
T
BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

FACULTY OF INFORMATION TECHNOLOGY
FAKULTA INFORMAČNÍCH TECHNOLOGIÍ

DEPARTMENT OF INTELLIGENT SYSTEMS
ÚSTAV INTELIGENTNÍCH SYSTÉMŮ

GARBAGE COLLECTOR FOR PNTALK OBJECTS
GARBAGE COLLECTOR OBJEKTU JAZYKA PNTALK

BACHELOR'S THESIS
BAKALÁŘSKÁ PRÁCE

AUTHOR
AUTOR PRÁCE

SUPERVISOR
VEDOUCÍ PRÁCE

FILIP STEPÁN

Ing. RADEK KOČÍ, Ph.D.

BRNO 2024

Abstract
This thesis presents a comprehensive investigation into garbage collection techniques ex
pl ic i t ly tai lored for P N t a l k , w i th a focus on using industry-standard automatic memory
management. It explores the necessity, principles, and advantages of automatic memory
management, highlighting the significance of garbage collection algorithms i n opt imizing
memory usage and improving applicat ion performance. O n this theoretical basis, the thesis
deals w i th the garbage collector's design, implementation, testing, and benchmarking.

Abstrakt
Tato p r á c e p ř eds t avu j e k o m p l e x n í v ý z k u m technik garbage collection p ř i z p ů s o b e n ý c h spec iá lně
pro P N t a l k se z a m ě ř e n í m na použ i t í s t a n d a r d n í a u t o m a t i c k é s p r á v y p a m ě t i . Tato p ráce
z k o u m á nutnost, pr incipy a v ý h o d y a u t o m a t i c k é s p r á v y p a m ě t i a zdů razňu j e v ý z n a m al
g o r i t m ů garbage collection pro opt imal izaci využ i t í p a m ě t i a zvýšení v ý k o n u apl ikac í . N a
zák ladě t ě c h t o t eo re t i ckých z á k l a d ů se p r á c e zabývá n á v r h e m , i m p l e m e n t a c í , t e s t o v á n í m a
s rovnávac ím t e s t o v á n í m garbage collectoru.

Keywords
garbage collection, garbage collector, memory management, automatic memory manage
ment, object oriented petr i nets, petr i nets, P N t a l k

Klíčová slova
garbage collection, garbage collector, sp ráva p a m ě t i , a u t o m a t i c k é sp ráva p a m ě t i , ob jek tově
o r ien tované petriho s í tě , petriho s í tě , P N t a l k

Reference
S T E P Á N , F i l i p . Garbage collector for PNtalk objects. Brno , 2024. Bachelor's thesis.
Brno Universi ty of Technology, Facul ty of Information Technology. Supervisor Ing. Radek
Kočí , P h . D .

Rozšířený abstrakt
Garbage collection je klíčovou součás t í vývoje m o d e r n í h o softwaru, ze jména v apl ikacích
n á r o č n ý c h na p a m ě ť . Tento abstrakt p ř eds t avu j e komplexn í p r ů z k u m technik G C př izpů
sobených pro P N t a l k s c í lem zlepšit efektivitu s p r á v y p a m ě t i , v ý k o n a šká lova te lnos t . P r á c e
zač íná z k o u m á n í m nutnosti a p r i nc ipů a u t o m a t i c k é s p r á v y p a m ě t i a zdů razňu j e v ý h o d y al
g o r i t m ů G C pro opt imal izaci využ i t í p a m ě t i a snižování režie m a n u á l n í s p r á v y p a m ě t i . R ů z n é
algori tmy G C , vče tně a l g o r i t m ů mark-sweep, mark-compact, generational a reference count-
ing, jsou p o d r o b n ě z k o u m á n y z hlediska jejich vhodnosti a použ i t e lnos t i pro P N t a l k . N a
zák ladě t ě c h t o t eo re t i ckých z á k l a d ů se p r á c e zabývá n á v r h e m , i m p l e m e n t a c í , t e s t o v á n í m a
s rovnávac ím t e s t o v á n í m garbage collectoru op t ima l i zovaného spec iá lně pro P N t a l k . Fáze
n á v r h u ob jasňuje d a t o v é struktury, algori tmy a op t ima l i začn í strategie z a m ě ř e n é na max
imal izaci efektivity, spolehlivosti a p ř i způsob ivos t i . V ý s u p e m je garbage collector k t e r ý se
snadno integruje do s y s t é m u P N t a l k . D ů s l e d n é tes tovac í metodiky využívaj ící J U n i t Jupiter
pro t e s tován í výkonu a šká lovate lnos t i , zá těžové t e s tován í ověřují sp r ávnos t , robustnost a
v ý k o n n o s t n í charakteristiky garbage collectoru př i r ůzných p racovn ích zá těž ích . Tes tování
výkonu a s rovnávac í testy posky tu j í d ů k a z y o efekt ivi tě , šká lova te lnos t i a využ i t í p r o s t ř e d k ů
garbage collectoru, k t e r é jsou podkladem pro opt imal izaci a v o d í t k e m pro rozhodován í o
nasazen í v r e á l n é m p ros t ř ed í . P r á c e nejen zvyšuje výkonnos t , šká lova te lnos t a spolehlivost
s y s t é m u P N t a l k , ale t a k é p o k l á d á z á k l a d y pro dalš í z k o u m á n í a optimalizace.

Garbage collector for PNtalk objects

Declaration
I hereby declare that this Bachelor's thesis was prepared as an original work by the author
under the supervision of M r . Radek Kočí . I have listed a l l the l i terary sources, publications
and other sources, which were used dur ing the preparation of this thesis.

F i l i p Š t ě p á n
M a y 13, 2024

Acknowledgements
I would like to thank M r . Kočí for his help and guidance.

Contents

1 Introduction 4
1.1 Goals 4
1.2 Structure 5

2 M e m o r y management 6
2.1 M a n u a l memory management 6

2.1.1 Memory Al loca t ion 6
2.1.2 M e m o r y Deal locat ion 6
2.1.3 Advantages and disadvantages 7

2.2 Automat ic memory management 7
2.3 Garbage collection 7

2.3.1 Performance metrics 7
2.3.2 Garbage collection roots 8
2.3.3 Reference counting 9
2.3.4 Mark-Sweep 9
2.3.5 Mark -Compac t 10
2.3.6 Generational Garbage Col lec t ion 11
2.3.7 Copying Garbage Col lec t ion 13
2.3.8 Concurrent /para l le l garbage collection 14

3 P N t a l k 16
3.1 Object-Oriented Pe t r i Nets 16

3.1.1 K e y concepts 16
3.2 Messaging 17
3.3 Places, transitions and edges 17
3.4 Nets 18
3.5 Structure of the current P N t a l k implementat ion 18

3.5.1 P N S i m u l a t i o n 19
3.5.2 P N O b j e c t 19
3.5.3 P N B i n d i n g 19
3.5.4 P N T h r e a d 19

4 Garbage Collector design 21
4.1 Goals 21
4.2 Algor i thms 21
4.3 Garbage collection frequency 22
4.4 Identifying garbage collection roots 22
4.5 Delet ing garbage collection roots 22

1

4.6 Paral le l izat ion 22
4.6.1 Paral le l sweep 22
4.6.2 Paral le l M a r k i n g 23

4.7 Garbage collector test class 23

5 Implementation 24
5.1 Class hierarchy 24
5.2 Changes to P N t a l k 24
5.3 Mark-sweep 25
5.4 Generational Garbage collection 27
5.5 Paral le l mark-sweep 29

6 Testing and Benchmarking 31
6.1 Explana t ion of PNSimula t ion ' s report 31
6.2 Testing models 32

6.2.1 Overview of m o d e l l 32
6.2.2 Overview of model2 32
6.2.3 Overview of model3 33

6.3 Testing of correctness 33
6.3.1 Results of t e s t l 33
6.3.2 Resutls of test2 34
6.3.3 Results of tes tHold 35

6.4 Metr ics 36
6.5 Hardware 37
6.6 Basic testing structure 37
6.7 Performance testing 38

6.7.1 Results of testx-01 39

6.7.2 Results of testx-02 40

7 Conclusion 42

Bibl iography 43

A Contents of the included memory medium 44

2

List of Figures

3.1 Example of O O P N (taken from [3]) 18

3.2 P N t a l k structure (simplified) 19

5.1 Class hierarchy diagram 24

6.1 Testing hardware specifications 37

3

C h a p t e r 1

Introduction

In the realm of computer science and software engineering, the efficient management of
memory al location and deallocation is paramount for the op t imal performance of any soft
ware system. This becomes par t icular ly crucial in environments where resources are l i m
ited or where the system's responsiveness directly impacts its functionality. Object-Oriented
Pet r i Nets represent a powerful paradigm for modeling concurrent systems, offering a struc
tured approach to representing both state and behavior. However, the dynamic nature of
O O P N s poses unique challenges in memory management, especially in long-running simu
lations where objects are constantly created and destroyed.

This thesis explores the design and implementat ion of a garbage collector tailored for
P N t a l k which is a specific implementat ion of O O P N . Garbage collection, a fundamental
technique in modern programming languages, automates the process of reclaiming memory
occupied by objects that are no longer i n use. B y implementing a garbage collector wi th in
the context of P N t a l k simulations, we a i m to address the inherent complexities of memory
management, thereby enhancing the performance and scalabili ty of P N t a l k .

1 . 1 Goals

The objectives of this thesis are twofold: firstly, to analyze the memory management chal
lenges inherent i n O O P N simulat ion environments, and secondly to propose and implement
an efficient garbage collector tailored to address these challenges. To achieve these ob
jectives, we w i l l examine the existing literature on garbage collection techniques, w i t h a
focus on those applicable to dynamic and object-oriented systems. Subsequently, we w i l l
delve into the intricacies of O O P N s , identifying patterns and usage that impact memory
consumption and fragmentation.

