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Abstract 

The main goal of this thesis is to create a model for predicting the wear on material couple 

during high temperatures. This model should serve for prediction of wear behavior on kinematic 

mechanism on turbocharger. Predicting wear is difficult because of the very complex nature 

of processes involving physical, chemical, and mechanical phenomena, making it hard 

to predict. This thesis attempts to solve this problem using empirical relationships from 

literature and methods of machine learning using experimental data from Garrett Motion 

company. Both empirical relationships and machine learning approaches for predicting wear 

in tribology are thoroughly researched. The thesis critically evaluates the use of I.G.Goryacheva 

equation chosen as the best equation for adhesive wear, chosen as the primary mechanism 

of wear. Data from Garrett Motion serve as the base for machine learning algorithms. The best 

model is proposed – Support Vector Regression – and the best architecture is presented. For the 

best architecture, the thesis also includes feature importance analysis and search for optimal 

test-train split for dataset. Finally, the thesis includes recommendations for the next research 

and ways to improve the process of modelling the wear for this use case. 

Abstrakt 

Hlavním cílem práce bylo vytvořit model opotřebení materiálové dvojice za vysokých teplot 

pro predikci opotřebení kinematického mechanismu na turbodmychadle. Predikce opotřebení 

je komplexní proces, kterého se účastní mnoho chemických, fyzikálních a mechanických jevů, 

a proto není jednoduché jej analyticky počítat. Tato práce se vydává naproti tomuto problému 

pomocí empirických vztahů z literatury a aplikace principů a algoritmů strojového učení 

(machine learning) postaveného na datech z experimentu. Empirické vztahy i metody 

strojového učení jsou v práci podrobeny důkladné rešerši a aplikovány na dostupná data z firmy 

Garrett Motion. Práce kriticky hodnotí vhodnost vybraného empirického vztahu 

I.G.Goryachevy pro adhezivní opotřebení jako primárního mechanismu opotřebení a variuje 

koeficienty pro výzkum využití rovnice. Na data jsou aplikovány algoritmy strojového učení 

a je prezentována architektura nejlepšího modelu – Support Vector Regression – spolu 

s metrikami, analýzou důležitosti vlastností (feature importance) a optimálním rozdělení 

datasetu pro trénink a testování. Závěrem práce doporučuje směry dalšího výzkumu a způsoby,  

jak zlepšit proces modelování pro tento konkrétní problém. 
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Rozšířený abstrakt 

Hlavním cílem práce bylo vytvořit model 

opotřebení materiálové dvojice za vysokých 

teplot pro predikci opotřebení kinematického 

mechanismu na turbodmychadle, viz 

obrázek 1. Predikce opotřebení je komplexní 

proces, kterého se účastní mnoho 

chemických, fyzikálních a mechanických 

jevů, a proto není jednoduché opotřebení 

analyticky počítat. Tato práce se vydává 

naproti tomuto problému pomocí 

empirických vztahů z literatury a aplikace 

principů a algoritmů strojového učení 

(machine learning) postaveného na datech z experimentu. Empirické vztahy i metody 

strojového učení jsou v práci podrobeny důkladné rešerši a aplikovány na dostupná data z firmy 

Garrett Motion. Práce kriticky hodnotí vhodnost vybraného empirického vztahu a jejím 

výstupem je nejlepší vhodný model strojového učení. 

Opotřebení tvoří, spolu s třením a mazáním, hlavní pilíře vědeckého oboru tribologie. Náplní 

tribologie jsou zmíněné 3 pilíře a ostatní věci týkající se třecího kontaktu, tedy místa interakce 

dvou tuhých těles. Mohou zde nastat různé typy dějů. Fyzikální děje jako mechanické, 

elektrické, magnetické nebo teplo a také chemické nebo biologické děje. Tyto děje se poté 

manifestují v podobě třecí síly mezi tělesy. Vzhledem k tomu, že až jedna třetina energetických 

zdrojů na zemi je vynakládána na překonávání třecích sil, je studium těchto procesů 

prostřednictvím tribologie důležitou disciplínou ve strojírenství. [1][2] 

Opotřebení je definováno jako progresivní ztráta materiálu z povrchu a jeho predikce je oproti 

tření obtížná. Jedná se o komplexní proces, jehož se zúčastní spousta fyzikálních, chemických 

a mechanických jevů. Nelze tak jednoznačně predikovat opotřebení a jednoznačně určit 

podobný koeficient opotřebení jako je koeficient tření. I přesto mnoho autorů věnovalo predikci 

opotřebení značné úsilí a tento obor se od svého počátku velmi posunul. [1][2]  

V 40. letech 20. století začala hlavní vlna výzkumu empirické predikce opotřebení s hlavními 

autory jako Holm, Archard, Burwell, Strang, Rabinowicz a dalšími. Nejvýznamnějším 

poznatkem z této doby je Holm-Archardův vztah pro opotřebení, v rovnici (1), kde 

V je opotřebený objem, K je koeficient opotřebení, N je zatížení, L je vzdálenost a H je tvrdost. 

Koeficient opotřebení obvykle nabírá hodnot 10-3-10-7 a je závislý na mnoha proměnných. 

 𝑉 =
𝐾𝑁𝐿

𝐻
 (1) 

Pro optimální proces modelování opotřebení je nutné zvolit primární typ opotřebení ze 

7 hlavních typů opotřebení. V našem případě bylo zvoleno adhezivní opotřebení jako primární 

mechanismus.  Adhezivní opotřebení nastává v případě tření mezi dvěma makroskopicky 

hladkými povrchy. Jelikož žádný povrch není dokonale hladký, tak kontakt nastává 

na vrcholcích nerovností. Tyto vrcholky jsou podrobeny vysokým silám na malých plochách 

a tíhnou k tomu lnout k sobě díky adhezním silám. Vznikají tak lokální „svary“ na krátkou 

dobu, které se poté opět rozpojí. Díky deformačnímu zpevnění však nastávají i případy, 

Fig. 1 – Kinematické mechanismy na turbodmychadle 



kdy svar je silnější než atomové síly v měkčím ze dvou materiálů. V tomto případě dochází 

k vytržení materiálu v nové rovině a materiál je následně vtlačen do druhého povrchu nebo 

uvolněn jako volná částice, která se pohybuje mezi povrchy. [19][20][21][22] 

V oblasti empirických modelů adhezivního opotřebení byla provedena rozsáhlá rešerše, jejímž 

výstupem je nejvhodnější model opotřebení pro náš problém – vztah I.G. Goryachevy, v rovnici 

(2). Kde V je opotřebený objem,  p je zatížení, v je rychlost, t je čas a K, α, β jsou koeficienty 

opotřebení. Tato rovnice bude využita pro predikci opotřebení na základě dostupných dat. [18] 

 𝑉 = 𝐾𝑝𝛼𝑣𝛽𝑡 (2) 

Experimentální data byla poskytnuta firmou Garrett Motion, které tímto autor chce poděkovat. 

Pro predikci opotřebení a tření byl použit tribometr DN55, jeho princip znázorněn na obrázku 

2. Vzorky v podobě jednoho „pinu“ a dvou 

„platů“ jsou vloženy do testovacího 

přípravku a celá komora je zahřáta na 

testovací teplotu. Na vzorky je aplikována 

přítlačná síla a pin koná cyklický pohyb 

nahoru a dolů. Experiment probíhá určitou 

dobu a následně jsou vzorky vyjmuty ven. 

Opotřebené vzorky jsou podrobeny analýze 

na laserovém profilometru a odebraný 

objem je spočítán. Ten je následně využit 

pro predikci pomocí modelů. 

Nejprve je provedena průzkumná analýza dat a vizualizace a následně jsou spočítány hodnoty 

za různých variací koeficientů α a β pro určení koeficientu K. Spočítané výsledky jsou daleko 

od rozsahu koeficientu K uváděného v literatuře, tak je vyhotoven 3D graf závislosti K–α–β 

a následně také konvergence koeficientů α a β. Rovnice Goryacheva se ukázala býti méně 

vhodnou a autor práce doporučuje naměření více experimentálních hodnot a také větší variaci 

v nastavovaných parametrech. 

Dalším využitým nástrojem pro predikci je strojové učení, v originále zvané „machine 

learning“. Jedná se o metodu programování, která dává počítači schopnost učit se, aniž by byl 

specificky naprogramován. Jednoduchým příkladem je filtrování spam emailů. Bylo by velice 

obtížné definovat všechny jejich možné varianty. Je ovšem možné pomocí matematických 

algoritmů program „naučit“ jak obecně vypadá, jaké má znaky, takový spam email a na základě 

toho program spočítá pravděpodobnost zdali je email spam nebo ne a zařadí jej do příslušné 

složky. Kromě klasifikačních úloh jako je spam filtr lze také pomocí regresních modelů 

predikovat hodnoty veličiny pomocí křivek. Jedná se o přístup založený na datech a proto je 

kvalita, kvantita a informační hodnota dat fundamentální pro kvalitní model. V našem případě 

se jedná o učení pod dohledem (supervised) – tedy máme k datům označení/výsledek. [35] 

Pro naměřená data byla vypracována matice vlastností (feature matrix) v podobě veličin: 

materiálová dvojice, vzorek (pin/plate), teplota, poměr tvrdostí, koeficient tření. Predikovanou 

veličinou je opotřebený objem. Dataset sestávající se z 51 vektorů vlastností je rozdělen 

na trénovací a testovací set v poměru 80/20. Hrubá analýza dostupných modelů strojového 

učení je aplikována a jejím výsledkem jsou 4 modely, které jsou podrobeny procesu doladění 

(fine-tuning). Těmito modely jsou Support Vector Regression (SVR), Random Forest (RF), 

Fig. 2 - DN55 Tribometr 



Genetic Algorithm (GA) a Multilayer Perceptron Neural Network (NN). Po procesu doladění 

je vybrán nejlepší model – Support Vector Regression – s architekturou ukázanou v tabulce 1. 

 

Pro výsledný SVR model je následně provedena analýza důležitosti vlastností (feature 

importance analysis), která je zobrazená v obrázku 3. Nejčastější veličina pro predikci v SVR 

modelu byl koeficient opotřebení a poté typ vzorku a teplota. Pro SVR model je také provedena 

analýza optimální hodnoty rozdělení datasetu s výslednou nejlepší hodnotou 80/20. 

Pro konkrétní případ opotřebení kinematického mechanismu na turbodmychadle, 

experimentálně simulovaném na tribometru DN55, byla provedena predikce zvoleným 

empirickým modelem Goryacheva a také pomocí metod strojového učení. Empirický model 

Goryacheva se ukázal být méně vhodným vhledem k nedostatku informací a komplexnosti 

procesů opotřebení a tato skutečnost byla ověřena variací parametrů. Na základě dostupných 

dat bylo vyzkoušeno mnoho modelů strojového učení, vybrány 4 nejlepší a po jejich 

optimalizaci byl určen nejlepší model – Support Vector Regression s architekturou a výsledky 

prezentovanými výše. Pro zlepšení kvality modelu a predikce autor doporučuje sběr více 

experimentálních dat a větší variaci experimentálních parametrů. Dalším potenciálním směrem 

je rozšíření matice vlastností o nové veličiny z experimentu. 

  

Architektura Vyhodnocení 

Nejlepší model – SVR Hodnota Metriky Hodnota 

C – Regularizační parametr [-] 1.3 R2 trénink [-] 0.351 

Epsilon – šířka pásu [-] 0.1 R2 test [-] 0.429 

Kernel [-] rbf 
Střední kvadratická chyba 

(MSE) [um3^2] 
1.856e16 

Gamma – kernel koeficient [-] auto 
Odmocněná střední kvadratická 

chyba (RMSE) [um3] 
1.362e8 

Stupeň Polynomial Features [-] 1   

Rozdělení datasetu [-] 80/20   

Table 1 - architektura nejlepšího SVR modelu 

Fig. 3 – Analýza důležitosti vlastností pro nejlepší zvolený model – SVR 
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1. Introduction 

1.1. Tribology 
Tribology is a discipline that deals with the processes and phenomena occurring during 

the friction interaction of solids. The subject of the tribological study is friction contact – region 

of interaction of bodies in contact. At friction contact, processes of physical nature like 

mechanical, electrical, magnetic and heat can occur. Processes can also be of a chemical and 

biological nature. These processes manifest themselves in the form of Friction force i.e. 

resistance to the relative displacement of bodies, which form the contact. In the modern world, 

up to one third of the world’s energy resources is being spent on overcoming friction forces. 

The friction as a phenomena, and its study via tribology, is therefore undeniable and very 

important. [1] 

Another manifestation of processes occurring during the contact interaction is the wear. Wear 

is a progressive loss of material from surfaces due to its fracture in friction interaction showing 

up in gradual change of the dimensions and shape of the contacting bodies. Wear of material 

can change the properties and functionality of given machine parts or even lead to machine 

failure. Study of wear, its causes and elaboration of methods for improvement of wear resistance 

is therefore a very important sub-field in the discipline of tribology. Wear can be slight or 

extremely rapid, depending on the various variables. In most cases, wear is detrimental. It can 

cause increased clearances between the moving components, unwanted freedom of movement 

and loss of precision. This can lead to vibration, increased mechanical loading which increases 

wear again. Even small material loss due to wear can cause complete failure of large and 

complex machines. Wear can also be used for desirable purposes such as grinding and 

polishing. This is the case when wear is the mechanism of material removal. [1][2] 

Tribology can be considered applied science because it has goals like diminishing of the energy 

losses, effect of friction and wear on the environment and the increase of machine life. The 

successful solution to these problems lies in the deep understanding of nature of friction and 

wear. Tribology as a discipline has evolved on the basis of mechanics, physics, chemistry and 

other sciences. Unfortunately, the results obtained in these individual fields cannot be applied 

directly because of complexity of the tribological processes. Tribological processes are 

complicated, interconnected and they involve multiple scales and hierarchical levels. 

They therefore must be considered using results of different scientific disciplines 

simultaneously. [1] 

As mentioned previously, friction is one of the main topics of the tribology. Friction plays 

a central role in the performance of many mechanical systems. In some cases, low friction 

is desirable and essential. This is the case of operation of joints for example. Hinges on doors, 

human hip joints or bridge supports demand low friction forces. In other cases, the goal 

is to absolutely eliminate friction. This is done in applications such as bearings and gears, when 

lowering the friction can increase overall efficiency of those mechanical parts. Opposite to that, 

there are applications where controlled friction is essential to dissipate kinetic energy and 

transfer torque such as brakes and clutches. Another good example of use of high friction is 

friction between the road surface and the tire of a vehicle. [2] 

The best solution for reducing the friction, and often also wear, is lubrication of the system. 

Therefore, studies of lubrication are very closely related to the studies of wear and friction. 

If we do not use artificial lubricant, we still must consider lubrication caused by the  
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surrounding atmosphere, especially oxygen and water vapour in the air. They often play 

a similar role as the lubricant. [2] 

Two solid surfaces are placed together and contact between them will generally occur only 

in isolated parts of the nominal contact area, not the whole surface. This is later explained 

as a “true contact area”. The reason for contact being only in some parts between the surfaces 

is the surface roughness of them. Even with the small value of surface roughness in well-

polished surfaces, the surface is not ideally flat. True contact area is therefore independent of 

the surface roughness.  In contact between the bodies, there are therefore localized regions of 

forces. These regions of forces are responsible for the friction. The difference between nominal 

contact area An and true contact area At is visually shown in Figure 4. [2][3] 

The size of the true contact area is not dependent on the size of the nominal area or surface 

roughness, but rather load. Burwell and Strang [5] show this schematically in Figure 5. 

The higher the applied load, the more asperities are in contact that make the true contact area. 

[5] 

 

Fig. 4 - Nominal contact area vs True contact area [4] 

Fig. 5 - Surfaces in contact during a) low applied load b) high applied load [5] 
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Friction is a force and may be defined as resistance encountered by one body in moving over 

another. This definition is broad and embraces two important classes of relative motion: sliding 

and rolling as shown in Figure 6. It can be beneficial to make distinctions between sliding 

friction and rolling friction, but they are not mutually exclusive. Meaning, that even “pure 

rolling” nearly always involves some sliding. [2] 

Considering ideal rolling or ideal sliding, in both cases tangential force F is needed to move the 

upper body over the stationary surface. Also considering the normal load N, these two forces 

can be combined into ratio, which is known as coefficient of friction. Coefficient of friction 

(CoF)  is usually denoted μ and is described in equation (3). 

 𝜇 =
𝐹

𝑁
 →    𝐹 = 𝜇𝑁 (3) 

The magnitude of the frictional force is described by the value of the coefficient of friction. 

Values of the coefficient of friction can vary by multiple orders. It can be very small, such 

as 0.001 in lightly loaded rolling bearing, meaning the friction force is low. This is the preferred 

case when designing the bearings. On the other hand, it can be very big, such as 10 for two 

identical clean metal surfaces sliding in vacuum. In this case, the friction force is large. These 

are the extreme cases. For the case of sliding in air and the absence of lubricant, considering 

most common materials, the value of the coefficient of friction is in the range from 0.1 to 1. 

It is also important to mention, that coefficient of friction μ is not a fundamental property of pair 

of surface, because strong frictional forces can be experienced even without a normal load if the 

surfaces are clean and have an intrinsic adhesive capability. [2][6] 

When a tangential traction is applied to a system already in a state of plastic contact, the 

plasticity theory predicts that the junction area will grow as the two surfaces slide against each 

other. Complete welding of surfaces is usually prevented by the controlling influence exerted 

by the interfacial contaminating layers. Even a small degree of contamination can reduce the 

shear strength of the interface sufficiently to discourage continuous growth of the bonded area. 

