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Abstract 

The main goal of this thesis is to create a model for predicting the wear on material couple 
during high temperatures. This model should serve for prediction of wear behavior on kinematic 
mechanism on turbocharger. Predicting wear is difficult because of the very complex nature 
of processes involving physical, chemical, and mechanical phenomena, making it hard 
to predict. This thesis attempts to solve this problem using empirical relationships from 
literature and methods of machine learning using experimental data from Garrett Motion 
company. Both empirical relationships and machine learning approaches for predicting wear 
in tribology are thoroughly researched. The thesis critically evaluates the use of I.G.Goryacheva 
equation chosen as the best equation for adhesive wear, chosen as the primary mechanism 
of wear. Data from Garrett Motion serve as the base for machine learning algorithms. The best 
model is proposed - Support Vector Regression - and the best architecture is presented. For the 
best architecture, the thesis also includes feature importance analysis and search for optimal 
test-train split for dataset. Finally, the thesis includes recommendations for the next research 
and ways to improve the process of modelling the wear for this use case. 

Abstrakt 

Hlavním cílem práce bylo vytvořit model opotřebení materiálové dvojice za vysokých teplot 
pro predikci opotřebení kinematického mechanismu na turbodmychadle. Predikce opotřebení 
je komplexní proces, kterého se účastní mnoho chemických, fyzikálních a mechanických jevů, 
a proto není jednoduché jej analyticky počítat. Tato práce se vydává naproti tomuto problému 
pomocí empirických vztahů z literatury a aplikace principů a algoritmů strojového učení 
(machine learning) postaveného na datech z experimentu. Empirické vztahy i metody 
stroj ového učení j sou v práci podrobeny důkladné rešerši a aplikovány na dostupná data z firmy 
Garrett Motion. Práce kriticky hodnotí vhodnost vybraného empirického vztahu 
I.G.Goryachevy pro adhezivní opotřebení jako primárního mechanismu opotřebení a variuje 
koeficienty pro výzkum využití rovnice. N a data jsou aplikovány algoritmy strojového učení 
a je prezentována architektura nejlepšího modelu - Support Vector Regression - spolu 
s metrikami, analýzou důležitosti vlastností (feature importance) a optimálním rozdělení 
datasetu pro trénink a testování. Závěrem práce doporučuje směry dalšího výzkumu a způsoby, 
jak zlepšit proces modelování pro tento konkrétní problém. 
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Rozšířený abstrakt 

Hlavním cílem práce bylo vytvořit model 
opotřebení materiálové dvojice za vysokých 
teplot pro predikci opotřebení kinematického 
mechanismu na turbodmychadle, viz 
obrázek 1. Predikce opotřebení je komplexní 
proces, kterého se účastní mnoho 
chemických, fyzikálních a mechanických 
jevů, a proto není jednoduché opotřebení 
analyticky počítat. Tato práce se vydává 
naproti tomuto problému pomocí 
empirických VZtahŮ Z literatury a aplikace Fig. j _ Kinematické mechanismy na turbodmychadle 

principů a algoritmů strojového učení 
(machine learning) postaveného na datech z experimentu. Empirické vztahy i metody 
stroj ového učení j sou v práci podrobeny důkladné rešerši a aplikovány na dostupná data z firmy 
Garrett Motion. Práce kriticky hodnotí vhodnost vybraného empirického vztahu a jejím 
výstupem je nej lepší vhodný model strojového učení. 

Opotřebení tvoří, spolu s třením a mazáním, hlavní pilíře vědeckého oboru tribologie. Náplní 
tribologie jsou zmíněné 3 pilíře a ostatní věci týkající se třecího kontaktu, tedy místa interakce 
dvou tuhých těles. Mohou zde nastat různé typy dějů. Fyzikální děje jako mechanické, 
elektrické, magnetické nebo teplo a také chemické nebo biologické děje. Tyto děje se poté 
manifestují v podobě třecí síly mezi tělesy. Vzhledem k tomu, že až jedna třetina energetických 
zdrojů na zemi je vynakládána na překonávání třecích sil, je studium těchto procesů 
prostřednictvím tribologie důležitou disciplínou ve strojírenství. [1][2] 

Opotřebení j e definováno j ako progresivní ztráta materiálu z povrchu a jeho predikce je oproti 
tření obtížná. Jedná se o komplexní proces, jehož se zúčastní spousta fyzikálních, chemických 
a mechanických jevů. Nelze tak jednoznačně predikovat opotřebení a jednoznačně určit 
podobný koeficient opotřebení jako je koeficient tření. I přesto mnoho autorů věnovalo predikci 
opotřebení značné úsilí a tento obor se od svého počátku velmi posunul. [1][2] 

V 40. letech 20. století začala hlavní vlna výzkumu empirické predikce opotřebení s hlavními 
autory jako Holm, Archard, Burwell , Strang, Rabinowicz a dalšími. Nej významnějším 
poznatkem z této doby je Holm-Archardův vztah pro opotřebení, v rovnici (1), kde 
V je opotřebený objem, K je koeficient opotřebení, N je zatížení, L je vzdálenost a H je tvrdost. 
Koeficient opotřebení obvykle nabírá hodnot 10"3-10"7 a je závislý na mnoha proměnných. 

Pro optimální proces modelování opotřebení je nutné zvolit primární typ opotřebení ze 
7 hlavních typů opotřebení. V našem případě bylo zvoleno adhezivní opotřebení jako primární 
mechanismus. Adhezivní opotřebení nastává v případě tření mezi dvěma makroskopicky 
hladkými povrchy. Jelikož žádný povrch není dokonale hladký, tak kontakt nastává 
na vrcholcích nerovností. Tyto vrcholky jsou podrobeny vysokým silám na malých plochách 
a tíhnou k tomu lnout k sobě díky adhezním silám. Vznikají tak lokální „svary" na krátkou 
dobu, které se poté opět rozpojí. Díky deformačnímu zpevnění však nastávají i případy, 



kdy svar je silnější než atomové síly v měkčím ze dvou materiálů. V tomto případě dochází 
k vytržení materiálu v n o v ě rovině a materiál je následně vtlačen do druhého povrchu nebo 
uvolněn jako volná částice, která se pohybuje mezi povrchy. [19][20] [21] [22] 

V oblasti empirických modelů adhezivního opotřebení byla provedena rozsáhlá rešerše, jej ímž 
výstupem je nej vhodnější model opotřebení pro náš problém - vztah I.G. Goryachevy, v rovnici 
(2). Kde V je opotřebený objem, p je zatížení, v je rychlost, t je čas a K , a, P jsou koeficienty 
opotřebení. Tato rovnice bude využita pro predikci opotřebení na základě dostupných dat. [18] 

V = Kpavh (2) 

Applied Force Applied Force 

Experimentální data byla poskytnuta firmou Garrett Motion, které t ímto autor chce poděkovat. 
Pro predikci opotřebení a tření byl použit tribometr DN55, jeho princip znázorněn na obrázku 
2. Vzorky v podobě jednoho „pinu" a dvou 
„platů" jsou vloženy do testovacího 
přípravku a celá komora je zahřátá na 
testovací teplotu. N a vzorky je aplikována 
přítlačná síla a pin koná cyklický pohyb 
nahoru a dolů. Experiment probíhá určitou 
dobu a následně jsou vzorky vyjmuty ven. 
Opotřebené vzorky jsou podrobeny analýze 
na laserovém profilometru a odebraný 
objem je spočítán. Ten je následně využit 
pro predikci pomocí modelů. 

Contact surface 

-Samples 

" Furnace 

" Arms 

Fig. 2 
Applied Movement 1 

DN55 Tribometr 

Nejprve je provedena průzkumná analýza dat a vizualizace a následně jsou spočítány hodnoty 
za různých variací koeficientů a a P pro určení koeficientu K . Spočítané výsledky jsou daleko 
od rozsahu koeficientu K uváděného v literatuře, tak je vyhotoven 3D graf závislosti K - a - P 
a následně také konvergence koeficientů a a p. Rovnice Goryacheva se ukázala býti méně 
vhodnou a autor práce doporučuje naměření více experimentálních hodnot a také větší variaci 
v nastavovaných parametrech. 

Dalším využitým nástrojem pro predikci je strojové učení, v originále zvané „machine 
learning". Jedná se o metodu programování, která dává počítači schopnost učit se, aniž by byl 
specificky naprogramován. Jednoduchým příkladem je filtrování spam emailů. By lo by velice 
obtížné definovat všechny jejich možné varianty. Je ovšem možné pomocí matematických 
algoritmů program „naučit" jak obecně vypadá, jaké má znaky, takový spam email a na základě 
toho program spočítá pravděpodobnost zdali je email spam nebo ne a zařadí jej do příslušné 
složky. Kromě klasifikačních úloh jako je spam filtr lze také pomocí regresních modelů 
predikovat hodnoty veličiny pomocí křivek. Jedná se o přístup založený na datech a proto je 
kvalita, kvantita a informační hodnota dat fundamentální pro kvalitní model. V našem případě 
se jedná o učení pod dohledem (supervised) - tedy máme k datům označení/výsledek. [35] 

Pro naměřená data byla vypracována matice vlastností (feature matrix) v podobě veličin: 
materiálová dvojice, vzorek (pin/plate), teplota, poměr tvrdostí, koeficient tření. Predikovanou 
veličinou je opotřebený objem. Dataset sestávající se z 51 vektorů vlastností je rozdělen 
nat rénovací a testovací set v poměru 80/20. Hrubá analýza dostupných modelů strojového 
učení je aplikována a jejím výsledkem jsou 4 modely, které jsou podrobeny procesu doladění 
(fine-tuning). Těmito modely jsou Support Vector Regression (SVR) , Random Forest (RF), 



Genetic Algorithm (GA) a Multilayer Perceptron Neural Network (NN). Po procesu doladění 
je vybrán nej lepší model - Support Vector Regression - s architekturou ukázanou v tabulce 1. 

Table 1 - architektura nejlepšího SVR modelu 

Architektura Vyhodnocení 
Nejlepší model - SVR Hodnota Metriky Hodnota 

C - Regularizační parametr [-] 1.3 R2 trénink [-] 0.351 
Epsilon - šířka pásu [-] 0.1 R2 test [-] 0.429 

Kernel [-] rbf 
Střední kvadratická chyba 

(MSE) [um3A2] 
1.856el6 

Gamma - kernel koeficient [-] auto 
Odmocněná střední kvadratická 

chyba ( R M S E ) [um3] 
1.362e8 

Stupeň Polynomial Features [-] 1 
Rozdělení datasetu [-] 80/20 

Pro výsledný S V R model je následně provedena analýza důležitosti vlastností (feature 
importance analysis), která je zobrazená v obrázku 3. Nej častější veličina pro predikci v S V R 
modelu byl koeficient opotřebení a poté typ vzorku a teplota. Pro S V R model je také provedena 
analýza optimální hodnoty rozdělení datasetu s výslednou nejlepší hodnotou 80/20. 

Feature Importances in SVR Model 

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 
Importance [-] 

Fig. 3 -Analýza důležitosti vlastností pro nejlepší zvolený model - SVR 

Pro konkrétní případ opotřebení kinematického mechanismu na turbodmychadle, 
experimentálně simulovaném na tribometru D N 5 5 , byla provedena predikce zvoleným 
empirickým modelem Goryacheva a také pomocí metod strojového učení. Empirický model 
Goryacheva se ukázal být méně vhodným vhledem k nedostatku informací a komplexnosti 
procesů opotřebení a tato skutečnost byla ověřena variací parametrů. N a základě dostupných 
dat bylo vyzkoušeno mnoho modelů strojového učení, vybrány 4 nejlepší a po jejich 
optimalizaci byl určen nejlepší model - Support Vector Regression s architekturou a výsledky 
prezentovanými výše. Pro zlepšení kvality modelu a predikce autor doporučuje sběr více 
experimentálních dat a větší variaci experimentálních parametrů. Dalším potenciálním směrem 
je rozšíření matice vlastností o nové veličiny z experimentu. 
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1. Introduction 

1.1. Tr ibo logy 
Tribology is a discipline that deals with the processes and phenomena occurring during 
the friction interaction of solids. The subject of the tribological study is friction contact - region 
of interaction of bodies in contact. A t friction contact, processes of physical nature like 
mechanical, electrical, magnetic and heat can occur. Processes can also be of a chemical and 
biological nature. These processes manifest themselves in the form of Friction force i.e. 
resistance to the relative displacement of bodies, which form the contact. In the modern world, 
up to one third of the world's energy resources is being spent on overcoming friction forces. 
The friction as a phenomena, and its study via tribology, is therefore undeniable and very 
important. [1] 

Another manifestation of processes occurring during the contact interaction is the wear. Wear 
is a progressive loss of material from surfaces due to its fracture in friction interaction showing 
up in gradual change of the dimensions and shape of the contacting bodies. Wear of material 
can change the properties and functionality of given machine parts or even lead to machine 
failure. Study of wear, its causes and elaboration of methods for improvement of wear resistance 
is therefore a very important sub-field in the discipline of tribology. Wear can be slight or 
extremely rapid, depending on the various variables. In most cases, wear is detrimental. It can 
cause increased clearances between the moving components, unwanted freedom of movement 
and loss of precision. This can lead to vibration, increased mechanical loading which increases 
wear again. Even small material loss due to wear can cause complete failure of large and 
complex machines. Wear can also be used for desirable purposes such as grinding and 
polishing. This is the case when wear is the mechanism of material removal. [1][2] 

Tribology can be considered applied science because it has goals like diminishing of the energy 
losses, effect of friction and wear on the environment and the increase of machine life. The 
successful solution to these problems lies in the deep understanding of nature of friction and 
wear. Tribology as a discipline has evolved on the basis of mechanics, physics, chemistry and 
other sciences. Unfortunately, the results obtained in these individual fields cannot be applied 
directly because of complexity of the tribological processes. Tribological processes are 
complicated, interconnected and they involve multiple scales and hierarchical levels. 
They therefore must be considered using results of different scientific disciplines 
simultaneously. [1] 

A s mentioned previously, friction is one of the main topics of the tribology. Friction plays 
a central role in the performance of many mechanical systems. In some cases, low friction 
is desirable and essential. This is the case of operation of joints for example. Hinges on doors, 
human hip joints or bridge supports demand low friction forces. In other cases, the goal 
is to absolutely eliminate friction. This is done in applications such as bearings and gears, when 
lowering the friction can increase overall efficiency of those mechanical parts. Opposite to that, 
there are applications where controlled friction is essential to dissipate kinetic energy and 
transfer torque such as brakes and clutches. Another good example of use of high friction is 
friction between the road surface and the tire of a vehicle. [2] 

The best solution for reducing the friction, and often also wear, is lubrication of the system. 
Therefore, studies of lubrication are very closely related to the studies of wear and friction. 
If we do not use artificial lubricant, we still must consider lubrication caused by the 

1 



surrounding atmosphere, especially oxygen and water vapour in the air. They often play 
a similar role as the lubricant. [2] 

Two solid surfaces are placed together and contact between them w i l l generally occur only 
in isolated parts of the nominal contact area, not the whole surface. This is later explained 
as a "true contact area". The reason for contact being only in some parts between the surfaces 
is the surface roughness of them. Even with the small value of surface roughness in well-
polished surfaces, the surface is not ideally flat. True contact area is therefore independent of 
the surface roughness. In contact between the bodies, there are therefore localized regions of 
forces. These regions of forces are responsible for the friction. The difference between nominal 
contact area A n and true contact area A t is visually shown in Figure 4. [2] [3] 

Fig. 4 - Nominal contact area vs True contact area [4] 

The size of the true contact area is not dependent on the size of the nominal area or surface 
roughness, but rather load. Burwell and Strang [5] show this schematically in Figure 5. 
The higher the applied load, the more asperities are in contact that make the true contact area. 
[5] 

Fig. 5 - Surfaces in contact during a) low applied load b) high applied load [5] 

2 



Friction is a force and may be defined as resistance encountered by one body in moving over 
another. This definition is broad and embraces two important classes of relative motion: sliding 
and rolling as shown in Figure 6. It can be beneficial to make distinctions between sliding 
friction and rolling friction, but they are not mutually exclusive. Meaning, that even "pure 
rolling" nearly always involves some sliding. [2] 

a ) b ) 

Fig. 6 - Schematically shown a) rolling and b) sliding [2] 

Considering ideal rolling or ideal sliding, in both cases tangential force F is needed to move the 
upper body over the stationary surface. Also considering the normal load N , these two forces 
can be combined into ratio, which is known as coefficient of friction. Coefficient of friction 
(CoF) is usually denoted [i and is described in equation (3). 

fi = - -» F = fiN (3) 

The magnitude of the frictional force is described by the value of the coefficient of friction. 
Values of the coefficient of friction can vary by multiple orders. It can be very small, such 
as 0.001 in lightly loaded rolling bearing, meaning the friction force is low. This is the preferred 
case when designing the bearings. On the other hand, it can be very big, such as 10 for two 
identical clean metal surfaces sliding in vacuum. In this case, the friction force is large. These 
are the extreme cases. For the case of sliding in air and the absence of lubricant, considering 
most common materials, the value of the coefficient of friction is in the range from 0.1 to 1. 
It is also important to mention, that coefficient of friction p. is not a fundamental property of pair 
of surface, because strong frictional forces can be experienced even without a normal load i f the 
surfaces are clean and have an intrinsic adhesive capability. [2] [6] 

When a tangential traction is applied to a system already in a state of plastic contact, the 
plasticity theory predicts that the junction area w i l l grow as the two surfaces slide against each 
other. Complete welding of surfaces is usually prevented by the controlling influence exerted 
by the interfacial contaminating layers. Even a small degree of contamination can reduce the 
shear strength of the interface sufficiently to discourage continuous growth of the bonded area. 
This means that coefficients of friction /J tend to remain finite. 
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L a w s o f friction 
Over the course of years, few laws of friction were presented. Two empirical Laws of Sliding 
Friction are named after the person who stated them in 1699 - Guillaume Amonton. However, 
the first mentions and description of the laws date back to 1493, more than 200 years earlier, 
by the famous Leonardo da V i n c i . In addition to the first two empirical Amontons laws, the 
third law is sometimes mentioned, which is often attributed to Coulomb in 1785. [2][7][8] 

The laws of friction may be stated as follows: 

1. The friction force is proportional to the normal force (equation 1) (Amontons' first law) 
2. The friction force is independent of the nominal contact area (Amontons' second law) 
3. The friction force is independent of the sliding velocity (Coulomb's law) 

The laws have varying reliability and must be taken with caution, but they provide good and 
useful summaries of empirical observations. The first law, described by equation (1) is obeyed 
by most metals and many other materials. Exceptions are usually seen in polymers and materials 
with a very low elastic modulus. The second law is nowadays also well attested for most 
materials with, again, the exception of polymers. The third law is less well founded and based 
on common observation, that the frictional force to initiate sliding is usually greater than the 
force to maintain the sliding and therefore the coefficient of static friction JUS is greater than the 
coefficient of dynamic friction jUd . It was found that once the sliding is onset, the coefficient 
of dynamic friction is nearly independent of sliding velocity. [2] 