The proposed garbage collector w i l l be designed to integrate seamlessly wi th existing
P N t a l k implementation, min imiz ing overhead while maximiz ing memory reclamation. We
w i l l evaluate the effectiveness of the garbage collector through rigorous testing and perfor
mance analysis, comparing its impact on memory ut i l izat ion, execution time, and overall
system responsiveness against baseline implementations without garbage collection.

B y mit igat ing the memory overhead associated wi th no memory management, the pro
posed garbage collector has the potential to enhance the scalabili ty and rel iabi l i ty of P N t a l k .

4

1 . 2 Structure

This thesis is split into 7 different chapters, including this one. The second chapter pro
vides a brief overview of manual memory management and comprehensive overview of auto
matic memory management techniques. It explores various garbage collection algorithms,
such as mark-sweep, mark-compact, generational, and reference counting, discussing their
strengths, weaknesses, and sui tabi l i ty for different applicat ion scenarios. The th i rd chapter
looks at the O O P N s and P N t a l k , it discusses the various components of P N t a l k and it 's
structure. The fourth chapter builds upon the theoretical underpinnings established i n the
previous chapter, this section delves into the conceptualization and design of a garbage col
lector tailored for P N t a l k . The fifth chapter shifts focus to the pract ical realization of the
garbage collector, detail ing the implementat ion process from codebase setup to integration
wi th P N t a l k . The s ix th chapter, examines the testing, validation, and performance eval
uation of the garbage collector in various test cases. F i n a l l y the last chapter summarizes
key findings of this thesis, and evaluates the implemented garbage collector, it also looks
at possible future improvements that could be implemented.

5

C h a p t e r 2

Memory management

This chapter provides an in-depth examination of various memory management techniques,
including manual memory management and automatic memory management. We w i l l take
a closer look at garbage collection algorithms such as mark-sweep, copying G C , generational
G C and more. The information for this chapter was taken from [4] and [1]

2 . 1 Manual memory management

M a n u a l memory al location and deallocation are fundamental concepts i n programming
where the programmer expl ic i t ly manages the al location and release of memory resources
wi th in a software program. This process involves requesting memory from the system
when needed, and expl ic i t ly releasing it when it is no longer required. In languages such as
C and C + + , manual memory management is a common practice, giving developers fine
grained control over memory usage but also requiring them to handle memory-related tasks
manually.

2.1.1 M e m o r y A l l o c a t i o n

W h e n a program needs memory to store data, it requests a block of memory from the
operating system. In manual memory allocation, this is typical ly done using functions like
mal locQ in C or new operator i n C + + . The requested memory block is then reserved for
the program's use, and a pointer to this memory location is returned. The programmer is
responsible for ensuring that enough memory is allocated to store the data required by the
program, taking into account the type and size of the data being stored.

2.1.2 M e m o r y D e a l l o c a t i o n

Once the allocated memory is no longer needed, it should be returned to the system to
prevent memory leaks and conserve system resources. In manual memory management,
deallocation is expl ic i t ly performed by the programmer using functions like freeQ i n C
or delete operator in C + + . The programmer must ensure that a l l dynamical ly allocated
memory is properly deallocated when it is no longer needed. Failure to deallocate memory
can result i n memory leaks, where memory that is no longer i n use remains allocated,
leading to inefficient memory usage and potential system instabi l i ty over t ime.

(i

2.1.3 Advantages and disadvantages

M a n u a l memory management provides developers w i th fine-grained control over memory
allocation and deallocation, al lowing for performance opt imizat ion and predictable mem
ory behavior. However, it introduces complexity and error-prone situations such as memory
leaks or dangling pointers, which can be challenging to debug and resolve. Addi t ional ly ,
manual memory management requires developers to invest extra effort into resource man
agement tasks, increasing development t ime and maintenance overhead. Despite its ad
vantages i n performance opt imizat ion and control, the lack of safety guarantees and the
potential for errors make manual memory management a less desirable approach, part icu
larly i n complex software systems where rel iabi l i ty and maintainabi l i ty are paramount.

2.2 Automatic memory management

Automat ic memory management, also known as garbage collection, is a programming tech
nique that automates the process of memory al location and deallocation, relieving devel
opers from the burden of manual ly managing memory resources. In contrast to manual
memory management where developers expl ic i t ly allocate and deallocate memory, auto
matic memory management employs algorithms and mechanisms to identify and reclaim
memory that is no longer i n use, typical ly referred to as garbage. Garbage collection
techniques vary, but they generally involve periodical ly scanning the program's memory
space to identify objects that are no longer reachable or referenced by the program. Once
identified, these unreferenced objects are reclaimed, freeing up memory for future use. A u
tomatic memory management is widely used i n modern programming languages such as
Java, C # , and Py thon , offering several benefits including improved developer productivi ty,
reduced risk of memory-related errors, and enhanced applicat ion reliabili ty. However, it
also introduces overhead in terms of C P U and memory usage, and the periodic pauses asso
ciated wi th garbage collection cycles may impact appl icat ion performance, par t icular ly in
real-time or latency-sensitive systems. Despite these challenges, automatic memory man
agement remains a powerful tool for simplifying memory management tasks and improving
the robustness of software systems, especially in environments where manual memory man
agement would be impract ical or error-prone.

2.3 Garbage collection

Garbage collection (G C) techniques vary i n their approach to identifying and reclaiming
memory that is no longer i n use by the program. Different types of garbage collection
algorithms have been developed over the years, each wi th its own advantages, disadvantages,
and sui tabi l i ty for various specific use cases.

2.3.1 Performance metrics

Compar ing garbage collector techniques involves evaluating various metrics that assess their
performance, efficiency, and impact on system behavior. These metrics provide valuable
insights into the strengths, weaknesses, and trade-offs of different G C techniques

7

M e m o r y overhead

Memory overhead refers to the addi t ional memory consumed by a garbage collector beyond
the memory required to store the application's data and code. It encompasses various com
ponents, including data structures, bookkeeping overhead, and auxi l iary memory, ut i l ized
by the G C to manage memory al location and deallocation. A lower memory overhead is de
sirable as it minimizes the impact on the application's overall memory usage and improves
resource efficiency H i g h memory overhead can lead to increased memory consumption,
reduced available memory for appl icat ion data, and potential performance degradation.
Therefore, opt imiz ing memory overhead is crucial for ensuring efficient memory manage
ment and maximiz ing the scalabili ty and performance of applications.

Throughput

Throughput refers to the rate at which an applicat ion performs useful work between succes
sive G C cycles. It is a measure of the application's overall execution speed and efficiency.
Higher throughput indicates faster execution and better u t i l iza t ion of system resources.
Garbage collection techniques that optimize throughput a i m to minimize the t ime spent
on G C activities relative to the t ime spent executing applicat ion code. Achiev ing high
throughput is par t icular ly important i n high-performance computing environments, web
servers, and other latency-sensitive applications.

Pause times

Pause times refer to the periods during which applicat ion execution is suspended or paused
while garbage collection activities are performed. M i n i m i z i n g pause times is crucial for
maintaining applicat ion responsiveness, especially in interactive or real-time systems where
user experience is paramount. L o n g pause times can lead to delays i n user interaction,
reduced throughput, and degraded applicat ion performance. Garbage collection techniques
that a im to reduce pause times, such as concurrent or incremental G C , allow applicat ion
threads to execute concurrently wi th G C activities, thereby min imiz ing the impact on
application responsiveness.

2.3.2 Garbage collection roots

Garbage collection roots are objects or memory locations that are directly accessible or
known to the runtime environment and are therefore considered as starting points for the
G C traversal process. These roots typical ly include global variables, static variables, C P U
registers, and local variables in active threads' cal l stacks. G C roots serve as references
from which the garbage collector can traverse the object graph to identify and mark reach
able objects. Objects that are not reachable from any G C root are considered unreachable
and eligible for garbage collection. Ensur ing that a l l active references are appropriately
managed as G C roots is essential for maintaining memory integrity and preventing prema
ture deallocation of live objects. B y accurately identifying and maintaining G C roots, the
garbage collector can effectively manage memory resources and reclaim unused memory,
contr ibuting to efficient memory ut i l iza t ion and improved applicat ion performance.

8

2.3.3 Reference counting

Reference counting is a straightforward garbage collection technique that tracks the number
of references to each object i n memory. The basic premise is to associate a reference count
w i th each object, indicat ing how many references point to i t . W h e n an object's reference
count drops to zero, it signifies that the object is no longer reachable from the program's
execution context and can be safely deallocated.

Advantages

• Immediate Reclamat ion: Reference counting immediately reclaims memory when an
object's reference count drops to zero, al lowing for prompt resource cleanup. This
proactive approach can prevent memory leaks and improve overall memory ut i l izat ion.

• L o w Overhead: Reference counting typical ly incurs low runtime overhead compared to
other garbage collection techniques, such as mark-sweep or copying garbage collection.
This makes it suitable for applications wi th strict performance requirements or l imited
computat ional resources.

Disadvantages

• Inefficient for Cyc l i c References: Reference counting is inefficient at handling cyclic
references, where objects reference each other in a loop. Even i f a cyclic group of ob
jects is collectively unreachable from the program's execution context, their reference
counts never reach zero due to their mutual references, leading to memory leaks.

• Overhead of Reference Count Updates: Incrementing and decrementing reference
counts for each object reference operation can introduce overhead, par t icular ly in
multi-threaded environments where atomic operations may be required to ensure
thread safety.

• Difficulty in Hand l ing Weak References: Reference counting does not inherently sup
port weak references, which are references that do not prevent the referenced object
from being deallocated. Implementing weak references w i t h reference counting re
quires addi t ional mechanisms, potential ly complicat ing the garbage collection process.