This means that coefficients of friction μ tend to remain finite. 

Fig. 6 - Schematically shown a) rolling and b) sliding [2] 
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Laws of friction 
Over the course of years, few laws of friction were presented. Two empirical Laws of Sliding 

Friction are named after the person who stated them in 1699 – Guillaume Amonton. However, 

the first mentions and description of the laws date back to 1493, more than 200 years earlier, 

by the famous Leonardo da Vinci. In addition to the first two empirical Amontons laws, the 

third law is sometimes mentioned, which is often attributed to Coulomb in 1785. [2][7][8] 

The laws of friction may be stated as follows: 

1. The friction force is proportional to the normal force (equation 1) (Amontons’ first law) 

2. The friction force is independent of the nominal contact area (Amontons’ second law) 

3. The friction force is independent of the sliding velocity (Coulomb’s law) 

The laws have varying reliability and must be taken with caution, but they provide good and 

useful summaries of empirical observations. The first law, described by equation (1) is obeyed 

by most metals and many other materials. Exceptions are usually seen in polymers and materials 

with a very low elastic modulus. The second law is nowadays also well attested for most 

materials with, again, the exception of polymers. The third law is less well founded and based 

on common observation, that the frictional force to initiate sliding is usually greater than the 

force to maintain the sliding and therefore the coefficient of static friction μs is greater than the 

coefficient of dynamic friction μd . It was found that once the sliding is onset, the coefficient 

of dynamic friction is nearly independent of sliding velocity. [2] 

Wear laws 
Compared to the “well-known” laws of friction, our knowledge about the laws of wear is much 

smaller. Technical literature is full of reported data on wear, but these data are the results 

of experiments in the industry which simulate specific operations in service and usually 

complicated and uncertain compositions. This results in no general laws of wear that are widely 

applicable and no “wear coefficient” in sense such as Coulomb’s coefficient of friction 

or Hooke’s Young modulus. As a result of this, dimensional analysis cannot be applied to wear 

problems. Meaning that we cannot conclude rationally anything about wear from scaled 

experiments and we also cannot rationally estimate the wear occurring in an actual machine. 

Nevertheless, some authors have found empirical relationships that gave us a brief notion 

of how wear laws can look like. Let us take a brief look into the history of wear laws and its 

discoveries. [5] 

In 1860, German mathematician Karl Theodor Reye presented his hypothesis that the volume 

of the removed debris due to wear is proportional to the work done by friction forces. This 

is called “Reye’s hypothesis” or “energy dissipative hypothesis”. Reye did experiments with 

pins and considered all the various ways in which the mechanical work consumed by friction 

is converted. He then proposed that a correct theory of frictional wear should be in accordance 

with all the factors that govern the conversion of frictional work into heat, electricity, 

deformation, shocks etc. The hypothesis is formulated mainly with observations made during 

wear, because other components of friction work are so rapidly propagated, that they will 

virtually remain stationary. That means the individual rubbing elements the effects can be 

observed at their points of origin. In sliding contact in pin, there is assumption that the size 

of wear in one direction refers to the frictional work in the same direction. This wear 

is proportional to the part of the total frictional work that is expended in overcoming the 

frictional resistance. Given the uniformity of material, lubrication and temperature for all points 
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on the pin surface, the ratios between various factors influencing pin friction are the same for 

the entire lifetime in each direction referring to the friction surface. Therefore, the total 

frictional work, and consequently the wear, is proportional to the total normal force applied 

to the relative projection of the friction surfaces. Reye proposed this written equation: 

"For a given pin, the normal displacement in any direction equals the same share of the total 

frictional work caused by the normal pressure, and it forms the product with its relative velocity 

in the direction perpendicular to the friction surfaces." [9][10] 

In 1946, Ragnar Holm proposed a semi-empirical theory of galling wear based on the fact that 

the true contact area At between rubbing surfaces is given by equation (4), where N is the normal 

load and pm is a flow pressure of the softer of the two surfaces. The physical mechanism being 

the plastic deformation on the local asperities on the softer surface. [11][12] 

 𝐴𝑡 =
𝑁

𝑝𝑚
 (4) 

Another assumption made by Holm is that every encounter of two atoms of the opposite 

surfaces in true contact area has a certain statistical probability that one of the atoms will 

be pulled out of its parent surface. After counting all the encounters during the sliding and with 

the use of average interatomic spacings, Holm produced a simple wear volume equation (5). 

Where V is the wear volume, k is the probability of removing an atom (also as Z in literature) 

and L is sliding distance. [11][12] 

 𝑉 = 𝑘𝐴𝑡𝐿 (5) 

If we insert equation (4) into equation (5), we get equation (6). Divided by true contact area 

At we obtain similar equation (7) with wear depth h and average normal stress P. 

 𝑉 =
𝑘𝑁𝐿

𝑝𝑚
 (6) 

 ℎ =
𝑘𝑃𝐿

𝑝𝑚
 (7) 
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This theory by Holm assumes that the material is removed as individual atoms. Burwell and 

Strang [12] put this into question and proved that it’s probably not generally valid. They proved 

it with electron microscopy examination of the wear particles removed from two hardened steel 

surfaces rubbing together under a lubricant, as 

shown on Figure 7. The size of the individual 

specks or grains in the Figure, the large black 

regions probably being its agglomerates, is 5-10 

nm. This is quite small regarding the 

macroscopic point of view, but on the atomic 

scale, it consists of millions of atoms. The softer 

the material is, the particles are found larger. 

Burwell and Strang nevertheless began 

experimental procedure based on the findings of 

Holm to see to what extent equations (6) and (7) 

hold. [12] 

Holm, Bowden, Tabor and others also proposed 

the relation between friction force F and true 

contact area At in equation (8) with s being the 

average shear strength of the local adhesion 

between the surfaces. [12] 

 𝐹 = 𝑠 ∙ 𝐴𝑡 (8) 

Dividing the equation (8) by equation (4) gives us the familiar expression of the friction 

coefficient μ in equation (3). Both s and pm are plastic properties of the concerned materials and 

may be expected to have same ratio for both  hard and soft materials. [12] 

 𝜇 =
𝐹

𝑁
=

𝑠

𝑝𝑚
 (9) 

As mentioned before, Burwell and Strang did experiments in 1952 and 1958 to understand wear 

and hopefully propose a wear law and started their test with validating to which extent equations 

(6) and (7) proposed by Holm are valid. They had a simple wear machine with relatively soft 

pin rubbing the surface of a smooth hardened steel disk. The measured value was the wear 

of pin. Conventional depth wear rate Wd, which is rate of material removal as in equation (10), 

where h is depth of material removed from the soft pin/rider (i.e. wear depth) and L is sliding 

distance, is constant for a constant normal stress. 

 𝑊𝑑 =
ℎ

𝐿
 (10) 

Instead, Burwell and Strang deemed it appropriate to plot wear rate against the corresponding 

stress P because it correlates more with equation (7), therefore plotting quantity h/LP against 

average normal stress P for two different materials as shown in Figure 8 and discussed the 

obtained curve with its two distinct regions divided by the approximate value of 1/3 of hardness. 

[5] 

Fig. 7 - Electron micrograph of wear particles from 

hardened steel surfaces (25,OOOX) by Burwell and  Strang 

[12] 
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For low stresses, up until approximately 1/3 of hardness, the plot shows that quantity h/LP 

is constant as predicted by the equation (7). For stresses higher than 1/3 of hardness, the quantity 

h/LP increases sharply and completely abandons behavior according to equation (7). This shape 

of the curve was obtained with lubricant and without it, so the breakdown of the liquid film 

cannot be a reason for the sharp increase of quantity h/LP. However, breakdown of some sort 

of dry film, such as oxide or other material, is not out of question. 

A detailed explanation of the high stress region and sharp rise of h/LP is not yet possible, but 

some things seem to be definite and will be shortly explained. Wear particles, due to certain 

reasons proposed by Burwell and Strang [5], cannot escape the contact and therefore produce 

more wear. The formation of the secondary wear particles is doing self-acceleration of the wear 

process. When particles are worn off the surface and they cannot escape the contact of two 

surfaces, they produce more wear. This can lead to some extreme cases such as forming 

the avalanche of wear material. [5][12] 

The threshold value being 1/3 of hardness is probably due to the fact, that it is approximately 

the same value as the yield strength of completely work-hardened surface, such as wearing 

surface we are considering, according to Burwell and Strang. Because wear, especially adhesive 

in this case, is based on plastic deformation of asperities, the exceeding of the yield strength 

is necessary to induce such plastic deformation. When the asperity and its base exceeds the 

yield strength, the material starts to flow. [5][12] 

Burwell and Strang therefore experimentally proved Holm’s equation but the wear being 

constant only up to the pressures of 1/3 of hardness and with the proposition, that the relation 

should be applied to asperities, rather than atoms as Holm’s proposed. 

Fig. 8 – Wear in form of h/LP plotted against pressure P on the surface [5] 
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In 1953 J.F. Archard wrote his famous article about modelling wear named “Contact and 

Rubbing of Flat Surfaces” in which he proposes the theory of wear law based on the collision 

of two asperities as shown in Figure 9. [13] 

Considering asperity contact as shown in Figure 9 we consider that the highest load the asperity 

can carry is shown by equation (11) where A is area, H is hardness and a is radius of the asperity. 

The total load N carried by all asperity contacts is then shown in equation 12 as a sum of all 

areas in contact. [13] 

 𝑑𝑁 = 𝐴 ∗ 𝐻 =  𝜋𝑎2𝐻 (11) 

 𝑁 = ∑ 𝑑𝑁 =  𝐻 ∑ 𝜋𝑎2    𝑡ℎ𝑒𝑟𝑒𝑓𝑜𝑟𝑒 ∑ 𝜋𝑎2 =
𝑁

𝐻
 (12) 

Equation (12) shows us, that the area which is carrying the load is given by load N and hardness 

H. Also, wear particle can be formed in the shape of the half-sphere, hence its volume 

Vp is calculated in equation (13). [13] 

 𝑉𝑝 =

4
3

𝜋𝑎3

2
=

2

3
𝜋𝑎3   (13) 

Not all contacts give rise to wear particles, so Archard assumed only a fraction θ does. In the 

original Archard article referred to as k, but for better understanding now, we use θ. Wear rate 

dWw i.e. average volume worn away per sliding distance 2a is therefore shown in equation (14). 

 𝑑𝑊𝑤 =  𝜃
𝑉𝑝

2𝑎
=

2
3 𝜋𝑎3

2𝑎
= 𝜃

 𝜋𝑎2

3
 

(14) 

The total wear rate is then the sum of all asperity collisions as shown in equation (15).  

Fig. 9 - Single contact in sliding surface by Archard [13] 
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 𝑊𝑤 = ∑ 𝑑𝑊𝑤 =
𝜃

3
∑ 𝜋𝑎2  (15) 

If we insert equation (12) into equation (15), we obtain equation (16) and write wear rate 

as wear volume V over sliding distance L. 

 𝑊𝑤 =
𝑉

𝐿
=

𝜃

3
∙

𝑁

𝐻
 (16) 

Since fraction of particles worn away represented as constant θ/3 is mathematical construct 

based on the choice of spherical particle, we can simplify it so wear coefficient K = θ/3 

and arrive at Archard’s wear law in equation (17) which mirrors Holm’s equation (6) [13] 

 
𝑉

𝐿
= 𝐾 ∙

𝑁

𝐻
  →    𝑉 =

𝐾𝑁𝐿

𝐻
 (17) 

Archard considered more mechanisms of deformation and shape but proposed a model which 

to his best knowledge copied reality, which is that particles are removed from surface as lumps 

by the plastic deformation. Equation (17) assumes that wear particles have hemispherical shape 

and have same radius. As said before, it is similar to Holm’s equation and also replaces Holm’s 

concept of material removal by atoms to the material removal by wear particles. Archard also 

proposes conclusions after his study as follows:  

A) The wear rate is proportional to load and is independent of the nominal area of contact 

B) If the K and H (or pm) remains constant, the wear rate is independent of the speed 

of sliding. 

C) The theoretical value of wear rate is independent of the model used to represent the 

surfaces 

This findings made by Holm, Burwell, Strang, Archard and many others led to the most 

universally used model of wear today despite its shortcomings such as usage only for steady-

state wear in this basic form, not considering the running-in phase (which is described in next 

paragraph) or the fact that wear coefficient K is very likely to be dependent on many different 

factors and is hard to predict. The law is known under many names in literature such 

as “Archard wear law”, “Holm-Archard wear law”, “Holm wear law” or “Reye–Archard–

Khrushchov wear law”. [13] 
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In 1952, Burwell and Strang [5] proposed two 

qualitative conclusions about wear. Firstly, 

that wear decreases with increasing the 

hardness of the rubbing surfaces, which 

corresponds with the propositions of Archard 

and Holm. Secondly, that wear increases with 

the distance of travel, but generally not 

linearly. Many exceptions to these two rules 

can be presented, but most of the time, the 

relationship between wear volume and distance 

of travel is as shown in Figure 10. [1][5] 

The so called “wear curve” typically consists 

of 3 stages. “Running-in”, “Steady state” and 

“Catastrophic or Severe wear” stage. Running-

in stage is more described in next paragraph. 

Steady state is characteristic by its linear nature of wear dependence on time. Most of the wear 

laws presented, such as Archard Law, are the best description of this linear stage. 

The Catastrophic stage is characteristic by its sharp increase in wear. In this stage, working 

conditions become drastically worse and the pair of materials in contact is quickly worn out. 

[1][5][14] 

The behavior of wear in Figure 10 in the “running-in” stage can be investigated using Figure 8. 

When the machine is freshly assembled, even the best prepared surfaces will bear load only 

on an edge or a corner or a local high region. Therefore, the true contact area is quite small 

and the normal load is high. High load on small area results in high stress. This high stress 

is in the high-stress region in Figure 8. Because of this, the initial depth wear rate is extremely 

high and the original wear area is rapidly enlarged. At this stage, caution is necessary to avoid 

catastrophe by the self-accelerating process of wear by the primary wear particles that cannot 

escape the contact. [5] 

There are generally three possibilities that can happen during running-in phase. The first 

possibility is when the surfaces are made initially near-enough to conform and the rapid wear 

brings their entire areas into mating, the run-in can be considered successful. When the stage 

of mating entire areas of the two given surfaces is reached, load is carried by bigger area, 

stresses should drop to the low-stress region on Figure 8 and the wear rate becomes smaller. 

This wear rate is often very small, especially compared to the initial running-in wear, that it may 

be negligible. It is often said that when the surfaces have reached the run-in condition, the wear 

ceases. This is sometimes ascribed to a “glazed” or otherwise specially conditioned surface. 

The best way of running-in the surfaces together is to simply operate in the low-stress region 

of the curve on Figure 8. [5] 

The second possibility is when the two surfaces are not made to conform. In this case, the initial 

wear area grows only gradually and the average stress remains in the high-stress region for 

a long time or even indefinitely. This leads to the wear during whole life of the part and 

no ceasing of the wear as in the first possibility. [5] 

The third possibility occurs when the growth of the wear area is sufficient to enable the stresses 

to drop into the low-stress region and therefore into the low-wear rate region, but the wear area 

Fig. 10 - The most qualitative relation between distance 

and volume of material worn. Divided into 3 main stages 

“running-in”, “steady state” and “catastrophic” or 

“severe” wear [5] 
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is still only a fraction of the designed area. The result of this is a surface not functioning properly 

such as gas or oil seal in the case of piston rings. Rings pump the oil, but their wear rate is 

so low that they will never wear completely in a normal lifetime and the seals against the 

leakage of the transported medium will not form. In the case of the piston rings, the surface 

is purposefully designed to be rough. This serves as an insurance that the surface stresses stay 

in the high-stress region, therefore in the high wear rate region until the ring is well in contact 

over most of its face and serves as the seal for the transported medium as it should. [5] 

Wear coefficient K 
When we take look at the equation (17), the Archard law in the form V = KNL/H, the important 

part of calculating wear is the wear coefficient K. It is a non-dimensional constant which 

physically represents the probability that during contact of two surfaces at asperity, the sizeable 

wear particle is produced. It is considered primarily for the softer surface of the two, since 

it’s the one wearing faster. For harder surface, K is generally a 1/3 of the K of softer surface. 

[15] 

As mentioned before, the wear coefficient K physically represents the probability of producing 

a wear particle. In 1958, Rabinowicz [16] presented a criterion for the critical size of wear 

particle to come loose and supported it with experimental data. Rabinowicz criterion was 

confirmed in 2016 using quasi-molecular simulations by Aghababaei, Warner and Molinari 

(AWM) in [17]. [16][17] 

Criterion is based on elastic energy. To detach a particle from the surface, elastic energy stored 

in the fragment needs to overcome the work of adhesion between the fragment and the surface 

to which it is attached. As explained more closely in [16], from the energy balance, we can 

extract critical diameter of wear particle dc as shown in equation (18). E is the Young modulus, 

W is work of adhesion of the system and σyf is yield strength of fragment material. If the particle 

is larger than critical diameter dc, it comes loose. 

