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Abstract
The aim of this thesis is to present a method of constructing accuracy predictors for convolu-
tional neural networks (CNNs) by leveraging databases of trained CNNs (NAS-Bench-101)
and employing machine learning (ML) techniques as performance estimation strategies. The
study begins with a description of various ML methods used in building CNN accuracy pre-
dictors, followed by an in-depth examination of CNNs and databases of pre-trained CNNs.
The proposed method involves selecting a suitable task for the CNNs (image classification),
assembling a dataset, defining relevant features for the predictor input, and choosing five
ML methods for training the predictors. Using existing libraries, the accuracy predictors
are implemented, trained, and experimentally validated to assess their functionality and
performance. The results are thoroughly evaluated, providing insights into the effective-
ness of the proposed method and the potential for further refinement in the field of CNN
accuracy prediction.

Abstrakt
Cieľom tejto práce je predstaviť metódu na konštrukciu prediktorov presnosti pre kon-
volučné neurónové siete s využitím databáz natrénovaných konvolučných neurónových sietí
(NAS-Bench-101) a uplatnením techník strojového učenia ako stratégií na odhad výkon-
nosti. Štúdia začína popisom rôznych metód strojového učenia použitých pri budovaní
prediktorov presnosti, nasledujúc preskúmaním konvolučných neurónových sietí a databáz
predtrénovaných konvolučných neurónových sietí. Navrhovaná metóda spočíva vo výbere
vhodnej úlohy pre konvolučných neurónových sietí (klasifikácia obrázkov), zostavení dátovej
sady, definovaní relevantných príznakov ako vstup prediktorov a vo výbere piatich metód
strojového učenia na trénovanie prediktorov. S využitím existujúcich knižníc sú predik-
tory presnosti implementované, natrénované a experimentálne overené na posúdenie ich
funkčnosti a výkonnosti. Výsledky sú dôkladne ohodnotené, validované a poskytujú pohľad
do efektívnosti navrhovanej metódy a potenciál ďalšieho vylepšenia v oblasti predpovedania
presnosti konvolučných neurónových sietí.
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Rozšířený abstrakt
Hlavným cieľom tejto práce je navrhnúť robustnú metódu pre konštrukciu prediktorov pres-
nosti pre konvolučné neurónové siete. Metóda je postavená na využití existujúcej databázy
natrénovaných konvolučných neurónových sietí a pracuje s rôznymi technikami strojového
učenia slúžiacimi na odhad výkonnosti neurónových sietí. Práca má prevažne experimen-
tálny charakter, pričom jej výsledkom je komplexné porovnanie a zhodnotenie rôznych
metód strojového učenia použitých pri konštrukcii jednotlivých prediktorov.

V úvode ide o podrobný popis metód strojového učenia, ktoré sú použité pri konštrukcii
prediktorov presnosti neurónových sietí. Táto časť poskytuje detailné porovnanie biolog-
ických neurónov s umelými, ktoré sú využívané pri tvorbe neurónových sietí, s dôrazom
na ich využitie v praxi, ale aj potenciálne obmedzenia. Ďalej nasledujú základné princípy
lineárnej regresie, algoritmov random forest a xgboost, ktoré sú založené na vyhľadávacích
stromoch. Na záver kapitoly je predstavený koncept grafových konvolučných sietí, jedným
z komplexnejších modelov strojového učenia, ktorý je schopný efektívnejšie a presnejšie
odhaliť skryté štruktúry v dátach.

V rámci práce boli tiež podrobne popísané architektúry konvolučných neurónových sietí,
od jednotlivých typov vrstiev týchto neurónových sietí až po typické operácie, ktoré sa v nich
používajú. Konvolučné neurónové siete, ktoré boli inšpirované mechanizmami vizuálneho
kortexu ľudského mozgu, sú kľúčové pri detekcii, rozpoznávaní a klasifikácii objektov.

Neurónové siete vo všeobecnosti trpia niekoľkými negatívnymi vlastnosťami, ako sú
výpočetná a časová náročnosť pri trénovaní, ako aj komplexnosť pri budovaní konkrét-
nych architektúr. Tieto obmedzenia viedli k vzniku automatizovaného strojového učenia,
ktorého integrálnou súčasťou je tzv. Neural Architecture Search. Ide o oblasť, ktorej
cieľom je automatizovať proces tvorby neurónových sietí prostredníctvom techník, ako sú
evolučné algoritmy a posilované učenie. Tieto techniky sú podporené takzvanými predik-
tormi presností neurónových sietí, ktoré majú za cieľ zefektívniť proces hľadania najsľub-
nejších architektúr neurónových sietí v procese vyhľadávania neurónových sietí. Táto časť
bola nasledovaná popisom existujúcich databáz predtrénovaných konvolučných neurónových
sietí, ktoré obsahujú jednotlivé architektúry spolu so zodpovedajúcimi metrikami, ktoré ich
charakterizujú.

Navrhovaná metóda je založená na výbere relevantnej úlohy pre konvolučné neurónové
siete (klasifikácia obrázkov), zostavení príslušného datasetu (podmnožina datasetu NAS-
Bench-101), definovaní relevantných vstupných príznakov pre prediktory a vo výbere piatich
metód strojového učenia pre trénovanie prediktorov.

Pomocou existujúcich knižníc boli jednotlivé prediktory implementované, natrénované
a experimentálne bola overená ich funkčnosť a výkonnosť. Výsledky experimentov sú po-
drobne analyzované, validované a navzájom porovnané. Poskytujú pohľad na efektívnosť
navrhovanej metódy a naznačujú potenciál pre ďalšie vylepšenia v oblasti predpovedania
presnosti konvolučných neurónových sietí.
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Chapter 1

Introduction

Deep learning has made significant advancements in various domains, such as natural lan-
guage processing, computer vision, and speech recognition. Among deep learning tech-
niques, Convolutional Neural Networks (CNNs) have revolutionized the field of computer
vision by achieving state-of-the-art performance in a variety of tasks including image clas-
sification, object detection, and semantic segmentation.

The manual design of optimal artificial neural network architectures can be a time-
consuming process that heavily relies on expert knowledge and often involves difficulty
in identifying optimal hyperparameters. To address these challenges, Neural Architecture
Search (NAS) has emerged as a promising approach to searching for the best architectures
automatically. This eliminates the need for manual design and extensive expert knowledge.

In this context, developing accurate and resource-efficient predictors for the performance
of CNNs becomes essential. These predictors can significantly reduce the computational
demands of NAS by rapidly estimating the performance of various architectures, eliminat-
ing the need for time-consuming training and evaluation. Consequently, the search process
is accelerated, and a broader search space can be explored, potentially discovering networks
with superior performance. Furthermore, understanding the factors that impact the effec-
tiveness of particular CNN architectures can provide valuable insights for designing future
CNNs, promoting the development of more powerful and efficient models.

The main goal of this thesis is to develop, execute, and assess a technique for building
classification accuracy predictors for CNNs. To achieve this, the study involves choosing
a suitable task and dataset to evaluate the performance of the CNNs and the predictors,
generating a dataset using current NAS benchmarks, identifying appropriate features used
as input to the predictor, and selecting a minimum of three machine learning methods
for training the predictor. Through the comparison of these methods, this thesis seeks to
determine the most efficient approach for estimating the classification accuracy of CNNs,
ultimately aiming to enable more streamlined and precise NAS.

The theoretical chapters of this bachelor thesis provide an overview of CNNs, NAS, rel-
evant benchmarks, and machine learning predictors for accuracy estimation (Chapters 2-4).
It is followed by the description of the design of the classification accuracy predictor, includ-
ing task selection, choice of the dataset, feature extraction, and machine learning method
selection (Chapter 5). The details of the implementation of the accuracy predictors using
existing libraries and programming tools are provided in Chapter 6. Then the experimental
setup, results, and statistical validation of the constructed predictors are presented, offering
a comprehensive comparison of their performance (Chapter 7). The conclusion of the thesis
summarizes the main findings and discusses their main implications (Chapter 8).
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Chapter 2

Selected Machine Learning Models

Artificial intelligence (AI) has revolutionized the way we interact with the world, trans-
forming various industries and enabling us to solve complex problems that were considered
impossible. From self-driving cars [3], advanced robotics [1] and natural language process-
ing [42], AI has become the cornerstone of modern technological advancements, promising
to reshape industries, empower individuals, and create a more sustainable and equitable
world. The power of AI not only lies in its ability to optimize processes, but also in its
potential to unlock new avenues for creativity, collaboration, and progress.

Machine learning (ML) is a crucial component of AI that focuses on the development
of algorithms that can learn from data and make predictions or decisions without being
explicitly programmed [39]. By automating this process, ML enables systems to adapt to
new and changing environments, making them more robust and reliable. ML techniques
can handle the complexity and volume of massive datasets, which represents a challenge for
humans in terms of processing and analysis [38], allowing for more efficient and accurate
decision-making based on data-driven insights.

In this study, supervised learning methods are employed due to their relevance for tasks
such as accuracy prediction of CNNs within the framework of NAS. Supervised learning
involves learning from labeled data, where the model learns to map input features to output
labels. Various ML models and algorithms are utilized, each with its own strengths and
weaknesses.

Linear regression (Section 2.3) is a simple model that attempts to find the best-fitting
linear relationship between input features and output labels. Random forests (Section 2.4),
an extension of decision trees, build multiple trees and aggregate their results to improve
prediction accuracy and reduce overfitting. Additionally, XGBoost (Section 2.5), an op-
timized distributed gradient boosting method, performs exceptionally well on structured
or tabular datasets. For more complex tasks, multilayer perceptrons (MLPs) (Section 2.2)
are employed. MLPs are feedforward neural networks with one or more hidden layers that
can learn complex nonlinear relationships between input and output. Furthermore, Graph
Convolutional Networks (GCNs) (Section 2.6), are a type of neural network designed to
work directly on graphs and take advantage of their structural information.

In the context of neural networks, gaining a deeper understanding of their inner workings
requires examining their fundamental building block: the artificial neuron. This component
is essential for the network’s ability to model and learn complex patterns and relationships
in data.

4



Artificial Neuron An artificial neuron (also node or unit) is a fundamental building block
of neural networks, inspired by the biological neurons present in the human brain [19]. These
computational models attempt to simulate the behavior of biological neurons by receiving
input signals, processing them, and generating an output signal. The input signals are
weighted according to their importance, and the neuron computes the weighted sum of its
inputs. This sum is then passed through an activation function that determines the neuron’s
output (Figure 2.1). The purpose of the activation function is to introduce non-linearity
into the model, allowing it to learn complex patterns and relationships in the data.

dendrites

nucleus

axon terminals

cell body

axon

𝑓 Σ

bias

in1

in2

inn

Figure 2.1: A comparison of a biological neuron (top) and an artificial neuron (bottom)1.
The biological neuron consists of a cell body (soma), dendrites, and an axon. The artificial
neuron consists of input features, weights, a bias, a summation function Σ, and an activation
function 𝑓 .

As neural networks evolved, researchers sought to create more advanced structures and
algorithms to enhance their performance and enable them to model complex relationships
in data. This pursuit led to the development of various types of artificial neuron models,
each with their distinct characteristics and advantages. One of the earliest and most well-
known examples of an artificial neuron model is the perceptron (Section 2.1), which was
a groundbreaking innovation in its time. The perceptron introduced a simple yet effective
method for binary classification, paving the way for more sophisticated neural network
architectures that would emerge in the years to come.

1Adapted from: https://www.v7labs.com/blog/neural-networks-activation-functions
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2.1 Perceptron
The perceptron, introduced by Frank Rosenblatt in the late 1950s [46], is a simple form of
an artificial neuron. It is a binary linear classifier that uses a step function as its activation
function (Figure 2.2). The perceptron can only learn linearly separable patterns, as it mod-
els a linear decision boundary (Figure 2.3). While the perceptron was a significant milestone
in the development of artificial neural networks, its limited capacity to model complex re-
lationships led to the development of more advanced neural networks with multiple layers
(Section 2.2) and non-linear activation functions.

1

Step Function

Weighted 
Sum

Weights
Constant

Σ

in1

in
n-1

inn

Inputs

w0

w1

wn-1

wn

out

Figure 2.2: A typical perceptron consisting of 𝑛 input neurons, each associated with a
corresponding weight that represents the strength of the connection between two neurons.
A bias term (represented as a constant 1) is added to the input layer to provide additional
flexibility. The perceptron employs a step function as its activation function, determining
the output based on the weighted sum of the inputs and the bias term2.

Perceptron learning algorithm The perceptron learning algorithm, also known as the
delta rule, is a specific algorithm used to update the weights of the perceptron during
training [39]:

𝑤𝑖 ← 𝑤𝑖 + 𝛼(𝑦 − 𝑦)𝑥𝑖 (2.1)

where 𝑤𝑖 represents the weight associated with the 𝑖-th input feature, 𝛼 is the learning rate,
𝑦 is the true label, 𝑦 is the predicted label, and 𝑥𝑖 is the 𝑖-th input feature.

The delta rule updates each weight by adding the product of the learning rate, the error
between the true and predicted labels, and the corresponding input feature. This process
is iteratively applied to all the input features in order to minimize the error between the
predicted and true labels.

The XOR Problem A major limitation of the perceptron is its inability to learn certain
problems that are not linearly separable, such as the XOR (exclusive OR) problem. The
XOR problem refers to a simple classification task where two input features, both binary,

2Inspired by: https://www.v7labs.com/blog/neural-network-architectures-guide
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must be classified into one of two classes. The output is true (1) when the input features
have different values (0 and 1 or 1 and 0), and false (0) when the input features have the
same values (0 and 0 or 1 and 1). The XOR problem is not linearly separable, meaning that
there is no single linear decision boundary that can accurately separate the two classes, as
demonstrated in Figure 2.3.

x1

x2

(0,0) (1,0)

(1,1)(0,1)

(a) OR operation: The four points can
be linearly separated using a single line
(red).

x1

x2

(0,0) (1,0)

(1,1)(0,1)

?

(b) XOR operation: The four points
cannot be linearly separated using a sin-
gle line.

Figure 2.3: Comparison of OR and XOR operations in terms of linear separability.

The XOR problem and the perceptron’s inability to solve it highlighted the need for more
powerful learning models that could handle non-linearly separable problems. This real-
ization led to the development of multilayer perceptrons (Section 2.2) with multiple layers
of artificial neurons, allowing for the modeling of more complex, non-linear relationships
between input and output [49].