Wear laws 
Compared to the "well-known" laws of friction, our knowledge about the laws of wear is much 
smaller. Technical literature is full of reported data on wear, but these data are the results 
of experiments in the industry which simulate specific operations in service and usually 
complicated and uncertain compositions. This results in no general laws of wear that are widely 
applicable and no "wear coefficient" in sense such as Coulomb's coefficient of friction 
or Hooke's Young modulus. As a result of this, dimensional analysis cannot be applied to wear 
problems. Meaning that we cannot conclude rationally anything about wear from scaled 
experiments and we also cannot rationally estimate the wear occurring in an actual machine. 
Nevertheless, some authors have found empirical relationships that gave us a brief notion 
of how wear laws can look like. Let us take a brief look into the history of wear laws and its 
discoveries. [5] 

In 1860, German mathematician Kar l Theodor Reye presented his hypothesis that the volume 
of the removed debris due to wear is proportional to the work done by friction forces. This 
is called "Reye's hypothesis" or "energy dissipative hypothesis". Reye did experiments with 
pins and considered all the various ways in which the mechanical work consumed by friction 
is converted. He then proposed that a correct theory of frictional wear should be in accordance 
with all the factors that govern the conversion of frictional work into heat, electricity, 
deformation, shocks etc. The hypothesis is formulated mainly with observations made during 
wear, because other components of friction work are so rapidly propagated, that they wi l l 
virtually remain stationary. That means the individual rubbing elements the effects can be 
observed at their points of origin. In sliding contact in pin, there is assumption that the size 
of wear in one direction refers to the frictional work in the same direction. This wear 
is proportional to the part of the total frictional work that is expended in overcoming the 
frictional resistance. Given the uniformity of material, lubrication and temperature for all points 
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on the pin surface, the ratios between various factors influencing pin friction are the same for 
the entire lifetime in each direction referring to the friction surface. Therefore, the total 
frictional work, and consequently the wear, is proportional to the total normal force applied 
to the relative projection of the friction surfaces. Reye proposed this written equation: 
"For a given pin, the normal displacement in any direction equals the same share of the total 
frictional work caused by the normal pressure, and it forms the product with its relative velocity 
in the direction perpendicular to the friction surfaces." [9][10] 

In 1946, Ragnar Holm proposed a semi-empirical theory of galling wear based on the fact that 
the true contact area A t between rubbing surfaces is given by equation (4), where N is the normal 
load and p m is a flow pressure of the softer of the two surfaces. The physical mechanism being 
the plastic deformation on the local asperities on the softer surface. [11][12] 

Another assumption made by Holm is that every encounter of two atoms of the opposite 
surfaces in true contact area has a certain statistical probability that one of the atoms wi l l 
be pulled out of its parent surface. After counting all the encounters during the sliding and with 
the use of average interatomic spacings, Ho lm produced a simple wear volume equation (5). 
Where V is the wear volume, k is the probability of removing an atom (also as Z in literature) 
and L is sliding distance. [11][12] 

If we insert equation (4) into equation (5), we get equation (6). Divided by true contact area 
A t we obtain similar equation (7) with wear depth h and average normal stress P. 

N 
(4) 

V = kAtL (5) 

kNL 
V = (6) 

Pm 

kPL 
h = (7) 

Pm 
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This theory by Holm assumes that the material is removed as individual atoms. Burwell and 
Strang [12] put this into question and proved that it's probably not generally valid. They proved 
it with electron microscopy examination of the wear particles removed from two hardened steel 
surfaces rubbing together under a lubricant, as 
shown on Figure 7. The size of the individual 
specks or grains in the Figure, the large black 
regions probably being its agglomerates, is 5-10 
nm. This is quite small regarding the 
macroscopic point of view, but on the atomic 
scale, it consists of millions of atoms. The softer 
the material is, the particles are found larger. 
Burwell and Strang nevertheless began 
experimental procedure based on the findings of 
Holm to see to what extent equations (6) and (7) 
hold. [12] 

Holm, Bowden, Tabor and others also proposed 
the relation between friction force F and true M g m 7 . Electron micrograph of wear particles from 
Contact area A t in equation (8) with S being the hardened steel surfaces (25,OOOX) by Burwell and Strang 

[12] 

average shear strength of the local adhesion 
between the surfaces. [12] 

F = s • At (8) 

Dividing the equation (8) by equation (4) gives us the familiar expression of the friction 
coefficient p. in equation (3). Both s and pm are plastic properties of the concerned materials and 
may be expected to have same ratio for both hard and soft materials. [12] 

» = N=K <9) 

A s mentioned before, Burwell and Strang did experiments in 1952 and 1958 to understand wear 
and hopefully propose a wear law and started their test with validating to which extent equations 
(6) and (7) proposed by Holm are valid. They had a simple wear machine with relatively soft 
pin rubbing the surface of a smooth hardened steel disk. The measured value was the wear 
of pin. Conventional depth wear rate Wd, which is rate of material removal as in equation (10), 
where h is depth of material removed from the soft pin/rider (i.e. wear depth) and L is sliding 
distance, is constant for a constant normal stress. 

Wd = -h (10) 

Instead, Burwell and Strang deemed it appropriate to plot wear rate against the corresponding 
stress P because it correlates more with equation (7), therefore plotting quantity h /LP against 
average normal stress P for two different materials as shown in Figure 8 and discussed the 
obtained curve with its two distinct regions divided by the approximate value of 1/3 of hardness. 
[5] 
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Fig. 8 - Wear inform ofh/LP plotted against pressure P on the surface [5] 

For low stresses, up until approximately 1/3 of hardness, the plot shows that quantity h /LP 
is constant as predicted by the equation (7). For stresses higher than 1/3 of hardness, the quantity 
h /LP increases sharply and completely abandons behavior according to equation (7). This shape 
of the curve was obtained with lubricant and without it, so the breakdown of the liquid fi lm 
cannot be a reason for the sharp increase of quantity h /LP. However, breakdown of some sort 
of dry fi lm, such as oxide or other material, is not out of question. 

A detailed explanation of the high stress region and sharp rise of h /LP is not yet possible, but 
some things seem to be definite and w i l l be shortly explained. Wear particles, due to certain 
reasons proposed by Burwell and Strang [5], cannot escape the contact and therefore produce 
more wear. The formation of the secondary wear particles is doing self-acceleration of the wear 
process. When particles are worn off the surface and they cannot escape the contact of two 
surfaces, they produce more wear. This can lead to some extreme cases such as forming 
the avalanche of wear material. [5] [12] 

The threshold value being 1/3 of hardness is probably due to the fact, that it is approximately 
the same value as the yield strength of completely work-hardened surface, such as wearing 
surface we are considering, according to Burwell and Strang. Because wear, especially adhesive 
in this case, is based on plastic deformation of asperities, the exceeding of the yield strength 
is necessary to induce such plastic deformation. When the asperity and its base exceeds the 
yield strength, the material starts to flow. [5] [12] 

Burwell and Strang therefore experimentally proved Holm's equation but the wear being 
constant only up to the pressures of 1/3 of hardness and with the proposition, that the relation 
should be applied to asperities, rather than atoms as Holm's proposed. 
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In 1953 J.F. Archard wrote his famous article about modelling wear named "Contact and 
Rubbing of Flat Surfaces" in which he proposes the theory of wear law based on the collision 
of two asperities as shown in Figure 9. [13] 

M r 

Idealized representation of single contact in sliding 
surfaces* (a) Maximum contact area of radius a. (b) After sliding 
through distance y. (c) After sliding through a distance 2a; 
contact area just reduced to zero. 

Fig. 9 - Single contact in sliding surface by Archard [13] 

Considering asperity contact as shown in Figure 9 we consider that the highest load the asperity 
can carry is shown by equation (11) where A is area, H is hardness and a is radius of the asperity. 
The total load N carried by all asperity contacts is then shown in equation 12 as a sum of all 
areas in contact. [13] 

dN =A*H = na2H (11) 

N = ^ dN = H ^ na2 therefore ^ 2 N 

n a =H 
(12) 

Equation (12) shows us, that the area which is carrying the load is given by load N and hardness 
H . Also, wear particle can be formed in the shape of the half-sphere, hence its volume 
Vpis calculated in equation (13). [13] 

2 7TCT 
-na 

(13) 

Not all contacts give rise to wear particles, so Archard assumed only a fraction 9 does. In the 
original Archard article referred to as k, but for better understanding now, we use 9. Wear rate 
d W w i.e. average volume worn away per sliding distance 2a is therefore shown in equation (14). 

2 3 
V„ 2 n a 

= 6- (14) 
2a 2a 3 

The total wear rate is then the sum of all asperity collisions as shown in equation (15). 
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=YJdww = lYuna2 (l5) 

If we insert equation (12) into equation (15), we obtain equation (16) and write wear rate 
as wear volume V over sliding distance L . 

V 9 N 
Ww=- = (16) 

L 3 H 
Since fraction of particles worn away represented as constant 9/3 is mathematical construct 
based on the choice of spherical particle, we can simplify it so wear coefficient K = 9/3 
and arrive at Archard's wear law in equation (17) which mirrors Holm's equation (6) [13] 

V N KNL 

T = K - H - V = — < 1 7 ) 

Archard considered more mechanisms of deformation and shape but proposed a model which 
to his best knowledge copied reality, which is that particles are removed from surface as lumps 
by the plastic deformation. Equation (17) assumes that wear particles have hemispherical shape 
and have same radius. A s said before, it is similar to Holm's equation and also replaces Holm's 
concept of material removal by atoms to the material removal by wear particles. Archard also 
proposes conclusions after his study as follows: 

A ) The wear rate is proportional to load and is independent of the nominal area of contact 
B) If the K and H (or p m) remains constant, the wear rate is independent of the speed 

of sliding. 
C) The theoretical value of wear rate is independent of the model used to represent the 

surfaces 

This findings made by Holm, Burwell , Strang, Archard and many others led to the most 
universally used model of wear today despite its shortcomings such as usage only for steady-
state wear in this basic form, not considering the running-in phase (which is described in next 
paragraph) or the fact that wear coefficient K is very likely to be dependent on many different 
factors and is hard to predict. The law is known under many names in literature such 
as "Archard wear law", "Holm-Archard wear law", "Ho lm wear law" or "Reye-Archard-
Khrushchov wear law". [13] 
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In 1952, Burwell and Strang [5] proposed two 
qualitative conclusions about wear. Firstly, 
that wear decreases with increasing the 
hardness of the rubbing surfaces, which 
corresponds with the propositions of Archard 
and Holm. Secondly, that wear increases with 
the distance of travel, but generally not 
linearly. Many exceptions to these two rules 
can be presented, but most of the time, the 
relationship between wear volume and distance 
of travel is as shown in Figure 10. [1][5] 

A 

running-in steady-state catastrophic 

i 
/ 

s 
J* 

w 

time 
Fig. 10 - The most qualitative relation between distance 
and volume of material worn. Divided into 3 main stages 
"running-in ", "steady state " and "catastrophic " or 
"severe" wear [5] 

The so called "wear curve" typically consists 
of 3 stages. "Running-in", "Steady state" and 
"Catastrophic or Severe wear" stage. Running-
in stage is more described in next paragraph. 
Steady state is characteristic by its linear nature of wear dependence on time. Most of the wear 
laws presented, such as Archard Law, are the best description of this linear stage. 
The Catastrophic stage is characteristic by its sharp increase in wear. In this stage, working 
conditions become drastically worse and the pair of materials in contact is quickly worn out. 
[1][5][14] 

The behavior of wear in Figure 10 in the "running-in" stage can be investigated using Figure 8. 
When the machine is freshly assembled, even the best prepared surfaces w i l l bear load only 
on an edge or a corner or a local high region. Therefore, the true contact area is quite small 
and the normal load is high. High load on small area results in high stress. This high stress 
is in the high-stress region in Figure 8. Because of this, the initial depth wear rate is extremely 
high and the original wear area is rapidly enlarged. A t this stage, caution is necessary to avoid 
catastrophe by the self-accelerating process of wear by the primary wear particles that cannot 
escape the contact. [5] 

There are generally three possibilities that can happen during running-in phase. The first 
possibility is when the surfaces are made initially near-enough to conform and the rapid wear 
brings their entire areas into mating, the run-in can be considered successful. When the stage 
of mating entire areas of the two given surfaces is reached, load is carried by bigger area, 
stresses should drop to the low-stress region on Figure 8 and the wear rate becomes smaller. 
This wear rate is often very small, especially compared to the initial running-in wear, that it may 
be negligible. It is often said that when the surfaces have reached the run-in condition, the wear 
ceases. This is sometimes ascribed to a "glazed" or otherwise specially conditioned surface. 
The best way of running-in the surfaces together is to simply operate in the low-stress region 
of the curve on Figure 8. [5] 

The second possibility is when the two surfaces are not made to conform. In this case, the initial 
wear area grows only gradually and the average stress remains in the high-stress region for 
a long time or even indefinitely. This leads to the wear during whole life of the part and 
no ceasing of the wear as in the first possibility. [5] 

The third possibility occurs when the growth of the wear area is sufficient to enable the stresses 
to drop into the low-stress region and therefore into the low-wear rate region, but the wear area 

10 



is still only a fraction of the designed area. The result of this is a surface not functioning properly 
such as gas or o i l seal in the case of piston rings. Rings pump the oi l , but their wear rate is 
so low that they w i l l never wear completely in a normal lifetime and the seals against the 
leakage of the transported medium w i l l not form. In the case of the piston rings, the surface 
is purposefully designed to be rough. This serves as an insurance that the surface stresses stay 
in the high-stress region, therefore in the high wear rate region until the ring is well in contact 
over most of its face and serves as the seal for the transported medium as it should. [5] 

Wear coefficient K 
When we take look at the equation (17), the Archard law in the form V = K N L / H , the important 
part of calculating wear is the wear coefficient K . It is a non-dimensional constant which 
physically represents the probability that during contact of two surfaces at asperity, the sizeable 
wear particle is produced. It is considered primarily for the softer surface of the two, since 
it's the one wearing faster. For harder surface, K is generally a 1/3 of the K of softer surface. 

A s mentioned before, the wear coefficient K physically represents the probability of producing 
a wear particle. In 1958, Rabinowicz [16] presented a criterion for the critical size of wear 
particle to come loose and supported it with experimental data. Rabinowicz criterion was 
confirmed in 2016 using quasi-molecular simulations by Aghababaei, Warner and Molinari 
( A W M ) in [17]. [16][17] 

Criterion is based on elastic energy. To detach a particle from the surface, elastic energy stored 
in the fragment needs to overcome the work of adhesion between the fragment and the surface 
to which it is attached. As explained more closely in [16], from the energy balance, we can 
extract critical diameter of wear particle d c as shown in equation (18). E is the Young modulus, 
W is work of adhesion of the system and o yf is yield strength of fragment material. If the particle 
is larger than critical diameter d c , it comes loose. 

Rabinowicz in 1981 [15] and many other authors conducted experiments to determine wear 
coefficients K for different material couples. Rabinowicz chose to aim his interest at metals 
with other lattice than H C P , no soft metals and metals with low oxidation rate. He did so with 
running experiments at N = 1kg, distance L calculated based on speed v = 0.01 m/s and time 
varied from 1 hour up to 96 hours. Hardness varied for each material and wear volume was 
determined by weighing the specimen before and after the experiment on precise scales and 
calculating the volume worn away. K is therefore calculated as shown in equation (19). 
Rabinowicz multiplied Hardness by 3 such as shown in equation (15) with 9 but equations 
usually have this form. [15] 

[15] 

30EW 

(18) 

(19) 
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He ran experiments with a group of materials consisting of A l , A g , Cu , Nb, N i , M o with various 
level of lubrication and based on their metallurgical compatibility - the extent to which the 
materials are alike and are expected to form strong bonds. Experiments are more closely 
explained in [15] and values for coefficient K as shown in Figure 11. are presented. The nature 
of the experiment focuses on adhesive wear, which is the most investigated form of wear since 
its most difficult to overcome and isn't entirely possible. More on the topic of adhesive wear 
and other types of wear is in chapter 1.2. As we can see, the K has tendency to decrease when 
we use metallurgically incompatible materials and assure good lubrication. [15] 

Identical Compatible 1 me mediate Incompatible 

Symbol O <•) & $ 
U ii lubricated 5x l0" 3 2x l0~ 3 4xI0" 4 5x10-5 
Poor lubricant 10"3 4x10-" SxlO" 5 10-' 
Good lubricant 10~4 4 x l 0 " s 8x lQ- f i I0"6 

Fig. 11 - Wear coefficient K values based on different metallurgical compatibility and lubrication [15] 

Table I. Wear rates, coefficients of friction and values of K. 
Load 400 g; speed 180 cm/sec. Rings are hardened tool steel except 
where stated otherwise. 

Material 
Wear rate 

1(T'0 cmVcm 

Coefficient 
of friction 

K 

Archard himself in 1961 made 
experiments as explained in [18] 
and arrived at values of K as 
shown in Figure 12. We can see 
that the range of K values is 
spread from 10"3 to 10"7 order, 
which is quite a big dispersion. 
[18] 

Wear coefficient K is hard to 
predict because it is dependent on 
more things than just the physical 
quantities mentioned in Archard 
equation. With wear being a 
complex phenomenon caused by variety of mechanism, as w i l l be explained in chapter X , such 
as adhesion, abrasion and these mechanisms also interacting with each other, wear coefficient 
is difficult to predict universally or even for each isolated mechanism of wear. Wear coefficient 
is also highly sensitive to the test conditions in which they are assumed such as parameters 
of the experiment or the temperature, lack of standardized test methods, statistical variability, 
material properties and possible even more. 