2.3.4 Mark-Sweep

Mark-Sweep is a classic garbage collection a lgori thm that operates i n two phases: mark
ing and sweeping. It is designed to reclaim memory occupied by unreachable objects by
traversing the entire object graph and identifying objects that are s t i l l reachable from the
program's execution context.

M a r k phase

• Identification of Reachable Objects: The garbage collector starts from a set of known
root objects, such as global variables, local variables, and stack frames, which are
guaranteed to be reachable. It traverses the object graph recursively, marking each
encountered object as reachable.

9

• Tracing A lgo r i t hm: M a r k i n g is typical ly performed using a tracing algori thm, such as
depth-first search (DFS) or breadth-first search (B F S) , which systematically explores
the object graph start ing from the root objects.

Sweep phase

• Reclamat ion of Unreachable Objects: Once a l l reachable objects have been marked,
the garbage collector sweeps through the entire heap, deallocating memory for objects
that were not marked as reachable during the marking phase.

• Memory Reclamat ion: Unreachable objects are identified by the absence of a mark.
The memory occupied by these objects is reclaimed and made available for future
allocations.

Advantages

• Efficient Hand l ing of C y c l i c References: Mark-Sweep is effective at handling cyclic
references, where objects reference each other i n a loop, by traversing the entire
object graph and marking reachable objects. A s long as at least one object i n a cyclic
group is reachable, the entire group w i l l be retained.

• Immediate Reclamat ion: Once unreachable objects have been identified during the
sweeping phase, their memory is immediately reclaimed, ensuring efficient memory
usage and min imiz ing the risk of memory leaks.

• Simpl ic i ty : Mark-Sweep is relatively straightforward to implement and understand,
making it a popular choice for garbage collection in many runtime environments and
programming languages.

Disadvantages

• Pause Times: The mark-sweep algori thm typical ly requires a stop-the-world pause
during the marking and sweeping phases, where a l l program execution is halted while
garbage collection is performed. These pause times can be disruptive in interactive
or real-time systems, affecting applicat ion responsiveness.

• Traversal Overhead: Traversing the entire object graph during the marking phase
can introduce significant overhead, par t icular ly i n applications wi th large heaps or
complex object graphs. Th is overhead may impact applicat ion performance and scal
ability.

2.3.5 Mark-Compact

Mark-Compac t is a type of garbage collection algori thm that combines the marking and
sweeping phases of the mark-sweep algori thm w i t h an addi t ional compaction step. The
pr imary goal of mark-compact garbage collection is to reclaim memory occupied by un
reachable objects while also compacting memory to reduce fragmentation and optimize
memory usage.

1 0

Mark/ sweep phase

Same as mark-sweep algori thm, except i n some implementations an addi t ional information
about each reachable object's new locat ion after compaction is stored.

Compact phase

• Once memory has been reclaimed, the mark-compact a lgori thm compacts the remain
ing live objects to eliminate fragmentation and optimize memory usage.

• L ive objects are moved to consecutive memory locations, compacting the heap and
reducing the amount of wasted space caused by fragmentation.

• Object references are updated to reflect the new memory locations of relocated objects,
ensuring that object relationships remain intact.

Advantages

• Fragmentation Reduct ion: Mark -Compac t garbage collection effectively reduces mem
ory fragmentation by compacting live objects into contiguous memory regions. Th is
reduces wasted space and optimizes memory usage, improving overall memory effi
ciency

• Same advantages as mark-sweep

Disadvantages

• Increased Complexi ty : The addi t ion of the compaction phase adds complexity to the
garbage collection process, requiring addi t ional bookkeeping and memory movement
operations. Th is increased complexity may introduce overhead and impact overall
garbage collection performance.

• Potent ia l ly Longer Pause Times: The compaction phase of mark-compact garbage
collection may increase pause times compared to mark-sweep, as it involves addi
t ional memory movement operations. Longer pause times can impact applicat ion
responsiveness, par t icular ly in real-time or interactive systems.

• A d d i t i o n a l Memory Overhead: Compact ing live objects into contiguous memory re
gions may require addi t ional memory to temporar i ly store objects dur ing compaction.
This can increase memory overhead, par t icular ly in systems w i t h l imi ted memory re
sources.

2.3.6 Generational Garbage Collection

Generational garbage collection is a technique that leverages the observation that most
objects become garbage shortly after they are allocated. This technique divides objects
into different generations based on their age, typical ly dist inguishing between young and old
generations. Generat ional garbage collection focuses garbage collection efforts on younger
generations, as they tend to contain a higher proport ion of short-lived objects, while older
generations are collected less frequently.

11

Generational Divisions

• Objects are in i t ia l ly allocated i n the young generation, often referred to as the nursery
or nursery space. The young generation is typical ly smaller in size and opt imized for
rapid al location and collection.

• A s objects survive garbage collection cycles i n the young generation, they are pro
moted to older generations. Objects that survive mult iple garbage collection cycles
in the older generations are considered long-lived and are eventually collected during
a full garbage collection cycle.

M i n o r Garbage Collection

• M i n o r garbage collection, also known as young generation garbage collection, focuses
on reclaiming memory i n the young generation.

• Dur ing a minor garbage collection cycle, the garbage collector identifies and collects
garbage objects i n the young generation using techniques such as copying or marking-
sweeping. Surv iv ing objects are then promoted to the next older generation.

M a j o r Garbage Collection

• Major garbage collection, also known as full garbage collection or global garbage
collection, targets the entire heap, including both young and o ld generations.

• Major garbage collection typical ly occurs less frequently than minor garbage collection
and involves reclaiming memory across a l l generations. Th is process may be more
complex and t ime-consuming than minor garbage collection due to the larger heap
size and the need to traverse objects i n mult iple generations.

Advantages

• Efficient Hand l ing of Shor t -Lived Objects: B y focusing garbage collection efforts on
the young generation, generational garbage collection can efficiently reclaim memory
occupied by short-lived objects, reducing the overhead of full garbage collection cycles.

• Reduced Pause Times: M i n o r garbage collection cycles, which target the young gen
eration, can be completed more quickly than full garbage collection cycles. T h i s can
result i n shorter pause times and improved applicat ion responsiveness.

• Adapt ive Performance: Generational garbage collection adapts to the al location and
usage patterns of the appl icat ion over t ime. B y promoting surviving objects to older
generations, the garbage collector can priorit ize garbage collection efforts where they
are most needed.

Disadvantages

• Potent ia l for Premature Promot ion : Objects that survive mult iple minor garbage col
lection cycles may be prematurely promoted to older generations, leading to increased
memory usage and longer garbage collection times i n the long term.

1 2

• Increased Complexi ty : Generat ional garbage collection introduces addi t ional com
plexity to the garbage collection process, including managing mult iple generations,
deciding when to promote objects between generations, and coordinating garbage
collection cycles across generations.

• Tuning Overhead: Configuring and tuning generational garbage collection parame
ters, such as generation sizes and promotion thresholds, may require careful analysis
and experimentation to achieve opt imal performance for specific applications and
workloads.

2.3.7 Copying Garbage Collection

Copying garbage collection is a memory management technique that divides the heap into
two semi-spaces and performs garbage collection by copying live objects from one semi-
space to the other. This technique is par t icular ly effective for reclaiming memory occupied
by short-lived objects and reducing fragmentation.

Heap Divis ion

• The heap is d ivided into two semi-spaces, often referred to as the from-space and the
to-space. Initially, a l l object allocations occur in the from-space.

• The to-space is in i t ia l ly empty and serves as the destination for copied live objects
during garbage collection.

M i n o r Garbage Collection

• Dur ing a minor garbage collection cycle, the garbage collector scans the from-space
to identify live objects.

• L ive objects are copied from the from-space to the to-space, leaving behind only
garbage i n the from-space.

• Object references in the copied objects are updated to point to their new locations in
the to-space.

• Once a l l live objects have been copied, the roles of the from-space and to-space are
swapped, making the to-space the new from-space for subsequent allocations.

M a j o r Garbage Collection

• Major garbage collection, also known as full garbage collection, may be performed
when the to-space becomes full or when the from-space is significantly fragmented.

• Dur ing a major garbage collection cycle, a l l live objects are copied from the from-space
to the to-space, compacting memory and reclaiming space occupied by garbage.

• Unl ike minor garbage collection, major garbage collection involves copying a l l live
objects in the heap, not just those in the from-space.

1 3

Advantages

• Fragmentation Reduct ion: Copying garbage collection effectively reduces memory
fragmentation by compacting live objects into contiguous memory regions in the to-
space. Th i s reduces wasted space and optimizes memory usage, leading to improved
memory efficiency

• Immediate Reclamation: Garbage collection occurs incrementally during minor garbage
collection cycles, ensuring that memory occupied by unreachable objects is immedi
ately reclaimed and made available for reuse.

• Simpl ic i ty : Copy ing garbage collection is relatively simple to implement and under
stand, making it a popular choice for memory management i n many runtime environ
ments and programming languages.

Disadvantages

• Memory Overhead: Copying live objects from one semispace to another during garbage
collection can introduce memory overhead, par t icular ly i f the to-space is not suffi
ciently large to accommodate a l l live objects from the from-space.

• Potent ia l ly Longer Pause Times: M i n o r garbage collection cycles may introduce pause
times during which applicat ion execution is suspended while live objects are copied
from the from-space to the to-space. These pause times can impact appl icat ion re
sponsiveness, par t icular ly in real-time or interactive systems.

• Increased Copying Costs: Copying a l l live objects dur ing major garbage collection
cycles can introduce addi t ional copying costs, par t icular ly in systems wi th large heap
sizes or complex object graphs. These copying costs may impact garbage collection
performance and scalability.

2.3.8 Concurrent/parallel garbage collection

Concurrent garbage collection is an approach to reclaiming memory i n managed runtime
environments that aims to minimize pause times and mainta in appl icat ion responsiveness
by performing G C activities concurrently wi th the execution of applicat ion threads. Unl ike
t radi t ional stop-the-world (S T W) G C , where applicat ion execution is halted during G C
cycles, concurrent G C techniques allow the applicat ion to continue executing while G C
activities occur i n parallel.

