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Abstract 
The aim of this thesis is to present a method of constructing accuracy predictors for convolu-
tional neural networks (CNNs) by leveraging databases of trained CNNs (NAS-Bench-101) 
and employing machine learning (ML) techniques as performance estimation strategies. The 
study begins with a description of various M L methods used in building C N N accuracy pre­
dictors, followed by an in-depth examination of CNNs and databases of pre-trained CNNs. 
The proposed method involves selecting a suitable task for the CNNs (image classification), 
assembling a dataset, defining relevant features for the predictor input, and choosing five 
M L methods for training the predictors. Using existing libraries, the accuracy predictors 
are implemented, trained, and experimentally validated to assess their functionality and 
performance. The results are thoroughly evaluated, providing insights into the effective­
ness of the proposed method and the potential for further refinement in the field of C N N 
accuracy prediction. 

Abstrakt 
Cieľom tejto práce je predstaviť metódu na konštrukciu prediktorov presnosti pre kon-
volučné neurónové siete s využitím databáz natrénovaných konvolučných neurónových sietí 
(NAS-Bench-101) a uplatnením techník strojového učenia ako stratégií na odhad výkon­
nosti. Štúdia začína popisom rôznych metód strojového učenia použitých pri budovaní 
prediktorov presnosti, nasledujúc preskúmaním konvolučných neurónových sietí a databáz 
predtrénovaných konvolučných neurónových sietí. Navrhovaná metóda spočíva vo výbere 
vhodnej úlohy pre konvolučných neurónových sietí (klasifikácia obrázkov), zostavení dátovej 
sady, definovaní relevantných príznakov ako vstup prediktorov a vo výbere piatich metód 
strojového učenia na trénovanie prediktorov. S využitím existujúcich knižníc sú predik-
tory presnosti implementované, natrénované a experimentálne overené na posúdenie ich 
funkčnosti a výkonnosti. Výsledky sú dôkladne ohodnotené, validované a poskytujú pohľad 
do efektívnosti navrhovanej metódy a potenciál ďalšieho vylepšenia v oblasti predpovedania 
presnosti konvolučných neurónových sietí. 
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Rozšířený abstrakt 
Hlavným cieľom tejto práce je navrhnúť robustnú metódu pre konštrukciu prediktorov pres­
nosti pre konvolučné neurónové siete. Metóda je postavená na využití existujúcej databázy 
natrénovaných konvolučných neurónových sietí a pracuje s rôznymi technikami strojového 
učenia slúžiacimi na odhad výkonnosti neurónových sietí. Práca má prevažne experimen­
tálny charakter, pričom jej výsledkom je komplexné porovnanie a zhodnotenie rôznych 
metód strojového učenia použitých pri konštrukcii jednotlivých prediktorov. 

V úvode ide o podrobný popis metód strojového učenia, ktoré sú použité pri konštrukcii 
prediktorov presnosti neurónových sietí. Táto časť poskytuje detailné porovnanie biolog­
ických neurónov s umelými, ktoré sú využívané pri tvorbe neurónových sietí, s dôrazom 
na ich využitie v praxi, ale aj potenciálne obmedzenia. Ďalej nasledujú základné princípy 
lineárnej regresie, algoritmov random forest a xgboost, ktoré sú založené na vyhľadávacích 
stromoch. Na záver kapitoly je predstavený koncept grafových konvolučných sietí, jedným 
z komplexnejších modelov strojového učenia, ktorý je schopný efektívnejšie a presnejšie 
odhaliť skryté štruktúry v dátach. 

V rámci práce boli tiež podrobne popísané architektúry konvolučných neurónových sietí, 
od jednotlivých typov vrstiev týchto neurónových sietí až po typické operácie, ktoré sa v nich 
používajú. Konvolučné neurónové siete, ktoré boli inšpirované mechanizmami vizuálneho 
kortexu ľudského mozgu, sú kľúčové pri detekcii, rozpoznávaní a klasifikácii objektov. 

Neurónové siete vo všeobecnosti trpia niekoľkými negatívnymi vlastnosťami, ako sú 
výpočetná a časová náročnosť pri trénovaní, ako aj komplexnosť pri budovaní konkrét­
nych architektúr. Tieto obmedzenia viedli k vzniku automatizovaného strojového učenia, 
ktorého integrálnou súčasťou je tzv. Neural Architecture Search. Ide o oblasť, ktorej 
cieľom je automatizovať proces tvorby neurónových sietí prostredníctvom techník, ako sú 
evolučné algoritmy a posilované učenie. Tieto techniky sú podporené takzvanými predik-
tormi presností neurónových sietí, ktoré majú za cieľ zefektívniť proces hľadania najsľub­
nejších architektúr neurónových sietí v procese vyhľadávania neurónových sietí. Táto časť 
bola nasledovaná popisom existujúcich databáz predtrénovaných konvolučných neurónových 
sietí, ktoré obsahujú jednotlivé architektúry spolu so zodpovedajúcimi metrikami, ktoré ich 
charakterizujú. 

Navrhovaná metóda je založená na výbere relevantnej úlohy pre konvolučné neurónové 
siete (klasifikácia obrázkov), zostavení príslušného datasetu (podmnožina datasetu NAS-
Bench-101), definovaní relevantných vstupných príznakov pre prediktory a vo výbere piatich 
metód strojového učenia pre trénovanie prediktorov. 

Pomocou existujúcich knižníc boli jednotlivé prediktory implementované, natrénované 
a experimentálne bola overená ich funkčnosť a výkonnosť. Výsledky experimentov sú po­
drobne analyzované, validované a navzájom porovnané. Poskytujú pohľad na efektívnosť 
navrhovanej metódy a naznačujú potenciál pre ďalšie vylepšenia v oblasti predpovedania 
presnosti konvolučných neurónových sietí. 
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Chapter 1 

Introduction 

Deep learning has made significant advancements in various domains, such as natural lan­
guage processing, computer vision, and speech recognition. Among deep learning tech­
niques, Convolutional Neural Networks (CNNs) have revolutionized the field of computer 
vision by achieving state-of-the-art performance in a variety of tasks including image clas­
sification, object detection, and semantic segmentation. 

The manual design of optimal artificial neural network architectures can be a time-
consuming process that heavily relies on expert knowledge and often involves difficulty 
in identifying optimal hyperparameters. To address these challenges, Neural Architecture 
Search (NAS) has emerged as a promising approach to searching for the best architectures 
automatically. This eliminates the need for manual design and extensive expert knowledge. 

In this context, developing accurate and resource-efficient predictors for the performance 
of CNNs becomes essential. These predictors can significantly reduce the computational 
demands of N A S by rapidly estimating the performance of various architectures, eliminat­
ing the need for time-consuming training and evaluation. Consequently, the search process 
is accelerated, and a broader search space can be explored, potentially discovering networks 
with superior performance. Furthermore, understanding the factors that impact the effec­
tiveness of particular C N N architectures can provide valuable insights for designing future 
CNNs, promoting the development of more powerful and efficient models. 

The main goal of this thesis is to develop, execute, and technique for building 
classification accuracy predictors for CNNs. To achieve this, the study involves choosing 
a suitable task and dataset to evaluate the performance of the CNNs and the predictors, 
generating a dataset using current N A S benchmarks, identifying appropriate features used 
as input to the predictor, and selecting a minimum of three machine learning methods 
for training the predictor. Through the comparison of these methods, this thesis seeks to 
determine the most efficient approach for estimating the classification accuracy of CNNs, 
ultimately aiming to enable more streamlined and precise NAS. 

The theoretical chapters of this bachelor thesis provide an overview of CNNs, NAS, rel­
evant benchmarks, and machine learning predictors for accuracy estimation (Chapters 2-4). 
It is followed by the description of the design of the classification accuracy predictor, includ­
ing task selection, choice of the dataset, feature extraction, and machine learning method 
selection (Chapter 5). The details of the implementation of the accuracy predictors using 
existing libraries and programming tools are provided in Chapter 6. Then the experimental 
setup, results, and statistical validation of the constructed predictors are presented, offering 
a comprehensive comparison of their performance (Chapter 7). The conclusion of the thesis 
summarizes the main findings and discusses their main implications (Chapter 8). 
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Chapter 2 

Selected Machine Learning Models 

Artificial intelligence (AI) has revolutionized the way we interact with the world, trans­
forming various industries and enabling us to solve complex problems that were considered 
impossible. From self-driving cars [3], advanced robotics [1] and natural language process­
ing [42], AI has become the cornerstone of modern technological advancements, promising 
to reshape industries, empower individuals, and create a more sustainable and equitable 
world. The power of A I not only lies in its ability to optimize processes, but also in its 
potential to unlock new avenues for creativity, collaboration, and progress. 

Machine learning (ML) is a crucial component of AI that focuses on the development 
of algorithms that can learn from data and make predictions or decisions without being 
explicitly programmed [39]. By automating this process, M L enables systems to adapt to 
new and changing environments, making them more robust and reliable. M L techniques 
can handle the complexity and volume of massive datasets, which represents a challenge for 
humans in terms of processing and analysis [38], allowing for more efficient and accurate 
decision-making based on data-driven insights. 

In this study, supervised learning methods are employed due to their relevance for tasks 
such as accuracy prediction of CNNs within the framework of N A S . Supervised learning 
involves learning from labeled data, where the model learns to map input features to output 
labels. Various M L models and algorithms are utilized, each with its own strengths and 
weaknesses. 

Linear regression (Section 2.3) is a simple model that attempts to find the best-fitting 
linear relationship between input features and output labels. Random forests (Section 2.4), 
an extension of decision trees, build multiple trees and aggregate their results to improve 
prediction accuracy and reduce overfitting. Additionally, XGBoost (Section 2.5), an op­
timized distributed gradient boosting method, performs exceptionally well on structured 
or tabular datasets. For more complex tasks, multilayer perceptrons (MLPs) (Section 2.2) 
are employed. M L P s are feedforward neural networks with one or more hidden layers that 
can learn complex nonlinear relationships between input and output. Furthermore, Graph 
Convolutional Networks (GCNs) (Section 2.6), are a type of neural network designed to 
work directly on graphs and take advantage of their structural information. 

In the context of neural networks, gaining a deeper understanding of their inner workings 
requires examining their fundamental building block: the artificial neuron. This component 
is essential for the network's ability to model and learn complex patterns and relationships 
in data. 
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Artificial Neuron A n artificial neuron (also node or unit) is a fundamental building block 
of neural networks, inspired by the biological neurons present in the human brain [19]. These 
computational models attempt to simulate the behavior of biological neurons by receiving 
input signals, processing them, and generating an output signal. The input signals are 
weighted according to their importance, and the neuron computes the weighted sum of its 
inputs. This sum is then passed through an activation function that determines the neuron's 
output (Figure 2.1). The purpose of the activation function is to introduce non-linearity 
into the model, allowing it to learn complex patterns and relationships in the data. 

Figure 2.1: A comparison of a biological neuron (top) and an artificial neuron (bottom) 1. 
The biological neuron consists of a cell body (soma), dendrites, and an axon. The artificial 
neuron consists of input features, weights, a bias, a summation function S, and an activation 
function / . 

As neural networks evolved, researchers sought to create more advanced structures and 
algorithms to enhance their performance and enable them to model complex relationships 
in data. This pursuit led to the development of various types of artificial neuron models, 
each with their distinct characteristics and advantages. One of the earliest and most well-
known examples of an artificial neuron model is the perceptron (Section 2.1), which was 
a groundbreaking innovation in its time. The perceptron introduced a simple yet effective 
method for binary classification, paving the way for more sophisticated neural network 
architectures that would emerge in the years to come. 

1Adapted from: https: //www.v71abs.com/blog/neural-networks-activation-functions 
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2.1 Perceptron 

The perceptron, introduced by Frank Rosenblatt in the late 1950s [46], is a simple form of 
an artificial neuron. It is a binary linear classifier that uses a step function as its activation 
function (Figure 2.2). The perceptron can only learn linearly separable patterns, as it mod­
els a linear decision boundary (Figure 2.3). While the perceptron was a significant milestone 
in the development of artificial neural networks, its limited capacity to model complex re­
lationships led to the development of more advanced neural networks with multiple layers 
(Section 2.2) and non-linear activation functions. 

out 

Figure 2.2: A typical perceptron consisting of n input neurons, each associated with a 
corresponding weight that represents the strength of the connection between two neurons. 
A bias term (represented as a constant 1) is added to the input layer to provide additional 
flexibility. The perceptron employs a step function as its activation function, determining 
the output based on the weighted sum of the inputs and the bias term 2 . 

Perceptron learning algorithm The perceptron learning algorithm, also known as the 
delta rule, is a specific algorithm used to update the weights of the perceptron during 
training [39]: 

Wi <r- Wi + a(y - y)xi (2.1) 

where Wi represents the weight associated with the i-th input feature, a is the learning rate, 
y is the true label, y is the predicted label, and Xi is the i-th input feature. 

The delta rule updates each weight by adding the product of the learning rate, the error 
between the true and predicted labels, and the corresponding input feature. This process 
is iteratively applied to all the input features in order to minimize the error between the 
predicted and true labels. 

The X O R Problem A major limitation of the perceptron is its inability to learn certain 
problems that are not linearly separable, such as the X O R (exclusive OR) problem. The 
X O R problem refers to a simple classification task where two input features, both binary, 

2Inspired by: https: //www.v71abs.com/blog/neural-network-architectures-guide 
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must be classified into one of two classes. The output is true (1) when the input features 
have different values (0 and 1 or 1 and 0), and false (0) when the input features have the 
same values (0 and 0 or 1 and 1). The X O R problem is not linearly separable, meaning that 
there is no single linear decision boundary that can accurately separate the two classes, as 
demonstrated in Figure 2.3. 

X 2 

(0,1) 

o 

(0,0) 

(1,1) 

o 

- o 
(1,0) 

X i 

x 2 

(0,1) 

o 

(0,0) 

(1,1) 

(1,0) 

(a) OR operation: The four points can (b) XOR operation: The four points 
be linearly separated using a single line cannot be linearly separated using a sin-
(red). gle line. 

Figure 2.3: Comparison of O R and X O R operations in terms of linear separability. 

The X O R problem and the perceptron's inability to solve it highlighted the need for more 
powerful learning models that could handle non-linearly separable problems. This real­
ization led to the development of multilayer perceptrons (Section 2.2) with multiple layers 
of artificial neurons, allowing for the modeling of more complex, non-linear relationships 
between input and output [49]. 

