch L
ange Log @ 0.1.9 Sphairon
Reports
Calendar Stable Release 0.2
Milestones

Stable Release 0.3
Subversion

Name Start date Build date Release date Customers
Versions

@ 03 17.07.2014 Sphairon

Atlassian JIRA Project Management Software (v6.2 4#6261-sha1:4d2e6f6) About JIRA Report a problem

WAtlassian

Illustration 32: Milestone list page

64/71

Milestone administration page

Milestone administration page (Illustration 33) shows a list of milestones with possibility of
modification. The edit dialog (Illustration 34) shows also the versions assigned to the selected
milestone. It is easy to add them or remove them. If the version has already another milestone
assigned, it is properly displayed to the user. When it is necessary to delete a milestone,

proper unassigned of all entities is done before, the versions inside are not deleted.

* ReleaseAdmin for Jira g
Key: RAJ - Lead: ¢ Christian Bork - Category: None - URL: No URL

Overview Administration

S oy "
ks Milestones Add

Issue Types i ‘ X
Milestone is a group for versions.
Bug
Eplc Name Description Versions Action
Story Development Release 0.1 Yes (1) =24
Edit
Technical task Stable Release 0.2 Yes (3
Delete
Workflows Stable Release 0.3 Yes (1) L ad

Screens

Fields

Versions
Version Importer

Milestones

Illustration 33: Milestone administrator page

Edit Milestone

NET Sl lDevelopment Release 0.1

Description

Versions 0.1.9 %

Update = Cancel

Illustration 34: Milestone modification dialog

65/71

Overview pages

There are many overview pages sharing the same same controller class. However the view is
defined for each page separately. Overview pages show global entities in plugin for example

customers, build systems, branches and revisions (Illustration 35) and others.

G Dashboards ~ Projects ~ Issues = Agile ~ Release Management ~ Tempo ~ B (Q Quick Search @~ £~ ‘ -
Customers
Release Management Revision Control
Branches and Revisions
Overview Administration Build Systems
Targets
Customers Branches Manage Branches = Manage Revisions
Revision Control
evision toniro Name Description Revision Control Revisions
Branches & Revisions
trunk Subversion Yes (3)
Build Systems branches/0.2.0-stable Subversion Yes (2)
Targets
branches/0.3.0-stable Subversion Yes (1)

Atlassian JIRA Project Management Software (v6.2 4#6261-sha1:4d2e6f6) About JIRA Report a problem

Whtlassian

Illustration 35: Branches and Revisions page

Administration pages

Administration are only visible for the users with certain permissions. They allow to edit

existing global entities in plugin with possibility to add a new entity.

L Dashboards ~ Projects ~ Issues ~ Agile - Release Management ~ Tempo ~ ['Q, Quick Search A * A ‘ -

Release Management

Overview Administration

Customers Branches
Revision Control Name Description Revision Control Revisions Action
Branches trunk Subversion Yes (3) [+ 24
Revisi
evisions branches/0.2.0-stable Subversion Yes (2) [+ 24

Build Systems branches/0.3.0-stable Subversion Yes (1) T~
Targets Add Revision

Edit

Delete

Atlassian JIRA Project Management Software (v6.2.4#6261-sha1:4d2e6f6) - AboutJIRA Report a problem

WAtlassian

Illustration 36: Branches administration page

66/71

4.2.7. Result

JRMP plugin is successfully deployed to a JIRA staging instance in Sphairon for the testing of
behavior. The plugin has extensive editing features to achieve user specific desires. It is as
general as possible. It is a standalone release management plugin running in JIRA. It
successfully extends current JIRA functionalities of release management and brings new

desired attributes to JIRA versions.

However the plugin needs many features to be implemented in future to be successful as a
release management software. The links with build systems and revision control systems are
important. Current version allows only manually entering of data from these systems. Other
helping functions would be convenient. For example automatic versioning or automatic

deployment to reach continues delivery principles.

Jira Release Management Plugin has 10 revisions created during 23 days of development,
9373 lines of codes (without empty lines) were written. It shares with ReleaseAdmin for JIRA
859 lines of code. 3552 lines of code are in Java, the rest are views using Velocity Templates

and JavaScripts. Java code contains 28,5% abstract and 71,4 % concrete entities.

67/71

5.Conclusion

Within the master thesis two plugins were created. One of them ReleaseAdmin for JIRA is
regularly used by employees of the Sphairon company. It helps to solve daily situations with
release management issues. The plugin is still in development mostly bringing new features in
GUI and reflecting the comments within the company. In the ReleaseAdmin for JIRA number
of new technologies I had to learn to provide the best functionality and the best user

experience.

Using the skills from developing ReleaseAdmin for JIRA another plugin was designed and
developed. The Jira Release Management Plugin is planned to replace proprietary
ReleaseAdmin application in future. The plugin should be also introduced to Atlassian
Marketplace to offer another companies to enjoy enhanced release management features
inside the JIRA system. The plugin still needs development to be used on live systems as a
proper release management software. It requires to implement some other suitable functions

in future.