K e y components

The key components of concurrent garbage collection include concurrent marking, sweep
ing, and optionally, compaction. Concurrent marking involves traversing the object graph
to identify reachable objects while al lowing applicat ion threads to execute concurrently.
Concurrent sweeping deallocates memory for unreachable objects without hal t ing applica
t ion threads, ensuring continuous execution. Opt iona l concurrent compaction reorganizes
memory to reduce fragmentation, improving memory locali ty and efficiency These com
ponents work together to minimize pause times and mainta in appl icat ion responsiveness,
enabling smooth user experiences in managed runtime environments.

1 4

Challenges

Implementing concurrent garbage collection poses several challenges due to the inherent
complexity of managing memory concurrently w i t h the execution of applicat ion threads.
One significant challenge is coordinating G C activities w i th ongoing applicat ion execution
to ensure correctness and consistency while min imiz ing pause times. This requires imple
menting sophisticated synchronization mechanisms and concurrency control techniques to
manage access to shared data structures and resources. Addi t ional ly , dealing w i t h concur
rent access to mutable objects and managing inter-thread communicat ion introduces the
risk of race conditions and synchronization errors, necessitating careful design and testing.
Furthermore, opt imiz ing the performance of concurrent G C requires balancing the trade
offs between throughput, pause times, and resource ut i l izat ion, which may vary depending
on the characteristics of the applicat ion workload and the underlying hardware architec
ture. Overal l , implementing concurrent G C requires expertise in concurrent programming,
memory management, and system opt imizat ion, as well as a thorough understanding of the
specific requirements and constraints of the targeted runtime environment.

1 5

C h a p t e r 3

P N t a l k

In this chapter, we take a closer look at P N t a l k , exploring its design principles, features and
capabilities. B y understanding the underlying architecture and functionality of P N t a l k , this
w i l l allow us to make more informed decisions when it comes to implementing a garbage
collector. We w i l l examine a l l of the key components for this thesis, such as its syntax,
semantics and more. We w i l l focus only on the current implementat ion i n Java, and since
at the t ime of wr i t ing this it is not finished, some of the information i n this chapter might
be outdated. The information for this chapter was taken from [2] and [3].

P N t a l k is a language and a system based on Object-Oriented Pe t r i N e t s (O O P N s) .
P N t a l k language is a specific implementat ion of O O P N , P N t a l k also specifies some facts in
which the O O P N definition leaves some latitude.

3 . 1 Object-Oriented Petr i Nets

Object-Oriented Pe t r i represent an extension of t radi t ional Pe t r i nets that incorporates
object-oriented concepts from software engineering. O O P N s provide a powerful modeling
framework for describing concurrent and distr ibuted systems i n a modular , hierarchical, and
reusable manner. B y combining the formalism of Pe t r i Nets w i th the principles of object-
oriented programming, O O P N s offer a flexible and intuit ive approach to modeling complex
systems, ranging from communicat ion protocols and workflow systems to manufacturing
processes and software architectures.

3.1.1 Key concepts

1. Places and Transitions: Places i n O O P N s represent system states or conditions. They
serve as containers for tokens, which signify the presence of entities or resources wi th in
the system. Transitions represent events or actions that can occur i n the system. They
serve as triggers for state changes and token movements between places.

2. Objects and classes: In O O P N s objects encapsulate state and behavior. Objects
represent tangible entities wi th in the system and interact w i th each other through
sending messages. Classes serve as blueprints for creating and managing objects in
the system.

3. Inheritance and Polymorphism: O O P N s support inheritance and polymorphism, en
abling the modeling of hierarchical structures and behavioral variations wi th in the

16

system. Inheritance allows classes to inherit properties and behaviors from parent
classes, promoting code reuse and modulari ty. Po lymorph ism allows objects of dif
ferent classes to be treated interchangeably, providing flexibili ty and extensibili ty in
system design.

3.2 Messaging

Sending a message can only be triggered as an action during transit ion. Messages consist
of selectors and optional arguments. There are three different type of messages:

1. Unary messages: Messages that are sent to an object without any other information.
For example, CI new is a unary message.

2. B ina ry messages: Messages consisting of operators (often ari thmetic) . They are b i
nary because they always involve only two objects: the receiver and the argument
object. For example in 10 + 20, + is a selector sent to the receiver 10 wi th argument
20.

3. K e y w o r d messages are messages consisting of one or more keywords, each ending wi th
a colon (:) and taking an argument. For example in o d o i t : 1, o is the receiver and
the selector doit: takes the argument 1. Objects can also send messages to themselves
by setting the receiver to the keyword self.

3.3 Places, transitions and edges

Every place i n O O P N has a name associated wi th it , and can also have set the default
token contained wi th in i t . Places can optionally have in i t i a l action associated wi th them.
P N t a l k allows for the default token to be a variable, but the variable in question has to be
set to a value by the associated in i t i a l action.

Places and transi t ion are connected by edges. Edges have edge expression associated
wi th them, here is an example of an edge expression:

2<#e

In this expression #e represents a symbol and the number 2 represents the amount of
symbols required. There are three different types of edges:

1. Input edge: These edges connect places to transitions, indicat ing that the transi t ion
requires tokens from those places to fire. Input edges represent the prerequisites
or conditions necessary for a transi t ion to occur, ensuring that the system behaves
according to predefined rules or constraints.

2. Output edge: W h e n a transi t ion wi th output edges fires, it generates tokens i n its
output places, reflecting the outcomes or effects of the transition's execution.

3. Test edge: Testing edg 6 S £1X6 cl specialized type of input edge that represents a con
di t ional dependency between a transi t ion and a place. Tests whether the required
tokens exists in the connected place.

17

A s mentioned before transitions are the only way to send a message i n the Java im
plementation of P N t a l k . Th is means that the only way to create new objects is through
transitions, these objects can also be assigned to a variable and then stored inside places.

3.4 Nets

Places and transitions connected by edges form nets. Every object i n P N t a l k can contain
two types of nets:

1. Object net: These represent a l l of the objects attributes and its act ivi ty

2. M e t h o d net: These specify the reaction of an object to a method cal l (message from
another object). Every method network has a message template associated w i t h it.
The creation of method networks is dynamic, and upon the method finishing the net
is destroyed. M e t h o d nets also contain two „special" k ind of places. Parameter places
where the arguments are stored and the return place that is used to return the result
to the caller.

Below 3.1 we can see an example of both object net and method net.

3.5 Structure of the current PNta lk implementation

The description of the structure is only gonna be par t ia l as it is not necessary to understand
al l of P N t a l k for this thesis. For the graphical represantion of the structure see 3.2. Few
notable things about the structure are that P N P l a c e s contain P N P M u l t i S e t t o k e n s and these
tokens contain a hashmap wi th P N P r o x y and an integer, the integer represents mul t ip l ic i ty
and P N P r o x y a value, which can be either string, symbol, number, object or a compiled
class. Every transi t ion has transi t ion goals these represent preconditions (input edges) and
postconditions (output edges) of a transit ion.

i — CO is_a PN i — CI is_a PN

Figure 3.1: Example of O O P N (taken from [3]).

18

PNStringPrcwy

^NCompiledClass

PNSymbolProxy ^NNumberProxy

PKPi'O?';,'

Map;PNProxy^ Integer; collection

3NTrari5Goal

PNPIace place

PNVariable.PNMNllVariable mult

PNVa liable.PKIRefVa liable ret

PNObject

L ist-; P Kl ProcceaaCo ntexb

3 KM. I: •• ?

ListfPNTranaGoab qoala

List(PNThreadl> threads

PNThread

PNDictionanydicI

Llst<PNCommanö>

MapciStrinci, PNPrc«y> consts

NativeProcess

P N P roceaa Co ntext ^

PNProc&ss

List.:PNPIace>

List^PNTransition;

PNMethodContot net

String recVar

String msflSifln

ListtStrinfl> ops

String assgnVar

Figure 3.2: P N t a l k structure (simplified).

3.5.1 PNSimulation

Represents a simulation, it contains P N O b j e c t list, P N C a l e n d a r and P N T i m e . P N C a l e n d a r
is used for schedulling events, these events are executed i n a case that there are no transi t ion
to be fired for any of the P N O b j e c t in the simulation's list. P N T i m e is modified when even
is executed. The list of PNObjec t s represents a l l the existing objects i n the simulation.

3.5.2 PNObject

P N O b j e c t is a representation of an instantiated O O P N class, it contains P N C o m p i l e d -
Class (class which the object was instantiated from), PNProcess which represents an object
net and finally list of PNProcessContex t . PNProcessContex t represents the context of a
process, the context can either be a method net or a native method.

3.5.3 PNBinding

P N B i n d i n g contains a l l the necessary information needed to fire and successfully finish a
transit ion. Before a P N T h r e a d can be created it firts has to be bound successfully.

3.5.4 PNThread

PNThreads represent a progress of a transi t ion and also the current state of the transit ion.
It has three possible states and those are R U N N A B L E , W A I T I N G O P and F I N I S H I N G O P .

• R U N N A B L E - i n this state the thread can perform operations, this is the default
state of a thread after it has been instantiated.

• W A I T I N G O P - wai t ing for an operation to finish, the thread can get into this state
when it calls a method.

19

F I N I S H I N G O P - Informs the thread of the fact that the process it was wait ing
has finished.

