
BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

FACULTY OF INFORMATION TECHNOLOGY
FAKULTA INFORMAČNÍCH TECHNOLOGIÍ

DEPARTMENT OF INTELLIGENT SYSTEMS
ÚSTAV INTELIGENTNÍCH SYSTÉMŮ

GARBAGE COLLECTOR FOR PNTALK OBJECTS
GARBAGE COLLECTOR OBJEKTŮ JAZYKA PNTALK

BACHELOR’S THESIS
BAKALÁŘSKÁ PRÁCE

AUTHOR FILIP ŠTĚPÁN
AUTOR PRÁCE

SUPERVISOR Ing. RADEK KOČÍ, Ph.D.
VEDOUCÍ PRÁCE

BRNO 2024

Abstract
This thesis presents a comprehensive investigation into garbage collection techniques ex-
plicitly tailored for PNtalk, with a focus on using industry-standard automatic memory
management. It explores the necessity, principles, and advantages of automatic memory
management, highlighting the significance of garbage collection algorithms in optimizing
memory usage and improving application performance. On this theoretical basis, the thesis
deals with the garbage collector’s design, implementation, testing, and benchmarking.

Abstrakt
Tato práce představuje komplexní výzkum technik garbage collection přizpůsobených speciálně
pro PNtalk se zaměřením na použití standardní automatické správy paměti. Tato práce
zkoumá nutnost, principy a výhody automatické správy paměti a zdůrazňuje význam al-
goritmů garbage collection pro optimalizaci využití paměti a zvýšení výkonu aplikací. Na
základě těchto teoretických základů se práce zabývá návrhem, implementací, testováním a
srovnávacím testováním garbage collectoru.

Keywords
garbage collection, garbage collector, memory management, automatic memory manage-
ment, object oriented petri nets, petri nets, PNtalk

Klíčová slova
garbage collection, garbage collector, správa paměti, automatické správa paměti, objektově
orientované petriho sítě, petriho sítě, PNtalk

Reference
ŠTĚPÁN, Filip. Garbage collector for PNtalk objects. Brno, 2024. Bachelor’s thesis.
Brno University of Technology, Faculty of Information Technology. Supervisor Ing. Radek
Kočí, Ph.D.

Rozšířený abstrakt
Garbage collection je klíčovou součástí vývoje moderního softwaru, zejména v aplikacích
náročných na paměť. Tento abstrakt představuje komplexní průzkum technik GC přizpů-
sobených pro PNtalk s cílem zlepšit efektivitu správy paměti, výkon a škálovatelnost. Práce
začíná zkoumáním nutnosti a principů automatické správy paměti a zdůrazňuje výhody al-
goritmů GC pro optimalizaci využití paměti a snižování režie manuální správy paměti.Různé
algoritmy GC, včetně algoritmů mark-sweep, mark-compact, generational a reference count-
ing, jsou podrobně zkoumány z hlediska jejich vhodnosti a použitelnosti pro PNtalk. Na
základě těchto teoretických základů se práce zabývá návrhem, implementací, testováním a
srovnávacím testováním garbage collectoru optimalizovaného speciálně pro PNtalk. Fáze
návrhu objasňuje datové struktury, algoritmy a optimalizační strategie zaměřené na max-
imalizaci efektivity, spolehlivosti a přizpůsobivosti. Výsupem je garbage collector který se
snadno integruje do systému PNtalk. Důsledné testovací metodiky využívající JUnit Jupiter
pro testování výkonu a škálovatelnosti, zátěžové testování ověřují správnost, robustnost a
výkonnostní charakteristiky garbage collectoru při různých pracovních zátěžích. Testování
výkonu a srovnávací testy poskytují důkazy o efektivitě, škálovatelnosti a využití prostředků
garbage collectoru, které jsou podkladem pro optimalizaci a vodítkem pro rozhodování o
nasazení v reálném prostředí. Práce nejen zvyšuje výkonnost, škálovatelnost a spolehlivost
systému PNtalk, ale také pokládá základy pro další zkoumání a optimalizace.

Garbage collector for PNtalk objects

Declaration
I hereby declare that this Bachelor’s thesis was prepared as an original work by the author
under the supervision of Mr. Radek Kočí. I have listed all the literary sources, publications
and other sources, which were used during the preparation of this thesis.

. .
Filip Štěpán

May 13, 2024

Acknowledgements
I would like to thank Mr. Kočí for his help and guidance.

Contents

1 Introduction 4
1.1 Goals . 4
1.2 Structure . 5

2 Memory management 6
2.1 Manual memory management . 6

2.1.1 Memory Allocation . 6
2.1.2 Memory Deallocation . 6
2.1.3 Advantages and disadvantages . 7

2.2 Automatic memory management . 7
2.3 Garbage collection . 7

2.3.1 Performance metrics . 7
2.3.2 Garbage collection roots . 8
2.3.3 Reference counting . 9
2.3.4 Mark-Sweep . 9
2.3.5 Mark-Compact . 10
2.3.6 Generational Garbage Collection . 11
2.3.7 Copying Garbage Collection . 13
2.3.8 Concurrent/parallel garbage collection 14

3 PNtalk 16
3.1 Object-Oriented Petri Nets . 16

3.1.1 Key concepts . 16
3.2 Messaging . 17
3.3 Places, transitions and edges . 17
3.4 Nets . 18
3.5 Structure of the current PNtalk implementation 18

3.5.1 PNSimulation . 19
3.5.2 PNObject . 19
3.5.3 PNBinding . 19
3.5.4 PNThread . 19

4 Garbage Collector design 21
4.1 Goals . 21
4.2 Algorithms . 21
4.3 Garbage collection frequency . 22
4.4 Identifying garbage collection roots . 22
4.5 Deleting garbage collection roots . 22

1

4.6 Parallelization . 22
4.6.1 Parallel sweep . 22
4.6.2 Parallel Marking . 23

4.7 Garbage collector test class . 23

5 Implementation 24
5.1 Class hierarchy . 24
5.2 Changes to PNtalk . 24
5.3 Mark-sweep . 25
5.4 Generational Garbage collection . 27
5.5 Parallel mark-sweep . 29

6 Testing and Benchmarking 31
6.1 Explanation of PNSimulation’s report . 31
6.2 Testing models . 32

6.2.1 Overview of model1 . 32
6.2.2 Overview of model2 . 32
6.2.3 Overview of model3 . 33

6.3 Testing of correctness . 33
6.3.1 Results of test1 . 33
6.3.2 Resutls of test2 . 34
6.3.3 Results of testHold . 35

6.4 Metrics . 36
6.5 Hardware . 37
6.6 Basic testing structure . 37
6.7 Performance testing . 38

6.7.1 Results of testx-01 . 39
6.7.2 Results of testx-02 . 40

7 Conclusion 42

Bibliography 43

A Contents of the included memory medium 44

2

List of Figures

3.1 Example of OOPN (taken from [3]). 18
3.2 PNtalk structure (simplified). 19

5.1 Class hierarchy diagram. 24

6.1 Testing hardware specifications. 37

3

Chapter 1

Introduction

In the realm of computer science and software engineering, the efficient management of
memory allocation and deallocation is paramount for the optimal performance of any soft-
ware system. This becomes particularly crucial in environments where resources are lim-
ited or where the system’s responsiveness directly impacts its functionality. Object-Oriented
Petri Nets represent a powerful paradigm for modeling concurrent systems, offering a struc-
tured approach to representing both state and behavior. However, the dynamic nature of
OOPNs poses unique challenges in memory management, especially in long-running simu-
lations where objects are constantly created and destroyed.

This thesis explores the design and implementation of a garbage collector tailored for
PNtalk which is a specific implementation of OOPN. Garbage collection, a fundamental
technique in modern programming languages, automates the process of reclaiming memory
occupied by objects that are no longer in use. By implementing a garbage collector within
the context of PNtalk simulations, we aim to address the inherent complexities of memory
management, thereby enhancing the performance and scalability of PNtalk.

1.1 Goals
The objectives of this thesis are twofold: firstly, to analyze the memory management chal-
lenges inherent in OOPN simulation environments, and secondly to propose and implement
an efficient garbage collector tailored to address these challenges. To achieve these ob-
jectives, we will examine the existing literature on garbage collection techniques, with a
focus on those applicable to dynamic and object-oriented systems. Subsequently, we will
delve into the intricacies of OOPNs, identifying patterns and usage that impact memory
consumption and fragmentation.

The proposed garbage collector will be designed to integrate seamlessly with existing
PNtalk implementation, minimizing overhead while maximizing memory reclamation. We
will evaluate the effectiveness of the garbage collector through rigorous testing and perfor-
mance analysis, comparing its impact on memory utilization, execution time, and overall
system responsiveness against baseline implementations without garbage collection.

By mitigating the memory overhead associated with no memory management, the pro-
posed garbage collector has the potential to enhance the scalability and reliability of PNtalk.