Mild steel on mild steel 
60/40 leaded brass 
P.T.F.E. 
Stellite 
Fenitic stainless steel 
Polythene 
Tungsten carbide on 

tungsten carbide 

1570 
240 
20 
3.2 
2.7 
0.3 
0.02 

0.62 
0.24 
0.18 
0 60 
0.53 
065 
0.35 

7.0X10-* 
6.0X10-* 
2.5X10-* 
5.5X10-» 
1.7X10-« 
1.3X10"7 

1.0X10-« 

Fig. 12 - Wear coefficient K values measured by Archard [18] 
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1.2. Wear mechanisms 
A s mentioned before, wear is a progressive loss of material from surfaces due to multiple 
reasons. With friction, wear is one of the main topics of the tribology field. However, it is still 
one of the least understood phenomena in tribology. This is partially because wear is influenced 
by many complex processes, such as contact, plasticity, crack nucleation and propagation, 
chemical reactions, material mixing, material transfer between surfaces, lubricants 
and formation of surface layers. [19] [20] 

In general, there are considered 7 mechanisms of wear: [19] [21] 

1. Abrasive from contact with hard sharp granular materials 
2. Abrasive from embedded particles 
3. Adhesive 
4. Fretting 
5. Cavitation erosion 
6. Particle erosion 
7. Fatigue of surfaces 

In the beginning of the process of modelling of the wear, it is necessary to choose the main 
wear mechanism. This is the reason why we must understand all of them and make an informed 
decision. 
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1.2.1. Abras ive wear from contact wi th hard sharp granular materials 
Abrasive wear is characterized by material removal from the surface by a cutting action 
or by a process of multiple indentation from abrasive particle, as seen in Figure 13. This process 
can be either controlled and intended or not. Controlled use is beneficial and done in processes 
like grinding, polishing or filing. When the process is not controlled, e.g. randomly occurring 
in machine operation, it becomes a problem. Surfaces damaged by abrasive wear can show 
multiple magnitudes of damage. It can be fine scratching when damaged lightly or deep gouges 
in the surface which can seriously impart functionality of a given machine part. Real life 
example is seen in Figure 14. [19] [22] 

Fig. 13 - Principle of abrasive wear from moving contact with Fig. 14 - Example of abrasive wear from moving contact with 
hard sharp granular materials [19] hard sharp granular materials [22] 

1.2.2. Abras ive wear from embedded particles 
Abrasive wear can also occur in two smooth surfaces, i f one of them has hard embedded 
particles in its surface. The debris leaving the material surface is different for different 
materials. Ductile materials, such as steel, can have spiral shaped debris. On the other hand, 
very hard materials tend to have debris in the form of chips. This is because of a local brittle 
fracture of the material. We can see the principle and real life case in Figures 15 and 16. [19] [22] 

Fig. 15 - Principle of abrasive wear from hard sharp Fig. 16- Example of abrasive wear from hard sharp 
particles trapped between moving surfaces [19] particles trapped between moving surfaces [22] 
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1.2.3. Adhes ive wear 
Adhesive wear is the mechanism occurring when two macroscopically smooth surfaces rub 
against each other. Generally, and as previously mentioned, each surface has a certain surface 
roughness. Therefore no surface is ideally flat. When two such surfaces make contact, rubbing 
occurs at the high spots as seen in Figure 17. These local areas experience concentrated contact 
loads and interactions and they tend to adhere to each other. This leads to material being 
dragged away along the surface. Surfaces damaged by adhesive wear mechanism show polished 
surface with fine flakes of wear debris and spots of "torn out" material. This can be very well 
seen in Figure 18. [19] [22] 

Fig. 17 - Principle of adhesive wear from the rubbing Fig. 18- Example of adhesive wear from the rubbing 
together of relatively smooth surfaces [19] together of relatively smooth surfaces [22] 

1.2.4. Fretting wear 
Fretting is a particular form of adhesive wear. It occurs during the contact of materials i f there 
are small oscillatory movements present. Principle presented at Figure 19. Oscillatory 
movements can be either intended or not. Intended movements are for example in gear 
couplings. Not intended movements can arise from many of reasons, for example from the 
deflection of machine components with clamped joints or press fits. The product of the fretting 
is usually fine powdered and oxidized wear debris. Fretting usually results in surface damage 
and roughening of the surfaces in contact. Fretting plays a huge role in the life cycle of the wire 
ropes. The reason for this are the relative deflections between the individual steel wires in the 
rod. These deflections arise due to changes in the load on the wire or during bending the wire 
around a pulley. Example of fretting wear damaged surface can be seen on Figure 20 [19] [22] 

Fig. 19 - Principle of fretting wear from the small Fig. 20 - Example of fretting wear from the small 
oscillatory movements between two smooth surfaces [19] oscillatory movements between two smooth surfaces [22] 
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1.2.5. Cavi ta t ion erosion 
Cavitation erosion as a process is the removal of material from the surface by the high speed 
impact of a liquid. Cavitation erosion occurs on the components that are subject to low transient 
fluid pressures on their surface. The scheme of this erosion formation can be seen in Figure 21. 
For example ships propellers. Collapse of a low pressure vapour bubbles make intense local 
impact on the surface of a component. How cavitation erosion damage appears in reality can 
be seen in Figure 22. [19] [22] 

Fig. 21 - Principle of cavitation wear caused by collapse Fig. 22 - Example of cavitation wear caused by collapse 
of the low pressure vapour bubbles [19] of the low pressure vapour bubbles [22] 

1.2.6. Particle erosion 
Particle erosion is the removal of material from the surface caused by a stream of hard particles 
carried in fluid flow as schematically shown in Figure 23. Particles can be directed at the surface 
purposefully as for example in shot blasting processes or it arises incidentally. Incidental 
particle stream affecting the surface is for example in the pipelines or in the components 
operating with sand or other particle. Surface heavily damaged by particle erosion is shown 
on Figure 24. [19] [22] 

V A -

Fig. 23 - Scheme of particle erosion from hard particles Fig. 24 - Example of particle erosion from hard particles 
in a stream of fluid [19] in a stream of fluid [22 ] 
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1.2.7. Fatigue o f surfaces 
Wear of the surface can be caused also by fatigue of surfaces. This occurs when fatigue cracks 
in the surface join to create loose particles. Surface fatigue can occur due to two different 
mechanisms. Either contact stress fatigue mechanism or thermal stress fatigue mechanism. 
Contact fatigue usually occurs in rolling contacts where the passage of another component, 
for example ball or roller, over the surface causes alternating tensile and compressive stresses 
as shown in Figure 25. These alternating stresses can create fatigue cracks. Surface damaged 
by contact stress fatigue is shown in Figure 27. The mechanism of thermal stress fatigue arises 
from the transient heating and cooling of surfaces. Especially when this effect is combined with 
surface frictional forces, for example in clutch plates or heavily loaded plain bearings. Another 
severe case of surface fatigue is when the studied surface is in contact with a very hot material, 
for example molten metal. Example of the thermal fatigue can be seen in Figure 26. [19] [22] 

Fig. 25 - Scheme of release of particles due to the fatigue Fig. 26 - Example of thermal stress fatigue [22] 
of the surface [19] 

Fig. 27 - Example of contact stress fatigue [22] 
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1.3. Adhes ive wear 
Adhesive wear was chosen as the primary mechanism for the given task of modelling the wear 
in turbocharger actuator mechanism in order to simplify the modelling. It w i l l therefore 
be described more profoundly in this section. The reason for this is deeper understanding and 
therefore better solving of the given problem. Mechanism of adhesive wear is briefly described 
in section 1.2.3 and the author recommends reading that section first, because this section 
is a follow-up. 

A s mentioned before, adhesive wear occurs when two smooth surfaces rub against each other. 
Surfaces have a certain surface roughness and the high spots tend to adhere to each other. The 
nature of this adhesion is the creation of atomic/molecular bonds same as creation of bonds 
between the atoms/molecules in material. When two surfaces "meet" and make contact, 
chemical bonds may be created. When the surfaces move, the bonds sometimes stay put and 
"pul l" the material out because its more energetically favorable. This leads to certain parts 
of material being torn out of the surface. [23] 

Out of all 7 wear mechanisms, adhesive wear is the one least avoidable and remains even when 
all other types of wear are eliminated. When we carefully control conditions during laboratory 
experiment, such as eliminating all corroding materials as well as all abrasives in 
the environment, it is never possible to completely avoid small amount of wear due to galling. 
[24] 

A s mentioned before, load is carried by the high spots of material, which creates 
the concentrated stresses in local points. It has been experimentally shown by Bowden and 
Tabor [7] in 1950 using electrical conductance in contacts, that area of these "high spots" is 
rarely greater than 1/100 of the apparent area of study and often as small as 1/10 000 of it. 
Because the true contact area is very small, it takes no more than a few kilograms of load 
to create high local pressures. Usually, these high local pressures exceed the yield point of the 
softer of the two materials. When we combine these high local pressures with the relative sliding 
motion, minute welds are being formed at each of the local areas. During continued sliding, 
welds are sheared. Welds often shear on their original surface of contact because the weld is not 
strong enough to pull the other material out. Due to work-hardening of the surface, some of 
the welds are as strong or stronger than the softer of the two base materials. 

I N 

Separat ion ' 
Fig. 28 - Adhesive wear mechanism (a) before contact; (b) during contact; (c) after contact [25] 
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Fig. 29- Two possible asperity-level adhesive wear mechanisms by [17]. (a) 
adhesive interaction between two asperities (b) gradual smoothing 
mechanism by plastic deformation (c) fracture-induced debris formation 
mechanism observed in AFM wear experiments. The red and blue coloring of 
atoms is artificial for better visualization. 

This leads to these strong welds 
shear not at their original surface 
of contact, but at the surface of 
the base materials, usually the 
softer one. This results in some of 
the softer material being 
transferred to the other, harder, 
surface. Figure 28 shows this 
schematically. [7] [25] 

Aghababaei, Warner and 
Molinari in 2016 also conducted 
simulations regarding 
the adhesive wear-mechanism 
at the asperity level. 
They observed both gradual 
smoothing by plastic deformation 
and fracture-induced debris 
formation. Schematically shown 
on Figure 29. [17] 

This transferred material may either be adhered to the latter surface and be worked into 
it or it can be knocked loose and become loose wear particle. According to Burwell [24], 
i f any of those two options happens, the softer surface of the two is subject to wear damage. 
In contrast, Neale [6] defines wear only in the case when the particle is broken away, not when 
it is transferred to the other surface. Because such transferred material often resides on a surface 
and may even go back to its original surface. According to Neale [6] the creation of the bonds 
(also called "cold welds") is only the first stage of the adhesive wear and by itself is not directly 
responsible for the wear. After that, some secondary mechanism is required to break the particle 
away from the surface and therefore cause wear as Neale describes it. The particles frequently 
form groups and break away as a single entity. There are many explanations for this 
phenomenon and Neale mentions the one where the elastic energy exceeds the surface energy 
and therefore causes break-away. This corresponds with Rabinowicz wear criterion [16] 
mentioned earlier. This final stage of the wear process is greatly affected by the environment. 
[6][7][24] 

Neale suggests looking upon the adhesive wear system as being in a state of dynamic 
equilibrium with its environment. Continuous sliding and the exposure of fresh surfaces 
is not able to go indefinitely. This situation is usually stabilized by the healing reaction of the 
air or other active components of the surrounding fluid. Rupturing and healing processes 
are therefore in balance. This balance can be upset by the change of the operating parameters 
such as speed of sliding. When the change of the balance occurs, the contact of two surfaces 
can abruptly be changed from low to high wearing stage. E.g. increasing the sliding speed 
not only reduces the time available for the healing processes, but also generates more heat 
by friction in contact, which may accelerate chemical reactions or desorb weakly bound 
adsorbents. [6] 
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In 1984 Rabinowicz characterized three general types of adhesive wear. Namely galling 
as severe wear, moderate wear and burnishing. Severe galling wear occurs primarily in metals 
with a high degree of metallurgical compatibility when the surfaces are clean or poorly 
lubricated. Wear coefficient for galling is in range 10"2 - 10"4 and wear particle sizes 
is approximately 200-20 urn. Severe adhesive wear in non-metal materials occurs very rarely. 
Moderate wear occurs when the surfaces are less compatible, well lubricated or pressure 
between the surfaces is low. For moderate wear, wear coefficient is typically in range 
10"4 - 10"7 and wear particle size ranges from 2 0 - 2 urn. The mildest form of adhesive wear, 
called burnishing, is encountered in special circumstances. Such circumstances can be e.g. high 
incompatibility of metal couple or one of the surfaces has H C P lattice, in low pressure and with 
good lubrication. When this happens, surfaces take on a burnished appearance, hence its name. 
Wear coefficient is in range 10"6 - 10"8 and no sizeable wear particles are observed. Transition 
between these adhesive wear regimes often occurs abruptly. [26] 

Even i f the wear process starts off as adhesive mechanism, the break-away of the particles 
is involved and therefore the mechanism can change to abrasive. A s mentioned before, abrasive 
wear is scratching or ploughing caused by hard particles in the softer surface. In most cases 
of adhesive wear, the wear debris is formed as oxides, which are generally hard and therefore 
cause abrasion to the surfaces. If the surfaces are subject to a small oscillatory motion, 
the fretting wear mechanism also helps the buildup of the debris between the surfaces. 
The debris later serves as the buffer between the two surfaces which slows down the wear rate. 
[61 

The most convenient demonstration method 
of adhesive wear is by means of radioactive 
tracers. In the technique of radioactive tracers, 
one of the surfaces in contact is made radioactive 
and the other surface is not. After this initial 
preparation, surfaces are rubbed together 
in experiment and then the surface without 
initial radioactivity is observed. Subject of the 
observation is the examination for evidence 
of radioactivity. Examination can be done either 
with a Geiger counter (electronic device used 
for detecting and measuring ionizing radiation) 
or by placing a photographic film in contact with 
the non-radioactive surface and allowing 
the particles of the transferred radioactive material to be revealed. This revelation can be seen 
in Figure 30 of autoradiograph of two friction tracks which occurred during rubbing 
in lubricated conditions. [24] 

Nature of the surfaces and the ambient conditions can profoundly affect the amount of adhesive 
material transfer. Regarding the nature of the surfaces, adhesive wear is greatest in the couple 
of same or similar materials, for example steel against steel. It is therefore recommended that 
we design a material couple that has contact between a metal and non-metal material, such 
as mineral, plastic or an oxide coating. [24] 

Fig. 30 - Autoradiograph of two friction tracks induced in 
lubricated conditions [24] 

20 



The reason why we never run two members of the same metal is explained by Holm in [21]. 
When we run two members of the different metals in the contact, the specific friction force 
v|/ (friction force F per true contact area A ) , the pressure and consequently also the contact area 
are prescribed by the strength of the softer member and the harder member prescribes 
the structure of the surface. If the structure of the surface of the harder member is smooth, 
the contact surface between two members remains smooth without interlocking. However, 
i f we run the same metal on both members, there is no "harder" or "softer" member. Both have 
the same properties. Therefore the pressure p and specific friction force \\i can produce plastic 
deformation in both members, not just the softer member. The contact surface of this same 
metal contact w i l l be in labile state and have a wavy structure. This wavy structure of contact 
surface w i l l lead to interlocking of the couple and therefore high wear. [21] 

Another important fact to consider is the cleanliness of the surfaces. In environments with lower 
pressures, e.g. at high altitudes or in vacuum, and i f the surfaces have been heated to drive off 
any adsorbed or oxide films, the material couple w i l l stick together in the slightest pressure. 
In this case, separating the materials is very difficult, which indicates the strong nature of the 
welding tendency, when all interfering materials i.e. atoms are removed. When the same 
material couple is put into an experiment in air (not vacuum), we would not be aware of any 
adhesion i f we haven't done the radioactive tracers measurement. Adhesion strength is greatly 
reduced by reducing the surface interactions at the surface and therefore even a few ppm 
of atoms of air decreases the adhesive strength. Thick films of liquids or gases reduce [i even 
more because it is easier to shear into a fluid f i lm than to shear solid to solid contact. Adhesion 
strength is reduced either by the presence of contaminants or deliberately applied fluid f i lm 
e.g. air, water or lubricant. [23] [24] 

From these two observations, we can infer that adhesive wear is most pronounced between 
similar materials and in vacuum conditions. Additionally, a crucial aspect to consider is the 
temperature dependency of adhesive wear. As temperatures rise, adhesive wear tends 
to accelerate. This phenomenon is attributed to the atomic-scale formation of welds, which 
can be likened to inter-atomic bonding, also explained as surface chemical reactions. In cases 
where materials are heated close to their melting points, inter-atomic bonds tend to weaken, 
while the bonds in the resulting cold welds tend to become stronger. Consequently, material 
galling becomes more severe. This underscores the tendency for low melting point materials, 
such as glass, to experience more pronounced galling compared to high melting point materials, 
such as ceramics. [24] 

The temperature in question is not only the temperature of the environment, but also the heat 
created by friction. Heating by friction is a self-regenerating process. Self-regenerating process 
meaning that when initial adhesive transfer of material produces a high spot on the surface, 
the high spot participates in the friction process and therefore increases it. With increased 
friction, an increase in the heating occurs and the temperature rises. Rise of the temperature 
leads to more severe galling and creation of more material transfers which create high spots 
because the adhesive force strength rises with temperature. Also , in metals, with rising 
temperature the yield strength decreases and ductility increases, which leads to an increase 
in the true contact area. This is therefore a cycle, a self-regenerating process. When this self-
regenerating process is not checked, it can rapidly lead to a large scale welding or freezing the 
surfaces together. In this case, surfaces become essentially one piece. If we want to separate 
this welded one piece of material couple, large scale damage is inevitable. [24] [27] 
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To reduce adhesive wear damage, we apply lubricants, whose primary function in reducing 
the adhesive wear is to insulate the two surfaces from each other. This insulation is done 
by introducing a layer of foreign material, lubricant, which w i l l prevent the welds from forming. 
Adhesive wear can be reduced greatly using proper lubrication, such as the most effective 
oiliness or E-P lubricants, but it cannot be eliminated completely. This incomplete elimination 
means that there are always a few welds present, which can be the starting points for large scale 
galling i f the conditions become sufficiently severe. [24] 

1.4. Mode l s o f adhesive wear 
Various approaches can be used to model or predict the wear. It can be Empirical Models that 
are based on experimental data and observation of wear under specific conditions, Finite 
Element Method for simulating the contact and interaction between the surfaces 
on macroscopic scale, Molecular Dynamics for understanding the behavior of contact at atomic 
and molecular scale, Fracture Mechanics in case of wear processes initiating and propagating 
the cracks or Thermal Mechanics to study the coupled effects of mechanical loading and heat 
generation. Each of those methods has its uses, advantages and shortcomings that can be found 
in literature. However, they are not the subject of this thesis as it focuses solely on empirical 
models such as Archard Wear Law to develop efficient wear model using various statistical 
or machine learning methods to predict wear occurring in turbocharger actuator mechanism. 

A s mentioned before, adhesive wear is the least avoidable wear type and by many authors also 
chosen as the main mechanism when considering the wear. In previous chapters, the difficulty 
of empirical "modeling" or "predicting" of the adhesive was stated with main factors 
of influence being the complexity of the wear process (contrary to our simplification 
to 7 distinctive wear mechanisms), temperature and pressure effects, chemical processes and 
many more facts. This chapter focuses only on empirical equations, which are supposed to 
predict specifically the adhesive wear mechanism and therefore ignoring 6 other types of wear 
mechanisms presented in chapter 1.2 in dry conditions. 

Apart from the most noted and used law i.e. Archard Law, many other authors proposed various 
equations with various variables to best predict the wear of materials. Most notable of these 
equations found in available literature were put together in Table 2 to choose the most suitable 
one for our case. Experimental setup and more specifics can be found in the respective articles 
of the authors cited. 

Table 2 - Empirical laws for adhesive wear by various authors 

Author 
Wear volume V [urn3] 

Wear depth h [urn] 
Weight loss A w [g] 

Wear coefficient K [-] Note 

KNL VH 
Archard [13] V = K = Archard [13] 

H NL 
Goryacheva 

[1] 
(integrated 
from wear 

rate) 

V = Kpavh 
V 

K = 5-
pax>P t 

a , ß = 
coefficients 
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Rhee [28] A w = KFavbtc 
A w 

pavbtc 

Aw = weight loss 
a,b,c = 

coefficients 

Yang [29] 
proposed wear 
coefficient K s 

put into 
Archard Law 

KSNL 
V = ——— where Ks -> 

3H 

3HC 

K s = steady state 
wear coefficient 

B , C = 
coefficients 

e = Euler number 
2.718... 

Bhattacharyya 
[30][31] 

V = KAL where K -> K = 5 ( 1 + eCp) 

B , C = 
coefficients 

e = Euler number 
2.718... 