2 0

C h a p t e r 4

Garbage Collector design

This chapter delves into the conceptualization, design decision and architecture of a memory
management system tailored for P N t a l k . It is worth mentioning that since the P N t a l k
implementation is done in Java, and Java does not support any manual memory management,
that my garbage collector w i l l not be implemented i n the t radi t ional way. Pn ta lk works on
a basis of a v i r tua l machine this means that P N S i m u l a t i o n holds a l l PNObjec t s i n memory
and never removes them (the sole exception being method nets, that get removed upon
finishing). So what my garbage collector w i l l need to do are these following things:

1. Determine which PNObjec t s i n memory w i l l be considered G C roots.

2. F i n d a l l references that roots contain.

3. Traverse these reference recursively and mark them as reachable.

4. Traverse the entire memory of P N S i m u l a t i o n and remove a l l unreachable objects.

4 . 1 Goals

One of the main goals of the garbage collector design is to minimize changes to the ex
isting P N t a l k implementat ion and encapsulate memory management functionality wi th in
the garbage collector itself. B y containing a l l memory management operations wi th in the
garbage collector, we a im to remove the risk of creating changes that are at odds w i th the
future development of P N t a l k . Furthermore we want to put lot of emphasis on ease of
testing and tunabili ty. Tunabi l i ty is a crucial aspect that enhances the garbage collector's
versatili ty and adaptabi l i ty to many different kinds of Object-Oriented Pe t r i Nets.

4.2 Algorithms

After careful consideration I have decided to implement mult iple different G C algorithms,
that w i l l be available to use for garbage collection. Different garbage collection algorithms
excel under different conditions and usage patterns. B y implementing mult iple algorithms,
we can tailor the choice of garbage collection strategy to match specific needs, such as
object longevity and memory usage patterns. Th is allows for opt imizat ion across a wide
range of scenarios, maximiz ing performance and efficiency. Hav ing mult iple algorithms
enables direct comparison of their performance metrics. B y evaluating algorithms side

21

by side, we w i l l gain insights into their relative strengths and weaknesses. The specific
algorithms I have chosen are sweep-mark, generational G C and on top of that parallelized
mark-sweep.

4.3 Garbage collection frequency

I decided to implement garbage collection triggers only after a certain number of steps in
the s imulat ion to strike a balance between memory management and computat ional effi
c iency B y delaying garbage collection un t i l after a predefined number of steps, I a im to
minimize the frequency of G C pauses while ensuring that memory usage remains wi th in
acceptable bounds. Performing G C too frequently can introduce unnecessary overhead
and potential ly disrupt the simulation's flow, leading to increased pause times and reduced
throughput. However, delaying G C indefinitely can result i n excessive memory consumption
and potential memory exhaustion, negatively impact ing applicat ion performance. There
fore, by scheduling G C triggers at regular intervals based on the simulation's progress,
I can optimize memory ut i l iza t ion while maintaining smooth and responsive simulat ion
execution.

4.4 Identifying garbage collection roots

Identifying garbage collection roots i n P N t a l k simulation is difficult, because the simulator
keeps a l l of the PNobjects i n one list and we have no addi t ional information about these
objects. In a typica l G C , garbage collection roots would include global variables, static
variables, and local variables, nothing like that exists in the P N t a l k simulat ion. So the
main cri teria I have decided to use to identify G C roots is whether the object was created
before the simulation started.

4.5 Deleting garbage collection roots

The problem wi th deleting roots is that it is hard to determine when a root should be
deleted. A t first I wanted to delete roots based on their activity, meaning i f there were any
P N T h r e a d (3.5) created or existing the root would not get deleted, however this proved to
be a mistake because the P N S i m u l a t i o n allows only a single transi t ion to be executed per
step. This means i f I had more than one roots ready to execute their respective steps only
one of them would be executed and the other one would get deleted. However there is a way
to accurately determine whether or not an object should be deleted. B y checking i f each
transi t ion inside an object can be bound, we determine that this object can fire transitions
in the future. Th is means we can delete a root if no transitions can be bound and i f it also
has no threads.

4.6 Parallelization

4.6.1 Parallel sweep

Paral le l sweep allow us to reclaim memory concurrently across mult iple threads. Th i s is
most l ikely the easiest phase to parallelize, as the task itself can easily be decomposed into
smaller independent tasks, and the ind iv idua l task w i l l not need access to the same parts

2 2

of memory. Fi rs t ly , the heap (in our case the list of P N O b j e c t inside PNSimula t ion) must
be part i t ioned into smaller segments, w i th each segment assigned to a specific thread or
processor for sweeping. To achieve this I decided to include a parameter that w i l l l imi t the
max imum number of threads. The objects w i l l then be evenly split between the max imum
number of threads.

4.6.2 Parallel Marking

For the most part parallel marking is very similar to parallel sweeping, w i th the added
problem of threads potential ly accessing the same object. This problem can be solved quite
easily and that is by using the boolean used for „mark ing" the object. However for this to
work I have to prevent different threads accessing the boolean at the same t ime, for this I
used Java's synchronized keyword that allows methods to be thread-safe by ensuring that
only one thread can execute it at a t ime. T h i s solves a l l of our potential issues because i f
two threads access the same object, then one thread w i l l mark and the other one w i l l move
on. It w i l l also uti l ize the same concept of l imi t ing the m a x i m u m amount of threads and
spl i t t ing the work equally between them.

4.7 Garbage collector test class

I decided to create a subclass that inherits from the garbage collector class to facilitate
testing and customization wi th in the garbage collection framework. B y extending the base
garbage collector class, I gain the abi l i ty to add addi t ional functionality specific to testing
purposes while leveraging the existing implementat ion of the garbage collector for core
memory management tasks. Th is approach allows me to isolate and test specific components
or behaviors of the garbage collector i n a controlled environment without modifying the
original implementat ion. Addi t ional ly , subclassing enables me to override or extend existing
methods in the garbage collector class to introduce custom behavior tailored to testing
requirements.

2 3

C h a p t e r 5

Implementation

In this chapter we w i l l delve into the pract ical realization of the garbage collector, detail ing
the architectural components, data structures, algorithms, and implementat ion methodolo
gies employed to br ing the design to fruition.

5 . 1 Class hierarchy

GarbageCollector is the base class for a l l the other garbage collector implementations. Each
of the garbage collector implementations has its own testing class that inherits from their
respective implementations.

GarbageCollector
<C]-D<teniis

GarbageCollectorTest

GarbageCollectorGenerationa

~ 5 ~
I

Garbage Co I lectorGTest

Garbage CollectorParallel

~ 5 ~
Eicls-

I
GarbageCo I lecto rPTest

Figure 5.1: Class hierarchy diagram.

5.2 Changes to PNta lk

Before I could even start implementing the garbage collector I first had to make some
changes to P N t a l k itself. F i r s t of a l l I had to add reachable boolean to class P N O b j e c t ,
this was done so the garbage collector can mark P N O b j e c t . Furthermore I had to add a
couple of getters:

• P N O b j e c t : added a method getComponents that returns a list of PNProcessContex t .

• PNProcess : added a method getPlaces that returns a list of P N P l a c e , also added a
method get Transitions that returns a list of PNTrans i t i on .

• PNTrans i t i on : added a method get Threads that returns a list of P N T h r e a d .

2 4

• P N P l a c e : added a method get Tokens that returns a P N M u l t i S e t .

• P N M u l t i S e t : added a method getCollect ion that returns a that returns a M a p where
P N P r o x y is used ctS cl key and integer is used ctS cl value.

• P N T h r e a d : added a method getDict ionary that returns PNDic t iona ry .

• P N D i c t i o n a r y : added a method getContent that returns a that returns a M a p where
P N P r o x y is used as a value and string is used as a key.

These changes were made i n order to be able to loop through the list of PNObjec t s in
P N S i m u l a t i o n and check for references, that can either exists i n P N P l a c e or P N T h r e a d .
For P N S i m u l a t i o n I just added a GarbageCollector as a member variable and during P N -
Simulation's step method I added a cal l to GarbageCollector 's garbageCollect method.

5.3 Mark-sweep

The first a lgori thm I have decide to implement was mark-sweep, mostly because it is the
easiest one to implement. Implementing it allowed me more of an insight into P N t a l k ' s
structure and inner workings. This made implementing the more complex algorithms down
the line much easier. Mark-sweep is implemented i n GarbageCollector .J ctVct ctS cl class.
Th is class contains three member variables, stepsToGc sets the amount of steps needed
to perform garbage collection, currentStep which serves as a step counter and list of
PNObjec t s called roots, these contain a l l our roots, roots are inserted into the list manually
before simulation.

public void garbageCollect(List<PNObject> components) {
if(currentStep != stepsToGc - 1){

currentStep += 1;
return;

}

mark();

sweep(components);

currentStep = 0;
}

Lis t ing 5.1: garbageCollect method

W h e n P N S i m u l a t i o n finishes one step it calls garbageCollect 5.1 which first performs a
check whether the required amount of steps has passed. If the check is failed the function
does nothing and returns, otherwise it performs both mark and sweep phases and at the
end sets the step counter to zero.

The mark method 5.2 starts out by looping through the list of roots and cal l ing check-
ObjRefs 5.2 on each root. The first th ing this function does is sets the objects reachability
to true, after which it loops through a list of PNProcess and from PNProcess it acquires a
list of places and transi t ion which are used as arguments for functions checkPlaceRefs and
checkThreadRefs. These functions look for a reference to a P N O b j e c t if they find it they
recursively ca l l checkObjRefs. Th is basically works like a depth first search except we go
through the entire list to the end.

25

void mark() {
for (PNObject obj : roots) {

checkObjRefs(obj, true);
}

}

void checkObjRefs(PNObject obj){
obj.reachable = true;
for (PNProcessContext context : obj.getComponents()) {

i f (context instanceof PNProcess) {
PNProcess process = (PNProcess) context;

for(PNPlace place : process.getPlaces()){
checkPlaceRefs(place);

}

for(PNTransition trans : process.getTransitions()){
for(PNThread thread : trans.getThreads()){

checkThreadRefs(thread);
}

>
}

}

}

Lis t ing 5.2: mark and checkObjRefs methods.