2.2 Multilayer Perceptron
A Multilayer Perceptron (MLP) is an extension of the perceptron model and a type of
feedforward neural network that consists of multiple layers of neurons, each connected to
the neurons in the previous layer, as illustrated in Figure 2.4. Unlike perceptrons, MLPs can
solve non-linearly separable problems, significantly expanding their applicability to a wider
range of tasks [44]. The input data is fed into the network through the input layer, and
then it is processed through one or more hidden layers before producing an output in the
final layer. Each neuron in the hidden and output layers is associated with bias (additional
parameter) and an activation function (introducing nonlinearity). The bias term serves to
shift the activation function along the input axis, allowing the model to better fit the data
by providing an additional degree of freedom.

The basic idea behind MLP is to use a combination of linear and nonlinear transformations
to transform the input data into a form that can be used for prediction. Each neuron in
the network applies a linear transformation to the input data and then applies a nonlinear
activation function to the result, as shown in the following equation:

7



output = 𝑓

(︃
𝑛∑︁

𝑖=1

𝑤𝑖 · 𝑥𝑖 + 𝑏

)︃
(2.2)

where 𝑓 is an activation function, 𝑤𝑖 and 𝑥𝑖 represent the weights and inputs associated
with the neuron, 𝑏 is the bias term, and 𝑛 is the number of inputs [46].

2.2.1 Structure

The structure of an MLP (depicted in Figure 2.4) begins with the input layer, consisting of
neurons corresponding to the input features. Each input neuron is then connected to the
neurons in the subsequent hidden layer through a set of weights (learnable parameters).
The hidden layers are responsible for learning and representing the underlying structure
of the data. The number of hidden layers and the number of neurons within each layer
are adjustable parameters, significantly contributing to the model’s performance. The
final layer, the output layer, produces the predicted output values – either continuous (for
regression tasks) or categorical (for classification tasks).

Input Layer Hidden Layers Output Layer

Figure 2.4: Illustration of Multilayer Perceptron architecture, with an input layer, 2 hidden
layers, and an output layer. Connections between individual neurons represent the weights3.

Training Training an MLP involves adjusting the weights and biases of the neurons to
minimize the error (loss) between the predicted outputs and the actual output for a given in-
put. This is usually achieved using an optimization algorithm such as gradient descent [15],
in combination with a technique called backpropagation [49] to efficiently compute the gra-
dients of the loss function with respect to the weights and biases of the neurons in the
network.

Properties MLPs can learn complex, nonlinear relationships and offer flexibility through
customizable activation functions, layers, and architectures. However, they can be compu-
tationally expensive and prone to overfitting, learning the training data too well (including
the noise), if not regularized. Techniques like L1, L2 regularization, or dropout help prevent
overfitting, but MLPs may still lack interpretability compared to simpler models [15].

3Image adapted from: https://www.javatpoint.com/multi-layer-perceptron-in-tensorflow
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2.3 Linear Regression
Linear regression is a commonly used algorithm in supervised learning, where the goal is
to learn a function that maps input variables to a continuous output variable [18]. It is
a simple, yet powerful, statistical method that models the relationship between the input
variables (predictors) and the output variable (response). The primary goal of linear re-
gression is to find the best-fit line (Figure 2.5) that describes the relationship between the
input variables and the output variable. This line is represented by a linear equation 2.3
that can be used to predict the value of the output variable given a set of input variables.

𝑦 = 𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 + · · ·+ 𝛽𝑛𝑥𝑛 + 𝜖 (2.3)
where 𝑦 is the target variable, 𝑥1, 𝑥2, . . . , 𝑥𝑛 are the input features, 𝛽0 is the intercept,
𝛽1, 𝛽2, . . . , 𝛽𝑛 are the coefficients (weights) associated with each feature, and 𝜖 is the error
term – the difference between the actual value of the target variable and the predicted value
obtained from the model [41].

To find the best-fit line, the task is to minimize the sum of squared residuals between the
predicted values and the actual values. This is known as the least squares criterion and
can be calculated as follows:

𝐿(𝛽) =

𝑁∑︁
𝑖=1

(𝑦𝑖 − (𝛽0 + 𝛽1𝑥1𝑖 + 𝛽2𝑥2𝑖 + · · ·+ 𝛽𝑛𝑥𝑛𝑖))
2 (2.4)

where 𝐿(𝛽) is the objective function we want to minimize, 𝑦𝑖 is the actual value of the
target variable for the 𝑖-th observation, 𝛽0 is the intercept, 𝛽1, 𝛽2, . . . , 𝛽𝑛 are the coeffi-
cients (weights) associated with each feature, and 𝑥1𝑖 , 𝑥2𝑖 , . . . 𝑥𝑛𝑖 are the values of the input
features for the 𝑖-th observation [41].
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Figure 2.5: Depiction of Linear Regression Analysis: The blue points represent the data
points, the red line is the fitted linear regression model, and the green dashed lines show
the differences between the predictions and the actual values.
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Properties The model is easy to understand and interpret, as the coefficients directly
represent the contribution of each input feature to the target variable. Linear regression
is also computationally efficient and has a quick training time, which makes it suitable for
situations where resources are limited or where the relationship between input features and
output labels can be reasonably approximated by a linear function [18].

Assumptions Linearity assumes that the relationship between the input features and
the target variable is linear, while the independence of errors assumes that the errors are
not correlated with each other. The constant variance of errors assumes that the errors
have the same variance across all levels of the input features, and the normal distribution of
errors assumes that the errors follow a normal distribution. Violations of these assumptions
can lead to biased or inefficient estimates of the model parameters [18]. In cases where these
assumptions do not hold, other machine learning methods, such as non-linear regression or
tree-based models (Sections 2.4 and 2.5), may be more appropriate.

2.4 Random Forest
Random forest is a popular ML algorithm that belongs to the family of ensemble methods.
Ensemble methods combine multiple models to improve predictive performance and reduce
overfitting. Random forest achieves this by constructing multiple decision trees during the
training phase and outputting the class that is the mode of the classes (classification) or
mean prediction (regression) of the individual trees [18].

Decision trees are tree-like structures with internal nodes representing feature tests,
branches representing the outcomes of these tests, and leaf nodes representing the final
predictions. Random forest works by building a collection of decision trees, each trained
on a random subset of the data and features (Figure 2.6).

Dataset

Decision Tree (1) Decision Tree (2) Decision Tree (N)

Result (1) Result (2) Result (N)

Majority Voting (Averaging)

Final Result

Figure 2.6: Depicting the Random Forest algorithm: a dataset feeds multiple decision trees,
and their results are aggregated by majority voting, showcasing ensemble learning. Adapted
from [28].

This process of sampling with replacement is known as bootstrap aggregation or bagging and
introduces diversity among the trees. Additionally, a random subset of features is used at
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each split in the decision trees, further increasing the diversity of the trees in the ensemble.
The decision trees are then combined to form a random forest that can make predictions
on new data. This approach reduces overfitting and increases generalization performance
by reducing the variance of the models [4].

Properties Random forests have several advantages over other ML algorithms. Firstly,
they can handle both classification and regression tasks, making it a versatile algorithm.
They can handle missing data without imputation and are less sensitive to outliers and noise
in the data compared to single decision trees or linear models. By averaging the results of
multiple trees, random forests are less prone to overfitting than individual decision trees.
It can also provide measures of feature importance, allowing the identification of the most
important features in the data. Random forests, however, can also be computationally
expensive, especially when working with large datasets or a high number of decision trees.
This can cause longer training and inference time.

2.5 XGBoost
XGBoost, short for eXtreme Gradient Boosting, is a powerful ML algorithm that belongs to
the family of gradient boosting methods. Gradient boosting algorithms are a type of ensem-
ble method that combines multiple weak learners (typically decision trees) in a sequential
manner to improve predictive performance and reduce overfitting [7].

Gradient boosting works by iteratively adding weak learners to the ensemble, with each new
learner correcting the errors (residuals) made by the previous ones. The weak learners are
decision trees that are added sequentially, and each tree learns to correct the residuals of
the previous trees (Figure 2.7). The learning process is guided by the gradient of the loss
function, optimized at each step to minimize the errors made by the ensemble. This results
in an adaptive model that can accurately capture complex patterns in the data [7].

Dataset

Decision Tree (1) Decision Tree (2)

Result (1) Result (2)

Sum

Final Result

Decision Tree (N)

Result (N)Result (N-1)
Res
idu
al

Res
idu
al

Res
idu
al

Figure 2.7: Depicting XGBoost’s process: initial predictions are improved by decision trees
learning from residuals, culminating in an aggregated output – a demonstration of gradient
boosting. Adapted from [16].
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Properties XGBoost offers several advantages over other gradient boosting methods and
ML algorithms. Firstly, it is highly efficient and scalable, enabling the algorithm to handle
large datasets and run on distributed computing systems. Secondly, XGBoost supports
regularization, which helps reduce overfitting by penalizing more complex models. The
algorithm incorporates both L1 and L2 regularization, allowing users to control the trade-
off between model complexity and generalization performance. Additionally, XGBoost can
handle missing data without requiring imputation, and it provides built-in support for
feature importance analysis, making it easier for users to interpret the model and identify
relevant features. XGBoost can also handle both classification and regression tasks, making
it a versatile algorithm for various ML problems. XGBoost, however, like other tree-based
methods, can be sensitive to noisy data and outliers, which may affect the model’s perfor-
mance.

2.6 Graph Convolutional Networks
Graph Convolutional Networks (GCNs) are a class of deep learning models designed to
handle graph-structured data, as illustrated in Figure 2.8. Unlike traditional feedforward
neural networks, which expect a fixed-size input, GCNs can process graphs with varying
sizes and structures, making them well-suited for tasks involving graph-based data. In the
context of NAS, GCNs can capture complex relationships between the nodes and edges in
the search space, potentially leading to more accurate performance predictions.

Figure 2.8: Illustration of Graph Convolutional Network architecture4. Nodes are connected
to their neighbors through edges, and each node has a feature vector. The GCN learns to
propagate information from neighbors to the central node, updating the feature vector of
the central node.

2.6.1 Structure

A GCN consists of several graph convolutional layers, which operate on the nodes and their
neighboring nodes in the graph. Each node in the graph is associated with a feature vector,
and these feature vectors are updated throughout the graph convolutional layers. The

4Image from: https://tkipf.github.io/graph-convolutional-networks/
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graph convolutional layers can capture local and global information in the graph, enabling
the model to learn complex patterns and relationships between the nodes and edges.

Graph Convolutional Layer The fundamental process within a graph convolutional
layer is the neighborhood aggregation, which involves gathering and combining information
from the adjacent nodes. For a given node, the model learns a weighted combination of the
neighboring nodes’ feature vectors, updating the feature vector of the central node. This
operation can be seen as a convolution on the graph, where the weights are learned by the
model during training.

Training Training a GCN involves adjusting the weights and biases of the graph con-
volutional layers to minimize the error (loss function) between the predicted outputs and
the actual outputs for a given graph input. This is usually achieved using an optimization
algorithm such as gradient descent [48] or Adam [29], in combination with techniques such
as backpropagation [49] or graph attention mechanisms [61] to efficiently compute the gra-
dients of the loss function with respect to the weights and biases of the graph convolutional
layers.

Properties GCNs are able to learn complex relationships between nodes and edges in
graph-structured data, making them particularly suitable for NAS performance prediction.
They are flexible and customizable through the selection of different layer types, archi-
tectures, and attention mechanisms. GCNs can be computationally expensive, especially
when processing large graphs or when using deep architectures. They may also be prone
to overfitting if not properly regularized. Regularization techniques, such as L1 and L2
regularization or graph pooling, can be used to prevent overfitting by adding constraints to
the model parameters or by reducing the model’s complexity during training [15]. GCNs,
like other deep learning models, often lack the interpretability of simpler models like linear
regression and random forests.
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Chapter 3

Convolutional Neural Networks

In this chapter, the key components and principles of CNNs are explored. The chapter
begins by presenting an overview of the basic architecture of CNNs, including their layers
and operations, in Section 3.1. Section 3.2 discusses benchmarks for CNNs.

CNNs are a type of deep neural networks that have become increasingly popular in the
field of AI, particularly in image and video processing tasks. They have shown remarkable
performance in a range of applications, from image recognition and segmentation to object
detection and tracking.

Convolutional networks have had a pivotal role in the history of deep learning. The
unique design of CNNs allowed them to be more efficient than fully connected networks
which were prone to overfitting and computationally more complex [33]. Fully connected
networks were also less effective at learning spatial features and patterns in data, which
is critical for tasks such as image and speech recognition [15]. They are typically trained
using backpropagation, stochastic gradient descent, and other optimization techniques to
minimize a loss function that measures the difference between the predicted outputs and
the actual outputs. Regularization techniques, such as dropout, weight decay, and early
stopping, are often used to avoid overfitting the model to the training data [15, 55].

As already mentioned, CNNs have been successfully used in a variety of applications,
such as image recognition, object detection, and segmentation. They have also been used
in real-world applications, such as self-driving cars, medical diagnosis, and video analysis.
Recent advancements in the field of CNNs include the use of transfer learning, attention
mechanisms, and adversarial training. However, there are also challenges and limitations of
CNNs, such as their interpretability, scalability, and bias. The interpretability of CNNs has
been a long-standing issue in the deep learning community, as it is often difficult to under-
stand the inner workings of these models and how they arrive at their prediction [40]. This
lack of transparency can pose problems in applications where model interpretability is cru-
cial, such as medical diagnosis or financial decision-making. Scalability is another challenge
for CNNs, especially when working with high-resolution images or large-scale datasets [56].
Training deep convolutional networks requires significant computational resources and can
be time-consuming, which can be a bottleneck in certain applications. CNNs, like other
machine learning models, can be susceptible to biases present in the training data [39].
This can lead to biased predictions or even perpetuate existing biases when these models
are deployed in real-world settings. The deep learning community is actively working on
developing methods to mitigate these issues and improve the fairness and robustness of
CNNs and other deep learning models.
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Biological brain as an inspiration for CNNs Convolutional networks were inspired
by biological brains. Their history can be traced back to neuroscientific experiments con-
ducted long before the corresponding computational models were developed. The work of
neurophysiologists David Hubel and Torsten Wiesel greatly contributed to our understand-
ing of how the visual system of mammals works [15]. The most influential findings of their
work, which have heavily impacted current deep learning models, were obtained by mon-
itoring the activity of individual neurons in cats [23]. Their research involved projecting
images onto a screen in front of the cat and recording the response of the neurons in its
brain. The researchers discovered that neurons in the primary visual cortex of mammals
were sensitive to local regions in the visual field and responded to specific orientations
of edges and bars. This research inspired the development of computational models that
mimicked the local receptive fields and hierarchical structure of the visual cortex.
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Figure 3.1: The ventral visual stream (V1, V2, V4, and IT) receives inputs from the lateral
geniculate nucleus (LGN) of the thalamus, which receives input from the retina. The LGN
projects to V1, the primary visual cortex, which is the first cortical area involved in pro-
cessing visual information. From V1, the processed visual information is then transmitted
to the other areas in the ventral visual stream, such as V2, V4, and IT, which are responsi-
ble for progressively more complex visual processing. The connections between these areas
are both feedforward, where information flows from lower to higher processing areas, and
feedback, where information flows from higher to lower processing areas. Adapted from [8].