2.2 Multi layer Perceptron 

A Multilayer Perceptron (MLP) is an extension of the perceptron model and a type of 
feedforward neural network that consists of multiple layers of neurons, each connected to 
the neurons in the previous layer, as illustrated in Figure 2.4. Unlike perceptrons, M L P s can 
solve non-linearly separable problems, significantly expanding their applicability to a wider 
range of tasks [44]. The input data is fed into the network through the input layer, and 
then it is processed through one or more hidden layers before producing an output in the 
final layer. Each neuron in the hidden and output layers is associated with bias (additional 
parameter) and an activation function (introducing nonlinearity). The bias term serves to 
shift the activation function along the input axis, allowing the model to better fit the data 
by providing an additional degree of freedom. 

The basic idea behind M L P is to use a combination of linear and nonlinear transformations 
to transform the input data into a form that can be used for prediction. Each neuron in 
the network applies a linear transformation to the input data and then applies a nonlinear 
activation function to the result, as shown in the following equation: 
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output = / W i ' X i (2-2) 

where / is an activation function, Wi and Xi represent the weights and inputs associated 
with the neuron, b is the bias term, and n is the number of inputs [46]. 

2.2.1 Structure 

The structure of an M L P (depicted in Figure 2.4) begins with the input layer, consisting of 
neurons corresponding to the input features. Each input neuron is then connected to the 
neurons in the subsequent hidden layer through a set of weights (learnable parameters). 
The hidden layers are responsible for learning and representing the underlying structure 
of the data. The number of hidden layers and the number of neurons within each layer 
are adjustable parameters, significantly contributing to the model's performance. The 
final layer, the output layer, produces the predicted output values - either continuous (for 
regression tasks) or categorical (for classification tasks). 

I npu t Layer Hidden Layers Outpu t Layer 

Figure 2.4: Illustration of Multilayer Perceptron architecture, with an input layer, 2 hidden 
layers, and an output layer. Connections between individual neurons represent the weights3. 

Training Training an M L P involves adjusting the weights and biases of the neurons to 
minimize the error (loss) between the predicted outputs and the actual output for a given in­
put. This is usually achieved using an optimization algorithm such as gradient descent [15], 
in combination with a technique called backpropagation [49] to efficiently compute the gra­
dients of the loss function with respect to the weights and biases of the neurons in the 
network. 

Properties M L P s can learn complex, nonlinear relationships and offer flexibility through 
customizable activation functions, layers, and architectures. However, they can be compu­
tationally expensive and prone to overfitting, learning the training data too well (including 
the noise), if not regularized. Techniques like L I , L2 regularization, or dropout help prevent 
overfitting, but M L P s may still lack interpretability compared to simpler models [15]. 

3Image adapted from: https://www.javatpoint.com/multi-layer-perceptron-in-tensorflow 
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2.3 Linear Regression 

Linear regression is a commonly used algorithm in supervised learning, where the goal is 
to learn a function that maps input variables to a continuous output variable [18]. It is 
a simple, yet powerful, statistical method that models the relationship between the input 
variables (predictors) and the output variable (response). The primary goal of linear re­
gression is to find the best-fit line (Figure 2.5) that describes the relationship between the 
input variables and the output variable. This line is represented by a linear equation 2.3 
that can be used to predict the value of the output variable given a set of input variables. 

y = /3o + fiixi + P2x2 H Vj3nxn + e (2.3) 

where y is the target variable, the input features, /3n is the intercept, 
Pi, fa, • • •, Pn are the coefficients (weights) associated with each feature, and e is the error 
term - the difference between the actual value of the target variable and the predicted value 
obtained from the model [41]. 

To find the best-fit line, the task is to minimize the sum of squared residuals between the 
predicted values and the actual values. This is known as the least squares criterion and 
can be calculated as follows: 

N 
L ( / 3 ) = - (#> + ^ + P*x% + • • • + Pnxni)? (2.4) 

i=l 
where L(f3) is the objective function we want to minimize, yi is the actual value of the 
target variable for the i-th observation, J3Q is the intercept, /3i, $2, • • •, Pn are the coeffi­
cients (weights) associated with each feature, and x\t, x2i,... xni are the values of the input 
features for the i-th observation [41]. 

3.00- _ 

2.75- l l 

2.50-

2.25-

*" 2.00-

1.75-

1.50-

1.25-

1.00-
0.0 

Figure 2.5: Depiction of Linear Regression Analysis: The blue points represent the data 
points, the red line is the fitted linear regression model, and the green dashed lines show 
the differences between the predictions and the actual values. 

Linear Regression 
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Properties The model is easy to understand and interpret, as the coefficients directly 
represent the contribution of each input feature to the target variable. Linear regression 
is also computationally efficient and has a quick training time, which makes it suitable for 
situations where resources are limited or where the relationship between input features and 
output labels can be reasonably approximated by a linear function [18]. 

Assumptions Linearity assumes that the relationship between the input features and 
the target variable is linear, while the independence of errors assumes that the errors are 
not correlated with each other. The constant variance of errors assumes that the errors 
have the same variance across all levels of the input features, and the normal distribution of 
errors assumes that the errors follow a normal distribution. Violations of these assumptions 
can lead to biased or inefficient estimates of the model parameters [18]. In cases where these 
assumptions do not hold, other machine learning methods, such as non-linear regression or 
tree-based models (Sections 2.4 and 2.5), may be more appropriate. 

2.4 Random Forest 

Random forest is a popular M L algorithm that belongs to the family of ensemble methods. 
Ensemble methods combine multiple models to improve predictive performance and reduce 
overfitting. Random forest achieves this by constructing multiple decision trees during the 
training phase and outputting the class that is the mode of the classes (classification) or 
mean prediction (regression) of the individual trees [18]. 

Decision trees are tree-like structures with internal nodes representing feature tests, 
branches representing the outcomes of these tests, and leaf nodes representing the final 
predictions. Random forest works by building a collection of decision trees, each trained 
on a random subset of the data and features (Figure 2.6). 

Dataset 

Decision Tree (1) Decision Tree (2) . . . Decision Tree (N) 

I I I 
Result (1) Result (2) • • • Result (N) 

I I 
• Majority Voting (Averaging) < • 

I 
Final Result 

Figure 2.6: Depicting the Random Forest algorithm: a dataset feeds multiple decision trees, 
and their results are aggregated by majority voting, showcasing ensemble learning. Adapted 
from 

This process of sampling with replacement is known as bootstrap aggregation or bagging and 
introduces diversity among the trees. Additionally, a random subset of features is used at 
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each split in the decision trees, further increasing the diversity of the trees in the ensemble. 
The decision trees are then combined to form a random forest that can make predictions 
on new data. This approach reduces overfitting and increases generalization performance 
by reducing the variance of the models [4]. 

Properties Random forests have several advantages over other M L algorithms. Firstly, 
they can handle both classification and regression tasks, making it a versatile algorithm. 
They can handle missing data without imputation and are less sensitive to outliers and noise 
in the data compared to single decision trees or linear models. By averaging the results of 
multiple trees, random forests are less prone to overfitting than individual decision trees. 
It can also provide measures of feature importance, allowing the identification of the most 
important features in the data. Random forests, however, can also be computationally 
expensive, especially when working with large datasets or a high number of decision trees. 
This can cause longer training and inference time. 

2.5 XGBoos t 

XGBoost, short for eXtreme Gradient Boosting, is a powerful M L algorithm that belongs to 
the family of gradient boosting methods. Gradient boosting algorithms are a type of ensem­
ble method that combines multiple weak learners (typically decision trees) in a sequential 
manner to improve predictive performance and reduce overfitting [7]. 

Gradient boosting works by iteratively adding weak learners to the ensemble, with each new 
learner correcting the errors (residuals) made by the previous ones. The weak learners are 
decision trees that are added sequentially, and each tree learns to correct the residuals of 
the previous trees (Figure 2.7). The learning process is guided by the gradient of the loss 
function, optimized at each step to minimize the errors made by the ensemble. This results 
in an adaptive model that can accurately capture complex patterns in the data [7]. 

Dataset 

Decision Tree (1) 

Result (1) 

Decision Tree (2) 

i ^ 
Result ( 2 ) ' 

I 
*• Sum 

Decision Tree (N) 

Result ( N - l ) ' Result (N) 

Final Result 

Figure 2.7: Depicting XGBoost 's process: initial predictions are improved by decision trees 
learning from residuals, culminating in an aggregated output - a demonstration of gradient 
boosting. Adapted from [16]. 
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Properties XGBoost offers several advantages over other gradient boosting methods and 
M L algorithms. Firstly, it is highly efficient and scalable, enabling the algorithm to handle 
large datasets and run on distributed computing systems. Secondly, XGBoost supports 
regularization, which helps reduce overfitting by penalizing more complex models. The 
algorithm incorporates both L I and L2 regularization, allowing users to control the trade­
off between model complexity and generalization performance. Additionally, XGBoost can 
handle missing data without requiring imputation, and it provides built-in support for 
feature importance analysis, making it easier for users to interpret the model and identify 
relevant features. XGBoost can also handle both classification and regression tasks, making 
it a versatile algorithm for various M L problems. XGBoost, however, like other tree-based 
methods, can be sensitive to noisy data and outliers, which may affect the model's perfor­
mance. 

2.6 Graph Convolutional Networks 

Graph Convolutional Networks (GCNs) are a class of deep learning models designed to 
handle graph-structured data, as illustrated in Figure 2.8. Unlike traditional feedforward 
neural networks, which expect a fixed-size input, GCNs can process graphs with varying 
sizes and structures, making them well-suited for tasks involving graph-based data. In the 
context of NAS, GCNs can capture complex relationships between the nodes and edges in 
the search space, potentially leading to more accurate performance predictions. 

Hidden layer Hidden layer 

Figure 2.8: Illustration of Graph Convolutional Network architecture . Nodes are connected 
to their neighbors through edges, and each node has a feature vector. The G C N learns to 
propagate information from neighbors to the central node, updating the feature vector of 
the central node. 

2.6.1 Structure 

A G C N consists of several graph convolutional layers, which operate on the nodes and their 
neighboring nodes in the graph. Each node in the graph is associated with a feature vector, 
and these feature vectors are updated throughout the graph convolutional layers. The 

4Image from: https: / / t k i p f .github.io/graph-convolutional-networks/ 
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graph convolutional layers can capture local and global information in the graph, enabling 
the model to learn complex patterns and relationships between the nodes and edges. 

Graph Convolutional Layer The fundamental process within a graph convolutional 
layer is the neighborhood aggregation, which involves gathering and combining information 
from the adjacent nodes. For a given node, the model learns a weighted combination of the 
neighboring nodes' feature vectors, updating the feature vector of the central node. This 
operation can be seen as a convolution on the graph, where the weights are learned by the 
model during training. 

Training Training a G C N involves adjusting the weights and biases of the graph con­
volutional layers to minimize the error (loss function) between the predicted outputs and 
the actual outputs for a given graph input. This is usually achieved using an optimization 
algorithm such as gradient descent [48] or Adam [29], in combination with techniques such 
as backpropagation [49] or graph attention mechanisms [61] to efficiently compute the gra­
dients of the loss function with respect to the weights and biases of the graph convolutional 
layers. 

Properties GCNs are able to learn complex relationships between nodes and edges in 
graph-structured data, making them particularly suitable for N A S performance prediction. 
They are flexible and customizable through the selection of different layer types, archi­
tectures, and attention mechanisms. GCNs can be computationally expensive, especially 
when processing large graphs or when using deep architectures. They may also be prone 
to overfitting if not properly regularized. Regularization techniques, such as L I and L2 
regularization or graph pooling, can be used to prevent overfitting by adding constraints to 
the model parameters or by reducing the model's complexity during training [15]. GCNs, 
like other deep learning models, often lack the interpretability of simpler models like linear 
regression and random forests. 
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Chapter 3 

Convolutional Neural Networks 

In this chapter, the key components and principles of CNNs are explored. The chapter 
begins by presenting an overview of the basic architecture of CNNs, including their layers 
and operations, in Section 3.1. Section 3.2 discusses benchmarks for CNNs. 

CNNs are a type of deep neural networks that have become increasingly popular in the 
field of AI , particularly in image and video processing tasks. They have shown remarkable 
performance in a range of applications, from image recognition and segmentation to object 
detection and tracking. 

Convolutional networks have had a pivotal role in the history of deep learning. The 
unique design of CNNs allowed them to be more efficient than fully connected networks 
which were prone to overfitting and computationally more complex [33]. Fully connected 
networks were also less effective at learning spatial features and patterns in data, which 
is critical for tasks such as image and speech recognition [15]. They are typically trained 
using backpropagation, stochastic gradient descent, and other optimization techniques to 
minimize a loss function that measures the difference between the predicted outputs and 
the actual outputs. Regularization techniques, such as dropout, weight decay, and early 
stopping, are often used to avoid overfitting the model to the training data [15, 55]. 

As already mentioned, CNNs have been successfully used in a variety of applications, 
such as image recognition, object detection, and segmentation. They have also been used 
in real-world applications, such as self-driving cars, medical diagnosis, and video analysis. 
Recent advancements in the field of CNNs include the use of transfer learning, attention 
mechanisms, and adversarial training. However, there are also challenges and limitations of 
CNNs, such as their interpretability, scalability, and bias. The interpretability of CNNs has 
been a long-standing issue in the deep learning community, as it is often difficult to under­
stand the inner workings of these models and how they arrive at their prediction [40]. This 
lack of transparency can pose problems in applications where model interpretability is cru­
cial, such as medical diagnosis or financial decision-making. Scalability is another challenge 
for CNNs, especially when working with high-resolution images or large-scale datasets [56]. 
Training deep convolutional networks requires significant computational resources and can 
be time-consuming, which can be a bottleneck in certain applications. CNNs, like other 
machine learning models, can be susceptible to biases present in the training data [39]. 
This can lead to biased predictions or even perpetuate existing biases when these models 
are deployed in real-world settings. The deep learning community is actively working on 
developing methods to mitigate these issues and improve the fairness and robustness of 
CNNs and other deep learning models. 
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Biological brain as an inspiration for CNNs Convolutional networks were inspired 
by biological brains. Their history can be traced back to neuroscientific experiments con­
ducted long before the corresponding computational models were developed. The work of 
neurophysiologists David Hubel and Torsten Wiesel greatly contributed to our understand­
ing of how the visual system of mammals works [15]. The most influential findings of their 
work, which have heavily impacted current deep learning models, were obtained by mon­
itoring the activity of individual neurons in cats [23]. Their research involved projecting 
images onto a screen in front of the cat and recording the response of the neurons in its 
brain. The researchers discovered that neurons in the primary visual cortex of mammals 
were sensitive to local regions in the visual field and responded to specific orientations 
of edges and bars. This research inspired the development of computational models that 
mimicked the local receptive fields and hierarchical structure of the visual cortex. 
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Figure 3.1: The ventral visual stream (VI , V2, V4, and IT) receives inputs from the lateral 
geniculate nucleus (LGN) of the thalamus, which receives input from the retina. The L G N 
projects to V I , the primary visual cortex, which is the first cortical area involved in pro­
cessing visual information. From V I , the processed visual information is then transmitted 
to the other areas in the ventral visual stream, such as V2, V4, and IT, which are responsi­
ble for progressively more complex visual processing. The connections between these areas 
are both feedforward, where information flows from lower to higher processing areas, and 
feedback, where information flows from higher to lower processing areas. Adapted from [8]. 