4

1.2 Structure
This thesis is split into 7 different chapters, including this one. The second chapter pro-
vides a brief overview of manual memory management and comprehensive overview of auto-
matic memory management techniques. It explores various garbage collection algorithms,
such as mark-sweep, mark-compact, generational, and reference counting, discussing their
strengths, weaknesses, and suitability for different application scenarios. The third chapter
looks at the OOPNs and PNtalk, it discusses the various components of PNtalk and it’s
structure. The fourth chapter builds upon the theoretical underpinnings established in the
previous chapter, this section delves into the conceptualization and design of a garbage col-
lector tailored for PNtalk. The fifth chapter shifts focus to the practical realization of the
garbage collector, detailing the implementation process from codebase setup to integration
with PNtalk. The sixth chapter, examines the testing, validation, and performance eval-
uation of the garbage collector in various test cases. Finally the last chapter summarizes
key findings of this thesis, and evaluates the implemented garbage collector, it also looks
at possible future improvements that could be implemented.

5

Chapter 2

Memory management

This chapter provides an in-depth examination of various memory management techniques,
including manual memory management and automatic memory management. We will take
a closer look at garbage collection algorithms such as mark-sweep, copying GC, generational
GC and more. The information for this chapter was taken from [4] and [1]

2.1 Manual memory management
Manual memory allocation and deallocation are fundamental concepts in programming
where the programmer explicitly manages the allocation and release of memory resources
within a software program. This process involves requesting memory from the system
when needed, and explicitly releasing it when it is no longer required. In languages such as
C and C++, manual memory management is a common practice, giving developers fine-
grained control over memory usage but also requiring them to handle memory-related tasks
manually.

2.1.1 Memory Allocation

When a program needs memory to store data, it requests a block of memory from the
operating system. In manual memory allocation, this is typically done using functions like
malloc() in C or new operator in C++. The requested memory block is then reserved for
the program’s use, and a pointer to this memory location is returned. The programmer is
responsible for ensuring that enough memory is allocated to store the data required by the
program, taking into account the type and size of the data being stored.

2.1.2 Memory Deallocation

Once the allocated memory is no longer needed, it should be returned to the system to
prevent memory leaks and conserve system resources. In manual memory management,
deallocation is explicitly performed by the programmer using functions like free() in C
or delete operator in C++. The programmer must ensure that all dynamically allocated
memory is properly deallocated when it is no longer needed. Failure to deallocate memory
can result in memory leaks, where memory that is no longer in use remains allocated,
leading to inefficient memory usage and potential system instability over time.

6

2.1.3 Advantages and disadvantages

Manual memory management provides developers with fine-grained control over memory
allocation and deallocation, allowing for performance optimization and predictable mem-
ory behavior. However, it introduces complexity and error-prone situations such as memory
leaks or dangling pointers, which can be challenging to debug and resolve. Additionally,
manual memory management requires developers to invest extra effort into resource man-
agement tasks, increasing development time and maintenance overhead. Despite its ad-
vantages in performance optimization and control, the lack of safety guarantees and the
potential for errors make manual memory management a less desirable approach, particu-
larly in complex software systems where reliability and maintainability are paramount.

2.2 Automatic memory management
Automatic memory management, also known as garbage collection, is a programming tech-
nique that automates the process of memory allocation and deallocation, relieving devel-
opers from the burden of manually managing memory resources. In contrast to manual
memory management where developers explicitly allocate and deallocate memory, auto-
matic memory management employs algorithms and mechanisms to identify and reclaim
memory that is no longer in use, typically referred to as garbage. Garbage collection
techniques vary, but they generally involve periodically scanning the program’s memory
space to identify objects that are no longer reachable or referenced by the program. Once
identified, these unreferenced objects are reclaimed, freeing up memory for future use. Au-
tomatic memory management is widely used in modern programming languages such as
Java, C#, and Python, offering several benefits including improved developer productivity,
reduced risk of memory-related errors, and enhanced application reliability. However, it
also introduces overhead in terms of CPU and memory usage, and the periodic pauses asso-
ciated with garbage collection cycles may impact application performance, particularly in
real-time or latency-sensitive systems. Despite these challenges, automatic memory man-
agement remains a powerful tool for simplifying memory management tasks and improving
the robustness of software systems, especially in environments where manual memory man-
agement would be impractical or error-prone.

2.3 Garbage collection
Garbage collection (GC) techniques vary in their approach to identifying and reclaiming
memory that is no longer in use by the program. Different types of garbage collection
algorithms have been developed over the years, each with its own advantages, disadvantages,
and suitability for various specific use cases.

2.3.1 Performance metrics

Comparing garbage collector techniques involves evaluating various metrics that assess their
performance, efficiency, and impact on system behavior. These metrics provide valuable
insights into the strengths, weaknesses, and trade-offs of different GC techniques

7

Memory overhead

Memory overhead refers to the additional memory consumed by a garbage collector beyond
the memory required to store the application’s data and code. It encompasses various com-
ponents, including data structures, bookkeeping overhead, and auxiliary memory, utilized
by the GC to manage memory allocation and deallocation. A lower memory overhead is de-
sirable as it minimizes the impact on the application’s overall memory usage and improves
resource efficiency. High memory overhead can lead to increased memory consumption,
reduced available memory for application data, and potential performance degradation.
Therefore, optimizing memory overhead is crucial for ensuring efficient memory manage-
ment and maximizing the scalability and performance of applications.

Throughput

Throughput refers to the rate at which an application performs useful work between succes-
sive GC cycles. It is a measure of the application’s overall execution speed and efficiency.
Higher throughput indicates faster execution and better utilization of system resources.
Garbage collection techniques that optimize throughput aim to minimize the time spent
on GC activities relative to the time spent executing application code. Achieving high
throughput is particularly important in high-performance computing environments, web
servers, and other latency-sensitive applications.

Pause times

Pause times refer to the periods during which application execution is suspended or paused
while garbage collection activities are performed. Minimizing pause times is crucial for
maintaining application responsiveness, especially in interactive or real-time systems where
user experience is paramount. Long pause times can lead to delays in user interaction,
reduced throughput, and degraded application performance. Garbage collection techniques
that aim to reduce pause times, such as concurrent or incremental GC, allow application
threads to execute concurrently with GC activities, thereby minimizing the impact on
application responsiveness.

2.3.2 Garbage collection roots

Garbage collection roots are objects or memory locations that are directly accessible or
known to the runtime environment and are therefore considered as starting points for the
GC traversal process. These roots typically include global variables, static variables, CPU
registers, and local variables in active threads’ call stacks. GC roots serve as references
from which the garbage collector can traverse the object graph to identify and mark reach-
able objects. Objects that are not reachable from any GC root are considered unreachable
and eligible for garbage collection. Ensuring that all active references are appropriately
managed as GC roots is essential for maintaining memory integrity and preventing prema-
ture deallocation of live objects. By accurately identifying and maintaining GC roots, the
garbage collector can effectively manage memory resources and reclaim unused memory,
contributing to efficient memory utilization and improved application performance.

8

2.3.3 Reference counting

Reference counting is a straightforward garbage collection technique that tracks the number
of references to each object in memory. The basic premise is to associate a reference count
with each object, indicating how many references point to it. When an object’s reference
count drops to zero, it signifies that the object is no longer reachable from the program’s
execution context and can be safely deallocated.

Advantages

• Immediate Reclamation: Reference counting immediately reclaims memory when an
object’s reference count drops to zero, allowing for prompt resource cleanup. This
proactive approach can prevent memory leaks and improve overall memory utilization.

• Low Overhead: Reference counting typically incurs low runtime overhead compared to
other garbage collection techniques, such as mark-sweep or copying garbage collection.
This makes it suitable for applications with strict performance requirements or limited
computational resources.

Disadvantages

• Inefficient for Cyclic References: Reference counting is inefficient at handling cyclic
references, where objects reference each other in a loop. Even if a cyclic group of ob-
jects is collectively unreachable from the program’s execution context, their reference
counts never reach zero due to their mutual references, leading to memory leaks.

• Overhead of Reference Count Updates: Incrementing and decrementing reference
counts for each object reference operation can introduce overhead, particularly in
multi-threaded environments where atomic operations may be required to ensure
thread safety.

• Difficulty in Handling Weak References: Reference counting does not inherently sup-
port weak references, which are references that do not prevent the referenced object
from being deallocated. Implementing weak references with reference counting re-
quires additional mechanisms, potentially complicating the garbage collection process.

2.3.4 Mark-Sweep

Mark-Sweep is a classic garbage collection algorithm that operates in two phases: mark-
ing and sweeping. It is designed to reclaim memory occupied by unreachable objects by
traversing the entire object graph and identifying objects that are still reachable from the
program’s execution context.

Mark phase

• Identification of Reachable Objects: The garbage collector starts from a set of known
root objects, such as global variables, local variables, and stack frames, which are
guaranteed to be reachable. It traverses the object graph recursively, marking each
encountered object as reachable.