Convolutional networks are designed to extract features from visual data by applying con-
volutional filters to the input image. These filters are designed to detect edges and patterns
at different scales and orientations, much like the receptive fields in the visual cortex (Fig-
ure 3.1). The hierarchical structure of CNNs (multiple layers of filters) is also inspired by
the hierarchical processing of visual information in the brain. The filters in the earlier layers
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detect simple features like edges and corners, while the filters in the deeper layers detect
more complex patterns and objects, as shown in Figure 3.2.

Image Convolution
(linear) (nonlinear) (linear) (nonlinear)

Subsampling Convolution Subsampling

Readout

Figure 3.2: A simple feedforward convolutional network can be compared to the hierarchy
of the biological visual system, where the two pairs of convolution operator and pooling
layer have a similar function. Adapted from [8].

Neocognitron One of the first computational models that drew inspiration from the
hierarchical organization of the visual cortex was proposed by K. Fukushima with the
Neocognitron [14]. It consisted of alternating layers of simple cells (S-cells) and complex
cells (C-cells). These cells were designed to extract local features, such as edges, corners,
and texture. They provide invariance to scale (S-cells) and rotation (C-cells). Even though
the Neocognitron was not a fully-fledged CNN, it laid the groundwork for future research
in the field.

LeNet-5 In 1998, Yann LeCun and his team developed LeNet-5 network [34] – pioneering
CNN architecture designed for handwritten digit recognition and machine-printed character
recognition. It showed its real-world usage when it was in applied the United States Postal
Service for processing and recognizing handwritten zip codes on envelopes, improving the
efficiency of mail sorting and routing, reducing manual work, and speeding up the delivery
process. LeNet-5 employed a combination of convolutional layers, pooling layers, and fully
connected layers to extract features and make predictions. It demonstrated impressive
performance on the now well-known MNIST dataset [34].

Over the years, CNNs have continuously evolved and improved. Some of the most influential
architectures that have emerged include AlexNet in 2012 [33], which significantly boosted
CNN performance in the ImageNet Large Scale Visual Recognition Challenge (ILSVRC).
VGGNet [53], developed in 2014, featured a deeper and more uniform structure, leading to
even better performance in the ILSVRC. ResNet [21], introduced in 2015, employed residual
connections that enabled the training of extremely deep networks. Inception (also known
as GoogLeNet) [60], developed in 2014, utilized inception modules to allow the network
to learn multi-scale features while reducing the number of parameters. This innovation
resulted in improved efficiency and performance across various computer vision tasks.
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3.1 Architecture
The typical structure of a CNN consists of multiple layers, including convolutional lay-
ers (extracting features using filters), pooling layers (reducing the spatial size), and fully-
connected layers (flattening, classification/regression). The order and number of layers may
vary depending on the specific architecture, designed for a specific task [58].

An architecture of a CNN, depicted in Figure 3.3, can be visualized as a flowchart, where the
input image is fed into the network, and each layer transforms the input into a higher-level
representation of the image. The final layer can output a vector of scores that represent
the likelihood of the input image belonging to each of the possible classes.

Modern Deep CNN: 5 – 1000 Layers 
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Layer
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Figure 3.3: A general architecture of a CNN, adapted from [58].

3.1.1 Convolutional layer

A convolutional layer is one of the most fundamental building blocks of a CNN. The layer
consists of a set of learnable filters (also called kernels) that are convolved with the input
data to produce a set of feature maps. Each filter, a small matrix of numbers (weights),
moves across the input image in a sliding-window fashion (Figure 3.5), performing a dot
product operation with the local region of the input image that it covers.

The neurons in the initial convolutional layer have selective connections to particular clus-
ters of pixels within the input image, referred to as their receptive fields. As a result, they
are not influenced by every pixel in the image, but rather by specific receptive fields (refer
to Figure 3.4). Subsequently, each neuron in the second convolutional layer establishes
connections exclusively with neurons situated within a compact rectangular region of the
first layer [17]. Receptive field refers to the region of the input image that affects the acti-
vation of a particular neuron in the convolutional layer. Its size is determined by the size
of the convolutional filter (kernel) and the stride of the convolution operation. The stride
is a parameter that controls how the filter moves across the input image during the convo-
lution process. It defines the number of pixels the filter moves horizontally and vertically
after each convolution operation. A larger stride results in a smaller output feature map,
while a smaller stride produces a larger output feature map. As we move deeper into the
network, the receptive fields of the neurons become larger, and more abstract features can
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be learned. Consequently, CNNs work well for image recognition due to their ability to
handle the hierarchical structure commonly found in real-world images.

Input Layer

Conv. layer 1

Conv. layer 2

Figure 3.4: Illustration of the first convolutional layers in a CNN, showcasing local receptive
fields (highlighted in orange) that are responsible for capturing specific features within the
input image. Adapted from [17].

Convolutional layers are designed to be translation-invariant, meaning that they can recog-
nize features regardless of their position in the input image. This makes them well-suited
for image recognition tasks, where objects can appear at different positions in an image.

Convolution and cross-correlation As the name of this layer suggests, a convolutional
layer is closely related to a mathematical operation called convolution (Equation 3.1). It
involves sliding one function over another and calculates the sum of the product of two
functions after one of the functions has been flipped and shifted. The result of the convo-
lution operation is a new function that represents how the shape of one function affects the
shape of another. The convolution operation is commonly used in signal processing, image
processing, and many other areas of science and engineering.

(𝑋 *𝐾)𝑖,𝑗 =
∑︁
𝑚

∑︁
𝑛

𝑋𝑖+𝑚,𝑗+𝑛𝐾𝑚,𝑛, (3.1)

where 𝑋𝑖+𝑚,𝑗+𝑛 is the element in the (𝑖 + 𝑚)-th row and (𝑗 + 𝑛)-th column of the input
matrix 𝑋, and 𝐾𝑚,𝑛 is the element in the 𝑚-th row and 𝑛-th column of the flipped kernel 𝐾.

In practice, convolutional layers typically use a similar operation to convolution called cross-
correlation (Equation 3.2). Both operations involve sliding a filter (kernel) over an input
signal, computing the dot product between the filter and the overlapping part of the input,
and producing an output signal. However, in convolution, the filter is flipped horizontally
and vertically before being slid over the input signal, while in cross-correlation, the filter is
not flipped [37].

(𝑋 ⋆𝐾)𝑖,𝑗 =
∑︁
𝑚

∑︁
𝑛

𝑋𝑖+𝑚,𝑗+𝑛𝐾−𝑚,−𝑛, (3.2)

where 𝑋𝑖+𝑚,𝑗+𝑛 is the element in the (𝑖 + 𝑚)-th row and (𝑗 + 𝑛)-th column of the input
matrix 𝑋, and 𝐾−𝑚,−𝑛 is the element in the (−𝑚)-th row and (−𝑛)-th column of the
unflipped kernel 𝐾.
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Although the terms convolution and cross-correlation have slightly different mathematical
definitions, they are often used interchangeably in the context of CNNs, because the ker-
nel is adjusted during training to optimize the desired output, regardless of whether it is
implemented as a convolution or cross-correlation operation.
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Figure 3.5: Example of the convolution operation with a 5x5 input matrix, a 3x3 kernel
matrix, and a 3x3 output matrix. The convolution is performed with a stride of 1. The
input and kernel matrices are element-wise multiplied and then summed to compute the
corresponding entries in the output matrix. Inspired by [12].

3.1.2 Activation layer

Activation layers are typically used after each convolutional layer. The purpose of these
layers is to introduce non-linearity into the network. Without non-linearity, the network
would simply be a series of linear transformations, which is not sufficient for learning com-
plex patterns in data. The activation function is applied element-wise to the output of the
convolutional layer, producing a new feature map. A common activation function used in
CNNs is ReLU depicted in Figure 3.6, which sets negative values to zero [33].
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Figure 3.6: Rectified Linear Unit (ReLU) activation function.
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The use of activation layers allows the network to learn more complex and discriminative
features by introducing non-linearities in the learned representations. This is particularly
important for tasks such as image classification, where the input data can be highly complex
and varied.

3.1.3 Pooling layer

Pooling layers are commonly used in CNNs to reduce the spatial dimensions of feature maps
generated by convolutional layers by using some function (max, average) to summarize
subregions (receptive fields). The main purpose of pooling is to decrease the computational
cost of the model, while also making the learned features more invariant to small translations
in the input image [17]. The process of pooling involves moving a window across the input
data and sending the contents of the window to a pooling function.

There are several types of pooling layers, but the most common ones are max and average
pooling (Figure 3.7) [51]. Max pooling takes the maximum value within a window (e.g.,
2x2) of the feature map and discards the other values. This allows the model to capture
the most salient features of the image, while also reducing the spatial resolution of the
feature map. Average pooling takes the average value within a window and discards the
other values, resulting in a similar reduction in spatial resolution.
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Figure 3.7: Illustration of max pooling (top) and average pooling (bottom) operations on
input matrices using a stride of 2 and 2x2 pooling. The max pooling operation selects the
maximum value from each sub-matrix, while the average pooling operation calculates the
mean value of each sub-matrix. Both methods employ a stride of 2, which means they move
two units at a time horizontally and vertically when scanning the input matrix.
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Max pooling is especially effective at preserving the most important features of the image,
such as edges or corners. It also helps to reduce the size of the feature maps and to introduce
a degree of translation invariance. On the other hand, average pooling is useful in cases
where the magnitude of the features is important, such as in medical imaging or satellite
imagery.

Pooling layers, however, can also lead to loss of information, which may be critical for
certain tasks, such as object localization or segmentation. In addition, pooling may also
lead to loss of fine-grained details in the image, which can negatively affect the performance
of the model on some tasks. For these reasons, some recent CNN architectures have replaced
pooling layers with other techniques, such as strided convolutions [54] or spatial pyramid
pooling [20], which aim to preserve more spatial information.

3.1.4 Fully-connected layer

Fully-connected layers in CNNs are the classic type of neural network layer where every
neuron in a layer is connected to every neuron in the next layer. In CNNs, fully-connected
layers are typically used at the end of the network to process the features learned by the
convolutional and pooling layers and to generate the final output [17].

After the convolutional and pooling layers extract high-level features from the input,
the fully-connected layers can take these features and use them to make a classification
decision. The fully-connected layer takes the flattened output from the previous layer (i.e.,
the feature vector) and multiplies it by a weight matrix. The output of this multiplication
is then passed through a non-linear activation function to introduce non-linearity into the
network.

Fully-connected layers are used to learn more complex relationships between the features
extracted from the input. They have the ability to represent any function, given enough
neurons, and therefore are often used in the final layers of the network for classification and
regression tasks [9]. However, fully-connected layers have a high number of parameters,
which can lead to overfitting on small datasets. Additionally, they do not take into account
the spatial structure of the input, which can lead to the loss of important information. To
address these issues, other types of layers, such as convolutional and pooling layers, are
typically used in combination with fully-connected layers in CNNs [17].

3.2 Benchmarks
To measure the performance of various CNN architectures and foster advancements in
computer vision, a variety of benchmark datasets and competitions have been established.
Two of the most prominent and widely used benchmarks are CIFAR [30] and ImageNet [10].
They are crucial for evaluating the accuracy, generalization capabilities, and computational
efficiency of different CNN models, providing a standardized reference point for researchers
and practitioners alike. They serve as an essential tool for driving the development of
novel architectures, optimization techniques, and data augmentation methods, ultimately
pushing the boundaries of what is possible in image recognition and classification tasks. By
engaging the community through these benchmark challenges, the field of computer vision
continues to evolve, resulting in models with improved performance and a broader range of
applications.
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3.2.1 CIFAR-10/CIFAR-100

CIFAR-10 [31] consists of 60,000 color images, each of size 32x32 pixels, divided into 10
different classes, such as airplanes, automobiles, birds, cats, and more (Figure 3.8). There
are 6,000 images per class, with 5,000 images for training and 1,000 images for testing. The
relatively small size of the dataset, combined with its diverse set of object classes, makes
CIFAR-10 a popular choice for benchmarking and evaluating machine learning algorithms,
particularly CNNs.

Figure 3.8: CIFAR-10 dataset sample, showing 10 classes and 10 random images per class.
From [30].

A more challenging variant of the CIFAR-10 dataset is called CIFAR-100 [32]. The number
of images and image resolution are both the same, but there are 600 images per class and
100 different classes overall. These classes are divided into 20 additional, more general cat-
egories, such as flowers, vehicles, and aquatic mammals. CIFAR-100 is a more challenging
benchmark for assessing the performance and generalization abilities of machine learning
models, particularly CNNs, due to the increased number of classes.

3.2.2 ImageNet

ImageNet [10] is a large-scale dataset, originally created for the ImageNet Large Scale Visual
Recognition Challenge (ILSVRC) [50], which has significantly influenced the development
of deep learning and computer vision. The dataset contains millions of labeled images
spanning thousands of object classes, making it one of the most comprehensive and diverse
image databases available. The high-resolution images and the vast number of classes have
made ImageNet an essential resource for training and benchmarking deep learning models,
particularly CNNs. The annual ILSVRC competition has been instrumental in fostering
the development of more advanced CNN architectures and accelerating progress in the field
of computer vision.
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Chapter 4

Neural Architecture Search

Creating successful and effective machine learning models requires making numerous de-
sign choices. Related challenges are particularly pronounced in deep learning, a subset
of machine learning that involves training ANNs with multiple layers to perform complex
tasks. Engineers must select network architectures relevant to a given task, with adequate
performance, while also carefully choosing hyperparameters, training procedures, and reg-
ularization methods. This process must be repeated for each new application, and even
experts in the field may experience laborious trial and error to identify the best choices for
a particular dataset [24].

This is where the field of Automated Machine Learning (AutoML) [24] comes to play. It
aims to simplify the problematic decisions mentioned in the previous paragraph by leverag-
ing data-driven, objective, and automated approaches. Practitioners need only to provide
data, and the AutoML system automatically attempts to determine the optimal approach
for a given application. Even non-experts, people lacking the necessary resources to un-
derstand the underlying technologies in depth, can use AutoML to quickly and effectively
design and implement high-performing machine learning models. This makes it possible for
virtually everyone to access customized, state-of-the-art machine learning solutions with
ease [24].