Varenberg [32] 
extension for 
Archard law 

based on 
bearing curve 

ratio 

l 
h = - - I n ( (1 + eab)eaKPvt - eab) a 

1 (e-ah+eah\ 
K = In r -apvt \ l + eab J 

Extension of 
Archard Law for 

the running-in 
stage of wear 

h = wear depth 
a, b = constants 

Mishina [33] —(p;L) 
Where K —> 

1 n /b\3 

3 A \a) 

n = number of 
wear elements 

generated at the 
junction 

(physical) 
lambda = 

chemisorption 
rate (chemical) 
a, b = statistical 
parameters of 
junctions and 

asperities 
G y = yield stress 

Queener [34] A w = ß(l - e~nL) + KL 
Aw-ß(l-e-nL) 

K - L 

Aw = weight loss 
P = coefficient of 

maximum 
contribution to 

wear by transient 
mechanism 

n = coefficient 

23 



A s the most suitable equation for our purposes of modelling the adhesive wear, the Goryacheva 
[1] equation has been chosen as shown in equation (20) for wear volume and equation (21) 
for wear coefficient K . 

V = KpavPt (20) 

K = 
V 

(21) 

The Goryacheva equation contains experimental parameters pressure p, speed v, time 
t, measured value of wear volume V and coefficients K , a and p. This equation w i l l be employed 
in the Methodology chapter to see i f it can empirically predict the wear based on experimental 
parameters available for our use case. 

1.5. Mach ine learning 

1.5.1. Introduction to machine learning 
Machine learning ( M L ) has been around for more than 30 years in various forms, solving 
various problems in various fields and is one of the major reasons why today state of the 
art software can do the "magic" things it does. Things like speech recognition, ranking web 
search results, recommending you videos on platforms, filtering spam emails, recognition 
of images and many more. But what exactly is machine learning? 

In definition given in 1959 by Arthur Samuel: "Machine Learning is the field of study that gives 
computers the ability to learn without being explicitly programmed. " which simply explains 
the basic premise of M L . Instead of explicitly programming the system i f the email is spam 
or not, which would be impossible i f you wanted to cover every possible option of spam email, 
you can feed the model huge number of examples of what are spam emails and what are not 
spam emails. Based on mathematical algorithms, the program "learns" how spam email 
generally looks like and then, based on probability, it decides i f the incoming email is spam 
or not and forwards it to the appropriate folder in your mailbox. [35] 

Trad i t iona l app roach Mach ine learn ing app roach 

Data 
I 
I 
¥ 

Study the Train ML 
problem algorithm 

Analyze 
errors 

Fig. 31 - Traditional vs machine learning approach [35] 
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A s briefly mentioned in the previous paragraph, machine learning is fundamentally data driven 
i.e. algorithms learn patterns and relationships from data to make classifications (spam or not 
spam class assigned to each email in training data), predictions (e.g. value of certain feature, 
such as wear volume or price of stock in stock market) or decisions (mechanism to approve 
whether or not the person should have approved the credit card application). Data therefore 
plays big role in machine learning methods and we w i l l give it more attention later in this 
chapter. [35] [36] 

Machine learning approaches offer many advantages and disadvantages which we need 
to remember in order to maximize the potential of the methods in our use case. M L is good 
for problems that would need lots of fine tuning or long lists of rules (e.g. spam filter), Complex 
problems for which traditional approaches yield no solution, Fluctuating environments 
and offers scalability and adaptability for large datasets producing predictions with great 
accuracy. On the other hand, as with every method, M L has also shortcomings. Results are 
dependent on the quality and quantity of labeled data fed into the model, models may overfit 
or underfit (wil l be explained later), some models offer difficult interpretability 
(e.g. We don't know what exactly is happening inside Neural Networks hidden layers) and they 
often require significant computational resources. With these advantages and disadvantages 
in mind, we can deploy the M L methods on our use case and hopefully make quality 
assumptions about the use case. [35] [36] 

1.5.2. Categories o f machine learning 
Machine learning systems can be classified into categories by different criteria. Such 
as i f human supervision is present or not, i f the system is able to learn incrementally or not and 
whether learning is instance-based or model based. Instance-based learning is based 
on measuring similarities between new data points and existing data points, for example 
i f certain number of closest neighbors to the new data point represent certain class, the new data 
point w i l l also probably represent this class. Mode l based learning is about capturing underlying 
patterns and relationships in data such as predicting regression curve by which the data is fitted. 
For our purposes, machine learning w i l l require no need to learn incrementally and learning 
wi l l be model-based since our data doesn't have specified classes and we w i l l rather predict 
values by regression and other algorithms. Dividing machine learning by human supervision 
is the most important topic and w i l l be given separate attention below. [35] [36] 

The first category regarding human supervision in M L is supervised learning where the human 
supervision is present in the form of labeling the training data. For example the image of a dog 
is presented with the corresponding label "dog". When the algorithm makes prediction about 
new data, it is "told" i f it succeeded and labeled new unseen dog picture as "dog" or failed, 
labeling dog picture as for example "cat". Another example of labeled dataset is our use 
case - we have labeled values such as temperature, hardness ratio, C o F or wear volume and 
certain value for each feature. In broad terms, there is a supervisor to give the algorithm insight 
on how much a decision is good or bad, which wi l l be more specified in the metrics paragraph. 
Typical supervised learning tasks are classification (spam or not spam) and regression 
(predicting target numeric value). Most used algorithms in this category are Linear Regression 
(LR), Logistic Regression (LogR), K-Nearest Neighbors ( K N N ) , Support Vector Machines 
( S V M ) , Random Forest (RF) and Neural Networks (NN). This category wi l l be of greatest 
interest in this thesis. [35][36] 
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On the other hand of human supervision, there is learning without human supervision, called 
unsupervised learning, where training data is not labeled. It is therefore up to the algorithm 
to find the labels and define them. Model is therefore forced to learn the underlying structure 
of dataset and relationships between the data. Typical unsupervised learning tasks are clustering 
- detecting groups of similar features via e.g. K-Means Clustering, anomaly and novelty 
detection via e.g. One-class S V M or Isolation Forest (IF) and visualization, dimensionality 
reduction via Principal Component Analysis (PCA) . There is also a combination of supervised 
and unsupervised learning, called semisupervised learning, which operates with partially 
labeled data and utilizes combination of algorithms from both categories. Unsupervised and 
semisupervised learning are in large part not suitable for our use case and therefore w i l l be given 
no further attention in this chapter unless they seem effective to use. [35] [36] 

There is a third category of machine learning, regarding human supervision, called 
reinforcement learning. Reinforcement learning differs from the previous 2 categories. 
The learning system can observe the environment, select and perform actions. In return, it gets 
rewards for good actions or penalties for bad actions. The goal of the model is to find the best 
strategy to get the most reward over time. Imagine a robot placed in a maze and tasked with 
finding its way to the exit. The robot receives positive rewards for reaching the exit, negative 
rewards for hitting walls or obstacles, and zero rewards for moving without progress. 
Using reinforcement learning algorithms, the robot learns to navigate the maze efficiently 
by exploring different paths and learning from past experiences. [35] [36] 

1.5.3. Data and Feature engineering 
A s a popular saying in data science and machine learning goes "Garbage in, garbage out" 
the importance of good quality and quantity of data is the most vital part of any machine 
learning prediction. If we have poor quality data to enter, the result w i l l also be poor. Your 
dataset needs to be representative of the cases you want to generalize the model to. 
If not, you w i l l receive results based on the not representative sample which w i l l be different. 
Y o u should minimize the errors in data, remove outliers and noise so the system can detect 
underlying patterns regarding the general behavior. It has been proved that different machine 
algorithms from simple to complex perform almost identically well given enough data, as 
is shown in [37][38]. It is therefore in our best interest to obtain a lot of data with different 
values that are representative of the general behavior. Data measurement also needs to be done 
properly, so we do not introduce some bias already due to the nature of the measuring method 
for instance or with the methods of data scraping from online sources. This is called sampling 
bias. To summarize, the three main problems we want to avoid are the low quantity of data, 
non-representative data, and poor quality data. [35] [36] 

When we measure the data for machine learning, we want to include data from more than one 
parameter for training. Leť s demonstrate this with the example of predicting equipment failure. 
We take multiple parameters into consideration, such as operating time, number of cycles, 
temperature, load or humidity. These parameters are called features and the process of selecting 
a good set of features is called feature engineering. Feature engineering involves feature 
selection, feature extraction and creating new features by gathering new data. Feature selection 
is when we choose features to put into the model such as operating time and other 
beforementioned when we think they are relevant to a problem and we can base our predictions 
on them. We don't necessarily need to use all the features obtained from the measurement, 
e.g. the information what color the equipment is i f it 's not affecting the mechanical properties 
of the equipment. Feature extraction is about combining existing features to produce a more 
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useful feature such as when we have hardness values of two surfaces in contact, we can combine 
them and create hardness ratio between two surfaces. If we see that some other features can 
be added, we can create a new method of data collection from the experiment and add the 
feature to our dataset. Feature engineering also has methods to produce feature importance 
which tell us the relative importance of each feature in making a prediction, i.e. which features 
the model performance is based on mostly, assigning low score to un-important features and 
high score to important features. For different models are different techniques to calculate 
feature importance. In linear models, the coefficients assigned to each feature indicate their 
importance, the larger, the better. In decision tree based models, as Random Forest (RF) 
or Gradient Boosting Machines ( G B M ) , feature importance is based on how frequently the 
feature is used to split to split the data across all decision trees in the ensemble. Other methods 
are Permutation importance and SHAP or also possibly Principal Component Analysis (PCA) 
which is primarily used as dimensionality-reduction technique but can indirectly highlight the 
importance of feature. [35] [36] [39] 

1.5.4. Holdout validation, Generalization error 
These features form the so-called "Feature matrix" usually noted X , which contains all the 
feature vectors x. Corresponding to each feature vector is target value. A l l target values make 
so-called "target vector", usually noted y. Supervised M L algorithm is then given input in form 
of feature matrix X and corresponding target vector y. [35] [36] 

To train a successful M L model, you must train the model on seen data and test the performance 
of the model on unseen data to see i f the model generalizes well for unseen data, not just for 
training data. This process is called holdout validation and the result metric of performance 
on unseen data is called generalization error. Holdout validation is usually done by splitting 
the dataset into "training sef and "test sef as shown in Figure 32. This is usually done in ratio 
60/40 or 80/20 with former being train set and latter test set. Sometimes, the split is performed 
into 3 different sets - third one being "validation set" which is used for tuning 
the hyperparameters or choosing the best model. A hyperparameter is the parameter of model 
that is not learned by the model itself in the process, but rather setting that controls the learning 
process. Examples of hyperparameter are the learning rate controlling the step size at which 
the model parameters are updated during training in Gradient Descent (GD) methods or number 
of hidden layers in a neural networks, both of which w i l l be explained in dedicated sub-chapter 
later in this chapter. 

Full Dataset 

0. Arrange data 

Features Target 

1. Tra in Test Split 

^Consists of: 
a- Random 
sampling 

b. Split into 
training & test 

sets 

X_train y_train 

2. Use for training 

X test y_test 

— 3. Use for testing 

ML Model 

Fig. 32 - Splitting dataset into training and testing set [40] 
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The model is given X matrix from training set (Xjxain) with corresponding target vector y 
(yjxain) and learns underlying patterns and relationships i.e. what in X t r a i n "leads" to the 
values in y jxa in . Then the model is given X matrix from test set (X_test) and predicts target 
vector values based on what it learned from the X j x a i n and y j r a i n . Model obtains predicted 
vector of target values (y_pred). This predicted vector y_pred is then compared with real values 
of initial withheld target vector values (yjest). The model is then evaluated using various 
metrics to see how well it can predict values of unseen data. Metrics by which models 
are evaluated w i l l be discussed later. [35] [36] [40] 

10-

4- ! 

300 

Good 
model 

Underfitting 
model 

X Overfitting 
* * model 

0 

Two different problems with 
generalizing the model on the 
unseen data can happen. Either 
overfitting or underfitting the 
data. Remember that the model 
is trained on the train set and 
tested using test set. We wi l l 
show the two problems on the 
plotted curve, which was created 
as 2 n d degree polynomial with 
noise. Therefore, 2 n d degree - 3 _ 2 

polynomial regression should 
be best fit to regress the data and Fig. 33 - Overfitting, Underfitting and Good model of regression [35] 

too small degree polynomial and 
too high degree polynomial w i l l be used to show overfitting and underfitting. [35] [36] 

Simply put, i f the model is too complex, such as high degree polynomial depicted in green 
in Figure 33, it fits the data well in the range of -2 to 2, but for bigger range, the polynomial 
goes into high values and predictions based on it would be very bad. This is clear sign 
of overfitting. We can recognize the problem of overfitting when the model performs well 
on the training data but poorly on unseen test data. Possible solutions to overfitting are 
to simplify the model such as selecting model with fewer parameters or applying regularization 
to take away some degrees of freedom from the model, gathering more training data or reduce 
noise in training data (fix errors and remove outliers). [35] [36] 

On the other hand, when we look at the linear regression curve in red in Figure 33, we can see 
the opposite problem. The linear model does not fit the training data well and would predict 
nonsense when it would be deployed on the test set. It is basically too simple to learn the 
underlying structure of the data, meaning that reality is more complex than this chosen model. 
Underfitting can be recognized when the model performs poorly both on the training set and 
test set. Underfitting can be fixed by selecting more powerful model with more parameters, 
feeding better features to the algorithm, or reducing the constraints on the model assigned 
via regularization. [35] [36] 

Models ' generalization performance and hence also overfitting and underfitting can be detected 
initially by visual cues, such as our example with polynomials, or by more precise methods. 
Most notable of these methods are the use of learning curves to plot performance of model as a 
function of dataset size or training duration to see i f model performs badly on the test data 
(overfitting) or badly on both train and test set (underfitting) and the use of Cross-validation. 
Usually performed as k-fold cross validation, with k being usually 5-10, the method parts the 
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dataset into multiple "folds" and iteratively trains the model on k-1 folds while testing it on the 
remaining one fold. This process involves iterating so each fold is once the test set and gives 
comprehensive evaluation of models' generalization performance over different test sets 
(folds). [35] [36] 

1.5.5. Performance metric s 
A s with every method in engineering and technology, some metrics to quantify the performance 
and properties of the method or its parts is necessary. Out thesis focuses on regression tasks, 
so the according metrics w i l l be provided in detail. Most notable of them are mean absolute 
error, mean squared error, root mean squared error, coefficient of determination (r-squared) 
and adjusted r-squared. These metrics w i l l be used later in this thesis to compare 
the performance of models created in the methodology chapter. Regarding classification as the 
second important task performed in supervised M L , most important metrics are accuracy, 
precision, recall and Fl score among others, but these are not important in the context 
of our use case, so they w i l l be given no more attention in this thesis. [35][36] 

M e a n absolute error ( M A E ) 
Calculates average distance (average absolute 
difference) shown in Figure 34 between the 
values predicted by model and the actual 
values. Average error is easy to count and 
straightforward to interpret but is less 
sensitive to outliers than M S E and R M S E . 
Calculation of M A E is shown in equation 
(22). y; is actual value, y is predicted value 
and n is number of values. [41] [42] 

Distance. 

Actual 
values |y0 - /j 

Values predicted 
by model 

7r| 

3 0 : j 

Fig. 34 - mean absolute error calculation schematic [41] 

MAE = ^ = l l y ' — — (22) 
n 

M e a n squared error ( M S E ) 
Calculates average squared distance (average of squared differences) between predicted values 
and actual values. Calculation of M S E is similar to M A E , but every distance is squared before 
summing up as shown in equation (23). M S E is more sensitive to outliers because their larger 
distance from predicted value becomes even larger by squaring it. Units of M S E are the squared 
units of target variable y, which is less intuitive than to interpret. [43] 

MSE = Zi=i\yt-?i\2

 ( 2 3 ) 

n 
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Root mean squared error ( R M S E ) 
To provide a more interpretable measure of the mean squared error unit, the square root is made. 
This metric is called root mean squared error and shares similar properties as M S E but is easier 
to interpret. It is simply square root of M S E as shown in equation (24). [41] [44] 

Coefficient o f determination (R2) 
Coefficient of determination, also called R-squared, represents the proportion of variance in the 
target variable that is explained by the model. Measuring how well the model fits the observed 
data. R2 values range from 0 to 1, with 1 being perfect fit and zero being no fit at all. Therefore, 
higher R2 suggests better model. R2 does not provide information about the direction 
or magnitude of errors. R2 is calculated from the sum of squared residuals (SSR) and total sum 
of squares (TSS) as shown in Figure 35 and equation (25). yi is the actual value, y is predicted 
value, y is mean value and n is number of values. If we have good fit, as we can see in blue 
SSR, the SSR value is small, making the SSR/TSS ratio small and therefore we subtract small 
part from 1. 1 minus small SSR/TSS is close to one and that means good fit. [45] 

RMSE = I I U I y . - £ l 2 

(24) 
n 

TSS SSR 

V 

Fig. 35 - R2 schematic of total sum of squares and sum of squared residuals [45] 

« 2 = 1 -
SSR 

TSS 
= 1 - Z ? = i ( y . - f l ) 2 

I I U ( y . - y ) 2 

(25) 
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Adjusted coefficient o f determination (Adjusted R2) 
Coefficient of determination can be also adjusted for number of terms we have (x i , X2, . . . . ,x n). 
This is performed because classic R2 is automatically upgraded with each added term x; but 
this addition does not necessarily enhance the model. Most used correction for calculating 
adjusted R2 is the correction by Mordecai Ezekiel taking into account the degrees of freedom 
of model and its variables as shown in equation (26). R2 is the classic coefficient 
of determination, n is number of values (sample size) and p is the total number of explanatory 
variables in the model. [45] 

R2 = 1 - (1-R2) — — X — (26) 
v J n - p - 1 

Exp la ined variance score ( E V S ) 
E V S calculates the ratio between variance of the difference between the true and predicted 
values to the variance of true values. The resulting score ranges between -inf and 1 with score 
of 1 indicating perfect match and score 0 is indicating that the model does not perform better 
than predicting the mean of the true values. It is similar metric as R2, but the two are not the 
same. R2 focuses rather on overall goodness of the fit of model and E V S on model's predictive 
ability. Calculation of E V S is shown in equation (27). y is actual value, y is predicted value. 
[46] 

var(y — y) 
EVS = 1 ^ - - ^ (27) 

var[y) 

These metrics w i l l be used to evaluate proposed machine learning models in the methodology 
chapter of this thesis and their performance w i l l be compared based on them. Most important 
supervised learning models for regression task, hence our use case, are described in following 
sections. 
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1.5.6. Support Vec tor Mach ine 
Support vector machine ( S V M ) is versatile powerful M L model for linear and non-linear 
classification, regression, and outlier detection. For classification tasks, S V M finds the line with 
greatest margins (largest street possible) that divides the data and sorts it into binary classes. 
The name of the method is derived from the support vector which is the edge of the street shown 
in Figure 36 as dashed line. Support vector regression (SVR) uses contrary approach - instead 
of trying to fit largest possible street between two classes while limiting margin violations 
as classification task S V M does, S V R tries to fit as many instances as possible on the street 
while limiting the margin violations. I.e. find the street that has the most instances on it and not 
many instances off it. This is schematically shown in Figure 36 since S V R is the primary 
concern for our use case regarding the S V M algorithms. The width of the street in S V R model 
is controlled by hyperparameter 8. Changin the value of 8 hyperparameter is also shown 
in Figure 36. The higher the s, the wider the street. [35] [47] 

£ = 1.5 £ = 0 . 5 

3-1 . • . 1 A , , , 1 
0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 1,5 2.0 

Fig. 36 - Principle of SVR and changing the s hyperparameter for width of the street [35] 

S V R supports both linear and nonlinear regression. Adding more training instances within the 
margin (on the street) does not affect the model's predictions, hence the model is e-insensitive. 
In this thesis, we w i l l use scikit-learn LinearSVR (linear regression) and S V R (polynomial 
regression) models. Both LinearSVR and S V R require scaling of the dataset, in our thesis done 
via scikit-learn M i n M a x Scaler. Time complexity of LinearSVR in big-0 notation is roughly 
O(m-n) and time complexity of S V R is 0 ( m A 2 n ) to 0 ( m A 3 n ) . [35][47] 

For our use case, S V R from scikit-learn w i l l be used. Defined parameters are: 

• C - Regularization parameter. Strength of regularization is inversely proportional 
to C and penalty is squared L 2 . 