During the development of newer versions of ReleaseAdmin for JIRA I could use the plugin
itself to manage its versions. This way I was introduced to release management process. I
found the approach so practical, I was pleased it happened and I am going to use these
experiences in future. I was also introduced to continuous principles of developing software,
which I partly used on case of my plugins. I met new tools like Subversion, Jenkins and other
which helped me with proper development techniques. I also enjoyed excellent knowledges of
my consultants and leaders in Sphairon, who always brought appropriate criticism into my

work.

68/71

Literature

[1] Algorithm Implementation/Strings/Levenshtein distance. In: Wikibooks: open books for
an open world [online]. San Francisco (CA): Wikimedia Foundation, 2001- [cit. 2014-07-21].

Available on:

http://en.wikibooks.org/wiki/Algorithm Implementation/Strings/I.evenshtein distance

[2] Apache Velocity: Velocity User Guide. THE APACHE SOFTWARE FOUNDATION. The
Apache Velocity Project [online]. 2007 [cit. 2014-07-21]. Available on:

https://velocity.apache.org/engine/releases/velocity-1.5/user-guide.html

[3] Caching Guidance. MICROSOFT. Developer Network [online]. 2014 [cit. 2014-07-21].
Available on: http://msdn.microsoft.com/en-us/library/dn589802.aspx

[4] Component Plugin Module. ATLASSIAN. Atlassian Developers [online]. [cit. 2014-07-
21]. Available on:

https://developer.atlassian.com/display/JIRADEV/Component+Plugin+Module

[5] FOWLER, Martin. Continuous Integration. [online]. 2006 [cit. 2014-07-21]. Available on:
http://martinfowler.com/articles/continuousiIntegration.html

[6] JacksonInFiveMinutes. FASTERXML, LLC. Jackson [online]. [cit. 2014-07-21].
Available on: http://wiki.fasterxml.com/JacksonInFiveMinutes

[7] JAMESON, Rosie. Component Import Plugin Module. ATLASSIAN. Atlassian
Developers [online]. [cit. 2014-07-21]. Dostupné z:

https://developer.atlassian.com/display/JIRADEV/Component+Import+Plugin+Module

[8] Java API for RESTful Services. Java.net [online]. [cit. 2014-07-21]. Available on:

https://jax-rs-spec.java.net/

[9] Jersey 2.10.1 User Guide. ORACLE CORPORATION. [online]. [cit. 2014-07-21].

Available on: https://jersey.java.net/documentation/latest/index.html

69/71

https://jersey.java.net/documentation/latest/index.html
https://jax-rs-spec.java.net/
https://developer.atlassian.com/display/JIRADEV/Component+Import+Plugin+Module
http://wiki.fasterxml.com/JacksonInFiveMinutes
http://martinfowler.com/articles/continuousIntegration.html
https://developer.atlassian.com/display/JIRADEV/Component+Plugin+Module
http://msdn.microsoft.com/en-us/library/dn589802.aspx
https://velocity.apache.org/engine/releases/velocity-1.5/user-guide.html
http://en.wikibooks.org/wiki/Algorithm_Implementation/Strings/Levenshtein_distance

[11] J Tricks: Little JIRA Trics [online]. 2014 [cit. 2014-07-21]. Available on: http:/www.j-

tricks.com/

[12] KOSEK, Jifi. XML schémata. [online]. 2013 [cit. 2014-07-21]. Available on:
http://www.kosek.cz/xml/schema/

[13] NECHT, Andreas. Version Tab Panel Plugin Module. ATLASSIAN. Atlassian Developers
[online]. [cit. 2014-07-21]. Available on:

https://developer.atlassian.com/display/JIRADEV/Version+Tab+Panel+Plugin+Module

[14] KURUVILLA, Jobin. JIRA 5.x development cookbook: this book is your one-stop
resource for mastering JIRA extensions and customizations. Birmingham, U.K.: Packt

Publishing, 2013, 1 online source (v, 491 p.). ISBN 978-1-78216-908-6.

[15] LE BERRIGAUD, Samuel. Pure-Java Object Relational Mapping. Java.net [online].