9

• Tracing Algorithm: Marking is typically performed using a tracing algorithm, such as
depth-first search (DFS) or breadth-first search (BFS), which systematically explores
the object graph starting from the root objects.

Sweep phase

• Reclamation of Unreachable Objects: Once all reachable objects have been marked,
the garbage collector sweeps through the entire heap, deallocating memory for objects
that were not marked as reachable during the marking phase.

• Memory Reclamation: Unreachable objects are identified by the absence of a mark.
The memory occupied by these objects is reclaimed and made available for future
allocations.

Advantages

• Efficient Handling of Cyclic References: Mark-Sweep is effective at handling cyclic
references, where objects reference each other in a loop, by traversing the entire
object graph and marking reachable objects. As long as at least one object in a cyclic
group is reachable, the entire group will be retained.

• Immediate Reclamation: Once unreachable objects have been identified during the
sweeping phase, their memory is immediately reclaimed, ensuring efficient memory
usage and minimizing the risk of memory leaks.

• Simplicity: Mark-Sweep is relatively straightforward to implement and understand,
making it a popular choice for garbage collection in many runtime environments and
programming languages.

Disadvantages

• Pause Times: The mark-sweep algorithm typically requires a stop-the-world pause
during the marking and sweeping phases, where all program execution is halted while
garbage collection is performed. These pause times can be disruptive in interactive
or real-time systems, affecting application responsiveness.

• Traversal Overhead: Traversing the entire object graph during the marking phase
can introduce significant overhead, particularly in applications with large heaps or
complex object graphs. This overhead may impact application performance and scal-
ability.

2.3.5 Mark-Compact

Mark-Compact is a type of garbage collection algorithm that combines the marking and
sweeping phases of the mark-sweep algorithm with an additional compaction step. The
primary goal of mark-compact garbage collection is to reclaim memory occupied by un-
reachable objects while also compacting memory to reduce fragmentation and optimize
memory usage.

10

Mark/sweep phase

Same as mark-sweep algorithm, except in some implementations an additional information
about each reachable object’s new location after compaction is stored.

Compact phase

• Once memory has been reclaimed, the mark-compact algorithm compacts the remain-
ing live objects to eliminate fragmentation and optimize memory usage.

• Live objects are moved to consecutive memory locations, compacting the heap and
reducing the amount of wasted space caused by fragmentation.

• Object references are updated to reflect the new memory locations of relocated objects,
ensuring that object relationships remain intact.

Advantages

• Fragmentation Reduction: Mark-Compact garbage collection effectively reduces mem-
ory fragmentation by compacting live objects into contiguous memory regions. This
reduces wasted space and optimizes memory usage, improving overall memory effi-
ciency.

• Same advantages as mark-sweep

Disadvantages

• Increased Complexity: The addition of the compaction phase adds complexity to the
garbage collection process, requiring additional bookkeeping and memory movement
operations. This increased complexity may introduce overhead and impact overall
garbage collection performance.

• Potentially Longer Pause Times: The compaction phase of mark-compact garbage
collection may increase pause times compared to mark-sweep, as it involves addi-
tional memory movement operations. Longer pause times can impact application
responsiveness, particularly in real-time or interactive systems.

• Additional Memory Overhead: Compacting live objects into contiguous memory re-
gions may require additional memory to temporarily store objects during compaction.
This can increase memory overhead, particularly in systems with limited memory re-
sources.

2.3.6 Generational Garbage Collection

Generational garbage collection is a technique that leverages the observation that most
objects become garbage shortly after they are allocated. This technique divides objects
into different generations based on their age, typically distinguishing between young and old
generations. Generational garbage collection focuses garbage collection efforts on younger
generations, as they tend to contain a higher proportion of short-lived objects, while older
generations are collected less frequently.

11

Generational Divisions

• Objects are initially allocated in the young generation, often referred to as the nursery
or nursery space. The young generation is typically smaller in size and optimized for
rapid allocation and collection.

• As objects survive garbage collection cycles in the young generation, they are pro-
moted to older generations. Objects that survive multiple garbage collection cycles
in the older generations are considered long-lived and are eventually collected during
a full garbage collection cycle.

Minor Garbage Collection

• Minor garbage collection, also known as young generation garbage collection, focuses
on reclaiming memory in the young generation.

• During a minor garbage collection cycle, the garbage collector identifies and collects
garbage objects in the young generation using techniques such as copying or marking-
sweeping. Surviving objects are then promoted to the next older generation.

Major Garbage Collection

• Major garbage collection, also known as full garbage collection or global garbage
collection, targets the entire heap, including both young and old generations.

• Major garbage collection typically occurs less frequently than minor garbage collection
and involves reclaiming memory across all generations. This process may be more
complex and time-consuming than minor garbage collection due to the larger heap
size and the need to traverse objects in multiple generations.

Advantages

• Efficient Handling of Short-Lived Objects: By focusing garbage collection efforts on
the young generation, generational garbage collection can efficiently reclaim memory
occupied by short-lived objects, reducing the overhead of full garbage collection cycles.

• Reduced Pause Times: Minor garbage collection cycles, which target the young gen-
eration, can be completed more quickly than full garbage collection cycles. This can
result in shorter pause times and improved application responsiveness.

• Adaptive Performance: Generational garbage collection adapts to the allocation and
usage patterns of the application over time. By promoting surviving objects to older
generations, the garbage collector can prioritize garbage collection efforts where they
are most needed.

Disadvantages

• Potential for Premature Promotion: Objects that survive multiple minor garbage col-
lection cycles may be prematurely promoted to older generations, leading to increased
memory usage and longer garbage collection times in the long term.

12

• Increased Complexity: Generational garbage collection introduces additional com-
plexity to the garbage collection process, including managing multiple generations,
deciding when to promote objects between generations, and coordinating garbage
collection cycles across generations.

• Tuning Overhead: Configuring and tuning generational garbage collection parame-
ters, such as generation sizes and promotion thresholds, may require careful analysis
and experimentation to achieve optimal performance for specific applications and
workloads.

2.3.7 Copying Garbage Collection

Copying garbage collection is a memory management technique that divides the heap into
two semi-spaces and performs garbage collection by copying live objects from one semi-
space to the other. This technique is particularly effective for reclaiming memory occupied
by short-lived objects and reducing fragmentation.

Heap Division

• The heap is divided into two semi-spaces, often referred to as the from-space and the
to-space. Initially, all object allocations occur in the from-space.

• The to-space is initially empty and serves as the destination for copied live objects
during garbage collection.

Minor Garbage Collection

• During a minor garbage collection cycle, the garbage collector scans the from-space
to identify live objects.

• Live objects are copied from the from-space to the to-space, leaving behind only
garbage in the from-space.

• Object references in the copied objects are updated to point to their new locations in
the to-space.

• Once all live objects have been copied, the roles of the from-space and to-space are
swapped, making the to-space the new from-space for subsequent allocations.

Major Garbage Collection

• Major garbage collection, also known as full garbage collection, may be performed
when the to-space becomes full or when the from-space is significantly fragmented.

• During a major garbage collection cycle, all live objects are copied from the from-space
to the to-space, compacting memory and reclaiming space occupied by garbage.

• Unlike minor garbage collection, major garbage collection involves copying all live
objects in the heap, not just those in the from-space.

13

Advantages

• Fragmentation Reduction: Copying garbage collection effectively reduces memory
fragmentation by compacting live objects into contiguous memory regions in the to-
space. This reduces wasted space and optimizes memory usage, leading to improved
memory efficiency.

• Immediate Reclamation: Garbage collection occurs incrementally during minor garbage
collection cycles, ensuring that memory occupied by unreachable objects is immedi-
ately reclaimed and made available for reuse.

• Simplicity: Copying garbage collection is relatively simple to implement and under-
stand, making it a popular choice for memory management in many runtime environ-
ments and programming languages.

Disadvantages

• Memory Overhead: Copying live objects from one semispace to another during garbage
collection can introduce memory overhead, particularly if the to-space is not suffi-
ciently large to accommodate all live objects from the from-space.

• Potentially Longer Pause Times: Minor garbage collection cycles may introduce pause
times during which application execution is suspended while live objects are copied
from the from-space to the to-space. These pause times can impact application re-
sponsiveness, particularly in real-time or interactive systems.

• Increased Copying Costs: Copying all live objects during major garbage collection
cycles can introduce additional copying costs, particularly in systems with large heap
sizes or complex object graphs. These copying costs may impact garbage collection
performance and scalability.

2.3.8 Concurrent/parallel garbage collection

Concurrent garbage collection is an approach to reclaiming memory in managed runtime
environments that aims to minimize pause times and maintain application responsiveness
by performing GC activities concurrently with the execution of application threads. Unlike
traditional stop-the-world (STW) GC, where application execution is halted during GC
cycles, concurrent GC techniques allow the application to continue executing while GC
activities occur in parallel.