Neural Architecture Search is one of the most challenging elements of AutoML as it
works with an extremely large design space and the fact that a single evaluation of a neural
network is a long, computationally demanding process [13]. NAS attempts to solve the
process of automating the design of optimal neural network architecture for specific tasks.
The conventional design of neural networks has relied on human expertise and manual
trial-and-error, which can be time-consuming, error-prone, and often subjected to biases.
Considering these difficulties, automating the design process was a logical decision and by
utilizing intelligent search algorithms, including genetic algorithms, reinforcement learn-
ing, and Bayesian optimization, NAS can overcome the aforementioned limitations and
can automatically identify high-performing architectures without the need for manual in-
tervention. NAS methods achieved numerous successes, outperforming manually designed
network architectures on tasks including image classification [69, 45], object detection [69]
or semantic segmentation [6].

The use of NAS, however, also comes with a number of difficulties. The high com-
putational cost involved in comparing various architectures is one of the main problems.
Numerous neural network architectures must be trained and evaluated as part of NAS,
which can be computationally expensive for each architecture. The scalability of NAS to
bigger and more complicated datasets may be constrained by this high computational cost.
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The sheer size of the search space presents another challenge, making it impossible to inves-
tigate every potential architecture. As a result, to lower the computational cost and boost
NAS efficiency, researchers have turned to a variety of techniques like weight-sharing [43],
surrogate models [25], and neural architecture compression [5]. However, each of these
approaches has its own set of drawbacks, and new approaches are constantly looked for to
increase the NAS’s scalability and effectiveness.

According to research by Elsken et al. [13], the methods of NAS can be categorized as
follows: search space, search strategy, and performance estimation strategy. See Figure 4.1
for an abstract illustration of the NAS principles.

Search Space 𝒜 Search Strategy
Performance
Estimation
Strategy

select architecture

architecture A ∈ 𝒜

performance estimation of A

Figure 4.1: NAS involves selecting an architecture A from a predefined search space 𝒜
using a search strategy. The chosen architecture is then evaluated for performance using
a performance estimation strategy. Adapted from [13].

4.1 Search Space
The search space of NAS represents the set of all possible neural network architectures that
can be considered during the search process and that the NAS algorithm can explore. It can
be defined in various ways, such as by specifying the types of layers (convolutional layers,
pooling layers, recurrent layers), the connectivity between layers (skip connections, dense
connections), and the hyperparameters of each layer (number of filters in a convolutional
layer, size of a pooling window).

The size and complexity of the search space are critical factors that can significantly
affect the efficiency and effectiveness of the NAS process. A small search space may limit
the diversity of the architectures that can be explored, while a large search space may
make the search process computationally expensive or even infeasible. Thus, designing
an appropriate search space is a crucial step in NAS, as it directly impacts the quality and
efficiency of the discovered neural network architectures.

Global search space One category of neural architecture search space is the global search
space. It is defined for the graphs representing a complete neural architecture and where
the arrangement of operations, like convolution or pooling, is not restricted to a specific
pattern or structure. The simplest example of a global search space is the chain-structured
search space. It consists of architectures that can be represented by an arbitrary sequence of
ordered nodes, where each node in the chain has only one parent and represents an operation
or layer applied to the input data [26].
The global search space offers more flexibility in architectural design, which can potentially
lead to the discovery of novel and highly effective architectures that may not exist in a cell-
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based search space, another widely used type. However, this flexibility comes at the cost
of increased computational complexity, as the search space is typically much larger, and
therefore the search process is more computationally demanding. The global search space
may also require more manual engineering to adapt a discovered architecture to a different
dataset or problem since there are no modular building blocks like cells that can be easily
adjusted or transferred.

Cell-based search space In this search space, a neural network architecture is built by
replicating a cell structure, which is a relatively small neural network module that can be
stacked repeatedly to form a larger network (as shown in the example cell on the right side
of Figure 4.2). The cell’s architecture is defined by a directed acyclic graph (DAG), a graph
that has directed edges and no cycles, ensuring the flow of information is unidirectional.
In the context of neural networks, a DAG allows for complex layer connections and skip
connections while maintaining a valid computational graph [26].

Figure 4.2: Comparison of simplified global search space (left) and cell-based search space
(right) in NAS. From [26].

There are different ways to represent operations and connections in the DAG, depending
on the search space formulation. In some NAS benchmarks, such as NAS-Bench-101 [67],
nodes represent operations (e.g., convolutional layers, pooling layers), and directed edges
represent the flow of information between these operations. In other NAS formulations like
NAS-Bench-201 [11], the directed edges themselves represent the operations or layers, and
the nodes act as intermediate states or tensors in the network.

The cell-based search space offers several advantages over the other types. Namely, the
search space is relatively small, since cells are usually made of significantly fewer layers
when compared to the whole network search architectures. Another benefit is that using
architectures constructed from cells allows for simpler transfer or modification of the model
to other datasets, as the number of cells and filters can be adjusted accordingly. It has
also been shown that the process of creating network architecture by repeating individual
building blocks is a useful design principle in general [59].
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4.2 Search Strategy
A search strategy, in this context, refers to a method of search space exploration and
identification of promising neural architectures. The goal is to find an architecture that
maximizes some performance measure (e.g. accuracy on a validation set on unseen data,
computational cost, or other). Search strategies include random search [35], Bayesian op-
timization [64], evolutionary methods [57], reinforcement learning [68], and gradient-based
methods [52].

When employing evolutionary algorithms (EA) in NAS, each network structure is repre-
sented as a string, and random mutations and recombinations of these strings are performed
during the search process. Subsequently, each resulting string is trained and evaluated on
a validation set, and the best-performing models produce offspring.

The reinforcement learning (RL) approach uses an agent to execute a sequence of actions
that determine the structure of the model. The model is then trained, and its validation
performance is returned as a reward, which is used to update the RNN controller. While
both EA and RL methods have been successful in discovering network structures that sur-
pass manually designed architectures, these approaches demand significant computational
resources [36].

4.3 Performance Estimation Strategy
Given the importance of selecting promising neural architectures during the search process,
a crucial component of NAS is performance estimation. This aspect allows for the evaluation
and comparison of candidate architectures based on their expected performance on a given
task, guiding the search strategies (described in Section 4.2) toward optimal solutions. By
accurately estimating the performance of various architectures, NAS can effectively search
through a vast design space and identify the most promising candidates [24].

Performance estimation plays a pivotal role in ranking and selecting architectures, ulti-
mately guiding the search for more effective and efficient solutions. It can be done in
several ways.

The simplest, straightforward approach, though with high computational demands, is to
train an architecture on training data and then evaluate its performance on validation
data. This strategy, directly measuring the performance of a fully trained model on the
validation set, provides the most accurate performance estimation. However, it is often
infeasible in practice, especially for deep learning models and large search spaces, as it
requires exhaustively training a large number of architectures.

To reduce the computational burden of training each architecture from scratch, there have
been developed new methods, approximating the performance of architectures, trading off
some accuracy for efficiency, collectively called performance predictors [13].
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4.3.1 Performance Predictors

Numerous methods have recently been proposed for predicting the final validation accuracy
of a neural architecture by training a model on an encoding of the architecture. Gaussian
processes, neural networks, and tree-based methods are some popular choices for such mod-
els [65]. However, these methods typically require hundreds of fully-trained architectures
to be used as training data, leading to high initialization time. On the other hand, learn-
ing curve extrapolation methods require little or no initialization time, but each prediction
involves partially training the architecture, resulting in high query time. Recently, a few
techniques have been introduced that are both fast in query time and initialization time,
predicting based on a single minibatch of data. Furthermore, using shared weights is a pop-
ular paradigm for NAS, although its effectiveness in ranking architectures is debated [65].

A performance predictor can be generally defined as any function 𝑓 ′ which predicts the
final accuracy or ranking of an architecture without fully training it. This means that
evaluating 𝑓 ′ should take less time than evaluating the validation error 𝑓 of architecture
𝑎 after training on a fixed dataset for a predetermined number of epochs 𝐸, and the set
{𝑓 ′(𝑎) | 𝑎 ∈ 𝒜}, where 𝒜 is a NAS search space, should ideally exhibit a high correlation
or rank correlation with the set {𝑓(𝑎) | 𝑎 ∈ 𝐴}.

According to the comprehensive study on performance predictors in NAS by White et
al. [65], predictors can be categorized into the following families: Model-based, Learning
curve-based, Zero-cost Proxies, Weight sharing, as depicted in Figure 4.3.

Learning curve-based

Zero-cost Proxies Weight sharing

Model-based/trainable

Deep Nets

GP's

Trees
Extrapolation

Metrics

LGBoost
NGBoost

XGBoost
RF

Linear Reg.

GCN   MLP

BANANAS
BOHAMIANN
BONAS  DNGO

NAO  SemiNAS

GP
Sparse GP
Var. Sparse GP

Bayes.

LcSVR
LCE
LCE-m

Early Stop (Acc.)
Early Stop (Loss)
SoTL       SoTL-E

OneShot
Random Search WSJac. Cov.    Syn Flow      SNIP

Fisher       Grad Norm   Grasp

Figure 4.3: Performance Estimation Strategy families, as classified by White et al. [65]. The
figure illustrates four major families: model-based, learning curve-based, weight sharing,
and zero cost. Predictors employed in this thesis are highlighted in green.

Each performance predictor consists of two primary routines:

• Initialization routine – general pre-computation to set up the predictor

• Query routine – conducting architecture-specific calculations
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The initialization and query routines’ runtimes can vary significantly depending on the
predictor type. Within NAS algorithms, the initialization routine is usually executed once
at the beginning, while the query routine is performed multiple times throughout the algo-
rithm. Some performance predictors also utilize an update routine to modify parts of the
computation from initialization without re-executing the entire procedure (e.g., updating
a model in a NAS algorithm based on newly trained architectures). The content presented
in this section draws mainly from the work conducted by Elsken et al. [13].

Model-based (trainable) methods These techniques use machine learning models for
prediction of how a particular neural architecture will perform without actually training it.
In this approach, a surrogate model is trained using a dataset of neural architectures and the
performance metrics that correspond to them. The model must frequently be trained using
an initial set of architectures and their performance metrics, which implies a high initializa-
tion time. The query time, however, is typically brief, as surrogate models are designed for
efficient inference. Various machine learning models have been used in this context, ranging
from regression models, including linear regression, support vector regression, to tree-based
models, including decision trees, random forest, and neural networks.

Learning curve-based methods These methods extrapolate the performance of neural
architectures based on their learning curves. Learning curves show the progress of the
training process, typically by plotting the validation loss or accuracy against training time
or epochs. By observing the learning curve of a partially trained model, these methods try
to predict its final performance. While the initialization time is none, as they do not require
an upfront training process like surrogate models in model-based methods, the query time
can be high since architectures need to be partially trained. The accuracy of the prediction
depends on how well the extrapolation captures the actual learning behavior.

Zero-cost methods These methods estimate the performance of neural architectures
without training them, by analyzing the architecture itself. They rely on simple, compu-
tationally inexpensive heuristics or metrics, such as network depth, width, floating point
operations per second (FLOPs), or parameter count, to predict performance. Although
these methods have low computational costs, their predictive accuracy may not be as high
as other methods, especially for complex tasks.

Weight sharing methods Weight sharing methods leverage the idea of sharing learned
weights among different architectures in the search space. These methods train a single
super-network or one-shot model that encompasses all possible architectures in the search
space. The performance of individual architectures is then estimated by extracting the cor-
responding sub-networks and their shared weights from the super-network. This approach
reduces the overall training time and computational cost, as multiple architectures can be
evaluated simultaneously. However, the accuracy of these methods depends on how well
the shared weights generalize to the individual architectures.
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4.4 Benchmarks
The fact that different NAS methods frequently do not use the same search spaces, hy-
perparameters, and evaluation metrics makes it difficult to reproduce the experiments and
results of different NAS algorithms. Without a standardized benchmark, it can be challeng-
ing, or even impossible, to compare the performance of different NAS algorithms fairly [67].
This is where NAS benchmarks come in. NAS benchmarks are datasets with pre-trained
neural network designs, and they are used to assess how well NAS techniques function by
evaluating their performance. Therefore, these benchmarks provide a consistent method
for assessing and contrasting the performance of NAS algorithms and determining which
designs perform better on various datasets. This makes it simpler for researchers to design
effective neural networks for specific applications and facilitate the reproducibility of the
results. Standardized benchmarks can also provide a common ground for researchers to
share their results and insights, which can accelerate the progress in the field of NAS [67].

Over time, various such NAS benchmarks have been proposed. These include, among
others, NAS-Bench-101 [67] and NAS-Bench-201 [11], varying in their complexity, dataset
size, search space, and performance metrics, providing a range of options for researchers to
choose from depending on their specific research goals.

4.4.1 NAS-Bench-101

NAS-Bench-101 is the first publicly available dataset of CNN architectures for NAS research
trying to address the issues of NAS research – namely, high computational demands for
experiment reproduction, and the fact that it is challenging to credit the success of each
method to the search algorithm itself because different NAS methods are not comparable
to one another due to various training methods and search spaces [67].

NAS-Bench-101 search space, designed to be compact, yet expressive, consists of approxi-
mately 423,000 unique convolutional architectures, mapped to their training and evaluation
metrics. All of the architectures were trained and then evaluated on CIFAR-10 dataset [30].

Implementation details

The dataset contains small feedforward structures called cells, which are represented as
directed acyclic graphs. Each DAG consists of 𝑉 nodes: an input node, an output node,
and a fixed number of intermediate nodes. In each node, there is one of 𝐿 labels assigned,
signifying the associated operation.

Each CNN architecture has a fixed macro structure (Figure 4.4 left), consisting of a cell
(specific for the given architecture) stacked 3 times, followed by a downsampling layer. This
stacking and the downsampling process is repeated 3 times, followed by a global average
pooling layer and a final dense softmax layer. The initial layer of the architecture is called
a stem. This is a common way of representing a CNN architecture [21, 22].

The encoding of a cell can affect the effectiveness of NAS algorithms, and a common encod-
ing is a 7-vertex DAG represented by a binary matrix and a list of 5 labels. This encoding
has approximately 510 million total unique models, but many of them are invalid or not
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computationally unique. The search space thus consists of approximately 423,000 unique
graphs.
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Figure 4.4: Depiction of the shared skeleton of CNNs in NAS-Bench-101 search space (left)
and an example module in the form of an Inception-like cell (right). Adapted from [67].

Because of the fact that the search space made of mentioned cell-like structures would grow
exponentially in both 𝑉 and 𝐿, there were several constraints imposed:

• 𝐿 = 3, and allows just the following operations:

– 3× 3 convolution
– 1× 1 convolution
– 3× 3 max-pool

• 𝑉 ≤ 7

• Maximum number of edges is 9.