 
𝑑𝑐 =

30𝐸𝑊

𝜎𝑦𝑓
2  

 

(18) 

Rabinowicz in 1981 [15] and many other authors conducted experiments to determine wear 

coefficients K for different material couples. Rabinowicz chose to aim his interest at metals 

with other lattice than HCP, no soft metals and metals with low oxidation rate. He did so with 

running experiments at N = 1kg, distance L calculated based on speed v = 0.01 m/s and time 

varied from 1 hour up to 96 hours. Hardness varied for each material and wear volume was 

determined by weighing the specimen before and after the experiment on precise scales and 

calculating the volume worn away. K is therefore calculated as shown in equation (19). 

Rabinowicz multiplied Hardness by 3 such as shown in equation (15) with θ but equations 

usually have this form. [15] 

 𝐾 =
𝑉𝐻

𝑁𝐿
 (19) 
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He ran experiments with a group of materials consisting of Al, Ag, Cu, Nb, Ni, Mo with various 

level of lubrication and based on their metallurgical compatibility – the extent to which the 

materials are alike and are expected to form strong bonds. Experiments are more closely 

explained in [15] and values for coefficient K as shown in Figure 11. are presented. The nature 

of the experiment focuses on adhesive wear, which is the most investigated form of wear since 

its most difficult to overcome and isn’t entirely possible. More on the topic of adhesive wear 

and other types of wear is in chapter 1.2. As we can see, the K has tendency to decrease when 

we use metallurgically incompatible materials and assure good lubrication. [15] 

Archard himself in 1961 made 

experiments as explained in [18] 

and arrived at values of K as 

shown in Figure 12. We can see 

that the range of K values is 

spread from 10-3 to 10-7 order, 

which is quite a big dispersion. 

[18] 

Wear coefficient K is hard to 

predict because it is dependent on 

more things than just the physical 

quantities mentioned in Archard 

equation. With wear being a 

complex phenomenon caused by variety of mechanism, as will be explained in chapter X, such 

as adhesion, abrasion and these mechanisms also interacting with each other, wear coefficient 

is difficult to predict universally or even for each isolated mechanism of wear. Wear coefficient 

is also highly sensitive to the test conditions in which they are assumed such as parameters 

of the experiment or the temperature, lack of standardized test methods, statistical variability, 

material properties and possible even more. 

 

 

 

  

Fig. 11 - Wear coefficient K values based on different metallurgical compatibility and lubrication [15] 

Fig. 12 - Wear coefficient K values measured by Archard [18] 
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1.2. Wear mechanisms 
As mentioned before, wear is a progressive loss of material from surfaces due to multiple 

reasons. With friction, wear is one of the main topics of the tribology field. However, it is still 

one of the least understood phenomena in tribology. This is partially because wear is influenced 

by many complex processes, such as contact, plasticity, crack nucleation and propagation, 

chemical reactions, material mixing, material transfer between surfaces, lubricants 

and formation of surface layers. [19][20] 

In general, there are considered 7 mechanisms of wear: [19][21] 

1. Abrasive from contact with hard sharp granular materials 

2. Abrasive from embedded particles 

3. Adhesive 

4. Fretting 

5. Cavitation erosion 

6. Particle erosion  

7. Fatigue of surfaces 

In the beginning of the process of modelling of the wear, it is necessary to choose the main 

wear mechanism. This is the reason why we must understand all of them and make an informed 

decision.  
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1.2.1. Abrasive wear from contact with hard sharp granular materials 
Abrasive wear is characterized by material removal from the surface by a cutting action 

or by a process of multiple indentation from abrasive particle, as seen in Figure 13. This process 

can be either controlled and intended or not. Controlled use is beneficial and done in processes 

like grinding, polishing or filing. When the process is not controlled, e.g. randomly occurring 

in machine operation, it becomes a problem. Surfaces damaged by abrasive wear can show 

multiple magnitudes of damage. It can be fine scratching when damaged lightly or deep gouges 

in the surface which can seriously impart functionality of a given machine part. Real life 

example is seen in Figure 14. [19][22] 

 

1.2.2. Abrasive wear from embedded particles 
Abrasive wear can also occur in two smooth surfaces, if one of them has hard embedded 

particles in its surface. The debris leaving the material surface is different for different 

materials. Ductile materials, such as steel, can have spiral shaped debris. On the other hand, 

very hard materials tend to have debris in the form of chips. This is because of a local brittle 

fracture of the material. We can see the principle and real life case in Figures 15 and 16. [19][22] 

 

 

  

Fig. 14 – Example of abrasive wear from moving contact with 

hard sharp granular materials [22] 

Fig. 13 - Principle of abrasive wear from moving contact with 

hard sharp granular materials [19] 

Fig. 15 - Principle of abrasive wear from hard sharp 

particles trapped between moving surfaces [19] 
Fig. 16 – Example of abrasive wear from hard sharp 

particles trapped between moving surfaces [22] 
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1.2.3. Adhesive wear 
Adhesive wear is the mechanism occurring when two macroscopically smooth surfaces rub 

against each other. Generally, and as previously mentioned, each surface has a certain surface 

roughness. Therefore no surface is ideally flat. When two such surfaces make contact, rubbing 

occurs at the high spots as seen in Figure 17. These local areas experience concentrated contact 

loads and interactions and they tend to adhere to each other. This leads to material being 

dragged away along the surface. Surfaces damaged by adhesive wear mechanism show polished 

surface with fine flakes of wear debris and spots of “torn out” material. This can be very well 

seen in Figure 18. [19][22] 

 

 

1.2.4. Fretting wear 
Fretting is a particular form of adhesive wear. It occurs during the contact of materials if there 

are small oscillatory movements present. Principle presented at Figure 19. Oscillatory 

movements can be either intended or not. Intended movements are for example in gear 

couplings. Not intended movements can arise from many of reasons, for example from the 

deflection of machine components with clamped joints or press fits. The product of the fretting 

is usually fine powdered and oxidized wear debris. Fretting usually results in surface damage 

and roughening of the surfaces in contact. Fretting plays a huge role in the life cycle of the wire 

ropes. The reason for this are the relative deflections between the individual steel wires in the 

rod. These deflections arise due to changes in the load on the wire or during bending the wire 

around a pulley. Example of fretting wear damaged surface can be seen on Figure 20 [19][22] 

Fig. 17 - Principle of adhesive wear from the rubbing 

together of relatively smooth surfaces [19] 
Fig. 18 – Example of adhesive wear from the rubbing 

together of relatively smooth surfaces [22] 

Fig. 19 - Principle of fretting wear from the small 

oscillatory movements between two smooth surfaces [19] 
Fig. 20 – Example of fretting wear from the small 

oscillatory movements between two smooth surfaces [22] 
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1.2.5. Cavitation erosion 
Cavitation erosion as a process is the removal of material from the surface by the high speed 

impact of a liquid. Cavitation erosion occurs on the components that are subject to low transient 

fluid pressures on their surface. The scheme of this erosion formation can be seen in Figure 21. 

For example ships propellers. Collapse of a low pressure vapour bubbles make intense local 

impact on the surface of a component. How cavitation erosion damage appears in reality can 

be seen in Figure 22. [19][22] 

 

 

1.2.6. Particle erosion  
Particle erosion is the removal of material from the surface caused by a stream of hard particles 

carried in fluid flow as schematically shown in Figure 23. Particles can be directed at the surface 

purposefully as for example in shot blasting processes or it arises incidentally. Incidental 

particle stream affecting the surface is for example in the pipelines or in the components 

operating with sand or other particle. Surface heavily damaged by particle erosion is shown 

on Figure 24. [19][22] 

 

 

  

Fig. 21 – Principle of cavitation wear caused by collapse 

of the low pressure vapour bubbles [19] 
Fig. 22 – Example of cavitation wear caused by collapse 

of the low pressure vapour bubbles [22] 

Fig. 23 – Scheme of particle erosion from hard particles 

in a stream of fluid [19] 
Fig. 24 – Example of particle erosion from hard particles 

in a stream of fluid [22] 
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1.2.7. Fatigue of surfaces 
Wear of the surface can be caused also by fatigue of surfaces. This occurs when fatigue cracks 

in the surface join to create loose particles. Surface fatigue can occur due to two different 

mechanisms. Either contact stress fatigue mechanism or thermal stress fatigue mechanism. 

Contact fatigue usually occurs in rolling contacts where the passage of another component, 

for example ball or roller, over the surface causes alternating tensile and compressive stresses 

as shown in Figure 25. These alternating stresses can create fatigue cracks. Surface damaged 

by contact stress fatigue is shown in Figure 27. The mechanism of thermal stress fatigue arises 

from the transient heating and cooling of surfaces. Especially when this effect is combined with 

surface frictional forces, for example in clutch plates or heavily loaded plain bearings. Another 

severe case of surface fatigue is when the studied surface is in contact with a very hot material, 

for example molten metal. Example of the thermal fatigue can be seen in Figure 26. [19][22] 

 

 

 

  

Fig. 25 – Scheme of release of particles due to the fatigue 

of the surface [19] 
Fig. 26 – Example of thermal stress fatigue [22] 

Fig. 27 - Example of contact stress fatigue [22] 
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1.3. Adhesive wear 
Adhesive wear was chosen as the primary mechanism for the given task of modelling the wear 

in turbocharger actuator mechanism in order to simplify the modelling. It will therefore 

be described more profoundly in this section. The reason for this is deeper understanding and 

therefore better solving of the given problem. Mechanism of adhesive wear is briefly described 

in section 1.2.3 and the author recommends reading that section first, because this section 

is a follow-up. 

As mentioned before, adhesive wear occurs when two smooth surfaces rub against each other. 

Surfaces have a certain surface roughness and the high spots tend to adhere to each other. The 

nature of this adhesion is the creation of atomic/molecular bonds same as creation of bonds 

between the atoms/molecules in material. When two surfaces “meet” and make contact, 

chemical bonds may be created. When the surfaces move, the bonds sometimes stay put and 

“pull” the material out because its more energetically favorable. This leads to certain parts 

of material being torn out of the surface. [23] 

Out of all 7 wear mechanisms, adhesive wear is the one least avoidable and remains even when 

all other types of wear are eliminated. When we carefully control conditions during laboratory 

experiment, such as eliminating all corroding materials as well as all abrasives in 

the environment, it is never possible to completely avoid small amount of wear due to galling.  

[24] 

As mentioned before, load is carried by the high spots of material, which creates 

the concentrated stresses in local points. It has been experimentally shown by Bowden and 

Tabor [7] in 1950 using electrical conductance in contacts, that area of these “high spots” is 

rarely greater than 1/100 of the apparent area of study and often as small as 1/10 000 of it. 

Because the true contact area is very small, it takes no more than a few kilograms of load 

to create high local pressures. Usually, these high local pressures exceed the yield point of the 

softer of the two materials. When we combine these high local pressures with the relative sliding 

motion, minute welds are being formed at each of the local areas. During continued sliding, 

welds are sheared. Welds often shear on their original surface of contact because the weld is not 

strong enough to pull the other material out. Due to work-hardening of the surface, some of 

the welds are as strong or stronger than the softer of the two base materials.  

 

  

Fig. 28 - Adhesive wear mechanism (a) before contact; (b) during contact; (c) after contact [25] 
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This leads to these strong welds 

shear not at their original surface 

of contact, but at the surface of 

the base materials, usually the 

softer one. This results in some of 

the softer material being 

transferred to the other, harder, 

surface. Figure 28 shows this 

schematically. [7][25] 

Aghababaei, Warner and 

Molinari in 2016 also conducted 

simulations regarding 

the adhesive wear-mechanism 

at the asperity level. 

They observed both gradual 

smoothing by plastic deformation 

and fracture-induced debris 

formation. Schematically shown 

on Figure 29. [17] 

This transferred material may either be adhered to the latter surface and be worked into 

it or it can be knocked loose and become loose wear particle. According to Burwell [24], 

if any of those two options happens, the softer surface of the two is subject to wear damage. 

In contrast, Neale [6] defines wear only in the case when the particle is broken away, not when 

it is transferred to the other surface. Because such transferred material often resides on a surface 

and may even go back to its original surface. According to Neale [6] the creation of the bonds 

(also called “cold welds”) is only the first stage of the adhesive wear and by itself is not directly 

responsible for the wear. After that, some secondary mechanism is required to break the particle 

away from the surface and therefore cause wear as Neale describes it. The particles frequently 

form groups and break away as a single entity. There are many explanations for this 

phenomenon and Neale mentions the one where the elastic energy exceeds the surface energy 

and therefore causes break-away. This corresponds with Rabinowicz wear criterion [16] 

mentioned earlier. This final stage of the wear process is greatly affected by the environment. 

[6][7][24] 

Neale suggests looking upon the adhesive wear system as being in a state of dynamic 

equilibrium with its environment. Continuous sliding and the exposure of fresh surfaces 

is  not able to go indefinitely. This situation is usually stabilized by the healing reaction of the 

air or other active components of the surrounding fluid. Rupturing and healing processes 

are therefore in balance. This balance can be upset by the change of the operating parameters 

such as speed of sliding. When the change of the balance occurs, the contact of two surfaces 

can abruptly be changed from low to high wearing stage. E.g. increasing the sliding speed 

not only reduces the time available for the healing processes, but also generates more heat 

by friction in contact, which may accelerate chemical reactions or desorb weakly bound 

adsorbents. [6] 

  

Fig. 29 – Two possible asperity-level adhesive wear mechanisms by [17]. (a) 

adhesive interaction between two asperities (b) gradual smoothing 

mechanism by plastic deformation (c) fracture-induced debris formation 

mechanism observed in AFM wear experiments. The red and blue coloring of 

atoms is artificial for better visualization. 
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In 1984 Rabinowicz characterized three general types of adhesive wear. Namely galling 

as severe wear, moderate wear and burnishing. Severe galling wear occurs primarily in metals 

with a high degree of metallurgical compatibility when the surfaces are clean or poorly 

lubricated. Wear coefficient for galling is in range 10-2 - 10-4 and wear particle sizes 

is approximately 200-20 μm. Severe adhesive wear in non-metal materials occurs very rarely. 

Moderate wear occurs when the surfaces are less compatible, well lubricated or pressure 

between the surfaces is low. For moderate wear, wear coefficient is typically in range  

10-4 – 10-7 and wear particle size ranges from 20 – 2 μm. The mildest form of adhesive wear, 

called burnishing, is encountered in special circumstances. Such circumstances can be e.g. high 

incompatibility of metal couple or one of the surfaces has HCP lattice, in low pressure and with 

good lubrication. When this happens, surfaces take on a burnished appearance, hence its name. 

Wear coefficient is in range 10-6 – 10-8 and no sizeable wear particles are observed. Transition 

between these adhesive wear regimes often occurs abruptly. [26] 

Even if the wear process starts off as adhesive mechanism, the break-away of the particles 

is involved and therefore the mechanism can change to abrasive. As mentioned before, abrasive 

wear is scratching or ploughing caused by hard particles in the softer surface. In most cases 

of adhesive wear, the wear debris is formed as oxides, which are generally hard and therefore 

cause abrasion to the surfaces. If the surfaces are subject to a small oscillatory motion, 

the fretting wear mechanism also helps the buildup of the debris between the surfaces. 

The debris later serves as the buffer between the two surfaces which slows down the wear rate. 

[6] 

The most convenient demonstration method 

of adhesive wear is by means of radioactive 

tracers. In the technique of radioactive tracers, 

one of the surfaces in contact is made radioactive 

and the other surface is not. After this initial 

preparation, surfaces are rubbed together 

in experiment and then the surface without 

initial radioactivity is observed. Subject of the 

observation is the examination for evidence 

of radioactivity. Examination can be done either 

with a Geiger counter (electronic device used 

for detecting and measuring ionizing radiation) 

or by placing a photographic film in contact with 

the non-radioactive surface and allowing 

the particles of the transferred radioactive material to be revealed. This revelation can be seen 

in Figure 30 of autoradiograph of two friction tracks which occurred during rubbing 

in lubricated conditions. [24] 

Nature of the surfaces and the ambient conditions can profoundly affect the amount of adhesive 

material transfer. Regarding the nature of the surfaces, adhesive wear is greatest in the couple 

of same or similar materials, for example steel against steel. It is therefore recommended that 

we design a material couple that has contact between a metal and non-metal material, such 

as mineral, plastic or an oxide coating. [24] 

  

Fig. 30 - Autoradiograph of two friction tracks induced in 

lubricated conditions [24] 
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The reason why we never run two members of the same metal is explained by Holm in [21]. 

When we run two members of the different metals in the contact, the specific friction force 

ψ (friction force F per true contact area A)  , the pressure and consequently also the contact area 

are prescribed by the strength of the softer member and the harder member prescribes 

the structure of the surface. If the structure of the surface of the harder member is smooth, 

the contact surface between two members remains smooth without interlocking. However, 

if we run the same metal on both members, there is no “harder” or “softer” member. Both have 

the same properties. Therefore the pressure p and specific friction force ψ can produce plastic 

deformation in both members, not just the softer member. The contact surface of this same 

metal contact will be in labile state and have a wavy structure. This wavy structure of contact 

surface will lead to interlocking of the couple and therefore high wear. [21] 

Another important fact to consider is the cleanliness of the surfaces. In environments with lower 

pressures, e.g. at high altitudes or in vacuum, and if the surfaces have been heated to drive off 

any adsorbed or oxide films, the material couple will stick together in the slightest pressure. 