2011 [cit. 2014-07-21]. Available on: https://java.net/projects/activeobjects/pages/Home

[16] MADDOX, Sarah. REST Plugin Module. ATLASSIAN. Atlassian Developers [online].
[cit. 2014-07-21]. Available on:

https://developer.atlassian.com/display/DOCS/REST+Plugin+Module

[17] MADDOX, Sarah. Atlassian User Interface (AUI) Developer Documentation.
ATLASSIAN. Atlassian Developers [online]. [cit. 2014-07-21]. Available on:

https://developer.atlassian.com/display/AUI/Atlassian+User+Interface+(AUI)

+Developer+Documentation

[18] MALY, Martin. REST: architektura pro webové API. Zdrojak [online]. 2009 [cit. 2014-
07-21]. Available on: http://www.zdrojak.cz/clanky/rest-architektura-pro-webove-api/

[19] Project Tab Panel Plugin Module. JIRADEYV [online]. [cit. 2014-07-21]. Available on:

http://jiradev.com/project-tab-panel.html

[20] RAGOZIN, Alexey. Data Grid Pattern - Proactive caching. [online]. 2011 [cit. 2014-07-
21]. Available on: http://blog.ragozin.info/2011/10/grid-pattern-proactive-caching.html

70/71

http://blog.ragozin.info/2011/10/grid-pattern-proactive-caching.html
http://jiradev.com/project-tab-panel.html
http://www.zdrojak.cz/clanky/rest-architektura-pro-webove-api/
https://developer.atlassian.com/display/AUI/Atlassian+User+Interface+(AUI)+Developer+Documentation
https://developer.atlassian.com/display/AUI/Atlassian+User+Interface+(AUI)+Developer+Documentation
https://developer.atlassian.com/display/DOCS/REST+Plugin+Module
https://java.net/projects/activeobjects/pages/Home
https://developer.atlassian.com/display/JIRADEV/Version+Tab+Panel+Plugin+Module
http://www.kosek.cz/xml/schema/
http://www.j-tricks.com/
http://www.j-tricks.com/

[21] SPIEWAK, Daniel. ActiveObjects: An Easier Java ORM. Javlobby [online]. [cit. 2014-

07-21]. Available on: http://www.javalobby.org/articles/activeobjects/

[22] SPIEWAK, Daniel. An Easier Java ORM Part 2. Code Commit [online]. [cit. 2014-07-
21]. Available on: http://www.codecommit.com/blog/java/an-easier-java-orm-part-2

[23] SPIEWAK, Daniel. An Easier Java ORM: Relations. Code Commit [online]. [cit. 2014-
07-21]. Available on: http://www.codecommit.com/blog/java/an-easier-java-orm-relations

[24] Servlet Plugin Module. ATLASSIAN. Atlassian Developers [online]. [cit. 2014-07-21].
Available on: https://developer.atlassian.com/display/JIRADEV/Servlet+Plugin+Module

[25] TURNER, Jeff. Webwork plugin module. ATLASSIAN. Atlassian Developers [online].
[cit. 2014-07-21]. Available on:

https://developer.atlassian.com/display/JIRADEV/Webwork+plugin+module

[26] WebWork. In: Wikipedia: the free encyclopedia [online]. San Francisco (CA): Wikimedia
Foundation, 2001- [cit. 2014-07-21]. Available on: http://en.wikipedia.org/wiki/WebWork

[27] XML Schema (W3C). In: Wikipedia: the free encyclopedia [online]. San Francisco (CA):
Wikimedia Foundation, 2003, 2014 [cit. 2014-07-21]. Available on:

http://en.wikipedia.org/wiki/XMIL. Schema (W3C)

71/71

http://en.wikipedia.org/wiki/XML_Schema_(W3C
http://en.wikipedia.org/wiki/WebWork
https://developer.atlassian.com/display/JIRADEV/Webwork+plugin+module
https://developer.atlassian.com/display/JIRADEV/Servlet+Plugin+Module
http://www.codecommit.com/blog/java/an-easier-java-orm-relations
http://www.codecommit.com/blog/java/an-easier-java-orm-part-2
http://www.javalobby.org/articles/activeobjects/

	1. Introduction
	1.1. Situation
	1.2. Task

	2. Theoretical Foundations
	2.1. Continuous Integration
	2.2. Release Management
	2.3. JIRA

	3. Preparation
	3.1. General Technologies
	3.1.1. REST Communication
	3.1.2. XML Marshalling
	3.1.3. JSON Marshalling
	3.1.4. Object Database

	3.2. JIRA Plugin Technologies
	3.2.1. Architecture
	3.2.2. Plugin File Skeleton
	3.2.3. Important Modules
	3.2.4. Velocity Templates
	3.2.5. Atlassian User Interface
	3.2.6. Servlets and WebWorks

	4. Development
	4.1. ReleaseAdmin for JIRA
	4.1.1. Motivation
	4.1.2. Specifications
	4.1.3. Communication
	4.1.4. Data
	4.1.5. Mockup
	4.1.6. Views
	4.1.7. Features
	4.1.8. Result
	4.1.9. Future

	4.2. JIRA Release Management Plugin
	4.2.1. Motivation
	4.2.2. Release Management Software
	4.2.3. Specifications
	4.2.4. Data Structure
	4.2.5. Application Structure
	4.2.6. Views
	4.2.7. Result

	5. Conclusion
	Literature