All NAS-Bench-101 CNN models use a fixed set of hyperparameters chosen to be robust
across different architectures. Each architecture is evaluated after training three times
with random initializations, for each {4, 12, 36, 108} number of epochs. The metrics of
each network architecture include training accuracy, validation accuracy, testing accuracy,
training time in seconds, and the number of trainable model parameters.
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Chapter 5

Design of Accuracy Predictors

The aim of this chapter is to describe the programming aspects involved in analyzing
and comparing various performance estimation methods that utilize regression models as
predictors.

The search space encompasses neural architectures from NAS-Bench-101 (Subsection 4.4.1),
utilizing the cell-based approach to represent the architecture of a CNN. For the regres-
sion model (accuracy predictor), several machine learning techniques have been selected,
including linear regression (Section 2.3), random forest (Section 2.4), XGBoost (Section
2.5), MLP (Section 2.2), and GCN (Section 2.6).

The project was implemented using the Python programming language. For the implemen-
tation of linear regression and random forest models, the scikit-learn library, described in
Section 5.1, was employed. It is a widely-recognized and popular ML library in Python that
offers a comprehensive suite of tools for data analysis and modeling. The library is chosen
for its simplicity, ease of use, extensive documentation, and the strong community support
it receives. Moreover, scikit-learn provides efficient implementations of a wide range of ML
algorithms, including linear regression and random forest, making it a suitable choice for
the rapid development and evaluation of the models in this study.

For implementing the MLP and GCN models, the PyTorch library, described in Section 5.2,
was selected. As a versatile and powerful deep learning framework in Python, PyTorch is
particularly well-suited for working with neural networks. The choice of PyTorch is driven
by its dynamic computation graph feature, which enables a more natural model development
and debugging process. Additionally, PyTorch offers efficient GPU support for accelerated
training and benefits from a rich ecosystem of complementary tools, libraries, and a vibrant
community. These attributes make PyTorch an appropriate choice for developing and
assessing the MLP model in the context of this study.
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5.1 Scikit-Learn
In the context of this project scikit-learn, a popular ML library in Python, was employed
for implementing linear regression and random forest models. The library’s straightforward
API and efficient implementations of these algorithms allowed for rapid development and
evaluation of the models, which contributed to the overall efficiency of the project.

Feature 
Selection

Evaluation

Hyper-
parameter

Tuning

Model
Training

Model
Selection

Pre-
processing

Figure 5.1: Scikit-learn modeling pipeline, adapted from [2].

The scikit-learn modeling pipeline, shown in Figure 5.1, involves the following steps:
• Preprocessing – preparing the data for modeling by cleaning, transforming, and

scaling the input features. This can include techniques like handling missing values,
encoding categorical variables, and normalizing or standardizing numerical features.

• Feature Selection – identifying the most relevant features for the specific problem at
hand, which can improve model performance and reduce computational complexity.

• Model selection – choosing the appropriate ML algorithm for the specific problem
at hand. In the context of this project, this would be the linear regression, random
forest, and XGBoost models.

• Model training – fitting the selected model to the training data by adjusting its
parameters to minimize the error between the predicted outputs and the actual output
labels.

• Evaluation – assessing the performance of the trained model using various evalua-
tion metrics, such as mean squared error, coefficient of determination, or accuracy,
depending on the type of problem being addressed (regression or classification).

• Hyperparameter tuning – optimizing the model’s hyperparameters, such as the
number of trees in a random forest or the regularization strength in linear regression,
to improve its performance.
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5.2 PyTorch
PyTorch is a versatile and powerful deep-learning framework in Python, designed specifi-
cally for working with neural networks. Developed by Facebook’s AI Research lab (FAIR),
PyTorch has gained significant popularity due to its flexibility, ease of use, and dynamic
computation graph capabilities. It provides powerful features for deep learning, such as
tensors, autograd, dynamic computation graphs, and GPU acceleration.

Tensors Tensors, 𝑛-dimensional arrays, are the basic building blocks in PyTorch and are
used to represent data. They are similar to NumPy arrays but with additional features to
support deep learning applications, such as GPU acceleration.

Autograd Automatic gradient computation (Autograd) is a key feature in PyTorch that
automates the computation of tensor gradients (partial derivatives) with respect to their
input variables. This process is essential for optimizing model parameters during training.
As a result, it simplifies the creation and training of neural networks by eliminating the
need for manual gradient calculations.

Dynamic computation graph In general, computational graphs serve as a method for
representing mathematical expressions or formulas. The dynamic computation graph in
PyTorch (Figure 5.2) is a flexible way to build and compute neural network models during
runtime. It allows developers to build and modify computational graphs on-the-fly as they
execute operations, making it easier to experiment with different model architectures.

Figure 5.2: Example of an augmented computational graph in PyTorch1, featuring input
variables, operations, and output values. The graph demonstrates both the forward pass
(data flow from inputs to outputs) and the backward pass (gradient computation for model
parameters), including gradient nodes and sums gradients from different paths to obtain
final gradient values.

1Image from: https://pytorch.org/blog/computational-graphs-constructed-in-pytorch/
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PyTorch provides efficient GPU support for the accelerated training of neural networks. It
leverages NVIDIA’s cuDNN library and is capable of seamlessly switching between CPU and
GPU computations, allowing for faster model training and evaluation.

Choosing PyTorch over scikit-learn for implementing the MLP in this study is advanta-
geous for several reasons. PyTorch is specifically designed for deep learning and neural
networks, offering greater flexibility and customization options for the model architecture
and training process. Its dynamic computation graph allows for a more intuitive develop-
ment and debugging experience. Moreover, PyTorch provides efficient GPU support, which
accelerates the training and evaluation of neural networks. While scikit-learn has a basic
MLP implementation, it lacks the depth of features, customization options, and GPU ac-
celeration that make PyTorch a more suitable choice for this study. Additionally, PyTorch
was chosen for implementing the NASBench101Dataset class, representing the NAS-Bench-
101 dataset, which can be found in the dataset.py file. The decision to use PyTorch for
this purpose is based on the fact that PyTorch’s Dataset class provides an efficient and
convenient interface for handling large datasets, allowing for easy integration with other
PyTorch functionalities such as data loaders, batching, and preprocessing. By inheriting
from the PyTorch Dataset class, the NASBench101Dataset class gains the benefits of this
interface.

5.3 Performance Predictor Specification
In this section, the specifications of the performance estimation predictor for CNNs are
discussed. The design process of building (Subsection 5.4.1) and applying (Subsection 5.4.2)
the predictor involves selecting an appropriate task for the CNNs, constructing a dataset,
and defining features as input to the predictor. The predictor is trained on specified features
and is ready to estimate the performance on unseen neural architectures.

5.3.1 Task selection

The chosen task for the CNNs in this study is image classification, a widely-studied problem
in computer vision. Image classification involves assigning an input image to one of sev-
eral predefined categories. This research utilizes the NAS-Bench-101 to search for optimal
architectures in the predictor search space, focusing on architectures trained and evalu-
ated on CIFAR-10 (Section 3.2). A detailed description of the benchmark can be found in
Subsection 4.4.1.

5.3.2 Dataset construction (search space)

To construct the dataset, information from the NAS-Bench-101 dataset is utilized. The
benchmark contains precomputed performance metrics and architecture descriptions for
a wide range of CNNs (423,624 samples), enabling efficient comparison and evaluation.
The dataset will include architecture and performance data from the benchmark, and the
performance data will serve as the ground truth for training and evaluating the accuracy
predictors.
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5.3.3 Feature extraction and selection

Feature extraction and selection are crucial for building an effective accuracy predictor. In
this study, the features will be extracted from the architecture descriptions provided by the
NAS-Bench-101 benchmark.

NAS-Bench-101 information As described in the corresponding Subsection 4.4.1, the
NAS-Bench-101 dataset contains cell-based representations of CNN architectures, with ad-
ditional metadata and metrics. This information was analyzed to select the most useful
features, used for training the predictor model. Multiple implementations, including Neu-
ral Predictor by Google Brain [62], suggest using of the architecture encoding and the
related operations as input features, because they provide a compact representation of the
architecture, capturing essential information about the connectivity and operation types.

Other potentially useful information, analyzed in Section 7, is the number of trainable
parameters of a neural network, which can impact the model’s capacity and its ability to
generalize. This number is known in advance, as it can be deduced from the architecture
encoding itself and can improve the performance of the predictor. Another possibly useful
information could be the architecture depth as a feature, which is known to influence the
network’s capacity and the ability to learn complex patterns. In general, deeper networks
can learn more complex representations, which may lead to better performance on certain
tasks [53].

It is not guaranteed, that this additional information (number of trainable parameters
and network depth) adds some more discriminative power to the predictor. This is why
correlation analysis (Subsection 5.3.4) is performed on the aforementioned information.
The conducted experiments in Chapter 7 compare the predictive abilities of the predictors
utilizing this additional information, essentially determining whether it is useful or not in
the context of NAS.

5.3.4 Correlation analysis

This technique measures the linear relationship between pairs of features and the target
variable (classification accuracy). Features with a high correlation to the target variable
and low intercorrelation with other features are considered more informative and relevant.
By using correlation analysis to identify and select the most relevant features, the accuracy
predictor’s performance can be improved, while reducing the complexity and computational
cost of the predictor models.

The analysis itself is conducted in the correlation_analysis.ipynb notebook, carefully
comparing potentially useful features. The file contains a detailed examination of the
NAS-Bench-101 dataset, focusing on the relationships between various architecture charac-
teristics and performance metrics. The goal of this analysis is to determine the potential
usefulness of these characteristics as features in a performance prediction model. The NAS-
Bench-101 dataset is utilized to extract and analyze several architecture properties, includ-
ing adjacency matrix (connections), and operations (operations). Additional properties
were calculated based on the neural network information, including network depth, num-
ber of connections, the average number of connections per vertex, conv3x3 count, conv1x1
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count, and max pooling count. The performance metrics include the number of trainable
parameters (weights), training time, training accuracy, and validation accuracy.

The mentioned features are analyzed for their correlation with validation accuracy (Figure
5.3). The number of trainable parameters has a positive correlation (𝑟 = 0.24) with the
target variable. Surprisingly, network depth is found to have a negative correlation with
validation accuracy (𝑟 = −0.14). The conv3x3 count has a moderate positive linear cor-
relation with the validation accuracy (𝑟 = 0.46). This suggests that as the number of 3x3
convolutional layers in the network increases, the validation accuracy tends to improve.
This may be because a higher conv3x3 count might provide the network with more capac-
ity to learn complex patterns in the data. When the problem requires learning intricate
features, a network with more capacity (more convolutional layers) might perform better.

tra
ina

ble
_pa

ram
s

nu
m_co

nn
ect

ion
s

ne
tw

ork
_de

pth

nu
m_ve

rtic
es

av
g_c

on
ne

cti
on

s_p
er_

ve
rte

x

con
v3

x3
_co

un
t

con
v1

x1
_co

un
t

max
po

ol3
x3

_co
un

t

va
lida

tio
n_a

ccu
rac

y

trainable_params

num_connections

network_depth

num_vertices

avg_connections_per_vertex

conv3x3_count

conv1x1_count

maxpool3x3_count

validation_accuracy

1 -0.075 0.21 0.12 -0.17 0.47 -0.17 -0.26 0.24

-0.075 1 0.075 0.34 0.62 0.042 0.042 0.042 0.087

0.21 0.075 1 0.37 -0.24 0.045 0.045 0.045 -0.14

0.12 0.34 0.37 1 -0.52 0.12 0.12 0.12 -0.065

-0.17 0.62 -0.24 -0.52 1 -0.063 -0.063 -0.063 0.13

0.47 0.042 0.045 0.12 -0.063 1 -0.48 -0.48 0.46

-0.17 0.042 0.045 0.12 -0.063 -0.48 1 -0.48 -0.2

-0.26 0.042 0.045 0.12 -0.063 -0.48 -0.48 1 -0.28

0.24 0.087 -0.14 -0.065 0.13 0.46 -0.2 -0.28 1

Correlation Matrix Heatmap

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Figure 5.3: Correlation matrix of potentially useful features, extracted from the NAS-
Bench-101 dataset.

One of the aims of this thesis is to investigate whether the additional features, not typically
used in practice, can improve the performance of the model. The notebook provides an
investigation of the relationships between various architecture characteristics and perfor-
mance metrics in the NAS-Bench-101 dataset. While some features show potential for use
in performance prediction models, none exhibit strong correlations with validation accu-
racy. This analysis serves as a foundation for further research into the usefulness of these
features in predicting the performance of neural network architectures.
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5.3.5 Hyperparameter tuning

A hyperparameter tuning strategy, conducted in hyperparameter_tuning.ipynb notebook,
is employed to optimize the performance of the predictor models, systematically searching
for the best combination of hyperparameters for each ML method, such as the number of
decision trees and maximum depth for random forests, or the number of hidden layers,
neurons per layer, and activation functions for MLPs.

The random search technique, combined with cross-validation (Subsection 5.3.6), was also
utilized to ensure that the chosen hyperparameters generalize well to unseen data, lead-
ing to higher accuracy and better generalization to new CNN architectures, ultimately
contributing to a more efficient NAS process.

5.3.6 Cross-validation strategy

Cross-validation is an essential aspect of training ML models, as it helps to mitigate overfit-
ting and provides an unbiased evaluation of their performance. In this work, a k-fold cross-
validation strategy (Figure 5.4), implemented using the KFold function from the scikit-learn
library (Section 5.1), is used within the hyperparameter tuning strategy (Subsection 5.3.5).
K-fold cross-validation involves partitioning the dataset into 𝑘 equally-sized subsets, or
“folds”. The training and validation process is then repeated 𝑘 times, with each fold serv-
ing as the validation set exactly once, while the remaining folds are used for training. This
ensures that every data point is used for both training and validation, providing a compre-
hensive evaluation of the model’s performance.

Figure 5.4: K-fold cross-validation from scikit-learn2.

The primary advantage of k-fold cross-validation, as implemented by the KFold function in
scikit-learn, is its ability to generate a more reliable estimate of the model’s performance
on unseen data. By averaging the performance metrics, such as MAE, or 𝑅2, across the
𝑘 iterations, a more accurate measure of the model’s predictive capabilities can be obtained.
This cross-validation strategy helps to ensure that the chosen predictor models are robust
and generalize well to new CNN architectures.