In this case, separating the materials is very difficult, which indicates the strong nature of the 

welding tendency, when all interfering materials i.e. atoms are removed. When the same 

material couple is put into an experiment in air (not vacuum), we would not be aware of any 

adhesion if we haven’t done the radioactive tracers measurement. Adhesion strength is greatly 

reduced by reducing the surface interactions at the surface and therefore even a few ppm 

of atoms of air decreases the adhesive strength. Thick films of liquids or gases reduce μ even 

more because it is easier to shear into a fluid film than to shear solid to solid contact. Adhesion 

strength is reduced either by the presence of contaminants or deliberately applied fluid film 

e.g. air, water or lubricant. [23][24] 

From these two observations, we can infer that adhesive wear is most pronounced between 

similar materials and in vacuum conditions. Additionally, a crucial aspect to consider is the 

temperature dependency of adhesive wear. As temperatures rise, adhesive wear tends 

to accelerate. This phenomenon is attributed to the atomic-scale formation of welds, which 

can be likened to inter-atomic bonding, also explained as surface chemical reactions. In cases 

where materials are heated close to their melting points, inter-atomic bonds tend to weaken, 

while the bonds in the resulting cold welds tend to become stronger. Consequently, material 

galling becomes more severe. This underscores the tendency for low melting point materials, 

such as glass, to experience more pronounced galling compared to high melting point materials, 

such as ceramics. [24] 

The temperature in question is not only the temperature of the environment, but also the heat 

created by friction. Heating by friction is a self-regenerating process. Self-regenerating process 

meaning that when initial adhesive transfer of material produces a high spot on the surface, 

the high spot participates in the friction process and therefore increases it. With increased 

friction, an increase in the heating occurs and the temperature rises. Rise of the temperature 

leads to more severe galling and creation of more material transfers which create high spots 

because the adhesive force strength rises with temperature. Also, in metals, with rising 

temperature the yield strength decreases and ductility increases, which leads to an increase 

in the true contact area. This is therefore a cycle, a self-regenerating process. When this self-

regenerating process is not checked, it can rapidly lead to a large scale welding or freezing the 

surfaces together. In this case, surfaces become essentially one piece. If we want to separate 

this welded one piece of material couple, large scale damage is inevitable. [24][27] 
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To reduce adhesive wear damage, we apply lubricants, whose primary function in reducing 

the adhesive wear is to insulate the two surfaces from each other. This insulation is done 

by introducing a layer of foreign material, lubricant, which will prevent the welds from forming. 

Adhesive wear can be reduced greatly using proper lubrication, such as the most effective 

oiliness or E-P lubricants, but it cannot be eliminated completely. This incomplete elimination 

means that there are always a few welds present, which can be the starting points for large scale 

galling if the conditions become sufficiently severe. [24] 

1.4. Models of adhesive wear  
Various approaches can be used to model or predict the wear. It can be Empirical Models that 

are based on experimental data and observation of wear under specific conditions, Finite 

Element Method for simulating the contact and interaction between the surfaces 

on macroscopic scale, Molecular Dynamics for understanding the behavior of contact at atomic 

and molecular scale, Fracture Mechanics in case of wear processes initiating and propagating 

the cracks or Thermal Mechanics to study the coupled effects of mechanical loading and heat 

generation. Each of those methods has its uses, advantages and shortcomings that can be found 

in literature. However, they are not the subject of this thesis as it focuses solely on empirical 

models such as Archard Wear Law to develop efficient wear model using various statistical 

or machine learning methods to predict wear occurring in turbocharger actuator mechanism. 

As mentioned before, adhesive wear is the least avoidable wear type and by many authors also 

chosen as the main mechanism when considering the wear. In previous chapters, the difficulty 

of empirical “modeling” or “predicting” of the adhesive was stated with main factors 

of influence being the complexity of the wear process (contrary to our simplification 

to 7 distinctive wear mechanisms), temperature and pressure effects, chemical processes and 

many more facts. This chapter focuses only on empirical equations, which are supposed to 

predict specifically the adhesive wear mechanism and therefore ignoring 6 other types of wear 

mechanisms presented in chapter 1.2 in dry conditions. 

Apart from the most noted and used law i.e. Archard Law, many other authors proposed various 

equations with various variables to best predict the wear of materials. Most notable of these 

equations found in available literature were put together in Table 2 to choose the most suitable 

one for our case. Experimental setup and more specifics can be found in the respective articles 

of the authors cited. 

Table 2 - Empirical laws for adhesive wear by various authors 

Author 

Wear volume V [μm3] 

Wear depth h [μm] 

Weight loss ∆w [g] 

Wear coefficient K [-] Note 

Archard [13] 𝑉 =
𝐾𝑁𝐿

𝐻
 𝐾 =

𝑉𝐻

𝑁𝐿
  

Goryacheva 

[1] 

(integrated 

from wear 

rate)  

𝑉 = 𝐾𝑝𝛼𝑣𝛽𝑡 𝐾 =
𝑉

𝑝𝛼𝑣𝛽𝑡
 

α, β  = 

coefficients 
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Rhee [28] ∆𝑤 = 𝐾𝐹𝑎𝑣𝑏𝑡𝑐  𝐾 =
∆𝑤

𝐹𝑎𝑣𝑏𝑡𝑐  
 

∆w = weight loss 

a,b,c = 

coefficients 

Yang [29] 

proposed wear 

coefficient Ks 

put into 

Archard Law 

𝑉 =
𝐾𝑠𝑁𝐿

3𝐻
    𝑤ℎ𝑒𝑟𝑒 𝐾𝑠 →  𝐾𝑠 =

3𝐻𝐶

𝑃𝐿
(1 − 𝑒−𝐵𝐿) 

Ks = steady state 

wear coefficient 

B, C = 

coefficients 

e = Euler number 

2.718... 

Bhattacharyya 

[30][31] 
𝑉 = 𝐾𝐴𝐿    𝑤ℎ𝑒𝑟𝑒 𝐾 →  𝐾 = 𝐵(1 + 𝑒𝐶𝑝) 

B, C = 

coefficients 

e = Euler number 

2.718... 

Varenberg [32]  

extension for 

Archard law 

based on 

bearing curve 

ratio  

ℎ =  −
1

𝑎
ln ((1 + 𝑒𝑎𝑏)𝑒𝑎𝐾𝑝𝑣𝑡 − 𝑒𝑎𝑏) 𝐾 =

1

𝑎𝑝𝑣𝑡
ln (

𝑒−𝑎ℎ + 𝑒𝑎𝑏

1 + 𝑒𝑎𝑏 ) 

Extension of 

Archard Law for 

the running-in 

stage of wear 

h = wear depth 

a, b = constants 

Mishina [33] 
𝑉 = 𝐾 ∙ (

𝑝 ∗ 𝐿

𝜎𝑦
) 

Where K  -->  

𝐾 =
1

3
∙

𝑛

𝜆
∙ (

𝑏

𝑎
)

3

 

 

n = number of 

wear elements 

generated at the 

junction 

(physical)                                                               

lambda = 

chemisorption 

rate (chemical) 

a, b = statistical 

parameters of 

junctions and 

asperities 

σy = yield stress 

Queener [34] ∆𝑤 = 𝛽(1 − 𝑒−𝑛𝐿) + 𝐾𝐿 𝐾 =
∆𝑤 − 𝛽(1 − 𝑒−𝑛𝐿)

𝐿
 

∆w = weight loss 

β = coefficient of 

maximum 

contribution to 

wear by transient 

mechanism 

n = coefficient 
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As the most suitable equation for our purposes of modelling the adhesive wear, the Goryacheva 

[1] equation has been chosen as shown in equation (20) for wear volume and equation (21) 

for wear coefficient K. 

 𝑉 = 𝐾𝑝𝛼𝑣𝛽𝑡 (20) 

 𝐾 =
𝑉

𝑝𝛼𝑣𝛽𝑡
 (21) 

The Goryacheva equation contains experimental parameters pressure p, speed v, time 

t, measured value of wear volume V and coefficients K, α and β. This equation will be employed 

in the Methodology chapter to see if it can empirically predict the wear based on experimental 

parameters available for our use case. 

1.5. Machine learning 

1.5.1. Introduction to machine learning 
Machine learning (ML) has been around for more than 30 years in various forms, solving 

various problems in various fields and is one of the major reasons why today state of the 

art software can do the “magic” things it does. Things like speech recognition, ranking web 

search results, recommending you videos on platforms, filtering spam emails, recognition 

of images and many more. But what exactly is machine learning? 

In definition given in 1959 by Arthur Samuel: “Machine Learning is the field of study that gives 

computers the ability to learn without being explicitly programmed.” which simply explains 

the basic premise of ML. Instead of explicitly programming the system if the email is spam 

or not, which would be impossible if you wanted to cover every possible option of spam email, 

you can feed the model huge number of examples of what are spam emails and what are not 

spam emails. Based on mathematical algorithms, the program “learns” how spam email 

generally looks like and then, based on probability, it decides if the incoming email is spam 

or not and forwards it to the appropriate folder in your mailbox. [35] 

  

Fig. 31 - Traditional vs machine learning approach [35] 
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As briefly mentioned in the previous paragraph, machine learning is fundamentally data driven 

i.e. algorithms learn patterns and relationships from data to make classifications (spam or not 

spam class assigned to each email in training data), predictions (e.g. value of certain feature, 

such as wear volume or price of stock in stock market) or decisions (mechanism to approve 

whether or not the person should have approved the credit card application). Data therefore 

plays big role in machine learning methods and we will give it more attention later in this 

chapter. [35][36] 

Machine learning approaches offer many advantages and disadvantages which we need 

to remember in order to maximize the potential of the methods in our use case. ML is good 

for problems that would need lots of fine tuning or long lists of rules (e.g. spam filter), Complex 

problems for which traditional approaches yield no solution, Fluctuating environments 

and offers scalability and adaptability for large datasets producing predictions with great 

accuracy. On the other hand, as with every method, ML has also shortcomings. Results are 

dependent on the quality and quantity of labeled data fed into the model, models may overfit 

or underfit (will be explained later), some models offer difficult interpretability 

(e.g. We don’t know what exactly is happening inside Neural Networks hidden layers) and they 

often require significant computational resources. With these advantages and disadvantages 

in mind, we can deploy the ML methods on our use case and hopefully make quality 

assumptions about the use case. [35][36] 
1.5.2. Categories of machine learning 

Machine learning systems can be classified into categories by different criteria. Such 

as if human supervision is present or not, if the system is able to learn incrementally or not and 

whether learning is instance-based or model based. Instance-based learning is based 

on measuring similarities between new data points and existing data points, for example 

if certain number of closest neighbors to the new data point represent certain class, the new data 

point will also probably represent this class. Model based learning is about capturing underlying 

patterns and relationships in data such as predicting regression curve by which the data is fitted.   

For our purposes, machine learning will require no need to learn incrementally and learning 

will be model-based since our data doesn’t have specified classes and we will rather predict 

values by regression and other algorithms. Dividing machine learning by human supervision 

is the most important topic and will be given separate attention below. [35][36] 

The first category regarding human supervision in ML is supervised learning where the human 

supervision is present in the form of labeling the training data. For example the image of a dog 

is presented with the corresponding label “dog”. When the algorithm makes prediction about 

new data, it is “told” if it succeeded and labeled new unseen dog picture as “dog” or failed, 

labeling dog picture as for example “cat”. Another example of labeled dataset is our use 

case – we have labeled values such as temperature, hardness ratio, CoF or wear volume and 

certain value for each feature. In broad terms, there is a supervisor to give the algorithm insight 

on how much a decision is good or bad, which will be more specified in the metrics paragraph. 

Typical supervised learning tasks are classification (spam or not spam) and regression 

(predicting target numeric value). Most used algorithms in this category are Linear Regression 

(LR), Logistic Regression (LogR), K-Nearest Neighbors (KNN), Support Vector Machines 

(SVM), Random Forest (RF) and Neural Networks (NN). This category will be of greatest 

interest in this thesis. [35][36] 
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On the other hand of human supervision, there is learning without human supervision, called 

unsupervised learning, where training data is not labeled. It is therefore up to the algorithm 

to find the labels and define them. Model is therefore forced to learn the underlying structure 

of dataset and relationships between the data. Typical unsupervised learning tasks are clustering 

- detecting groups of similar features via e.g. K-Means Clustering, anomaly and novelty 

detection via e.g. One-class SVM or Isolation Forest (IF) and visualization, dimensionality 

reduction via Principal Component Analysis (PCA). There is also a combination of supervised 

and unsupervised learning, called semisupervised learning, which operates with partially 

labeled data and utilizes combination of algorithms from both categories. Unsupervised and 

semisupervised learning are in large part not suitable for our use case and therefore will be given 

no further attention in this chapter unless they seem effective to use. [35][36] 

There is a third category of machine learning, regarding human supervision, called 

reinforcement learning. Reinforcement learning differs from the previous 2 categories. 

The learning system can observe the environment, select and perform actions. In return, it gets 

rewards for good actions or penalties for bad actions. The goal of the model is to find the best 

strategy to get the most reward over time. Imagine a robot placed in a maze and tasked with 

finding its way to the exit. The robot receives positive rewards for reaching the exit, negative 

rewards for hitting walls or obstacles, and zero rewards for moving without progress. 

Using reinforcement learning algorithms, the robot learns to navigate the maze efficiently 

by exploring different paths and learning from past experiences. [35][36] 
1.5.3. Data and Feature engineering 

As a popular saying in data science and machine learning goes “Garbage in, garbage out” 

the importance of good quality and quantity of data is the most vital part of any machine 

learning prediction. If we have poor quality data to enter, the result will also be poor. Your 

dataset needs to be representative of the cases you want to generalize the model to. 

If not, you will receive results based on the not representative sample which will be different. 

You should minimize the errors in data, remove outliers and noise so the system can detect 

underlying patterns regarding the general behavior. It has been proved that different machine 

algorithms from simple to complex perform almost identically well given enough data, as 

is shown in [37][38]. It is therefore in our best interest to obtain a lot of data with different 

values that are representative of the general behavior. Data measurement also needs to be done 

properly, so we do not introduce some bias already due to the nature of the measuring method 

for instance or with the methods of data scraping from online sources. This is called sampling 

bias. To summarize, the three main problems we want to avoid are the low quantity of data, 

non-representative data, and poor quality data. [35][36] 

When we measure the data for machine learning, we want to include data from more than one 

parameter for training. Let’s demonstrate this with the example of predicting equipment failure. 

We take multiple parameters into consideration, such as operating time, number of cycles, 

temperature, load or humidity. These parameters are called features and the process of selecting 

a good set of features is called feature engineering. Feature engineering involves feature 

selection, feature extraction and creating new features by gathering new data. Feature selection 

is when we choose features to put into the model such as operating time and other 

beforementioned when we think they are relevant to a problem and we can base our predictions 

on them. We don’t necessarily need to use all the features obtained from the measurement, 

e.g. the information what color the equipment is if it’s not affecting the mechanical properties 

of the equipment. Feature extraction is about combining existing features to produce a more 
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useful feature such as when we have hardness values of two surfaces in contact, we can combine 

them and create hardness ratio between two surfaces. If we see that some other features can 

be added, we can create a new method of data collection from the experiment and add the 

feature to our dataset. Feature engineering also has methods to produce feature importance 

which tell us the relative importance of each feature in making a prediction, i.e. which features 

the model performance is based on mostly, assigning low score to un-important features and 

high score to important features. For different models are different techniques to calculate 

feature importance. In linear models, the coefficients assigned to each feature indicate their 

importance, the larger, the better. In decision tree based models, as Random Forest (RF) 

or Gradient Boosting Machines (GBM), feature importance is based on how frequently the 

feature is used to split to split the data across all decision trees in the ensemble. Other methods 

are Permutation importance and SHAP or also possibly Principal Component Analysis (PCA) 

which is primarily used as dimensionality-reduction technique but can indirectly highlight the 

importance of feature. [35][36][39] 

1.5.4. Holdout validation, Generalization error 
These features form the so-called “Feature matrix” usually noted X, which contains all the 

feature vectors x. Corresponding to each feature vector is target value. All target values make 

so-called “target vector”, usually noted y. Supervised ML algorithm is then given input in form 

of feature matrix X and corresponding target vector y. [35][36] 

To train a successful ML model, you must train the model on seen data and test the performance 

of the model on unseen data to see if the model generalizes well for unseen data, not just for 

training data. This process is called holdout validation and the result metric of performance 

on unseen data is called generalization error. Holdout validation is usually done by splitting 

the dataset into “training set” and “test set” as shown in Figure 32. This is usually done in ratio 

60/40 or 80/20 with former being train set and latter test set. Sometimes, the split is performed 

into 3 different sets – third one being “validation set” which is used for tuning 

the hyperparameters or choosing the best model. A hyperparameter is the parameter of model 

that is not learned by the model itself in the process, but rather setting that controls the learning 

process. Examples of hyperparameter are the learning rate controlling the step size at which 

the model parameters are updated during training in Gradient Descent (GD) methods or number 

of hidden layers in a neural networks, both of which will be explained in dedicated sub-chapter 

later in this chapter. 