Key components

The key components of concurrent garbage collection include concurrent marking, sweep-
ing, and optionally, compaction. Concurrent marking involves traversing the object graph
to identify reachable objects while allowing application threads to execute concurrently.
Concurrent sweeping deallocates memory for unreachable objects without halting applica-
tion threads, ensuring continuous execution. Optional concurrent compaction reorganizes
memory to reduce fragmentation, improving memory locality and efficiency. These com-
ponents work together to minimize pause times and maintain application responsiveness,
enabling smooth user experiences in managed runtime environments.

14

Challenges

Implementing concurrent garbage collection poses several challenges due to the inherent
complexity of managing memory concurrently with the execution of application threads.
One significant challenge is coordinating GC activities with ongoing application execution
to ensure correctness and consistency while minimizing pause times. This requires imple-
menting sophisticated synchronization mechanisms and concurrency control techniques to
manage access to shared data structures and resources. Additionally, dealing with concur-
rent access to mutable objects and managing inter-thread communication introduces the
risk of race conditions and synchronization errors, necessitating careful design and testing.
Furthermore, optimizing the performance of concurrent GC requires balancing the trade-
offs between throughput, pause times, and resource utilization, which may vary depending
on the characteristics of the application workload and the underlying hardware architec-
ture. Overall, implementing concurrent GC requires expertise in concurrent programming,
memory management, and system optimization, as well as a thorough understanding of the
specific requirements and constraints of the targeted runtime environment.

15

Chapter 3

PNtalk

In this chapter, we take a closer look at PNtalk, exploring its design principles, features and
capabilities. By understanding the underlying architecture and functionality of PNtalk, this
will allow us to make more informed decisions when it comes to implementing a garbage
collector. We will examine all of the key components for this thesis, such as its syntax,
semantics and more. We will focus only on the current implementation in Java, and since
at the time of writing this it is not finished, some of the information in this chapter might
be outdated. The information for this chapter was taken from [2] and [3].

PNtalk is a language and a system based on Object-Oriented Petri Nets(OOPNs).
PNtalk language is a specific implementation of OOPN, PNtalk also specifies some facts in
which the OOPN definition leaves some latitude.

3.1 Object-Oriented Petri Nets
Object-Oriented Petri represent an extension of traditional Petri nets that incorporates
object-oriented concepts from software engineering. OOPNs provide a powerful modeling
framework for describing concurrent and distributed systems in a modular, hierarchical, and
reusable manner. By combining the formalism of Petri Nets with the principles of object-
oriented programming, OOPNs offer a flexible and intuitive approach to modeling complex
systems, ranging from communication protocols and workflow systems to manufacturing
processes and software architectures.

3.1.1 Key concepts

1. Places and Transitions: Places in OOPNs represent system states or conditions. They
serve as containers for tokens, which signify the presence of entities or resources within
the system. Transitions represent events or actions that can occur in the system. They
serve as triggers for state changes and token movements between places.

2. Objects and classes: In OOPNs objects encapsulate state and behavior. Objects
represent tangible entities within the system and interact with each other through
sending messages. Classes serve as blueprints for creating and managing objects in
the system.

3. Inheritance and Polymorphism: OOPNs support inheritance and polymorphism, en-
abling the modeling of hierarchical structures and behavioral variations within the

16

system. Inheritance allows classes to inherit properties and behaviors from parent
classes, promoting code reuse and modularity. Polymorphism allows objects of dif-
ferent classes to be treated interchangeably, providing flexibility and extensibility in
system design.

3.2 Messaging
Sending a message can only be triggered as an action during transition. Messages consist
of selectors and optional arguments. There are three different type of messages:

1. Unary messages: Messages that are sent to an object without any other information.
For example, C1 new is a unary message.

2. Binary messages: Messages consisting of operators (often arithmetic). They are bi-
nary because they always involve only two objects: the receiver and the argument
object. For example in 10 + 20, + is a selector sent to the receiver 10 with argument
20.

3. Keyword messages are messages consisting of one or more keywords, each ending with
a colon (:) and taking an argument. For example in o doit: 1, o is the receiver and
the selector doit: takes the argument 1. Objects can also send messages to themselves
by setting the receiver to the keyword self.

3.3 Places, transitions and edges
Every place in OOPN has a name associated with it, and can also have set the default
token contained within it. Places can optionally have initial action associated with them.
PNtalk allows for the default token to be a variable, but the variable in question has to be
set to a value by the associated initial action.

Places and transition are connected by edges. Edges have edge expression associated
with them, here is an example of an edge expression:

2‘#e

In this expression #e represents a symbol and the number 2 represents the amount of
symbols required. There are three different types of edges:

1. Input edge: These edges connect places to transitions, indicating that the transition
requires tokens from those places to fire. Input edges represent the prerequisites
or conditions necessary for a transition to occur, ensuring that the system behaves
according to predefined rules or constraints.

2. Output edge: When a transition with output edges fires, it generates tokens in its
output places, reflecting the outcomes or effects of the transition’s execution.

3. Test edge: Testing edges are a specialized type of input edge that represents a con-
ditional dependency between a transition and a place. Tests whether the required
tokens exists in the connected place.

17

As mentioned before transitions are the only way to send a message in the java im-
plementation of PNtalk. This means that the only way to create new objects is through
transitions, these objects can also be assigned to a variable and then stored inside places.

3.4 Nets
Places and transitions connected by edges form nets. Every object in PNtalk can contain
two types of nets:

1. Object net: These represent all of the objects attributes and its activity

2. Method net: These specify the reaction of an object to a method call (message from
another object). Every method network has a message template associated with it.
The creation of method networks is dynamic, and upon the method finishing the net
is destroyed. Method nets also contain two ”special“ kind of places. Parameter places
where the arguments are stored and the return place that is used to return the result
to the caller.

Below 3.1 we can see an example of both object net and method net.

Figure 3.1: Example of OOPN (taken from [3]).

3.5 Structure of the current PNtalk implementation
The description of the structure is only gonna be partial as it is not necessary to understand
all of PNtalk for this thesis. For the graphical represantion of the structure see 3.2. Few
notable things about the structure are that PNPlaces contain PNPMultiSettokens and these
tokens contain a hashmap with PNProxy and an integer, the integer represents multiplicity
and PNProxy a value, which can be either string, symbol, number, object or a compiled
class. Every transition has transition goals these represent preconditions (input edges) and
postconditions (output edges) of a transition.

18

Figure 3.2: PNtalk structure (simplified).

3.5.1 PNSimulation

Represents a simulation, it contains PNObject list, PNCalendar and PNTime. PNCalendar
is used for schedulling events, these events are executed in a case that there are no transition
to be fired for any of the PNObject in the simulation’s list. PNTime is modified when even
is executed. The list of PNObjects represents all the existing objects in the simulation.

3.5.2 PNObject

PNObject is a representation of an instantiated OOPN class, it contains PNCompiled-
Class (class which the object was instantiated from), PNProcess which represents an object
net and finally list of PNProcessContext. PNProcessContext represents the context of a
process, the context can either be a method net or a native method.

3.5.3 PNBinding

PNBinding contains all the necessary information needed to fire and successfully finish a
transition. Before a PNThread can be created it firts has to be bound successfully.

3.5.4 PNThread

PNThreads represent a progress of a transition and also the current state of the transition.
It has three possible states and those are RUNNABLE, WAITINGOP and FINISHINGOP.

• RUNNABLE - in this state the thread can perform operations, this is the default
state of a thread after it has been instantiated.

• WAITINGOP - waiting for an operation to finish, the thread can get into this state
when it calls a method.

19

• FINISHINGOP - Informs the thread of the fact that the process it was waiting for
has finished.

20

Chapter 4

Garbage Collector design

This chapter delves into the conceptualization, design decision and architecture of a memory
management system tailored for PNtalk. It is worth mentioning that since the PNtalk
implementation is done in java, and java does not support any manual memory management,
that my garbage collector will not be implemented in the traditional way. Pntalk works on
a basis of a virtual machine this means that PNSimulation holds all PNObjects in memory
and never removes them (the sole exception being method nets, that get removed upon
finishing). So what my garbage collector will need to do are these following things:

1. Determine which PNObjects in memory will be considered GC roots.

2. Find all references that roots contain.

3. Traverse these reference recursively and mark them as reachable.

4. Traverse the entire memory of PNSimulation and remove all unreachable objects.

4.1 Goals
One of the main goals of the garbage collector design is to minimize changes to the ex-
isting PNtalk implementation and encapsulate memory management functionality within
the garbage collector itself. By containing all memory management operations within the
garbage collector, we aim to remove the risk of creating changes that are at odds with the
future development of PNtalk. Furthermore we want to put lot of emphasis on ease of
testing and tunability. Tunability is a crucial aspect that enhances the garbage collector’s
versatility and adaptability to many different kinds of Object-Oriented Petri Nets.