• Epsilon - Width of the street 
• Kernel - Kernel type used in algorithm - function that transform the data into a higher-

dimensional space 
• Gamma - Kernel coefficient for rbf, poly and sigmoid kernels 
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1.5.7. Random Forests 
Random Forest (RF) is an ensemble method based on the combination of Decision Trees (DT). 
Decision Trees are M L algorithms for both classification and regression tasks. Decision Trees 
present a flowchart-like structure in which each node represents a decision point or test on the 
feature, as shown in Figure 37. If the test result is True, the outcome moves to corresponding 
node to next layer or to the other in False result. Initially, the entire dataset is put in as Root 
node, then multiple Internal nodes act as decision points which the value is sent through and in 
the end Leaf Nodes are the nodes for regression values which predict the target value. 
So, at each point, the node uses some criteria to decide which direction send the value next until 
it comes to the terminal Leaf node and presents the value a predicted. [35] [48] 

mse = 0.018^ 
samples = 20 
value = 0.854 

x1 <= 0.197 
mse = 0.098 

samples = 200 
value = 0.354 

False 

x1 <= 0.092 
mse = 0.038 
samples = 44 
value = 0.689 

x1 <= 0.772 
mse = 0.074 

samples = 156 
value = 0.259 

mse = 0.013 
samples = 24 
value = 0.552 

mse = 0.015 
samples = 110 
value = 0.111 

Fig. 37 - Decision Tree Algorithm [35] 
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Fig. 38 - Decision Tree fitting curve - average of region 
[35] 

Random Forest (RF) is an ensemble method that builds upon the principles of Decision Trees 
to enhance predictive performance and robustness. It operates by constructing a multitude 
of Decision Trees during training time and outputting the class that is the mode of the classes 
(classification) or the mean prediction (regression) of the individual trees. The fundamental 
concept behind Random Forests is to introduce randomness into the model building process 
to create a diverse set of trees. This is achieved through two main mechanisms: bootstrapping 
and feature randomness. Bootstrapping involves generating multiple training datasets 
by sampling with replacement from the original dataset, ensuring each tree is trained on 
a different subset of data. Feature randomness selects a random subset of features for each split 
in the trees, promoting diversity among the trees and reducing the likelihood of overfitting. 
B y aggregating the predictions of these diverse trees, Random Forests mitigate the variance 
inherent in single Decision Trees, leading to improved accuracy and generalization. 
Additionally, Random Forests provide an internal estimate of error, known as out-of-bag 
(OOB) error, and a measure of feature importance, aiding in the interpretability of the model. 
[35][48] 

For our use case, RandomForestRegressor from scikit-learn w i l l be used. Defined parameters 
are: 

• N estimators - Number of decision trees in the forest 
• M a x depth - Maximum depth of tree for prediction 
• M i n samples split - Min imum number of samples required to split an internal node 
• M i n samples leaf - Min imum number of samples to be at a leaf node 
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• M i n weight fraction - The minimum weighted fraction of the sum total of weights 
required to be at a leaf node 

• M a x leaf nodes - Maximal number of leaf nodes 
• M i n impurity decrease - A node w i l l be split i f this split induces a decrease of the 

impurity equal or greater than this value 

Generate initial 
population of N random 

individuals 

Apply reproduction 
operators (Crossover 

and mutation) 

Apply selection 
mechanism based on 

fitness 

No Apply selection 
mechanism based on 

fitness 

Evaluate fitness for 
all individuals 

1.5.8. Genetic A l g o r i t h m 
Genetic Algorithm (GA) or Genetic 
Programming (GP) is a bio-inspired A I 
approach based on natural selection - the 
process that drives biological evolution, 
where only the fittest individuals survive and 
reproduce. It is used for both constrained and 
unconstrained optimization problems. G A 
repeatedly modifies a population of 
individual solutions to converge towards the 
best result. A t each step, the G A selects 
individuals from the current population 
(parents) to produce the next generation 
(children). With each successive generation, 
the population evolves toward an optimal 
solution. In the context of G A , the population 
consists of a variety of potential solutions to 
the problem at hand, which are often 
represented as mathematical models or Fig. 39 - Genetic algorithm [49] 

encoded as chromosomes. With each 

generation, only the fittest individuals - those that best meet the criteria defined by the fitness 
function - are more likely to survive and contribute to the next generation. This is schematically 
shown in Figure 39. [49] [50] [51] 

The creation of a new generation is governed by three main operators: Selection, Crossover, 
and Mutation: 

Yes 

Return 
best 

individual 

• Selection: This operator selects the fittest individuals from the current population to act 
as parents for the next generation. These individuals are often referred to as the elite 

• Crossover: Also known as recombination, this operator combines genetic information 
from two parent individuals to create one or more offspring. This mimics biological 
reproduction and allows for the mixing of traits. 

• Mutation: This operator introduces random changes to individual parents, creating 
variation in the offspring. Mutation helps maintain genetic diversity within the 
population and prevents premature convergence on suboptimal solutions. 

The algorithm begins with the creation of a random initial population. Subsequent generations 
are created based on the rules specified above. Each generation is evaluated using a fitness 
function, which scores how well each individual mathematical model solves the problem. The 
individuals with the highest fitness scores are more likely to be selected as parents (elite) for the 
next generation. [49] [50] [51] 
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The G A process continues iterating through generations until stopping criteria are met. These 
criteria are either reaching the set number of generations, reaching the early stopping threshold 
of fitness function i.e. the fitness function is "good" enough to stop iterating or other criteria. 
[49][50][51] 

For our use case, Symbolic Regressor from GPlearn w i l l be used. Defined parameters are: 

• Population size: The number of mathematical models evaluated in each generation. 
• Generations: The number of iterations the algorithm w i l l run. 
• Tournament size: The number of top models that compete to become part of the next 

generation. 
• Stopping criteria: The fitness function threshold below which the model stops evolving. 
• M a x samples: The fraction of data drawn from the feature matrix to evaluate each 

model. 
• Parsimony coefficient: A constant that penalizes large programs by adjusting their 

fitness function to be less favorable to selection. 
• Function set: The set of functions used to build and evolve mathematical models, 

ranging from basic functions like addition, subtraction, multiplication, and division, 
to more complex functions like logarithms, sine, cosine, and tangent. 
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1.5.9. A r t i f i c i a l Neura l Networks 
Introduced in 1943 by McCul loch and Pitts, Artificial neural networks ( A N N ) or just Neural 
Networks (NN) are M L models inspired by the networks of biological neurons found in our 
brain. They are versatile, powerful, and scalable which makes them ideal for tackling large and 
high complex M L tasks such as classifying billions of images, powering speech recognition 
or beating the world champion at the game of Go. Since 1943, development of N N s has gone 
through different phases of development speed and today age is well supporting for them. 
There is large amounts of data on the internet, massive increases in computing power since 
1990s to this day and also major fundings. In 2024, with A I boom already in motion, mainly 
because of Large Language Models ( L L M s ) , it makes only sense that N N s might be beneficial 
for this thesis and its predictions. [35] [52] 

In the human brain, a neuron is a specialized cell that processes and transmits electrical 
and chemical signals, enabling communication between different parts of the nervous system. 
A N N s were inspired by this and Artificial Neuron (AN) is computational unit that processes 
input data using weighted connections and activation functions to produce output signals, 
mimicking the behavior of biological neurons. The simplest A N proposed by McCul loch and 
Pitts in 1943 has one or more binary inputs (on/off) i.e. one or more connections to other 
neurons, and one binary output. This serves well for logical operations. [35] 

In 1957, Frank Rosenblatt invented a 
different form of A N called threshold logic 
unit (TLU) also sometimes called linear 
threshold unit (LTU) in A N N architecture 
called the Perceptron. In T L U , the inputs and 
outputs are numbers (instead of binary 
values) and each input connection is 
associated with weight. The T L U computes a 
weighted sum of its inputs, then applies a step 
function to that sum and outputs the result h w , 
The schematic of T L U is shown in Figure 40. 
Step function is usually heaviside function 
which produces 0 i f z < 0 and 1 i f z > 0. This single T L U can be used for simple linear binary 
classification - based on different inputs, T L U computes linear combination of them and i f the 
result exceeds a threshold, it outputs the positive class, otherwise the negative. 

Perceptron is then composed as a single layer of T L U s with each T L U connected to all the 
inputs. When all the neurons in a layer are 

Output : hjx) = s tep (x T w ) 

Step funct ion: s tep(z) 

We igh ted s u m : z = x T w 

Weigh ts 

Inputs 

Fig. 40 - Threshold logic unit: an artificial neuron which 
computes a weighted sum [35] 

connected to every neuron in the previous 
layer, the layer is called dense layer or fully 
connected layer. Perceptron also contains 
input neurons, which the inputs of Perceptron 
are fed in. Input neurons output whatever they 
are fed. There is also bias neuron that 
represents the extra bias feature and outputs 1 
every time. Example of the perceptron 
architecture is shown in Figure 41. This 
architecture has two inputs, one bias feature 
and 3 outputs. 

Outputs 

TLU • 

Bias neuron 
(always outputs 1) 

t Output 
' layer 

Input 
layer 

Input neuron 
(passthrough) 

Inputs 

Fig. 41 - Single layer perceptron architecture with two inputs, 
one bias neuron and 3 outputs [35] 
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It can classify instances simultaneously into three different binary classes, making 
it a multioutput classifier. Outputs of dense layer of neurons is efficiently calculated using 
formula in equation (28) where X is the matrix of input features, W is weight matrix containing 
all the weight except for bias neuron, b is the bias vector containing all weights between bias 
neuron and all artificial neurons, § is the activation function such as sigmoid, tanh or R E L U . In 
the case of artificial neurons being T L U s , it is called step function as mentioned previously. 
The activation function w i l l be discussed more promptly later. [35] [52] 

hw,b = <KXW + b) (28) 

Perceptron is then trained by employing the Hebb's rule which suggests that when biological 
neuron triggers another neuron often, the connection between the two grows stronger. In the 
case of perceptron, every output neuron that produced a wrong prediction, connection weights 
for all the inputs that would provide the correct prediction are reinforced. Simple perceptron 
architectures are also unable to learn complex patterns because the decision boundary of each 
input neuron is linear or solve trivial problems such as X O R function. More on the topic 
is explained in various literature, but some of the limitations of simple single layer perceptrons 
can be eliminated by stacking multiple perceptron layers. This A N N architecture is called 
Multilayer perceptron (MLP). [35] [52] 

M L P is composed of multiple layers. One 
input layer (passthrough - outputs input), one 
or more hidden layers (TLUs - input 0 or 1 
based on exceeding threshold) and one output 
layer (TLUs) . This architecture can be seen 
in Figure 42. If the A N N contains a deep 
stack of hidden layers, it is called deep neural 
network (DNN). The layers close to input 
layer are usually called lower layers and 
layers close to output layer are upper layers. 
Every layer except the output layer is fully r . A~. , . t „ , . , , 

J J r r J J ftg, 42 - Multilayer perceptron with two inputs, one hidden 
Connected to the next layer and includes a bias layer of four neurons and output layer of three neurons [35] 

neuron. In this architecture, the signal flows 
only in one direction, from inputs to outputs, making it the example of feedforward neural 
network (FNN). 

Unti l 1986, training of M L P s was without success, until Rumelhart, Hinton and Will iams 
introduced backpropagation training algorithm that is still used today. Backpropagation works 
like Gradient Descent - in one forward and one backward pass through the network, 
the backpropagation algorithm can compute the gradient of network's error with regard of every 
single model parameter i.e. find how each connection weight and each bias term can be tweaked 
to reduce the error. Then the regular G D step is performed and the whole process 
of backpropagation is repeated until the network converges to the solution. [35] [52] 

Gradient descent approach brought a key change to M L P architecture - the heaviside step 
function was replaced by activation function. The Heaviside function only has flat segments 
and the resulting derivative for gradient would be zero. On the other hand, activation functions 
such as sigmoid, hyperbolic tangent (tanh) or Rectified Linear Unit (RELU) function have better 
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properties regarding the differentiation and are therefore more suitable for this backpropagation 
(using gradient descent). [35] [52] 

Different activation functions present different valuable properties. Sigmoid (logistic) function 
has a well-defined derivative everywhere that allows G D to make progress in every step. Tanh 
function is also differentiable everywhere and its ranging from -1 to 1 tends to make output 
of each layer more or less centered around zero, which speeds up the convergence. R E L U 
function is not differentiable at zero, but in practice works very well and is fast to compute. 
Because of not having maximum output value, R E L U reduces some issues during G D . R E L U 
is usually the default activation function nowadays. Alternative later used in the thesis is 
the Leaky R E L U function - which instead of flat slope for negative values as R E L U , has 
slightly decreasing slope for negative values. A l l of these functions and their derivatives can 
be seen in Figure 43. Without the activation function, i.e. without non-linearity between the 
layers, we wouldn't be able to solve very complex problems. The reason for that is, because the 
chaining of two linear functions f(x) and g(x) such that f(g(x)) gives you also the linear function. 
If this were the case, even deep stack of layers would behave as one single layer and the 
intention of having multiple layer network would be lost. As mentioned before, the activation 
function introduces non-linearity, by deciding i f the neuron should be activated (when input 
to it exceeds the threshold of activation function) or remain inactive and i f so, to what extent 
it should activate. [35] [52] 

Activation functions Derivatives 

-1.0 

- 4 - 7 0 7 4 4 - 7 0 7 4 

Fig. 43 - Activation functions sigmoid, tanh and RELU and heaviside step function with their derivates [35] 

Now that we know what M L P is, Figure 44. shows the typical regression M L P architecture. 

Hyperparameter Typical value 

# input neurons One per input feature (e.g., 28 x 28 = 784for MNIST) 

# hidden layers Depends on the problem, but typically 1 to 5 

# neurons per hidden layer Depends on the problem, but typically 10 to 100 

# output neurons 1 per prediction dimension 

Hidden activation ReLU (or SELL), see Chapter 11) 

Output activation None, or ReLU/softplus (if positive outputs) or logistic/tanh (if bounded outputs) 

Loss function MSE or MAE/Huber (if outliers) 

Fig. 44 - Typical regression MLP architecture [35] 

*MNIST stands for Modified National Institute of Standards and Technology database of handwritten digits that 
are 28x28 pixels and the dataset is used as a worldwide machine learning benchmark. 
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A s Figure 44 shows, the Neural Networks have many hyperparameters, which offers good 
flexibility but also is one of their main drawbacks - many hyperparameters to tweak. Another 
major drawbacks are the "black box" nature of NNs , tendency to overfit, computational 
intensity and as with all M L models - dependence on the data quality and quantity. On the other 
hand, they offer many advantages such as the ability to model nonlinear relationships, learn 
features itself, scalability, universal approximation, adaptability and parallel processing. 

Back to hyperparameters tweaking, there are multiple options to find the hyperparameters 
for best performing N N . One option is to try many combinations of hyperparameters to see 
which works best on validation set or use K-fo ld cross-validation. This can be done via 
GridSearchCV or RandomizedSearchCV to explore the hyperparameter space. GridSearchCV 
is good for small hyperparameter space as it tries the parameters and values that you specify. 
RandomizedSearchCV is better for large hyperparameter spaces, since it evaluates a given 
number of random combinations by selecting a random value for each hyperparameter at every 
iteration. RandomizedSearchCV is better for NNs . Randomized search is good for problems 
with small feature number and small dataset, otherwise it is very time consuming. Good practice 
is to run randomized search on wide range of parameters and then run another one on the region 
that performed the best in hyperparameter space. Some dedicated Python libraries, such 
as Hyperopt, do the zooming process and focus the hyperparameter search on the good 
performance regions in hyperparameter space. [35] [52] 

Most important hyperparameters are number of hidden layers, number of neurons per hidden 
layer, learning rate, optimizer, batch size, activation function, number of iterations and 
regularization techniques. The following hyperparameters w i l l be concisely explained 
in the following paragraph. [35] [52] 

The number of hidden layers depends on the task complexity. Many problems get reasonable 
results with one or two hidden layers in A N N but for more complex problems, the better. If the 
problem is complex, ramp up the number of hidden layers until the model starts overfitting. The 
number of neurons in the input and output layers is determined by the type of input and output. 
One neuron per one input/output. In our case, 3-7 neurons in input layer for non-constant 
parameters of experiment or calculated features and one neuron in output layer that is predicted 
wear volume. The number of neurons in hidden layers needs to be set. Nowadays, most 
architectures are made with the same number of neurons in the hidden layer and sometimes the 
first hidden layer is bigger. It is better to increase the number of hidden layers instead of neurons 
in the hidden layer. In practice, it is also better to choose a more complex model with more 
hidden layers and neurons than you need and then apply early stopping or other regularization 
techniques to prevent overfitting. The learning rate as mentioned earlier is the step size 
in optimizers (e.g. G D ) , which influences the rate at which the model updates its parameters 
and arguably the most important hyperparameter. In general, the optimal learning rate is about 
half of the maximum learning rate i.e. the learning rate above which the algorithm diverges. 
A good approach is to train model for few hundred iterations with learning rate ranging from 
10e-5 to 10, plot loss-learning rate and setting the optimal learning rate of the model to the 
value before the loss in plot starts to climb up. Optimizer is an algorithm that updates the 
model's parameters based on the gradients of loss function, with the learning rate value being 
a step size. Simple optimizers are the Stochastic and Mini-batch gradient descents, but better 
performing optimizers such as A D A M , RMSProp or AdaGrad can be used. Batch size specifies 
the number of training samples processed in each iteration or mini-batch during training. 
Suggested strategy by the author is to try a large batch size, using learning rate warmup and 
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i f the training is unstable or the final performance is disappointing, use small batch size instead. 
Activation functions were discussed earlier. In general R E L U function w i l l be good default for 
all hidden layers and the default function for output layer depends on the task. Number 
of iterations known as epochs denotes the number of times the entire training dataset is passed 
forward and backward through the network during training. Epochs usually doesn't need 
to be tweaked, use the early stopping instead. [35] [52] 

Neural Networks, especially Deep N N s usually have lots of parameters which gives them 
an incredible amount of freedom. As mentioned before, it 's great for fitting complex datasets 
but prone to overfitting. To counter this, regularization is applied. Most notable regularization 
techniques are Early stopping, L I and L 2 Regularization, Dropout and others. Early stopping 
regularizes the iterative learning algorithm by stopping the training as soon as the validation 
error reaches a minimum i.e. the validation error would want to climb higher which would 
suggest overfitting. L I and L 2 are techniques to penalize large weights in N N s cost function 
( M S E , R M S E etc.). L I adds a penalty term proportional to the absolute value of the weights 
(LI norm) to the cost function and L 2 , sometimes referred to as weight decay, adds a penalty 
term proportional to the square of the weights (L2 norm). Dropout is the technique of shutting 
down random neurons during certain training step (setting them to zero) which prevents the 
network from relying too much on individual neurons and therefore promoting better 
generalization. Dropout is controlled by parameter dropout rate which is the probability for 
each individual neuron being dropped, usually set between 10-50 %. [35] [52] 
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1.5.10. Mach ine learning re search i n tribology 
Since Holm, Archard and others began experiments and theoretical exploration regarding 
predicting the wear in 40's and 50's of 20 t h century, lot of technology evolved. In recent years, 
few researchers have delved into the combination of predicting wear and machine learning. 
This part of the thesis is a short summary of their discoveries, which w i l l be later used 
as a starting point in methodology chapter to develop the most suited M L model for our use 
case. Most notable articles related to our use case are presented below in chronological order. 