Fig. 32 - Splitting dataset into training and testing set [40] 
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The model is given X matrix from training set (X_train) with corresponding target vector y 

(y_train) and learns underlying patterns and relationships i.e. what in X_train “leads” to the 

values in y_train. Then the model is given X matrix from test set (X_test) and predicts target 

vector values based on what it learned from the X_train and y_train. Model obtains predicted 

vector of target values (y_pred). This predicted vector y_pred is then compared with real values 

of initial withheld target vector values (y_test). The model is then evaluated using various 

metrics to see how well it can predict values of unseen data. Metrics by which models 

are evaluated will be discussed later. [35][36][40] 
Two different problems with 

generalizing the model on the 

unseen data can happen. Either 

overfitting or underfitting the 

data. Remember that the model 

is trained on the train set and 

tested using test set. We will 

show the two problems on the 

plotted curve, which was created 

as 2nd degree polynomial with 

noise. Therefore, 2nd degree 

polynomial regression should 

be best fit to regress the data and 

too small degree polynomial and 

too high degree polynomial will be used to show overfitting and underfitting. [35][36] 

Simply put, if the model is too complex, such as high degree polynomial depicted in green 

in Figure 33, it fits the data well in the range of -2 to 2, but for bigger range, the polynomial 

goes into high values and predictions based on it would be very bad. This is clear sign 

of overfitting. We can recognize the problem of overfitting when the model performs well 

on the training data but poorly on unseen test data. Possible solutions to overfitting are 

to simplify the model such as selecting model with fewer parameters or applying regularization 

to take away some degrees of freedom from the model, gathering more training data or reduce 

noise in training data (fix errors and remove outliers). [35][36] 

On the other hand, when we look at the linear regression curve in red in Figure 33, we can see 

the opposite problem. The linear model does not fit the training data well and would predict 

nonsense when it would be deployed on the test set. It is basically too simple to learn the 

underlying structure of the data, meaning that reality is more complex than this chosen model. 

Underfitting can be recognized when the model performs poorly both on the training set and 

test set. Underfitting can be fixed by selecting more powerful model with more parameters, 

feeding better features to the algorithm, or reducing the constraints on the model assigned 

via regularization. [35][36] 

Models’ generalization performance and hence also overfitting and underfitting can be detected 

initially by visual cues, such as our example with polynomials, or by more precise methods. 

Most notable of these methods are the use of learning curves to plot performance of model as a 

function of dataset size or training duration to see if model performs badly on the test data 

(overfitting) or badly on both train and test set (underfitting) and the use of Cross-validation. 

Usually performed as k-fold cross validation, with k being usually 5-10, the method parts the 

Fig. 33 - Overfitting, Underfitting and Good model of regression [35] 
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dataset into multiple “folds” and iteratively trains the model on k-1 folds while testing it on the 

remaining one fold. This process involves iterating so each fold is once the test set and gives 

comprehensive evaluation of models’ generalization performance over different test sets 

(folds). [35][36] 
1.5.5. Performance metrics 

As with every method in engineering and technology, some metrics to quantify the performance 

and properties of the method or its parts is necessary. Out thesis focuses on regression tasks, 

so the according metrics will be provided in detail. Most notable of them are mean absolute 

error, mean squared error, root mean squared error, coefficient of determination (r-squared)  

and adjusted r-squared. These metrics will be used later in this thesis to compare 

the performance of models created in the methodology chapter. Regarding classification as the 

second important task performed in supervised ML, most important metrics are accuracy, 

precision, recall and F1 score among others, but these are not important in the context 

of our use case, so they will be given no more attention in this thesis. [35][36] 

Mean absolute error (MAE) 
Calculates average distance (average absolute 

difference) shown in Figure 34 between the 

values predicted by model and the actual 

values. Average error is easy to count and 

straightforward to interpret but is less 

sensitive to outliers than MSE and RMSE. 

Calculation of MAE is shown in equation 

(22). yi is actual value, ŷ is predicted value 

and n is number of values. [41][42]  

 

 𝑀𝐴𝐸 =  
∑ |𝑦𝑖 − 𝑦�̂�|

𝑛
𝑖=1

𝑛
 (22) 

Mean squared error (MSE) 
Calculates average squared distance (average of squared differences) between predicted values 

and actual values. Calculation of MSE is similar to MAE, but every distance is squared before 

summing up as shown in equation (23). MSE is more sensitive to outliers because their larger 

distance from predicted value becomes even larger by squaring it. Units of MSE are the squared 

units of target variable y, which is less intuitive than to interpret. [43] 

 𝑀𝑆𝐸 =  
∑ |𝑦𝑖 − 𝑦�̂�|

2𝑛
𝑖=1

𝑛
 (23) 

 

  

Fig. 34 - mean absolute error calculation schematic [41] 
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Root mean squared error (RMSE) 
To provide a more interpretable measure of the mean squared error unit, the square root is made. 

This metric is called root mean squared error and shares similar properties as MSE but is easier 

to interpret. It is simply square root of MSE as shown in equation (24). [41][44] 

 𝑅𝑀𝑆𝐸 =  √
∑ |𝑦𝑖 − 𝑦�̂�|2𝑛

𝑖=1

𝑛
 (24) 

 

Coefficient of determination (R2) 
Coefficient of determination, also called R-squared, represents the proportion of variance in the 

target variable that is explained by the model. Measuring how well the model fits the observed 

data. R2 values range from 0 to 1, with 1 being perfect fit and zero being no fit at all. Therefore, 

higher R2 suggests better model. R2 does not provide information about the direction 

or magnitude of errors. R2 is calculated from the sum of squared residuals (SSR) and total sum 

of squares (TSS) as shown in Figure 35 and equation (25). yi is the actual value, ŷ is predicted 

value, ȳ is mean value and n is number of values. If we have good fit, as we can see in blue 

SSR, the SSR value is small, making the SSR/TSS ratio small and therefore we subtract small 

part from 1. 1 minus small SSR/TSS is close to one and that means good fit. [45] 

 𝑅2 = 1 −  
𝑆𝑆𝑅

𝑇𝑆𝑆
= 1 −  

∑ (𝑦𝑖 − 𝑦�̂�)
2𝑛

𝑖=1

∑ (𝑦𝑖 −  �̅�)2𝑛
𝑖=1

 (25) 

 

  

Fig. 35 - R2 schematic of total sum of squares and sum of squared residuals [45] 
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Adjusted coefficient of determination (Adjusted R2) 
Coefficient of determination can be also adjusted for number of terms we have (x1, x2,….,xn). 

This is performed because classic R2 is automatically upgraded with each added term xi but 

this addition does not necessarily enhance the model. Most used correction for calculating 

adjusted R2 is the correction by Mordecai Ezekiel taking into account the degrees of freedom 

of model and its variables as shown in equation (26). R2 is the classic coefficient 

of determination, n is number of values (sample size) and p is the total number of explanatory 

variables in the model. [45] 

 𝑅2̅̅̅̅ = 1 − (1 − 𝑅2)
𝑛 − 1

𝑛 − 𝑝 − 1
  (26) 

Explained variance score (EVS) 
EVS calculates the ratio between variance of the difference between the true and predicted 

values to the variance of true values. The resulting score ranges between -inf and 1 with score 

of 1 indicating perfect match and score 0 is indicating that the model does not perform better 

than predicting the mean of the true values. It is similar metric as R2, but the two are not the 

same. R2 focuses rather on overall goodness of the fit of model and EVS on model’s predictive 

ability. Calculation of EVS is shown in equation (27). y is actual value, ŷ is predicted value. 

[46] 

 𝐸𝑉𝑆 = 1 −
𝑣𝑎𝑟(𝑦 − �̂�)

𝑣𝑎𝑟(𝑦)
 (27) 

 

These metrics will be used to evaluate proposed machine learning models in the methodology 

chapter of this thesis and their performance will be compared based on them. Most important 

supervised learning models for regression task, hence our use case, are described in following 

sections. 
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1.5.6. Support Vector Machine 
Support vector machine (SVM) is versatile powerful ML model for linear and non-linear 

classification, regression, and outlier detection. For classification tasks, SVM finds the line with 

greatest margins (largest street possible) that divides the data and sorts it into binary classes. 

The name of the method is derived from the support vector which is the edge of the street shown 

in Figure 36 as dashed line. Support vector regression (SVR) uses contrary approach – instead 

of trying to fit largest possible street between two classes while limiting margin violations 

as classification task SVM does, SVR tries to fit as many instances as possible on the street 

while limiting the margin violations. I.e. find the street that has the most instances on it and not 

many instances off it. This is schematically shown in Figure 36 since SVR is the primary 

concern for our use case regarding the SVM algorithms. The width of the street in SVR model 

is controlled by hyperparameter ε. Changin the value of ε hyperparameter is also shown 

in Figure 36. The higher the ε, the wider the street. [35][47] 

SVR supports both linear and nonlinear regression. Adding more training instances within the 

margin (on the street) does not affect the model’s predictions, hence the model is ε-insensitive. 

In this thesis, we will use scikit-learn LinearSVR (linear regression) and SVR (polynomial 

regression) models. Both LinearSVR and SVR require scaling of the dataset, in our thesis done 

via scikit-learn MinMax Scaler. Time complexity of LinearSVR in big-O notation is roughly 

O(m·n) and time complexity of SVR is O(m^2·n) to O(m^3·n). [35][47] 

For our use case, SVR from scikit-learn will be used. Defined parameters are: 

• C – Regularization parameter. Strength of regularization is inversely proportional 

to C and penalty is squared L2. 

• Epsilon – Width of the street 

• Kernel – Kernel type used in algorithm – function that transform the data into a higher-

dimensional space 

• Gamma – Kernel coefficient for rbf, poly and sigmoid kernels 

 

 

  

Fig. 36 - Principle of SVR and changing the ε hyperparameter for width of the street [35] 
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1.5.7. Random Forests 
Random Forest (RF) is an ensemble method based on the combination of Decision Trees (DT). 

Decision Trees are ML algorithms for both classification and regression tasks. Decision Trees 

present a flowchart-like structure in which each node represents a decision point or test on the 

feature, as shown in Figure 37. If the test result is True, the outcome moves to corresponding 

node to next layer or to the other in False result. Initially, the entire dataset is put in as Root 

node, then multiple Internal nodes act as decision points which the value is sent through and in 

the end Leaf Nodes are the nodes for regression values which predict the target value.  

So, at each point, the node uses some criteria to decide which direction send the value next until 

it comes to the terminal Leaf node and presents the value a predicted. [35][48] 

 

 

Random Forest (RF) is an ensemble method that builds upon the principles of Decision Trees 

to enhance predictive performance and robustness. It operates by constructing a multitude 

of Decision Trees during training time and outputting the class that is the mode of the classes 

(classification) or the mean prediction (regression) of the individual trees. The fundamental 

concept behind Random Forests is to introduce randomness into the model building process 

to create a diverse set of trees. This is achieved through two main mechanisms: bootstrapping 

and feature randomness. Bootstrapping involves generating multiple training datasets 

by sampling with replacement from the original dataset, ensuring each tree is trained on 

a different subset of data. Feature randomness selects a random subset of features for each split 

in the trees, promoting diversity among the trees and reducing the likelihood of overfitting. 

By aggregating the predictions of these diverse trees, Random Forests mitigate the variance 

inherent in single Decision Trees, leading to improved accuracy and generalization. 

Additionally, Random Forests provide an internal estimate of error, known as out-of-bag 

(OOB) error, and a measure of feature importance, aiding in the interpretability of the model. 

[35][48] 

For our use case, RandomForestRegressor from scikit-learn will be used. Defined parameters 

are: 

• N estimators – Number of decision trees in the forest 

• Max depth – Maximum depth of tree for prediction 

• Min samples split – Minimum number of samples required to split an internal node 

• Min samples leaf – Minimum number of samples to be at a leaf node 

Fig. 37 - Decision Tree Algorithm [35] 
Fig. 38 - Decision Tree fitting curve - average of region 

[35] 
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• Min weight fraction – The minimum weighted fraction of the sum total of weights 

required to be at a leaf node 

• Max leaf nodes – Maximal number of leaf nodes 

• Min impurity decrease – A node will be split if this split induces a decrease of the 

impurity equal or greater than this value 

 

 

1.5.8. Genetic Algorithm 
Genetic Algorithm (GA) or Genetic 

Programming (GP) is a bio-inspired AI 

approach based on natural selection – the 

process that drives biological evolution, 

where only the fittest individuals survive and 

reproduce. It is used for both constrained and 

unconstrained optimization problems. GA 

repeatedly modifies a population of 

individual solutions to converge towards the 

best result. At each step, the GA selects 

individuals from the current population 

(parents) to produce the next generation 

(children). With each successive generation, 

the population evolves toward an optimal 

solution. In the context of GA, the population 

consists of a variety of potential solutions to 

the problem at hand, which are often 

represented as mathematical models or 

encoded as chromosomes. With each 

generation, only the fittest individuals – those that best meet the criteria defined by the fitness 

function – are more likely to survive and contribute to the next generation. This is schematically 

shown in Figure 39. [49][50][51] 

The creation of a new generation is governed by three main operators: Selection, Crossover, 

and Mutation: 

• Selection: This operator selects the fittest individuals from the current population to act 

as parents for the next generation. These individuals are often referred to as the elite 

• Crossover: Also known as recombination, this operator combines genetic information 

from two parent individuals to create one or more offspring. This mimics biological 

reproduction and allows for the mixing of traits. 

• Mutation: This operator introduces random changes to individual parents, creating 

variation in the offspring. Mutation helps maintain genetic diversity within the 

population and prevents premature convergence on suboptimal solutions. 

The algorithm begins with the creation of a random initial population. Subsequent generations 

are created based on the rules specified above. Each generation is evaluated using a fitness 

function, which scores how well each individual mathematical model solves the problem. The 

individuals with the highest fitness scores are more likely to be selected as parents (elite) for the 

next generation. [49][50][51] 

Fig. 39 - Genetic algorithm [49] 
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The GA process continues iterating through generations until stopping criteria are met. These 

criteria are either reaching the set number of generations, reaching the early stopping threshold 

of fitness function i.e. the fitness function is “good” enough to stop iterating or other criteria. 

[49][50][51] 

For our use case, Symbolic Regressor from GPlearn will be used. Defined parameters are: 

• Population size: The number of mathematical models evaluated in each generation. 

• Generations: The number of iterations the algorithm will run. 

• Tournament size: The number of top models that compete to become part of the next 

generation. 

• Stopping criteria: The fitness function threshold below which the model stops evolving. 

• Max samples: The fraction of data drawn from the feature matrix to evaluate each 

model. 

• Parsimony coefficient: A constant that penalizes large programs by adjusting their 

fitness function to be less favorable to selection. 

• Function set: The set of functions used to build and evolve mathematical models, 

ranging from basic functions like addition, subtraction, multiplication, and division, 

to more complex functions like logarithms, sine, cosine, and tangent. 
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1.5.9. Artificial Neural Networks 
Introduced in 1943 by McCulloch and Pitts, Artificial neural networks (ANN) or just Neural 

Networks (NN) are ML models inspired by the networks of biological neurons found in our 

brain. They are versatile, powerful, and scalable which makes them ideal for tackling large and 

high complex ML tasks such as classifying billions of images, powering speech recognition 

or beating the world champion at the game of Go. Since 1943, development of NNs has gone 

through different phases of development speed and today age is well supporting for them. 

There is large amounts of data on the internet, massive increases in computing power since 

1990s to this day and also major fundings. In 2024, with AI boom already in motion, mainly 

because of Large Language Models (LLMs), it makes only sense that NNs might be beneficial 

for this thesis and its predictions. [35][52] 

In the human brain, a neuron is a specialized cell that processes and transmits electrical 

and chemical signals, enabling communication between different parts of the nervous system. 

ANNs were inspired by this and Artificial Neuron (AN) is computational unit that processes 

input data using weighted connections and activation functions to produce output signals, 

mimicking the behavior of biological neurons. The simplest AN proposed by McCulloch and 

Pitts in 1943 has one or more binary inputs (on/off) i.e. one or more connections to other 

neurons, and one binary output. This serves well for logical operations. [35] 

In 1957, Frank Rosenblatt invented a 

different form of AN called threshold logic 

unit (TLU) also sometimes called linear 

threshold unit (LTU) in ANN architecture 

called the Perceptron. In TLU, the inputs and 

outputs are numbers (instead of binary 

values) and each input connection is 

associated with weight. The TLU computes a 

weighted sum of its inputs, then applies a step 

function to that sum and outputs the result hw, 

The schematic of TLU is shown in Figure 40. 

Step function is usually heaviside function 

which produces 0 if z < 0 and 1 if z ≥ 0. This single TLU can be used for simple linear binary 

classification – based on different inputs, TLU computes linear combination of them and if the 

result exceeds a threshold, it outputs the positive class, otherwise the negative. 

Perceptron is then composed as a single layer of TLUs with each TLU connected to all the 

inputs. When all the neurons in a layer are 

connected to every neuron in the previous 

layer, the layer is called dense layer or fully 

connected layer. Perceptron also contains 

input neurons, which the inputs of Perceptron 

are fed in. Input neurons output whatever they 

are fed. There is also bias neuron that 

represents the extra bias feature and outputs 1 

every time. Example of the perceptron 

architecture is shown in Figure 41. This 

architecture has two inputs, one bias feature 

and 3 outputs.  

Fig. 40 - Threshold logic unit: an artificial neuron which 

computes a weighted sum [35] 

Fig. 41 - Single layer perceptron architecture with two inputs, 

one bias neuron and 3 outputs [35] 
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It can classify instances simultaneously into three different binary classes, making 

it a multioutput classifier. Outputs of dense layer of neurons is efficiently calculated using 

formula in equation (28) where X is the matrix of input features, W is weight matrix containing 

all the weight except for bias neuron, b is the bias vector containing all weights between bias 

neuron and all artificial neurons, ϕ is the activation function such as sigmoid, tanh or RELU. In 

the case of artificial neurons being TLUs, it is called step function as mentioned previously. 