4.2 Algorithms
After careful consideration I have decided to implement multiple different GC algorithms,
that will be available to use for garbage collection. Different garbage collection algorithms
excel under different conditions and usage patterns. By implementing multiple algorithms,
we can tailor the choice of garbage collection strategy to match specific needs, such as
object longevity and memory usage patterns. This allows for optimization across a wide
range of scenarios, maximizing performance and efficiency. Having multiple algorithms
enables direct comparison of their performance metrics. By evaluating algorithms side

21

by side, we will gain insights into their relative strengths and weaknesses. The specific
algorithms I have chosen are sweep-mark, generational GC and on top of that parallelized
mark-sweep.

4.3 Garbage collection frequency
I decided to implement garbage collection triggers only after a certain number of steps in
the simulation to strike a balance between memory management and computational effi-
ciency. By delaying garbage collection until after a predefined number of steps, I aim to
minimize the frequency of GC pauses while ensuring that memory usage remains within
acceptable bounds. Performing GC too frequently can introduce unnecessary overhead
and potentially disrupt the simulation’s flow, leading to increased pause times and reduced
throughput. However, delaying GC indefinitely can result in excessive memory consumption
and potential memory exhaustion, negatively impacting application performance. There-
fore, by scheduling GC triggers at regular intervals based on the simulation’s progress,
I can optimize memory utilization while maintaining smooth and responsive simulation
execution.

4.4 Identifying garbage collection roots
Identifying garbage collection roots in PNtalk simulation is difficult, because the simulator
keeps all of the PNobjects in one list and we have no additional information about these
objects. In a typical GC, garbage collection roots would include global variables, static
variables, and local variables, nothing like that exists in the PNtalk simulation. So the
main criteria I have decided to use to identify GC roots is whether the object was created
before the simulation started.

4.5 Deleting garbage collection roots
The problem with deleting roots is that it is hard to determine when a root should be
deleted. At first I wanted to delete roots based on their activity, meaning if there were any
PNThread (3.5) created or existing the root would not get deleted, however this proved to
be a mistake because the PNSimulation allows only a single transition to be executed per
step. This means if I had more than one roots ready to execute their respective steps only
one of them would be executed and the other one would get deleted. However there is a way
to accurately determine whether or not an object should be deleted. By checking if each
transition inside an object can be bound, we determine that this object can fire transitions
in the future. This means we can delete a root if no transitions can be bound and if it also
has no threads.

4.6 Parallelization

4.6.1 Parallel sweep

Parallel sweep allow us to reclaim memory concurrently across multiple threads. This is
most likely the easiest phase to parallelize, as the task itself can easily be decomposed into
smaller independent tasks, and the individual task will not need access to the same parts

22

of memory. Firstly, the heap (in our case the list of PNObject inside PNSimulation) must
be partitioned into smaller segments, with each segment assigned to a specific thread or
processor for sweeping. To achieve this I decided to include a parameter that will limit the
maximum number of threads. The objects will then be evenly split between the maximum
number of threads.

4.6.2 Parallel Marking

For the most part parallel marking is very similar to parallel sweeping, with the added
problem of threads potentially accessing the same object. This problem can be solved quite
easily and that is by using the boolean used for ”marking“ the object. However for this to
work I have to prevent different threads accessing the boolean at the same time, for this I
used Java’s synchronized keyword that allows methods to be thread-safe by ensuring that
only one thread can execute it at a time. This solves all of our potential issues because if
two threads access the same object, then one thread will mark and the other one will move
on. It will also utilize the same concept of limiting the maximum amount of threads and
splitting the work equally between them.

4.7 Garbage collector test class
I decided to create a subclass that inherits from the garbage collector class to facilitate
testing and customization within the garbage collection framework. By extending the base
garbage collector class, I gain the ability to add additional functionality specific to testing
purposes while leveraging the existing implementation of the garbage collector for core
memory management tasks. This approach allows me to isolate and test specific components
or behaviors of the garbage collector in a controlled environment without modifying the
original implementation. Additionally, subclassing enables me to override or extend existing
methods in the garbage collector class to introduce custom behavior tailored to testing
requirements.

23

Chapter 5

Implementation

In this chapter we will delve into the practical realization of the garbage collector, detailing
the architectural components, data structures, algorithms, and implementation methodolo-
gies employed to bring the design to fruition.

5.1 Class hierarchy
GarbageCollector is the base class for all the other garbage collector implementations. Each
of the garbage collector implementations has its own testing class that inherits from their
respective implementations.

Figure 5.1: Class hierarchy diagram.

5.2 Changes to PNtalk
Before I could even start implementing the garbage collector I first had to make some
changes to PNtalk itself. First of all I had to add reachable boolean to class PNObject,
this was done so the garbage collector can mark PNObject. Furthermore I had to add a
couple of getters:

• PNObject: added a method getComponents that returns a list of PNProcessContext.

• PNProcess: added a method getPlaces that returns a list of PNPlace, also added a
method getTransitions that returns a list of PNTransition.

• PNTransition: added a method getThreads that returns a list of PNThread.

24

• PNPlace: added a method getTokens that returns a PNMultiSet.

• PNMultiSet: added a method getCollection that returns a that returns a Map where
PNProxy is used as a key and integer is used as a value.

• PNThread: added a method getDictionary that returns PNDictionary.

• PNDictionary: added a method getContent that returns a that returns a Map where
PNProxy is used as a value and string is used as a key.

These changes were made in order to be able to loop through the list of PNObjects in
PNSimulation and check for references, that can either exists in PNPlace or PNThread.
For PNSimulation I just added a GarbageCollector as a member variable and during PN-
Simulation’s step method I added a call to GarbageCollector’s garbageCollect method.

5.3 Mark-sweep
The first algorithm I have decide to implement was mark-sweep, mostly because it is the
easiest one to implement. Implementing it allowed me more of an insight into PNtalk’s
structure and inner workings. This made implementing the more complex algorithms down
the line much easier. Mark-sweep is implemented in GarbageCollector.java as a class.
This class contains three member variables, stepsToGc sets the amount of steps needed
to perform garbage collection, currentStep which serves as a step counter and list of
PNObjects called roots, these contain all our roots, roots are inserted into the list manually
before simulation.

public void garbageCollect(List<PNObject> components) {
if(currentStep != stepsToGc - 1){

currentStep += 1;
return;

}
mark();
sweep(components);

currentStep = 0;
}

Listing 5.1: garbageCollect method

When PNSimulation finishes one step it calls garbageCollect 5.1 which first performs a
check whether the required amount of steps has passed. If the check is failed the function
does nothing and returns, otherwise it performs both mark and sweep phases and at the
end sets the step counter to zero.

The mark method 5.2 starts out by looping through the list of roots and calling check-
ObjRefs 5.2 on each root. The first thing this function does is sets the objects reachability
to true, after which it loops through a list of PNProcess and from PNProcess it acquires a
list of places and transition which are used as arguments for functions checkPlaceRefs and
checkThreadRefs. These functions look for a reference to a PNObject if they find it they
recursively call checkObjRefs. This basically works like a depth first search except we go
through the entire list to the end.

25

void mark() {
for (PNObject obj : roots) {

checkObjRefs(obj, true);
}

}

void checkObjRefs(PNObject obj){
obj.reachable = true;
for (PNProcessContext context : obj.getComponents()) {

if (context instanceof PNProcess) {
PNProcess process = (PNProcess) context;

for(PNPlace place : process.getPlaces()){
checkPlaceRefs(place);

}

for(PNTransition trans : process.getTransitions()){
for(PNThread thread : trans.getThreads()){

checkThreadRefs(thread);
}

}
}

}
}

Listing 5.2: mark and checkObjRefs methods.

The sweeping phase 5.3 is very simple we just loop through all the objects in the
components list and check if the reachable boolean is set to true or false, based on that
we either remove the object or set reachable to false to prepare it for the next garbage
collection.

void sweep(List<PNObject> components) {
Iterator<PNObject> iterator = components.iterator();
while (iterator.hasNext()) {

PNObject obj = iterator.next();
if (!obj.reachable) {

iterator.remove();
} else {

obj.reachable = false;
}

}
}

Listing 5.3: sweep method.

26

5.4 Generational Garbage collection
The generational garbage collector is implemented as a class GarbageCollectorGenerational
and it is a child class of class GarbageCollector. This means that it has all the same meth-
ods and member variables. On top of that it has one list of PNObject (Old generation) and
one list of YoungObject 5.4. YoungObjects are necessary so we can track how many cycles
has a PNObject survived. Having young and old generation be part of the GarbageCollec-
torGenerational class has some performance drawbacks, since the objects are not directly
created in the young generation, but rather added to it during marking. The class also
contains two member variables, maxOldGenSize which is used as a trigger for full GC and
a promotion variable that determines how many steps a YoungObject has to survive to be
promoted to old generation.
class YoungObject{

public PNObject obj;
public int age;

public YoungObject(PNObject obj){
this.obj = obj;
this.age = 0;

}
}

Listing 5.4: YoungObject class.