In 1997, Jones et al. performed combinatorics experimental designs and employed neural 
network model, both to reduce the number of experiments and getting data without performing 
certain experiments during investigation of different material/mechanical systems for friction 
and wear observation. The article is focused on showing feasibility of neural networks to predict 
life data and defining which input variables w i l l influence the tribological behavior of the 
material/mechanical system. Jones et al. investigated 15 different neural network architectures 
on three different test rigs: rub shoe rig, pin-on-disk rig and four-ball rig. The article shows 
that the discussed models have been capable of predicting the wear rates regardless of the 
lubricants used, that the models are able to interpolate and extrapolate approximate wear rate 
values for conditions not run experimentally. The overall best architecture proved to be the 
Input layer dampened recurrent network. Linear scaling functions and hyperbolic tangent 
or logistic activation functions were beneficial. [53] 

In 2000, Velten et al. extended the work of Jones et al. by measuring a total of 10 input 
variables/experimental conditions on a total of 72 wear volume measurements. They also 
reduced dimensionality by principal component analysis, improving predictive capabilities 
of N N by using Bayesian regularization instead of Early stopping and therefore also identifying 
the optimal size of N N layers. Velten et al. used a large number of randomly chosen test datasets 
and obtained worse average results than Jones et al. but still reasonable according to them. 
Out of 72 measurements, 10 were used as test set and the rest as train set. It is shown, that for 
this amount of measurements, the satisfactory prediction of wear volume data by feed-forward 
NNs can be expected only for a subset of any new data set, not for all data, and proposed that 
this probably holds true also for other N N architectures as well . [54] 
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A l l : R=0 .9046 

Target 
Fig. 45 - Overall regression plot ofRadhika et al. NN+GA 
approach [55] 

In 2015, Radhika et al. performed dry sliding 
experiments on aluminium/alumina/graphite 
hybrid metal matrix composite on pin-on-disc 
tribometer and varied parameters such 
as load, velocity, distance, and 
A l composition. Using this empirical data, 
they obtained regression equation using N N s 
and optimized it using Genetic Algorithm 
(GA). A total number of 81 experiments was 
conducted and based on it, the optimal 
N N architecture of 3-10-1 was created. Data 
is normalized and split into 70/20/10 
train/valid/test datasets and network trained 
by trial and error until satisfactory regression 
was obtained. Overall regression was 
R2 = 0.9046 with curve shown in Figure 45. 
This N N is then fed into G A as the fitness 
function, iterates 51 generations and the 
algorithm produces single optimum best 
solution of lowest wear rate for following parameters: Load = 33.8 N , Velocity = 2.05 m/s, 
Distance = 1500 m and A l composition = 5,49 wt. % for lowest wear rate = 4.41 mm3/m 
10A-3. [55] 

In 2020, many authors conducted research in the field of modeling wear with machine learning. 
Most notable of them wi l l be mentioned in following paragraphs. Thankachan et al. predicted 
and analyzed dry sliding wear rates on novel copper-based surface composites. They deposited 
Boron nitride particles on the surface through friction stir processing from 5 to 15 v o l % B N and 
proved that B N particles greatly reduce wear rate. During low load conditions, analysis of worn 
out surface revealed mild adhesive wear and during high load conditions, abrasive wear. Then, 
the N N with F F B P model with topology 4-7-1 was modeled and predicted good agreement with 
experimental outcomes. The varying 
parameters were B N volume percentage 
[vol%] = A , load [N] = B , sliding velocity 
[m/s] = C and sliding distance [m] = D . 
Authors used M I N I T A B software to develop 
a general regression equation for wear rate 
[10-5 mm3/Nm] based on the specified 
parameters as shown in equation (29). 
R2 = 0.89 for given model. The N N model 
was trained on 24 values and tested on 
3 values. The value of nodes present in 
hidden layer iterated from 2 to 15 and 
7 hidden nodes was found to produce lowest 
value of M A E . This observation leads to 
4-7-1 architecture of the N N , 4 being the 
number of input features, 7 being the number 
of hidden layers giving the lowest M A E , 
hence best prediction, and 1 being output 

3 A 
Experimental Wear Rate 

Fig. 46 - Thankachan et al regression using NN 4-7-1 with 
FFBP on wear rate for boron nitride deposited on surface 
[56] 
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layer. This N N for this use case of investigation Wear rate based on B N particles v o l % 
on surface, load, velocity and sliding distance, produced R2 = 0.9987, as shown in Figure 46, 
which is almost ideal and model is therefore very good. [56] 

Wear rate = - 0 . 2 0 9 - 0.109 • A + 0.1 • B + 1.13 • C + 0.00087 • D by [56] (29) 

Many authors in the field of tribology use for 
their calculations Specific Wear Rate, which 
is the average value of wear volume divided 
by load and sliding distance. Hence wear rate 
is not the same during the whole experiment, 
Argatov et al. decided to use the so-called 
True Wear Coefficient which is regarded as 
a function of the sliding distance. Hence, they 
use integral and differential form of Archard 
equation for wear rate to develop N N for the 
predictions. Most relevant plot to our use case 
is shown in Figure 47. In part (a), it shows 
wear volume as a function of sliding time. 
Real measured data in red, sample of Polished 
W C - C o C r , compared with well-fitting A N N 
with 1-3-1 architecture and ill-fitting basic 
exponential model. A similar plot is shown 
in (b), where wear volume rate is plotted and 
also A N N variant with Finite-difference 
derivative and L S W R predictions are added. 
L S W R stands for Load multiplied with 
Specific wear rate = W / L s . In (b), all 
predictions are quite close, apart from basic 
calculation of L S W R , which produces larger 
values of wear volume rate. Argatov et al. 
proposed that the developed A N N model can 
they defined as the initial time interval during 

(a) 2 

0 10 20 30 

Z.-SWR 

F.xpunenlial model 

, \ m WC-CoCr PolishishedfFederici el al., 2018) 

- H - ANN [1-3-1] 

\ \ ANN' [1-3-1J, KinUodi fTcrcricc derivative 

— * . — 

0 10 20 

Sliding time (min) t 

Fig. 47 - Argatov et al. comparing wear volume (a) and wear 
volume rate (b) as a function of time based on different 
measurements and predictions. [57] 

?e utilized in studies of wearing-in period which 
which the T W C ' s value is stabilized. [57] 
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Faris et al. preferred insight into the underlying system and easier evaluation before predictive 
power, so they opted for Genetic algorithm (GA) instead of N N s . They used G A s for predicting 
quantities of adhesive wear for low and medium carbon steel. The resulting model is a function 
of the load, sliding speed and sliding time based upon pin-on-disc configuration of tribo test. 
Genetic programming was set with following parameters: Population size = 1000, Maximum 
generations = 200, Mutation rate =15%, Tournament selector as selection mechanism, Elites = 
1 and Operators = {+, -, •, /, sin, cos, tan}. The train-test split is 70/30. The equations, 
coefficients and performance in form of V A F (authors used E V S formula explained before but 
named as V A F - Variance Accounted For and multiplied x 100 to get result in percentage) and 
R M S E are shown in Figures 48 and 49. The superiority of G P approach over Linear regression 
is shown in article as well . [49] 

Weat^m, = (t - s • (co - s 

c 0 = 

Cl -

Cl = 

C4 = 

Ci = 

• s i n ( ( d • t + C2 • S))) • (f-3 • S + d • t + t a n (c5 • s) • f 6 + t a n ( o r ) • r 8 ) • f 9 - clt)) 

c6= -1.0 
c 7 = 1.4368 
c s = 1.2556 
c 9 = 1.80492-10 

Cio = 0.00053583 

0.27029 
0.95369 

-0.41068 
0.75134 
0.95369 
1.0216 Best per fo rmance: 

VAF = 99.5 % 
RMSE = 3.23e-4 

Testing per fo rmance: 
VAF = 90.6 % 

RMSE = 1.5e-3 

Fig. 48 - Genetic algorithm by Faris et al. for low carbon steel [49] 
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Best per fo rmance : 
VAF = 94 % 

RMSE = 7.34e-4 

Testing per fo rmance: 
VAF = 94.3 % 

RMSE = 6.06e-4 

Fig. 49 - Genetic algorithm by Faris et al. for medium carbon steel [49] 
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Model 
R2[-] 

train set 
R2 [-] 
test set 

R F 0.987 0.943 
G P R 0.903 0.866 
K N N 0.848 0.761 
S V R 0.809 0.771 
L R 0.753 0.745 

Altay et al. performed a total of 99 measurements on 11 specimens of AISI1020 steel with 
coatings applied by plasma transfer arc welding and later applied L R , S V R and Gaussian 
process regression (GPR) to predict wear quantities. The following features were chosen: 
powder composition for plasma arc deposition, average micro-hardness of the coating layers, 
applied load and sliding distance. They used interaction function L R version of the 
L R algorithm, cubic function in kernel in S V R algorithm and rational quadratic function 
in G P R algorithm. Cross validation using k-fold with k = 5 was used. Metrics to compare were 
M A E , R M S E and R2. Linear regression performed the value R2 = 0.93. S V M and G P R were 
slightly better with R2 = 0.96. Although the R2 values for S V M and G P R were the same, the 
G P R was chosen as a better algorithm because of its potential to create an even better 
performing model. [58] 

T r>nr>r> a i i , , , . , .. Table 3 - Evaluation ofML models by Algur 

In 2022, Algur et al. used M L algorithms to predict wear 
performance of modified ZA-27 alloy in dry sliding. They 
varied normal load, sliding speed and sliding distance 
in the total number of 75 experiments performed in room 
temperature. Then, they used R F , G P R , K-nearest 
neighbors ( K N N ) , S V R and L R algorithms to predict the 
wear loss. Load, speed and sliding distance are the features 
and wear loss as the target value. The train-test split 
is 70/30. In G P R , rational quadratic function is used. In S V R , cubic kernel function is used. 
Bagging technique for R F regression and interaction function is applied in L R algorithm. 
Cross-validation using k-fold with k = 10 was used. Metrics compared are M A E , R M S E 
and R2. R2 values are shown in Table 3. Results show that all the constructed models R2 values 
are close for train and test set, which signals their good fit and good ability to generalize. Best 
performing model for the use case of Algur et al. regarding R2 was R F - Random Forest with 
R2 = 0.987 [59] 
In 2023, Rajput et al. applied M L approach 
on data from various journals and theses. 
They gathered a total of 300 data points with 
23 independent input parameters and material 
loss in mm3 as output parameter. Input 
variables consist of pin sample wt% 
of constituents, structural ingredients in v o l % 
such as ferrite, bainite and other structures of 
steel. Other parameters were pin hardness, 
temperature and time of heat treatment and 
finally working temperature, sliding speed, 
load and sliding distance. Authors decided 
to exclude parameters such as CoF, humidity, 
uniform and total elongation, temperature 
increase by friction because scarcity of data in these variables. Neuromat tool [60] with train-
test split 80/20 was used. Data is initially normalized and then A N N model is built. Activation 
function h is hyperbolic tangent. Authors use various metrics to find optimal number of hidden 
units (HU) in N N . Based on this optimization, the best model (lowest error) was incorporated 
with four hidden units and four seeds. Figure 50 shows the performance of this model on unseen 
data. For most of the datapoints, the acceptable correlation between experimental and predicted 

5 10 15 3 
Actual Volume loss / mm 

25 

Fig. 50 - Comparison of actual and predicted material volume 
loss by ANN by Rajput et al [61] 
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values is visualized. Larger error bars indicate that the model is not entirely-self-confident 
to make predictions and more experimental work needs to be done. The difference calculated 
between these values ranges from 0.3 to 4.2 mm3, which authors deem acceptable. Rajput et al. 
arrived at satisfactory result regarding the correlation between predicted and experimentally 
obtained results. [61] 

This year, January 2024, Zhu et al. performed 
an experiment using ball-on-disk setup with 
lubrication. They varied parameter as sliding 
speed, sliding distance, normal load, 
temperature and oi l f i lm thickness and 
obtained 81 datapoints with wear depth 
as dependent parameter. The train-test split 
is 75/25. They employed four different M L 
algorithms: R F , K N N , S V M and Extreme 
Gradient Boosting ( X G B ) . Optimization 
for R F , K N N and S V M models is done via 
least squares method to minimize errors Actual wear depth (nm) 

between data and regression line estimation. D , j , / V ^ D 1 , , f o , 
° Fig. 51 - Best performing model (XGB) by Zhu et al. [62 j 

X G B method optimizes the objective 
function itself. Evaluation metrics were M A E , M S E , R M S E and R2. Results were validated 
using k-fold validation with k = 5. Results are shown in Table 4. Conclusion is that S V M and 
K N N models are not very accurate, but R F and X G B give satisfactory results. X G B produced 
best generated R2 = 0.88 and R F performed almost identical with R2 = 0.84. Actual vs predicted 
wear depth for the best performing model - X G B - is shown in Figure 51. [62] 
Table 4 - Evaluation of ML models by Zhu 

M L model M A E M S E R M S E R2 
K N N 4.54 38.41 5.69 0.68 

R F 3.25 18.3 4.14 0.84 
S V M 7.29 87.2 8.81 0.29 
X G B 2.95 14.48 3.62 0.88 
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Zhu et al. also performed feature importance analysis on its input values. Result is shown 
in Figure 52. Most important feature is sliding distance and then the thickness of lubricating 
film. Authors also conducted Pearson correlation analysis in the form of heat map and Taylor 
diagram in order to evaluate the best model in the proposed model. A s said before, the X G B 
model was chosen as the best. [62] 

Feature importance 

Sliding distance (m) 

lubricating film (|jm) 

Temperature {°C) 

Sliding speed (mm/s) 

load (N) 

100 

1526.0 

1:199 0 

1339 0 

S259.0 

??4.0 

200 300 

F score 

400 500 

Fig. 52 - Feature importance analysis by Zhu et al. [62] 
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2. Specimens, Instruments and Software 
Experimental data were obtained from company Garrett Motion Czech Republic s.r.o. and 
author is very thankful to them for the opportunity of making master thesis there. Garrett Motion 
is a worldwide company primarily specialized in development and engineering of turbochargers 
for automotive industry from small personal cars to large vehicles and industrial equipment. 

The main goal of this thesis is to predict wear behavior in turbocharger kinematic mechanism, 
concretely rotational joints regarding the A r m and Bushing internal kinematic (green) and 
External kinematic (red) as shown in Figure 53. In these joints, small rotational motion 
is present and over time, the surfaces in contact are worn out. 

Fig. 53 - Turbocharger and shown kinematic parts, which wear behavior we are interested in. Arm and bushing in green and 
External kinematic in red. 
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2.1. Tribometer D N 5 5 - Testing method principle, Specifications 
To simulate wear behavior for a given case explained above, experiments are conducted 
on DN55 tribometer. The principle of it is shown in Figure 54. Specimens are the two plates 
and one pin in the middle. Plates are always of the same material. Material couple is therefore 
formed of two materials - one for pin and other for plates. Pin and plates are put into the arms 
of machine to conduct the experiment. The whole chamber of furnace is heated to a certain 
temperature up to the maximum temperature noted in the machine specification. After the 
chamber is heated to the temperature of the experiment, force is applied from the plates 
on the sides putting it into contact with the pin in the middle from both sides. Mechanism of 
force production is automatically set to keep the applied force the same during the whole 
experiment. In this moment, experiment can begin. The middle arm starts to produce cyclic 
motion up and down in the given range. This experiment is conducted for a certain time and 
as a result, we get worn pin and plates to some degree. So, to summarize, pin and plates 
in contact are subject to cyclic sliding motion for certain sliding distance with certain normal 
applied force at certain temperature. 

Applied Force Applied Force 

Contact surface 

Applied Movement 
Fig. 54 - Testing principle ofDN55 Tribometer 
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DN55 Tribometer can be seen in Figure 55. Table 5 - Parameters of DN55 

Parameters the DN55 can provide for 
experiments are noted in Table 5. Also , we must 
note the ability to create test programs to most 
suit the user needs and measure CoF-time charts. 
After the specimens, pin and plates, are subject 
to experiment, the surface in line contact looks 
like the surface shown in Figure 56. 

Parameter Range 
Temperature [°C] Up to 1000 

Load [N] 18-200 
Stroke range [mm] 0.01 - 20 

Frequency [Hz] 1 - 3 0 0 
Type of contact [-] Line, Point 

Fig. 55 - DN55 Tribometer 
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2.2. Laser profilometer Z y g o N e w V i e w 300 
After the pin and plates are 
subject to wear experiment 
on DN55 Tribometer, they are 
brought to laser profilometer. 
In Garrett Motion company, the 
profilometer used is Zygo 
NewView 8300 as shown 
in Figure 57. It is based on the 
principle of 3D coherence 
scanning interferometry. The 
scanner being precision piezo 
drive with closed loop 
capacitance gauge control and 
crash protection. Available 
objectives for magnification are 
from l x up to lOOx with turret 
head for 4 objectives. Field of view is 0.04 to 16mm and Z-drive is 100mm range with 0.1 urn. 
The vertical scan range is 150 urn with precision piezo drive or 20 mm with extended scan. The 
repeatability of surface topography is 0.2 nm and repeatability of root mean square is 0.01 nm. 
More specifications can be found in [63]. 

The profilometer can measure 3D profiles such as shown in Figure 58. This is the worn 
specimen after the DN55 tribometer experiment. Also, the 2D profile in different places across 
the 3D profile can be obtained such as shown in Figure 59. 