Convolutional networks are designed to extract features from visual data by applying con­
volutional filters to the input image. These filters are designed to detect edges and patterns 
at different scales and orientations, much like the receptive fields in the visual cortex (Fig­
ure 3.1). The hierarchical structure of CNNs (multiple layers of filters) is also inspired by 
the hierarchical processing of visual information in the brain. The filters in the earlier layers 
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detect simple features like edges and corners, while the filters in the deeper layers detect 
more complex patterns and objects, as shown in Figure 3.2. 

Readout 

Convolution Subsampling Convolution Subsampling 
(linear) (nonlinear) (linear) (nonlinear) 

Figure 3.2: A simple feedforward convolutional network can be compared to the hierarchy 
of the biological visual system, where the two pairs of convolution operator and pooling 
layer have a similar function. Adapted from [8]. 

Neocognitron One of the first computational models that drew inspiration from the 
hierarchical organization of the visual cortex was proposed by K . Fukushima with the 
Neocognitron [14]. It consisted of alternating layers of simple cells (S-cells) and complex 
cells (C-cells). These cells were designed to extract local features, such as edges, corners, 
and texture. They provide invariance to scale (S-cells) and rotation (C-cells). Even though 
the Neocognitron was not a fully-fledged C N N , it laid the groundwork for future research 
in the field. 

LeNet-5 In 1998, Yann LeCun and his team developed LeNet-5 network [34] - pioneering 
C N N architecture designed for handwritten digit recognition and machine-printed character 
recognition. It showed its real-world usage when it was in applied the United States Postal 
Service for processing and recognizing handwritten zip codes on envelopes, improving the 
efficiency of mail sorting and routing, reducing manual work, and speeding up the delivery 
process. LeNet-5 employed a combination of convolutional layers, pooling layers, and fully 
connected layers to extract features and make predictions. It demonstrated impressive 
performance on the now well-known MNIST dataset [34]. 

Over the years, CNNs have continuously evolved and improved. Some of the most influential 
architectures that have emerged include AlexNet in 2012 [33], which significantly boosted 
C N N performance in the ImageNet Large Scale Visual Recognition Challenge ( ILSVRC). 
VGGNet [53], developed in 2014, featured a deeper and more uniform structure, leading to 
even better performance in the I L S V R C . ResNet [21], introduced in 2015, employed residual 
connections that enabled the training of extremely deep networks. Inception (also known 
as GoogLeNet) [60], developed in 2014, utilized inception modules to allow the network 
to learn multi-scale features while reducing the number of parameters. This innovation 
resulted in improved efficiency and performance across various computer vision tasks. 
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3.1 Architecture 

The typical structure of a C N N consists of multiple layers, including convolutional lay­
ers (extracting features using filters), pooling layers (reducing the spatial size), and fully-
connected layers (flattening, classification/regression). The order and number of layers may 
vary depending on the specific architecture, designed for a specific task [58]. 

A n architecture of a C N N , depicted in Figure 3.3, can be visualized as a flowchart, where the 
input image is fed into the network, and each layer transforms the input into a higher-level 
representation of the image. The final layer can output a vector of scores that represent 
the likelihood of the input image belonging to each of the possible classes. 

Modern Deep CNN: 5 - 1000 Layers 
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Figure 3.3: A general architecture of a C N N , adapted from [58]. 

3.1.1 Convolutional layer 

A convolutional layer is one of the most fundamental building blocks of a C N N . The layer 
consists of a set of learnable filters (also called kernels) that are convolved with the input 
data to produce a set of feature maps. Each filter, a small matrix of numbers (weights), 
moves across the input image in a sliding-window fashion (Figure 3.5), performing a dot 
product operation with the local region of the input image that it covers. 

The neurons in the initial convolutional layer have selective connections to particular clus­
ters of pixels within the input image, referred to as their receptive fields. As a result, they 
are not influenced by every pixel in the image, but rather by specific receptive fields (refer 
to Figure 3.4). Subsequently, each neuron in the second convolutional layer establishes 
connections exclusively with neurons situated within a compact rectangular region of the 
first layer [17]. Receptive field refers to the region of the input image that affects the acti­
vation of a particular neuron in the convolutional layer. Its size is determined by the size 
of the convolutional filter (kernel) and the stride of the convolution operation. The stride 
is a parameter that controls how the filter moves across the input image during the convo­
lution process. It defines the number of pixels the filter moves horizontally and vertically 
after each convolution operation. A larger stride results in a smaller output feature map, 
while a smaller stride produces a larger output feature map. As we move deeper into the 
network, the receptive fields of the neurons become larger, and more abstract features can 
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be learned. Consequently, CNNs work well for image recognition due to their ability to 
handle the hierarchical structure commonly found in real-world images. 

Conv. layer 2 

Conv. layer 1 

Input Layer 

Figure 3.4: Illustration of the first convolutional layers in a C N N , showcasing local receptive 
fields (highlighted in orange) that are responsible for capturing specific features within the 
input image. Adapted from [17]. 

Convolutional layers are designed to be translation-invariant, meaning that they can recog­
nize features regardless of their position in the input image. This makes them well-suited 
for image recognition tasks, where objects can appear at different positions in an image. 

Convolution and cross-correlation As the name of this layer suggests, a convolutional 
layer is closely related to a mathematical operation called convolution (Equation 3.1). It 
involves sliding one function over another and calculates the sum of the product of two 
functions after one of the functions has been flipped and shifted. The result of the convo­
lution operation is a new function that represents how the shape of one function affects the 
shape of another. The convolution operation is commonly used in signal processing, image 
processing, and many other areas of science and engineering. 

{X * K)ij = ^ ^ Xi+mj+nKmjn, (3.1) 
m n 

where Xi+mj+n is the element in the (i + m)-th row and (j + n)-th column of the input 
matrix X, and Km^n is the element in the m-th row and n-th column of the flipped kernel K. 

In practice, convolutional layers typically use a similar operation to convolution called cross-
correlation (Equation 3.2). Both operations involve sliding a filter (kernel) over an input 
signal, computing the dot product between the filter and the overlapping part of the input, 
and producing an output signal. However, in convolution, the filter is flipped horizontally 
and vertically before being slid over the input signal, while in cross-correlation, the filter is 
not flipped [37]. 

(A -k K^ij = ^ ' ^ ^ Xj-\-mj-\-nK— m,—ni (^-2) 
m n 

where Xi+ni)j+n is the element in the (i + m)-th row and (j + n)-th column of the input 
matrix X, and K - m - n is the element in the (—m)-th row and (—n)-th column of the 
unflipped kernel K. 
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Although the terms convolution and cross-correlation have slightly different mathematical 
definitions, they are often used interchangeably in the context of CNNs, because the ker­
nel is adjusted during training to optimize the desired output, regardless of whether it is 
implemented as a convolution or cross-correlation operation. 
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Figure 3.5: Example of the convolution operation with a 5x5 input matrix, a 3x3 kernel 
matrix, and a 3x3 output matrix. The convolution is performed with a stride of 1. The 
input and kernel matrices are element-wise multiplied and then summed to compute the 
corresponding entries in the output matrix. Inspired by [12]. 

3.1.2 Activation layer 

Activation layers are typically used after each convolutional layer. The purpose of these 
layers is to introduce non-linearity into the network. Without non-linearity, the network 
would simply be a series of linear transformations, which is not sufficient for learning com­
plex patterns in data. The activation function is applied element-wise to the output of the 
convolutional layer, producing a new feature map. A common activation function used in 
CNNs is R e L U depicted in Figure 3.6, which sets negative values to zero [33]. 
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Figure 3.6: Rectified Linear Unit (ReLU) activation function. 
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The use of activation layers allows the network to learn more complex and discriminative 
features by introducing non-linearities in the learned representations. This is particularly 
important for tasks such as image classification, where the input data can be highly complex 
and varied. 

3.1.3 Pooling layer 

Pooling layers are commonly used in CNNs to reduce the spatial dimensions of feature maps 
generated by convolutional layers by using some function (max, average) to summarize 
subregions (receptive fields). The main purpose of pooling is to decrease the computational 
cost of the model, while also making the learned features more invariant to small translations 
in the input image [17]. The process of pooling involves moving a window across the input 
data and sending the contents of the window to a pooling function. 

There are several types of pooling layers, but the most common ones are max and average 
pooling (Figure 3.7) [51]. Max pooling takes the maximum value within a window (e.g., 
2x2) of the feature map and discards the other values. This allows the model to capture 
the most salient features of the image, while also reducing the spatial resolution of the 
feature map. Average pooling takes the average value within a window and discards the 
other values, resulting in a similar reduction in spatial resolution. 
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Figure 3.7: Illustration of max pooling (top) and average pooling (bottom) operations on 
input matrices using a stride of 2 and 2x2 pooling. The max pooling operation selects the 
maximum value from each sub-matrix, while the average pooling operation calculates the 
mean value of each sub-matrix. Both methods employ a stride of 2, which means they move 
two units at a time horizontally and vertically when scanning the input matrix. 
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Max pooling is especially effective at preserving the most important features of the image, 
such as edges or corners. It also helps to reduce the size of the feature maps and to introduce 
a degree of translation invariance. On the other hand, average pooling is useful in cases 
where the magnitude of the features is important, such as in medical imaging or satellite 
imagery. 

Pooling layers, however, can also lead to loss of information, which may be critical for 
certain tasks, such as object localization or segmentation. In addition, pooling may also 
lead to loss of fine-grained details in the image, which can negatively affect the performance 
of the model on some tasks. For these reasons, some recent C N N architectures have replaced 
pooling layers with other techniques, such as strided convolutions [54] or spatial pyramid 
pooling [20], which aim to preserve more spatial information. 

3.1.4 Fully-connected layer 

Fully-connected layers in CNNs are the classic type of neural network layer where every 
neuron in a layer is connected to every neuron in the next layer. In CNNs, fully-connected 
layers are typically used at the end of the network to process the features learned by the 
convolutional and pooling layers and to generate the final output [17]. 

After the convolutional and pooling layers extract high-level features from the input, 
the fully-connected layers can take these features and use them to make a classification 
decision. The fully-connected layer takes the flattened output from the previous layer (i.e., 
the feature vector) and multiplies it by a weight matrix. The output of this multiplication 
is then passed through a non-linear activation function to introduce non-linearity into the 
network. 

Fully-connected layers are used to learn more complex relationships between the features 
extracted from the input. They have the ability to represent any function, given enough 
neurons, and therefore are often used in the final layers of the network for classification and 
regression tasks [9]. However, fully-connected layers have a high number of parameters, 
which can lead to overfitting on small datasets. Additionally, they do not take into account 
the spatial structure of the input, which can lead to the loss of important information. To 
address these issues, other types of layers, such as convolutional and pooling layers, are 
typically used in combination with fully-connected layers in CNNs [17]. 

3.2 Benchmarks 

To measure the performance of various C N N architectures and foster advancements in 
computer vision, a variety of benchmark datasets and competitions have been established. 
Two of the most prominent and widely used benchmarks are C I F A R [30] and ImageNet [10]. 
They are crucial for evaluating the accuracy, generalization capabilities, and computational 
efficiency of different C N N models, providing a standardized reference point for researchers 
and practitioners alike. They serve as an essential tool for driving the development of 
novel architectures, optimization techniques, and data augmentation methods, ultimately 
pushing the boundaries of what is possible in image recognition and classification tasks. By 
engaging the community through these benchmark challenges, the field of computer vision 
continues to evolve, resulting in models with improved performance and a broader range of 
applications. 
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3.2.1 C I F A R - l O / C I F A R - 1 0 0 

CIFAR-10 [31] consists of 60,000 color images, each of size 32x32 pixels, divided into 10 
different classes, such as airplanes, automobiles, birds, cats, and more (Figure 3.8). There 
are 6,000 images per class, with 5,000 images for training and 1,000 images for testing. The 
relatively small size of the dataset, combined with its diverse set of object classes, makes 
CIFAR-10 a popular choice for benchmarking and evaluating machine learning algorithms, 
particularly CNNs. 

snip Si^klUMmSMMM 

Figure 3.8: CIFAR-10 dataset sample, showing 10 classes and 10 random images per class. 
From [30]. 

A more challenging variant of the CIFAR-10 dataset is called CIFAR-100 [32]. The number 
of images and image resolution are both the same, but there are 600 images per class and 
100 different classes overall. These classes are divided into 20 additional, more general cat­
egories, such as flowers, vehicles, and aquatic mammals. CIFAR-100 is a more challenging 
benchmark for assessing the performance and generalization abilities of machine learning 
models, particularly CNNs, due to the increased number of classes. 

3.2.2 ImageNet 

ImageNet [10] is a large-scale dataset, originally created for the ImageNet Large Scale Visual 
Recognition Challenge ( ILSVRC) [50], which has significantly influenced the development 
of deep learning and computer vision. The dataset contains millions of labeled images 
spanning thousands of object classes, making it one of the most comprehensive and diverse 
image databases available. The high-resolution images and the vast number of classes have 
made ImageNet an essential resource for training and benchmarking deep learning models, 
particularly CNNs. The annual I L S V R C competition has been instrumental in fostering 
the development of more advanced C N N architectures and accelerating progress in the field 
of computer vision. 
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Chapter 4 

Neural Architecture Search 

Creating successful and effective machine learning models requires making numerous de­
sign choices. Related challenges are particularly pronounced in deep learning, a subset 
of machine learning that involves training ANNs with multiple layers to perform complex 
tasks. Engineers must select network architectures relevant to a given task, with adequate 
performance, while also carefully choosing hyperparameters, training procedures, and reg-
ularization methods. This process must be repeated for each new application, and even 
experts in the field may experience laborious trial and error to identify the best choices for 
a particular dataset [24]. 

This is where the field of Automated Machine Learning (AutoML) [24] comes to play. It 
aims to simplify the problematic decisions mentioned in the previous paragraph by leverag­
ing data-driven, objective, and automated approaches. Practitioners need only to provide 
data, and the AutoML system automatically attempts to determine the optimal approach 
for a given application. Even non-experts, people lacking the necessary resources to un­
derstand the underlying technologies in depth, can use AutoML to quickly and effectively 
design and implement high-performing machine learning models. This makes it possible for 
virtually everyone to access customized, state-of-the-art machine learning solutions with 
ease [24]. 