The method sweepYoung 5.5 works very similarly to normal sweep except in the case
that the object is not swept its age is increased, and in the case that the youngObject has
reached the age for promotion to OldGeneration it is moved there and removed from the
YoungGeneration list. In the case that object is unreachable and removed from the list
of youngObjects it has to be also removed from the simulation’s list that’s passed to the
method as an argument. The inherited sweep method had to be overriden so it loops over
the old generation and remove objects from both the old generation and the components
passed by PNSimulation.
void sweepYoung(List<PNObject> components) {

Iterator<YoungObject> iterator = youngGeneration.iterator();
while (iterator.hasNext()) {

YoungObject yObj = iterator.next();
PNObject obj = yObj.obj;
if (!obj.reachable) {

components.remove(obj);
iterator.remove();

} else {
obj.reachable = false;
if(yObj.age == promotion){

oldGeneration.add(obj);
iterator.remove();

}
else{

yObj.age += 1;
}

27

}
}

}
Listing 5.5: sweepYoung method.

The mechanism for cleaning out the older generation is very simple, 5.6 it is based on
the size of our OldGeneration list, if it surpasses our set maximum size we trigger the full
garbage collection. This includes sweeping both the OldGeneration and YoungGeneration.
@Override
public void garbageCollect(List<PNObject> components) {

if(currentStep != stepsToGc - 1){
currentStep += 1;
return;

}
if(oldGeneration.size() <= maxOldGenSize){

mark();
sweepYoung();

} else{
mark();
sweep(components);
sweepYoung();
clearRoots(components);

}
currentStep = 0;

}
Listing 5.6: garbageCollect method.

Mark method remains the same as in the parent class, but the checkObjRefs 5.7 method
had to be overridden so that when we reach an object that is not root, it is addded to the
YoungGeneration list.
@Override
void checkObjRefs(PNObject obj){

obj.reachable = true;
youngGeneration.add(new YoungObject(obj));

for (PNProcessContext context : obj.getComponents()) {
if (context instanceof PNProcess) {

PNProcess process = (PNProcess) context;

for(PNPlace place : process.getPlaces()){
checkPlaceRefs(place);

}

for(PNTransition trans : process.getTransitions()){
for(PNThread thread : trans.getThreads()){

checkThreadRefs(thread);
}

}

28

}
}

}
Listing 5.7: checkObjRefs method.

5.5 Parallel mark-sweep
The parallel mark sweep garbage collector is implemented as a class GarbageCollectorPar-
allel and it is a child class of class GarbageCollector.

The biggest issue with parallel marking 5.8 is that it is possible for different threads
to get access the same object. This is solved by adding a synchronized method to PNOb-
ject. Once a thread gets access to a block it immedietally calls the method tryLock, this
practically locks the object and ensures other threads cant access it. For the splitting of
the list of objects between threads I first divide the number of objects by the maximum
amount of threads and assign it to variable objsPerThread, then every thread gets rounded
down amount of objsPerThread as a sublist. If there are any remaining objects they are
passed to another thread, this makes it so the maximum amount of threads is technically
maxThreads + 1. Once all threads are started we wait for all of them to finish to avoid
any overlaps with the sweeping phase.
void parallelMark() {

List<markThread> threads = new ArrayList<>();
float objsPerThread = roots.size()/maxThreads;
if(objsPerThread < 1){

mark();
return;

}
else{

int remainder = roots.size() % maxThreads;

for (int i = 0; i < (roots.size() - remainder);
i += Math.floor(objsPerThread)) {

int endIndex =
(int) Math.min(i + Math.floor(objsPerThread), roots.size());
List<RootObject> sublist = roots.subList(i, endIndex);

markThread thread = new markThread(sublist);
threads.add(thread);
thread.start();

}
if(remainder > 0){

//creates new thread with the last portion of the list
}

}
for (markThread thread : threads) {

//waiting for all threads to finish

29

}
}

Listing 5.8: parallelMark method.

Parallel sweep 5.9 has the exact same mechanism for splitting up the list of PNObjects
between threads. The only things that differ are the work that the threads do and how
sublist have to be handled. Since sublists are in essence views into the original list we
cannot directly delete these objects as it would mess up the thread’s internal iterators. The
solution for this was simply setting the value of PNObject to null, these values are deleted
after all threads finish.

void parallelSweep(List<PNObject> components) {
List<sweepThread> threads = new ArrayList<>();
float objsPerThread = components.size()/maxThreads;
if(objsPerThread < 1){

sweep(components);
return;

}
else{

int remainder = components.size() % maxThreads;

for (int i = 0; i < (components.size() - remainder);
i += Math.floor(objsPerThread)) {

int endIndex =
(int) Math.min(i + Math.floor(objsPerThread),
components.size());
List<PNObject> sublist = components.subList(i, endIndex);

sweepThread thread = new sweepThread(sublist);
threads.add(thread);
thread.start();

}
if(remainder > 0){

//creates new thread with the last portion of the list
}

}
for (sweepThread thread : threads) {

//waiting for all threads to finish
}
components.removeAll(Collections.singleton(null));;

}

Listing 5.9: parallelSweep method.

30

Chapter 6

Testing and Benchmarking

The testing and benchmarking chapter of this thesis is dedicated to the rigorous evaluation
and validation of the developed garbage collection system for PNtalk. In this chapter, we
delve into the methodologies, procedures, and results of various tests aimed at assessing
the performance, reliability, and scalability of the garbage collection system under different
workloads and scenarios. Through systematic testing, we aim to validate the correctness
of the implementation, identify potential issues or shortcomings, and measure the system’s
performance against predefined tests.

JUnit Jupiter was utilized as the primary testing framework throughout the develop-
ment of the garbage collector, offering a modern and feature-rich platform for writing and
executing unit tests in Java, the framework was already being utilized in PNtalk prior to
development of GC.

6.1 Explanation of PNSimulation’s report
Before we can get into analysis of simulation’s output we need to understand the format of
its report. This here is an example of one such report:

[S] default[1][time=0][cal=[]]
[O][1]:C1

[N][1]:#object
[P] counter:{(1‘10)}
[P] result:{}
[P] start:{(1‘10)}
[P] temp:{}
[T] t2:

[precond] start(1‘x=_)
[postcond] temp(1‘o=_)

[T] t1:
[precond] counter(1‘x=_)
[precond] temp(1‘o=_)
[postcond] result(1‘y=_)

Here the [S] represents a simulation default is the name of the simulation, [time=0]
represents the internal time of the simulation, and finally [cal=[]] represents a calen-
dar that is currently empty. [O] represents object, [N] represents net, [P] represents

31

place and [T] represents transition. In case of transition we can also see PNTransgoal
[precond] start(1‘x=_) where [precond] is a type of PNTransgoal, start is a name of
a place and 1‘x=_ where 1 represent multiplicity and x a variable to which a value will be
assigned.

6.2 Testing models
Overview of all models used for performance testing. All of these models are implemented
in class Models as methods, meaning that there are three methods model1, model2 and
model3.

6.2.1 Overview of model1

For this model our root is gonna be one instance of class C1. This is very basic model has
a single transition that has a input from place p1, it takes the value from place p1 and puts
two of those values in place p2.

class C1 is_a PN
object

place p1(2‘10)
place p2()
trans t1

precond p1(1‘x)
postcond p2(2‘x)

Listing 6.1: model1 class C1.

6.2.2 Overview of model2

For this model our root is one instance of class C1. The class C1 has one transition t1 that
has one input (x) from place counter. The transition has also two actions associated with
it, the first one creates a new instance of class C2 and assigns it to variable o. The next
action calls C2’s increment method with x as an argument. The increment method adds 1
to the passed argument and returns the value.

class C1 is_a PN
object

place start(1‘10)
place result()
trans t1

precond counter(1‘x)
action {

o = C2 new.
y = o increment: x.

}
postcond result(1‘y)

Listing 6.2: model2 class C1.

class C2 is_a PN
object
method increment: p1

place p1()
place return()
trans t2

precond p1(1‘x)
action {

res = x + 1.
}
postcond return(1‘res)

Listing 6.3: model2 class C2.

32

6.2.3 Overview of model3

For this model our root is one instance of class C1. This will serve as a stress test for the
mark phase of garbage collection as it contains a lot of references. The class C1 creates
10 new instances of class C2 and calls the increment method. Class C2 also creates 10
new instances of class C2 and calls the increment method, this works in a recursive way,
meaning that more and more objects will be created with each step of the simulation.

class C1 is_a PN
object
place start(10‘42)
place end()
trans t1

precond start(1‘x)
action {

o = C2 new.
y = o increment: x.

}
postcond end(1‘42)

Listing 6.4: model3 class C1.

class C2 is_a PN
object
place start(10‘42)
place end()
trans t2

precond start(1‘x)
action {

o = C2 new.
y = o increment: x.

}
postcond end(1‘42)

method increment: in
place in()
place return()
trans t22

precond in(1‘x)
action {

y = x + 1.
}
postcond return(1‘y)

Listing 6.5: model3 class C2.