2Image source: https://scikit-learn.org/stable/modules/cross_validation.html
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5.3.7 Objective functions

The selection of objective functions for performance predictors in NAS is crucial. This work
employs the following objective functions commonly used in regression analysis:

• Mean Squared Error (MSE): MSE averages the squared differences between predicted
and actual performance values. It is mathematically defined for 𝑛 pairs of actual (𝑦)
and predicted (𝑦) values as:

𝑀𝑆𝐸 =
1

𝑛

𝑛∑︁
𝑖=1

(𝑦𝑖 − 𝑦𝑖)
2 (5.1)

MSE is prevalent in regression problems and emphasizes larger errors due to the
squaring operation [18].

• Mean Absolute Error (MAE): MAE computes the average absolute difference between
the estimated and actual performance values. It is given by:

𝑀𝐴𝐸 =
1

𝑛

𝑛∑︁
𝑖=1

|𝑦𝑖 − 𝑦𝑖| (5.2)

Unlike MSE, MAE is less sensitive to large errors and outliers, thereby providing a
more robust estimation when the error distribution has significant outliers [66].

• Pearson’s Correlation Coefficient (PCC): PCC measures the linear correlation be-
tween the predicted and actual performance values. It ranges from -1 to 1, with 1
indicating a perfect positive correlation, -1 a perfect negative correlation, and 0 no
correlation. It is defined as:

𝑃𝐶𝐶 =

∑︀𝑛
𝑖=1(𝑦𝑖 − 𝑦)(𝑦𝑖 − ¯̂𝑦)√︁∑︀𝑛
𝑖=1(𝑦𝑖 − 𝑦)2(𝑦𝑖 − ¯̂𝑦)2

(5.3)

where 𝑦 and ¯̂𝑦 are the means of the observed and predicted values, respectively [41].

• Coefficient of Determination (𝑅2): 𝑅2 computes the proportion of variance in the
actual performance values that is explained by the predictor model:

𝑅2 = 1−
∑︀𝑛

𝑖=1(𝑦𝑖 − 𝑦𝑖)
2∑︀𝑛

𝑖=1(𝑦𝑖 − 𝑦)2
(5.4)

where 𝑦 is the mean of the observed values 𝑦𝑖. A higher 𝑅2 denotes a better model
fit [41].

• Kendall’s Tau: Kendall’s Tau is a rank correlation coefficient measuring the similarity
between two sets of rankings [27]. Given two sets of rankings 𝑅1 and 𝑅2, Kendall’s
Tau is calculated as:

𝜏 =
𝑛𝑐 − 𝑛𝑑

1
2𝑛(𝑛− 1)

(5.5)

where 𝑛𝑐 is the number of concordant pairs, 𝑛𝑑 is the number of discordant pairs, and
𝑛 is the number of items [27]. In the context of NAS, Kendall’s Tau assesses how well
the predictor can identify the most promising architectures in terms of their ranking
rather than exact accuracy values.
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5.4 Performance Predictor Structure
In this section, the focus is on providing an overview of the overall structure of the predictor
and illustrating how the chosen ML methods are applied to predict classification accuracy.

The selected ML methods are applied to the dataset by first training the models on the
extracted and selected features from the CNN architectures in the NAS-Bench-101 bench-
mark. The trained models are then used to predict the classification accuracy of unseen
CNN architectures in the search space. The results obtained from applying each predictor
are compared with one another.

5.4.1 Building an accuracy predictor

The procedure of building an accuracy predictor, depicted in Figure 5.5, is characterized
by a series of critical steps, each specifically crafted to maximize both the efficiency and
accuracy of the predictor.

Train & 
Validate

Search Space

Predictor

Regression Model

- linear regression

- random forest

- MLP

...

Not needed (provided by NAS-Bench dataset)

Sample N models

(A small subset)

78.1%

75.2%

True accuracy

Build

Figure 5.5: Typical building process of a performance predictor for NAS, inspired by [62].

The first step entails sampling 𝑁 neural architectures from a specified search space. As
discussed in Section 5.4.2, striking a balance between computational cost and time is crucial,
so the number 𝑁 should not be excessively large to maintain the predictor’s usefulness.
This is because all 𝑁 sampled models must be trained and validated to determine their
true accuracies, and training neural networks is a resource-intensive process.

The resulting dataset, comprising neural network architectures and their corresponding
true accuracies, enables the predictor to estimate the performance of unseen architectures.
Finding an optimal balance for the number of sampled architectures 𝑁 is essential—large
enough to effectively train the predictor, yet small enough to reduce the burden of neural
network training. This trade-off is critical to achieve the best results.

Figure 5.5 shows that the first stages of building a predictor (reduced opacity) are not
required for this study. This is because the dataset has already been collected in advance
using the NAS-Bench-101 benchmark, which provides information on numerous CNN ar-
chitectures and their true performance metrics. Consequently, the initialization process is
significantly simplified.
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To train a performance predictor, it is essential to extract relevant features that represent
the neural network architectures within the search space. As previously mentioned, in
NAS the choice of 𝑁 (number of architectures used for predictor training) depends on the
compute budget one has. In this work, however, we can afford to increase the value of 𝑁
substantially, as we do not need to exhaustively train and evaluate each architecture.

Input 
Architectures

Architecture Encodings
(feature extraction)

in

3x3

MP

3x3

out

3x3

1x1

in

3x3

out

MP

3x31x1

MP

in

3x3

MP

3x3

out

1x1

3x3

+

Additional
useful information
- # of trainable parameters

- operations

- network depth

...

Build Predictor 
training + evaluation

Figure 5.6: Detail view of the typical predictor building process, showing feature extraction
and selection, leading to the building of the predictor.

As depicted in Figure 5.6, the process of building an accuracy predictor involves gathering
encodings for each network architecture in the training set, including operations such as max
pooling (Subsection 3.1.3) and convolution (Subsection 3.1.1). Additionally, the number
of trainable parameters for a specific network architecture and the network depths are
considered (Subsection 5.3.4), as they both can be calculated in advance from the network
structure. In the first approach, this information is flattened and fed into the predictor
for training and evaluation (Experiment Sets in Sections 7.2 and 7.3). Conversely, the
second approach, utilizing GCN capabilities (Section 2.6) aims to preserve the architecture’s
structure by retaining the DAG graph structure, which could potentially lead to a better
predictive power (Experiment Set in Section 7.4).

To ensure the ML models (predictors) generalize well to unseen data, a suitable training
data split strategy is employed. One common approach is to use cross-validation (Subsec-
tion 5.3.6), where the training data is divided into 𝑘 equal-sized subsets (folds), with each
subset being used as a validation set exactly once, while the remaining 𝑘 − 1 subsets form
the training set. The model is then trained and evaluated 𝑘 times, and the average perfor-
mance across all iterations is calculated. This process reduces the likelihood of overfitting
and helps to obtain a more reliable estimate of the model’s performance.
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5.4.2 Applying an accuracy predictor

Figure 5.7 illustrates the process of employing trained predictor models to make predictions
for new CNN architectures. The gray rectangle on the right side of the figure (reduced
opacity) represents the portion of the performance predictor application process that is not
directly carried out in this work. This is because the search space used in this study is
based on the NAS-Bench datasets (specifically NAS-Bench-101), which already provide the
necessary information.

many random
architectures

Predictor
predict

accuracy

81.5%

72.3%

top
K

Train & 
Validate

Pick the best 
validation

Search Space

Regression Model

- linear regression

- random forest

- MLP

...

Not needed (provided by NAS-Bench dataset)

Figure 5.7: Typical way of applying the performance predictor for NAS, inspired by [62].

Once the predictor models have been trained and fine-tuned using the existing dataset, they
can be leveraged to estimate the classification accuracy of unexplored CNN architectures.
This involves inputting numerous random (unseen) architectures into the predictor, which
in turn estimates their accuracy. Subsequently, the top 𝐾 architectures with the highest
predicted accuracy are selected as the most promising candidates. These 𝐾 architectures
must then undergo exhaustive training and evaluation to obtain their actual metrics. As
noted in Subsection 5.4.1 regarding the value of 𝑁 architectures during training, it is also
crucial to strike a balance for the number 𝐾. Ideally, 𝐾 should be large enough to account
for the predictor’s imperfect accuracy estimations while remaining small enough to minimize
computational resources and time spent on training the architectures.

By leveraging the predictor’s ability to estimate performance rapidly, the NAS process can
be guided more efficiently in the search for optimal architectures. The predictor models
can be used to prioritize the evaluation of architectures that are expected to yield high
performance, thereby reducing the time and computational resources spent on evaluating
suboptimal architectures. As the NAS process iterates, the predictor models can be updated
with new data and continually refined, further improving the efficiency of the search. By
incorporating the predictor models into the NAS process, it becomes possible to explore
the vast search space of CNN architectures more effectively and identify high-performing
architectures with significantly reduced time and computational cost.
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Chapter 6

Implementation

In this chapter, the program implementation, structure, and its usage are described. The
design of the program is described in Chapter 5. Python programming language was cho-
sen due to its versatility and extensive support for scientific and machine learning libraries.
Among the many libraries utilized, scikit-learn and PyTorch stood out as particularly rele-
vant for implementing the models, calculating relevant metrics, and for dataset manipula-
tion. The implementation of performance predictors was inspired by the NASLib1 project.

6.1 Program Structure
The codebase for this project has been thoughtfully structured to emphasize modularity
and ease of use. By organizing the components as described below, the implementation
allows for straightforward extension and customization. The Predictor base class (in
predictor.py), adapted from NASLib project [47], serves as the foundation for all predic-
tor models: linear regression (in linear_reg.py), random forest (in random_forest.py),
XGBoost (in xgb.py), MLP (in mlp.py), and GCN (in gcn.py). All predictors are trained,
evaluated, compared, and analyzed in the Jupyter Notebook analysis.ipynb. NAS-Bench-
101 dataset handling is represented by the NASBench101Dataset class (in dataset.py).
A collection of useful functions can be found in utils.py file, containing functions for
plotting, cross-validation, and other useful operations. By maintaining a well-structured
organization within the codebase, each component can focus on specific functionality, ulti-
mately making the entire project easier to understand, maintain, and extend. The project’s
source code, including the mentioned files, along with a comprehensive user manual, is pub-
licly available on GitHub2.

6.2 Dataset representation
In this study, the publicly accessible and open-source dataset NAS-Bench-101 (Subsection
4.4.1) is employed. This dataset encompasses a variety of CNN architectures represented
as fixed-structure cells and includes key metrics like validation accuracy, test accuracy, and
training time. The dataset comes with an official public API hosted on GitHub3, which
simplifies its utilization.

1NASLib: https://github.com/automl/NASLib
2BP-Accuracy-Predictors: https://github.com/xsmida03/BP-Accuracy-Predictors
3Google-Research NAS-Bench-101: https://github.com/google-research/nasbench
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The NAS-Bench-101 dataset, assembled by the Google-research team, is officially stored
in nasbench.tfrecord files. The full dataset, containing 5 million data points for all four
epoch lengths {4, 12, 36, 108}, and a smaller subset featuring models trained only for 108
epochs can be accessed via the official Google-research GitHub repository4.

1 # Load the data from file (this will take some time)
2 nasbench = api.NASBench(’/path/to/nasbench.tfrecord’)
3

4 # Create an Inception-like module (5x5 convolution replaced with two 3x3
5 # convolutions).
6 model_spec = api.ModelSpec(
7 # Adjacency matrix of the module
8 matrix=[[0, 1, 1, 1, 0, 1, 0], # input layer
9 [0, 0, 0, 0, 0, 0, 1], # 1x1 conv

10 [0, 0, 0, 0, 0, 0, 1], # 3x3 conv
11 [0, 0, 0, 0, 1, 0, 0], # 5x5 conv (replaced by two 3x3’s)
12 [0, 0, 0, 0, 0, 0, 1], # 5x5 conv (replaced by two 3x3’s)
13 [0, 0, 0, 0, 0, 0, 1], # 3x3 max-pool
14 [0, 0, 0, 0, 0, 0, 0]], # output layer
15 # Operations at the vertices of the module, matches order of matrix
16 ops=[INPUT, CONV1X1, CONV3X3, CONV3X3, CONV3X3, MAXPOOL3X3, OUTPUT])
17

18 # Query this model from dataset, returns a dictionary containing the metrics
19 # associated with this model.
20 data = nasbench.query(model_spec)

Listing 6.1: Example usage of NAS-Bench-101 dataset, from official Google-Research
GitHub (see footnote 4).

As acknowledged in the official NAS-Bench-101 publication [67], loading the entire tfrecord
is a time-consuming process. Consequently, alternative formats have been developed to
enable faster loading. In this study, the hdf5 binary file representing the NAS-Bench-101
dataset is used. It can be downloaded from Google Drive5. This file format supports efficient
read and write operations for sizable and intricate datasets, making it faster to load than
the official tfrecord files. The decision to convert from tfrecord to hdf5 is driven by the
need to save both time and computational resources during the loading process. An open-
source script allowing conversion from NAS-Bench-101 tfrecord file to hdf5 format can
be found in the Neural Predictor implementation on GitHub6. This script retains all the
essential information about neural architectures from the NAS-Bench-101 dataset.

NAS-Bench-101 dataset handling The NASBench101Dataset class representing the
NAS-Bench-101 dataset can be found in the dataset.py file. This class, leveraging PyTorch
Dataset class capabilities, was created to manage and interact with the NAS-Bench-101
dataset in an efficient and convenient manner. It serves several purposes: it preprocesses
the dataset to be used in ML models, facilitates easy access to individual data points, and
provides utility functions for normalizing, denormalizing, and computing various dataset
properties. The class takes the path to the preprocessed hdf5 file and an optional dataset
split as input arguments. It initializes the dataset by loading various attributes such as
hash, number of vertices, trainable parameters, adjacency matrices, operations, and met-
rics from the hdf5 file, which are used in the context of the performance estimation process.

4Google-Research NAS-Bench-101: https://github.com/google-research/nasbench
5NAS-Bench-101 hdf5 file: https://drive.google.com/open?id=1x1EQCyClzHBVDHloUCtES_-M_E9o4MeF
6Neural Predictor GitHub: https://github.com/ultmaster/neuralpredictor.pytorch
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The NASBench101Dataset class provides methods to obtain the length of the dataset, re-
trieve individual items by index, normalize and denormalize values, and compute the mean
and standard deviation of accuracies. Furthermore, it includes private helper methods to
resample accuracies, check if an accuracy value is below a certain threshold (addressing
NAS-Bench-101 noise), compute network depth, and convert operation indices to a one-hot
encoded format. The class also offers methods for obtaining the necessary feature and tar-
get encodings for each architecture in the dataset, as required by specific machine learning
models.

6.3 Predictor Implementations
In this section, a detailed overview of the predictor implementations is provided. Fig-
ure 6.1 illustrates the inheritance structure of the individual predictors, with each subclass
representing a specific ML model.