The sweeping phase 5.3 is very simple we just loop through a l l the objects in the
components list and check if the reachable boolean is set to true or false, based on that
we either remove the object or set reachable to false to prepare it for the next garbage
collection.

void sweep(List<PN0bject> components) {
Iterator<PNObject> iterator = components.iterator();
while (iterator.hasNext()) {

PNObject obj = iterator.next();
i f (!obj.reachable) {

iterator.remove();
} else {

obj.reachable = false;
}

}

}

Lis t ing 5.3: sweep method.

26

5.4 Generational Garbage collection

The generational garbage collector is implemented as a class GarbageCollectorGenerat ional
and it is a chi ld class of class GarbageCollector . Th is means that it has a l l the same meth
ods and member variables. O n top of that it has one list of P N O b j e c t (Old generation) and
one list of YoungObject 5.4. YoungObjects are necessary so we can track how many cycles
has a P N O b j e c t survived. Hav ing young and old generation be part of the GarbageCollec
torGenerat ional class has some performance drawbacks, since the objects are not directly
created i n the young generation, but rather added to it dur ing marking. The class also
contains two member variables, maxOldGenSize which is used as a trigger for full G C and
a promotion variable that determines how many steps a YoungObject has to survive to be
promoted to o ld generation.

class YoungObject{
public PNObject obj;
public int age;

public YoungObject(PNObject obj){
this.obj = obj;
this.age = 0;

}

}

Lis t ing 5.4: YoungObject class.

The method sweep Young 5.5 works very s imilar ly to normal sweep except i n the case
that the object is not swept its age is increased, and i n the case that the youngObject has
reached the age for promotion to OldGenera t ion it is moved there and removed from the
YoungGenerat ion list. In the case that object is unreachable and removed from the list
of youngObjects it has to be also removed from the simulation's list that 's passed to the
method as an argument. The inherited sweep method had to be overriden so it loops over
the o ld generation and remove objects from both the o ld generation and the components
passed by P N S i m u l a t i o n .

void sweepYoung(List<PNObject> components) {
Iterator<YoungObject> iterator = youngGeneration.iteratorO;
while (iterator.hasNext()) {

YoungObject yObj = iterator.next();
PNObject obj = yObj.obj;
i f (!obj.reachable) {

components.remove(obj);
iterator.remove();

} else {
obj.reachable = false;
if(yObj.age == promotion){

oldGeneration.add(obj);
iterator.remove();

}

else{
yObj.age += 1;

}

2 7

Lis t ing 5.5: sweep Young method.

The mechanism for cleaning out the older generation is very simple, 5.6 it is based on
the size of our OldGenera t ion list, if it surpasses our set m a x i m u m size we trigger the full
garbage collection. Th is includes sweeping both the OldGenera t ion and YoungGenerat ion.

©Override
public void garbageCollect(List<PNObject> components) {

if(currentStep != stepsToGc - 1){
currentStep += 1;
return;

}

if(oldGeneration.size() <= maxOldGenSize){
mark();
sweepYoungO ;

} else{
mark();
sweep(components);
sweepYoungO ;
clearRoots(components);

}

currentStep = 0;
}

Lis t ing 5.6: garbageCollect method.

M a r k method remains the same as i n the parent class, but the checkObjRefs 5.7 method
had to be overridden so that when we reach an object that is not root, it is addded to the
YoungGenerat ion list.

©Override
void checkObjRefs(PNObject obj){

obj.reachable = true;
youngGeneration.add(new YoungObject(obj));

for (PNProcessContext context : obj.getComponents()) {
i f (context instanceof PNProcess) {

PNProcess process = (PNProcess) context;

for(PNPlace place : process.getPlaces()){
checkPlaceRefs(place);

}

for(PNTransition trans : process.getTransitions()){
for(PNThread thread : trans.getThreads()){

checkThreadRefs(thread);
}

}

2 8

}

}

}

Lis t ing 5.7: checkObjRefs method.

5.5 Parallel mark-sweep

The parallel mark sweep garbage collector is implemented as a class GarbageCollectorPar-
allel and it is a chi ld class of class GarbageCollector.

The biggest issue wi th parallel marking 5 .8 is that it is possible for different threads
to get access the same object. This is solved by adding a synchronized method to P N O b -
ject. Once a thread gets access to a block it immedietal ly calls the method tryLock, this
practically locks the object and ensures other threads cant access i t . For the spl i t t ing of
the list of objects between threads I first divide the number of objects by the max imum
amount of threads and assign it to variable objsPerThread, then every thread gets rounded
down amount of objsPerThread as a sublist. If there are any remaining objects they are
passed to another thread, this makes it so the m a x i m u m amount of threads is technically
maxThreads + 1. Once a l l threads are started we wait for a l l of them to finish to avoid
any overlaps wi th the sweeping phase.

void parallelMarkO {
List<markThread> threads = new A r r a y L i s t o ();
f l o a t objsPerThread = roots.size()/maxThreads;
if(objsPerThread < 1){

mark();
return;

}

else{
int remainder = roots.size() % maxThreads;

for (int i = 0; i < (roots.size() - remainder);
i += Math.floor(objsPerThread)) {

int endlndex =
(int) Math.min(i + Math.floor(objsPerThread), roots.size());
List<RootObject> sublist = roots.subList(i, endlndex);

markThread thread = new markThread(sublist);
threads.add(thread);
thread.start();

}

if(remainder > 0){
//creates new thread with the last portion of the l i s t

}

}

for (markThread thread : threads) {
//waiting for a l l threads to f i n i s h

2 9

}

}

Lis t ing 5.8: para l le lMark method.

Paral le l sweep 5 .9 has the exact same mechanism for spl i t t ing up the list of PNObjec t s
between threads. The only things that differ are the work that the threads do and how
sublist have to be handled. Since sublists are in essence views into the original list we
cannot directly delete these objects as it would mess up the thread's internal iterators. The
solution for this was s imply setting the value of P N O b j e c t to nul l , these values are deleted
after a l l threads finish.

void parallelSweep(List<PNObject> components) {
List<sweepThread> threads = new A r r a y L i s t o ();
f l o a t objsPerThread = components.size()/maxThreads;
if(objsPerThread < 1){

sweep(components);
return;

}

else{
int remainder = components.size() % maxThreads;

for (int i = 0; i < (components.size() - remainder);
i += Math.floor(objsPerThread)) {

int endlndex =
(int) Math.min(i + Math.floor(objsPerThread),
components.size());
List<PN0bject> sublist = components.subList(i, endlndex);

sweepThread thread = new sweepThread(sublist);
threads.add(thread);
thread.start();

}

if(remainder > 0){
//creates new thread with the last portion of the l i s t

}

}

for (sweepThread thread : threads) {
//waiting for a l l threads to f i n i s h

}

components.removeAll(Collections.singleton(null));;
}

Lis t ing 5.9: parallelSweep method.

3 0

C h a p t e r 6

Testing and Benchmarking

The testing and benchmarking chapter of this thesis is dedicated to the rigorous evaluation
and val idat ion of the developed garbage collection system for P N t a l k . In this chapter, we
delve into the methodologies, procedures, and results of various tests aimed at assessing
the performance, reliability, and scalabili ty of the garbage collection system under different
workloads and scenarios. Through systematic testing, we a im to validate the correctness
of the implementation, identify potential issues or shortcomings, and measure the system's
performance against predefined tests.

J U n i t Jupi ter was ut i l ized as the pr imary testing framework throughout the develop
ment of the garbage collector, offering a modern and feature-rich platform for wr i t ing and
executing unit tests in Java, the framework was already being ut i l ized in P N t a l k prior to
development of G C .

6 . 1 Explanation of PNSimulation's report

Before we can get into analysis of simulation's output we need to understand the format of
its report. Th is here is an example of one such report:

[S] default [1] [time=0] [cal=[]]
[0] [1]:C1

[N] [1] :#object
[P] counter:{(1'10)}
[P] result:{>
[P] start:{(1<10)}
[P] temp:{}
[T] t2:

[precond] start(l'x=_)
[postcond] temp(l'o=_)

[T] t l :
[precond] counter(1 (x=_)
[precond] temp(l'o=_)
[postcond] result(1 (y=_)

Here the [S] represents a simulation default is the name of the simulation, [time=0]
represents the internal t ime of the simulation, and finally [cal=[]] represents a calen
dar that is currently empty. [0] represents object, [N] represents net, [P] represents

3 1

place and [T] represents transit ion. In case of transi t ion we can also see PNTransgoa l
[precond] s ta r t (l'x=_) where [precond] is a type of PNTransgoa l , s t a r t is a name of
a place and l'x=_ where 1 represent mul t ip l ic i ty and x a variable to which a value w i l l be
assigned.

6.2 Testing models

Overview of a l l models used for performance testing. A l l of these models are implemented
in class Models as methods, meaning that there are three methods m o d e l l , model2 and
model3.

6.2.1 Overview of modell

For this model our root is gonna be one instance of class C I . This is very basic model has
a single transi t ion that has a input from place p i , it takes the value from place p i and puts
two of those values in place p2.

c l a s s C l i s _ a PN
o b j e c t

p l a c e p i (2 ' 1 0)
p l a c e p2 ()
t r a n s t l

p recond p i (l'x)
p o s t c o n d p2(2'x)

Lis t ing 6.1: m o d e l l class C l .

6.2.2 Overview of model2

For this model our root is one instance of class C l . The class C l has one transi t ion t l that
has one input (x) from place counter. The transi t ion has also two actions associated wi th
it, the first one creates a new instance of class C 2 and assigns it to variable o. The next
action calls C2 's increment method w i t h x as an argument. The increment method adds 1
to the passed argument and returns the value.

class Cl i s _ a PN
object

place start (1 ' 1 0)
place result()
trans t l
precond counter(l'x)
action {
o = C2 new.
y = o increment: x.