6.3 Testing of correctness
The purpose of this section is to validate whether our garbage collectors can accurately
identify objects that are no longer accessible. I will be comparing PNSimulation’s reports
at crucial steps to see whether the garbage collector can detect unreachable objects and
unnecessary roots correctly. All these test are using models from the previous section (the
number of the test corresponds to the number of the model). I will be testing all of the
garbage collectors but only showcasing the mark-sweep implementation here, since testing
all three would result in a lot of repetition, without much extra information. Furthermore
for all of these test I will be setting stepsToGc to 1 in order to trigger the GC every step.

6.3.1 Results of test1

Here on left we can see the report output for no garbage collection and on the right we
see output with garbage collection. In this particular case we are testing whether we can
correctly delete GC roots. You might notice that on the right side that in step 2 the object

33

gets already deleted, that is because right after t1 is finished garbage collection is triggered.
The report is generated only after garbage collection is done.

+++ step: 1
[S] default[1][time=0][cal=[]]

[O][1]:C1
[N][1]:#object

[P] p1:{(1‘10)}
[P] p2:{(2‘10)}
[T] t1:

[precond] p1(1‘x=_)
[postcond] p2(2‘x=_)

+++ step: 2
[S] default[1][time=0][cal=[]]

[O][1]:C1
[N][1]:#object

[P] p1:{}
[P] p2:{(4‘10)}
[T] t1:

[precond] p1(1‘x=_)
[postcond] p2(2‘x=_)

Listing 6.6: test1 with no GC

+++ step: 1
[S] default[1][time=0][cal=[]]

[O][1]:C1
[N][1]:#object

[P] p1:{(1‘10)}
[P] p2:{(2‘10)}
[T] t1:

[precond] p1(1‘x=_)
[postcond] p2(2‘x=_)

+++ step: 2
[S] default[1][time=0][cal=[]]

Listing 6.7: test1 with GC

6.3.2 Resutls of test2

Same as in the previous test on the left no GC on the right with GC. This test has two
purposes, first check if our garbage collector will remove a root with a thread in progress,
which it does not, the second is whether we can detect that [O][2] is no longer reachable.
From the result of the test we can see that both the root [O][1] and the object created by
our root get removed from the simulation.

34

+++ step: 2
[S] default[1][time=0][cal=[]]

[O][1]:C1
[N][1]:#object

[P] result:{}
[P] start:{}
[T] t1:

[precond] start(1‘x=_)
[postcond] result(1‘y=_)
[THREAD][3][1]
[FINISHINGOP]
[{x=1, self={[O][1]:C1},
o={[O][2]:C2}}][_res=2]

[O][2]:C2
[N][1]:#object
[N][2]:#increment:

[P] p1:{}
[P] return:{(1‘2)}
[T] t11:

[precond] p1(1‘x=_)
[postcond] return(1‘y=_)

+++ step: 3
[S] default[1][time=0][cal=[]]

[O][1]:C1
[N][1]:#object

[P] result:{(1‘2)}
[P] start:{}
[T] t1:

[precond] start(1‘x=_)
[postcond] result(1‘y=_)

[O][2]:C2
[N][1]:#object

Listing 6.8: test2 with no GC

+++ step: 2
[S] default[1][time=0][cal=[]]

[O][1]:C1
[N][1]:#object

[P] result:{}
[P] start:{}
[T] t1:

[precond] start(1‘x=_)
[postcond] result(1‘y=_)
[THREAD][3][1]
[FINISHINGOP]
[{x=1, self={[O][1]:C1},
o={[O][2]:C2}}][_res=2]

[O][2]:C2
[N][1]:#object
[N][2]:#increment:

[P] p1:{}
[P] return:{(1‘2)}
[T] t11:

[precond] p1(1‘x=_)
[postcond] return(1‘y=_)

+++ step: 3
[S] default[1][time=0][cal=[]]

Listing 6.9: test2 with GC

6.3.3 Results of testHold

For the last test I used a test that was already a part of PNtalk, here is its model 6.10.

class C1 is_a PN
object

place counter(1‘10)
place result()
trans t1

precond counter(1‘x)

35

action {
y = self hold: 10

}
postcond p2(1‘y)

Listing 6.10: testHold model (taken from PNtalk’s source code comments).

In this test we take a look at whether or not can our garbage collector handle native
methods. The transition t1 executes a native method that sleeps for 10 units of time. We
can also notice that it is the first test that modified the internal time of the simulation.

+++ step: 2
[S] default[1][time=10][cal=[]]

[O][1]:C1
[N][1]:#object

[P] counter:{}
[P] result:{}
[T] t1:

[precond] counter(1‘x=_)
[postcond] result(1‘y=_)
[THREAD][3][0]
[FINISHINGOP]
[{x=10, self={[O][1]:C1},
_1=10}][_res=null]

[NATIVE][2]:hold:

+++ step: 3
[S] default[1][time=10][cal=[]]

[O][1]:C1
[N][1]:#object

[P] counter:{}
[P] result:{(1‘null)}
[T] t1:

[precond] counter(1‘x=_)
[postcond] result(1‘y=_)

Listing 6.11: testHold with no GC

+++ step: 2
[S] default[1][time=10][cal=[]]

[O][1]:C1
[N][1]:#object

[P] counter:{}
[P] result:{}
[T] t1:

[precond] counter(1‘x=_)
[postcond] result(1‘y=_)
[THREAD][3][0]
[FINISHINGOP]
[{x=10, self={[O][1]:C1},
_1=10}][_res=null]

[NATIVE][2]:hold:

+++ step: 3
[S] default[1][time=10][cal=[]]

Listing 6.12: testHold with GC

6.4 Metrics
For testing metrics I have decided to go with:

1. Time spent collecting garbage: This is because it has by far the biggest impact on
user experience as the simulation has to be paused while garbage collection is running.
This time is further split into the time spent marking and sweeping, this allows for
greater insight into the performance of the garbage collector.

2. Size of PNSimulations object list: I have decide to go with this metric instead of
something like current memory usage because java itself runs in managed runtime

36

environment and we have no idea when java triggers its own garbage collection, for
those reasons I think including current memory usage would be more confusing than
beneficial.

3. Amount of objects created: this will allow us to see how many objects have been
destroyed by our GC, during the test

4. Total time: This refers to the total time of running the test, this allows us to compare
how much time is spent simulating in comparison to how much time is spent on
garbage collection.

6.5 Hardware
Specifying the hardware used for benchmarks is crucial as it ensures the reproducibility
and comparability of performance measurements, provides context for interpreting results,
offers insights into potential optimizations.

Figure 6.1: Testing hardware specifications.

6.6 Basic testing structure
All of our tests are implemented inside a class GCTest (Do not confuse these with tests
from PNVM.java). The basic structure of a test is that it first creates the desired garbage
collector, after which we initialize a new simulation with our create GC as an argument.
Following that we loop over the model we wanna test/benchmark, the number of loops is
determined by the GCTest’s member variable numOfModels. After we are done creating our
models we start a new loop, that performs the steps inside of the simulation, the maximum
number of steps is give be the member variable numOfSteps.

GarbageCollectorTest gc = new GarbageCollectorTest(1);
PNSimulation sim = new PNSimulation("default", 1, gc);

37

for (int i = 0; i < numOfModels; i++) {
Models.model1(sim);

}

for (int i = 0; i < numOfSteps; i++) {
doStep(sim, i);

}

Listing 6.13: Basic test structure (this particular example is test1).

6.7 Performance testing
The performance testing section delves into the evaluation and analysis of the garbage
collector’s performance characteristics under different workloads and scenarios, providing
valuable insights into its behavior and resource utilization.

There are in total 9 tests, each of the models is tested on each of the garbage collector
implementations. That means there are three variations of test1:

• test1 - this tests the basic mark-sweep implementation

• test1P - this tests the parallel mark-sweep implementation

• test1G - this tests the generational GC implementation

The number in test1 corresponds to the model that was used for the test, so for test1 it
would be model1, for test2 it would be model2.

Table 6.1 contains all parameters that are fed to the garbage collector’s constructor.
The x in testx-01 stands for the number of the test, so test1-01 and text2-01 use the
same parameters for the GC constructor, also the testx-01 GC parameters apply to the
parallel and generational version of the tests.

Test stepsToGc maxThreads promotion oldGenMaxSize
noGC - - - -

testx-01 1 10 3 10
testx-02 20 20 10 100

Table 6.1: Garbage collector parameters for tests.

Before we get into the results quick explanation of the columns of table 6.2, NoM and
NoS stand for numberOfModels and numberOfSteps. The total column contains the total
duration of the test (this includes inserting models into the simulation), sweep column
contains the amount of time spent sweeping, column mark contains the marking duration,
the column Objs represents the amount of PNObjects in PNSimulation’s memory after the
test has finished and finally the column Objs created shows the amount of objects created
during the run of the simulation.