Neural Architecture Search is one of the most challenging elements of AutoML as it 
works with an extremely large design space and the fact that a single evaluation of a neural 
network is a long, computationally demanding process [13]. N A S attempts to solve the 
process of automating the design of optimal neural network architecture for specific tasks. 
The conventional design of neural networks has relied on human expertise and manual 
trial-and-error, which can be time-consuming, error-prone, and often subjected to biases. 
Considering these difficulties, automating the design process was a logical decision and by 
utilizing intelligent search algorithms, including genetic algorithms, reinforcement learn­
ing, and Bayesian optimization, N A S can overcome the aforementioned limitations and 
can automatically identify high-performing architectures without the need for manual in­
tervention. N A S methods achieved numerous successes, outperforming manually designed 
network architectures on tasks including image classification [69, 45], object detection [69] 
or semantic segmentation [6]. 

The use of NAS, however, also comes with a number of difficulties. The high com­
putational cost involved in comparing various architectures is one of the main problems. 
Numerous neural network architectures must be trained and evaluated as part of N A S , 
which can be computationally expensive for each architecture. The scalability of N A S to 
bigger and more complicated datasets may be constrained by this high computational cost. 
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The sheer size of the search space presents another challenge, making it impossible to inves­
tigate every potential architecture. As a result, to lower the computational cost and boost 
NAS efficiency, researchers have turned to a variety of techniques like weight-sharing [43], 
surrogate models [25], and neural architecture compression [5]. However, each of these 
approaches has its own set of drawbacks, and new approaches are constantly looked for to 
increase the NAS's scalability and effectiveness. 

According to research by Elsken et al. [13], the methods of N A S can be categorized as 
follows: search space, search strategy, and performance estimation strategy. See Figure 4.1 
for an abstract illustration of the N A S principles. 
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Figure 4.1: N A S involves selecting an architecture A from a predefined search space A 
using a search strategy. The chosen architecture is then evaluated for performance using 
a performance estimation strategy. Adapted from [13]. 

4.1 Search Space 

The search space of N A S represents the set of all possible neural network architectures that 
can be considered during the search process and that the N A S algorithm can explore. It can 
be defined in various ways, such as by specifying the types of layers (convolutional layers, 
pooling layers, recurrent layers), the connectivity between layers (skip connections, dense 
connections), and the hyperparameters of each layer (number of filters in a convolutional 
layer, size of a pooling window). 

The size and complexity of the search space are critical factors that can significantly 
affect the efficiency and effectiveness of the N A S process. A small search space may limit 
the diversity of the architectures that can be explored, while a large search space may 
make the search process computationally expensive or even infeasible. Thus, designing 
an appropriate search space is a crucial step in N A S , as it directly impacts the quality and 
efficiency of the discovered neural network architectures. 

Global search space One category of neural architecture search space is the global search 
space. It is defined for the graphs representing a complete neural architecture and where 
the arrangement of operations, like convolution or pooling, is not restricted to a specific 
pattern or structure. The simplest example of a global search space is the chain-structured 
search space. It consists of architectures that can be represented by an arbitrary sequence of 
ordered nodes, where each node in the chain has only one parent and represents an operation 
or layer applied to the input data [26]. 
The global search space offers more flexibility in architectural design, which can potentially 
lead to the discovery of novel and highly effective architectures that may not exist in a cell-
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based search space, another widely used type. However, this flexibility comes at the cost 
of increased computational complexity, as the search space is typically much larger, and 
therefore the search process is more computationally demanding. The global search space 
may also require more manual engineering to adapt a discovered architecture to a different 
dataset or problem since there are no modular building blocks like cells that can be easily 
adjusted or transferred. 

Cell-based search space In this search space, a neural network architecture is built by 
replicating a cell structure, which is a relatively small neural network module that can be 
stacked repeatedly to form a larger network (as shown in the example cell on the right side 
of Figure 1.2). The cell's architecture is defined by a directed acyclic graph (DAG), a graph 
that has directed edges and no cycles, ensuring the flow of information is unidirectional. 
In the context of neural networks, a D A G allows for complex layer connections and skip 
connections while maintaining a valid computational graph [26]. 
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Figure 4.2: Comparison of simplified global search space (left) and cell-based search space 
(right) in N A S . From [26]. 

There are different ways to represent operations and connections in the D A G , depending 
on the search space formulation. In some N A S benchmarks, such as NAS-Bench-101 [67], 
nodes represent operations (e.g., convolutional layers, pooling layers), and directed edges 
represent the flow of information between these operations. In other N A S formulations like 
NAS-Bench-201 [11], the directed edges themselves represent the operations or layers, and 
the nodes act as intermediate states or tensors in the network. 

The cell-based search space offers several advantages over the other types. Namely, the 
search space is relatively small, since cells are usually made of significantly fewer layers 
when compared to the whole network search architectures. Another benefit is that using 
architectures constructed from cells allows for simpler transfer or modification of the model 
to other datasets, as the number of cells and filters can be adjusted accordingly. It has 
also been shown that the process of creating network architecture by repeating individual 
building blocks is a useful design principle in general [59]. 
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4.2 Search Strategy 

A search strategy, in this context, refers to a method of search space exploration and 
identification of promising neural architectures. The goal is to find an architecture that 
maximizes some performance measure (e.g. accuracy on a validation set on unseen data, 
computational cost, or other). Search strategies include random search [35], Bayesian op­
timization [64], evolutionary methods [57], reinforcement learning [68], and gradient-based 
methods [52]. 

When employing evolutionary algorithms (EA) in NAS, each network structure is repre­
sented as a string, and random mutations and recombinations of these strings are performed 
during the search process. Subsequently, each resulting string is trained and evaluated on 
a validation set, and the best-performing models produce offspring. 

The reinforcement learning (RL) approach uses an agent to execute a sequence of actions 
that determine the structure of the model. The model is then trained, and its validation 
performance is returned as a reward, which is used to update the R N N controller. While 
both E A and R L methods have been successful in discovering network structures that sur­
pass manually designed architectures, these approaches demand significant computational 
resources [36]. 

4.3 Performance Estimation Strategy 

Given the importance of selecting promising neural architectures during the search process, 
a crucial component of N A S is performance estimation. This aspect allows for the evaluation 
and comparison of candidate architectures based on their expected performance on a given 
task, guiding the search strategies (described in Section 4.2) toward optimal solutions. By 
accurately estimating the performance of various architectures, N A S can effectively search 
through a vast design space and identify the most promising candidates [24]. 

Performance estimation plays a pivotal role in ranking and selecting architectures, ulti­
mately guiding the search for more effective and efficient solutions. It can be done in 
several ways. 

The simplest, straightforward approach, though with high computational demands, is to 
train an architecture on training data and then evaluate its performance on validation 
data. This strategy, directly measuring the performance of a fully trained model on the 
validation set, provides the most accurate performance estimation. However, it is often 
infeasible in practice, especially for deep learning models and large search spaces, as it 
requires exhaustively training a large number of architectures. 

To reduce the computational burden of training each architecture from scratch, there have 
been developed new methods, approximating the performance of architectures, trading off 
some accuracy for efficiency, collectively called performance predictors [13]. 
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4.3.1 Performance Predictors 

Numerous methods have recently been proposed for predicting the final validation accuracy 
of a neural architecture by training a model on an encoding of the architecture. Gaussian 
processes, neural networks, and tree-based methods are some popular choices for such mod­
els [65]. However, these methods typically require hundreds of fully-trained architectures 
to be used as training data, leading to high initialization time. On the other hand, learn­
ing curve extrapolation methods require little or no initialization time, but each prediction 
involves partially training the architecture, resulting in high query time. Recently, a few 
techniques have been introduced that are both fast in query time and initialization time, 
predicting based on a single minibatch of data. Furthermore, using shared weights is a pop­
ular paradigm for N A S , although its effectiveness in ranking architectures is debated [65]. 

A performance predictor can be generally defined as any function / ' which predicts the 
final accuracy or ranking of an architecture without fully training it. This means that 
evaluating / ' should take less time than evaluating the validation error f of architecture 
a after training on a fixed dataset for a predetermined number of epochs E, and the set 
{/'(a) | a <E A}, where A is a N A S search space, should ideally exhibit a high correlation 
or rank correlation with the set {/(a) | a G ^4}. 

According to the comprehensive study on performance predictors in N A S by White et 
al. [65], predictors can be categorized into the following families: Model-based, Learning 
curve-based, Zero-cost Proxies, Weight sharing, as depicted in Figure 4.3. 
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Figure 4.3: Performance Estimation Strategy families, as classified by White et al. [65]. The 
figure illustrates four major families: model-based, learning curve-based, weight sharing, 
and zero cost. Predictors employed in this thesis are highlighted in green. 

Each performance predictor consists of two primary routines: 

• Initialization routine - general pre-computation to set up the predictor 

• Query routine - conducting architecture-specific calculations 
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The initialization and query routines' runtimes can vary significantly depending on the 
predictor type. Within N A S algorithms, the initialization routine is usually executed once 
at the beginning, while the query routine is performed multiple times throughout the algo­
rithm. Some performance predictors also utilize an update routine to modify parts of the 
computation from initialization without re-executing the entire procedure (e.g., updating 
a model in a N A S algorithm based on newly trained architectures). The content presented 
in this section draws mainly from the work conducted by Elsken et al. [13]. 

Model-based (trainable) methods These techniques use machine learning models for 
prediction of how a particular neural architecture will perform without actually training it. 
In this approach, a surrogate model is trained using a dataset of neural architectures and the 
performance metrics that correspond to them. The model must frequently be trained using 
an initial set of architectures and their performance metrics, which implies a high initializa­
tion time. The query time, however, is typically brief, as surrogate models are designed for 
efficient inference. Various machine learning models have been used in this context, ranging 
from regression models, including linear regression, support vector regression, to tree-based 
models, including decision trees, random forest, and neural networks. 

Learning curve-based methods These methods extrapolate the performance of neural 
architectures based on their learning curves. Learning curves show the progress of the 
training process, typically by plotting the validation loss or accuracy against training time 
or epochs. By observing the learning curve of a partially trained model, these methods try 
to predict its final performance. While the initialization time is none, as they do not require 
an upfront training process like surrogate models in model-based methods, the query time 
can be high since architectures need to be partially trained. The accuracy of the prediction 
depends on how well the extrapolation captures the actual learning behavior. 

Zero-cost methods These methods estimate the performance of neural architectures 
without training them, by analyzing the architecture itself. They rely on simple, compu­
tationally inexpensive heuristics or metrics, such as network depth, width, floating point 
operations per second (FLOPs), or parameter count, to predict performance. Although 
these methods have low computational costs, their predictive accuracy may not be as high 
as other methods, especially for complex tasks. 

Weight sharing methods Weight sharing methods leverage the idea of sharing learned 
weights among different architectures in the search space. These methods train a single 
super-network or one-shot model that encompasses all possible architectures in the search 
space. The performance of individual architectures is then estimated by extracting the cor­
responding sub-networks and their shared weights from the super-network. This approach 
reduces the overall training time and computational cost, as multiple architectures can be 
evaluated simultaneously. However, the accuracy of these methods depends on how well 
the shared weights generalize to the individual architectures. 
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4.4 Benchmarks 

The fact that different N A S methods frequently do not use the same search spaces, hy-
perparameters, and evaluation metrics makes it difficult to reproduce the experiments and 
results of different N A S algorithms. Without a standardized benchmark, it can be challeng­
ing, or even impossible, to compare the performance of different N A S algorithms fairly [67]. 
This is where N A S benchmarks come in. N A S benchmarks are datasets with pre-trained 
neural network designs, and they are used to assess how well N A S techniques function by 
evaluating their performance. Therefore, these benchmarks provide a consistent method 
for assessing and contrasting the performance of N A S algorithms and determining which 
designs perform better on various datasets. This makes it simpler for researchers to design 
effective neural networks for specific applications and facilitate the reproducibility of the 
results. Standardized benchmarks can also provide a common ground for researchers to 
share their results and insights, which can accelerate the progress in the field of N A S [67]. 

Over time, various such N A S benchmarks have been proposed. These include, among 
others, NAS-Bench-101 [67] and NAS-Bench-201 [11], varying in their complexity, dataset 
size, search space, and performance metrics, providing a range of options for researchers to 
choose from depending on their specific research goals. 

4.4.1 NAS-Bench-101 

NAS-Bench-101 is the first publicly available dataset of C N N architectures for N A S research 
trying to address the issues of N A S research - namely, high computational demands for 
experiment reproduction, and the fact that it is challenging to credit the success of each 
method to the search algorithm itself because different N A S methods are not comparable 
to one another due to various training methods and search spaces [67]. 

NAS-Bench-101 search space, designed to be compact, yet expressive, consists of approxi­
mately 423,000 unique convolutional architectures, mapped to their training and evaluation 
metrics. A l l of the architectures were trained and then evaluated on CIFAR-10 dataset [30]. 

Implementation details 

The dataset contains small feedforward structures called cells, which are represented as 
directed acyclic graphs. Each D A G consists of V nodes: an input node, an output node, 
and a fixed number of intermediate nodes. In each node, there is one of L labels assigned, 
signifying the associated operation. 

Each C N N architecture has a fixed macro structure (Figure 4.4 left), consisting of a cell 
(specific for the given architecture) stacked 3 times, followed by a downsampling layer. This 
stacking and the downsampling process is repeated 3 times, followed by a global average 
pooling layer and a final dense softmax layer. The initial layer of the architecture is called 
a stem. This is a common way of representing a C N N architecture [21, 22]. 

The encoding of a cell can affect the effectiveness of N A S algorithms, and a common encod­
ing is a 7-vertex D A G represented by a binary matrix and a list of 5 labels. This encoding 
has approximately 510 million total unique models, but many of them are invalid or not 
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computationally unique. The search space thus consists of approximately 423,000 unique 
graphs. 
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Figure 4.4: Depiction of the shared skeleton of CNNs in NAS-Bench-101 search space (left) 
and an example module in the form of an Inception-like cell (right). Adapted from [67]. 

Because of the fact that the search space made of mentioned cell-like structures would grow 
exponentially in both V and L, there were several constraints imposed: 

• L = 3, and allows just the following operations: 

— 3 x 3 convolution 

— 1 x 1 convolution 

— 3 x 3 max-pool 

. V < 7 

• Maximum number of edges is 9. 