Predictor

+ ss_type

+ encoding_type

+ hyperparams

+ fit()

+ predict()

+ evaluate()

+ run_hpo()

LRPredictor

MLPPredictor GCNPredictor

RFPredictor XGBPredictor

Figure 6.1: The structure of the individual predictors in the implementation. The base
class Predictor ensures a consistent interface and provides the essential methods (only
the most important ones are illustrated) and properties for each subclass, which represents
a specific machine learning model (e.g., Linear Regression, Random Forest, XGBoost, MLP,
and GCN). Each subclass inherits from the Predictor class and can override or extend its
methods and properties as needed.

6.3.1 The Predictor base class

The base class, Predictor, defines the essential methods and properties that are shared by
all individual predictors. These methods include fit(), predict(), refit(), evaluate(),
and run_hpo() (for hyperparameter optimization). The base class also provides meth-
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ods for setting and getting hyperparameters and methods for saving and loading predictor
models. The Predictor class serves as a blueprint for creating specific predictor imple-
mentations. Each subclass inherits from this base class and can override or extend its
methods and properties to tailor the functionality specific to the machine learning model
it represents. All inheriting predictors share the same interface for fitting, querying, and
evaluating the models, ensuring a consistent and unified approach to implementing various
machine learning algorithms.

The fit() and predict() methods are the core methods for training and querying the
predictor. The refit() method allows updating the predictor with new training data.
The evaluate() method calculates various evaluation metrics, such as mean absolute er-
ror (MAE), and correlation coefficients. The run_hpo() method enables hyperparameter
optimization, facilitating the search for optimal predictor settings.

All implemented accuracy predictors, including LRPredictor, RFPredictor, XGBPredictor,
MLPPredictor, and GCNPredictor, inherit from the Predictor base class and utilize the
provided methods and properties, customizing them according to the specific machine learn-
ing algorithm used. This modular design allows for easy integration of additional predictors
in the future while maintaining a consistent and unified structure.

Linear-Regression-based predictor The LRPredictor class is a linear regression pre-
dictor (Section 2.3) inheriting from the Predictor base class. It serves as a simple baseline
model for regression tasks, suitable for comparing the performance of more complex models.

Random-Forest-based predictor The RFPredictor class is a random forest regression
predictor (Section 2.4) that inherits from the Predictor base class. It serves as a more
sophisticated model compared to the linear regression-based predictor, offering a robust
and accurate estimation of the performance of neural network architectures.

XGBoost-based predictor The XGBPredictor class is an XGBoost regression predictor
that inherits from the Predictor base class. It serves as a powerful and accurate model
for estimating the performance of neural network architectures, leveraging the strengths of
the XGBoost algorithm (Section 2.5).

MLP-based predictor The MLPPredictor class is an MLP regression predictor (Section
2.2) that inherits from the Predictor base class. It offers a flexible and powerful option
for regression tasks, leveraging the expressive power of MLPs to estimate the performance
of neural network architectures.

GCN-based predictor The GCNPredictor class is a GCN regression predictor (Section
2.6) adapted from the Neural Predictor [62] implementation on GitHub7, inheriting from the
Predictor base class. Unlike the previous predictors, it uses a more sophisticated encoding
of the features to handle the input data and improve the predictions. The predictor leverages
the power of GCNs to better capture the underlying structure of neural architectures,
providing a more accurate performance estimation compared to other predictors.

7Neural Predictor: https://github.com/ultmaster/neuralpredictor.pytorch
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6.4 Accuracy predictors – analysis
The root of the work happens in the file analysis.ipynb, which is a Jupyter Notebook doc-
ument. Jupyter Notebook was the preferred tool for conducting the analysis and comparison
of performance predictors, correlation analysis (found in correlation_analysis.ipynb),
and hyperparameter tuning (contained in hyperparameter_tuning.ipynb). This prefer-
ence stems from its interactive and intuitive environment, which facilitates seamless integra-
tion of code execution, data visualization, and documentation within a singular platform.
This unique functionality of Jupyter Notebook enhances the transparency and reproducibil-
ity of the research by enabling researchers to document their thought processes and share
insights directly alongside the code. Moreover, the capability to execute code cells inde-
pendently fosters an efficient environment for experimentation, while the built-in support
for data visualization promotes a more comprehensive understanding of the results.

The analysis.ipynb notebook initiates the process by loading the NAS-Bench-101 dataset
and extracting relevant features for the machine learning models. These features encompass
both standard and extended feature sets (as outlined in Sections 7.2 and 7.3) along with
DAG-based features, which are specific to the GCN model. Subsequently, the individual
predictors are trained using their corresponding feature sets, with the training time being
meticulously measured and displayed across three training runs.

Upon the completion of the training phase, the predictors are evaluated and applied to
a 100 000-sample subset of the comprehensive NAS-Bench-101 dataset. This application
aims to assess their metrics and properties. Concurrently, the results are visualized and
plotted to facilitate an intuitive understanding of the performance and efficiency of the
predictors. This comprehensive pipeline implemented within the Jupyter Notebook ensures
an effective, clear, and reproducible research process.
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Chapter 7

Experimental results

The primary objective of the experiments conducted in this study is to evaluate and compare
the performance of various accuracy predictors, namely, linear regression, random forest,
XGBoost, MLP, and GCN, when applied to NAS. These experiments are divided into three
sets:

• The first set of experiments (Section 7.2) utilizes a conventional approach for perfor-
mance estimation, which involves using flattened architecture encoding and one-hot
encoded operations as input features. The goal is to facilitate a comparison among
various model-based accuracy predictors used in this study.

• The second set of experiments (Section 7.3), extends the input features to include
not only the architecture encoding and operations but also the number of trainable
parameters and the number of 3x3 convolution operations. These additional features
were selected based on their strong correlations, as discovered in our correlation anal-
ysis (Subsection 5.3.4). The purpose of this set of experiments is to test whether the
incorporation of this supplementary information enhances the predictive capacity of
the accuracy predictors, and if so, to evaluate the associated computational cost.

• The final set of experiments consists of a singular experiment (Experiment 7.4.1)
that adopts a unique approach. Rather than flatten the architecture encoding, this
method employs Graph Neural Networks, specifically GCNs, maintaining the archi-
tecture encoding information in the form of directed acyclic graphs. This method,
simulating Google Brain’s Neural Predictor [62], is anticipated to improve perfor-
mance, as it preserves the additional information inherent in the graph-like structure
of the encoding [63].

Throughout the experiments, a subset of the NAS-Bench-101 benchmark is employed to
provide a comprehensive evaluation of the predictors in its search space. The performance
of each predictor is assessed using different evaluation metrics (Subsection 5.3.7). The
experimental results will be used to draw conclusions on the effectiveness of the proposed
predictors, based on the type of the predictor, and the encoding of input features, and to
identify potential areas for future research and improvements.
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7.1 Experiment setup
The experiment setup is carefully designed to ensure a robust and comprehensive evaluation
of the performance predictors. The idea behind the chosen experimental setup is to provide
a fair comparison between the predictors and facilitate the identification of the most effective
approaches for the NAS task. The process of training and evaluating the performance
predictors involves the following steps:

• Preprocessing the dataset: The NAS-Bench-101 dataset is preprocessed (file
dataset.py) to make its usage more comfortable and extract the necessary features
for both the flattened architecture encoding (both basic and extended) and the DAG-
based encoding. For more related information, refer to Section 6.2.

• Training the predictors: ML models are trained using the preprocessed dataset.
Each model was trained on a dataset consisting of 172 unique architecture-accuracy
pairs. The selection of this specific number of training data was inspired by Google
Brain’s Neural Predictor research paper [62], as it provides a good compromise be-
tween the values of 𝑁 (number of architectures used to train a predictor) and 𝐾
(number of the most promising architectures selected by applying a predictor), for
more details refer to the Subsection 5.4.1. Hyperparameter tuning was performed in
advance (in hyperparameter_tuning.ipynb notebook), optimizing the performance
of each predictor model. Default hyperparameters are described in Sections 7.2 and
7.4, for each corresponding ML model used in a given experiment. The performance
measures were normalized using their mean and standard deviation.

• Applying the predictors: The trained models are evaluated on unseen data, com-
prising a subset of the NAS-Bench-101 dataset of 100 000 CNNs, simulating the pro-
cess of predicting the performance of novel CNN architectures. This enables a realistic
assessment of the predictors’ ability to guide the NAS process efficiently.

The chosen metrics (Subsection 5.3.7) are used to assess the predictors’ performance. It
is important to note that rank-based metrics, such as Kendall’s Tau, are particularly rel-
evant for NAS tasks because the ranking of predictions is often more important than the
actual values of predictions. This is because the primary goal of NAS is to identify the
best-performing architectures rather than to precisely estimate their performance. Rank-
based metrics provide a more robust measure of the predictors’ ability to correctly rank
architectures in terms of their performance, which is crucial for guiding the search process
efficiently [65].

7.1.1 Hardware and Software Configurations

The hardware components utilized in the experiments include:

• CPU: Intel(R) Core(TM) i7-9750H CPU @ 2.60GHz 2.59 GHz

• GPU: NVIDIA GeForce GTX 1650

• RAM: 32 GB

The required software used in this work is described along with a user manual on GitHub1.
1https://github.com/xsmida03/BP-Accuracy-Predictors
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7.2 Experiment Set 1: Conventional Approach
This set of experiments employs a common approach in feature selection for performance
estimation strategies. It utilizes a flattened architecture encoding and one-hot encoded
operations, concatenated into a single vector. This vector subsequently serves as an input
for the accuracy predictors.

Objective The aim of these experiments is to evaluate and compare the performance of
selected accuracy predictors, using conventional input features: an adjacency matrix and
operations.

Features The features used in the ML models for these experiments typically describe
the cell-based search space of NAS-Bench-101. These include the matrix of operations used
in a CNN and the adjacency matrix that represents the connections between the individual
operations.

Consider an arbitrary CNN architecture (single cell) employing the cell-based encoding
(Section 4.1) from the NAS-Bench-101 dataset illustrated in Figure 7.1.

in outconv
3x3

conv
1x1

conv
3x3

conv
3x3

Figure 7.1: An arbitrary CNN cell architecture, from the NAS-Bench-101 dataset.

Consider the following operation types in the NAS-Bench-101 architecture:

[
’input’,
’conv3x3-bn-relu’,
’conv3x3-bn-relu’,
’conv1x1-bn-relu’,
’conv3x3-bn-relu’,
’output’

]

These operations are first encoded into integers, then padded, and finally one-hot encoded:

Encoded operations (int): [-1 0 0 1 0 -2]

Encoded and padded: [-1 0 0 1 0 -2 0]
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One-hot encoded operations:
[[0, 1, 0, 0, 0],
[0, 0, 1, 0, 0],
[0, 0, 1, 0, 0],
[0, 0, 0, 1, 0],
[0, 0, 1, 0, 0],
[1, 0, 0, 0, 0],
[0, 0, 1, 0, 0]]

The adjacency matrix represents the connections between vertices in a DAG, corresponding
to a cell in a CNN architecture. For instance, an adjacency matrix might appear as follows:

[[0, 1, 0, 0, 0, 0, 0],
[0, 0, 1, 0, 1, 1, 0],
[0, 0, 0, 1, 0, 0, 0],
[0, 0, 0, 0, 0, 1, 1],
[0, 0, 0, 0, 0, 1, 0],
[0, 0, 0, 0, 0, 0, 1],
[0, 0, 0, 0, 0, 0, 0]]

These two features, the one-hot encoded operations, and the adjacency matrix, are flattened
and concatenated into a single 84-element vector, which serves as the input to each accuracy
predictor in this set of experiments.

7.2.1 Linear Regression Predictor

Setup The LRPredictor class, employing the scikit-learn’s LinearRegression model,
uses the library’s default parameters: fit_intercept=True (calculate the y-intercept),
normalize=False (manual normalization), copy_X=True (prevent overwriting input data),
n_jobs=None (single processor), and positive=False (coefficients in any direction).

Figure 7.2: Predicting validation accuracies on a set of 100k CNN architectures with the
Linear Regression-based predictor.
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Results The Linear Regression predictor’s performance, as depicted in Figure 7.2, indi-
cates the presence of several outliers beyond the realistic accuracy range of 0 to 100 %.
These extreme estimations are likely due to the model’s linear nature and its limitations
in capturing complex, nonlinear patterns within the NAS-Bench-101 dataset. Given the
inherent simplicity of the Linear Regression model, this result was anticipated and aligns
with the initial expectations.

7.2.2 Random Forest Predictor

Setup The RFPredictor class, utilizing sklearn’s RandomForestRegressor, is set up
with a specific set of default hyperparameters: 116 trees (n_estimators), a maximum
number of features considered at each split as approximately 17 % (max_features), and
minimum samples required to be at a leaf node and to split an internal node both set
to 2 (min_samples_leaf and min_samples_split). Furthermore, bootstrap is set to
False, indicating that the whole dataset is used to build each tree.

Figure 7.3: Predicting validation accuracies on a set of 100k CNN architectures with the
Random Forest-based predictor.

Results The Random Forest predictor, being a more advanced model, yielded signifi-
cantly better results. Figure 7.3 illustrates its predictions, with the majority of the neural
networks clustered in relatively close proximity. This approach however tends to under-
estimate the majority of architectures as can be seen on the right subplot of Figure 7.3.
The left subplot of Figure 7.3 reveals certain data points with vastly inaccurate validation
accuracy predictions. This discrepancy is likely a consequence of noise present in the NAS-
Bench-101 dataset, also addressed by the Google Brain researchers [62], where the majority
of the CNN architectures demonstrate a validation accuracy exceeding 90 % and there are
not enough examples of architectures with lower validation accuracies. This phenomenon is
also examined in the correlation_analysis.ipynb notebook, which provides an in-depth
analysis of the NAS-Bench-101 dataset. The corresponding initialization and query time
can be found in Table 7.1, and the measured metrics are listed in Table 7.2.
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7.2.3 XGBoost Predictor

Setup The XGBPredictor class uses the XGBoost Regressor model from the xgboost
library, configured with the following default hyperparameters: a gbtree booster, an ob-
jective of reg:squarederror, and an evaluation metric of root mean square error (rmse).
The maximum tree depth (max_depth) is set to 6, the minimum sum of instance weight
(min_child_weight) is 1, and the subsample ratio of columns for each tree and each split
(colsample_bytree and colsample_bylevel) are both 1. The learning rate is initially set
to 0.3.

Figure 7.4: Predicting validation accuracies on a set of 100k CNN architectures with the
XGBoost-based predictor.