}

postcond r e s u l t (l ' y)
Lis t ing 6.2: model2 class C l .

class C2 i s _ a PN
object
method increment: p i

place pl()
place return()
trans t 2
precond p i (l ' x)
action {

res = x + 1.
}

postcond return(l'res)
Lis t ing 6.3: model2 class C 2 .

32

6.2.3 Overview of model3

For this model our root is one instance of class C I . This w i l l serve as a stress test for the
mark phase of garbage collection as it contains a lot of references. The class C I creates
10 new instances of class C 2 and calls the increment method. Class C 2 also creates 10
new instances of class C 2 and calls the increment method, this works in a recursive way,
meaning that more and more objects w i l l be created wi th each step of the simulation.

class CI i s _ a PN
object
place start(10'42)
place end()
trans t l

precond sta r t (l ' x)
action {
o = C2 new.
y = o increment: x.

}

postcond end(l'42)
Lis t ing 6.4: model3 class C I .

class C2 i s _ a PN
object
place start(10'42)
place end()
trans t2
precond sta r t (l ' x)
action {
o = C2 new.
y = o increment: x.

}

postcond end(l'42)
method increment: i n
place in()
place return()
trans t22
precond in(l'x)
action {

y = x + 1.
}

postcond return(l'y)
Lis t ing 6.5: model3 class C 2 .

6.3 Testing of correctness

The purpose of this section is to validate whether our garbage collectors can accurately
identify objects that are no longer accessible. I w i l l be comparing PNSimula t ion ' s reports
at crucial steps to see whether the garbage collector can detect unreachable objects and
unnecessary roots correctly. A l l these test are using models from the previous section (the
number of the test corresponds to the number of the model). I w i l l be testing a l l of the
garbage collectors but only showcasing the mark-sweep implementat ion here, since testing
al l three would result in a lot of repetit ion, without much extra information. Furthermore
for a l l of these test I w i l l be setting stepsToGc to 1 i n order to trigger the G C every step.

6.3.1 Results of testl

Here on left we can see the report output for no garbage collection and on the right we
see output w i th garbage collection. In this part icular case we are testing whether we can
correctly delete G C roots. Y o u might notice that on the right side that i n step 2 the object

33

gets already deleted, that is because right after t l is finished garbage collection is triggered.
The report is generated only after garbage collection is done.

+++ step: 1
[S] default [1] [time=0] [cal=[]]

[0] [1] :C1
[N] [1]:#object

[P] pl:{(l'10)}
[P] p2:{(2'10)}
[T] t l :

[precond] pl(l'x=_)
[postcond] p2(2'x=_)

+++ step: 2
[S] default [1] [time=0] [cal=[]]

[0] [1] :C1
[N] [1]:#object

[P] p l : 0
[P] p2:{(4'10)}
[T] t l :

[precond] pl(l'x=_)
[postcond] p2(2'x=_)

Lis t ing 6.6: t e s t l w i th no G C

+++ step: 1
[S] default [1] [time=0] [cal=[]]

[0][1]:C1
[N][1]:#object

[P] pl:{(l'10)}
[P] p2:{(2'10)}
[T] t l :

[precond] pl(l'x=_)
[postcond] p2(2'x=_)

+++ step: 2
[S] default [1] [time=0] [cal=[]]

Lis t ing 6.7: t e s t l w i th G C

6.3.2 Resutls of test2

Same as in the previous test on the left no G C on the right w i t h G C . This test has two
purposes, first check i f our garbage collector w i l l remove a root w i th a thread in progress,
which it does not, the second is whether we can detect that [0] [2] is no longer reachable.
F rom the result of the test we can see that both the root [0] [1] and the object created by
our root get removed from the simulation.

3 4

+++ step: 2
[S] default [1] [time=0] [cal=[]]

[0] [1] :C1
[N] [1]:#object

[P] result:{>
[P] start:{>
[T] t l :

[precond] start(l'x=_)
[postcond] result(1 (y=_)
[THREAD] [3] [1]
[FINISHINGOP]
[{x=l, self={[0] [1]:C1},
o={[0][2]:C2}}][_res=2]

[0] [2] :C2
[N] [1]:#object
[N] [2]:#increment:

[P] p l : 0
[P] return:{(1<2)}
[T] t i l :

[precond] pl(l'x=_)
[postcond] return(l (y=_)

+++ step: 2
[S] default [1] [time=0] [cal=[]]

[0][1]:C1
[N][1]:#object

[P] result:{>
[P] start:{>
[T] t l :

[precond] start(l'x=_)
[postcond] result(1 (y=_)
[THREAD] [3] [1]
[FINISHINGOP]
[{x=l, self={[0][1]:C1},
o={[0] [2] :C2»] [_res=2]

[0] [2] :C2
[N][1]:#object
[N] [2]:#increment:

[P] p l : 0
[P] return:{(1<2)}
[T] t i l :

[precond] pl(l'x=_)
[postcond] return(1 (y=_)

+++ step: 3
[S] default [1] [time=0] [cal=[]]

[0] [1] :C1
[N] [1]:#object

[P] result:{(1<2)}
[P] start:{>
[T] t l :

[precond] start(l'x=_)
[postcond] result(1 (y=_)

[0] [2] :C2
[N] [1]:#object
Listing 6.8: test2 with no G C

+++ step: 3
[S] default [1] [time=0] [cal=[]]

Listing 6.9: test2 with G C

6.3.3 Results of testHold

For the last test I used a test that was already a part of PNtalk, here is its model 6.10.

class CI i s _ a PN
object

place counter(1'10)
place result()
trans t l
precond counter(l'x)

3 5

action {
y = self hold: 10

}

postcond p2(l'y)
Lis t ing 6.10: testHold model (taken from P N t a l k ' s source code comments).

In this test we take a look at whether or not can our garbage collector handle native
methods. T h e transi t ion t l executes a native method that sleeps for 10 units of t ime. We
can also notice that it is the first test that modified the internal t ime of the simulation.

+++ step: 2
[S] default [1] [time=10] [cal=[]]

[0] [1] :C1
[N] [1]:#object

[P] counter:{}
[P] result:{>
[T] t l :

[precond] counter(1 (x=_)
[postcond] result(1 (y=_)
[THREAD] [3] [0]
[FINISHING0P]
[{x=10, self={[0] [1]:C1>,
_1=10>] [_res=null]

[NATIVE][2]:hold:

+++ step: 3
[S] default [1] [time=10] [cal=[]]

[0] [1] :C1
[N] [1]:#object

[P] counter:{}
[P] result:{(1'null)}
[T] t l :

[precond] counter(1 (x=_)
[postcond] result(1 (y=_)

Lis t ing 6.11: tes tHold wi th no G C

+++ step: 2
[S] default [1] [time=10] [cal=[]]

[0][1]:C1
[N][1]:#object

[P] counter:{}
[P] result:{>
[T] t l :

[precond] counter(1 (x=_)
[postcond] result(1 (y=_)
[THREAD] [3] [0]
[FINISHING0P]
[{x=10, self={[0] [1]:C1>,
_1=10>][_res=null]

[NATIVE][2]:hold:

+++ step: 3
[S] default [1] [time=10] [cal=[]]

Lis t ing 6.12: tes tHold wi th G C

6.4 Metrics

For testing metrics I have decided to go wi th :

1. T i m e spent collecting garbage: This is because it has by far the biggest impact on
user experience as the s imulat ion has to be paused while garbage collection is running.
This t ime is further split into the t ime spent marking and sweeping, this allows for
greater insight into the performance of the garbage collector.

2. Size of PNSimula t ions object list: I have decide to go wi th this metric instead of
something like current memory usage because Java itself runs i n managed runtime

36

environment and we have no idea when Java triggers its own garbage collection, for
those reasons I th ink including current memory usage would be more confusing than
beneficial.

3 . Amoun t of objects created: this w i l l allow us to see how many objects have been
destroyed by our G C , dur ing the test

4. Tota l time: This refers to the total t ime of running the test, this allows us to compare
how much time is spent s imulat ing in comparison to how much time is spent on
garbage collection.

6.5 Hardware

Specifying the hardware used for benchmarks is crucial as it ensures the reproducibil i ty
and comparabi l i ty of performance measurements, provides context for interpreting results,
offers insights into potential optimizations.

OS: NixOS 24.05.20240412.cfd6b5f (Uakari) xB6_64
Host: Gigabyte Technology Co., Ltd. AB350M-Gaming 3-CF
Kernel: 6.8.5
Uptime: 11 hours, 42 mins
Packages: 2486 (nix-system), 1179 (nix-user)
Shell: zsh 5.9
Resolution: 1920x1080, 1920x1080
DE: Plasma 6.0.3 (Wayland)
These: Hateria-dark [GTK2/3]
Icons: Papirus-Dark [CTK2]
Terminal: kitty
Terminal Font: monospace 11.0
CPU: AMD Ryzen 5 3600 (12) @ 3.600GHz
GPU: AMD ATI Radeon RX 5700 XT Gaming OC
Memory: 9472MiB / 15918MiB

Figure 6.1: Testing hardware specifications.

6.6 Basic testing structure

A l l of our tests are implemented inside a class G C T e s t (Do not confuse these wi th tests
from P N V M . j a v a) . The basic structure of a test is that it first creates the desired garbage
collector, after which we ini t ial ize a new simulat ion wi th our create G C as an argument.
Fol lowing that we loop over the model we wanna test/benchmark, the number of loops is
determined by the GCTes t ' s member variable numOf Models. After we are done creating our
models we start a new loop, that performs the steps inside of the simulation, the max imum
number of steps is give be the member variable numOf Steps.