A l l NAS-Bench-101 C N N models use a fixed set of hyperparameters chosen to be robust 
across different architectures. Each architecture is evaluated after training three times 
with random initializations, for each {4,12,36,108} number of epochs. The metrics of 
each network architecture include training accuracy, validation accuracy, testing accuracy, 
training time in seconds, and the number of trainable model parameters. 
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Chapter 5 

Design of Accuracy Predictors 

The aim of this chapter is to describe the programming aspects involved in analyzing 
and comparing various performance estimation methods that utilize regression models as 
predictors. 

The search space encompasses neural architectures from NAS-Bench-101 (Subsection 4.4.1), 
utilizing the cell-based approach to represent the architecture of a C N N . For the regres­
sion model (accuracy predictor), several machine learning techniques have been selected, 
including linear regression (Section 2.3), random forest (Section 2.1), XGBoost (Section 
2.5), M L P (Section 2.2), and G C N (Section 2.6). 

The project was implemented using the Python programming language. For the implemen­
tation of linear regression and random forest models, the scikit-learn library, described in 
Section 5.1, was employed. It is a widely-recognized and popular M L library in Python that 
offers a comprehensive suite of tools for data analysis and modeling. The library is chosen 
for its simplicity, ease of use, extensive documentation, and the strong community support 
it receives. Moreover, scikit-learn provides efficient implementations of a wide range of M L 
algorithms, including linear regression and random forest, making it a suitable choice for 
the rapid development and evaluation of the models in this study. 

For implementing the M L P and G C N models, the PyTorch library, described in Section 5.2, 
was selected. As a versatile and powerful deep learning framework in Python, PyTorch is 
particularly well-suited for working with neural networks. The choice of PyTorch is driven 
by its dynamic computation graph feature, which enables a more natural model development 
and debugging process. Additionally, PyTorch offers efficient G P U support for accelerated 
training and benefits from a rich ecosystem of complementary tools, libraries, and a vibrant 
community. These attributes make PyTorch an appropriate choice for developing and 
assessing the M L P model in the context of this study. 
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5.1 Scikit-Learn 

In the context of this project scikit-learn, a popular M L library in Python, was employed 
for implementing linear regression and random forest models. The library's straightforward 
A P I and efficient implementations of these algorithms allowed for rapid development and 
evaluation of the models, which contributed to the overall efficiency of the project. 

Figure 5.1: Scikit-learn modeling pipeline, adapted from [2]. 

The scikit-learn modeling pipeline, shown in Figure 5.1, involves the following steps: 

• Preprocessing - preparing the data for modeling by cleaning, transforming, and 
scaling the input features. This can include techniques like handling missing values, 
encoding categorical variables, and normalizing or standardizing numerical features. 

• Feature Selection - identifying the most relevant features for the specific problem at 
hand, which can improve model performance and reduce computational complexity. 

• Model selection - choosing the appropriate M L algorithm for the specific problem 
at hand. In the context of this project, this would be the linear regression, random 
forest, and XGBoost models. 

• Model training - fitting the selected model to the training data by adjusting its 
parameters to minimize the error between the predicted outputs and the actual output 
labels. 

• Evaluation - assessing the performance of the trained model using various evalua­
tion metrics, such as mean squared error, coefficient of determination, or accuracy, 
depending on the type of problem being addressed (regression or classification). 

• Hyperparameter tuning - optimizing the model's hyperparameters, such as the 
number of trees in a random forest or the regularization strength in linear regression, 
to improve its performance. 
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5.2 P y Torch 

PyTorch is a versatile and powerful deep-learning framework in Python, designed specifi­
cally for working with neural networks. Developed by Facebook's AI Research lab (FAIR), 
PyTorch has gained significant popularity due to its flexibility, ease of use, and dynamic 
computation graph capabilities. It provides powerful features for deep learning, such as 
tensors, autograd, dynamic computation graphs, and G P U acceleration. 

Tensors Tensors, n-dimensional arrays, are the basic building blocks in PyTorch and are 
used to represent data. They are similar to NumPy arrays but with additional features to 
support deep learning applications, such as G P U acceleration. 

Autograd Automatic gradient computation (Autograd) is a key feature in PyTorch that 
automates the computation of tensor gradients (partial derivatives) with respect to their 
input variables. This process is essential for optimizing model parameters during training. 
As a result, it simplifies the creation and training of neural networks by eliminating the 
need for manual gradient calculations. 

Dynamic computation graph In general, computational graphs serve as a method for 
representing mathematical expressions or formulas. The dynamic computation graph in 
PyTorch (Figure 5.2) is a flexible way to build and compute neural network models during 
runtime. It allows developers to build and modify computational graphs on-the-fly as they 
execute operations, making it easier to experiment with different model architectures. 

forward 

Grads from different paths are added together 

backward 

Figure 5.2: Example of an augmented computational graph in PyTorch 1 , featuring input 
variables, operations, and output values. The graph demonstrates both the forward pass 
(data flow from inputs to outputs) and the backward pass (gradient computation for model 
parameters), including gradient nodes and sums gradients from different paths to obtain 
final gradient values. 

1Image from: https: //pytorch.org/blog/computational-graphs-constructed-in-pytorch/ 
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PyTorch provides efficient G P U support for the accelerated training of neural networks. It 
leverages NVIDIA's cuDNN library and is capable of seamlessly switching between C P U and 
G P U computations, allowing for faster model training and evaluation. 

Choosing PyTorch over scikit-learn for implementing the M L P in this study is advanta­
geous for several reasons. PyTorch is specifically designed for deep learning and neural 
networks, offering greater flexibility and customization options for the model architecture 
and training process. Its dynamic computation graph allows for a more intuitive develop­
ment and debugging experience. Moreover, PyTorch provides efficient G P U support, which 
accelerates the training and evaluation of neural networks. While scikit-learn has a basic 
M L P implementation, it lacks the depth of features, customization options, and G P U ac­
celeration that make PyTorch a more suitable choice for this study. Additionally, PyTorch 
was chosen for implementing the NASBenchlOlDataset class, representing the NAS-Bench-
101 dataset, which can be found in the dataset.py file. The decision to use PyTorch for 
this purpose is based on the fact that PyTorch's Dataset class provides an efficient and 
convenient interface for handling large datasets, allowing for easy integration with other 
PyTorch functionalities such as data loaders, batching, and preprocessing. By inheriting 
from the PyTorch Dataset class, the NASBenchlOlDataset class gains the benefits of this 
interface. 

5.3 Performance Predictor Specification 

In this section, the specifications of the performance estimation predictor for CNNs are 
discussed. The design process of building (Subsection 5.4.1) and applying (Subsection 5.4.2) 
the predictor involves selecting an appropriate task for the CNNs, constructing a dataset, 
and defining features as input to the predictor. The predictor is trained on specified features 
and is ready to estimate the performance on unseen neural architectures. 

5.3.1 Task selection 

The chosen task for the CNNs in this study is image classification, a widely-studied problem 
in computer vision. Image classification involves assigning an input image to one of sev­
eral predefined categories. This research utilizes the NAS-Bench-101 to search for optimal 
architectures in the predictor search space, focusing on architectures trained and evalu­
ated on CIFAR-10 (Section 3.2). A detailed description of the benchmark can be found in 
Subsection 4.4.1. 

5.3.2 Dataset construction (search space) 

To construct the dataset, information from the NAS-Bench-101 dataset is utilized. The 
benchmark contains precomputed performance metrics and architecture descriptions for 
a wide range of CNNs (423,624 samples), enabling efficient comparison and evaluation. 
The dataset will include architecture and performance data from the benchmark, and the 
performance data will serve as the ground truth for training and evaluating the accuracy 
predictors. 
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5.3.3 Feature extraction and selection 

Feature extraction and selection are crucial for building an effective accuracy predictor. In 
this study, the features will be extracted from the architecture descriptions provided by the 
NAS-Bench-101 benchmark. 

NAS-Bench-101 information As described in the corresponding Subsection 4.4.1, the 
NAS-Bench-101 dataset contains cell-based representations of C N N architectures, with ad­
ditional metadata and metrics. This information was analyzed to select the most useful 
features, used for training the predictor model. Multiple implementations, including Neu­
ral Predictor by Google Brain [62], suggest using of the architecture encoding and the 
related operations as input features, because they provide a compact representation of the 
architecture, capturing essential information about the connectivity and operation types. 

Other potentially useful information, analyzed in Section 7, is the number of trainable 
parameters of a neural network, which can impact the model's capacity and its ability to 
generalize. This number is known in advance, as it can be deduced from the architecture 
encoding itself and can improve the performance of the predictor. Another possibly useful 
information could be the architecture depth as a feature, which is known to influence the 
network's capacity and the ability to learn complex patterns. In general, deeper networks 
can learn more complex representations, which may lead to better performance on certain 
tasks [53]. 

It is not guaranteed, that this additional information (number of trainable parameters 
and network depth) adds some more discriminative power to the predictor. This is why 
correlation analysis (Subsection 5.3.4) is performed on the aforementioned information. 
The conducted experiments in Chapter 7 compare the predictive abilities of the predictors 
utilizing this additional information, essentially determining whether it is useful or not in 
the context of NAS. 

5.3.4 Correlation analysis 

This technique measures the linear relationship between pairs of features and the target 
variable (classification accuracy). Features with a high correlation to the target variable 
and low intercorrelation with other features are considered more informative and relevant. 
By using correlation analysis to identify and select the most relevant features, the accuracy 
predictor's performance can be improved, while reducing the complexity and computational 
cost of the predictor models. 

The analysis itself is conducted in the correlation_analysis. ipynb notebook, carefully 
comparing potentially useful features. The file contains a detailed examination of the 
NAS-Bench-101 dataset, focusing on the relationships between various architecture charac­
teristics and performance metrics. The goal of this analysis is to determine the potential 
usefulness of these characteristics as features in a performance prediction model. The NAS-
Bench-101 dataset is utilized to extract and analyze several architecture properties, includ­
ing adjacency matrix (connections), and operations (operations). Additional properties 
were calculated based on the neural network information, including network depth, num­
ber of connections, the average number of connections per vertex, conv3x3 count, conv lx l 
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count, and max pooling count. The performance metrics include the number of trainable 
parameters (weights), training time, training accuracy, and validation accuracy. 

The mentioned features are analyzed for their correlation with validation accuracy (Figure 
5.3). The number of trainable parameters has a positive correlation (r = 0.24) with the 
target variable. Surprisingly, network depth is found to have a negative correlation with 
validation accuracy (r = —0.14). The conv3x3 count has a moderate positive linear cor­
relation with the validation accuracy (r = 0.46). This suggests that as the number of 3x3 
convolutional layers in the network increases, the validation accuracy tends to improve. 
This may be because a higher conv3x3 count might provide the network with more capac­
ity to learn complex patterns in the data. When the problem requires learning intricate 
features, a network with more capacity (more convolutional layers) might perform better. 

Correlation Matrix Heatmap 

Figure 5.3: Correlation matrix of potentially useful features, extracted from the NAS-
Bench-101 dataset. 

One of the aims of this thesis is to investigate whether the additional features, not typically 
used in practice, can improve the performance of the model. The notebook provides an 
investigation of the relationships between various architecture characteristics and perfor­
mance metrics in the NAS-Bench-101 dataset. While some features show potential for use 
in performance prediction models, none exhibit strong correlations with validation accu­
racy. This analysis serves as a foundation for further research into the usefulness of these 
features in predicting the performance of neural network architectures. 
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5.3.5 Hyperparameter tuning 

A hyperparameter tuning strategy, conducted in hyperparameter_tuning.ipynb notebook, 
is employed to optimize the performance of the predictor models, systematically searching 
for the best combination of hyperparameters for each M L method, such as the number of 
decision trees and maximum depth for random forests, or the number of hidden layers, 
neurons per layer, and activation functions for M L P s . 

The random search technique, combined with cross-validation (Subsection 5.3.6), was also 
utilized to ensure that the chosen hyperparameters generalize well to unseen data, lead­
ing to higher accuracy and better generalization to new C N N architectures, ultimately 
contributing to a more efficient N A S process. 

5.3.6 Cross-validation strategy 

Cross-validation is an essential aspect of training M L models, as it helps to mitigate overfit-
ting and provides an unbiased evaluation of their performance. In this work, a k-fold cross-
validation strategy (Figure 5.4), implemented using the KFold function from the scikit-learn 
library (Section 5.1), is used within the hyperparameter tuning strategy (Subsection 5.3.5). 
K-fold cross-validation involves partitioning the dataset into k equally-sized subsets, or 
"folds". The training and validation process is then repeated k times, with each fold serv­
ing as the validation set exactly once, while the remaining folds are used for training. This 
ensures that every data point is used for both training and validation, providing a compre­
hensive evaluation of the model's performance. 

All Data 

Training data Test data 

Split 1 

Split 2 

Split 3 

Split 4 

Split 5 

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 

V Findi ing Parameters 

Final evaluation ion ^ Test data 

Figure 5.4: K-fold cross-validation from scikit-learn 2. 

The primary advantage of k-fold cross-validation, as implemented by the KFold function in 
scikit-learn, is its ability to generate a more reliable estimate of the model's performance 
on unseen data. By averaging the performance metrics, such as M A E , or R2, across the 
k iterations, a more accurate measure of the model's predictive capabilities can be obtained. 
This cross-validation strategy helps to ensure that the chosen predictor models are robust 
and generalize well to new C N N architectures. 

2Image source: https: //scikit-learn.org/stable/modules/cross_validation.html 
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5.3.7 Objective functions 

The selection of objective functions for performance predictors in N A S is crucial. This work 
employs the following objective functions commonly used in regression analysis: 

• Mean Squared Error (MSE): M S E averages the squared differences between predicted 
and actual performance values. It is mathematically defined for n pairs of actual (y) 
and predicted (y) values as: 

n 

MSE=-Y^{yi-yif (5.1) 
1=1 

M S E is prevalent in regression problems and emphasizes larger errors due to the 
squaring operation [18]. 

• Mean Absolute Error ( M A E ) : M A E computes the average absolute difference between 
the estimated and actual performance values. It is given by: 

MAE 
1 " 
-^2\yi-yi\ (5-2) n 

i=l 
Unlike M S E , M A E is less sensitive to large errors and outliers, thereby providing a 
more robust estimation when the error distribution has significant outliers [66]. 

Pearson's Correlation Coefficient (PCC): P C C measures the linear correlation be­
tween the predicted and actual performance values. It ranges from -1 to 1, with 1 
indicating a perfect positive correlation, -1 a perfect negative correlation, and 0 no 
correlation. It is defined as: 

p c c = Y.ni=i(vi - v)(vi - v) ^ ^ 

where y and y are the means of the observed and predicted values, respectively [41]. 

Coefficient of Determination (R2): R2 computes the proportion of variance in the 
actual performance values that is explained by the predictor model: 

2-ii=\\yi ill 

where y is the mean of the observed values yi. A higher R? denotes a better model 
fit [41]. 