The activation function will be discussed more promptly later. [35][52] 

 ℎ𝑊,𝑏 = 𝜙(𝑋𝑊 + 𝑏) (28) 

Perceptron is then trained by employing the Hebb’s rule which suggests that when biological 

neuron triggers another neuron often, the connection between the two grows stronger. In the 

case of perceptron, every output neuron that produced a wrong prediction, connection weights 

for all the inputs that would provide the correct prediction are reinforced. Simple perceptron 

architectures are also unable to learn complex patterns because the decision boundary of each 

input neuron is linear or solve trivial problems such as XOR function. More on the topic 

is explained in various literature, but some of the limitations of simple single layer perceptrons 

can be eliminated by stacking multiple perceptron layers. This ANN architecture is called 

Multilayer perceptron (MLP). [35][52] 

MLP is composed of multiple layers. One 

input layer (passthrough – outputs input), one 

or more hidden layers (TLUs – input 0 or 1 

based on exceeding threshold) and one output 

layer (TLUs). This architecture can be seen 

in Figure 42. If the ANN contains a deep 

stack of hidden layers, it is called deep neural 

network (DNN). The layers close to input 

layer are usually called lower layers and 

layers close to output layer are upper layers. 

Every layer except the output layer is fully 

connected to the next layer and includes a bias 

neuron. In this architecture, the signal flows 

only in one direction, from inputs to outputs, making it the example of feedforward neural 

network (FNN). 

Until 1986, training of MLPs was without success, until Rumelhart, Hinton and Williams 

introduced backpropagation training algorithm that is still used today. Backpropagation works 

like Gradient Descent – in one forward and one backward pass through the network, 

the backpropagation algorithm can compute the gradient of network’s error with regard of every 

single model parameter i.e. find how each connection weight and each bias term can be tweaked 

to reduce the error. Then the regular GD step is performed and the whole process 

of backpropagation is repeated until the network converges to the solution. [35][52] 

Gradient descent approach brought a key change to MLP architecture – the heaviside step 

function was replaced by activation function. The Heaviside function only has flat segments 

and the resulting derivative for gradient would be zero. On the other hand, activation functions 

such as sigmoid, hyperbolic tangent (tanh) or Rectified Linear Unit (RELU) function have better 

Fig. 42 - Multilayer perceptron with two inputs, one hidden 

layer of four neurons and output layer of three neurons [35] 
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properties regarding the differentiation and are therefore more suitable for this backpropagation 

(using gradient descent). [35][52] 

Different activation functions present different valuable properties. Sigmoid (logistic) function 

has a well-defined derivative everywhere that allows GD to make progress in every step. Tanh 

function is also differentiable everywhere and its ranging from -1 to 1 tends to make output 

of each layer more or less centered around zero, which speeds up the convergence. RELU 

function is not differentiable at zero, but in practice works very well and is fast to compute. 

Because of not having maximum output value, RELU reduces some issues during GD. RELU 

is usually the default activation function nowadays. Alternative later used in the thesis is 

the Leaky RELU function – which instead of flat slope for negative values as RELU, has 

slightly decreasing slope for negative values. All of these functions and their derivatives can 

be seen in Figure 43. Without the activation function, i.e. without non-linearity between the 

layers, we wouldn’t be able to solve very complex problems. The reason for that is, because the 

chaining of two linear functions f(x) and g(x) such that f(g(x)) gives you also the linear function. 

If this were the case, even deep stack of layers would behave as one single layer and the 

intention of having multiple layer network would be lost. As mentioned before, the activation 

function introduces non-linearity, by deciding if the neuron should be activated (when input 

to it exceeds the threshold of activation function) or remain inactive and if so, to what extent 

it should activate. [35][52] 

Now that we know what MLP is, Figure 44. shows the typical regression MLP architecture. 

*MNIST stands for Modified National Institute of Standards and Technology database of handwritten digits that 

are 28x28 pixels and the dataset is used as a worldwide machine learning benchmark. 

Fig. 43 - Activation functions sigmoid, tanh and RELU and heaviside step function with their derivates [35] 

Fig. 44 - Typical regression MLP architecture [35] 
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As Figure 44 shows, the Neural Networks have many hyperparameters, which offers good 

flexibility but also is one of their main drawbacks – many hyperparameters to tweak. Another 

major drawbacks are the “black box” nature of NNs, tendency to overfit, computational 

intensity and as with all ML models – dependence on the data quality and quantity. On the other 

hand, they offer many advantages such as the ability to model nonlinear relationships, learn 

features itself, scalability, universal approximation, adaptability and parallel processing. 

Back to hyperparameters tweaking, there are multiple options to find the hyperparameters 

for best performing NN. One option is to try many combinations of hyperparameters to see 

which works best on validation set or use K-fold cross-validation. This can be done via 

GridSearchCV or RandomizedSearchCV to explore the hyperparameter space. GridSearchCV 

is good for small hyperparameter space as it tries the parameters and values that you specify. 

RandomizedSearchCV is better for large hyperparameter spaces, since it evaluates a given 

number of random combinations by selecting a random value for each hyperparameter at every 

iteration. RandomizedSearchCV is better for NNs. Randomized search is good for problems 

with small feature number and small dataset, otherwise it is very time consuming. Good practice 

is to run randomized search on wide range of parameters and then run another one on the region 

that performed the best in hyperparameter space. Some dedicated Python libraries, such 

as Hyperopt, do the zooming process and focus the hyperparameter search on the good 

performance regions in hyperparameter space. [35][52] 

Most important hyperparameters are number of hidden layers, number of neurons per hidden 

layer, learning rate, optimizer, batch size, activation function, number of iterations and 

regularization techniques. The following hyperparameters will be concisely explained 

in the following paragraph. [35][52] 

The number of hidden layers depends on the task complexity. Many problems get reasonable 

results with one or two hidden layers in ANN but for more complex problems, the better. If the 

problem is complex, ramp up the number of hidden layers until the model starts overfitting. The 

number of neurons in the input and output layers is determined by the type of input and output. 

One neuron per one input/output. In our case, 3-7 neurons in input layer for non-constant 

parameters of experiment or calculated features and one neuron in output layer that is predicted 

wear volume. The number of neurons in hidden layers needs to be set. Nowadays, most 

architectures are made with the same number of neurons in the hidden layer and sometimes the 

first hidden layer is bigger. It is better to increase the number of hidden layers instead of neurons 

in the hidden layer. In practice, it is also better to choose a more complex model with more 

hidden layers and neurons than you need and then apply early stopping or other regularization 

techniques to prevent overfitting. The learning rate as mentioned earlier is the step size 

in optimizers (e.g. GD), which influences the rate at which the model updates its parameters 

and arguably the most important hyperparameter. In general, the optimal learning rate is about 

half of the maximum learning rate i.e. the learning rate above which the algorithm diverges. 

A good approach is to train model for few hundred iterations with learning rate ranging from 

10e-5 to 10, plot loss-learning rate and setting the optimal learning rate of the model to the 

value before the loss in plot starts to climb up. Optimizer is an algorithm that updates the 

model’s parameters based on the gradients of loss function, with the learning rate value being 

a step size. Simple optimizers are the Stochastic and Mini-batch gradient descents, but better 

performing optimizers such as ADAM, RMSProp or AdaGrad can be used. Batch size specifies 

the number of training samples processed in each iteration or mini-batch during training. 

Suggested strategy by the author is to try a large batch size, using learning rate warmup and 
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if the training is unstable or the final performance is disappointing, use small batch size instead. 

Activation functions were discussed earlier. In general RELU function will be good default for 

all hidden layers and the default function for output layer depends on the task. Number 

of iterations known as epochs denotes the number of times the entire training dataset is passed 

forward and backward through the network during training. Epochs usually doesn’t need 

to be tweaked, use the early stopping instead. [35][52] 

Neural Networks, especially Deep NNs usually have lots of parameters which gives them 

an incredible amount of freedom. As mentioned before, it’s great for fitting complex datasets 

but prone to overfitting. To counter this, regularization is applied. Most notable regularization 

techniques are Early stopping, L1 and L2 Regularization, Dropout and others. Early stopping 

regularizes the iterative learning algorithm by stopping the training as soon as the validation 

error reaches a minimum i.e. the validation error would want to climb higher which would 

suggest overfitting. L1 and L2 are techniques to penalize large weights in NNs cost function 

(MSE, RMSE etc.). L1 adds a penalty term proportional to the absolute value of the weights 

(L1 norm) to the cost function and L2, sometimes referred to as weight decay, adds a penalty 

term proportional to the square of the weights (L2 norm). Dropout is the technique of shutting 

down random neurons during certain training step (setting them to zero) which prevents the 

network from relying too much on individual neurons and therefore promoting better 

generalization. Dropout is controlled by parameter dropout rate which is the probability for 

each individual neuron being dropped, usually set between 10-50 %. [35][52]  
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1.5.10. Machine learning research in tribology 
Since Holm, Archard and others began experiments and theoretical exploration regarding 

predicting the wear in 40’s and 50’s of 20th century, lot of technology evolved. In recent years, 

few researchers have delved into the combination of predicting wear and machine learning. 

This part of the thesis is a short summary of their discoveries, which will be later used 

as a starting point in methodology chapter to develop the most suited ML model for our use 

case. Most notable articles related to our use case are presented below in chronological order. 

In 1997, Jones et al. performed combinatorics experimental designs and employed neural 

network model, both to reduce the number of experiments and getting data without performing 

certain experiments during investigation of different material/mechanical systems for friction 

and wear observation. The article is focused on showing feasibility of neural networks to predict 

life data and defining which input variables will influence the tribological behavior of the 

material/mechanical system. Jones et al. investigated 15 different neural network architectures 

on  three different test rigs: rub shoe rig, pin-on-disk rig and four-ball rig. The article shows 

that the discussed models have been capable of predicting the wear rates regardless of the 

lubricants used, that the models are able to interpolate and extrapolate approximate wear rate 

values for conditions not run experimentally. The overall best architecture proved to be the 

Input layer dampened recurrent network. Linear scaling functions and hyperbolic tangent 

or logistic activation functions were beneficial. [53] 

In 2000, Velten et al. extended the work of Jones et al. by measuring a total of 10 input 

variables/experimental conditions on a total of 72 wear volume measurements. They also 

reduced dimensionality by principal component analysis, improving predictive capabilities 

of NN by using Bayesian regularization instead of Early stopping and therefore also identifying 

the optimal size of NN layers. Velten et al. used a large number of randomly chosen test datasets 

and obtained worse average results than Jones et al. but still reasonable according to them. 

Out of 72 measurements, 10 were used as test set and the rest as train set. It is shown, that for 

this amount of measurements, the satisfactory prediction of wear volume data by feed-forward 

NNs can be expected only for a subset of any new data set, not for all data, and proposed that 

this probably holds true also for other NN architectures as well. [54] 
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In 2015, Radhika et al. performed dry sliding 

experiments on aluminium/alumina/graphite 

hybrid metal matrix composite on pin-on-disc 

tribometer and varied parameters such 

as load, velocity, distance, and 

Al composition. Using this empirical data, 

they obtained regression equation using NNs 

and optimized it using Genetic Algorithm 

(GA). A total number of 81 experiments was 

conducted and based on it, the optimal 

NN architecture of 3-10-1 was created. Data 

is normalized and split into 70/20/10 

train/valid/test datasets and network trained 

by trial and error until satisfactory regression 

was obtained. Overall regression was 

R2 = 0.9046 with curve shown in Figure 45. 

This NN is then fed into GA as the fitness 

function, iterates 51 generations and the 

algorithm produces single optimum best 

solution of lowest wear rate for following parameters: Load = 33.8 N, Velocity = 2.05 m/s, 

Distance = 1500 m and Al composition = 5,49 wt. % for lowest wear rate = 4.41 mm3/m 

10^-3. [55] 

In 2020, many authors conducted research in the field of modeling wear with machine learning. 

Most notable of them will be mentioned in following paragraphs. Thankachan et al. predicted 

and analyzed dry sliding wear rates on novel copper-based surface composites. They deposited 

Boron nitride particles on the surface through friction stir processing from 5 to 15 vol% BN and 

proved that BN particles greatly reduce wear rate. During low load conditions, analysis of worn 

out surface revealed mild adhesive wear and during high load conditions, abrasive wear. Then, 

the NN with FFBP model with topology 4-7-1 was modeled and predicted good agreement with 

experimental outcomes. The varying 

parameters were BN volume percentage 

[vol%] = A, load [N] = B, sliding velocity 

[m/s] = C and sliding distance [m] = D. 

Authors used MINITAB software to develop 

a general regression equation for wear rate 

[·10-5 mm3/Nm] based on the specified 

parameters as shown in equation (29). 

R2 =  0.89 for given model. The NN model 

was trained on 24 values and tested on 

3 values. The value of nodes present in 

hidden layer iterated from 2 to 15 and 

7 hidden nodes was found to produce lowest 

value of MAE. This observation leads to  

4-7-1 architecture of the NN, 4 being the 

number of input features, 7 being the number 

of hidden layers giving the lowest MAE, 

hence best prediction, and 1 being output 

Fig. 45 - Overall regression plot of Radhika et al. NN+GA 

approach [55] 

Fig. 46 - Thankachan et al regression using NN 4-7-1 with 

FFBP on wear rate for boron nitride deposited on surface 

[56] 
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layer. This NN for this use case of investigation Wear rate based on BN particles vol% 

on surface, load, velocity and sliding distance, produced R2 = 0.9987, as shown in Figure 46, 

which is almost ideal and model is therefore very good. [56] 

 𝑊𝑒𝑎𝑟 𝑟𝑎𝑡𝑒 = −0.209 − 0.109 ∙ 𝐴 + 0.1 ∙ 𝐵 + 1.13 ∙ 𝐶 + 0.00087 ∙ 𝐷 𝑏𝑦 [56]  (29) 

 

Many authors in the field of tribology use for 

their calculations Specific Wear Rate, which 

is the average value of wear volume divided 

by load and sliding distance. Hence wear rate 

is not the same during the whole experiment, 

Argatov et al. decided to use the so-called 

True Wear Coefficient which is regarded as 

a function of the sliding distance. Hence, they 

use integral and differential form of Archard 

equation for wear rate to develop NN for the 

predictions. Most relevant plot to our use case 

is shown in Figure 47. In part (a), it shows 

wear volume as a function of sliding time. 

Real measured data in red, sample of Polished 

WC-CoCr, compared with well-fitting ANN 

with 1-3-1 architecture and ill-fitting basic 

exponential model. A similar plot is shown 

in (b), where wear volume rate is plotted and 

also ANN variant with Finite-difference 

derivative and L·SWR predictions are added. 

L·SWR stands for Load multiplied with 

Specific wear rate = W/Ls. In (b), all 

predictions are quite close, apart from basic 

calculation of L·SWR, which produces larger 

values of wear volume rate. Argatov et al. 

proposed that the developed ANN model can be utilized in studies of wearing-in period which 

they defined as the initial time interval during which the TWC’s value is stabilized. [57] 

  

Fig. 47 - Argatov et al. comparing wear volume (a) and wear 

volume rate (b) as a function of time based on different 

measurements and predictions. [57] 
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Faris et al. preferred insight into the underlying system and easier evaluation before predictive 

power, so they opted for Genetic algorithm (GA) instead of NNs. They used GAs for predicting 

quantities of adhesive wear for low and medium carbon steel. The resulting model is a function 

of the load, sliding speed and sliding time based upon pin-on-disc configuration of tribo test. 

Genetic programming was set with following parameters: Population size = 1000, Maximum 

generations = 200, Mutation rate = 15%, Tournament selector as selection mechanism, Elites = 

1 and Operators = {+, -, ·, /, sin, cos, tan}. The train-test split is 70/30. The equations, 

coefficients and performance in form of VAF (authors used EVS formula explained before but 

named as VAF – Variance Accounted For and multiplied x100 to get result in percentage) and 

RMSE are shown in Figures 48 and 49. The superiority of GP approach over Linear regression 

is shown in article as well. [49] 

XXX 

 

  

Fig. 48 - Genetic algorithm by Faris et al. for low carbon steel [49] 

Fig. 49 - Genetic algorithm by Faris et al. for medium carbon steel [49] 
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Altay et al. performed a total of 99 measurements on 11 specimens of AISI1020 steel with 

coatings applied by plasma transfer arc welding and later applied LR, SVR and Gaussian 

process regression (GPR) to predict wear quantities. The following features were chosen: 

powder composition for plasma arc deposition, average micro-hardness of the coating layers, 

applied load and sliding distance. They used interaction function LR version of the 

LR algorithm, cubic function in kernel in SVR algorithm and rational quadratic function 

in GPR algorithm. Cross validation using k-fold with k = 5 was used. Metrics to compare were 

MAE, RMSE and R2. Linear regression performed the value R2 = 0.93. SVM and GPR were 

slightly better with R2 = 0.96. Although the R2 values for SVM and GPR were the same, the 

GPR was chosen as a better algorithm because of its potential to create an even better 

performing model. [58] 

In 2022, Algur et al. used ML algorithms to predict wear 

performance of modified ZA-27 alloy in dry sliding. They 

varied normal load, sliding speed and sliding distance 

in the total number of 75 experiments performed in room 

temperature. Then, they used RF, GPR, K-nearest 

neighbors (KNN), SVR and LR algorithms to predict the 

wear loss. Load, speed and sliding distance are the features 

and wear loss as the target value. The train-test split 

is 70/30. In GPR, rational quadratic function is used. In SVR, cubic kernel function is used. 