Results The XGBoost approach showed even more improved performance of the per-
formance prediction on the same set of data. Most of the predicted validation accuracies
is located near the perfect prediction line 𝑦 = 𝑥 (red). When compared to the Random
Forest model (Subsection 7.2.2), XGBoost does not tend to underestimate the validation
accuracies for the densest areas of the plot, resulting in better accuracy estimation. The
corresponding initialization and query time can be found in Table 7.1, and the measured
metrics are listed in Table 7.2.

7.2.4 MLP Predictor

Setup The MLPPredictor class uses a Feedforward Neural Network model from the Py-
Torch library, embodied in the FeedforwardNet class. The model, stored in the self.model
instance variable, is configured with num_layers=20 and layer_width=20 units for each
layer as the default hyperparameters. The model’s activation function can be customized
and is set to ReLU by default. The model is trained using the Adam optimizer with a
learning rate (lr) of 0.001, and MSE as the loss function. To prevent overfitting, L1 reg-
ularization is also applied with a regularization strength (regularization) of 0.2. The
model is trained for epochs=500 with a batch_size of 32. The target values (accuracies),
stored in ytrain, are normalized by subtracting the mean (self.mean) and dividing by
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the standard deviation (self.std) before training, and these transformations are reversed
when making predictions.

Figure 7.5: Predicting validation accuracies on a set of 100k CNN architectures with the
MLP-based predictor.

Results The MLP-based predictor (Figure 7.5) was anticipated to yield the best results in
the initial set of experiments. However, as shown in Table 7.2, its performance is comparable
to that of the Random Forest and XGBoost predictors. Yet, the initialization and query
times are higher, as outlined in Table 7.1.

Summary The first set of experiments successfully demonstrated the potential of dif-
ferent types of machine learning models for predicting the performance of various CNN
architectures in the NAS-Bench-101 dataset. Each model was tested on the same dataset
and with the same preprocessing steps, allowing for a fair comparison.

Figure 7.6: Comparison of 3 model-based predictors, trained on 172 samples from NAS-
Bench-101 dataset (Point Density Estimate color bars are not shown for better clarity).

53



Figure 7.6 visually presents the performance comparison of the models estimating the valida-
tion accuracy of 100 000 randomly selected architectures from the NAS-Bench-101 dataset.
The Figure excludes the Linear Regression model due to its inability to provide accurate
and reliable predictions within the realistic accuracy range.
Overall, in terms of accuracy prediction, the XGBoost model seems to be the most reliable.
However, the significantly longer training time for the MLP predictor should not overshadow
its promising performance metrics. Depending on the specific use case and the available
resources, one might opt for the MLP model, keeping in mind the trade-off between time
efficiency and prediction accuracy.

It is important to note that these results were obtained using a basic feature set (adjacency
matrix and operations). It is possible that a more advanced or custom feature set could lead
to different outcomes, which is addressed in the second set of experiments (Section 7.3).

7.3 Experiment Set 2: Extended Feature Set
This set of experiments extends the first (detailed in Section 7.2) by incorporating additional
features into the same four models.

Objective The purpose of this experiment set is to evaluate the performance of the se-
lected accuracy predictors when utilizing an extended feature set, which includes informa-
tion beyond the adjacency matrix and operations used in the previous set of experiments,
in Section 7.2.

Features In this experiment set, the input vector for the ML models, akin to the previous
set of experiments (Section 7.2), is expanded with two additional features: the number of
trainable parameters and the count of 3x3 convolution operations in the CNN. Selected for
their strong correlation, these features are standardized using the StandardScaler from
scikit-learn before being concatenated with the one-hot encoded operations and adjacency
matrix, resulting in an extended 86-element input vector for each accuracy predictor.

Results As this set of experiments employed the same ML models as in the previous
section, the results are visually similar and can be found in Appendix A.

Training and Evaluation Times As can be seen from Table 7.1, the inclusion of ex-
tended features did not substantially affect the training times of the models. The training
and evaluation times for the Linear Regression (LR) and the Random Forest (RF) models
remained constant, while the XGBoost models experienced a slight increase in evaluation
time. The MLP model’s training time slightly decreased, despite the larger feature set,
which could be due to stochastic variations in the training process.

Performance Metrics The results of the extended feature set experiments show notable
improvements in predictive performance for RF, XGBoost, and MLP models, while the
performance of the LR model deteriorated significantly. The LR model’s performance
declined considerably when employing the extended feature set, as evidenced by its MSE
and MAE increasing to 2.94× 1016 and 2.37× 106, respectively. It’s also worth noting that
the LR model had a negative Pearson correlation coefficient and 𝑅2 value, indicating a very
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poor fit to the data. On the other hand, RF, XGBoost, and MLP models exhibited improved
performance when utilizing the extended feature set. RF demonstrated the highest 𝑅2 value
of 0.4215, a marked improvement from 0.3394 when using the standard feature set. The
MSE and MAE of the RF model also reduced, indicating better prediction accuracy with
the extended features. Similar trends were observed for XGBoost and MLP, where MSE
and MAE reduced while Pearson correlation, Kendall’s 𝜏 , and 𝑅2 values increased.

Summary These results suggest that the inclusion of additional features, specifically the
number of trainable parameters and the count of 3x3 convolution operations, enhanced the
performance of RF, XGBoost, and MLP models. However, the LR model’s performance
significantly deteriorated with these added features. The results underscore the importance
of feature selection and its impact on the performance of different ML models.

7.4 Experiment Set 3: Graph Convolutional Networks
This experiment set utilizes a different approach to both Experiment Set 1 (Section 7.2)
and Experiment Set 2 (Section 7.3). It employs the power of Graph Neural Networks,
specifically GCNs, to take into account the graph structure information itself.

7.4.1 GCN Predictor

Setup The GCNPredictor class sets up a GCN-based model for accuracy prediction de-
fined within the NeuralPredictorModel class, which uses DirectedGraphConvolution for
each GCN layer. The hyperparameters for the GCN model are set by default as follows: the
number of hidden units in the GCN layers (gcn_hidden) is 144, the size of training batches
(batch_size) is 10, the learning rate (lr) is 1e-4, the weight decay for L2 regularization
(wd) is 1e-3, and the number of training epochs (epochs) is 300. The batch size during
model evaluation (eval_batch_size) is set to 1000. The target values are normalized using
the mean (self.mean) and standard deviation (self.std) of the training set, and these
transformations are reversed when making predictions. This setup was inspired by Google
Brain’s Neural Predictor setting [62].

Figure 7.7: Predicting validation accuracies on a set of 100k CNN architectures with the
GCN-based predictor.
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Result The GCN model was applied to a set of 100 000 CNN architectures, as depicted
in Figure 7.7. The results showed that the GCN-based predictor successfully leveraged
the topological information present in the graph representations of the CNN architectures.
The predictions were quite accurate, demonstrating the potential of GCNs as a tool for
predicting the accuracy of different architectures.

Table 7.1: Training and Evaluation Times of Predictors (training set of 172 training samples,
evaluating on 100 000 subset of the NAS-Bench-101 dataset)

Predictor Feature Set Training Time (s) Evaluation Time (s)
Linear Regression Standard 0.01 0.01
Random Forest Standard 0.10 0.80
XGBoost Standard 0.34 0.07
MLP Standard 22.45 1.41
Linear Regression Extended 0.01 0.02
Random Forest Extended 0.10 0.77
XGBoost Extended 0.24 0.07
MLP Extended 21.16 1.20
GCN DAG 53.24 3.07

Training and Evaluation Times Table 7.1 shows the training and evaluation times of
the GCN-based predictor in comparison with the predictors from Experiment Sets 1 and
2. The GCN model required more time for training, but this was compensated by the
improved accuracy of the predictions (Table 7.2). The evaluation time also increased, but
it remained acceptable given the complexity of the task and the size of the evaluation set.

Table 7.2: Performance Metrics of All Predictors (KT stands for Kendall’s Tau)

Predictor Features MSE MAE Pearson KT 𝑅2

LR Standard 753.12 0.39 0.0010 0.4800 −8.8× 105

RF Standard 0.0006 0.0140 0.6246 0.4981 0.3394
XGBoost Standard 0.0006 0.0151 0.5280 0.4560 0.2485
MLP Standard 0.0006 0.0148 0.6046 0.4843 0.3147
LR Extended 2.9× 1016 2.4× 106 -0.0003 -0.2325 −3.4× 1019

RF Extended 0.0005 0.0125 0.6683 0.5631 0.4215
XGBoost Extended 0.0005 0.0126 0.6440 0.5668 0.4107
MLP Extended 0.0005 0.0130 0.6618 0.5178 0.4327
GCN DAG 0.0003 0.0097 0.8018 0.6498 0.6276

Performance Metrics The performance metrics for the GCN model, shown in Table 7.2,
indicate its superior performance in comparison to the other models, including those with
extended features. The GCN model achieved the lowest MSE and MAE and the highest
Pearson correlation, Kendall’s tau, and 𝑅2 values. This suggests that the GCN model
is particularly effective at integrating the architectural information of the CNNs to make
accurate predictions.
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Summary These results further underline the efficacy of the GCN model as a prediction
tool. Despite the increased computational requirements, the GCN model outperformed
all the other models in terms of prediction accuracy. This suggests that incorporating
architectural information into the prediction process can significantly enhance the accuracy
of the results.

7.5 Efficiency Gain Analysis of Accuracy Predictors in NAS
In the context of performance estimation in NAS, the potential speed-up achieved in training
time can be quantified by utilizing accuracy predictors. This speed-up arises from the
reduced number of architectures that need to be fully trained, a saving made possible by
the predictors.

As described in Subsection 5.4.1, the most computationally expensive aspect of using accu-
racy predictors is the training of architectures: 𝑁 architectures for predictor building and
𝐾 architectures representing the most promising candidates selected by the predictor. In
this study, 𝑁 is 172 (inspired by Google Brain’s Neural Predictor [62]), which corresponds
to the number of CNN architectures used for predictor training. For this analysis, let’s
assume 𝐾 = 100 (arbitrary choice, influenced by Google Brain’s Neural Predictor [62]),
representing the top-100 architectures selected by the predictor. Additionally, the compu-
tational overhead of initializing and querying the predictor must be considered. The GCN
predictor will be used for this analysis, as it is the most computationally intensive among
the tested models and also showed the most promise. The training time for the GCN pre-
dictor is approximately 53 seconds, and the query time for 100 000 CNN samples is just
over 3 seconds.

Utilizing the NAS-Bench-101 dataset, which provides the training time for each individual
CNN architecture, the total time saved when using the predictor can be calculated. The
mean training time for the CNNs in the dataset is approximately 1932 seconds. The total
training time for the selected 172 CNNs used for predictor training is 350 385 seconds.
Therefore, the total time required for the predictor to function with a reasonable degree of
accuracy, denoted as 𝑇total, is calculated as the sum of the time taken to train 𝑁 architec-
tures (𝑇𝑁 ), the time taken to train 𝐾 architectures (𝑇𝐾), the time required to initialize the
predictor (𝑇init), and the time taken to query the predictor (𝑇query). Mathematically, this
can be represented as:

𝑇total = 𝑇𝑁 + 𝑇𝐾 + 𝑇init + 𝑇query = 350 385 + 193 200 + 53 + 3 = 543 641 seconds (7.1)

In contrast, training all 100 000 CNNs without a predictor would take approximately
193 200 000 seconds (mean CNN training time multiplied by 100 000). The speed-up
achieved by using the predictor is therefore:

Speed-up =
𝑇without predictor

𝑇total
=

193 200 000

543 641
≈ 355 (7.2)

This result underlines the significant efficiency gains that can be achieved using accuracy
predictors in NAS, demonstrating approximately a 355-fold reduction in computational
time. This highlights the crucial role of accuracy predictors in enabling efficient and prac-
tical NAS.
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Chapter 8

Conclusion

The primary objective of this bachelor thesis was to construct accuracy predictors for CNNs
within the NAS framework, leveraging a diverse array of ML models. The scope of this
work spanned the examination of existing performance estimation strategies in NAS, the
intricate processes of feature selection and extraction, the design and implementation of
each individual predictor, and the rigorous comparison and analysis of their respective
performance.

This thesis began with the foundational concepts of AI and ML (Chapter 2), focusing on
the specific ML models utilized for performance estimation in the context of NAS. It then
delved into the intricacies of CNNs, describing their architecture and prevalent benchmarks.
Chapter 4 introduced the concept of NAS, outlining key elements such as search spaces,
search strategies, and performance estimation strategies. The design process of the accuracy
predictors was detailed in Chapter 5, followed by an in-depth description of each predictor’s
implementation. All the scripts and source code used in this project are publicly available
on GitHub1.

The experimental results (Chapter 7) demonstrated the power and efficacy of ML mod-
els as accuracy predictors. The GCN model, in particular, showed superior performance
in predicting the accuracy of CNN architectures. The GCN model achieved the lowest
MSE and MAE, and the highest Pearson correlation, Kendall’s Tau, and 𝑅2 values. Impor-
tantly, the analysis revealed a significant efficiency gain with the use of accuracy predictors,
demonstrating approximately a 355-fold reduction in computational time.

Looking forward, this work opens up several avenues for future research. An interesting
direction could be to extend this work to different search spaces and make it compatible
across them. This could potentially enhance the versatility of these predictors and their
applicability in various contexts. Exploring different features for the ML models and incor-
porating more sophisticated methods to preserve additional information about architecture
encoding could also further improve the accuracy of predictions. This thesis has successfully
demonstrated the potential of ML models as effective and efficient tools for performance
estimation in NAS, setting the stage for further exploration and innovation in this field.

Moreover, this work has been recognized for its contribution to reducing energy con-
sumption through the automation of neural network architecture exploration and was
awarded at the Excel@FIT 2023 student conference on innovation, technology, and sci-
ence2 by the expert panel.

1https://github.com/xsmida03/BP-Accuracy-Predictors
2https://excel.fit.vutbr.cz/vysledky/
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Appendix A

Experiment Set 2 visualizations

In this set of experiments, every ML model was trained on 172 samples of architectures from
the NAS-Bench-101 dataset. With the exception of the linear regression predictor, all other
models (including random forest, xgboost, and MLP) demonstrated improved performance
in accuracy prediction (compared to the Experiment Set 1, described in Section 7.2).

Figure A.1: Predicting validation accuracies on a set of 100k CNN architectures with the
Linear-Regression-based predictor. Utilizing the extended feature set.
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Figure A.2: Predicting validation accuracies on a set of 100k CNN architectures with the
Random-Forest-based predictor. Utilizing the extended feature set.

Figure A.3: Predicting validation accuracies on a set of 100k CNN architectures with the
XGBoost-based predictor. Utilizing the extended feature set.

Figure A.4: Predicting validation accuracies on a set of 100k CNN architectures with the
MLP-based predictor. Utilizing the extended feature set.
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