Kendall's Tau: Kendall's Tau is a rank correlation coefficient measuring the similarity 
between two sets of rankings [27]. Given two sets of rankings R\ and R 2 , Kendall's 
Tau is calculated as: 

2?i(n — 1) 

where nc is the number of concordant pairs, nd is the number of discordant pairs, and 
n is the number of items [27]. In the context of N A S , Kendall's Tau assesses how well 
the predictor can identify the most promising architectures in terms of their ranking 
rather than exact accuracy values. 
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5.4 Performance Predictor Structure 

In this section, the focus is on providing an overview of the overall structure of the predictor 
and illustrating how the chosen M L methods are applied to predict classification accuracy. 

The selected M L methods are applied to the dataset by first training the models on the 
extracted and selected features from the C N N architectures in the NAS-Bench-101 bench­
mark. The trained models are then used to predict the classification accuracy of unseen 
C N N architectures in the search space. The results obtained from applying each predictor 
are compared with one another. 

5.4.1 Building an accuracy predictor 

The procedure of building an accuracy predictor, depicted in Figure 5.5, is characterized 
by a series of critical steps, each specifically crafted to maximize both the efficiency and 
accuracy of the predictor. 

• Sample N models 

• (A small subset) 
Train & 
Validate | 75.2% 

I 
I Search Space I True accuracy 
I I 

Not needed (provided by NAS-Bench dataset) 
Regression Model 

• linear regression 

random forest 

•MLP 

Figure 5.5: Typical building process of a performance predictor for NAS, inspired by [62]. 

The first step entails sampling N neural architectures from a specified search space. As 
discussed in Section 5.4.2, striking a balance between computational cost and time is crucial, 
so the number N should not be excessively large to maintain the predictor's usefulness. 
This is because all N sampled models must be trained and validated to determine their 
true accuracies, and training neural networks is a resource-intensive process. 

The resulting dataset, comprising neural network architectures and their corresponding 
true accuracies, enables the predictor to estimate the performance of unseen architectures. 
Finding an optimal balance for the number of sampled architectures N is essential—large 
enough to effectively train the predictor, yet small enough to reduce the burden of neural 
network training. This trade-off is critical to achieve the best results. 

Figure 5.5 shows that the first stages of building a predictor (reduced opacity) are not 
required for this study. This is because the dataset has already been collected in advance 
using the NAS-Bench-101 benchmark, which provides information on numerous C N N ar­
chitectures and their true performance metrics. Consequently, the initialization process is 
significantly simplified. 
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To train a performance predictor, it is essential to extract relevant features that represent 
the neural network architectures within the search space. As previously mentioned, in 
NAS the choice of N (number of architectures used for predictor training) depends on the 
compute budget one has. In this work, however, we can afford to increase the value of N 
substantially, as we do not need to exhaustively train and evaluate each architecture. 

Input Architecture Encodings 
Architectures (feature extraction) 

+ 

Additional 
useful information 
- # of trainable parameters 
- operations 
- network depth 

Build Predictor 
training + evaluation 

Figure 5.6: Detail view of the typical predictor building process, showing feature extraction 
and selection, leading to the building of the predictor. 

As depicted in Figure 5.6, the process of building an accuracy predictor involves gathering 
encodings for each network architecture in the training set, including operations such as max 
pooling (Subsection 3.1.3) and convolution (Subsection 3.1.1). Additionally, the number 
of trainable parameters for a specific network architecture and the network depths are 
considered (Subsection 5.3.4), as they both can be calculated in advance from the network 
structure. In the first approach, this information is flattened and fed into the predictor 
for training and evaluation (Experiment Sets in Sections 7.2 and 7.3). Conversely, the 
second approach, utilizing G C N capabilities (Section 2.6) aims to preserve the architecture's 
structure by retaining the D A G graph structure, which could potentially lead to a better 
predictive power (Experiment Set in Section 7.4). 

To ensure the M L models (predictors) generalize well to unseen data, a suitable training 
data split strategy is employed. One common approach is to use cross-validation (Subsec­
tion 5.3.6), where the training data is divided into k equal-sized subsets (folds), with each 
subset being used as a validation set exactly once, while the remaining k — 1 subsets form 
the training set. The model is then trained and evaluated k times, and the average perfor­
mance across all iterations is calculated. This process reduces the likelihood of overfitting 
and helps to obtain a more reliable estimate of the model's performance. 
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5.4.2 Apply ing an accuracy predictor 

Figure 5.7 illustrates the process of employing trained predictor models to make predictions 
for new C N N architectures. The gray rectangle on the right side of the figure (reduced 
opacity) represents the portion of the performance predictor application process that is not 
directly carried out in this work. This is because the search space used in this study is 
based on the NAS-Bench datasets (specifically NAS-Bench-101), which already provide the 
necessary information. 

81.5% 
top Train & 

Validate 
Pick the best 

validation 

72.3% Not needed (provided by NAS-Bench dataset) 

Regression Model 

- linear regression 

- random forest 

- M L P 

Figure 5.7: Typical way of applying the performance predictor for NAS, inspired by [62]. 

Once the predictor models have been trained and fine-tuned using the existing dataset, they 
can be leveraged to estimate the classification accuracy of unexplored C N N architectures. 
This involves inputting numerous random (unseen) architectures into the predictor, which 
in turn estimates their accuracy. Subsequently, the top K architectures with the highest 
predicted accuracy are selected as the most promising candidates. These K architectures 
must then undergo exhaustive training and evaluation to obtain their actual metrics. As 
noted in Subsection 5.4.1 regarding the value of N architectures during training, it is also 
crucial to strike a balance for the number K. Ideally, K should be large enough to account 
for the predictor's imperfect accuracy estimations while remaining small enough to minimize 
computational resources and time spent on training the architectures. 

By leveraging the predictor's ability to estimate performance rapidly, the N A S process can 
be guided more efficiently in the search for optimal architectures. The predictor models 
can be used to prioritize the evaluation of architectures that are expected to yield high 
performance, thereby reducing the time and computational resources spent on evaluating 
suboptimal architectures. As the N A S process iterates, the predictor models can be updated 
with new data and continually refined, further improving the efficiency of the search. By 
incorporating the predictor models into the N A S process, it becomes possible to explore 
the vast search space of C N N architectures more effectively and identify high-performing 
architectures with significantly reduced time and computational cost. 
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Chapter 6 

Implementation 

In this chapter, the program implementation, structure, and its usage are described. The 
design of the program is described in Chapter 5. Python programming language was cho­
sen due to its versatility and extensive support for scientific and machine learning libraries. 
Among the many libraries utilized, scikit-learn and PyTorch stood out as particularly rele­
vant for implementing the models, calculating relevant metrics, and for dataset manipula­
tion. The implementation of performance predictors was inspired by the N A S L i b 1 project. 

6.1 Program Structure 

The codebase for this project has been thoughtfully structured to emphasize modularity 
and ease of use. By organizing the components as described below, the implementation 
allows for straightforward extension and customization. The Predictor base class (in 
predictor .py), adapted from N A S L i b project [47], serves as the foundation for all predic­
tor models: linear regression (in linear_reg.py), random forest (in random_f orest .py), 
XGBoost (in xgb.py), M L P (in mlp.py), and G C N (in gcn.py). A l l predictors are trained, 
evaluated, compared, and analyzed in the Jupyter Notebook analysis. ipynb. NAS-Bench-
101 dataset handling is represented by the NASBenchlOlDataset class (in dataset.py). 
A collection of useful functions can be found in utils.py file, containing functions for 
plotting, cross-validation, and other useful operations. By maintaining a well-structured 
organization within the codebase, each component can focus on specific functionality, ulti­
mately making the entire project easier to understand, maintain, and extend. The project's 
source code, including the mentioned files, along with a comprehensive user manual, is pub­
licly available on Gi tHub 2 . 

6.2 Dataset representation 

In this study, the publicly accessible and open-source dataset NAS-Bench-101 (Subsection 
4.4.1) is employed. This dataset encompasses a variety of C N N architectures represented 
as fixed-structure cells and includes key metrics like validation accuracy, test accuracy, and 
training time. The dataset comes with an official public A P I hosted on Gi tHub 3 , which 
simplifies its utilization. 

x NASLib: https: //github.com/automl/NASLib 
2BP-Accuracy-Predictors: https://github.com/xsmida03/BP-Accuracy-Predictors  
3Google-Research NAS-Bench-101: https: //github.com/google-research/nasbench 
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The NAS-Bench-101 dataset, assembled by the Google-research team, is officially stored 
in nasbench.tfrecord files. The full dataset, containing 5 million data points for all four 
epoch lengths {4,12,36,108}, and a smaller subset featuring models trained only for 108 
epochs can be accessed via the official Google-research GitHub repository1. 

1 # Load the data from f i l e (this w i l l take some time) 

2 nasbench = api.NASBench('/path/to/nasbench.tfrecord') 
3 
4 # Create an Inception-like module (5x5 convolution replaced with two 3x3 
s # convolutions). 
(i model_spec = api.ModelSpecC 

7 # Adjacency matrix of the module 

8 matrix=[[0,1,1,1,0,1,0], # input layer 

9 [0, 0, 0, 0, 0, 0,1], # l x l conv 

10 [0, 0, 0, 0, 0, 0, 1], # 3x3 conv 

[0, 0, 0, 0, 1, 0, 0], # 5x5 conv (replaced by two 3x3's) 

12 [0, 0, 0, 0, 0, 0, 1], # 5x5 conv (replaced by two 3x3's) 

13 [0, 0, 0, 0, 0, 0, 1], # 3x3 max-pool 

14 [ 0 , 0 , 0 , 0 , 0 , 0 , 0 ] ] , # output layer 

15 # Operations at the vertices of the module, matches order of matrix 

16 ops=[INPUT, C0NV1X1, C0NV3X3, C0NV3X3, C0NV3X3, MAXP00L3X3, OUTPUT]) 

17 
is # Query this model from dataset, returns a dictionary containing the metrics 
19 # associated with this model. 
20 data = nasbench.query(model_spec) 

Listing 6.1: Example usage of NAS-Bench-101 dataset, from official Google-Research 
GitHub (see footnote 4). 

As acknowledged in the official NAS-Bench-101 publication [67], loading the entire tf record 
is a time-consuming process. Consequently, alternative formats have been developed to 
enable faster loading. In this study, the hdf5 binary file representing the NAS-Bench-101 
dataset is used. It can be downloaded from Google Drive''. This file format supports efficient 
read and write operations for sizable and intricate datasets, making it faster to load than 
the official tfrecord files. The decision to convert from tfrecord to hdf5 is driven by the 
need to save both time and computational resources during the loading process. A n open-
source script allowing conversion from NAS-Bench-101 tfrecord file to hdf5 format can 
be found in the Neural Predictor implementation on Gi tHub 6 . This script retains all the 
essential information about neural architectures from the NAS-Bench-101 dataset. 

NAS-Bench-101 dataset handling The NASBenchlOlDataset class representing the 
NAS-Bench-101 dataset can be found in the dataset. py file. This class, leveraging PyTorch 
Dataset class capabilities, was created to manage and interact with the NAS-Bench-101 
dataset in an efficient and convenient manner. It serves several purposes: it preprocesses 
the dataset to be used in M L models, facilitates easy access to individual data points, and 
provides utility functions for normalizing, denormalizing, and computing various dataset 
properties. The class takes the path to the preprocessed hdf 5 file and an optional dataset 
split as input arguments. It initializes the dataset by loading various attributes such as 
hash, number of vertices, trainable parameters, adjacency matrices, operations, and met­
rics from the hdf 5 file, which are used in the context of the performance estimation process. 

4Google-Research NAS-Bench-101: https: //github.com/google-research/nasbench 
5NAS-Bench-101 hdf 5 file: https: //drive.google.com/open?id=lxlEQCyClzHBVDHloUCtES_-M_E9o4MeF 
6Neural Predictor GitHub: https://github.com/ultmaster/neuralpredictor.pytorch 
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The NASBenchlOlDataset class provides methods to obtain the length of the dataset, re­
trieve individual items by index, normalize and denormalize values, and compute the mean 
and standard deviation of accuracies. Furthermore, it includes private helper methods to 
resample accuracies, check if an accuracy value is below a certain threshold (addressing 
NAS-Bench-101 noise), compute network depth, and convert operation indices to a one-hot 
encoded format. The class also offers methods for obtaining the necessary feature and tar­
get encodings for each architecture in the dataset, as required by specific machine learning 
models. 

6.3 Predictor Implementations 

In this section, a detailed overview of the predictor implementations is provided. Fig­
ure 6.1 illustrates the inheritance structure of the individual predictors, with each subclass 
representing a specific M L model. 

LRPredictor 

Predictor 

+ ss_type 

+ encoding_type 

+ hyperparams 

+ fito 

+ predictO 

+ evaluateO 

+ run_hpoO 
L 

RFPredictor 

MLPPredictor 

XGBPredictor 

GCN Predictor 

Figure 6.1: The structure of the individual predictors in the implementation. The base 
class Predictor ensures a consistent interface and provides the essential methods (only 
the most important ones are illustrated) and properties for each subclass, which represents 
a specific machine learning model (e.g., Linear Regression, Random Forest, XGBoost, M L P , 
and G C N ) . Each subclass inherits from the Predictor class and can override or extend its 
methods and properties as needed. 

6.3.1 The Predictor base class 

The base class, Predictor, defines the essential methods and properties that are shared by 
all individual predictors. These methods include f i t (), predict (), ref i t (), evaluate (), 
and run_hpo() (for hyper parameter optimization). The base class also provides meth-
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ods for setting and getting hyperparameters and methods for saving and loading predictor 
models. The Predictor class serves as a blueprint for creating specific predictor imple­
mentations. Each subclass inherits from this base class and can override or extend its 
methods and properties to tailor the functionality specific to the machine learning model 
it represents. A l l inheriting predictors share the same interface for fitting, querying, and 
evaluating the models, ensuring a consistent and unified approach to implementing various 
machine learning algorithms. 

The f i t ( ) and predict () methods are the core methods for training and querying the 
predictor. The refit () method allows updating the predictor with new training data. 
The evaluate () method calculates various evaluation metrics, such as mean absolute er­
ror ( M A E ) , and correlation coefficients. The run_hpo() method enables hyperparameter 
optimization, facilitating the search for optimal predictor settings. 

A l l implemented accuracy predictors, including LRPredictor, RFPredictor, XGBPredictor, 
MLPPredictor, and GCNPredictor, inherit from the Predictor base class and utilize the 
provided methods and properties, customizing them according to the specific machine learn­
ing algorithm used. This modular design allows for easy integration of additional predictors 
in the future while maintaining a consistent and unified structure. 