Bagging technique for RF regression and interaction function is applied in LR algorithm.  

Cross-validation using k-fold with k = 10 was used. Metrics compared are MAE, RMSE 

and R2. R2 values are shown in Table 3. Results show that all the constructed models R2 values 

are close for train and test set, which signals their good fit and good ability to generalize. Best 

performing model for the use case of Algur et al. regarding R2 was RF – Random Forest with 

R2 = 0.987 [59] 

In 2023, Rajput et al. applied ML approach 

on data from various journals and theses. 

They gathered a total of 300 data points with 

23 independent input parameters and material 

loss in mm3 as output parameter. Input 

variables consist of pin sample wt% 

of constituents, structural ingredients in vol% 

such as ferrite, bainite and other structures of 

steel. Other parameters were pin hardness, 

temperature and time of heat treatment and 

finally working temperature, sliding speed, 

load and sliding distance. Authors decided 

to exclude parameters such as CoF, humidity, 

uniform and total elongation, temperature 

increase by friction because scarcity of data in these variables. Neuromat tool [60] with train-

test split 80/20 was used. Data is initially normalized and then ANN model is built. Activation 

function h is hyperbolic tangent. Authors use various metrics to find optimal number of hidden 

units (HU) in NN. Based on this optimization, the best model (lowest error) was incorporated 

with four hidden units and four seeds. Figure 50 shows the performance of this model on unseen 

data. For most of the datapoints, the acceptable correlation between experimental and predicted 

Table 3 - Evaluation of ML models by Algur 

Model 
R2 [-] 

train set 

R2 [-] 

test set 

RF 0.987 0.943 

GPR 0.903 0.866 

KNN 0.848 0.761 

SVR 0.809 0.771 

LR 0.753 0.745 

Fig. 50 - Comparison of actual and predicted material volume 

loss by ANN by Rajput et al [61] 
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values is visualized. Larger error bars indicate that the model is not entirely-self-confident 

to make predictions and more experimental work needs to be done. The difference calculated 

between these values ranges from 0.3 to 4.2 mm3, which authors deem acceptable. Rajput et al. 

arrived at satisfactory result regarding the correlation between predicted and experimentally 

obtained results. [61] 

This year, January 2024, Zhu et al. performed 

an experiment using ball-on-disk setup with 

lubrication. They varied parameter as sliding 

speed, sliding distance, normal load, 

temperature and oil film thickness and 

obtained 81 datapoints with wear depth 

as dependent parameter. The train-test split 

is 75/25. They employed four different ML 

algorithms: RF, KNN, SVM and Extreme 

Gradient Boosting (XGB). Optimization 

for RF, KNN and SVM models is done via 

least squares method to minimize errors 

between data and regression line estimation. 

XGB method optimizes the objective 

function itself. Evaluation metrics were MAE, MSE, RMSE and R2. Results were validated 

using k-fold validation with k = 5. Results are shown in Table 4. Conclusion is that SVM and 

KNN models are not very accurate, but RF and XGB give satisfactory results. XGB produced 

best generated R2 = 0.88 and RF performed almost identical with R2 = 0.84. Actual vs predicted 

wear depth for the best performing model – XGB - is shown in Figure 51. [62]  

Table 4 - Evaluation of ML models by Zhu 

ML model MAE MSE RMSE R2 

KNN 4.54 38.41 5.69 0.68 

RF 3.25 18.3 4.14 0.84 

SVM 7.29 87.2 8.81 0.29 

XGB 2.95 14.48 3.62 0.88 

 

  

Fig. 51 - Best performing model (XGB) by Zhu et al. [62] 
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Zhu et al. also performed feature importance analysis on its input values. Result is shown 

in Figure 52. Most important feature is sliding distance and then the thickness of lubricating 

film. Authors also conducted Pearson correlation analysis in the form of heat map and Taylor 

diagram in order to evaluate the best model in the proposed model. As said before, the XGB 

model was chosen as the best. [62] 

  Fig. 52 - Feature importance analysis by Zhu et al. [62] 
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2. Specimens, Instruments and Software 
Experimental data were obtained from company Garrett Motion Czech Republic s.r.o. and 

author is very thankful to them for the opportunity of making master thesis there. Garrett Motion 

is a worldwide company primarily specialized in development and engineering of turbochargers 

for automotive industry from small personal cars to large vehicles and industrial equipment. 

The main goal of this thesis is to predict wear behavior in turbocharger kinematic mechanism, 

concretely rotational joints regarding the Arm and Bushing internal kinematic (green) and 

External kinematic (red) as shown in Figure 53. In these joints, small rotational motion 

is present and over time, the surfaces in contact are worn out. 

 

 

  

Fig. 53 - Turbocharger and shown kinematic parts, which wear behavior we are interested in. Arm and bushing in green and 

External kinematic in red. 
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2.1. Tribometer DN55 - Testing method principle, Specifications 
To simulate wear behavior for a given case explained above, experiments are conducted 

on DN55 tribometer. The principle of it is shown in Figure 54. Specimens are the two plates 

and one pin in the middle. Plates are always of the same material. Material couple is therefore 

formed of two materials – one for pin and other for plates. Pin and plates are put into the arms 

of machine to conduct the experiment. The whole chamber of furnace is heated to a certain 

temperature up to the maximum temperature noted in the machine specification. After the 

chamber is heated to the temperature of the experiment, force is applied from the plates 

on the sides putting it into contact with the pin in the middle from both sides. Mechanism of 

force production is automatically set to keep the applied force the same during the whole 

experiment. In this moment, experiment can begin. The middle arm starts to produce cyclic 

motion up and down in the given range. This experiment is conducted for a certain time and 

as a result, we get worn pin and plates to some degree. So, to summarize, pin and plates 

in contact are subject to cyclic sliding motion for certain sliding distance with certain normal 

applied force at certain temperature. 

  

Fig. 54 - Testing principle of DN55 Tribometer 
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DN55 Tribometer can be seen in Figure 55. 

Parameters the DN55 can provide for 

experiments are noted in Table 5. Also, we must 

note the ability to create test programs to most 

suit the user needs and measure CoF-time charts. 

After the specimens, pin and plates, are subject 

to experiment, the surface in line contact looks 

like the surface shown in Figure 56. 

 

 

  

Table 5 - Parameters of DN55 

Parameter Range 

Temperature [°C] Up to 1000 

Load [N] 18-200 

Stroke range [mm] 0.01 - 20 

Frequency [Hz] 1 – 300 

Type of contact [-] Line, Point 

Fig. 55 - DN55 Tribometer 

Fig. 56 - Specimens, pin (a) and plates (b) after 

experiment on DN55 Tribometer 
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2.2. Laser profilometer Zygo NewView 300  
After the pin and plates are 

subject to wear experiment 

on DN55 Tribometer, they are 

brought to laser profilometer. 

In Garrett Motion company, the 

profilometer used is Zygo 

NewView 8300 as shown 

in Figure 57. It is based on the 

principle of 3D coherence 

scanning interferometry. The 

scanner being precision piezo 

drive with closed loop 

capacitance gauge control and 

crash protection. Available 

objectives for magnification are 

from 1x up to 100x with turret 

head for 4 objectives. Field of view is 0.04 to 16mm and Z-drive is 100mm range with 0.1 μm. 

The vertical scan range is 150 μm with precision piezo drive or 20 mm with extended scan. The 

repeatability of surface topography is 0.2 nm and repeatability of root mean square is 0.01 nm. 

More specifications can be found in [63]. 

The profilometer can measure 3D profiles such as shown in Figure 58. This is the worn 

specimen after the DN55 tribometer experiment. Also, the 2D profile in different places across 

the 3D profile can be obtained such as shown in Figure 59.  

  

Fig. 57 - Laser profilometer Zygo NewView 8300 [63] 

Fig. 58 - 3D profile of a specimen after tribometer test Fig. 59 - 2D profile the profilometer can measure 
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Based on this, the profilometer measures various surface profile properties, but our object 

of interest is the calculation of the wear volume, meaning total displaced volume of material. 

Total displaced volume is calculated as Negative volume + Positive volume such as shown in 

Figure 60. The zero line is made on the profilometer after the experiment. Reference plane is 

set in the area which was not subject to wear experiment and serves as zero line for the 

calculation of displaced volume in the area subject to wear experiment. 

All wear volume values mentioned in this thesis are the product of this measurement of the 

laser profilometer. 

 

2.3. Laptop parameters, Software, IDE 
Methodology of creating the model was conducted on Acer Aspire E15 (E5-572G-74LM) 

laptop with specifications found in [64]. Chosen programming language is Python with various 

libraries. Most notably Pandas and Numpy for data management, Scikit-learn, TensorFlow and 

Keras for machine learning, Hyperopt for hyperparameter space search and Matplotlib and 

Seaborn for visualization. The online platform Google Colab [65] was used as a computing 

platform and interactive environment to perform ML modelling with better resources. 

 

  

Fig. 60 - Total displaced volume in schematic representation and real surface profile 
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3. Methodology – Goryacheva Equation 
The Methodology chapter is about exploring the potential methods of wear prediction and 

modelling possibilities based on available data. Various methods will be used with the intention 

to find relationships between data, correlations and develop a methodology for predicting the 

wear coefficients K, α and β based on material characteristics and experiment parameters. 

The first of these methods used will be testing if the Goryacheva wear equation from the 

literature hold some significance in our use case. 

Experiments were conducted with the 

parameters specified in Table 6. For best 

prediction, only some of the experimental values 

were chosen. Main criteria were for materials to 

be of metallic character (no ceramics, no 

composites) and to be homogenous or with heat 

treatment finish (no coatings). Three sets of data 

were obtained. Firstly, measurements at 300°C 

for external kinematics, then measurements at 300, 700 and 850°C for the internal kinematics 

(arm and bushing) and coefficients of friction for 300, 700 and 850°C. External kinematics 

in the operation is subject to much lower temperatures (around 300°C) than internal kinematics 

which is subject up to temperatures of 700 and 850°C. This temperature is the set temperature 

of the oven. Temperature contribution because of friction is not counted because 

of its complexity and unavailability to properly measure it. It is therefore necessary to mention 

this simplification also. 

3.1. Calculation of parameters for Goryacheva equation 

 𝐾 =
𝑉

𝑝𝛼𝑣𝛽𝑡
 (30) 

In our chosen equation (30), some parameters are directly given, such as wear volume 

V and time t. Others are not directly given but they can be calculated from the experiment 

parameters, such as pressure p or speed v. Lastly, the „free“ parameters, namely K, α, β will 

be used in prediction models to best predict wear behavior of given material based on material 

characteristics such as hardness and experimental parameters as given in equation. Regarding 

the indirect parameters, we must do calculations. Total distance L is calculated using equation 

(31) where L is the total distance, N is the number of cycles in sine function and Lc is length 

of one cycle, therefore 4 amplitudes xm. Then, using the total distance, we calculate speed 

in equation (32). This is simplification of reality because the speed changes in oscillatory 

motion. Its maximum in the equilibrium in the middle and minimum (zero) in the amplitude 

points. 

 𝐿 = 𝑁 ⋅ 𝐿𝑐 = 𝑓 ∙ 𝑡 ∙ 4𝑥𝑚 = 10 𝐻𝑧 ∙ 7200 𝑠 ∙ 4 ∙ 0.001 𝑚 = 288 𝑚 (31) 

 𝑣 =
𝐿

𝑡
=

288 𝑚

7200 𝑠
= 0.04 𝑚𝑠−1 (32) 

 

  

Table 6 - Experiment parameters for our use case 

Parameter  Value set 

Temperature [°C] 300, 700, 850 

Load [N] 40 

Type of cycle (move) Sine 

Amplitude [mm] 1 

Frequency [Hz] 10 

Time [s] 7200 

Type of contact [-] Line 
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The second indirect parameter that needs to be calculated is the pressure p as shown in equation 

(33). The contact in our experiment is “line” in simplification, although the area is slowly 

getting bigger. We will use simplified value of constant pressure. N is the normal load used 

in experiment that is being held constant throughout the experiment. y is the distance of the line 

contact, perpendicular to the oscillatory motion in the x direction of the sliding, namely 10mm. 

 𝑝 =
𝑁

𝑦
=

40 𝑁

0,01 𝑚
= 4000 𝑁𝑚−1 (33) 

 After calculation of the speed and pressure, the 

parameters used for prediction of wear are 

specified in Table 7. It consists of material 

characteristic hardness. Experiment parameters 

are temperature, pressure, speed and time. Wear 

volume is the result of the experiment and 

is measured after the experiment using the laser 

profilometer and parameters K, α and β are free 

for predicting the wear behavior using different 

methods such as statistics, data analysis and 

machine learning. Possible uses of these 

methods will be part of this chapter. 

  

Table 7 - Parameters used for prediction 

Parameters used for 

prediction 
Values 

Temperature [°C] 300, 700, 850 

Coeff of friction [-] Various 

Hardness [HV] Various 

Wear volume [m^3] Various 

Pressure [Nm^-1] 4000 

Speed [ms^-1] 0.04 

Time [s] 7200 

K, α, β 
Free parameters 

for prediction 
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3.2. Exploratory data analysis 
To begin the process of data analysis, the data are plotted in scatter plot to give us first insight 

into wear behavior of External kinematics and Arm and Bushing mechanism, both being plotted 

together, because the experiment is the same. This scatter plot can be seen in Figure 61. Wear 

volume is given in original units of measurement on laser profilometer, hence um^3. 

As we can see, the wear volume has the largest dispersion at temperature 300°C, ranging from 

0 to 6e8 um3 . Then at 700°C, the dispersion of wear volume values is quite small, only from 

0 to 1e8. Then at 850°C, the dispersion of wear volume values gets bigger again, ranging from 

0 to 3e8. This can be due to many reasons and no direct tendency and behavior of data 

is observed yet. Later, the data will be fitted by Goryacheva equation and Machine Learning 

techniques to predict the behavior and figure out which models are best. 

  

Fig. 61  -  Wear volume - Temperature dependency of the measured data 
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Similar first insight can be done with the measured values of Coefficient of friction as shown 

in Figure 62. In this case, with the increase in temperature, the CoF values are becoming 

smaller. When we look at these data, we can assume that linear regression fitting might 

be a good option, but this dataset is too small to make some predictions upon it. 

  

Fig. 62 - Coefficient of Friction - Temperature dependency of the measured data 
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Using scatter plots, another great insight into wear behavior is produced when we plot Wear 

Volume – Coefficient of Friction together. This is shown in Figure 63. This scatter plot 

combines the observations from the first two plots, shown in Figures 61 and 62, that at 300°C, 

the wear volume and CoF dispersion is the greatest. Then at 700°C, the wear volumes are small 

and dispersion of CoF is in range 0.35-0.57. Then at 850°C, most of the measured values have 

the smallest measured wear volumes and coefficients of friction. 

 

  

Fig. 63 - Wear volume - Coefficient of friction dependency of the measured data 
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In total, we have 14 labeled couples as specified in Table 8. 

Wear Volume values were plotted for each material couple 

in Figure 64. 

These scatter plots give us great first insight into the data 

structures and possible underlying patterns. 

3.3.  Use of Goryacheva equation for measured data 
As shown again in equation (34), the Goryacheva equation is empirical prediction of wear 

volume based on experimental parameters and wear coefficients K, α, β. 

 𝐾 =
𝑉

𝑝𝛼𝑣𝛽𝑡
 (34) 

During the measurements in Garrett Motion, the pressure, speed and time of the experiment 

were constant in order to create a comparative method for wear volume. 

 𝐾 =
𝑉

4000𝛼0.04𝛽7200
 (35) 

We therefore have 1 equation with 3 unknown variables, as shown in equation (35). Also, 

we can see, that with the α and β being an arbitrary number, they still lead to constant number 

as constant to the power of constant is still constant. K and V will in this case therefore have 

a linear relationship of some sort. 

We unfortunately doesn’t know the values of α and β for some prediction of K and in case with 

pressure and speed being constant, it doesn’t matter. Let’s initially assume that α  = 1 and  

β = 1 for this scenario and calculate K from mean value of wear volume. If α  = 1 and β = 1, 

then the relationship between K and V for our given experiment parameters is shown 

in equation (36). 

 𝐾 =
𝑉

1 152 000
= 8.68056 ∙ 10−7 ∙ 𝑉 (36) 

 

Material Couple Label 

M1/M2 1 

M1/M3 2 

M1/M4 3 

M1/M5 4 

M1/M6 5 

M1/M7 6 

M3/M3 7 

M5/M5 8 

M8/M7 9 

M9/M9 10 

M10/M7 11 

M10/M10 12 

M11/M4 13 

M12/M12 14 

Table 8 - Assignment of material couples 

Fig. 64 - Wear Volume values sorted by Material Couple 
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When we put in mean value of wear volume, which is 1.5738e-10 m3, we obtain  

K = 1.3662e-16 [-]. This value of K is quite small regarding the general range of  

1e-3 to 1e-7 mentioned in literature. With those parameters of ours, we can assume that 

coefficients α and β therefore need to be smaller than 1 to obtain some expected values of K. 

This is done via 3D plot of alfa-beta-K relationship. Alfa and Beta shown in Figure 65. 