GarbageCollectorTest gc = new GarbageCollectorTest(1);
PNSimulation sim = new PNSimulation("default", 1, gc);

3 7

for (int i = 0; i < numOfModels; i++) {
Models.modell(sim);

}

for (int i = 0; i < numOfSteps; i++) {
doStep(sim, i) ;

}

Lis t ing 6.13: Basic test structure (this part icular example is tes t l) .

6.7 Performance testing

The performance testing section delves into the evaluation and analysis of the garbage
collector's performance characteristics under different workloads and scenarios, providing
valuable insights into its behavior and resource ut i l izat ion.

There are i n to ta l 9 tests, each of the models is tested on each of the garbage collector
implementations. Tha t means there are three variations of t es t l :

• t e s t l - this tests the basic mark-sweep implementat ion

• test IP - this tests the parallel mark-sweep implementat ion

• testlG - this tests the generational G C implementat ion

The number i n t e s t l corresponds to the model that was used for the test, so for t e s t l it
would be m o d e l l , for test2 it would be model2.

Table 6.1 contains a l l parameters that are fed to the garbage collector's constructor.
The x i n testx-01 stands for the number of the test, so testl-01 and text2-01 use the
same parameters for the G C constructor, also the testx-01 G C parameters apply to the
parallel and generational version of the tests.

Test stepsToGc maxThreads promotion o ldGenMaxSize
n o G C - - - -

testx-01 1 10 3 10
testx-02 20 20 10 100

Table 6.1: Garbage collector parameters for tests.

Before we get into the results quick explanation of the columns of table 6.2, NoM and
NoS stand for numberOfModels and numberOfSteps. The to ta l column contains the total
durat ion of the test (this includes inserting models into the simulation), sweep column
contains the amount of t ime spent sweeping, column mark contains the marking duration,
the column Objs represents the amount of PNObjec t s in PNSimula t ion ' s memory after the
test has finished and finally the column Objs created shows the amount of objects created
during the run of the simulation.

38

6.7.1 Results of testx-01

A s we can see i n table 6.2 the testl-01 (mark-sweep implementation) is the overall best
performer in this test. The parallel implementat ion struggles w i t h tasks that have a low
amount of objects i n simulation's memory, but things improve once we increase the number
of models, namely they improve for the mark phase durat ion as it is 4 seconds lower than
mark-sweep implementation. The generational implementat ion does the best i n the test
w i th low amount of models/steps, this is because this part icular model cannot trigger its
full G C . W i t h higher amount of models/steps the generational implementat ion struggles
quite hard as it does not remove any roots, meaning the list of objects never gets smaller.

Test N o M NoS Tota l [ms] Sweep [ms] Markfms] Objs Objs created
n o G C l 100 100 66 - - 100 0
testl-01 100 100 49 0.82 4.06 51 0

tes t lP-01 100 100 165 81.48 69.62 51 0
t es t lG-01 100 100 30 0.04 3.96 100 0

n o G C l 10000 10000 19189 - - 10000 0
testl-01 10000 10000 12717 768.12 11175.82 5001 0

tes t lP-01 10000 10000 14817 6523.01 7770.19 5001 0
tes t lG-01 10000 10000 55098 3.51 30309.99 10000 0

Table 6.2: Results of t e s t l .

Table 6.3 shows similar results to the first table, at least when comparing mark-sweep
and parallel implementations. The generational implementat ion shows great improvement
i n bo th low number of models/steps and higher number of models/steps. W h e n it comes
to parallel marking it is more than twice as fast as the mark-sweep implementation.

Test N o M NoS Tota l [ms] Sweep [ms] Mark[ms] Objs Objs created
n o G C 2 100 100 111 - - 199 99
test2-01 100 100 126 1.77 9.04 199 99

test2P-01 100 100 135 38.95 43.13 199 99
test2G-01 100 100 38 1.62 5.63 199 99

n o G C 2 10000 10000 64071 - - 19999 9999
test2-01 10000 10000 142962 4271.76 54834.88 19999 9999

test2P-01 10000 10000 110671 5105.35 23462.99 19999 9999
test2G-01 10000 10000 172715 16223.24 62624.76 19999 9999

Table 6.3: Results of test2.

Once again the table 6.4 shows the same pattern. W i t h generational implementat ion
struggling hard when it comes to sweep times wi th higher amount of models/steps.

39

Test N o M NoS Tota l [ms] Sweep [ms] Markfms] Objs Objs created
n o G C 3 100 100 73 - - 199 99
test3-01 100 100 91 1.71 12.97 199 99

test3P-01 100 100 99 38.36 39.00 199 99
test3G-01 100 100 19 1.54 5.00 199 99

n o G C 3 10000 10000 14665 - - 19999 9999
test3-01 10000 10000 92437 4176.68 67900.72 19999 9999

test3P-01 10000 10000 74595 5724.37 43910.64 19999 9999
test3G-01 10000 10000 109477 16440.57 70182.24 19999 9999

Table 6.4: Results of test3.

6.7.2 Results of testx-02

The most curious results 6.5 from this testing is that the parallel implementat ion i n couple
of cases despite having much higher sweep and mark t ime the to ta l t ime is lower. I tr ied
looking into why this is but unfortunately due to a lack of t ime I was not able to figure
it out. For the rest of the results, we can see that the advantage of parallel 's marking
at higher amount of models/step has weakened this is most l ikely due to the reduction in
amount of models. The generational implementat ion is now overall more in line w i t h the
other implementations and i n test3G-02 it has done exceptionally well , this indicates that
the generational implementat ion has its use cases and wi th tweaking some of its parameters
we could possibly even get better results.

40

Test N o M NoS Totalfms] Sweep [ms] Markfms] Objs Objs created
n o G C l 100 1000 354 - - 100 0
test1-02 100 1000 63 0.11 1.06 0 0

tes t lP-02 100 1000 49 12.90 18.04 0 0
tes t lG-02 100 1000 247 0.06 2.03 100 0

n o G C l 5000 10000 19014 - - 5000 0
test1-02 5000 10000 591 17.14 185.82 10 0

tes t lP-02 5000 10000 1392 575.90 619.92 10 0
tes t lG-02 5000 10000 21597 1.07 612.58 5000 0

n o G C 2 100 1000 430 - - 200 100
test2-02 100 1000 134 0.26 2.41 0 100

test2P-02 100 1000 100 15.24 19.67 0 100
test2G-02 100 1000 221 0.22 3.52 200 100

n o G C 2 5000 10000 47059 - - 10000 5000
test2-02 5000 10000 25999 57.43 1003.82 42 5000

test2P-02 5000 10000 28050 636.23 846.95 42 5000
test2G-02 5000 10000 28378 217.34 1011.76 162 5000

n o G C 3 100 1000 373 - - 1099 999
test3-02 100 1000 407 3.39 23.49 1080 999

test3P-02 100 1000 325 58.81 70.22 1080 999
test3G-02 100 1000 174 6.95 14.84 1080 999

n o G C 3 5000 10000 13213 - - 14999 9999
test3-02 5000 10000 17026 123.89 2544.44 14980 9999

test3P-02 5000 10000 15962 602.17 1237.04 14980 9999
test3G-02 5000 10000 17186 688.11 2458.82 14980 9999

Table 6.5: A l l results.

41

C h a p t e r 7

Conclusion

In conclusion we went over the different approaches to memory management. Summarized
many different kinds of garbage collection algorithms, looked at their respective strength
and weaknesses. Ana lyzed P N t a l k ' s structure and implementation, identified a l l the prob
lems we had to solve i n order to implement garbage collection. Used a l l the knowledge
from previous chapter to implement three different garbage collection algorithms, detailed
changes that were made to P N t a l k . After this we tested and benchmarked a l l three imple
mentations, we tested for correctness and performance. I th ink the the performance testing
has shown that garbage collection contributes greatly to performance by identifying and
freeing up unused memory periodically.

Overal l I would say that my work has contributed to development of P N t a l k i n positive
ways, mainly in cases where there are large and complex Object-Oriented Pe t r i Nets at play.
However, challenges remain, and avenues for future research include further opt imizat ion,
fine-tuning, and exploration of alternative garbage collection strategies to meet evolving
demands and requirements in P N t a l k .

4 2

Bibliography

[1] H E L L E R , M . What is garbage collection? Automated memory management for your
programs online. 2023. Available at: https://www.infoworld.com/article/3685493/
what-is-garbage-collection-automated-memory-management-for-your-programs.html.
[cit. 2024-04-24].

[2] J A N O U Š E K , I. V . Modelování objektů Petriho sítěmi. Brno , C Z , 1998. D i se r t ačn í p ráce .
V Y S O K É U Č E N Í T E C H N I C K É V B R N Ě Fakul ta elektrotechniky a informatiky.
Available at: https:/ /www.f i t .vu tbr .cz /~ janousek /publ ica t ions /phdthes i s .pdf .

[3] Kočí , R . ; J A N O U Š E K , V . and Z B O Ř I L , F . Object Oriented Pe t r i Nets - Model l ing
Techniques Case Study. International Journal of Simulation Systems, Science &
Technology, 2010, vol . 10, no. 3, p. 32-44. I S S N 1473-8031. Available at:
h t tps ://www.f i t .vut .cz/research/publicat ion /9194.

[4] R I C H A R D J O N E S , A . H . and Moss, E . The Garbage Collection Handbook: The Art of
Automatic Memory Management. 1st ed. Chapman and H a l l / C R C , 2011. I S B N
978-1-4200-8279-1.

43

https://www.infoworld.com/article/3685493/
https://www.f
http://it.vutbr.cz/~janousek/publications/phdthesis.pdf
http://www.f
http://vut.cz/research/publicat

A p p e n d i x A

Contents of the included memory
medium

• src - directory that contains the P N t a l k source code wi th my contributions mentioned
in a readme file.

• thesis - directory that contains source files to the text of my thesis.

• thesis.pdf - this thesis i n pdf format.

• poster.pdf - poster for this thesis.

4 4