Linear-Regression-based predictor The LRPredictor class is a linear regression pre­
dictor (Section 2.3) inheriting from the Predictor base class. It serves as a simple baseline 
model for regression tasks, suitable for comparing the performance of more complex models. 

Random-Forest-based predictor The RFPredictor class is a random forest regression 
predictor (Section 2.4) that inherits from the Predictor base class. It serves as a more 
sophisticated model compared to the linear regression-based predictor, offering a robust 
and accurate estimation of the performance of neural network architectures. 

XGBoost-based predictor The XGBPredictor class is an XGBoost regression predictor 
that inherits from the Predictor base class. It serves as a powerful and accurate model 
for estimating the performance of neural network architectures, leveraging the strengths of 
the XGBoost algorithm (Section 2.5). 

MLP-based predictor The MLPPredictor class is an M L P regression predictor (Section 
2.2) that inherits from the Predictor base class. It offers a flexible and powerful option 
for regression tasks, leveraging the expressive power of M L P s to estimate the performance 
of neural network architectures. 

GCN-based predictor The GCNPredictor class is a G C N regression predictor (Section 
2.6) adapted from the Neural Predictor [62] implementation on Gi tHub ' , inheriting from the 
Predictor base class. Unlike the previous predictors, it uses a more sophisticated encoding 
of the features to handle the input data and improve the predictions. The predictor leverages 
the power of GCNs to better capture the underlying structure of neural architectures, 
providing a more accurate performance estimation compared to other predictors. 

7

Neural Predictor: https: //github.com/ultmaster/neuralpredictor.pytorch 
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6.4 Accuracy predictors — analysis 

The root of the work happens in the file analysis. ipynb, which is a Jupyter Notebook doc­
ument. Jupyter Notebook was the preferred tool for conducting the analysis and comparison 
of performance predictors, correlation analysis (found in correlation_analysis. ipynb), 
and hyper parameter tuning (contained in hyperparameter_tuning. ipynb). This prefer­
ence stems from its interactive and intuitive environment, which facilitates seamless integra­
tion of code execution, data visualization, and documentation within a singular platform. 
This unique functionality of Jupyter Notebook enhances the transparency and reproducibil­
ity of the research by enabling researchers to document their thought processes and share 
insights directly alongside the code. Moreover, the capability to execute code cells inde­
pendently fosters an efficient environment for experimentation, while the built-in support 
for data visualization promotes a more comprehensive understanding of the results. 

The analysis. ipynb notebook initiates the process by loading the NAS-Bench-101 dataset 
and extracting relevant features for the machine learning models. These features encompass 
both standard and extended feature sets (as outlined in Sections 7.2 and 7.3) along with 
DAG-based features, which are specific to the G C N model. Subsequently, the individual 
predictors are trained using their corresponding feature sets, with the training time being 
meticulously measured and displayed across three training runs. 

Upon the completion of the training phase, the predictors are evaluated and applied to 
a 100 000-sample subset of the comprehensive NAS-Bench-101 dataset. This application 
aims to assess their metrics and properties. Concurrently, the results are visualized and 
plotted to facilitate an intuitive understanding of the performance and efficiency of the 
predictors. This comprehensive pipeline implemented within the Jupyter Notebook ensures 
an effective, clear, and reproducible research process. 
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Chapter 7 

Experimental results 

The primary objective of the experiments conducted in this study is to evaluate and compare 
the performance of various accuracy predictors, namely, linear regression, random forest, 
XGBoost, M L P , and G C N , when applied to N A S . These experiments are divided into three 
sets: 

• The first set of experiments (Section 7.2) utilizes a conventional approach for perfor­
mance estimation, which involves using flattened architecture encoding and one-hot 
encoded operations as input features. The goal is to facilitate a comparison among 
various model-based accuracy predictors used in this study. 

• The second set of experiments (Section 7.3), extends the input features to include 
not only the architecture encoding and operations but also the number of trainable 
parameters and the number of 3x3 convolution operations. These additional features 
were selected based on their strong correlations, as discovered in our correlation anal­
ysis (Subsection 5.3.4). The purpose of this set of experiments is to test whether the 
incorporation of this supplementary information enhances the predictive capacity of 
the accuracy predictors, and if so, to evaluate the associated computational cost. 

• The final set of experiments consists of a singular experiment (Experiment 7.4.1) 
that adopts a unique approach. Rather than flatten the architecture encoding, this 
method employs Graph Neural Networks, specifically GCNs, maintaining the archi­
tecture encoding information in the form of directed acyclic graphs. This method, 
simulating Google Brain's Neural Predictor [62], is anticipated to improve perfor­
mance, as it preserves the additional information inherent in the graph-like structure 
of the encoding [63]. 

Throughout the experiments, a subset of the NAS-Bench-101 benchmark is employed to 
provide a comprehensive evaluation of the predictors in its search space. The performance 
of each predictor is assessed using different evaluation metrics (Subsection 5.3.7). The 
experimental results will be used to draw conclusions on the effectiveness of the proposed 
predictors, based on the type of the predictor, and the encoding of input features, and to 
identify potential for future research and improvements. 
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7.1 Experiment setup 

The experiment setup is carefully designed to ensure a robust and comprehensive evaluation 
of the performance predictors. The idea behind the chosen experimental setup is to provide 
a fair comparison between the predictors and facilitate the identification of the most effective 
approaches for the N A S task. The process of training and evaluating the performance 
predictors involves the following steps: 

• Preprocessing the dataset: The NAS-Bench-101 dataset is preprocessed (file 
dataset.py) to make its usage more comfortable and extract the necessary features 
for both the flattened architecture encoding (both basic and extended) and the D A G -
based encoding. For more related information, refer to Section 6.2. 

• Training the predictors: M L models are trained using the preprocessed dataset. 
Each model was trained on a dataset consisting of 172 unique architecture-accuracy 
pairs. The selection of this specific number of training data was inspired by Google 
Brain's Neural Predictor research paper [62], as it provides a good compromise be­
tween the values of N (number of architectures used to train a predictor) and K 
(number of the most promising architectures selected by applying a predictor), for 
more details refer to the Subsection 5.4.1. Hyperparameter tuning was performed in 
advance (in hyperparameter_tuning.ipynb notebook), optimizing the performance 
of each predictor model. Default hyperparameters are described in Sections 7.2 and 
7.4, for each corresponding M L model used in a given experiment. The performance 
measures were normalized using their mean and standard deviation. 

• Applying the predictors: The trained models are evaluated on unseen data, com­
prising a subset of the NAS-Bench-101 dataset of 100 000 CNNs, simulating the pro­
cess of predicting the performance of novel C N N architectures. This enables a realistic 
assessment of the predictors' ability to guide the N A S process efficiently. 

The chosen metrics (Subsection 5.3.7) are used to assess the predictors' performance. It 
is important to note that rank-based metrics, such as Kendall's Tau, are particularly rel­
evant for N A S tasks because the ranking of predictions is often more important than the 
actual values of predictions. This is because the primary goal of N A S is to identify the 
best-performing architectures rather than to precisely estimate their performance. Rank-
based metrics provide a more robust measure of the predictors' ability to correctly rank 
architectures in terms of their performance, which is crucial for guiding the search process 
efficiently [65]. 

7.1.1 Hardware and Software Configurations 

The hardware components utilized in the experiments include: 

. C P U : Intel(R) Core(TM) i7-9750H CPU @ 2.60GHz 2.59 GHz 

. G P U : NVIDIA GeForce GTX 1650 

. R A M : 32 GB 

The required software used in this work is described along with a user manual on Gi tHub 1 . 
x

https: //github.com/xsmida03/BP-Accuracy-Predictors 
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7.2 Experiment Set 1: Conventional Approach 

This set of experiments employs a common approach in feature selection for performance 
estimation strategies. It utilizes a flattened architecture encoding and one-hot encoded 
operations, concatenated into a single vector. This vector subsequently serves as an input 
for the accuracy predictors. 

Objective The aim of these experiments is to evaluate and compare the performance of 
selected accuracy predictors, using conventional input features: an adjacency matrix and 
operations. 

Features The features used in the M L models for these experiments typically describe 
the cell-based search space of NAS-Bench-101. These include the matrix of operations used 
in a C N N and the adjacency matrix that represents the connections between the individual 
operations. 

Consider an arbitrary C N N architecture (single cell) employing the cell-based encoding 
(Section 4.1) from the NAS-Bench-101 dataset illustrated in Figure 7.1. 

Consider the following operation types in the NAS-Bench-101 architecture: 

[ 

'input', 

'conv3x3-bn-relu', 

'conv3x3-bn-relu', 

'convlxl-bn-relu', 

'conv3x3-bn-relu', 

'output' 

] 
These operations are first encoded into integers, then padded, and finally one-hot encoded: 

Encoded operations (int): [-1 0 0 1 0 -2] 

Encoded and padded: [ - 1 0 0 1 0 - 2 0 ] 
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One-hot encoded operations: 

[[0, 1, 0, 0, 0 ] , 
[0, 0, 1, 0, 0 ] , 
[0, 0, 1, 0, 0 ] , 
[0, 0, 0, 1, 0 ] , 
[0, 0, 1, 0, 0 ] , 
[1, 0, 0, 0, 0 ] , 
[0, 0, 1, 0, 0]] 

The adjacency matrix represents the connections between vertices in a D A G , corresponding 
to a cell in a C N N architecture. For instance, an adjacency matrix might appear as follows: 

[[0, 1, 0, 0, 0, 0, 0 ] , 
[0, 0, 1, 0, 1, 1, 0 ] , 
[0, 0, 0, 1, 0, 0, 0 ] , 
[0, 0, 0, 0, 0, 1, 1 ] , 
[0, 0, 0, 0, 0, 1, 0 ] , 
[0, 0, 0, 0, 0, 0, 1 ] , 
[0, 0, 0, 0, 0, 0, 0]] 

These two features, the one-hot encoded operations, and the adjacency matrix, are flattened 
and concatenated into a single 84-element vector, which serves as the input to each accuracy 
predictor in this set of experiments. 

7.2.1 Linear Regression Predictor 

Setup The LRPredictor class, employing the scikit-learn's LinearRegression model, 
uses the library's default parameters: fit_intercept=True (calculate the y-intercept), 
normalize=False (manual normalization), copy_X=True (prevent overwriting input data), 
n_jobs=None (single processor), and positive=False (coefficients in any direction). 

Applying Linear Regression predictor (100k samples) 
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Figure 7.2: Predicting validation accuracies on a set of 100k C N N architectures with the 
Linear Regression-based predictor. 
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Results The Linear Regression predictor's performance, as depicted in Figure 7.2, indi­
cates the presence of several outliers beyond the realistic accuracy range of 0 to 100 %. 
These extreme estimations are likely due to the model's linear nature and its limitations 
in capturing complex, nonlinear patterns within the NAS-Bench-101 dataset. Given the 
inherent simplicity of the Linear Regression model, this result was anticipated and aligns 
with the initial expectations. 

7.2.2 Random Forest Predictor 

Setup The RFPredictor class, utilizing sklearn's RandomForestRegressor, is set up 
with a specific set of default hyperparameters: 116 trees (n_estimators), a maximum 
number of features considered at each split as approximately 17 % (max_f eatures), and 
minimum samples required to be at a leaf node and to split an internal node both set 
to 2 (min_samples_leaf and min_samples_split). Furthermore, bootstrap is set to 
False, indicating that the whole dataset is used to build each tree. 

Applying Random Forest Predictor (100k samples) 
Complete Range Zoomed in [90, 96] 

Va l i da t i on a c c u r a c y [%] Va l i da t i on a c c u r a c y [%] 

Figure 7.3: Predicting validation accuracies on a set of 100k C N N architectures with the 
Random Forest-based predictor. 

Results The Random Forest predictor, being a more advanced model, yielded signifi­
cantly better results. Figure 7.3 illustrates its predictions, with the majority of the neural 
networks clustered in relatively close proximity. This approach however tends to under­
estimate the majority of architectures as can be seen on the right subplot of Figure 7.3. 
The left subplot of Figure 7.3 reveals certain data points with vastly inaccurate validation 
accuracy predictions. This discrepancy is likely a consequence of noise present in the NAS-
Bench-101 dataset, also addressed by the Google Brain researchers [62], where the majority 
of the C N N architectures demonstrate a validation accuracy exceeding 90 % and there are 
not enough examples of architectures with lower validation accuracies. This phenomenon is 
also examined in the correlation_analysis. ipynb notebook, which provides an in-depth 
analysis of the NAS-Bench-101 dataset. The corresponding initialization and query time 
can be found in Table 7.1, and the measured metrics are listed in Table 7.2. 
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7.2.3 X G B o o s t Predictor 

Setup The XGBPredictor class uses the XGBoost Regressor model from the xgboost 
library, configured with the following default hyperparameters: a gbtree booster, an ob­
jective of reg:squarederror, and an evaluation metric of root mean square error (rmse). 
The maximum tree depth (max_depth) is set to 6, the minimum sum of instance weight 
(min_child_weight) is 1, and the subsample ratio of columns for each tree and each split 
(colsample_bytree and colsample_bylevel) are both 1. The learning rate is initially set 
to 0.3. 

Applying Random Forest Predictor (100k samples) 
Complete Range Zoomed in [90, 96] 

Va l i da t i on a c c u r a c y [%] Va l i da t i on a c c u r a c y [%] 

Figure 7.4: Predicting validation accuracies on a set of 100k C N N architectures with the 
XGBoost-based predictor. 

Results The XGBoost approach showed even more improved performance of the per­
formance prediction on the same set of data. Most of the predicted validation accuracies 
is located near the perfect prediction line y = x (red). When compared to the Random 
Forest model (Subsection 7.2.2), XGBoost does not tend to underestimate the validation 
accuracies for the densest areas of the plot, resulting in better accuracy estimation. The 
corresponding initialization and query time can be found in Table 7.1, and the measured 
metrics are listed in Table 7.2. 

7.2.4 M L P Predictor 

Setup The MLPPredictor class uses a Feedforward Neural Network model from the Py-
Torch library, embodied in the Feedf orwardNet class. The model, stored in the self .model 
instance variable, is configured with num_layers=20 and layer_width=20 units for each 
layer as the default hyperparameters. The model's activation function can be customized 
and is set to R e L U by default. The model is trained using the Adam optimizer with a 
learning rate (lr) of 0.001, and M S E as the loss function. To prevent overfitting, L I reg-
ularization is also applied with a regularization strength (regularization) of 0.2. The 
model is trained for epochs=500 with a batch_size of 32. The target values (accuracies), 
stored in ytrain, are normalized by subtracting the mean (self .mean) and dividing by 
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the standard deviation (self. std) before training, and these transformations are reversed 
when making predictions. 