Based on this plot, author decided to verify if K converges based on lowering α and β values 

or not. This convergence is shown in Figure 66, where is calculated mean K based on mean 

Wear volume of our samples and its changes with changing α and β coefficients separately. 

Fig. 65 - Alfa - Beta and K coefficients relationship in Goryacheva equation for our use case 

Fig. 66 - Verifying K convergence based on Alfa and Beta values 
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We can see in Figure 66, that from 10-3 the K values converge to the value of 2.6818e-14 [-]. 

Based on this verification, we plot all our wear volume values with parameters α  = 1 and 

β = 1and α  = 1e-20 and β = 1e-20 to compare them. This is shown in Figure 67, where Y axis 

is in log-scale for better understanding. 

We can see that K values are higher with lower α and β values, but even in the lowest scenario 

of convergence, which we confirmed earlier, K values are still in order of 10-13 which is still 

6 orders lower than expected lowest values of coefficient K mentioned in the literature. 

Based on this, the author proposes that for parameters used in this use case and measurement 

methodology, the Goryacheva equation is far from useful and other methods will be deployed. 

To conclude more research in the topic of Goryacheva equation, the author suggests that more 

measurements with varying experimental parameters are conducted, instead of measuring 

methodology on comparative basis.  

Fig. 67 - Comparison of wear coefficient K values with alfa, beta = 1 and alfa, beta = 1e-20 
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4. Methodology – Machine Learning 

4.1. Data pre-processing, Feature engineering 
With machine learning (ML), one of the most important parts of the project is to have good and 

representative data of our problem to make good predictions. The data obtained from Garrett 

Motion company were measured on DN55 tribometer as specified earlier and methodology was 

built comparatively – apply same experiment parameters on different material couples to see 

which material couple has lowest wear volume, therefore is best for the kinematics mechanisms 

outside the turbocharger. This is unfortunate for the ML approaches, hence many of the 

parameters are constants and therefore offer no predictive ability for ML approaches. 

Nevertheless, we will proceed with available data that are not constant for all the experiments 

and find the best machine learning approaches for this use case. 

The data has been put into feature matrix X and corresponding target vector y as shown 

in Figure 68. This matrix consists of feature vectors with following parameters: 

• Couple – In chapter 3.2 Exploratory data analysis explained, as each of the 14 different 

material couples was assigned number from 1 to 14 

• Specimen – Either pin or plate, which is later for machine learning methods converted 

that pin = 0 and plate = 1. 

• Temperature – Temperature at which the experiment was conducted: 300, 700 or 850 

°C 

  

Fig. 68 - Dataset for our project - feature matrix X and target vector y 
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• Hardness Ratio – Hardness of the 

surface is an important parameter 

for prediction of wear behavior 

and since our prediction will 

be done for material couples, each 

material couple has characteristic 

ratio of hardnesses between 

its surfaces. The obtained hardness 

data were measured using HV1 – 

Vickers scale. Hardness ratio 

is calculated as HV_specimen1 / 

HV_specimen2 Hardness ratios 

for material couples are shown 

in Figure 69. 

• CoF – Average coefficient 

of friction calculated from the 

values measured in time during 

experiment are presented. 

 

Each feature vector x in feature matrix X corresponds to target (value) in target vector y. In our 

case, this target value is wear volume, measured on the laser profilometer. All of the wear 

volume values therefore form a target vector y which will be the predicted outcome of model. 

To summarize, feature vector having certain value or option in variables: couple, specimen, 

temperature, hardness ratio and CoF corresponds to certain value of wear volume as target. 

Dataset shown is sorted by default, but for the training of the ML algorithms, the dataset is 

shuffled to remove inherent ordering or any bias. We will use this set of features to train models 

and then predict the target values and compare the metrics to see which of the models performs 

best for our use case. 

  

Fig. 69 - Material couples with corresponding hardness ratio's 
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4.2. Model selection, design and fine-tuning 
The process of finding the best ML model begins with the estimation of the few best performing 

models and then fine-tuning them to get the best possible results. The following ML models 

were used for initial performance estimation: Linear Regression, Polynomial Regression, 

Linear SVR, SVR, Multilayer Perceptron NN (Sequential), Decision Trees, Random Forest, 

Extreme Gradient Boosting (XGB), Gaussian Process Regression (GPR) and Genetic 

Algorithm (GA). All these modules were utilized using Python libraries, namely Scikit-learn, 

TensorFlow, Keras, GPlearn and XGboost. Criteria for selection of best models were 

R2 and MSE. If you are interested in more information about these models, see the attached file 

rychly_ml_wide.ipynb, only models that were chosen for closer examination will be discussed 

more in depth. 

4 best performing models were chosen for closer examination. Namely, Support Vector 

Regression (SVR), Random Forest (RF), Genetic Algorithm using Symbolic Regressor (GA) 

and Neural Networks using Sequential Multilayer Perceptron (NN). All these models are 

explained in chapter 1.5 in the machine learning section so this chapter can be dedicated 

to finetuning the design of those models. 

4.2.1. Support Vector Regression 
 Using Hyperopt Python library, the 

hyperparameter space for SVR model was 

searched and Table 9 shows the best 

hyperparameter values. The Polynomial 

features degree is 1, therefore original values. 

More about parameters can be found 

in sklearn.svm.SVR documentation or 

in chapter 1.5. 

4.2.2. Random Forest 
The Hyperparameter space of RF model was 

searched via Hyperopt and the results for best 

performing model are in Table 10. Model best 

performed for Polynomial features degree of 

3. More about parameters can be found in 

sklearn.ensemble.RandomForestRegressor 

documentation or in chapter 1.5. 

 

 

  

Table 9 - SVR fine-tuned architecture 

Hyperparameters for SVR Value 

C - Regularization param. [-] 1.3 

Epsilon – width of street [-] 0.1 

Kernel [-] rbf 

Gamma – kernel coeff [-] auto 

Polynomial Features degree [-] 1 

Hyperparameters for RF Value 

N estimators [-] 50 

Max depth [-] 10 

Min samples split [-] 2 

Min samples leaf [-] 1 

Min weight fraction leaf [-] 0.0186 

Max leaf nodes [-] None 

Min impurity decrease [-] 9.47e-6 

Polynomial Features degree [-] 3 

Table 10 - RF fine-tuned architecture 
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4.2.3. Genetic Algorithm using Symbolic Regressor 
Genetic algorithm was programmed using both recommended values and values proposed 

by Faris [49] and optimal values found using Hyperopt grid search. These parameters are 

presented in Table 11. 

Table 11 - GA fine-tuned architecture 

The best performing Genetic algorithm used the equation shown in equation (37). Where X1 

is the number of material couple, X2 is specimen type, either pin or plate, X3 is temperature 

and X5 is coefficient of friction. Unused X4 is hardness ratio. 

 

4.2.4. Sequential Multilayer Perceptron NN 
Sequential Multilayer Perceptron NN was 

created and its parameters also with 

Polynomial Features degree were optimized 

using Hyperopt. The best performing 

architecture is shown in Table 12. 

The number of hidden layers is 1 with 3 

hidden units, which corresponds to the 

number of input features. Batch size is 1 and 

the activation function for network is Leaky 

RELU – Rectified Linear Unit. The 

Polynomial Features degree was 1, therefore original features performed the best. 

  

Hyperparameters for GA Value Hyperparameters for GA Value 

Function set [-] +,-,/,∙ P crossover [-] 0.515 

Population size [-] 200 P subtree mutation [-] 0.178 

Generations [-] 150 P hoist mutation [-] 0.110 

Tournament size [-] 30 P point mutation [-] 0.099 

Stopping criteria [-] 0.001 P point replace [-] 0.168 

Max samples [-] 0.5 Polynomial Features degree [-] 1 

Parsimony coefficient [-] 0.001 - - 

 𝐺𝐴 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 = ((𝑋2 + 𝑋5) − 0.266) ∙ (
𝑋5

3𝑋3 + 2𝑋5 + 𝑋1
) (37) 

Hyperparameters for NN Value 

Number of hidden layers [-] 1 

Number of hidden units [-] 3 

Batch size [-] 1 

Activation function [-] 
Leaky 

RELU 

Learning rate [-] 0.00018022 

Polynomial Features deg. [-] 1 

 Table 12 - NN fine-tuned architecture 
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4.3. Evaluation, Comparison, Feature importance 
The metrics of performance for the 4 best performing models are shown in Table 13. R2 train 

mean was calculated using KFold cross validation with K=5. For NN, the validation split was 

0.2 of the training set. R2 train mean is therefore mean performance on the training set, 

indicating how model generalizes on different training sets. R2 test also means the 

generalization error is the R2 calculated from performing on the test set i.e., unseen data. MSE 

and RMSE values are calculated for final model parameters used for prediction on test set, not 

cross validation. 

Table 13 - Comparison of 4 best performing ML models 

From the total of 4 fine-tuned models, the Support Vector Regression model is chosen as the 

best model. Random Forrest and Genetic Algorithm models are weak regarding R2 metrics and 

regarding the score difference between R2 mean train and R2 test which signals overfitting. 

NN model is also weak regarding the metrics but performs slightly better than the RF and GA 

models. NN performance is sometimes like SVR model, but the calculation of the model 

is in wide range of values for both R2 train and R2 test. R2 train and R2 test were both 

calculated training multiple NNs and taking the average values of both. This could be because 

of the small quantity and quality of the dataset or little variation in the dataset. 

SVR model is the best performing model among these 4 fine-tuned models that were chosen 

from wide pool of possible models, this pool of models can be seen in attachment 

rychly_ml_wide.ipynb. Choice of the best model was based on the values of R2 = 0.351 

for training set and R2 = 0.429 for test set, which was among the best of trained models for our 

use case, but still indicates notions of overfitting and the performance can be much better and 

R2 closer to 1. This overfitting is, as with NN and other models, most likely due to the small 

quantity and quality of training data and little variation in the measured data. MSE for SVR 

model is 1.856∙1016 (um3)2 and RMSE is 1.362∙108 um3. So, the average root mean squared 

error of the model’s prediction of the wear volume values is 1.362∙108 um3. 

Evaluation metrics SVR RF GA NN 

R2 train mean [-] 0.351 0.170 0.212 0.194 

R2 test [-] 0.429 0.621 0.37 0.477 

MSE [um3^2] 1.856e16 1.232e16 2.047e16 1.939e16 

RMSE [um3] 1.362e8 1.109e8 1.430e8 1.393e8 
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Figure 70 shows the performance of the 4 fine-tuned models visually. True vs Predicted values 

of Wear volume are shown. The ideal shape of the curve is linear i.e. each predicted value 

corresponds to true value. 

  

Fig. 70 - Comparison of 4 best performing models for our use case - SVR, RF, GA and MLP NN 
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For the best chosen model, SVR, feature importance analysis is performed. Feature importances 

are calculated based on Support Vectors (boundaries in which the data is) and Dual 

Coefficients, which represent the weight of each support vector in the decision function. 

Importance of certain feature is then inferred by examining how much each support vector 

contributes to the prediction, weighted by the vector’s corresponding dual coefficients. This 

is calculated as a dot product of Support vectors and Support vectors coefficients. The 

Polynomial Features degree for the best performing model is 1, therefore original set of features 

from feature matrix X. Visually shown in Figure 71. The most important feature in the SVR 

model is coefficient of friction, then specimen, either pin or plate, next is temperature and 

lowest importances hold the couple number and hardness ratio. The author suggests measuring 

more data with more variety of experimental parameters which would broaden the field 

of potential features. Feature engineering with varied values of time, load, temperature and 

many others would, in the author’s humble opinion, present more prediction value and better 

model. 

Using a small dataset for predictions makes the model heavily influenced by the test-train split. 

This influence was examined by comparing the best performing SVR model architecture with 

different data split values. The split was characterized by the “ratio” parameter determining 

where is the boundary between train and test. Therefore ratio = 0.75 means 75/25 train-test split. 

Ratios varied from 0.6 to 0.95 with step 0.05. The best performing models were with 60/40 split 

and 80/20 split. The metrics of those 2 models are shown in Table 14. Model performance 

is quite similar – 60/40 split is slightly better regarding the overfitting and 80/20 gives smaller, 

better, RMSE and generalizes better to testing data. The author suggests trying both data splits 

for optimal performance of your own model and proposes 80/20 split as the best result due 

to slightly better R2 scores. 60/40 and 80/20 are common splits in literature and this 

experimental finding confirms their usefulness. 

Table 14 - Comparison of data splits for SVR model 

Split MSE RMSE Mean train score Test score 

60/40 2.0416e16 1.4288e8 0.312 0.374 

80/20 1.8558e16 1.3622e8 0.351 0.429 

Fig. 71 - Feature importances in SVR model for our use case 
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As a conclusion of this methodology chapter, SVR model with following architecture was 

chosen as the best performing model of all models for this use case with the recommendation 

to gather more data with greater variety of experimental parameters to maximize its potential. 

Architecture is shown in Table 15. It is however necessary to again bring up the fact that wear 

is a very complex phenomena and its prediction is influenced by many physical, chemical, 

and mechanical phenomena and predictions might not be straightforward. This model gives the 

reader and authors of following researches good starting point for their own predictions using 

machine learning in modelling of wear. 

         Table 15 - Best architecture of SVR for our use case 

Best model for our use case - SVR Value 

C - Regularization param. [-] 1.3 

Epsilon – width of street [-] 0.1 

Kernel [-] rbf 

Gamma – kernel coeff [-] auto 

Polynomial Features degree [-] 1 

Data split [-] 80/20 
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5. Conclusion, Further work 
The main mission of this thesis was to predict wear behavior on concrete use case and save 

resources necessary for the experiments using both empirical equations from literature and 

machine learning approaches. To grasp this topic, throughout research of the relevant tribology 

topics was conducted. Chapter 1 is dedicated to introduction to tribology, friction and wear and 

different wear mechanisms. Later, the adhesive wear is chosen as the main mechanism involved 

in our use case and literature search is primarily performed to find empirical relations for 

predicting this type of wear. Throughout literature search for empirical predictions of adhesive 

is presented in chapter 1.4 and the Goryacheva Equation is chosen as the best equation for 

conducting methodology. Shown in equation (38).  

Empirical predictions of wear using the Goryacheva equation are complemented by the machine 

learning approaches based on experimental data obtained from Garrett Motion company. 

Various models were tried and sub-chapter 1.5 explains 4 models that were fine-tuned for the 

best possible model. These models are Support Vector Regression (SVR), Random Forest (RF), 

Genetic Algorithm using Symbolic Regressor (GA) and Multilayer Perceptron Sequential 

Neural Network (MLP NN). Chapter 1.5 also contains the research conducted in the field 

of tribology using the machine learning approaches of various authors. Their findings were used 

as a starting point and help design models in this thesis. Chapter 2 introduces the problematic 

and its testing method, the instruments of measurement and ways of obtaining the data later 

used for empirical predictions and models. 

The methodology chapter 3 focuses on exploratory data analysis and predictions using the 

Goryacheva equations. Equation is calculated using the experimental parameters and the 

variation of K, α and β wear coefficients is conducted. 3D plot and α, β convergence analysis 

is presented. Result is that Goryacheva equation even with various values of α and β is weak 

tool in predicting the wear behavior. 

In chapter 4 methodology of machine learning, the whole process of creating ML model 

is presented. Feature Matrix contains couple number, specimen, temperature, hardness ratio and 

coefficient of friction therefore making it 5 features for predicting one target  

vector variable – wear volume. Various models are employed and best models are selected for 

fine tuning: Support Vector Regression (SVR), Random Forest (RF), Genetic Algorithm using 

Symbolic Regressor (GA) and Multilayer Perceptron Sequential Neural Network (MLP NN). 

Best performing architectures are presented for each model, the models are compared using 

metrics R2 train, R2 test, MSE and RMSE. SVR – Support Vector Regression model is chosen 

as the best for given use case and both architecture and resulting metrics are shown in Table 

16. 

  

 𝑉 = 𝐾𝑝𝛼𝑣𝛽𝑡 (38) 
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Table 16 - Best performing model SVR and its evaluation metrics 

For the best SVR model, feature importance analysis is performed with CoF being the most 

important feature for prediction. Feature importance analysis is shown in Figure 72.  

To maximize the research potential of this thesis, analysis of optimal data split value 

is performed because in small datasets, the data split heavily influences the final model. 80/20 

train/test split is chosen as the best with 60/40 close behind. 

To produce better results based on the research in this thesis, the author suggests gathering more 

training data with various experimental parameters set. This will greatly improve machine 

learning models via feature engineering (adding more features) and allow the models to learn 

on bigger samples. Data is the key to machine learning and the author suggests focusing on this 

part of the model creation – obtaining of the data and feature engineering. Another possible 

approach to try is to add material properties as single features, such as concentrations 

of elements in % or phases as performed in Rajput [61]. Another approach to try is to compare 

wear coefficient K values from this thesis with literature findings of certain materials and 

optimize Goryacheva equation or delve deeper into the relationships of variables inside the 

wear coefficient K itself. 

 

  

Architecture Evaluation 

Best model for 

our use case - SVR 
Value Metric Value 

C - Regularization param. [-] 1.3 R2 train mean [-] 0.351 

Epsilon – width of street [-] 0.1 R2 test [-] 0.429 

Kernel [-] rbf MSE [um3^2] 1.856e16 

Gamma – kernel coeff [-] auto RMSE [um3] 1.362e8 

Polynomial Features degree [-] 1   

Data split [-] 80/20   

Fig. 72 - Feature importances in best performing SVR model for our use case 
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