38

6.7.1 Results of testx-01

As we can see in table 6.2 the test1-01 (mark-sweep implementation) is the overall best
performer in this test. The parallel implementation struggles with tasks that have a low
amount of objects in simulation’s memory, but things improve once we increase the number
of models, namely they improve for the mark phase duration as it is 4 seconds lower than
mark-sweep implementation. The generational implementation does the best in the test
with low amount of models/steps, this is because this particular model cannot trigger its
full GC. With higher amount of models/steps the generational implementation struggles
quite hard as it does not remove any roots, meaning the list of objects never gets smaller.

Test NoM NoS Total[ms] Sweep[ms] Mark[ms] Objs Objs created
noGC1 100 100 66 - - 100 0
test1-01 100 100 49 0.82 4.06 51 0

test1P-01 100 100 165 81.48 69.62 51 0
test1G-01 100 100 30 0.04 3.96 100 0

noGC1 10000 10000 19189 - - 10000 0
test1-01 10000 10000 12717 768.12 11175.82 5001 0

test1P-01 10000 10000 14817 6523.01 7770.19 5001 0
test1G-01 10000 10000 55098 3.51 30309.99 10000 0

Table 6.2: Results of test1.

Table 6.3 shows similar results to the first table, at least when comparing mark-sweep
and parallel implementations. The generational implementation shows great improvement
in both low number of models/steps and higher number of models/steps. When it comes
to parallel marking it is more than twice as fast as the mark-sweep implementation.

Test NoM NoS Total[ms] Sweep[ms] Mark[ms] Objs Objs created
noGC2 100 100 111 - - 199 99
test2-01 100 100 126 1.77 9.04 199 99

test2P-01 100 100 135 38.95 43.13 199 99
test2G-01 100 100 38 1.62 5.63 199 99

noGC2 10000 10000 64071 - - 19999 9999
test2-01 10000 10000 142962 4271.76 54834.88 19999 9999

test2P-01 10000 10000 110671 5105.35 23462.99 19999 9999
test2G-01 10000 10000 172715 16223.24 62624.76 19999 9999

Table 6.3: Results of test2.

Once again the table 6.4 shows the same pattern. With generational implementation
struggling hard when it comes to sweep times with higher amount of models/steps.

39

Test NoM NoS Total[ms] Sweep[ms] Mark[ms] Objs Objs created
noGC3 100 100 73 - - 199 99
test3-01 100 100 91 1.71 12.97 199 99

test3P-01 100 100 99 38.36 39.00 199 99
test3G-01 100 100 19 1.54 5.00 199 99

noGC3 10000 10000 14665 - - 19999 9999
test3-01 10000 10000 92437 4176.68 67900.72 19999 9999

test3P-01 10000 10000 74595 5724.37 43910.64 19999 9999
test3G-01 10000 10000 109477 16440.57 70182.24 19999 9999

Table 6.4: Results of test3.

6.7.2 Results of testx-02

The most curious results 6.5 from this testing is that the parallel implementation in couple
of cases despite having much higher sweep and mark time the total time is lower. I tried
looking into why this is but unfortunately due to a lack of time I was not able to figure
it out. For the rest of the results, we can see that the advantage of parallel’s marking
at higher amount of models/step has weakened this is most likely due to the reduction in
amount of models. The generational implementation is now overall more in line with the
other implementations and in test3G-02 it has done exceptionally well, this indicates that
the generational implementation has its use cases and with tweaking some of its parameters
we could possibly even get better results.

40

Test NoM NoS Total[ms] Sweep[ms] Mark[ms] Objs Objs created
noGC1 100 1000 354 - - 100 0
test1-02 100 1000 63 0.11 1.06 0 0

test1P-02 100 1000 49 12.90 18.04 0 0
test1G-02 100 1000 247 0.06 2.03 100 0

noGC1 5000 10000 19014 - - 5000 0
test1-02 5000 10000 591 17.14 185.82 10 0

test1P-02 5000 10000 1392 575.90 619.92 10 0
test1G-02 5000 10000 21597 1.07 612.58 5000 0

noGC2 100 1000 430 - - 200 100
test2-02 100 1000 134 0.26 2.41 0 100

test2P-02 100 1000 100 15.24 19.67 0 100
test2G-02 100 1000 221 0.22 3.52 200 100

noGC2 5000 10000 47059 - - 10000 5000
test2-02 5000 10000 25999 57.43 1003.82 42 5000

test2P-02 5000 10000 28050 636.23 846.95 42 5000
test2G-02 5000 10000 28378 217.34 1011.76 162 5000

noGC3 100 1000 373 - - 1099 999
test3-02 100 1000 407 3.39 23.49 1080 999

test3P-02 100 1000 325 58.81 70.22 1080 999
test3G-02 100 1000 174 6.95 14.84 1080 999

noGC3 5000 10000 13213 - - 14999 9999
test3-02 5000 10000 17026 123.89 2544.44 14980 9999

test3P-02 5000 10000 15962 602.17 1237.04 14980 9999
test3G-02 5000 10000 17186 688.11 2458.82 14980 9999

Table 6.5: All results.

41

Chapter 7

Conclusion

In conclusion we went over the different approaches to memory management. Summarized
many different kinds of garbage collection algorithms, looked at their respective strength
and weaknesses. Analyzed PNtalk’s structure and implementation, identified all the prob-
lems we had to solve in order to implement garbage collection. Used all the knowledge
from previous chapter to implement three different garbage collection algorithms, detailed
changes that were made to PNtalk. After this we tested and benchmarked all three imple-
mentations, we tested for correctness and performance. I think the the performance testing
has shown that garbage collection contributes greatly to performance by identifying and
freeing up unused memory periodically.

Overall I would say that my work has contributed to development of PNtalk in positive
ways, mainly in cases where there are large and complex Object-Oriented Petri Nets at play.
However, challenges remain, and avenues for future research include further optimization,
fine-tuning, and exploration of alternative garbage collection strategies to meet evolving
demands and requirements in PNtalk.

42

Bibliography

[1] Heller, M. What is garbage collection? Automated memory management for your
programs online. 2023. Available at: https://www.infoworld.com/article/3685493/
what-is-garbage-collection-automated-memory-management-for-your-programs.html.
[cit. 2024-04-24].

[2] Janoušek, I. V. Modelování objektů Petriho sítěmi. Brno, CZ, 1998. Disertační práce.
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ Fakulta elektrotechniky a informatiky.
Available at: https://www.fit.vutbr.cz/~janousek/publications/phdthesis.pdf.

[3] Kočí, R.; Janoušek, V. and Zbořil, F. Object Oriented Petri Nets - Modelling
Techniques Case Study. International Journal of Simulation Systems, Science &
Technology, 2010, vol. 10, no. 3, p. 32–44. ISSN 1473-8031. Available at:
https://www.fit.vut.cz/research/publication/9194.

[4] Richard Jones, A. H. and Moss, E. The Garbage Collection Handbook: The Art of
Automatic Memory Management. 1st ed. Chapman and Hall/CRC, 2011. ISBN
978-1-4200-8279-1.

43

https://www.infoworld.com/article/3685493/what-is-garbage-collection-automated-memory-management-for-your-programs.html
https://www.infoworld.com/article/3685493/what-is-garbage-collection-automated-memory-management-for-your-programs.html
https://www.fit.vutbr.cz/~janousek/publications/phdthesis.pdf
https://www.fit.vut.cz/research/publication/9194

Appendix A

Contents of the included memory
medium

• src - directory that contains the PNtalk source code with my contributions mentioned
in a readme file.

• thesis - directory that contains source files to the text of my thesis.

• thesis.pdf - this thesis in pdf format.

• poster.pdf - poster for this thesis.

44

	Introduction
	Goals
	Structure

	Memory management
	Manual memory management
	Memory Allocation
	Memory Deallocation
	Advantages and disadvantages

	Automatic memory management
	Garbage collection
	Performance metrics
	Garbage collection roots
	Reference counting
	Mark-Sweep
	Mark-Compact
	Generational Garbage Collection
	Copying Garbage Collection
	Concurrent/parallel garbage collection

	PNtalk
	Object-Oriented Petri Nets
	Key concepts

	Messaging
	Places, transitions and edges
	Nets
	Structure of the current PNtalk implementation
	PNSimulation
	PNObject
	PNBinding
	PNThread

	Garbage Collector design
	Goals
	Algorithms
	Garbage collection frequency
	Identifying garbage collection roots
	Deleting garbage collection roots
	Parallelization
	Parallel sweep
	Parallel Marking

	Garbage collector test class

	Implementation
	Class hierarchy
	Changes to PNtalk
	Mark-sweep
	Generational Garbage collection
	Parallel mark-sweep

	Testing and Benchmarking
	Explanation of PNSimulation's report
	Testing models
	Overview of model1
	Overview of model2
	Overview of model3

	Testing of correctness
	Results of test1
	Resutls of test2
	Results of testHold

	Metrics
	Hardware
	Basic testing structure
	Performance testing
	Results of testx-01
	Results of testx-02

	Conclusion
	Bibliography
	Contents of the included memory medium