Applying MLP Predictor (100k samples) 
Complete Range Zoomed in [90. 96] 

Va l i da t i on a c c u r a c y [%] Va l i da t i on a c c u r a c y [%] 

Figure 7.5: Predicting validation accuracies on a set of 100k C N N architectures with the 
MLP-based predictor. 

Results The MLP-based predictor (Figure 7.5) was anticipated to yield the best results in 
the initial set of experiments. However, as shown in Table 7.2, its performance is comparable 
to that of the Random Forest and XGBoost predictors. Yet, the initialization and query 
times are higher, as outlined in Table 7.1. 

Summary The first set of experiments successfully demonstrated the potential of dif­
ferent types of machine learning models for predicting the performance of various C N N 
architectures in the NAS-Bench-101 dataset. Each model was tested on the same dataset 
and with the same preprocessing steps, allowing for a fair comparison. 

Random Forest 

90 91 92 93 94 95 96 90 9L 92 93 94 95 96 90 9L 92 93 94 95 96 
Val idat ion accuracy [%] v a l i d a t i o n accuracy [%] v a l i d a t i o n accuracy [%] 

Figure 7.6: Comparison of 3 model-based predictors, trained on 172 samples from NAS-
Bench-101 dataset (Point Density Estimate color bars are not shown for better clarity). 
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Figure 7.6 visually presents the performance comparison of the models estimating the valida­
tion accuracy of 100 000 randomly selected architectures from the NAS-Bench-101 dataset. 
The Figure excludes the Linear Regression model due to its inability to provide accurate 
and reliable predictions within the realistic accuracy range. 
Overall, in terms of accuracy prediction, the XGBoost model seems to be the most reliable. 
However, the significantly longer training time for the M L P predictor should not overshadow 
its promising performance metrics. Depending on the specific use case and the available 
resources, one might opt for the M L P model, keeping in mind the trade-off between time 
efficiency and prediction accuracy. 

It is important to note that these results were obtained using a basic feature set (adjacency 
matrix and operations). It is possible that a more advanced or custom feature set could lead 
to different outcomes, which is addressed in the second set of experiments (Section 7.3). 

7.3 Experiment Set 2: Extended Feature Set 

This set of experiments extends the first (detailed in Section 7.2) by incorporating additional 
features into the same four models. 

Objective The purpose of this experiment set is to evaluate the performance of the se­
lected accuracy predictors when utilizing an extended feature set, which includes informa­
tion beyond the adjacency matrix and operations used in the previous set of experiments, 
in Section 7.2. 

Features In this experiment set, the input vector for the M L models, akin to the previous 
set of experiments (Section 7.2), is expanded with two additional features: the number of 
trainable parameters and the count of 3x3 convolution operations in the C N N . Selected for 
their strong correlation, these features are standardized using the StandardScaler from 
scikit-learn before being concatenated with the one-hot encoded operations and adjacency 
matrix, resulting in an extended 86-element input vector for each accuracy predictor. 

Results As this set of experiments employed the same M L models as in the previous 
section, the results are visually similar and can be found in Appendix A. 

Training and Evaluation Times As can be seen from Table 7.1, the inclusion of ex­
tended features did not substantially affect the training times of the models. The training 
and evaluation times for the Linear Regression (LR) and the Random Forest (RF) models 
remained constant, while the XGBoost models experienced a slight increase in evaluation 
time. The M L P model's training time slightly decreased, despite the larger feature set, 
which could be due to stochastic variations in the training process. 

Performance Metrics The results of the extended feature set experiments show notable 
improvements in predictive performance for R F , XGBoost, and M L P models, while the 
performance of the L R model deteriorated significantly. The L R model's performance 
declined considerably when employing the extended feature set, as evidenced by its M S E 
and M A E increasing to 2.94 x 10 1 6 and 2.37 x 10 6, respectively. It's also worth noting that 
the L R model had a negative Pearson correlation coefficient and R2 value, indicating a very 
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poor fit to the data. On the other hand, R F , XGBoost, and M L P models exhibited improved 
performance when utilizing the extended feature set. R F demonstrated the highest R? value 
of 0.4215, a marked improvement from 0.3394 when using the standard feature set. The 
M S E and M A E of the R F model also reduced, indicating better prediction accuracy with 
the extended features. Similar trends were observed for XGBoost and M L P , where M S E 
and M A E reduced while Pearson correlation, Kendall's r , and R? values increased. 

Summary These results suggest that the inclusion of additional features, specifically the 
number of trainable parameters and the count of 3x3 convolution operations, enhanced the 
performance of R F , XGBoost, and M L P models. However, the L R model's performance 
significantly deteriorated with these added features. The results underscore the importance 
of feature selection and its impact on the performance of different M L models. 

7.4 Experiment Set 3: Graph Convolutional Networks 

This experiment set utilizes a different approach to both Experiment Set 1 (Section 7.2) 
and Experiment Set 2 (Section 7.3). It employs the power of Graph Neural Networks, 
specifically GCNs, to take into account the graph structure information itself. 

7.4.1 G C N Predictor 

Setup The GCNPredictor class sets up a GCN-based model for accuracy prediction de­
fined within the NeuralPredictorModel class, which uses DirectedGraphConvolution for 
each G C N layer. The hyperparameters for the G C N model are set by default as follows: the 
number of hidden units in the G C N layers (gcn_hidden) is 144, the size of training batches 
(batch_size) is 10, the learning rate (lr) is le-4, the weight decay for L2 regularization 
(wd) is le-3, and the number of training epochs (epochs) is 300. The batch size during 
model evaluation (eval_batch_size) is set to 1000. The target values are normalized using 
the mean (self .mean) and standard deviation (self .std) of the training set, and these 
transformations are reversed when making predictions. This setup was inspired by Google 
Brain's Neural Predictor setting [62]. 

App ly ing GCN Predictor (100k samp les ) 
Complete Range Zoomed in [90, 96] 

Validation accuracy [%] Validation accuracy [%] 

Figure 7.7: Predicting validation accuracies on a set of 100k C N N architectures with the 
GCN-based predictor. 
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Result The G C N model was applied to a set of 100 000 C N N architectures, as depicted 
in Figure 7.7. The results showed that the GCN-based predictor successfully leveraged 
the topological information present in the graph representations of the C N N architectures. 
The predictions were quite accurate, demonstrating the potential of GCNs as a tool for 
predicting the accuracy of different architectures. 

Table 7.1: Training and Evaluation Times of Predictors (training set of 172 training samples, 
evaluating on 100 000 subset of the NAS-Bench-101 dataset) 

Predictor Feature Set Training Time (s) Evaluation Time (s) 
Linear Regression Standard 0.01 0.01 
Random Forest Standard 0.10 0.80 
XGBoost Standard 0.34 0.07 
M L P Standard 22.45 1.41 
Linear Regression Extended 0.01 0.02 
Random Forest Extended 0.10 0.77 
XGBoost Extended 0.24 0.07 
M L P Extended 21.16 1.20 
G C N D A G 53.24 3.07 

Training and Evaluation Times Table 7.1 shows the training and evaluation times of 
the GCN-based predictor in comparison with the predictors from Experiment Sets 1 and 
2. The G C N model required more time for training, but this was compensated by the 
improved accuracy of the predictions (Table 7.2). The evaluation time also increased, but 
it remained acceptable given the complexity of the task and the size of the evaluation set. 

Table 7.2: Performance Metrics of A l l Predictors ( K T stands for Kendall's Tau) 

Predictor Features M S E M A E Pearson K T R2 

L R Standard 753.12 0.39 0.0010 0.4800 -8.8 x 10 5 

R F Standard 0.0006 0.0140 0.6246 0.4981 0.3394 
XGBoost Standard 0.0006 0.0151 0.5280 0.4560 0.2485 
M L P Standard 0.0006 0.0148 0.6046 0.4843 0.3147 
L R Extended 2.9 x 10 1 6 2.4 x 106 -0.0003 -0.2325 -3.4 x 10 1 9 

R F Extended 0.0005 0.0125 0.6683 0.5631 0.4215 
XGBoost Extended 0.0005 0.0126 0.6440 0.5668 0.4107 
M L P Extended 0.0005 0.0130 0.6618 0.5178 0.4327 
G C N D A G 0.0003 0.0097 0.8018 0.6498 0.6276 

Performance Metrics The performance metrics for the G C N model, shown in Table 7.2, 
indicate its superior performance in comparison to the other models, including those with 
extended features. The G C N model achieved the lowest M S E and M A E and the highest 
Pearson correlation, Kendall's tau, and R2 values. This suggests that the G C N model 
is particularly effective at integrating the architectural information of the CNNs to make 
accurate predictions. 
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Summary These results further underline the efficacy of the G C N model as a prediction 
tool. Despite the increased computational requirements, the G C N model outperformed 
all the other models in terms of prediction accuracy. This suggests that incorporating 
architectural information into the prediction process can significantly enhance the accuracy 
of the results. 

7.5 Efficiency Gain Analysis of Accuracy Predictors in N A S 

In the context of performance estimation in N A S , the potential speed-up achieved in training 
time can be quantified by utilizing accuracy predictors. This speed-up arises from the 
reduced number of architectures that need to be fully trained, a saving made possible by 
the predictors. 

As described in Subsection 5.4.1, the most computationally expensive aspect of using accu­
racy predictors is the training of architectures: iV architectures for predictor building and 
K architectures representing the most promising candidates selected by the predictor. In 
this study, N is 172 (inspired by Google Brain's Neural Predictor [62]), which corresponds 
to the number of C N N architectures used for predictor training. For this analysis, let's 
assume K = 100 (arbitrary choice, influenced by Google Brain's Neural Predictor [62]), 
representing the top-100 architectures selected by the predictor. Additionally, the compu­
tational overhead of initializing and querying the predictor must be considered. The G C N 
predictor will be used for this analysis, as it is the most computationally intensive among 
the tested models and also showed the most promise. The training time for the G C N pre­
dictor is approximately 53 seconds, and the query time for 100 000 C N N samples is just 
over 3 seconds. 

Utilizing the NAS-Bench-101 dataset, which provides the training time for each individual 
C N N architecture, the total time saved when using the predictor can be calculated. The 
mean training time for the CNNs in the dataset is approximately 1932 seconds. The total 
training time for the selected 172 CNNs used for predictor training is 350 385 seconds. 
Therefore, the total time required for the predictor to function with a reasonable degree of 
accuracy, denoted as T t o t a i , is calculated as the sum of the time taken to train N architec­
tures (TJV), the time taken to train K architectures (TK), the time required to initialize the 
predictor (Ti n i t ) , and the time taken to query the predictor ( T q u e r y ) . Mathematically, this 
can be represented as: 

Ttotai = TN + TK + T i n i t + T q Ue ry = 350 385 + 193 200 + 53 + 3 = 543 641 seconds (7.1) 

In contrast, training all 100 000 CNNs without a predictor would take approximately 
193 200 000 seconds (mean C N N training time multiplied by 100 000). The speed-up 
achieved by using the predictor is therefore: 

c , Twithout predictor 193 200 000 , . 
Speed-up = —— = « 355 (7.2) 

Total 543 641 V ' 
This result underlines the significant efficiency gains that can be achieved using accuracy 
predictors in N A S , demonstrating approximately a 355-fold reduction in computational 
time. This highlights the crucial role of accuracy predictors in enabling efficient and prac­
tical N A S . 
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Chapter 8 

Conclusion 

The primary objective of this bachelor thesis was to construct accuracy predictors for CNNs 
within the N A S framework, leveraging a diverse array of M L models. The scope of this 
work spanned the examination of existing performance estimation strategies in NAS, the 
intricate processes of feature selection and extraction, the design and implementation of 
each individual predictor, and the rigorous comparison and analysis of their respective 
performance. 

This thesis began with the foundational concepts of AI and M L (Chapter 2), focusing on 
the specific M L models utilized for performance estimation in the context of N A S . It then 
delved into the intricacies of CNNs, describing their architecture and prevalent benchmarks. 
Chapter 4 introduced the concept of NAS, outlining key elements such as search spaces, 
search strategies, and performance estimation strategies. The design process of the accuracy 
predictors was detailed in Chapter 5, followed by an in-depth description of each predictor's 
implementation. A l l the scripts and source code used in this project are publicly available 
on Gi tHub 1 . 

The experimental results (Chapter 7) demonstrated the power and efficacy of M L mod­
els as accuracy predictors. The G C N model, in particular, showed superior performance 
in predicting the accuracy of C N N architectures. The G C N model achieved the lowest 
M S E and M A E , and the highest Pearson correlation, Kendall's Tau, and B? values. Impor­
tantly, the analysis revealed a significant efficiency gain with the use of accuracy predictors, 
demonstrating approximately a 355-fold reduction in computational time. 

Looking forward, this work opens up several avenues for future research. A n interesting 
direction could be to extend this work to different search spaces and make it compatible 
across them. This could potentially enhance the versatility of these predictors and their 
applicability in various contexts. Exploring different features for the M L models and incor­
porating more sophisticated methods to preserve additional information about architecture 
encoding could also further improve the accuracy of predictions. This thesis has successfully 
demonstrated the potential of M L models as effective and efficient tools for performance 
estimation in N A S , setting the stage for further exploration and innovation in this field. 

Moreover, this work has been recognized for its contribution to reducing energy con­
sumption through the automation of neural network architecture exploration and was 
awarded at the Excel@FIT 2023 student conference on innovation, technology, and sci­
ence2 by the expert panel. 

x

https: //github.com/xsmida03/BP-Accuracy-Predictors 
2

https: //excel.fit. vutbr.cz/vysledky/ 
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Appendix A 

Experiment Set 2 visualizations 

In this set of experiments, every M L model was trained on 172 samples of architectures from 
the NAS-Bench-101 dataset. Wi th the exception of the linear regression predictor, all other 
models (including random forest, xgboost, and M L P ) demonstrated improved performance 
in accuracy prediction (compared to the Experiment Set 1, described in Section 7.2). 
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Figure A . l : Predicting validation accuracies on a set of 100k C N N architectures with the 
Linear-Regression-based predictor. Utilizing the extended feature set. 
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Figure A.2: Predicting validation accuracies on a set of 100k C N N architectures with the 
Random-Forest-based predictor. Utilizing the extended feature set. 

Figure A.3: Predicting validation accuracies on a set of 100k C N N architectures with the 
XGBoost-based predictor. Utilizing the extended feature set. 

Figure A.4: Predicting validation accuracies on a set of 100k C N N architectures with the 
MLP-based predictor. Utilizing the extended feature set. 
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