Fig. 57 - Laser profilometer Zygo NewView 8300 [63] 

Fig. 58 - 3D profile of a specimen after tribometer test Fig. 59 - 2D profile the profilometer can measure 
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Based on this, the profilometer measures various surface profile properties, but our object 
of interest is the calculation of the wear volume, meaning total displaced volume of material. 
Total displaced volume is calculated as Negative volume + Positive volume such as shown in 
Figure 60. The zero line is made on the profilometer after the experiment. Reference plane is 
set in the area which was not subject to wear experiment and serves as zero line for the 
calculation of displaced volume in the area subject to wear experiment. 

Schematic representation Real surface 
Positive volume X Profile 

Total displaced volume = Negative volume + Positive volume 
Fig. 60 - Total displaced volume in schematic representation and real surface profile 

A l l wear volume values mentioned in this thesis are the product of this measurement of the 
laser profilometer. 

2.3. Laptop parameters, Software, I D E 
Methodology of creating the model was conducted on Acer Aspire E15 (E5-572G-74LM) 
laptop with specifications found in [64]. Chosen programming language is Python with various 
libraries. Most notably Pandas and Numpy for data management, Scikit-learn, TensorFlow and 
Keras for machine learning, Hyperopt for hyperparameter space search and Matplotlib and 
Seaborn for visualization. The online platform Google Colab [65] was used as a computing 
platform and interactive environment to perform M L modelling with better resources. 
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3. Methodology - Goryacheva Equat ion 
The Methodology chapter is about exploring the potential methods of wear prediction and 
modelling possibilities based on available data. Various methods w i l l be used with the intention 
to find relationships between data, correlations and develop a methodology for predicting the 
wear coefficients K , a and P based on material characteristics and experiment parameters. 
The first of these methods used w i l l be testing i f the Goryacheva wear equation from the 
literature hold some significance in our use case. , , , 

Table 6 - Experiment parameters for our use case 

Experiments were conducted with the 
parameters specified in Table 6. For best 
prediction, only some of the experimental values 
were chosen. M a i n criteria were for materials to 
be of metallic character (no ceramics, no 
composites) and to be homogenous or with heat 
treatment finish (no coatings). Three sets of data 
were obtained. Firstly, measurements at 300°C 
for external kinematics, then measurements at 300, 700 and 850°C for the internal kinematics 
(arm and bushing) and coefficients of friction for 300, 700 and 850°C. External kinematics 
in the operation is subject to much lower temperatures (around 300°C) than internal kinematics 
which is subject up to temperatures of 700 and 850°C. This temperature is the set temperature 
of the oven. Temperature contribution because of friction is not counted because 
of its complexity and unavailability to properly measure it. It is therefore necessary to mention 
this simplification also. 

Parameter Value set 
Temperature [°C] 300, 700, 850 

Load [N] 40 
Type of cycle (move) Sine 

Amplitude [mm] 1 
Frequency [Hz] 10 

Time [s] 7200 
Type of contact [-] Line 

3.1. Calcula t ion o f parameters for Goryacheva equation 

V 
K = (30) 

pav@t 

In our chosen equation (30), some parameters are directly given, such as wear volume 
V and time t. Others are not directly given but they can be calculated from the experiment 
parameters, such as pressure p or speed v. Lastly, the „free" parameters, namely K , a, P wi l l 
be used in prediction models to best predict wear behavior of given material based on material 
characteristics such as hardness and experimental parameters as given in equation. Regarding 
the indirect parameters, we must do calculations. Total distance L is calculated using equation 
(31) where L is the total distance, N is the number of cycles in sine function and L c is length 
of one cycle, therefore 4 amplitudes x m . Then, using the total distance, we calculate speed 
in equation (32). This is simplification of reality because the speed changes in oscillatory 
motion. Its maximum in the equilibrium in the middle and minimum (zero) in the amplitude 
points. 

L = N • Lc = f • t • 4xm = 10 Hz- 7200 s • 4 • 0.001 m = 288 m (3D 

L 288 m 
v = - = = 0.04 ms 1 

t 7200 s 
(32) 
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The second indirect parameter that needs to be calculated is the pressure p as shown in equation 
(33). The contact in our experiment is "line" in simplification, although the area is slowly 
getting bigger. We w i l l use simplified value of constant pressure. N is the normal load used 
in experiment that is being held constant throughout the experiment, y is the distance of the line 
contact, perpendicular to the oscillatory motion in the x direction of the sliding, namely 10mm. 

N 
p = -

y 

40 N 

0 , 0 1 m 
= 4000 Nrn (33) 

After calculation of the speed and pressure, the 
parameters used for prediction of wear are 
specified in Table 7. It consists of material 
characteristic hardness. Experiment parameters 
are temperature, pressure, speed and time. Wear 
volume is the result of the experiment and 
is measured after the experiment using the laser 
profilometer and parameters K , a and P are free 
for predicting the wear behavior using different 
methods such as statistics, data analysis and 
machine learning. Possible uses of these 
methods w i l l be part of this chapter. 

Table 7 - Parameters used for prediction 

Parameters used for 
prediction 

Values 

Temperature [°C] 300, 700, 850 
Coeff of friction [-] Various 

Hardness [HV] Various 
Wear volume [mA3] Various 

Pressure [ N m A - l ] 4000 
Speed [ms A - l ] 0.04 

Time [s] 7200 

K , a ,p 
Free parameters 

for prediction 
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3.2. Exploratory data analysis 
To begin the process of data analysis, the data are plotted in scatter plot to give us first insight 
into wear behavior of External kinematics and A r m and Bushing mechanism, both being plotted 
together, because the experiment is the same. This scatter plot can be seen in Figure 61. Wear 
volume is given in original units of measurement on laser profilometer, hence um A 3. 
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Fig. 61 - Wear volume - Temperature dependency of the measured data 

A s we can see, the wear volume has the largest dispersion at temperature 300°C, ranging from 
0 to 6e8 um3 . Then at 700°C, the dispersion of wear volume values is quite small, only from 
0 to le8. Then at 850°C, the dispersion of wear volume values gets bigger again, ranging from 
0 to 3e8. This can be due to many reasons and no direct tendency and behavior of data 
is observed yet. Later, the data w i l l be fitted by Goryacheva equation and Machine Learning 
techniques to predict the behavior and figure out which models are best. 
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Similar first insight can be done with the measured values of Coefficient of friction as shown 
in Figure 62. In this case, with the increase in temperature, the CoF values are becoming 
smaller. When we look at these data, we can assume that linear regression fitting might 
be a good option, but this dataset is too small to make some predictions upon it. 
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Fig. 62 - Coefficient of Friction - Temperature dependency of the measured data 
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Using scatter plots, another great insight into wear behavior is produced when we plot Wear 
Volume - Coefficient of Friction together. This is shown in Figure 63. This scatter plot 
combines the observations from the first two plots, shown in Figures 61 and 62, that at 300°C, 
the wear volume and CoF dispersion is the greatest. Then at 700°C, the wear volumes are small 
and dispersion of C o F is in range 0.35-0.57. Then at 850°C, most of the measured values have 
the smallest measured wear volumes and coefficients of friction. 
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In total, we have 14 labeled couples as specified in Table 8. 
Wear Volume values were plotted for each material couple 
in Figure 64. 

Table 8 - Assignment of material couples 

le8 Wear Volume - Material Couple 
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Fig. 64 - Wear Volume values sorted by Material Couple 

These scatter plots give us great first insight into the data 
structures and possible underlying patterns. 

Material Couple Label 
M 1 / M 2 1 

M 1 / M 3 2 
M 1 / M 4 3 
M 1 / M 5 4 

M 1 / M 6 5 
M 1 / M 7 6 
M 3 / M 3 7 
M 5 / M 5 8 
M 8 / M 7 9 
M 9 / M 9 10 

M 1 0 / M 7 11 
M 1 0 / M 1 0 12 
M 1 1 / M 4 13 

M 1 2 / M 1 2 14 

3.3. Use o f Goryacheva equation for measured data 
A s shown again in equation (34), the Goryacheva equation is empirical prediction of wear 
volume based on experimental parameters and wear coefficients K , a, p. 

K = 
V 

(34) 

During the measurements in Garrett Motion, the pressure, speed and time of the experiment 
were constant in order to create a comparative method for wear volume. 

K = 
V 

4000 a 0 .04^7200 
(35) 

We therefore have 1 equation with 3 unknown variables, as shown in equation (35). Also, 
we can see, that with the a and P being an arbitrary number, they still lead to constant number 
as constant to the power of constant is still constant. K and V w i l l in this case therefore have 
a linear relationship of some sort. 

We unfortunately doesn't know the values of a and P for some prediction of K and in case with 
pressure and speed being constant, it doesn't matter. Let 's initially assume that a = 1 and 
P = 1 for this scenario and calculate K from mean value of wear volume. If a = 1 and P = 1, 
then the relationship between K and V for our given experiment parameters is shown 
in equation (36). 

K = 
V 

1 152 000 
= 8.68056 • 1 0 - 7 • V (36) 
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When we put in mean value of wear volume, which is 1.5738e-10 m 3 , we obtain 
K = 1.3662e-16 [-]. This value of K is quite small regarding the general range of 
le-3 to le-7 mentioned in literature. With those parameters of ours, we can assume that 
coefficients a and P therefore need to be smaller than 1 to obtain some expected values of K . 
This is done via 3D plot of alfa-beta-K relationship. A l f a and Beta shown in Figure 65. 

Alfa - Beta - K relationship 

Fig. 65 - Alfa - Beta and K coefficients relationship in Goryacheva equation for our use case 

Based on this plot, author decided to verify i f K converges based on lowering a and P values 
or not. This convergence is shown in Figure 66, where is calculated mean K based on mean 
Wear volume of our samples and its changes with changing a and P coefficients separately. 

l e - 1 4 Alfa and Beta - K convergence 
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Fig. 66 - Verifying K convergence based on Alfa and Beta values 
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We can see in Figure 66, that from 10"3 the K values converge to the value of 2.6818e-14 [-]. 
Based on this verification, we plot all our wear volume values with parameters a = 1 and 
(3 = land a = le-20 and P = le-20 to compare them. This is shown in Figure 67, where Y axis 
is in log-scale for better understanding. 

Wear Coeff K predicted by Goryacheva eq. - Wear Volume 
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± 10" 1 3 
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u 
i_ 
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I l l l 

Alfa = Beta = 1 

Temperature 
• 300 
• 700 
• 850 
• 300 
• 700 
• 850 

1 0 - i 9 
0 2 4 6 8 

Wear Volume [um3] ie8 
Fig. 67 - Comparison of wear coefficient K values with alfa, beta = 1 and alfa, beta = le-20 

We can see that K values are higher with lower a and P values, but even in the lowest scenario 
of convergence, which we confirmed earlier, K values are still in order of 10" 1 3 which is still 
6 orders lower than expected lowest values of coefficient K mentioned in the literature. 

Based on this, the author proposes that for parameters used in this use case and measurement 
methodology, the Goryacheva equation is far from useful and other methods w i l l be deployed. 
To conclude more research in the topic of Goryacheva equation, the author suggests that more 
measurements with varying experimental parameters are conducted, instead of measuring 
methodology on comparative basis. 

60 



4. Methodology - M a c h i n e Learning 

4.1. Data pre-processing, Feature engineering 
With machine learning ( M L ) , one of the most important parts of the project is to have good and 
representative data of our problem to make good predictions. The data obtained from Garrett 
Motion company were measured on DN55 tribometer as specified earlier and methodology was 
built comparatively - apply same experiment parameters on different material couples to see 
which material couple has lowest wear volume, therefore is best for the kinematics mechanisms 
outside the turbocharger. This is unfortunate for the M L approaches, hence many of the 
parameters are constants and therefore offer no predictive ability for M L approaches. 
Nevertheless, we w i l l proceed with available data that are not constant for all the experiments 
and find the best machine learning approaches for this use case. 

Machine Learning dataset 
Feature Matrix X Vector y 

couple [-] spec [-] temp [°C] hard_ratio [-] cof [-| volume [um3] 
1 plate 300 0,8997 0,58 397673161 
1 pin 300 0,8997 0,58 71155353 
1 plate 700 0,8997 0,56 46930815 
1 pin 700 0,8997 0,56 22005355 
1 plate 850 0,8997 0,32 16521947 
1 pin 850 0,8997 0,32 11040056 
2 plate 300 0,3915 0,62 493756419 
2 pin 300 0,3915 0,62 122426157 

Fig. 68 - Dataset for our project - feature matrix X and target vector y 

The data has been put into feature matrix X and corresponding target vector y as shown 
in Figure 68. This matrix consists of feature vectors with following parameters: 

• Couple - In chapter 3.2 Exploratory data analysis explained, as each of the 14 different 
material couples was assigned number from 1 to 14 

• Specimen - Either pin or plate, which is later for machine learning methods converted 
that pin = 0 and plate = 1. 

• Temperature - Temperature at which the experiment was conducted: 300, 700 or 850 
°C 
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• Hardness Ratio - Hardness of the 
surface is an important parameter 
for prediction of wear behavior 
and since our prediction wi l l 
be done for material couples, each 
material couple has characteristic 
ratio of hardnesses between 
its surfaces. The obtained hardness 
data were measured using H V 1 -
Vickers scale. Hardness ratio 
is calculated as HV_specimenl / 
HV_specimen2 Hardness ratios 
for material couples are shown 
in Figure 69. 

• CoF - Average coefficient 
of friction calculated from the 
values measured in time during 
experiment are presented. 

Material couple 
Hardness ratio 

[HV1/HV1] 
M1 /M2 1 0,8997 
M1 /M3 2 0,3915 
M 1 / M 4 0,7596 
M1 /M5 4 0,3861 
M 1 / M 6 5 1,1488 
M1 /M7 6 0,5101 
M3 /M3 7 1,0000 
M5 /M5 S 0,9972 
MB/M7 9 1,8404 
M9 /M9 10 1,0000 

M10/M7 11 1,4312 
M10/M10 12 1,0000 
M11 /M4 U 2,7404 

M12/M12 14 1,0000 
Fig. 69 - Material couples with corresponding hardness ratio's 

Each feature vector x in feature matrix X corresponds to target (value) in target vector y. In our 
case, this target value is wear volume, measured on the laser profilometer. A l l of the wear 
volume values therefore form a target vector y which w i l l be the predicted outcome of model. 
To summarize, feature vector having certain value or option in variables: couple, specimen, 
temperature, hardness ratio and CoF corresponds to certain value of wear volume as target. 
Dataset shown is sorted by default, but for the training of the M L algorithms, the dataset is 
shuffled to remove inherent ordering or any bias. We wi l l use this set of features to train models 
and then predict the target values and compare the metrics to see which of the models performs 
best for our use case. 
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4.2. M o d e l selection, design and fine-tuning 
The process of finding the best M L model begins with the estimation of the few best performing 
models and then fine-tuning them to get the best possible results. The following M L models 
were used for initial performance estimation: Linear Regression, Polynomial Regression, 
Linear S V R , S V R , Multilayer Perceptron N N (Sequential), Decision Trees, Random Forest, 
Extreme Gradient Boosting ( X G B ) , Gaussian Process Regression (GPR) and Genetic 
Algorithm (GA) . A l l these modules were utilized using Python libraries, namely Scikit-learn, 
TensorFlow, Keras, GPlearn and XGboost. Criteria for selection of best models were 
R2 and M S E . If you are interested in more information about these models, see the attached file 
rychly_ml_wide.ipynb, only models that were chosen for closer examination w i l l be discussed 
more in depth. 

4 best performing models were chosen for closer examination. Namely, Support Vector 
Regression (SVR) , Random Forest (RF), Genetic Algorithm using Symbolic Regressor (GA) 
and Neural Networks using Sequential Multilayer Perceptron (NN). A l l these models are 
explained in chapter 1.5 in the machine learning section so this chapter can be dedicated 
to finetuning the design of those models. 

4.2.1. Support Vec tor Regression 
Using Hyperopt Python library, the 

hyperparameter space for S V R model was 
searched and Table 9 shows the best 
hyperparameter values. The Polynomial 
features degree is 1, therefore original values. 
More about parameters can be found 
in sklearn.svm.SVR documentation or 
in chapter 1.5. 

4.2.2. Random Forest 
The Hyperparameter space of R F model was 
searched via Hyperopt and the results for best 
performing model are in Table 10. Mode l best 
performed for Polynomial features degree of 
3. More about parameters can be found in 
sklearn.ensemble.RandomForestRegressor 
documentation or in chapter 1.5. 

Table 9 - SVR fine-tuned architecture 

Hyperparameters for SVR Value 
C - Regularization param. [-] 1.3 
Epsilon - width of street [-] 0.1 

Kernel [-] rbf 
Gamma - kernel coeff [-] auto 

Polynomial Features degree [-] 1 

Fable 10 - RF fine-tuned architecture 

Hyperparameters for R F Value 
N estimators [-] 50 
M a x depth [-] 10 

M i n samples split [-] 2 
M i n samples leaf [-] 1 

M i n weight fraction leaf [-] 0.0186 
M a x leaf nodes [-] None 

M i n impurity decrease [-] 9.47e-6 
Polynomial Features degree [-] 3 
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4.2.3. Genetic A l g o r i t h m using Symbol i c Regressor 
Genetic algorithm was programmed using both recommended values and values proposed 
by Faris [49] and optimal values found using Hyperopt grid search. These parameters are 
presented in Table 11. 

Table 11 - GA fine-tuned architecture 

Hyperparameters for G A Value Hyperparameters for G A Value 
Function set [-] +,-,/,• P crossover [-] 0.515 

Population size [-] 200 P subtree mutation [-] 0.178 
Generations [-] 150 P hoist mutation [-] 0.110 

Tournament size [-] 30 P point mutation [-] 0.099 
Stopping criteria [-] 0.001 P point replace [-] 0.168 

M a x samples [-] 0.5 Polynomial Features degree [-] 1 
Parsimony coefficient [-] 0.001 - -

The best performing Genetic algorithm used t le equation shown in equation (37). Where X i 
is the number of material couple, X2 is specimen type, either pin or plate, X3 is temperature 
and X5 is coefficient of friction. Unused X4 is hardness ratio. 

GA equation = «X2 + Xs) - 0.266) • ( — + ^ — ) (37) 

4.2.4. Sequential Mul t i l aye r Perceptron N N 
Sequential Multilayer Perceptron N N was Table 12 - NNfine-tuned architecture 

created and its parameters also with 
Polynomial Features degree were optimized 
using Hyperopt. The best performing 
architecture is shown in Table 12. 
The number of hidden layers is 1 with 3 
hidden units, which corresponds to the 
number of input features. Batch size is 1 and 
the activation function for network is Leaky 
R E L U - Rectified Linear Unit. The 

Hyperparameters for N N Value 
Number of hidden layers [-] 1 
Number of hidden units [-] 3 

Batch size [-] 1 

Activation function [-] 
Leaky 
R E L U 

Learning rate [-] 0.00018022 
Polynomial Features deg. [-] 1 

Polynomial Features degree was 1, therefore original features performed the best. 
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4.3. Evaluat ion, Compar ison , Feature importance 
The metrics of performance for the 4 best performing models are shown in Table 13. R2 train 
mean was calculated using K F o l d cross validation with K=5. For N N , the validation split was 
0.2 of the training set. R2 train mean is therefore mean performance on the training set, 
indicating how model generalizes on different training sets. R2 test also means the 
generalization error is the R2 calculated from performing on the test set i.e., unseen data. M S E 
and R M S E values are calculated for final model parameters used for prediction on test set, not 
cross validation. 

Table 13 - Comparison of 4 best performing ML models 

Evaluation metrics SVR R F G A N N 
R2 train mean [-] 0.351 0.170 0.212 0.194 

R2 test [-] 0.429 0.621 0.37 0.477 
M S E [um3A2] 1.856el6 1.232el6 2.047el6 1.939el6 
R M S E [um3] 1.362e8 1.109e8 1.430e8 1.393e8 

From the total of 4 fine-tuned models, the Support Vector Regression model is chosen as the 
best model. Random Forrest and Genetic Algorithm models are weak regarding R2 metrics and 
regarding the score difference between R2 mean train and R2 test which signals overfitting. 
N N model is also weak regarding the metrics but performs slightly better than the R F and G A 
models. N N performance is sometimes like S V R model, but the calculation of the model 
is in wide range of values for both R2 train and R2 test. R2 train and R2 test were both 
calculated training multiple N N s and taking the average values of both. This could be because 
of the small quantity and quality of the dataset or little variation in the dataset. 

S V R model is the best performing model among these 4 fine-tuned models that were chosen 
from wide pool of possible models, this pool of models can be seen in attachment 
rychly_ml_wide.ipynb. Choice of the best model was based on the values of R2 = 0.351 
for training set and R2 = 0.429 for test set, which was among the best of trained models for our 
use case, but still indicates notions of overfitting and the performance can be much better and 
R2 closer to 1. This overfitting is, as with N N and other models, most likely due to the small 
quantity and quality of training data and little variation in the measured data. M S E for S V R 
model is 1.856-1016 (um 3 ) 2 and R M S E is 1.362-108 urn 3. So, the average root mean squared 
error of the model's prediction of the wear volume values is 1.362-108 um 3 . 
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Figure 70 shows the performance of the 4 fine-tuned models visually. True vs Predicted values 
of Wear volume are shown. The ideal shape of the curve is linear i.e. each predicted value 
corresponds to true value. 

01 

> 
CD 

T3 
QJ 

Best per forming ML mode ls 

l e 8 

Support Vector Reg. 
R2_train: 0.351 
R2 test: 0.429 

ideal 
• mode l 

• 

• 

• * / 
« 

• 

2 4 
True va lue 

0) 
to > 

T3 
CU 

T3 
CD 

l e 8 

Random Forest 
R2_train: 0.170 
R2 test: 0.621 

ideal 
• mode l 

• 
• 

• • / [ 

l e 8 
2 4 

True va lue l e 8 

Fig. 70 - Comparison of 4 best performing models for our use case - SVR, RF, GA and MLP NN 
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For the best chosen model, S V R , feature importance analysis is performed. Feature importances 
are calculated based on Support Vectors (boundaries in which the data is) and Dual 
Coefficients, which represent the weight of each support vector in the decision function. 
Importance of certain feature is then inferred by examining how much each support vector 
contributes to the prediction, weighted by the vector's corresponding dual coefficients. This 
is calculated as a dot product of Support vectors and Support vectors coefficients. The 
Polynomial Features degree for the best performing model is 1, therefore original set of features 
from feature matrix X . Visually shown in Figure 71. The most important feature in the S V R 
model is coefficient of friction, then specimen, either pin or plate, next is temperature and 
lowest importances hold the couple number and hardness ratio. The author suggests measuring 
more data with more variety of experimental parameters which would broaden the field 
of potential features. Feature engineering with varied values of time, load, temperature and 
many others would, in the author's humble opinion, present more prediction value and better 
model. 

Feature Importances in SVR Model 

Importance [-] 

Fig. 71 - Feature importances in SVR model for our use case 

Using a small dataset for predictions makes the model heavily influenced by the test-train split. 
This influence was examined by comparing the best performing S V R model architecture with 
different data split values. The split was characterized by the "ratio" parameter determining 
where is the boundary between train and test. Therefore ratio = 0.75 means 75/25 train-test split. 
Ratios varied from 0.6 to 0.95 with step 0.05. The best performing models were with 60/40 split 
and 80/20 split. The metrics of those 2 models are shown in Table 14. Mode l performance 
is quite similar - 60/40 split is slightly better regarding the overfitting and 80/20 gives smaller, 
better, R M S E and generalizes better to testing data. The author suggests trying both data splits 
for optimal performance of your own model and proposes 80/20 split as the best result due 
to slightly better R2 scores. 60/40 and 80/20 are common splits in literature and this 
experimental finding confirms their usefulness. 

Table 14 - Comparison of data splits for SVR model 

Split M S E R M S E Mean train score Test score 
60/40 2.0416el6 1.4288e8 0.312 0.374 
80/20 1.8558el6 1.3622e8 0.351 0.429 
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A s a conclusion of this methodology chapter, S V R model with following architecture was 
chosen as the best performing model of all models for this use case with the recommendation 
to gather more data with greater variety of experimental parameters to maximize its potential. 
Architecture is shown in Table 15. It is however necessary to again bring up the fact that wear 
is a very complex phenomena and its prediction is influenced by many physical, chemical, 
and mechanical phenomena and predictions might not be straightforward. This model gives the 
reader and authors of following researches good starting point for their own predictions using 
machine learning in modelling of wear. 

Table 15 - Best architecture of SVR for our use case 

Best model for our use case - SVR Value 
C - Regularization param. [-] 1.3 
Epsilon - width of street [-] 0.1 

Kernel [-] rbf 
Gamma - kernel coeff [-] auto 

Polynomial Features degree [-] 1 
Data split [-] 80/20 
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5. Conc lus ion , Further work 
The main mission of this thesis was to predict wear behavior on concrete use case and save 
resources necessary for the experiments using both empirical equations from literature and 
machine learning approaches. To grasp this topic, throughout research of the relevant tribology 
topics was conducted. Chapter 1 is dedicated to introduction to tribology, friction and wear and 
different wear mechanisms. Later, the adhesive wear is chosen as the main mechanism involved 
in our use case and literature search is primarily performed to find empirical relations for 
predicting this type of wear. Throughout literature search for empirical predictions of adhesive 
is presented in chapter 1.4 and the Goryacheva Equation is chosen as the best equation for 
conducting methodology. Shown in equation (38). 

V = Kpavh (38) 

Empirical predictions of wear using the Goryacheva equation are complemented by the machine 
learning approaches based on experimental data obtained from Garrett Motion company. 
Various models were tried and sub-chapter 1.5 explains 4 models that were fine-tuned for the 
best possible model. These models are Support Vector Regression (SVR) , Random Forest (RF), 
Genetic Algorithm using Symbolic Regressor (GA) and Multilayer Perceptron Sequential 
Neural Network ( M L P N N ) . Chapter 1.5 also contains the research conducted in the field 
of tribology using the machine learning approaches of various authors. Their findings were used 
as a starting point and help design models in this thesis. Chapter 2 introduces the problematic 
and its testing method, the instruments of measurement and ways of obtaining the data later 
used for empirical predictions and models. 

The methodology chapter 3 focuses on exploratory data analysis and predictions using the 
Goryacheva equations. Equation is calculated using the experimental parameters and the 
variation of K , a and P wear coefficients is conducted. 3D plot and a, P convergence analysis 
is presented. Result is that Goryacheva equation even with various values of a and P is weak 
tool in predicting the wear behavior. 

In chapter 4 methodology of machine learning, the whole process of creating M L model 
is presented. Feature Matrix contains couple number, specimen, temperature, hardness ratio and 
coefficient of friction therefore making it 5 features for predicting one target 
vector variable - wear volume. Various models are employed and best models are selected for 
fine tuning: Support Vector Regression (SVR) , Random Forest (RF), Genetic Algorithm using 
Symbolic Regressor (GA) and Multilayer Perceptron Sequential Neural Network ( M L P N N ) . 
Best performing architectures are presented for each model, the models are compared using 
metrics R2 train, R2 test, M S E and R M S E . S V R - Support Vector Regression model is chosen 
as the best for given use case and both architecture and resulting metrics are shown in Table 
16. 
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Table 16 - Best performing model SVR and its evaluation metrics 

Architecture Evaluation 
Best model for 

our use case - SVR 
Value Metric Value 

C - Regularization param. [-] 1.3 R2 train mean [-] 0.351 
Epsilon - width of street [-] 0.1 R2 test [-] 0.429 

Kernel [-] rbf M S E [um3A2] 1.856el6 
Gamma - kernel coeff [-] auto R M S E [um3] 1.362e8 

Polynomial Features degree [-] 1 
Data split [-] 80/20 

For the best S V R model, feature importance analysis is performed with CoF being the most 
important feature for prediction. Feature importance analysis is shown in Figure 72. 
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Fig. 72 - Feature importances in best performing SVR model for our use case 

To maximize the research potential of this thesis, analysis of optimal data split value 
is performed because in small datasets, the data split heavily influences the final model. 80/20 
train/test split is chosen as the best with 60/40 close behind. 

To produce better results based on the research in this thesis, the author suggests gathering more 
training data with various experimental parameters set. This w i l l greatly improve machine 
learning models via feature engineering (adding more features) and allow the models to learn 
on bigger samples. Data is the key to machine learning and the author suggests focusing on this 
part of the model creation - obtaining of the data and feature engineering. Another possible 
approach to try is to add material properties as single features, such as concentrations 
of elements in % or phases as performed in Rajput [61]. Another approach to try is to compare 
wear coefficient K values from this thesis with literature findings of certain materials and 
optimize Goryacheva equation or delve deeper into the relationships of variables inside the 
wear coefficient K itself. 
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7. L i s t o f used symbols and abbreviations 
Abbreviation Description Abbreviation Description 

Aw Weight Loss M L Machine Learning 
A Area M L P Multilayer Perceptron 
a Radius of Asperity M o Molybdenum 

A„ Nominal Contact Area M S E Mean Squared Error 
A t True Contact Area N Normal Force 

a, b 
Statistical Parameters in 

n 
Number of Wear Elements 

a, b 
Mishina Equation 

n 
Generated at Junction 

a,b,c 
Coefficients in Rhee 

Equation 
n Number of values 

A g Silver Nb Niobium 
A I Artificial intelligence N N Neural Network 

A l Aluminium O O B 
Out of bag error in random 

forest model 

Al fa 
Wear Coefficient in 

Pressure Al fa 
Goryacheva Equation P Pressure 

Total number of 
A N N Artificial neural network P explanatory variables in 

model 

B , C 
Wear Coefficients in Yang 

Equation Pm Flow Pressure 

Beta 
Wear Coefficient in 

Goryacheva Equation 
P C A 

Principal component 
analysis 

Beta, n 
Coefficients in Queneer 

Equation 
71 Ludolf Number 

B N Boron nitride ppm Particles per mil l ion 

c Regularization Parameter 
R2 Coefficient of 

for S V R Model 
R2 

determination 

C o F / p . Coefficient of Friction R E L U 
Rectified linear unit 

function 
Couple Material Couple R F Random Forest 

Cu Copper R M S E Root Mean Squared Error 
DN55 Tribometer s Average Shear Strength 

D N N Deep neural network S H A P 
SHapley Additive 

explanations 
D T Decision tree Gy Yie ld Stress 

E Young Modulus Oyf 
Yie ld Strength of 

Fragment Material 
e Euler Number Spec Specimen (Pin or Plate) 

E-P Extreme Pressure 
Lubricant 

SR Symbolic regressor 

8 
Width of the Street in S V R 

Model 
SSR Sum of squared residuals 

E V S Explained variance score S V M Support vector machine 
F Friction Force S V R Support Vector Regression 
f Frequency t Time 
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F F B P 
Fast forward back 

propagation 
tanh Hyperbolic tangent 

F N N 
Feedforward neural 

network 
Temp Temperature 

G A Genetic Algorithm Theta 
Fraction of Contacts that 

Give Rise to Wear 
Particles 

G A Genetic algorithm T L U / L T U 
Threshold logic unit/ 
Linear threshold unit 

Gamma 
Kernel Coefficient in S V R 

Model 
TSS Total sum of squares 

G B M 
Gradient boosting 

machines 
V Wear Volume 

G D Gradient descent V Speed 

G P Genetic programming vP 

Volume of Spheric 
Particle 

G P R 
Gaussian process 

regression 
V A F Variance accounted for 

H Hardness var Variance 
h Wear Depth W Work of Adhesion 

Hard_ratio Hardness Ratio wd 
Depth Wear Rate 

H V Hardness Vickers Ww Wear Rate 

I D E 
Interactive development 

environment 
wc Tungsten carbide 

IF Isolation forest X Feature matrix 
K Wear Coefficient Amplitude on DN55 

K s 

Steady State Wear 
Coefficient 

X_test 
Feature matrix for testing 

predictions 
K N N K-nearest neighbors X_train Feature matrix for training 

L Sliding Distance X G B Extreme gradient boosting 

Lc 
Length of one cycle on 

DN55 
X O R Exclusive O R logic gate 

L 1 , L 2 
Regularizations in 
machine learning y 

Distance of the line 
contact 

lambda Chemisorption Rate y Target vector in M L 
LogR Logistic Regression y Predicted value 

L R Linear regression y_pred Predicted vector 

M x 
Material number in 

material couple notation 
y_test True values for testing set 

M A E Mean Average Error y jxa in Target vector for training 

Ud 
Coefficient of Dynamic 

Friction y; Actual value 

Coefficient of Static 
Friction - -
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Fig . 3 - Analýza důležitosti vlastností pro nejlepší zvolený model - S V R 4 
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Fig . 6 - Schematically shown a) rolling and b) sliding [2] 3 
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Burwell and Strang [12] 6 
Fig . 8 - Wear in form of h /LP plotted against pressure P on the surface [5] 7 
Fig . 9 - Single contact in sliding surface by Archard [13] 8 
Fig . 10 - The most qualitative relation between distance and volume of material worn. 
Divided into 3 main stages "running-in", "steady state" and "catastrophic" or "severe" wear 
[5] 10 
Fig . 11 - Wear coefficient K values based on different metallurgical compatibility and 
lubrication [15] 12 
Fig . 12 - Wear coefficient K values measured by Archard [18] 12 
Fig . 13 - Principle of abrasive wear from moving contact with hard sharp granular materials 
[19] 14 
Fig . 14 - Example of abrasive wear from moving contact with hard sharp granular materials 
[22] 14 
Fig . 15 - Principle of abrasive wear from hard sharp particles trapped between moving 
surfaces [19] 14 
Fig . 16 - Example of abrasive wear from hard sharp particles trapped between moving 
surfaces [22] 14 
Fig . 17 - Principle of adhesive wear from the rubbing together of relatively smooth surfaces 
[19] 15 
Fig . 18 - Example of adhesive wear from the rubbing together of relatively smooth surfaces 
[22] 15 
Fig . 19 - Principle of fretting wear from the small oscillatory movements between two smooth 
surfaces [19] 15 
Fig . 20 - Example of fretting wear from the small oscillatory movements between two 
smooth surfaces [22] 15 
Fig . 21 - Principle of cavitation wear caused by collapse of the low pressure vapour bubbles 
[19] 16 
Fig . 22 - Example of cavitation wear caused by collapse of the low pressure vapour bubbles 
[22] 16 
Fig . 23 - Scheme of particle erosion from hard particles in a stream of fluid [19] 16 
Fig . 24 - Example of particle erosion from hard particles in a stream of fluid [22] 16 
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Fig . 26 - Example of thermal stress fatigue [22] 17 
Fig . 27 - Example of contact stress fatigue [22] 17 
Fig . 28 - Adhesive wear mechanism (a) before contact; (b) during contact; (c) after contact 
[25] 18 
Fig . 29 - Two possible asperity-level adhesive wear mechanisms by [17]. (a) adhesive 
interaction between two asperities (b) gradual smoothing mechanism by plastic deformation 
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(c) fracture-induced debris formation mechanism observed in A F M wear experiments. The 
red and blue coloring of atoms is artificial for better visualization 19 
Fig . 30 - Autoradiograph of two friction tracks induced in lubricated conditions [24] 20 
Fig . 31 - Traditional vs machine learning approach [35] 24 
Fig . 32 - Splitting dataset into training and testing set [40] 27 
Fig . 33 - Overfitting, Underfitting and Good model of regression [35] 28 
Fig . 34 - mean absolute error calculation schematic [41] 29 
Fig . 35 - R2 schematic of total sum of squares and sum of squared residuals [45] 30 
Fig . 36 - Principle of S V R and changing the 8 hyperparameter for width of the street [35]... 32 
Fig . 37 - Decision Tree Algorithm [35] 33 
Fig . 38 - Decision Tree fitting curve - average of region [35] 33 
Fig . 39 - Genetic algorithm [49] 34 
Fig . 40 - Threshold logic unit: an artificial neuron which computes a weighted sum [35] 36 
Fig . 41 - Single layer perceptron architecture with two inputs, one bias neuron and 3 outputs 
[35] 36 
Fig . 42 - Multilayer perceptron with two inputs, one hidden layer of four neurons and output 
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Fig . 43 - Activation functions sigmoid, tanh and R E L U and heaviside step function with their 
derivates [35] 38 
Fig . 44 - Typical regression M L P architecture [35] 38 
Fig . 45 - Overall regression plot of Radhika et al. N N + G A approach [55] 42 
Fig . 46 - Thankachan et al regression using N N 4-7-1 with F F B P on wear rate for boron 
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Fig . 47 - Argatov et al. comparing wear volume (a) and wear volume rate (b) as a function of 
time based on different measurements and predictions. [57] 43 
Fig . 48 - Genetic algorithm by Faris et al. for low carbon steel [49] 44 
Fig . 49 - Genetic algorithm by Faris et al. for medium carbon steel [49] 44 
Fig . 50 - Comparison of actual and predicted material volume loss by A N N by Rajput et al 
[61] 45 
Fig . 51 - Best performing model ( X G B ) by Zhu et al. [62] 46 
Fig . 52 - Feature importance analysis by Zhu et al. [62] 47 
Fig . 53 - Turbocharger and shown kinematic parts, which wear behavior we are interested in. 
A r m and bushing in green and External kinematic in red 48 
Fig . 54 - Testing principle of DN55 Tribometer 49 
Fig . 55 - DN55 Tribometer 50 
Fig . 56 - Specimens, pin (a) and plates (b) after experiment on DN55 Tribometer 50 
Fig . 57 - Laser profilometer Zygo New View 8300 [63] 51 
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Fig . 62 - Coefficient of Friction - Temperature dependency of the measured data 56 
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59 
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Fig . 67 - Comparison of wear coefficient K values with alfa, beta = 1 and alfa, beta = le-20 60 
Fig . 68 - Dataset for our project - feature matrix X and target vector y 61 
Fig . 69 - Material couples with corresponding hardness ratio's 62 
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N N 66 
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9. L i s t o f Attachments 
dataset_ml.xlsx - excel file with dataset used for machine learning 

rychly_goryacheva.ipynb - interactive Python notebook with code for chapter 3 including 
exploratory data analysis, 3D plot K-a-P and convergence of a, P 

rychly_ml_wide.ipynb - interactive Python notebook for chapter 4 including wide search for 
best M L models 

rychly_ml_finetuning.ipynb - interactive Python notebook for chapter 4 including 
finetuning of 4 best performing model: S V R , R F , G A and N N s . 
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